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Abstract

We document that a theoretically founded, real-time, and easy-to-implement

option-based measure, termed synthetic-stock difference (SSD), accurately esti-

mates the part of stock’s expected return arising from stock’s transaction costs.

We calculate SSD for U.S. optionable stocks. SSD can be more than 10% per

annum, it can fluctuate significantly over time and its cross-sectional dispersion

widens over market crises periods. We confirm the accuracy of SSD by empirically

verifying the predictions of a general asset pricing setting with transaction costs.

First, we document its predicted type of connection with various proxies of stocks’

transaction costs. Second, we conduct simple asset pricing tests which render fur-

ther support. Our setting allows explaining the size of alphas reported by previous

literature on the predictive ability of deviations from put-call parity.
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1 Introduction

Stock trading entails transaction costs.1 A stock investor would require a compensation,

in addition to the one for being exposed to risks, so that she also covers the incurred

transaction costs. This simple rationale yields a decomposition of expected returns in

two parts, the first reflecting the effect of transaction costs (termed transaction costs

alpha, TC-alpha) and the second reflecting the effect of risk premia (the covariance risk

premium term).2

Even though there is a large literature on the latter term, only few studies, including

Amihud and Mendelson (1996), analyze how transaction costs contribute to expected

stock returns.3 This is because the estimation of the TC-alpha is not trivial; the size of the

transaction costs does not suffice to determine the exact value of TC-alpha. For example,

the sign of the TC-alpha depends on the investor’s trading direction. In the case where

the investor buys ((short-)sells) stocks, she may demand a greater (lower) expected return

than the covariance risk premium to be profitable and compensate incurred transaction

costs; this will yield a positive (negative) TC-alpha.

In this paper, we propose and empirically validate a novel measure to proxy the

TC-alpha for any optionable stock. Our measure is based on properly scaled deviations

from put-call parity, termed synthetic-stock difference (SSD hereafter).4 SSD is a model-

free, real-time, non-parametric and easy-to-implement measure. Its calculation requires

only pairs of observable call and put option market prices with the same strike price

and maturity and their underlying stock price. We calculate SSD for each optionable

U.S. common stock from January 1996 to December 2020; these optionable stocks account

on average for around 90% of the U.S. equity market capitalization. We find that SSD

can become sizable when compared to the typical value of the U.S. equity risk premium;

on some dates, SSD reaches more than 10% per annum. We also find that SSD is not

stable and its value fluctuates month by month; this variation is significant for stocks

which have big SSD (in absolute value). Moreover, the cross-sectional dispersion of SSD

widens during periods of distress as expected, given that transaction costs magnify over

crises.

1In this paper, transaction costs refer to typical trading costs (e.g., commissions, exchange fees, bid-
ask spreads and market impact) that apply to buying and selling assets, as well as to short-sale costs.

2Our terminology of TC-alpha is analogous to that of Gârleanu and Pedersen (2011), who define the
margin alpha as the expected excess return adjusted for risk (i.e., the covariance risk premium term)
that arises due to the existence of margin constraints.

3Blume and Stambaugh (1983) and Asparouhova et al. (2010) study how microstructural noise affect
the estimation of the equity risk premium.

4Intuitively, deviations from put-call parity stem from market frictions in the underlying stock and/or
frictions in the option market. The source of the deviation (market and type of friction) can not be known
in advance and it is a matter of empirical analysis. Our empirical result shows that SSD is an accurate
proxy of TC-alpha, that is, SSD proxies effect of transaction costs in the underlying stock market.
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We document that SSD is an accurate proxy of TC-alpha by providing two sets of

results founded on the predictions of a general asset pricing setting with transaction

costs. The first set documents that there is a particular type of connection between

SSD and commonly used proxies of transaction costs for trading stocks in line with the

theory. To establish this, as a prerequisite, we show that TC-alpha should lie in the

interval [−2ρ − θ, 2ρ], where ρ is the relative size of the stock transaction cost and θ is

the relative short-sale cost. This theoretically established TC-alpha interval shows that

TC-alpha (and its empirical counterpart SSD) is not synonymous to ρ, yet it yields the

following three predictions for how TC-alpha/SSD should be related to the transaction

costs parameters. First, in the cross-section of stocks, the value of SSD should be non-

linearly related to ρ; it would take more extreme values (either positive or negative) for

stocks which are subject to greater transaction costs. Second, the dispersion of SSD

should be positively and (approximately) linearly correlated with proxies of ρ. Third,

the alpha of an SSD-sorted spread portfolio (big SDD stocks minus small SSD stocks)

should be greater for stocks which face greater transaction costs. This is because a larger

transaction cost parameter ρ and/or larger short-sale cost parameter θ translates to a

wider range of TC-alpha.

Next, we confirm all three predictions empirically. We find that cross-sectionally, SSD

has a U-shape relation with a list of low-frequency proxies of stocks’ transaction costs,

known to be highly correlated with their high-frequency counterparts. Regarding the

second prediction, we employ a number of low-frequency proxies of transaction costs. We

find that the average over time cross-sectional correlation between the monthly standard

deviations of daily SSD and transaction costs is positive, for each proxy and it can reach

a high value. For instance, the correlation with the VoV(%Spread) of Fong et al. (2017a)

reaches 0.62.5 With regard to the third prediction, we find that the alphas of the SSD-

sorted spread portfolios increase as transaction costs increase.

The second set of results further verifies that SSD is an accurate proxy of TC-alpha.

These are based on the predictions of a standard and general asset pricing formula which

should hold for any asset pricing model in the presence of transaction costs, namely

(Expected excess return) = αTC + (Covariance risk premium term), (1)

where αTC is TC-alpha. Based on equation (1), we test the validity of SSD as a proxy of

αTC in two ways. First, we examine whether SSD predicts stock returns cross-sectionally;

if SSD measures TC-alpha accurately, stocks with a greater SSD should earn a greater

5VoV(%Spread) is a proxy of effective spreads. Fong et al. (2017a) report that it dominates other
proxies of relative transaction costs for U.S. stocks, in terms of closely approximating high-frequency
transaction costs proxies.
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expected return. Second, we test whether equation (1) holds once we replace αTC by

its empirical counterpart SSD; again, this should be the case if SSD measures TC-alpha

accurately. We confirm both predictions empirically. A long-short portfolio constructed

by going long in stocks with high SSD and short in stocks with low SSD yields statistically

significant alphas between 1.5–1.8% per month, depending on the model used to estimate

alphas. In addition, we find that we cannot reject equation (1) when we employ standard

factor models (e.g., Carhart, 1997 four-factor model, Hou et al., 2015 q-model).

Our study contributes to three strands of literature. First, it contributes to the

literature on the effect of market frictions to expected returns, including transaction

costs (e.g., Amihud and Mendelson, 1996) and short-sale constraints (e.g., Chen et al.,

2002; Ofek et al., 2004; Asquith et al., 2005; Drechsler and Drechsler, 2014).6 Our

contribution lies in proposing a novel way to measure TC-alpha. This differentiates

us from existing studies that typically examine the relation between overall expected

stock returns and the size of transaction costs. Furthermore, our study highlights the

distinction between the size of transaction costs (ρ) and TC-alpha. Knowledge of the size

of transaction costs does not suffice to estimate TC-alpha. The value of ρ determines

the range in which TC-alpha lies, yet ρ is silent about the exact value that TC-alpha

takes, as our theoretically derived TC-alpha interval reveals. This observation sheds light

on the previously documented weak predictive power of frictions for the returns of large

stocks (e.g., Hou et al., 2018). Grouping stocks in portfolios based on a proxy of the

size of transaction costs places stocks with positive and negative TC-alpha in the same

portfolio, thus it yields a portfolio with TC-alpha close to zero.

