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On a Mechanism that Improves Effi ciency and Reduces
Inequality in Voluntary Contribution Games

Rod Falvey∗ Tom Lane† Shravan Luckraz ‡

25 September 2022

Abstract

We consider the class of linear voluntary contribution games under the general
assumption of heterogeneous endowments. In this context, we assess the perfor-
mance of the Galbraith Mechanism (GM) relative to a fixed equal sharing allocation
in both theory and experiments. Three main empirical results emerge. First, the
GM raises average contributions significantly above those under an equal-shares al-
location. Second, the GM simultaneously reduces income inequality as it improves
effi ciency. Third, a player’s contribution and allocation behaviour is sensitive to
her position in the endowment distribution. In all their decision-making, agents
consistently place greater emphasis on contribution levels when they are rich, and
on contribution ratios (contributions relative to endowments) when they are poor.

1. Introduction

The challenge of finding a mechanism whereby agents can be encouraged to contribute
in public goods games, where full contributions is the social optimum but zero contribu-
tions is in their private interests, has attracted significant research interest. Recognizing
that agents may differ in their endowments has two implications for this search. Firstly,
the mechanism must be able to encourage differently endowed agents to contribute dif-
ferently. Specifically, the rich must be induced to contribute more than the poor, which
would seem likely to require that they rich receive the larger share of the output. Sec-
ondly, heterogeneous endowments add a distributive concern to the standard objective
of improved effi ciency. Will increased contributions require an allocation of the public
output so biased in favor of the rich that inequality is increased? Or can we find a
mechanism that avoids such an equity-effi ciency tradeoff?
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In this paper we demonstrate that the Galbraith Mechanism (GM), introduced in
Dong et al. (2019) (DFL), is such a mechanism. The public output game can be viewed
as having two stages; contributions are made in the first stage and then the output is
allocated in the second. Under the GM, having observed the contributions in the first
stage, each player is asked to allocate a share of the public output to each of the other
players in the second stage. The final distribution of the public output is determined
by these allocations. In a controlled laboratory experiment, where subjects had equal
endowments, DFL found the subjects’ contributions improved substantially after the
implementation of the GM, averaging 92% of endowments in the final round, where
83% of subjects contributed fully.

They also found that, in the allocation stage, a vast majority of players tended to
allocate to others in proportion to their relative contributions, behavior consistent with
the notion of ‘fairness’that agents should be rewarded in accordance with their con-
tributions. When we introduce heterogeneous endowments, as in the new experiments
reported in the current paper, we are faced with two alternative allocations that agents
might view as fair. The first is proportional allocations based on absolute contributions
(PC), where agents essentially ignore differences in endowments. The second is pro-
portional allocations based on the ratio of contributions to endowments (PCR), where
agents take full account of the differences in the ability to contribute. We use both allo-
cation behaviors to identify a set of parameter values that allow for a range of possible
outcomes in our experiments and find that both have a role to play in our results.

Our first empirical result establishes that, under certain conditions and consistent
with our expectations based on theory, the GM significantly improves effi ciency relative
to the standard model where the public output is distributed evenly. Since endowments
are heterogeneous, we can also use their Gini coeffi cients to compare inequality in the
final income distribution under the GM with inequality in both the initial endowment
distribution and the distribution which results if we use the alternative equal-sharing
mechanism. Our second result is that the GM seems able to overcome potential clashes
between equity and effi ciency. In the cases where the GM improves effi ciency it also
reduces inequality, relative to both the endowment distribution and the equal-sharing
alternative.

