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Abstract

Using a dynamic factor model with stochastic volatility, we examine the synchro-

nization of temperature and precipitation changes across countries and regions. By

doing so, we analyze the implications for the medium-term economic outlook and

vulnerability to climate risks. Our findings reveal that a common factor explains

a significant portion of temperature variance globally, with the largest contribution

observed in sub-Saharan Africa, Latin America, and Asia. Additionally, the com-

mon factor accounts for the increase in temperature levels across these regions. In

contrast, precipitation fluctuations exhibit more localized patterns. We find that

countries with higher GDP per-capita tend to have lower exposure to global tem-

perature changes.

JEL Classification:

Keywords: Climate change, Temperatures, Economic vulnerability, Dynamic fac-

tor model.
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1 Introduction

Climate change has increasingly become a topic of concern due to its significant impli-

cations for macroeconomic fluctuations. Several recent papers, such as Dell, Jones, and

Olken (2012) and Alessandri and Mumtaz (2022), have highlighted the adverse impact of

rising temperatures and climate variability on real economic activity. Particularly, these

effects are found to be more pronounced in low-income countries. Moreover, results in

Faccia, Parker, and Stracca (2021) and Ciccarelli and Marotta (2021) indicate that fluc-

tuations in emissions and rising temperatures may also affect prices.

Given the mounting evidence linking climate change and the economy 1, our paper aims

to develop an empirical framework for assessing the synchronization of temperature and

precipitation changes across countries and regions. The level of co-movement in these

climate variables can serve as an indicator of the impact on the medium-term economic

outlook and provide valuable information for policymakers regarding vulnerability to cli-

mate risks.

In this study, we employ a factor model with stochastic volatility to analyze the extent to

which changes in temperature and precipitation exhibit common patterns across various

world regions. Our findings reveal that a common factor explains a significant portion of

the temperature variance in major regions globally, with the largest contribution observed

in sub-Saharan Africa, Latin America, and Asia. Furthermore, this common factor ac-

counts for the overall increase in temperature levels across these regions. We also observe

that countries more susceptible to common temperature movements tend to have lower

GDP per capita, a higher share of industry in GDP, and higher average temperatures.

On the other hand, the co-movement of precipitation is more localized and less evident.

Section 2 of this paper provides a detailed description of the model used and the dataset

employed in our analysis. In Section 3, we present and discuss the results obtained from

our empirical investigation.

2 Empirical Model and Data

2.1 Empirical Model

We assume that the average annual temperature (Tit) and average annual precipitation

(Pit) data are described by unobserved components that are common across countries

1See also Carleton and Hsiang (2016), Kahn, Mohaddes, Ng, Pesaran, Raissi, and Yang (2021), Kim,
Matthes, and Phan (2021), Cipollini and Parla (2023)
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or regions. We model these features using a dynamic factor model that allows for het-

eroscedastic disturbances.

The series in our panel are described by the following observation equation:(
Tit

Pit

)
=

(
BW

i 0

0 βW
i

)(
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t

fW
t

)
+
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BR

i 0
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where FW
t︸︷︷︸

K×1

and fW
t︸︷︷︸

K×1

denotes a set of K factors that are common across all countries with

associated factor loadings BW
i︸︷︷︸

1×K

and βW
i︸︷︷︸

1×K

. FW
t represent the ‘world’ factor for temperature

while fW
t is the counterpart for precipitation. Region-specific factors are denoted by the

matrices FR
t︸︷︷︸

K×1

and fR
t︸︷︷︸

K×1

with factor loadings denoted by the 1 × K vectors BR
i and βR

i .

These factors are distinct from the world factors as they only load on the data for the rth

region. The idiosyncratic components in Tit (Pit) is captured by vit (eit) for i = 1, 2, ...,M .