Our research is also related to studies which document that measures of deviations

from put-call parity measure short-selling costs (e.g., Ofek et al., 2004; Muravyev et al.,

2017; Cremers et al., 2019; Muravyev et al., 2022). We contribute to these studies by

proposing a measure which quantifies formally the effect, rather than the size, of broader

types of transaction costs to stock expected returns. We achieve this by developing

our measure within a general asset pricing setting which highlights the importance of

the choice of the scaling factor. Two remarks are in order here. First, the fact that

our measure is related to transaction costs is not a take-down on alternative existing

explanations for the predictive ability of deviations from put-call parity, such as informed

6More broadly, this literature includes the effect of liquidity risk (Acharya and Pedersen, 2005, Ami-
hud, 2002), market and funding liquidity constraints (Brunnermeier and Pedersen, 2009), margin con-
straints (Chabakauri, 2013), margin and leverage constraints (Frazzini and Pedersen, 2014, Jylhä, 2018),
uncertainty about future shorting costs (Engelberg et al., 2018), idiosyncratic volatility (Ang et al., 2006;
Stambaugh et al., 2015), delay in the response of prices to information (Hou and Moskowitz, 2005), in-
termediaries’ liquidity constraints (Nagel, 2012), exclusion of strategies with possible unlimited losses
(Jarrow, 2016), and measures which are agnostic on the type of market frictions which affect expected
returns (Brennan and Wang, 2010 and Hou et al., 2016).
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trading (Bali and Hovakimian, 2009; Cremers and Weinbaum, 2010) and price pressure

(Goncalves-Pinto et al., 2020); all these explanations can co-exist (Easley et al., 1998).

Second, our paper should not be interpreted as one more paper on documenting that

deviations from put-call parity predict future stock returns; in fact, there is already a

voluminous literature on the ability of market option prices, including deviations from

put-call parity, to predict future stock returns (see e.g., Gkionis et al., 2021 and references

therein). Rather, our paper examines whether our proposed measure predicts future

stock returns as part of only one of the tests to verify the testable implications of our

theoretically founded measure; our SSD measure oughts to predict future stock returns

as equation (1) shows.

Interestingly, as a by-product of our approach, we shed light on an important, yet

previously overlooked finding; the predictive ability of deviations from put-call parity is

large (alphas more than 1.0% per month, reported by above mentioned studies) given

that the stock universe is confined to optionable stocks which tend to be large stocks

with relatively low transaction costs. The foundation of our SSD measure within the

TC-alpha augmented asset pricing setting enables us to explain the emergence of these

sizable alphas. Our interval of TC-alpha predicts that the upper bound of TC-alpha of

the spread long-short portfolios approximately equals 4ρ+ θ. A commonly used value of

the estimates of the relative transaction costs (around 0.4–0.5%) and short-sale cost (see

e.g., Muravyev et al., 2017) justifies the size of the reported alphas of the SSD-sorted

portfolios.7

Finally, more broadly speaking, our estimator shares a key insight with Gârleanu

and Pedersen (2011) and Pasquariello (2014), that deviations from the law-of-one price

occur due to limits to arbitrage caused by market frictions. The latter study constructs a

composite measure of market frictions based on violations of arbitrage parities in stock,

foreign exchange and bond markets. In this paper, we focus on transaction costs, and

demonstrate that our scaled deviations from put-call parity measure, SSD, accurately

proxies the effect of transaction costs for trading the underlying stock.

The rest of the paper is structured as follows. In Section 2, we introduce the synthetic-

spot difference (SSD) measure and explain data sources and empirical procedures to cal-

culate SSD for U.S. individual stocks. Section 3 documents the empirical characteristics

of SSD. Then, we provide the two sets of results which confirm that SSD is a valid proxy

of TC-alpha. Section 4 concludes.

7This value of the relative transaction costs is in line with the estimates provided by studies which
use low-frequency transaction costs estimates (e.g., Hasbrouck, 2009; Goyenko et al., 2009; Fong et al.,
2017b). These estimates are obtained from the TAQ database, which contains information on the trades
executed by retail investors and liquidity traders. We cite these low-frequency transaction costs estimates
because our database also includes trades executed by the same type of investors. See Appendix D for
further discussion on this.
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2 Synthetic-stock difference and transaction costs

2.1 Motivation

Let Rt,T be the return of the stock from time t to T (t < T ) and mt,T be the pricing

kernel. In a frictionless market, 1 = EP
t [mt,TRt,T ] holds (see e.g., Cochrane, 2005), where

EP
t [·] denotes the conditional expectation operator under the physical measure P, given

the information up to time t. However, in the presence of transaction costs, He and

Modest (1995) show that the following inequality relation holds instead,

1− ρ
1 + ρ

≤ EP
t [mt,TRt,T ] ≤ 1 + ρ

1− ρ
, (2)

where ρ denotes the one-way relative transaction cost. Furthermore, by also considering

short-sale cost of θ on top of the symmetric transation costs ρ into account, the inequality

(2) becomes
1− ρ− θ

1 + ρ
≤ EP

t [mt,TRt,T ] ≤ 1 + ρ

1− ρ
. (3)

Equation (3) yields the following expression for the expected excess return,8

EP
t [Rt,T ]−R0

t,T = αTCt,T −R0
t,TCov

P
t (mt,T , Rt,T ), (4)

where R0
t,T is the gross risk-free rate from t to T , and αTCt,T satisfies the following inequality,

−R0
t,T

2ρ+ θ

1 + ρ
≤ αTCt,T ≤ R0

t,T

2ρ

1− ρ
. (5)

The second term on the right-hand side of equation (4) represents the standard co-

variance risk premium term (i.e., the covariance between the stock return and the pricing

kernel). Equation (4) shows that in the presence of transaction costs (including short-

sale costs), the expected excess return is the sum of the covariance risk premium and the

alpha term, αTCt,T . We call αTCt,T the transaction costs alpha (TC-alpha in short), because it

is the part of the expected excess return arising due to the inclusion of transaction costs

that cannot be explained by the covariance risk premium.

Inequality (5) yields two important implications. First, it shows that TC-alpha can

be either positive or negative. A positive (negative) TC-alpha occurs when agents buy

((short-)sell) the stock. In this case, the expected return should be greater (less) than the

covariance risk premium so that transaction costs (including short-sale costs, if applicable)

incurred by the agent are covered. Second, the quantitative impact of the αTCt,T term on

8For simplicity, we assume that the risk-free bond market is frictionless, that is, EP
t [mt,T ] = 1/R0

t,T

holds. Relaxing this assumption does not affect the subsequent empirical analysis qualitatively.

5



the expected stock return can be large. Even if we ignore the short-sale cost parameter θ

and assume a typical value of ρ = 0.5% (e.g., Hasbrouck, 2009; Novy-Marx and Velikov,

2016), inequality (5) suggests that αTCt,T can be as small as −1% or as big as +1%. When

considering short-sale costs θ, more negative values can occur as the lower bound further

decreases approximately by the value of θ. We comment further on the values of ρ and θ

in Appendix D.

The estimation of αTCt,T is not trivial. Knowledge of the relative transaction cost ρ

(and θ) of the stock does not suffice to estimate αTCt,T ; the value of ρ determines the range

in which αTCt,T lies, yet ρ is silent about the exact value that αTCt,T takes. We will infer αTCt,T

from market option prices.

2.2 Synthetic-stock difference

We define the synthetic stock price S̃t(K,T ) as

S̃t(K,T ) = Ct(K,T )− Pt(K,T ) +
K +DT

R0
t,T

, (6)

where Ct(K,T ) and Pt(K,T ) are the time t price of European call and put option with

strike price K and maturity T , respectively, and DT is the dividend payment at time T .

For simplicity, we assume that the stock pays dividends only at time T and its amount is

known at time t. The deterministic dividend payment assumption is plausible for short-

term maturity options as the ones that we will use for our empirical analysis; near-future

dividends are usually pre-announced.

Next, we define the synthetic-stock difference (SSD) as

SSDt(K,T ) =
R0
t,T

T − t
S̃t(K,T )− St

St
. (7)

SSD is a relative deviation from put-call parity scaled by the ratio of the gross risk-free

rate to the options’ time-to-maturity. Appendix B explains that the definition of SSD

as in equation (7) is theoretically founded. Notably, the numerator of the scaling factor

ensures that SSD is related to expected stock returns. We scale SSD by time-to-maturity

so that it is comparable across different options’ maturities T . This is because, as we

will argue shortly, SSD proxies a part of expected returns (i.e., TC-alpha). Normalizing

it to, say, annualized returns, is also necessary since our empirical SSD measure will

aggregate deviations from put-call parity of pairs with different strikes and different

times-to-maturity.

Since SSD is scaled deviations from put-call parity, it should be zero when the stock

market and option market are frictionless and arbitrage-free. On the contrary, a non-
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zero SSD indicates the existence of market frictions that limit arbitrage either in the

underlying market and/or in the option market. The detection of the source of deviation

is an empirical issue. In Section 3, we provide empirical evidence that SSD accurately

proxies the underlying stock’s TC-alpha.