When we consider individual subjects’contribution and allocation decisions, we find
that these appear to be sensitive to the subjects’endowment levels. In all treatments,
subjects when poor contribute a higher share of their endowments than they do when
rich. Conversely subjects when rich contribute a larger amount than they do when
poor. Further, when it comes to allocating under the GM, agents allocate to each other
according to a weighted average of PC and PCR; putting a higher weight on the PCR
when poor than when rich. This gives us our third result. In their decision making,
agents consistently place greater emphasis on contribution levels when they are rich,
and on contribution ratios when they are poor.
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Finally, we can interpret the subjects’allocation behaviors in terms of their willing-
ness to redistribute. As noted, if subjects focus on the PC in making their allocation
decisions, they are effectively ignoring the endowment distribution. While if subjects
focus on the PCR then they are taking the endowment distribution fully into account
when making their allocations. In fact, it appears that subjects allocate using a weighted
average of both - but the weights depend on their current endowment in a consistent
way. When they are rich agents put a higher weight on PC than when poor. This gives
a corollary to our third result. An agent is more willing to redistribute on the basis of
endowment differences when poor than when rich.

We see the main contribution of this paper as establishing the conditions under
which the GM can, when agents have unequal endowments, simultaneously improve
effi ciency and reduce inequality, a pair of accomplishments which are conventionally
regarded as being mutually exclusive in many economic settings (e.g. Okun, 2015). In
doing this we generalize the DFL analysis beyond the common endowments case and
illustrate how agents’contribution and allocation behaviours appear to be sensitive to
their position in the endowment distribution. We also examine the characteristics of
distribution neutral contributions under an equal-sharing allocation rule and draw the
relevant conclusions for the redistributive effects of the contributions that we observe.

In outline, the remainder of the paper is as follows. The next section sets the scene
and reviews the relevant experimental literature. Section 3 provides the theoretical
background to our experiments. Section 4 sets up the experiments and section 5 presents
the results. This followed by a summary and conclusions in Section 6.

2. Context and Literature

In many circumstances, economic agents can collectively take advantage of opportuni-
ties not available to them individually to create a collective good that can be shared.
Such circumstances are broadly defined in economic theory as public goods production
problems. One obvious example would be team production by agents under the broad
supervision of a principal. The principal organises the team, the team members con-
tribute to the production; the principal collects the output, rewards the team members
and retains the residual (profit) for himself. The nature of the reward structure is im-
portant to the outcome because it is often diffi cult or costly for the principal to observe
the agents’individual contributions. Since effort is costly to the agent, a fixed wage or
salary structure, which does not provide a link between agent effort and agent reward,
can lead to shirking and a loss of income for the principal. Profit sharing has been
suggested as a response, but under equal shares, which is the natural allocation for a
principal to impose when she cannot observe individual agents’behaviour, a free-rider
problem arises since each agent bears the full cost of their effort but only reaps 1/Nth of
the benefit in an N-agent team. Agents are unlikely to contribute the socially optimal
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(full) effort under an equal-sharing allocation.
That said, experiments using the voluntary contribution mechanism (VCM) tend to

find that contributions significantly exceed the Nash-equilibrium prediction (typically
zero contributions); but also fall significantly short of the social optimum (full con-
tributions). When participants are equally endowed, initial contributions typically lie
between 40 and 60 percent of the endowment, decay over time but remain at 15—25%
of the endowment by the final round, although by then about 70 percent of subjects
are contributing zero (Ledyard, 1995; Ostrom, 2000). Agents appear to make tenta-
tive steps towards cooperating in the direction of the social optimum, before disillusion
eventually sets in and contributions decline in later rounds.

In practice, teams are unlikely to be composed of identically endowed individuals.
Inequality in endowments does not change the essential nature of the problem —with
equal shares, zero contributions is still the Nash Equilibrium, full contributions is still
the social optimum. In his early review of public goods experiments, Ledyard (1995)
conjectured that heterogeneity in endowments would tend to decrease total contributions
compared to homogeneity, but the subsequent evidence has been mixed. Where there is
significant inequality in endowments, most studies find a significant reduction in total
contributions (see Cherry et al. 2005, Buckley and Croson, 2006, Reuben and Riedl,
2013, and Hargreaves Heap et al., 2016, 2017)1 , though there are exceptions that find
significantly increased total contributions (Visser and Burns, 2006; Prediger, 2011; Chan
et al. 1996); or no significant change in contributions at all (Hofmeyr et al. 2007) .2