The world and regional factors are assumed to follow a VAR(2) process:
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We allow the disturbances of the model to be heteroscedastic. The shocks Υit =

(
εit

ηit

)
are assumed to have the following distribution:Υit˜N (0, σit). The variance σ2

it is allowed

to evolve over time:

lnσ2
it = c̃i + d̃i lnσ

2
it−1 + givit (4)

As discussed below, the covariance matrix of Et is assumed to be diagonal for the purpose

of identification. Each element of Et is distributed normally: Ekt˜N (0,%hkt) for k =

2As shown in the Appendix, our results are not sensitive to using alternative lag lengths
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1, .., N . The stochastic volatilities hkt evolve as AR processes 3:

lnhkt = c̄k + D̄k lnhkt−1 + dkukt (5)

2.2 Identification and Estimation

Without additional assumptions, the model in equations 1 and 2 suffers from rotational

indeterminancy. To identify the factors and factor loadings, we follow Bai and Wang

(2015) and impose the following identifying restrictions: (i) The covariance matrix of Et

is assumed to be diagonal. (ii) The top K×K block of the factor loading matrices β and

B are assumed to be lower triangular with ones on the main diagonal.

As described in detail in the technical appendix, the model is estimated using a Gibbs

sampling algorithm. The algorithm samples from the following conditional posterior dis-

tributions in each iteration:

1. Factors: Conditional on the stochastic volatilities, the parameters of the observa-

tion and transition equations, the model has a linear, Gaussian state-space repre-

sentation. The algorithm of Carter and Kohn (2004) is used to sample from the

conditional posterior distribution of the factors.

2. Stochastic volatilities: The stochastic volatilites σ2
jt and hkt are drawn from their

conditional posteriors using a particle Gibbs sampler with ancestor sampling (see

Lindsten, Jordan, and Schön (2014)).

3. Factor loadings: The observation equation is a Bayesian regression with known

form of heteroscedasticity. After a GLS transformation, the conditional posterior is

normal with known moments.

4. Parameters of the transition equations. Conditional on the factors and the idiosyn-

cratic components, the model collapses to the VAR in equations 2 and the AR

models in equation 3. Conditional on the time-varying volatility of the residuals,

the conditional posteriors of the coefficients are normal. The transition equations 4

and 5 are Bayesian linear regressions and the conditional posterior of the coefficients

and the error variance is normal and inverse Gamma, respectively.

We use 21,000 iterations saving every 5th of the last 20,000 for inference. We use the

saved parameter draws to calculate the contributions of the world and country factors to

3We show in the technical appendix that an extended version of the model that features non-normal
disturbances produces similar results to the benchmark case.
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the level and variance of the climate variables. The decomposition of the level follows from

the observation equation 1 where the contributions from the world and regional factors

are provided by the ‘fitted values’ Φ̂W
i

(
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)
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i
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)
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)
for J = W,R. The variance of Xit is defined as :
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+
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i

)
Θ̂R
(
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)′
+ var (Vit) (6)

where ΘJ = diag
(
var

(
�̂�J

t

))
and Vit =

(
vit

eit

)
. The variance terms ΘJ on the RHS of

equation 6 can be calculated by applying the standard VAR formula for the unconditional

variance at each point in time, while var (Vit) =
(σ2

it)
1−ρ2i

.

2.3 Data

For each country, we collect data on temperatures and precipitations. The data is obtained

from the University of East Anglia Climate Research Unit’s (CRU) high-resolution data

sets. The data set includes annual series, spatially averaged over individual countries.

Temperatures are expressed in Centigrade while precipitations in millimetres per year.

Overall our sample includes 166 countries. The time series spans from 1900 to 2020. We

use the first 20 years of the sample to calibrate the priors and obtain initial values.

3 Results

3.1 Factors

Figure 1 shows the posterior estimates of the two world factors. The temperature factor

fluctuates at about 18 °C until 1980. However, the temperature factor shows a marked

increase after this date reaching 19 °C at the end of the sample. This result provides

strong evidence that an increase in temperatures is a global phenomenon. In contrast

to the temperature factor, the world precipitation factor shows a modest decline in the

post-1970 period.

Figures 2 shows the evolution of average temperatures in the different regions along

with the ’fitted values’ X̂W
it = BW

i FW
T and X̂R

it = BR
i F

R
T , respectively. Average temper-

atures have increased in all regions and the world factor accounts for the bulk of this
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increase. In Sub-Saharan Africa, Latin America and Asia, the predicted temperature due

to the world factor tracks the actual temperature almost exactly and the prediction due

to the regional factor is largely flat. For the remaining regions, the regional factors cap-

ture some of the large movements in temperature but the post-1980 warming is explained

largely by the world factor.