Equation (7) shows that the value of SSD depends on the choice of strike K and

maturity T . To construct our empirical SSD measure, at any point in time, we aggregate

the SSDs calculated from pairs of options with different stirke prices and maturities to

obtain a single SSD value for each stock-date pair. The construction of a composite SSD

measure is desirable because it may cancel out any noise in individual SSDs caused by

measurement errors in option prices. This will improve the accuracy in the estimation of

TC-alpha.

We aggregate SSDs as follows. First, for each traded maturity Ti, we take the weighted

average of the SSDs across strikes for which the call and put implied volatilities (IVs) are

available. That is,

SSDt(Ti) =
∑
Kj

wjSSDt(Kj, Ti), (8)

where the weight wj is the relative open interest of the corresponding options, in line

with Cremers and Weinbaum (2010). Then, we linearly interpolate SSDt(Ti) obtained

from the two traded maturities surrounding the 30-day maturity, to construct the 30-

day constant maturity measure. On a particular date, we treat the aggregated SSD as

missing, if the 30-day maturity is not bracketed by two traded maturities. Hereafter, we

denote the SSD measure constructed in this way by SSDt.
9

2.3 Data

To calculate SSDs, we obtain U.S. equity option prices and IVs from the Option Price file

of the OptionMetrics Ivy DB database (OM) via the Wharton Research Data Services

(WRDS). Our dataset spans January 1996 to December 2020. Options written on the

U.S. individual equities are American style. OM calculates IVs via the Cox et al. (1979)

binomial tree model, which takes the early exercise premium of American options into

account. To calculate synthetic stock prices, we convert OM-IVs to the corresponding

European option prices via the Black and Scholes (1973) option pricing formula, in line

with Martin and Wagner (2019). We obtain the risk-free rate and dividend payment

9As an unreported robustness check, we also construct an alternative SSD measure obtained from the
put-call option pair whose strike price is closest to the spot price and whose maturity is closest to 30-day.
This alternative SSD measure is a noisier version of our baseline SSD. For example, its ability to forecast
future stock returns cross-sectionally, as equation (4) predicts, is weaker than that of our baseline SSD,
SSDt. This is expected as it utilizes information from only one pair of call and puts and hence it may
be impacted from any measurement errors in market option prices.
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data from the OM database to calculate the present value of dividend payments over

the option’s life time. We remove IVs if the recorded corresponding option bid price is

non-positive, the IV is missing, or the option’s open interest is non-positive. We discard

data with time to maturity shorter than 8 days or longer than 270 days. We keep option

data only when the moneyness K/St is between 0.9 and 1.1 to ensure that the most liquid

option contracts are considered.

For the stock return data, we obtain stock returns from the Center for Research in

Security Prices (CRSP). In line with the literature, our stock universe consists of all

U.S. common stocks (CRSP share codes 10 and 11).10 For our subsequent tests, we

also obtain the time-series of risk factors in the Carhart (1997) 4-factor model (FFC)

from Kenneth French’s website, the Stambaugh and Yuan (2017) mispricing factor model

(SY) from Yu Yuan’s website, and the Hou et al. (2015) q-factor (HXZq) from WRDS. We

construct various firms’ and stocks’ characteristics variables and proxies of transaction

costs based on the CRSP and Compustat database. Appendix C provides the definition

and data source of the various variables.

3 Empirical results

In Section 3.1, we report the summary statistics of SSD. Then, we document that SSD

proxies TC-alpha well by verifying the testable implications of our theoretical setting

outlined in Section 3.2. Specifically, Sections 3.3 and 3.4 document that there is a con-

nection between SSD and transaction costs proxies, in a theoretically expected way. In

Section 3.5, we document that SSD accurately proxies TC-alpha, based on asset pricing

tests implied by the TC-alpha-augmented asset pricing setting (equation (4)).

3.1 Summary statistics

Table 1 reports the summary statistics of SSDt calculated at the end of each month;

both measures are normalized corresponding to a 30-day stock return. We can see that

there are about 433,000 stock-month observations. This yields on average about 1,440

stocks in each month which ensures the formation of well-diversified decile portfolios in

the subsequent analysis.

The percentage of the negative observations (the neg column) is about 53%, that is,

there are slightly more cases where the underlying stock price is higher than the synthetic

stock price. The distribution of SSD is skewed to the left and has a longer left tail; mean

10The stock identifiers differ in the CRSP and OptionMetrics databases (PERMNO and SECID, re-
spectively). We link CRSP and OptionMetrics by the macro provided by the WRDS, which matches
PERMNO and SECID.
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and median are slightly negative (although they are virtually equal to zero), the absolute

value of the fifth percentile is greater than the 95th percentile. These empirical patterns

are consistent with equation (5), as they suggest an asymmetrically longer left tail due

to the existence of short-sale costs. SSD can become sizable compared with average

equity risk premia (e.g., Mehra, 2012 reports monthly equity risk premium of about 0.5%

per month); it takes both positive and negative values, ranging from -1.24% to 0.92%

per 30-day in a 5th to 95th percentile range. They also have fairly large cross-sectional

variations; the standard deviation is about 0.9% and the interquartile range (IQR, the

difference between 75th and 25th percentile points) is about 0.5% on average across

stocks.

[Table 1 about here.]

Next, we examine the evolution of the cross-sectional dispersions of SSD over time.

Figure 1 shows the time-series evolution of the monthly IQR of SSDt. We can see that

most of the spikes in the IQR correspond to periods of market turmoil, such as the

Russian default and LTCM crisis (August to September 1998), the collapse of Lehman

Brothers and ensuing market meltdown (September to November 2008), the European

debt crisis (November 2011 associated with the uncertainty with the political situation

in Greece), the Chinese stock market turmoil (June 2015 to January 2016), and the early

stage of the Covid-19 pandemic (March 2020). In addition, with the exception of these

distressed periods, we can observe a secular decline in the IQR. These empirical patterns

are consistent with the fact that transaction costs intensify over market crises (Nagel,

2012; Hou et al., 2016), and the evidence that transaction costs have decreased over the

recent years partly due to the automation of markets (Green et al., 2017).

[Figure 1 about here.]

Then, we examine the persistence of SSD values over time in the cross-section of

stocks. This will enable us to understand how TC-alpha changes over time cross-sectionally.

To this end, at the end of each month, we classify stocks in tercile portfolios; tercile 1 (3)

contains stocks with very negative (positive) SSDt and tercile 2 contains stocks whose

SSDt is close to zero. Then, we calculate the empirical transition probability matrix

between the SSDt tercile portfolios. That is, pij denotes the probability of stocks moving

from the i-th tercile in month t − 1 to the j-th tercile in month t. Table 2 reports the

transition probabilities.

The first and the third row of Table 2 suggest that SSD fluctuates randomly in the

succeeding month for stocks whose value of SSD is either very high or low in the current

month; these two rows show that the transition probabilities are all roughly close to one

9



third regardless of destination bins. On the other hand, the SSD of stocks in tercile 2 (i.e.,

SSDs which do not take extreme values in the current month) are relatively more likely

to stay in tercile 2 and thus exhibiting a non-extreme SSD value in the next period. This

pattern is consistent with our theoretically derived interval of TC-alpha, that is, stocks

with lower ρ value have a narrower SSD range. Conditional on observing SSD close to

zero (i.e., observing a stock in tercile 2), the stock’s ρ parameter is expected to be small,

and hence the possible range of SSD value is narrower. Therefore, the probability of

moving from tercile 2 to tercile 1 or 3 in the following month is smaller.

[Table 2 about here.]

3.2 Testable implications of the range of TC-alpha

We test whether SSD accurately proxies TC-alpha by examining whether the empirical

patterns of SSD are in line with the following three testable implications of the theoreti-

cally derived interval of TC-alpha (equation (5)).

First, in the cross-section of stocks, the value of SSD should be non-linearly related

to ρ; it would take more extreme values (either positive or negative) for stocks which are

subject to greater transaction costs. Second, the dispersion (measured either as the range

or as the standard deviation) of SSD should be positively and (approximately) linearly

correlated to proxies of ρ. The range 4ρ + θ is an affine function of ρ and the standard

deviation is proportional to the range at least approximately.