Interestingly, any reduction in total contributions does not appear to be reflected in
proportionate reductions at all endowment levels. Hargreaves Heap et al. (2016) test
how inequality in endowments affects contributions to a public good, while controlling
for possible endowment size effects. They consider groups of three differently-endowed
agents and find that the key adverse effect of inequality on contributions arises because
the rich reduce their contribution ratios (contribution as a share of endowment), while
the poor and middle maintain their contribution ratios, in comparison with the corre-
sponding uniform endowment games. They emphasize that the fall in the contribution
ratio of the rich relative to the poor is a robust pattern and that this difference in
behavior drives the fall in overall contributions under inequality.3 Cherry et al. (2005)
also find that subjects with high endowments contributed significantly less when they

1Other experimental studies indicate that heterogeneous valuations of the public good lead less
frequently to the effi cient outcome (see e.g. Nikiforakis et al. 2012) and to lower (unconditional)
contributions (Fischbacher, et al. 2014)

2Some part of these differences may be attributable to differences in other characteristics of the
experiments —single-shot versus repeated games; fixed groups versus random reassignments etc.

3Hargreaves Heap et al. (2017) note that an effect of the introduction of team competition with
unequal teams is that the contribution ratio of the rich jumps back up to that of the other income
groups. Empirical evidence from non-linear public good games also suggests that the poor tend to
over-contribute and the rich to under-contribute (Chan et al., 1996).
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were in heterogeneous groups.
These observations have prompted research to explain this behaviour.4 Some ex-

planations involve non-traditional preferences. If agents care not only about their own
consumption but also about the consumption of others, then voluntarily contributing to
provide public goods can be equilibrium behavior. Other explanations involve notions
of reciprocity (Sugden, 1984). The principle of reciprocity requires that if members of
the group are voluntarily contributing to a public good from which an agent derives
benefits, then that agent is ‘morally bound’to reciprocate and contribute to the good,
even though self-interest would suggest otherwise. Agents following this principle will
act as conditional co-operators, contributing when others contribute, but also defecting
if they defect. The evidence suggests that players begin cooperatively but cooperation
cannot be maintained (Keser and van Winden, 2000; Fischbacher et al., 2001).

If contribution behavior is being driven by notions of fairness and reciprocity, then
we should be able to extract information on the underlying notions of fairness from
the observed contributions. There are two obvious candidates for fair contributions -
equal absolute contributions or equal contribution ratios. While these are the same
when endowments are identical, Sugden (1984) suggested that, where endowments are
heterogeneous, reciprocating agents will contribute their ‘fair share’to the provision of
a public good, provided that others are also contributing - fair share in this context
being the same contribution ratios. There is some experimental evidence that agents
cooperate in this way (Hofmeyr et al., 2007; Keser et al., 2014; Keser and Schmidt, 2014).
But, this fair-share rule has its limitations. When the asymmetry in the endowments
becomes so large that one of the agents loses interest in the group optimum, the norm
appears to shift from equal contribution ratios to equal contribution levels and the group
contribution level declines significantly (Keser et al., 2014). Recalling that it is the rich
who appear to renege on the equal ratios, it seems likely that an agent’s notion of what
is a ‘fair’contribution may very well depend on her (relative) endowment.