There is some evidence that higher frequency movements in precipitation in the Middle

East and North Africa, Europe, North America, and Asia are region specific with the

predicted value due to the regional factor moving in line with the actual data. It is

interesting to note that the global factor is important for Sub-Saharan Africa and explains

the sharp decline in precipitation after the mid-1970s.

3.2 Contribution to climate fluctuations

As noted above, the model allows a decomposition of the variance of temperature and

precipitation into contributions from the world and regional factors. The contributions of

the world factor temperature volatility, for example, provide a measure of exposure and

vulnerability of countries to the rise in temperature documented above.

The heat map in Figure 4 shows that the contribution of the world factor to tempera-

ture fluctuations is large with a cross-country average of 52 percent. The role of the world

factor is especially important in Sub-Saharan Africa, Latin America and Asia with impact

of the world factor exceeding 80 percent–The top five countries in terms of contributions

of this factor are Saint Vincent and the Grenadines, Venezuela, Trinidad and Tobago,

Sri Lanka and Tanzania. In contrast, countries such as Sweden, Finland and Norway

are largely unaffected by the common developments in temperature. It is interesting to

note that some large industrial countries are highly vulnerable to common temperature

developments. For example, the contribution of this factor to temperature fluctuations in

the United States and China is estimated to be 60 percent and 66 percent, respectively.
4 Figure A.1 in Appendix A shows that the regional factor makes a modest contribution

to temperature variance, explaining, on average, 20 percent of fluctuations. This factor

is important for some countries in Western and Eastern Europe– it contributes about 60

percent to the volatility of temperature in Denmark, Slovakia, Poland and the Nether-

lands. The contribution of the global factor to precipitation volatility is small (8 percent

on average), indicating that there is limited co-movement in this variable over time. The

4The contributions of the world factor are significantly and negatively correlated with the University
of Notre Dame ND-GAIN index of climate vulnerability and readiness (higher values indicate lower
vulnerability). The correlation coefficient between the two is -0.45 with p-value close to zero.
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effect of the factor is largest in Sub-Saharan Africa and Latin-America and the Caribbean.

However, in absolute terms, the contribution of this factor remains small. The regional

factor is somewhat more important for precipitation (see Figure A.2 in the appendix)

with an average contribution of 16 percent. Countries such as Belgium, Netherlands,

Luxembourg and Germany in Western Europe and Jordan and Israel in the Middle East

are highly exposed to this factor with 70 to 80 percent of fluctuations in precipitation

explained by regional co-movement.

3.2.1 Vulnerability and country characteristics

Why are some countries more exposed to the global temperature factor? We provide

some tentative results on this issue by performing the following correlation analysis to

explore the relationships between economic, energy and development indicators and their

associations with the exposure to the global temperature factor.5

The findings, described by the heatmap in Figure 6 reveal important insights into these

associations. Overall, the results indicate that countries with higher GDP per capita tend

to have lower exposure to global temperature changes. A positive significant correlation

is observed between the share of agriculture (0.32) over GDP and the contribution of the

world temperature factor to temperature suggesting that countries with a larger propor-

tion of their economies in this sector may experience slightly higher exposure to global

temperature changes.

The observed correlation can be attributed to several factors. Firstly, countries with

higher GDP per capita often have more resources and technological capabilities to adapt

and mitigate the effects of climate change. They may have better infrastructure, health-

care systems, and access to resources that enable them to implement effective measures to

cope with rising temperatures. These countries are more likely to invest in climate change

adaptation strategies, such as improved water management systems, energy-efficient tech-

nologies, and early warning systems, which can help mitigate the adverse impacts of

temperature changes.

Secondly, higher GDP per capita is often associated with greater economic diversification

5The variables included in the analysis are: GDP per-Capita, Share of agriculture, industry, service
and manufacturing in GDP, Energy use (kg of oil equivalent per capita), CO2 emission intensity (kg per
2015 US$ of GDP), Fossil fuel energy consumption (% of total), Life expectancy (years), School enrloll-
ment (secondary, % children of school age), Urban population (% of total population), the University
of Notre Dame index of climate readiness, the University of Notre Dame index of climate vulnerability,
Average temperature and Average precipitation. Indicators are averaged over the available time-series
1950-2006. The variables used in this analysis were obtained from the World Bank Development Indica-
tors database.
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and a lower dependency on climate-sensitive sectors, such as agriculture. Countries with a

larger share of their economies in agriculture tend to be more susceptible to climate varia-

tions, as agricultural productivity is highly dependent on weather conditions. In contrast,

countries with more diversified economies, including a higher share of services, are less

reliant on climate-sensitive sectors and therefore exhibit lower exposure to global temper-

ature changes. It is important to note that while the correlation between GDP per capita

and exposure to global temperature changes is observed, it does not necessarily imply cau-

sation. Other factors, such as historical development trajectories, governance structures,

and geographical location, may also play a role in shaping a country’s vulnerability and

exposure to climate change. Additionally, the specific policies and measures implemented

by each country to address climate change can further influence their exposure levels.