Third, equation (5) suggests that the alpha of an SSD-sorted spread portfolio (big

SDD stocks minus small SSD stocks) should be greater for stocks which face greater

transaction costs. This is because a greater value for the transaction cost parameter

ρ and/or for the short-sale cost parameter θ translates to a wider range of TC-alpha,

and hence a bigger difference between the TC-alphas of the SSD-sorted long-leg and

short-leg portfolios. Note that the short-sale constraints parameter θ is asymmetric in

the sense that a larger θ signifies wider negative SSD regions whereas it does not affect

the positive SSD region. This suggests that larger θ ties to more stock underperformance

(i.e., negative alpha). This is consistent with large body of literature that documents that

severer short-sale constraints are asymmetrically associated with stock underperformance

(see e.g., Jones and Lamont, 2002; Boehme et al., 2006; Stambaugh et al., 2015, among

others).

3.3 Relation between SSD and transaction costs proxies

To test the first and second implications mentioned in Section 3.2, we examine the relation

of SSD with a number of popular low-frequency proxies of transaction costs which have
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also been documented to be highly correlated with their high-frequency proxies coun-

terparts (e.g., Goyenko et al., 2009; Fong et al., 2017b). We employ both percent-cost

liquidity proxies and cost-per-dollar-volume liquidity proxies to proxy our ρ parameter.

The former type of proxies measure the percentage transaction cost and the latter assess

the marginal cost of trading an additional dollar amount of a large trade (Fong et al.,

2017b, p.1357).11 Regarding the percent-cost liquidity proxies, we employ the relative

bid-ask spread (Chung and Zhang, 2014), Roll’s (1984) measure, High-Low measure of

Corwin and Schultz (2012), FHT of Fong et al. (2017b), VoV(%Spread) of Fong et al.

(2017a). For the cost-per-dollar volume liquidity proxies, we examine Amihud’s (2002)

measure, and four types of extended Amihud measures, namely, the relative bid-ask im-

pact, FHT impact, High-Low impact, and VoV impact (see Goyenko et al., 2009 for the

definition of extended Amihud measures). Appendix C provides details on the calculation

of these measures.

[Table 3 about here.]

Table 3 reports the average value of the above mentioned proxies of liquidity and

standard stock characteristics for each one of the value-weighted decile portfolios sorted

by SSDt. Portfolio 1 (10) contains stocks with the most negative (positive) SSDt,

whereas the middle portfolio (Portfolio 6) contains stocks whose SSDt is close to zero.

Consistent with the first implication, we can see a U-shape relation between the cross-

sectional SSDt and each one of the employed proxies of transaction costs. This manifests

that a large value of SSD (either very positive and nevative) is associated with greater

transaction costs. This result is consistent with the first theoretical prediction of equation

(5); TC-alpha (or its empirical counterpart, SSD) can take an extreme value only when

the transaction costs parameter ρ is large. Moreover, we can see that the trough of the

U-shape relation occurs at Portfolio 6. This is also in line with the theoretical prediction

of equation (5); stocks in Portfolio 6 are expected to have a small value of ρ, conditional

on observing SSD close to zero. Regarding the relation between SSD and other standard

stocks’ characteristics, we observe an inverse U-shape relation for the SIZE (the logarithm

of the market equity) and the stock price level (St). Again, this is expected as larger

(smaller) these two variables are known to be related with smaller (larger) stock market

transaction costs (see e.g., Jegadeesh and Titman, 2001; Novy-Marx and Velikov, 2016).

Next, we examine the second implication that there should be a linear and positive

correlation between transaction costs and the dispersion of SSD. We use two alternative

measures of dispersion of SSD, that is its range and its standard deviation. For each

11It is possible to extend our model to incorporate trading volume-dependent transaction costs. We
do not take this approach because it does not change the essence of the model and it complicates its
exposition.
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month and for each stock, we calculate the range and the standard deviation of daily

SSDt observed over the month. We treat these two statistics missing if no more than ten

observations are available in the month. Table 4 reports the summary statistics of the

two dispersion statistics of SSD and of the transaction costs proxies over the stock-month

observations with valid SSDt.

[Table 4 about here.]

Table 5 shows the time-series average of monthly cross-sectional correlations between

the two dispersion statistics of SSD and the transaction costs proxies. We can see that the

dispersion statistics of SSD are positively correlated with each transaction costs proxy

contained in our menu of transaction costs measures. These correlations can be quite

high for some proxies. For instance, the standard deviation of SSD exhibits a high

correlation of 0.62 with VoV(%Spread), which has been found to dominate other proxies

of relative transaction costs for U.S. stocks, in terms of closely approximating high-

frequency transaction costs proxies (Fong et al., 2017a). These results validate the second

implication in Section 3.2 and render further empirical support to the accuracy of SSD

as a measure of TC-alpha.

[Table 5 about here.]

3.4 Predictive ability of SSD and transaction costs

We test the third implication of equation (5) shown in Section 3.2 which dictates that

the return predictive ability of SSD should be greater for stocks which face gretater

transaction costs. We conduct dependent bivariate portfolio sort analysis. First, we sort

stocks in portfolios by their respective proxy for ρ or θ. Then, within any given portfolio,

we sort stocks in value-weighted portfolios based on their respective SSD, and calculate

the spread portfolios’ average returns and alphas. We report results based on the relative

bid-ask spread as a proxy of ρ (Chung and Zhang, 2014) due to space constraints; results

are qualitatively similar when alternative proxies of ρ in this paper are used as a sorting

variable. We use the relative short interest (RSI) as a proxy of short-sale constraints; a

greater RSI signifies greater short-sale costs (Asquith et al., 2005).

Table 6, Panel A (B) reports results for the bivariate dependent sort, first by the

relative bid-ask spread (RSI), and then by SSDt. We can see that the average return

and αFFC of the SSD-sorted spread portfolios increase as the bid-ask spread and RSI

increase. Therefore, our results confirm the prediction that the dispersion of SSD and

hence the predictive power of SSD is greater among stocks which are subject to bigger

transaction costs and short-sale costs. Moreover, the RSI-SSD double sort result shows
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that only sigificantly negative (positive) alphas can be observed in the largest (smallest)

RSI bin. Since larger RSI implies severer short-sale constraints (i.e., greater value of θ),

this result corroborates the implication that stocks with larger θ underperform.

[Table 6 about here.]

A remark is in order about our result that the portfolio sort analysis using friction-

related variables (transaction costs proxies in our case) yield large spread portfolio alphas.

This finding may seem puzzling because the previous literature finds a weak return pre-

dictive power of friction-related variables among large stocks (e.g., Hou et al., 2018).

We reconcile our findings with these of the previous research as follows. Our theoretical

interval in equation (5) implies that grouping stocks by a proxy of ρ is not an effective

way to trace which stocks will outperform and which will underperform (in terms of the

sign of SSD). This is because the relation between ρ and SSD is non-linear; a portfolio

consisting of stocks with large ρ contains stocks with big negative and positive SSD which

may offset each other and will yield a close to zero SSD (TC-alpha), thus showing no

outperformance. In fact, our bivariate portfolio sort result in Table 6, Panel A, shows

that the widest relative bid-ask spread bin contains sub-portfolios with negative average

return and positive average return.

3.5 Accuracy of SSD measure: Further asset pricing tests

We provide two further tests to confirm the accuracy of SSD to estimate TC-alpha.

First, equation (4) shows that positive (negative) TC-alphas predict positive (negative)

abnormal return. Similarly, stocks with higher TC-alphas should earn a greater average

return than stocks with lower TC-alphas, implying that a TC-alpha-sorted long-short

spread portfolio will earn positive abnormal return. These relations should also hold

for the SSD-sorted stocks, if SSD accurately measures TC-alpha. To test this, every

month, we sort stocks by SSDt, where Portfolio 1 (10) contains the stocks with the

lowest (highest) SSDt and we compute the value-weighted monthly portfolio post-ranking

return. We also construct a zero-cost long-short spread portfolio, where we go long in

Portfolio 10 and short in Portfolio 1. We estimate the alpha of each portfolio with respect

to the FFC, SY, and HXZq models.

Table 7 reports the results. Decile portfolios with low and negative SSDt (Portfolios

1, 2) earn negative and significant risk-adjusted returns, whereas those with high and

positive SSDt (Portfolio 10) earn positive and significant risk-adjusted returns. This

implies that a positive (negative) SSD predicts a positive (negative) abnormal return.
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12 The alpha of the SDD-sorted spread portfolio is sizable, more than 1.6% per month.

These results showcase the predictive ability of SSD in line with theory and support the

accuracy of SSD as a measure of TC-alpha.13

[Table 7 about here.]