The typically observed patterns of behaviour in the experimental literature have also
prompted research suggesting various mechanisms through which contributions can be
improved. A number of studies have demonstrated that players exhibit social preferences
to ‘punish’those who free-ride on the group production (Fehr & Gachter, 2000) and to
‘reward’those who contribute more than the group average (Sefton et al., 2007; Nosenzo

4Models of non-traditional preferences have included altruism (Becker, 1974), where an agent’s wel-
fare function includes the consumption of others; warm-glow altruism (Andreoni, 1990), where altruism
is strengthened by a warm glow from giving; and inequality aversion (Bolton and Ockenfels, 2000; Fehr
and Schmidt, 1999), where agents dislike unequal net incomes or consumption. While these models
have been shown to successfully predict contribution behavior in linear public goods experiments with
identical players, Buckley & Croson (2006) observe that their prediction that the poor should contribute
either less absolutely or a lower proportion of their endowments than the rich when endowments are
heterogeneous are opposite to the experimental outcomes.
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& Sefton, 2012). The option to punish and reward has, therefore, proved effective in
moving the outcome towards social effi ciency, but only if the right conditions are in place
(e.g. a cost-effective punishment structure and the absence of antisocial punishment).
The practicality of implementing costly punishment within organisations remains an
issue (Nikiforakis, 2008).5

Other mechanisms move away from the fixed share allocation.6 In the principal-
agent context, fixed (and equal) shares seems the logical allocation structure, given
the principal’s ignorance of the individual agents’endowments and contributions.7 But
while the principal may be unable to observe agents’ efforts, there will be occasions
where the agents themselves are in a position to observe others’abilities and actions.8

The challenge then for the principal is to design a mechanism that elicits and uses this
information to induce the appropriate levels of effort from the agents. One approach
has been to introduce an allocator, who can be from inside (a ‘stakeholder’) or outside
(a ‘spectator’) the team. In Van der Heijden et al. (2009) and Drouvelis et al. (2017) a
stakeholder is assigned the role of team leader, tasked with determining the allocation of
output to all members, including herself since she is also a contributor. While production
significantly increases relative to an equal-sharing allocation, the self-interest of the
leader can prevent the attainment of full effi ciency. In Stoddard, Cox & Walker (2019)
the output is distributed to members by a third-party spectator whose own reward
is determined by the total contributions of the group. In general, spectators allocate
shares to members based on the rank order of their contributions. In our context, it
is as if the uninformed principal appointed an outsider as ‘manager’whose role is to
observe the efforts of the agents and to allocate from the pool. Since the manager’s
reward is also related to the pool size, she is motivated to allocate so as to encourage
full contributions.9 These monitoring costs would then be subtracted from the total
output to determine the return to the principal.

Two further mechanisms have been found to be quite successful when endowments
are homogeneous. Baranski (2016) allows the players’shares of the output to be de-
termined through a Baron & Ferejohn (1989) multilateral bargaining process in which

5See Chaudhuri (2010) for a review.
6Other adjustments involve adding further dimensions to the overall game. For example, if teams

are put in competition (via a standard VCM stage for each team individually that leads into a Tullock
game between teams) this tends to overcome the free rider problem (Hargreaves Heap, Ramalingam &
Stoddard, 2017).

7 In fact equal shares is the best fixed-share option even if the principal knows the agents endowments.
See Appendix A

8Freeman (2008) reports survey results showing: that most workers believe they are able to detect
shirking by co-workers; that those participating in a profit-sharing scheme are more likely to act against
shirking; and that such anti-shirking behaviour tends to reduce shirking.

9Although this does not always happen. Stoddard et al. (2019), find instances of ‘rogue’spectators
who do not reward greater contributions with larger shares.
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each player’s probability of being the proposer can be either fixed or increasing in their
contributions. In each period, after a division is proposed, the remaining players can
vote to agree or disagree with the proposal. The bargaining process ends if a majority
(specified by some rule) agree with the proposer and the fund is divided as per the pro-
posal. In Baranski’s experiments, subjects steadily raise their contributions averaging
85.4% of endowment in the last 5 periods. By the last period of play, 86 out of 120
(72%) subjects contribute all their endowment. Potential distortions from allocating to
self and to obtain votes remain, but the former is moderated by the bargaining structure
which inhibits proposers from being too greedy.