Moreover, higher energy consumption per capita is associated with lower exposure to

global temperature changes, as indicated by the negative correlation (-0.18) between en-

ergy use (kg of oil equivalent per capita) and the exposure to the global temperature factor.

Furthermore, lower emissions intensity (-0.13) and a lower proportion of energy derived

from fossil fuels (-0.23) are correlated with slightly higher exposure to global temperature

changes, as indicated by the negative correlations between emissions intensity and Fossil

fuel intensity with exposure to the global temperature factor. Higher energy consump-

tion per capita is associated with lower exposure to global temperature changes because

countries with higher energy consumption tend to have more developed and industrialized

economies. These countries typically have greater resources and capabilities to invest in

technologies and infrastructure that can help mitigate the effects of rising temperatures.

They may have access to cleaner and more efficient energy sources, advanced manufac-

turing processes, and better energy management practices, which can reduce their overall

vulnerability to global temperature changes.

Socioeconomic factors also play a role, with countries having higher life expectancy (-

0.39) and higher secondary school enrollment rates (-0.44) being associated with lower

exposure to global temperature changes. Additionally, it is also negatively correlated

with the urbanization rate (-0.40), suggesting that countries with higher urbanization

rates tend to have lower exposure to global temperature changes.

Two additional variables, readiness and vulnerability demonstrate significant associations

with the exposure to the global temperature factor. Readiness exhibits a negative cor-

relation (-0.43), indicating that countries with higher readiness levels tend to have lower

exposure to global temperature changes. This suggests that countries with well-developed

strategies, infrastructure, and resources for addressing climate change may be better

8



equipped to mitigate the impacts of rising temperatures. On the other hand, vulnerabil-

ity shows a positive correlation (0.39) suggesting that countries with higher vulnerability

levels, encompassing factors such as exposure, sensitivity, and adaptive capacity, may

experience greater exposure to global temperature changes and associated risks. Further-

more, results confirm that higher average temperatures and precipitations are associated

with increased exposure to global temperature changes. These findings provide valuable

insights into the relationships between these country characteristics and the distribution

of countries’ exposure to the global temperature factor. However, it is important to note

that correlation does not imply causation. Further analysis, such as regression modeling,

is necessary to establish the significance and causal relationships between these variables

and the exposure to global temperature changes.

3.2.2 Robustness

We carry out three robustness checks that are described in detail in Appendix A.

1. Fat tails: The benchmark model assumes Gaussian disturbances. First, we relax

this assumption and model the idiosyncratic residuals and shocks to the transition

equation for the factors using a Student-t distribution with 10 degrees of freedom.

This version of the model produces factors and variance decomposition that is similar

to benchmark.

2. Two factors: We extend the model and increase in the number of world and regional

factors to 2. As shown in Appendix A the first temperature and precipitation factors

are similar to the benchmark case. Our key result regarding the importance of

the world factor for temperature volatility is preserved. However, as the additional

common factors capture higher-frequency fluctuations in the climate data, the share

of variation of temperature explained by the global factors is higher than in the

benchmark case.

3. Longer lags: The appendix also shows that a version of the benchmark model with

additional lags produces results that are very similar to the benchmark case.

4 Conclusions

In this study, we contribute to the growing literature exploring the link between climate

change and macroeconomic fluctuations by examining the synchronization of temperature

and precipitation changes across countries and regions. Our empirical analysis, based on a
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factor model with stochastic volatility, has yielded several key findings. First, we observed

a significant increase in global temperatures after 1980, indicating that rising temperatures

are indeed a global phenomenon. The world factor accounted for the majority of this

temperature increase, particularly in sub-Saharan Africa, Latin America, and Asia. In

these regions, the predicted temperature due to the world factor closely tracked the actual

temperature, while the regional factor had a minimal impact. In other regions, the regional

factors captured some temperature movements, but the post-1980 warming was primarily

explained by the world factor. On the other hand, precipitation fluctuations exhibited

more localized patterns, with limited evidence of co-movement across regions over time.