The obtained sizable alphas are not surprising. Previous studies also report that

the alphas of spread portfolios formed based on deviations from put-call parity exceed

1% per month (Bali and Hovakimian, 2009, Table 3; Cremers and Weinbaum, 2010,

Table 2; Goncalves-Pinto et al., 2020, Tables 2 and 3, among others). Nevertheless, the

literature does not provide an explanation on why such sizable alphas emerge within

the universe of optionable stocks, which tend to be large stocks. In Appendix D, we

provide an explanation on this important, yet overlooked empirical finding, based on the

TC-alpha-augmented general asset pricing setting and our SSD measure.

Next, we provide additional evidence that SSD is an accurate proxy of TC-alpha

based on a regression-based asset pricing test. Specifically, we test the following testable

hypothesis of equation (4) formulated in a regression setting as

Rt,T −R0
t,T = α + β′ft,T + γSSDt + εT , (9)

where ft,T is a vector of risk-factors (i.e., β′ft,T approximates the covariance risk premium

term). Under equation (4) and assuming that SSD proxies TC-alpha, then α = 0 and

γ = 1 should hold. We test this hypothesis by a pooled regression of the value-weighted

decile portfolio returns constructed by sorting stocks by SSDt. We employ FFC, SY,

and HXZq models as alternative sets of risk factors ft,T . Table 8 reports the results.

We can see that the point estimates of α are not significant regardless of the risk-factor

models. Moreover, the results from the Wald test show that the joint null hypothesis of

H0 : α = 0, γ = 1 cannot be rejected at a 10% significance level for SY and HXZq models

and at a 1% significance level for FFC model. Therefore, the asset pricing equation (4)

cannot be rejected when SSDt is used as a proxy of TC-alpha. This result supports (in

the sense that our test did not reject it) the transaction cost-augmented asset pricing

model of equation (4) and also suggests that SSDt estimates TC-alpha accurately.

[Table 8 about here.]

12We also confirm a monotonic relation between the portfolios’ average returns and SSDt. We conduct
the Patton and Timmermann (2010) monotonicity test. The null of no systematic relation between SSDt

and the post ranking decile portfolio returns is rejected in favour of an increasing relation with p = 0.017.
13Our unreported robustness results also confirm that the predictive results are not driven by short-

term reversals, non-synchronous trading in the option and underlying market, low prices, and alternative
breakpoints to construct stock portfolios.
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4 Conclusions

In the presence of transaction costs in trading stocks (including short-salling costs), ex-

pected stock returns contain the transaction costs alpha (TC-alpha) term in addition

to the conventional risk premium term. We propose a model-free, real-time and easy-

to-implement measure of TC-alpha, namely the synthetic-spot difference (SSD). SSD is

properly scaled price differences between the synthetic stock price, replicated at any point

in time from pairs of European call and put option prices with the same strike price and

maturity, and the quoted underlying stock price.

We calculate SSD for each optionable U.S. common stock over January 1996 to De-

cember 2020. We find that extreme negative SSD values are more likely to occur than

extreme positive ones, due to the presence of short-sale costs. SSD can become sizable,

especially during a market turmoil, and it can be highly volatile over time for stocks with

a very low or a very high SSD. We document that SSD accurately proxies TC-alpha by

providing two sets of results. First, we confirm that there is a significant connection be-

tween SSD and several commonly used proxies of transaction costs. Second, we find that

SSD predicts stock returns cross-sectionally, and it is consistent with the cross-section of

observed stock returns regardless of the chosen asset pricing model. Both sets of results

are in line with the predictions of a general and standard asset pricing setting in the

presence of transaction costs.

Notably, as a by-product of our analysis, our setting shows that the strength of the

documented predictability (alpha) of SSD is in line with standard empirical values of

a host of transaction costs proxies. Thus, our findings address an issue of importance

overlooked by previous literature, that is, the large alphas obtained from sorting under-

lying stocks based on deviations from put-call parity. From a practitioner’s perspective,

the degree to which this alpha is exploitable in practice depends crucially on the type of

investors and the size of transaction costs they face.

Our findings imply that transaction costs play an important role in determining ex-

pected stock returns, even for big stocks. Hence, our measure can be used by future

research to address questions in asset pricing and portfolio construction which would

require knowledge of the impact of transaction costs to expected returns.

A Proof of equations in Section 2.1

First, we prove the right inequality in equation (3) as in He and Modest (1995). They

assume a utility-based asset pricing model; the pricing kernel mt,T equals the intertem-

poral marginal rate of substitution βu′(cT )/u′(ct), where β is the discount factor, u(ct) is
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a time-separable utility function and ct is consumption at time t. Consider shifting one

dollar from current consumption to time T consumption. In this case, the investor can

buy 1
St(1+ρ)

units of the stock at time t and can obtain 1
St(1+ρ)

ST (1 − ρ) dollars at time

T. At the optimum point, we obtain the following inequality because deviating from the

optimum (weakly) reduces the expected utility.

−u′(ct) + EP
t

[
βu′(cT )

(
1− ρ
1 + ρ

)
Rt,T

]
≤ 0.

This proves the right inequality of equation (3).

The proof of the left inequality of equation (3) is similar. Consider increasing one

dollar of consumption by short-selling stock at time t. In this case, the investor needs to

short-sell 1
(1−ρ−θ)St

units of the stock. To cover this short-sale position at time t+ 1, the

investor needs to pay 1
(1−ρ−θ)St

(1 + ρ)ST dollars. The optimality condition similar to the

above inequality yields

u′(ct)− EP
t

[
βu′(cT )

(
1 + ρ

1− ρ− θ

)
Rt,T

]
≤ 0.

This proves the left inequality of equation (3).

Replacing the middle term of equation (3) with EP
t [mt,TRt,T ] = CovPt (mt,T , Rt,T ) +

EP
t [Rt,T ]/R0

t,T and doing some algebra yields that the expected excess return satisfies

equation (4) with the range condition for TC-alpha, equation (5).

B Definition of SSD: Theoretical foundation

Let m∗t,T be the pricing kernel of a marginal investor who trades in the stock and option

market. In a frictionless market, the market price of an asset should equal its expected

payoff discounted by the pricing kernel. Since the underlying stock and the synthetic

stock have identical cash flows at time T , their prices should be identical. This leads to

the following well-known put-call parity relation.

St = EP
t [m

∗
t,T (ST +DT )] = S̃t(K,T ). (B.1)

On the other hand, in real markets where market frictions exist, put-call parity does

not hold, and deviations from put-call parity frequently become sizeable. This means

that either or both the underlying stock price and the synthetic stock price deviate from

their expected discounted payoff value EP
t [m

∗
t,T (ST +DT )]. We denote the wedge between

the underlying stock price (the synthetic stock price) and its expected discounted payoff
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value by ωt(T ) (ω̃t(K,T )), that is,

St = ωt(T ) + EP
t [m

∗
t,T (ST +DT )], (B.2)

S̃t(K,T ) = ω̃t(K,T ) + EP
t [m

∗
t,T (ST +DT )]. (B.3)

A non-zero wedge term of the underlying stock, ωt, may arise from frictions in trading the

underlying stock including transaction costs (He and Modest, 1995), margin constraints

(Gârleanu and Pedersen, 2011), short-sale constraints (Ofek et al., 2004), among others.

For the synthetic stock, a non-zero wedge term ω̃t may arise from frictions in trading

options (e.g., Frazzini and Pedersen, 2022; Santa-Clara and Saretto, 2009; Hitzemann

et al., 2018). Note that ωt and ω̃t may take positive or negative values.

By transforming equation (B.2), we obtain

EP
t [Rt,T ]−R0

t,T = −
R0
t,Tωt(T )

St
−R0

t,TCov
P
t (Rt,T ,mt,T ). (B.4)

Comparing equations (4) and (B.2) yields that αTCt = −R0
t,Tωt(T )/St. Equations (B.2)

and (B.3) yield

R0
t,T

S̃t(K,T )− St
St

= R0
t,T

ω̃t(K,T )− ωt(T )

St
. (B.5)

Note that, if ω̃t(K,T ) is negligible, then it follows that the left-hand side of equation

(B.5) proxies TC-alpha as equations (B.4) and (B.5) show. This is the basis for our

definition of SSD in equation (7).