An alternative allocation mechanism, involving only the agents, is the GM noted
earlier.10 In the context of an uninformed principal and informed agents, the GM is
a method of determining an informed allocation which requires only that the principal
collate the allocation shares proposed by the agents and distribute accordingly. No
informed spectator or bargaining process is required. Since the GM is the allocation
mechanism that we employ below, we discuss it in some detail here. The GM takes the
form of a two-stage game. In the first (VCM) stage, each agent chooses a contribution
level and in the second stage, after having observed others’contributions, each agent
proposes a share of the public output to be received by each of the remaining agents.
An agent’s final share depends on the other agents’allocations toward her. The crucial
feature of the GM is that how an agent allocates shares in the second stage does not
affect her own payoff. Therefore, agents are free to punish, to reward, to allocate equally
or even randomly to the other agents, while no costs are incurred by any agents in the
allocation exercise. Provided they allocate in a way that encourages agents to contribute
in the first stage a more effi cient outcome will be achieved. DFL report that under the
GM, contributions averaged 80% of endowment overall and averaged 91.6% in the final
round, where 82.8% of players contribute fully. Most allocations under the GM are
related to players’contributions and the overall outcomes are consistent with players
following a proportional rule. 11

When endowments are heterogeneous, subjects’contribution behavior may be sen-
sitive to two matters - where they are in the hierarchy (i.e. rich, middle or poor), and
how they perceive the source of the inequality. Starmans et al. (2017) argue that it is
not inequality per se that bothers people, but economic unfairness, and there is evidence
to support this view (e.g., Bortolotti et al., 2017; Breza, Kaur, and Shamdasani, 2018;

10The “Galbraith Mechanism" label arises as the idea was inspired by John Kenneth Galbraith who,
in an aside in The Great Crash 1929, described a bonus sharing scheme used by the National City Bank
in the U.S. in the 1920s. Under this scheme each offi cer would sign a ballot giving an estimated share of
the bonus pool towards each of the other eligible offi cers, himself excluded. The average of these shares
would then guide the final allocation of the bonus to each of the offi cers (Galbraith, 1963, p.171).
11This is consistent with the principle of ‘distributive justice’that a player’s entitlement towards some

group outcome should be proportional to her contribution to that outcome (Konow, 2000).
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Fehr, 2018). Prominent normative theories of justice assume that inequalities arising
from factors under an agent’s control should not be eliminated (e.g., Roemer, 1998;
Konow, 2003). These theories receive experimental support, which suggests that most
agents do not eliminate inequalities that are due to merit or for which agents can be held
responsible (Konow, 2000; Cappelen et al., 2007, 2013; Mollerstrom et al., 2015). The
broad conclusion seems to be that if subjects had equal opportunities and the income
differences are purely attributable to subjects’actions, then agents are disinclined to
redistribute; while if income differences are purely attributable to luck, then agents are
more inclined to redistribute. But importantly, this statement reflects the aggregation
of quite different individual preferences, as emphasised by Cappelen et al., (2013).12

Given that the differences in endowments imply different abilities to contribute, agents
may differ in their views on what constitutes a ‘fair’pattern of contributions, and these
views may depend on the agent’s position in the endowment distribution and extent
of the inequality.13 Baranski (2016) notes that, at the bargaining stage in his model,
subjects seem to abide by the most convenient norm of fairness when they propose al-
locations. In his case (with common endowments) low contributors propose allocations
that on average yield lower outcome inequality, while high contributors are more likely
to allocate shares proportional to agent’s contributions.