However, the global factor did play a role in explaining the sharp decline in precipitation

after the mid-1970s in Sub-Saharan Africa. Overall, the contribution of the global factor

to precipitation volatility was relatively small compared to that of temperature.

The decomposition of temperature and precipitation variances allowed us to assess the

contribution of the world and regional factors to climate fluctuations. We found that the

world factor accounted for a significant proportion (52 %) of temperature fluctuations

globally, with higher contributions in regions such as Sub-Saharan Africa, Latin America,

and Asia. Countries with lower GDP per capita and a higher share of agriculture and to

a lower extent industry in their economies tended to exhibit greater exposure to global

temperature changes. Additionally, higher energy consumption per capita was associated

with lower exposure to global temperature fluctuations, while lower emissions intensity

and a lower proportion of energy derived from fossil fuels were correlated with slightly

higher exposure.

Socioeconomic factors also played a role, with countries experiencing lower exposure to

global temperature changes having higher life expectancy, higher secondary school en-

rollment rates, and lower urbanization rates. Furthermore, countries with higher readi-

ness levels demonstrated lower exposure, indicating that well-developed strategies and

resources for addressing climate change can help mitigate the impacts of rising tempera-

tures. Conversely, countries with higher vulnerability levels showed greater exposure to

global temperature changes, emphasizing the need for adaptive capacity and resilience-

building measures.

In conclusion, our study highlights the global nature of temperature increases and the

varying degrees of synchronization in precipitation fluctuations across regions. The find-

ings provide valuable insights into the vulnerability and exposure of countries to climate

change, helping policymakers better understand the implications of climate risks on eco-

nomic stability. Further research, including regression modeling and in-depth analysis of
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causality, is needed to deepen our understanding of the complex relationships between

climate variables and macroeconomic outcomes. Ultimately, addressing climate change

and building resilience will require concerted efforts at both the global and regional levels,

with targeted strategies tailored to the specific challenges faced by different countries and

regions.
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Figure 1: World factors
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Figure 2: World and regional factors for temperature
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Figure 3: World and regional factors for precipitation
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Figure 4: Contribution of the world factor to temperature volatility. Average across time

Darker colours the heat map indicates a larger contribution
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Figure 5: Contribution of the world factor to precipitation volatility. Average across time.

Darker colours the heat map indicates a larger contribution
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Figure 6: Vulnerability and country characteristics: correlation heatmap

Global Temperature Factor

GDP per C
apita

Agriculture (%
 of G

DP)

Industry (%
 of G

DP)

Services (%
 of G

DP)

Manufacturing (%
 of G

DP)

Energy Use per C
apita (kg oil e

q.)

CO2 Emission Intensity (kg/$ GDP)

Fossil F
uel E

nergy Consumption (%
)

Life Expectancy (years)

Secondary School E
nrollm

ent (%
)

Urban Population (%
)

Clim
ate Readiness Index

Clim
ate Vulnerability

 Index

Average Temperature

Average Precipitation

Global Temperature Factor

GDP per Capita

Agriculture (% of GDP)

Industry (% of GDP)

Services (% of GDP)

Manufacturing (% of GDP)

Energy Use per Capita (kg oil eq.)

CO2 Emission Intensity (kg/$ GDP)

Fossil Fuel Energy Consumption (%)

Life Expectancy (years)

Secondary School Enrollment (%)

Urban Population (%)

Climate Readiness Index

Climate Vulnerability Index

Average Temperature

Average Precipitation -0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

19



A Appendix A: Additional results and robustness

checks

A.1 Contribution of regional factor to temperature variance

Figure A.1 shows the contribution of the regional factor to temperature volatility while

figure A.2 shows the contribution of the regional factor to precipitation volatility. See

main text for details.