One cannot directly prove that ω̃t(K,T ) is negligible. Instead, we examine whether

SSD proxies TC-alpha accurately by performing two types of tests. First, we examine

its connection with well-known proxies of transaction costs. Second, we test whether

testable asset pricing hypotheses regarding TC-alpha hold if we use SSD as a proxy of

TC-alpha (see Section 3).

C Description of variables

Relative bid-ask spread (BAS): We calculate the daily relative bid-ask spread as

BASid = (Sask,id − Sbid,id )/(0.5(Sask,i + Sbid,i)). Then, we average the daily bid-ask

spread within each month. We require there are at least 15 non-missing observa-

tions. Data are obtained from the CRSP database.

FHT: We follow Fong et al. (2017b) and calculate FHT within each stock-month by

FHT = 2σ ·N−1

(
1 + z

2

)
,
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where σ is the standard deviation of non-zero stock returns within the month and

N−1 is the inverse of the cumulative standard normal function. z = ZRD/(TD +

NTD) is the zeros, where ZRD is the number of zero returns days, TD is the

number of non-zero trading volume days, and NTD is the number of zero trading

volume days. We treat FHT missing if TD < 5 or NZRD = TD+NTD−ZRD <

11).

Roll: We follow Roll (1984) and calculate the following equation for each stock-month,

Roll =


2
√
−Cov(∆St,∆St−1)

S
, if Cov(∆St,∆St−1) > 0

0 otherwise,

where ∆St is the daily price change and S is the average stock price within the

month. We treat Roll missing if TD < 5 or NZRD < 11). We normalize the Roll

measure by the average stock price so that this measure corresponds to the relative

spread.

VoV(%Spread): We follow Fong et al. (2017a) and calculate V oV (%Spread) for each

stock-month by

V oV (%Spread) =
a · σ2/3

V 1/3
,

where a = 8, σ is the standard deviation of daily returns within the month, and V

is the average daily dollar trading volume within the month. The trading volume is

deflated by the consumer price index (CPI-U nromalized as 1.0 in January 2000).

We treat VoV(%Spread) missing if TD < 5 or NZRD = TD+NTD−ZRD < 11).

High-Low: To calculate Corwin and Schultz’s (2012) High-Low measure, first we calcu-

late Xt for each trading day by

Xt =
2(eat − 1)

1 + eat
, where at =

√
2βt −

√
βt

3− 2
√

2
− γt

3− 2
√

2

and γt is the squared log(High/Low) with High and Low are those over the previous

two days. If Xt is negative, we replace it with Xt = 0. Then, we calculate High-

Low measure for each stock-month by averaging Xt within the month. We treat

High-Low missing if TD < 5 or NZRD = TD +NTD − ZRD < 11).

Amihud: We calculate daily Amihud’s (2002) illiquidity measure as the ratio of the

absolute daily return to the dollar trading volume, Illiqid = |Ri
d|/(SidV olid), where

Ri
d and V olid are the daily return and the trading volume of i-th stock on day d.

Then, we average daily illiquidity measure within the month. We require there
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are at least 15 non-missing observations. The stock returns, stock prices, and

trading volumes are obtained from the CRSP database. The trading volume of the

NASDAQ equities is adjusted by following Gao and Ritter (2010).

Extended Amihud (FHT, Roll, VoV, High-Low): We follow Goyenko et al. (2009)

and calculate the four types of Extended Amihud proxies, defined as

Extended Amihud =
Spread Proxy

Average Daily Dollar Volume
.

As a spread proxy, we use the FHT, Roll, VoV(%Spread), and High-Low, separately.

The trading volume of the NASDAQ equities is adjusted by following Gao and Ritter

(2010).

SIZE: Size is the natural logarithm of the market equity. The market equity is calculated

as the product of the number of outstanding share with the price of the stock at

the end of each month. Data are obtained from the CRSP database.

Relative short interest (RSI): The relative short interest (RSI) is calculated as the

ratio of the number of short interest to the number of outstanding share. The short

interest data is obtained from the Compustat North America, Supplemental Short

Interest File via the WRDS. Until the end of 2006, the Compustat records the short

interest at the middle of any given month (typically 15th day of each month). Since

2007, the short interest file contains the short interest at the middle of months and

the end of months. We use the end-of-month short interest data since 2007 because

we sort stocks in portfolios at the end-of-each month in our analysis. The number

of outstanding share is obtained from the CRSP database.

Book-to-Market equity (B/M): We follow Davis et al. (2000) to measure book equity

as stockholders’ book equity, plus balance sheet deferred taxes and investment tax

credit (Compustat annual item TXDITC) if available, minus the book value of

preferred stock. Stockholders’ equity is the value reported by Compustat (item

SEQ), if it is available. If not, we measure stockholders’ equity as the book value of

common equity (item CEQ) plus the par value of preferred stock (item PSTK), or

the book value of assets (item AT) minus total liabilities (item LT). Depending on

availability, we use redemption (item PSTKRV), liquidating (item PSTKL), or par

value (item PSTK) for the book value of preferred stock. From June of each year t

to May of t+ 1, the book-to-market equity (B/M) is calculated as the ratio of the

book equity for the fiscal year ending in calendar year t − 1 to the market equity

at the end of December of year t− 1. We treat non-positive B/M data as missing.
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D Size of SSD-portfolio alphas: An explanation

The previous literature on the predictive ability of measures of deviations from put-call

parity also reports sizable alphas (Ofek et al., 2004; Bali and Hovakimian, 2009; Cremers

and Weinbaum, 2010; Muravyev et al., 2017; Cremers et al., 2019; Goncalves-Pinto et al.,

2020). The theoretical setting of our proposed SSD measure can provide an explanation

to the size of reported alphas. Our framework can express the maximum attainable TC-

alpha of a long-short spread portfolio as a function of the transaction costs parameter

ρ and short-sale costs parameter θ; it is approximately equal to 4ρ + θ. Therefore, the

question is whether ρ and θ are empirically large enough to accommodate the magnitude

of the reported SSD-sorted portfolio alphas.

Regarding ρ, the 95th percentile value of the six proxies of effective spreads is at

least 0.76 (for FHT) (see Table 4). This suggests that 4ρ is at least in the order of

1.5% for stocks in the spread portfolio; effective spreads conceptually measure 2ρ and

stocks in the spread portfolio (i.e., stocks in Portfolios 1 or 10) are subject to large ρ

as documented by the U-shape relation reported in Table 3. With regard to the short-

sale costs parameter θ, Table 1, Panel B in Muravyev et al. (2017) documents that the

indicative borrowing fee at the higher end of the distribution of short-sale fees across

optionable stocks, varies between 7 bps (90th percentile point) and 1.3% (99th percentile

point) per month. Therefore, the 4ρ + θ is likely larger than the order of 1.6%, that is,

the reported alpha of the SSD-sorted spread portfolios is within the upper bound of the

alpha of TC-alpha-sorted portfolios.A.1

A final remark is in order. Frazzini et al. (2014) report lower estimates of effective

transaction costs based on a proprietary dataset. Hence, one may argue that the above

justification of the reported SSD-alphas relies on an overestimated ρ. However, a caveat

should be pointed out in this argument. As Frazzini et al. (2014) argue, their database

yields much smaller estimated transaction costs because proprietary datasets contain

exclusively trading records of large sophisticated institutional investors; this is a small

subset of the information the TAQ database cover. Instead, our empirical analysis is based

A.1Our employed estimates of transaction costs are also largely in line with Novy-Marx and Velikov
(2016). They report effective transaction costs estimated based on Hasbrouck’s (2009) Gibbs sampling
method by decades for the 2,000 largest firms as a function of the firm size ranking (Figure 1, p.109). WE
find that the average size ranking of the stocks in the SSD-sorted decile spread portfolio is about 1,500.
Hence, Novy-Marx and Velikov (2016) effective transaction cost values for the 1,500th largest stock over
time is a reasonable benchmark to compare with the average effective transaction costs proxies of the two
extreme SSD-sorted portfolios (i.e., Portfolios 1 and 10). They find that the ρ of the 1,500th largest stock
is about 0.6% in 1990 and it reduces to about 0.4% in 2000s. Therefore, on average across our sample
period, 4ρ = 1.5% will be a plausible assumption. This value is also in line with the stylized effective
transaction costs function adopted in Brandt et al. (2009) and DeMiguel et al. (2020). The stylized
function in these studies determines transaction costs of individual stocks as a function of the stock size
and calendar year, and it is calibrated to estimated effective transaction costs based on Hasbrouck’s
(2009) method.
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on the CRSP and OptionMetrics databases. These reflect the actions of multiple classes

of investors, including retail investors and liquidity traders, as the TAQ database does.

Therefore, to ensure consistency in our discussion of the size of SSD-sorted portfolio

alphas, we need to rely on the transaction costs estimates reported in the literature

obtained from low-frequency transaction costs measures that have been found to proxy

TAQ-based high-frequency transaction costs measures.A.2
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Figure 1. Time Series of the monthly IQR of SSDt

Description: Figure 1 illustrates the time-series of the monthly interquartile range
(IQR) of SSDt. At the end of each month, we calculate the IQR of the individual stocks’
SSDt values as the difference between 75th and 25th percentile points of the distribution
of SSD calculated from the cross-section of optionable common U.S. stocks. The unit of
the y-axis is % per 30-day. The period spans January 1996-December 2020.

Interpretation: The dispersion of SSD widens during periods of distress as expected,
given that transaction costs magnify over stock market crises.
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Table 1. Spot-synthetic difference: Summary statistics

Description: Entries report the summary statistics of the spot-synthetic difference measure, SSDt, at
the end of each month. N is the total number of observations, s.d. is the standard deviation, skew is the
skewness, kurt is the kurtosis, 5P and 95P are the 5th and 95th percentile points, respectively, med is
the median, IQR is the interquartile range (75th minus 25th percentile values), and neg is the proportion
of observations with a negative value. The estimation period spans January 1996-December 2020 (300
months). The unit of statistics (except skewness, kurtosis, and neg) is % per 30-day.

Interpretation: SSD can become sizable and its distribution has a longer left tail due to short-sale

costs, as the theoretical range of TC-alpha, equation (5), suggests. Stocks subject to greater short-sale

costs have more negative SSD.

N mean s.d. skew kurt min 5P med 95P max IQR neg
432,837 -0.07 0.93 -2.15 73.4 -30.6 -1.24 -0.02 0.92 25.1 0.47 53.0
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Table 2. Transition probability matrix of SSD bins

Description: This table reports the transition probability matrix of SSD bins. Bin 1 (3) contains stocks
whose SSD value is very negative (positive), whereas Bin 2 contains stocks whose SSD value is close to
zero. The (i, j) element of each panel represents the transition probability from bin i in month t− 1 to
bin j in month t. The unit is percentage.

Interpretation: SSD is not stable for certain stocks and its value can fluctuate significantly month by

month. The variation in SSD is significant for stocks which have a big absolute value of SSD.

1 2 3
1 39.4 29.6 31.0
2 26.5 43.7 29.7
3 30.9 32.9 36.2
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Table 3. Characteristics of value-weighted decile portfolios sorted by SSDt

Description: Entries report the average value of the proxies of transaction costs and related firms’
and stocks’ characteristics of decile portfolios formed by SSDt. On the last trading day of each month
t, stocks are sorted in ascending order based on SSDt, and then value-weighted decile portfolios are
formed. Then, we calculate the value-weighted value of each characteristic. See Appendix C for the
detailed description of each variable. The unit of SSDt to VoV(%Spread) is percent. Amihud and three
Extended Amihud (EA) measures are multiplied by 109 so that the unit is basis point price impact
caused by $10,000 order flow. The unit of St is dollar and that of Rt−1,t is percent. B/M stands for
book-to-market and N stands for the average number of stocks in each decile portfolio. The data period
spans January 1996-December 2020 (300 months).

Interpretation: There is a U-shape relation between the cross-sectional SSD and each one of the

employed proxies of transaction costs; a large value of SSD (either very positive and negative) is associated

with greater transaction costs.

Value-weighted decile portfolios sorted by SSDt

1 (L) 2 3 4 5 6 7 8 9 10 (H)

SSDt -1.29 -0.50 -0.29 -0.17 -0.08 0.00 0.08 0.18 0.36 0.96
range(SSDt) 2.82 1.49 1.06 0.88 0.80 0.77 0.82 0.95 1.33 2.56
std(SSDt) 0.76 0.40 0.28 0.23 0.21 0.20 0.21 0.25 0.35 0.69
Bid-ask spread 0.47 0.37 0.32 0.29 0.27 0.25 0.25 0.28 0.32 0.41
Roll 1.30 1.10 1.02 0.94 0.94 0.94 0.96 0.98 1.06 1.23
High-Low 0.87 0.70 0.64 0.60 0.59 0.58 0.60 0.62 0.66 0.80
FHT 0.15 0.10 0.08 0.06 0.06 0.05 0.06 0.07 0.09 0.14
VoV(%Spread) 0.27 0.17 0.14 0.12 0.11 0.10 0.11 0.12 0.15 0.24
Amihud 3.16 0.96 0.57 0.33 0.23 0.20 0.23 0.34 0.73 2.44
EA FHT 0.49 0.13 0.06 0.04 0.02 0.02 0.02 0.03 0.09 0.38
EA High-Low 1.22 0.36 0.19 0.12 0.09 0.08 0.09 0.13 0.28 0.96
EA VoV 0.70 0.18 0.09 0.05 0.03 0.03 0.03 0.05 0.14 0.55
Size 15.45 16.44 16.96 17.30 17.56 17.61 17.58 17.30 16.72 15.81
B/M 0.53 0.46 0.44 0.42 0.41 0.40 0.40 0.42 0.45 0.50
St 42.38 64.00 81.90 85.99 97.08 95.20 95.86 75.50 62.09 46.64
Rt−1,t 2.62 2.33 2.12 1.95 1.75 1.72 1.39 1.12 0.59 -0.01
N 142.5 142.7 142.5 142.6 142.3 142.9 142.6 142.7 142.6 142.6
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Table 4. Summary statistics of low-frequency liquidity proxies

Description: Entries report the summary statistics of the two dispersion statistics of SSDt and low-
frequency liquidity proxies. For each stock-month, we calculate the range (the difference between maxi-
mum and minumum) and the standard deviation of daily SSDt data within the month. For the definition
of the low-frequency liquidity proxies, See Appendix C. The sample period spans January 1996-December
2020. We restrict our sample to stock-month observations that have a valid SSDt data. The unit of
the two dispersion statistics of SSDt and the proxies of effective spreads (FHT to BAS) is percent. The
price impact proxies (Amihud and four Extended Amihud proxies) are multiplied by 1010.

Interpretation: Both the dispersion statistics of SSD and low-frequency liquidity proxies have a large

variation and a longer right tail.

N mean s.d. skew 5P median 95P
range(SSDt) 369,199 1.66 1.88 4.47 0.33 1.06 4.92
std(SSDt) 369,199 0.45 0.50 4.34 0.09 0.29 1.33
FHT 419,825 0.14 0.36 5.98 0.00 0.00 0.76
VoV(%Spread) 419,825 0.32 0.26 2.39 0.08 0.24 0.81
Roll 419,821 1.29 1.76 2.79 0.00 0.78 4.57
High-Low 416,700 0.86 0.55 1.96 0.28 0.72 1.93
BAS 418,045 0.37 0.73 4.25 0.02 0.10 1.74
Amihud 419,844 49.87 233.87 59.97 0.40 8.23 200.63
EA (FHT) 419,825 7.34 60.24 36.05 0.00 0.00 23.19
EA (Roll) 419,821 27.66 148.82 28.99 0.00 1.00 112.00
EA (VoV) 419,825 13.28 82.23 38.28 0.03 1.10 48.33
EA (High-Low) 416,700 20.10 84.21 20.86 0.16 3.19 79.46
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Table 5. Average cross-sectional correlations between the dispersion statistics
of SSD and other proxies of ρ parameter

Description: Entries report the average cross-sectional Pearson correlation coefficient between the
dispersion statistics of SSDt, either the range or the standard deviation of daily SSDt within each
month, and each low-frequency liquidity proxy. The correlation coefficients are calculated as the time-
series average of cross-sectional correlations in each month. The sample period spans January 1996-
December 2020.