A.2 Robustness checks

A.2.1 Fat tails

First, we relax the assumption of normal disturbances in the benchmark model. The

idiosyncratic components are defined as Υit ∼ N
(
0,

σ2
it

λit

)
. The variance σ2

it is allowed to

evolve slowly over time and follows an AR model as described above. Higher frequency

movements in volatility are captured by 1
λit

that is independent over time. Following

Geweke (1993), we assume a Gamma prior for λit of the form p (λi) =
T∏
i=1

Γ (1, vi), where

Γ (a, b) is the gamma density with mean a and degrees of freedom b. This leads to

a scale mixture of normal distributions for Υit implying that these residuals follow a

student’s T density with degrees of freedom vi and variance σ2
it. The same specification is

assumed for the shocks to the transition equation 2. As discussed below, the covariance

matrix of Et is assumed to be diagonal for the purpose of identification. Each element

of Et is distributed normally: Ekt˜N
(
0, hkt

γkt

)
for k = 1, .., N . The weights 1

γkt
capture

high frequency movements in volatility. As above, we assume a Gamma prior for γkt:

p (γk) =
T∏
i=1

Γ (1, vj). The degrees of freedom parameters ν are set to 10 implying tails

that are fatter than the normal density. We add steps in the Gibbs sampler to draw λit

and γkt. The conditional posterior distribution for this parameter is described in Koop

(2003). Figure A.3 shows that the estimated factors are close to the benchmark case. In

additionn, the variance decomposition has a pattern that is similar to benchmark with

the world factor playing a major role in explaining temperature fluctuations.

A.3 Two factors

We extend the benchmark model and add two world and regional factors. The top panels

of figure A.4 display the estimated world factors. The first temperature factor displays
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the temporal pattern seen in the benchmark case with a sharp increase evident in the

post-1980 period. Similarly, the first precipitation factor displays a decline after the mid-

1970s. The second temperature and precipitation factors are more volatile and do not

have a clear interpretation. In terms of the variance decomposition, the role of the world

temperature factors is magnified in this extended model as some of the higher frequency

movements in temperature are also explained by the second factor. As in the benchmark

case, the regional factor remains important for precipitation volatility.

A.4 Longer Lags

We re-estimate the model using 4 lags in the transition equation for the factors. A.5

shows that the results regarding the factors and variance decomposition are very similar

to the benchmark case.

B Gibbs sampling algorithm

The empirical model is defined as:(
Tit

Pit

)
=

(
BW,T

i 0

0 BW,P
i

)(
FW,T
t

FW,P
t

)
+

(
BR,T

i 0

0 BR,P
i

)(
FR,T
t

FR,P
t

)
+

(
vit

eit

)
(7)

where T denotes temperature series and P denotes precipitation series. The idiosyn-

cratic components uit =

(
vit

eit

)
are assumed to follow AR(1) processes:

uit = ρiuit−1 +Υit (8)

The shocks Υit are assumed to have the following distribution:Υit ∼ N (0, σit). The

variance σ2
it is allowed to evolve over time:

lnσ2
it = c̃i + d̃i lnσ

2
it−1 + givit (9)

The world and regional factors are assumed to follow a VAR process:

Zt = c+
P∑

j=1

bjZt−j + Et (10)
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where Zt︸︷︷︸
N×1

=
(
FW,J
t , FR,J

t

)
for J = [T, P ] The covariance matrix of Et is assumed to be

diagonal for the purpose of identification. Each element of Et is distributed normally:

Ekt ∼ N (0, hkt) for k = 1, .., N . The stochastic volatilities hkt evolve as random walks:

lnhkt = c̄k + D̄k lnhkt−1 + dkukt (11)

B.1 Priors

We use the following prior distributions

1. The factor loadings are denoted by bi = [BW,J
i , BR,J

i ] for for J = [T, P ]. The prior is

normal: P (bi) ∼ N(b̃i,Σb) where b̃i denotes principal component estimates of factor

loadings and Σb is a diagonal matrix with diagonal elements equal to 0.1.

2. The prior for the persistence of the idiosyncratic components ρi is normal: N(ρ0,Σp)

where ρ0 = 0.5 and Σp = 0.01

3. The prior for the coefficients Ãi = [c̃i, d̃i] is normal with mean A0 = [0, 0.95] and

variance ΣA where ΣA is a diagonal matrix with 0.1 on the main diagonal.

4. The prior for gi is inverse Gamma with scale g0 = 0.001 and degrees of freedom

T0 = 1

5. We use a Minnesota type prior (see Bańbura, Giannone, and Reichlin (2010) for the

coefficients of the VAR in equation 10 which are denoted by β̄ in vectorised form.

The tightness parameter is set to 0.1

6. The prior for Āk = [c̄i, d̄i] is normal with mean Ā0 = [0, 0.95] and with variance Σ̄A,

a diagonal matrix with diagonal elements equal to 0.1.

7. The prior for dk is inverse Gamma with scale d0 = 0.001 and degrees of freedom

Td,0 = 1

The Gibbs sampling algorithm draws from the following conditional posterior distributions

in each iteration (Ψ denotes all other parameters):

1. Factor loadings G(bi|Ψ). For each series yit the model can be written as:

yit = bizt + uit (12)

uit = ρiuit−1 +Υit (13)

var(Υit) = σit (14)
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where zt = [FW,J
t , FR,J

t ] for J = T or J = P . A GLS transformation can be used to

remove the autocorrelation and heteroscedasticity. Define y∗it =
yit−ρyit−1

σ0.5
it

and x∗
it =

zit−ρzit−1

σ0.5
it

. The conditional posterior is normal with variance V =
(
Σ−1

b + x∗
i
′x∗

i

)−1

and mean M = V
(
Σ−1

b b̃i + x∗
i
′y∗i

)
.

2. Persistence of idiosyncratic components G(ρi|Ψ). Conditional on the remaining

parameters, the idiosyncratic components can be written as:

uit = ρiuit−1 +Υit (15)

var(Υit) = σit (16)

A GLS transformation can be used to remove heteroscedasticity. Define y∗it =
uit

σ0.5
it

and x∗
it =

uit−1

σ0.5
it

. The conditional posterior is normal with mean and variance defined

as in Step 1 above.

3. Stochastic volatility of idiosyncratic components G(σit|Ψ). Conditional on the re-

maining parameters, a non-linear state-space model applies to each idiosyncratic

component:

uit = ρiuit−1 +Υit (17)

var(Υit) = σit (18)

lnσ2
it = c̃i + d̃i lnσ

2
it−1 + givit (19)

We draw σit from the conditional posterior using the particle Gibbs sampler with

ancestor sampling introduced by Lindsten, Jordan, and Schön (2014).

4. G(gi|Ψ). This conditional posterior is inverse Gamma with scale parameter g0 +(
lnσ2

it − c̃i − d̃i lnσ
2
it−1

)′ (
lnσ2

it − c̃i − d̃i lnσ
2
it−1

)
and degrees of freedom Ti + T0

where Ti denotes the time-series for the ith cross-section.

5. G(Ãi|Ψ). The transition equation for the stochastic volatility is a linear regression

model. Conditional on lnσ2
it, gi, the conditional posterior is normal. Let y = lnσ2

it

and x = [1, lnσ2
it−1]. Then the variance of the conditional posterior is defined as:

V =
(
Σ−1

A + 1
gi
x′x
)−1

and mean M = V
(
Σ−1

A A0 +
1
gi
x′y
)

6. VAR coefficients G(β̄|Ψ). Conditional on the remaining parameters 10 is a VAR

with heteroscedastic disturbances. As we assume that the covariance matrix of Et is

diagonal, one can draw from the conditional posterior of the coefficients equation by
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equation. The conditional posterior is normal after a GLS transformation. Carriero,

Chan, Clark, and Marcellino (2022) describe an efficient algorithm to implement this

draw and we follow their approach.

7. Stochastic volatility G(hk|Ψ). The transition equations can be cast as a non-linear

state-space system:

Zt = c+
P∑

j=1

bjZt−j + Et (20)

lnhkt = c̄k + D̄k lnhkt−1 + dkukt (21)

As in step 3, we employ a particle Gibbs sampler to draw hkt from the conditional

posterior distribution.

8. G(dk|Ψ). This step is identical to Step 4.

9. G(Āk|Ψ). This step is identical to Step 5.
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Figure A.1: Contribution of the regional factor to temperature volatility

Darker colours the heat map indicates a larger contribution
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Figure A.2: Contribution of the regional factor to precipitation volatility

Darker colours the heat map indicates a larger contribution
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Figure A.3: Robustness: Fat tails
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Figure A.4: Robustness: Two factors
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Figure A.5: Robustness: Longer lags
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