Interpretation: The average over time cross-sectional correlation between the monthly dispersion statis-

tics of daily SSD and transaction costs is positive, for each proxy, and it can reach a high value (an

example is the case of the VoV(%Spread) of Fong et al. (2017a)).

std(SSDt) range(SSDt)
FHT 0.24 0.23
VoV(%Spread) 0.62 0.59
Roll 0.17 0.17
High-Low 0.45 0.44
BAS 0.43 0.41
Amihud 0.44 0.41
EA (FHT) 0.28 0.26
EA (Roll) 0.32 0.30
EA (VoV) 0.35 0.33
EA (High-Low) 0.42 0.39
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Table 6. Performance of value-weighted SSDt-sorted portfolios: Bivariate
dependent sorts controlling for relative bid-ask spread or RSI

Description: Entries in Panel A report the result of the bivariate dependent sort in value-weighted
portfolios, where we first sort stocks based on the relative bid-ask spread (BAS), and then within each
group of the BAS level, we further sort stocks into quintile portfolios by SSDt. Rows correspond to
the level of the first sorting variable, BAS, and the first to the fifth columns correspond to the level
of the second sorting variable, SSDt. Sixth to the last columns report the average returns, Carhart
(1997) four-factor alpha, and the average SSDt, respectively, of the spread portfolio (the highest SSDt

portfolio minus the lowest SSDt portfolio). Entries in Panel B report the result, where we use RSI
(relative short interest) as the first sorting variable, instead of BAS. The estimation period spans January
1996-December 2020 (300 months). t-statistics are adjusted for heteroscedasticity and autocorrelation
(HAC-adjusted t-stat). The unit of the average returns and alphas (average SSD) is % per month (per
30-days).

Interpretation: The power of SSD to predict future stock returns is greater for stocks which are subject

to greater transaction costs and short-sale constraints. In addition, Panel B suggests that severer short-

sale constraints imply larger stock underperformance.

αFFC of SSDt-sorted portfolios Spread portfolio (5-1)
1 (L) 2 3 4 5 (H) Ave ret αFFC Ave SSD

Panel A: Relative bid-ask spread-sorted dependent bivariate sort
BAS 1 -0.50 -0.27 0.01 -0.10 0.13 0.54 0.63 0.71
(narrow) (-2.37) (-1.65) (0.10) (-0.58) (0.80) (2.24) (2.75) (12.48)
2 -0.58 -0.21 0.04 0.15 0.24 0.83 0.81 0.98

(-3.22) (-1.49) (0.25) (1.08) (1.11) (3.33) (3.26) (9.34)
3 -0.60 -0.26 0.10 0.22 0.51 1.00 1.11 1.25

(-3.50) (-1.64) (0.74) (1.38) (2.45) (4.13) (4.35) (15.06)
4 -0.69 -0.12 -0.05 0.17 0.37 1.02 1.06 1.68

(-3.14) (-0.57) (-0.31) (0.97) (1.99) (4.21) (4.01) (15.50)
BAS 5 -1.70 -0.64 0.06 0.07 0.38 2.06 2.08 2.98
(wide) (-6.05) (-2.69) (0.27) (0.37) (2.06) (7.00) (7.11) (16.46)

Panel B: Relative short interest-sorted dependent bivariate sort
RSI 1 -0.07 0.06 0.03 0.46 0.60 0.68 0.67 0.84
(small) (-0.44) (0.52) (0.27) (3.17) (3.94) (3.33) (2.99) (13.52)
2 -0.18 -0.03 -0.04 0.05 0.41 0.63 0.60 1.00

(-1.13) (-0.28) (-0.26) (0.36) (2.11) (2.88) (2.40) (19.61)
3 -0.26 -0.22 0.02 0.16 0.03 0.23 0.29 1.20

(-1.42) (-1.34) (0.15) (1.28) (0.17) (1.02) (1.32) (22.54)
4 -0.86 -0.13 0.11 0.03 0.02 0.82 0.88 1.39

(-4.06) (-0.68) (0.61) (0.17) (0.12) (3.31) (3.48) (22.61)
RSI 5 -1.38 -0.39 -0.17 -0.07 -0.10 1.30 1.29 1.88
(large) (-5.54) (-1.68) (-1.04) (-0.31) (-0.42) (4.65) (4.38) (16.77)
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Table 7. Cross-sectional predictability of SSDt

Description: Entries report the average SSDt, average post-ranking return of underlying stocks, and
results for the risk-adjusted underlying stock returns (α) of the SSDt-sorted value-weighted decile portfo-
lios and the spread portfolio, with respect to the Carhart (1997) four-factor model (FFC), the Stambaugh
and Yuan (2017) mispricing factor model (SY), and the Hou et al. (2015) q-factor model (HXZq). On
the last trading day of each month t, stocks are sorted in ascending order based on SSDt, and then
value-weighted decile portfolios are formed. Then, we calculate the underlying return of these portfo-
lios and the spread portfolio in the succeeding month-(t + 1). The estimation period spans January
1996-December 2020. t-statistics are adjusted for heteroscedasticity and autocorrelation and reported in
parentheses. The unit of the average returns and alphas (average SSDt) is percent per month (30-day).
N is the average number of stocks in each decile portfolio.

Interpretation: SSD predicts stock returns in line with the theoretical setting of TC-alpha; the long

(short) leg earns a positive (negative) alpha, and the long-short spread portfolio earns a positive and

sizable alpha.

Ave. Ave. αFFC αSY αHXZq N
SSDt Ret.

Value-weighted decile portfolios sorted by SSDt

1 (L) -1.29 -0.04 -1.05 -0.78 -0.92 142.5
(-0.08) (-6.99) (-4.67) (-5.32)

2 -0.50 0.41 -0.53 -0.51 -0.56 142.7
(1.21) (-3.58) (-2.91) (-3.63)

3 -0.29 0.73 -0.17 -0.21 -0.17 142.5
(2.39) (-1.61) (-1.77) (-1.39)

4 -0.17 0.65 -0.20 -0.20 -0.17 142.6
(2.37) (-2.20) (-1.98) (-1.66)

5 -0.08 0.92 0.01 -0.08 -0.01 142.3
(3.33) (0.11) (-0.80) (-0.14)

6 0.00 0.95 0.05 0.04 0.07 142.9
(3.39) (0.55) (0.38) (0.65)

7 0.08 1.07 0.19 0.23 0.21 142.6
(3.92) (2.17) (2.39) (2.19)

8 0.18 1.04 0.15 0.22 0.09 142.7
(3.39) (1.35) (1.72) (0.83)

9 0.36 1.08 0.23 0.47 0.35 142.7
(3.39) (1.67) (2.38) (1.95)

10 (H) 0.96 1.46 0.58 0.89 0.73 142.6
(3.79) (3.20) (3.64) (3.02)

Long-short spread portflio (Port 10 - Port 1)
Spread 2.25 1.49 1.63 1.67 1.65 —

(6.37) (6.67) (4.96) (5.67)
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Table 8. Pooled panel regressions: SSDt and stock portfolio returns

Description: Entries reports the results of regressions Rt,T −R0
t,T = α+β′ft,T +γSSDt +εT , where we

employ the Carhart (1997) four-factor model (FFC), the Stambaugh and Yuan (2017) mispricing factor
model (SY), and the Hou et al. (2015) q-factor model (HXZq), separately, as a set of risk-factors ft,T .
On the last trading day of each month t, stocks are sorted in ascending order based on SSDt, and then
value-weighted decile portfolios are formed. Then, we calculate the underlying return of each one of these
portfolios and the respective portfolio’s average SSDt. Then, we run a pooled regression using these
ten value-weighted portfolios’ returns and SSDt. The estimation period spans January 1996-December
2020. t-statistics are adjusted for heteroscedasticity and autocorrelation and reported in parentheses.
The estimates of α (intercept) are multiplied by 100.

Interpretation: SSD is consistent with the cross-section of observed stock returns regardless of the

chosen asset pricing model. The asset pricing equation under transaction costs setting, (4), cannot be

rejected when SSDt is used as a proxy of TC-alpha. This result renders further support to the fact that

SSDt accurately estimates TC-alpha.

FFC SY HXZq
α -0.02 0.08 0.03

(-0.42) (1.77) (0.61)
γ 0.75 0.83 0.81

(6.76) (6.89) (6.87)
βMKT 1.04 1.03 1.05

(100.63) (84.16) (80.91)
βSMB 0.05 0.03

(3.29) (1.67)
βHML -0.00

(-0.24)
βMOM -0.06

(-4.57)
βMGMT -0.05

(-3.06)
βPERF -0.06

(-4.75)
βME 0.01

(0.53)
βIA -0.00

(-0.06)
βROE -0.06

(-2.36)
adj. R2 0.85 0.84 0.84

H0: α = 0, γ = 1
p-value 0.025 0.155 0.117
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