Finally, the hypothesis that subjects may restrict their contributions if they view
others as receiving a disproportionate share of the benefits is supported by the experi-
ments of Kuy & Salmon (2013). They measured subjects’willingness to approve Pareto
improvements when the improvements mainly favored the already rich. They found
that the poor did not choose the contribution which would maximize their own income
(as well as achieve social effi ciency). While we expect such behavior to be moderated as
the opportunity cost (in terms of sacrificed income gains) increases (e.g. Charness and
Rabin, 2002; Engelmann and Strobel, 2004), it may explain the situations that arise in
some of the treatments we consider below.
12Cappelen et al., (2013) construct an experiment that involves a risk-taking phase followed by a

redistribution phase. They consider three ‘fairness views’. ‘Ex ante fairness’is the view that if initial
opportunities are equal there is no argument for redistribution of the gains and losses from risk-taking;
‘ex post fairness’favours redistribution however the inequality came about; and, a middle ground that
they refer to as ‘choice egalitarianism’, which holds people responsible for their choices but not for their
luck. Such a view would endorse ex post redistribution between lucky and unlucky risk-takers but not
between risk-takers and participants who choose the safe alternative. They find that the ex ante fairness
view has the largest share of support (40%); but most subjects favour some ex post redistribution, even
when people had the same ex ante opportunities. Among those favouring redistribution, only a minority
(30%) endorses equalization of all ex post inequalities, and most favour equalizing ex post inequalities
resulting from differences in luck among risk-takers. But the authors emphasize that their evidence
reveals considerable disagreement on how to allocate fairly the gains and losses from risk taking.
13Experimental evidence suggests that the origin of endowments does not matter for contributions.

Subjects contributed about the same level regardless of whether their endowments are earned or windfall
(see Clark 2002, and Cherry, T., S. Kroll, & J. F. Shogren 2005).
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In the next section we set out the VCM model more formally and then illustrate
the constraints which must be imposed on contributions to avoid income redistribution
under an equal sharing allocation rule. This is followed by a formal exploration of our
‘fair’allocations (PC and PCR) under the GM. The section concludes with the details
of our experimental treatments derived from this analysis and the statement of our
hypotheses derived from the experimental literature just reviewed.

3. Theory and Hypotheses

We consider the DFL model with heterogeneous endowments. There are three agents
(players) and one principal, in the context of a two-stage game. Each player, indexed
i ∈ N = {1, 2, 3}, has an initial endowment of ei > 0 and takes an action ci ∈ Ei =
{0, 1, .., ei} in the first stage.14 The agents do so simultaneously. The players’actions
determine a joint monetary outcome Π = β

∑3
i=1 ci which must be allocated among the

players, where β > 1 is a parameter that represents the scale of returns of the production
function. The payoff function of player i is given by

πi = ei − ci + qiΠ, (3.1)

where qi is the share of the joint monetary outcome received by player i.
Under the standard assumption that the players receive equal shares of the output

(ES), that is qi = 1
3 for each i, the payoff to player i is given by

πi = ei − ci +
1

3
β

3∑
i=1

ci,

= ei +
1

3
β
∑

j∈N\{i}
cj +

(
1

3
β − 1

)
ci. (3.2)

For any given contributions by the other players, the best response of player i is full
contributions (ci = ei) if and only if β ≥ 3 and zero contribution otherwise.15

3.1. Redistribution and Distribution Neutral Contributions (DNC)

In experiments, subjects do make positive contributions even when β < 3, and these
contributions differ in a systematic way depending on endowments.16 Some perspective
14Our notations slightly differ from DFL as we use ci in the place of ei for contribution levels and ei

instead of
−
ei for player i’s endowment.

15Since
∑3
i=1 πi =

∑3
i=1 ei + (β − 1)

∑3
i=1 ci, it is socially optimal for players to contribute

∑3
i=1 ei

(0) if and only if β > (<) 1.
16Since low-income subjects can realize higher net benefits from mutual cooperation, they have

stronger incentives to cooperate, at least initially, in the hope that high-income subjects will recip-
rocate.
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on this contribution behaviour can be gained if we consider explicitly the income distri-
bution implications of the way in which the joint output is allocated. The equal-shares
allocation commonly assumed will involve redistribution, unless subjects contribute in
a particular way, and this could be a considerable redistribution if contributions are
high.17

What then is the distribution of the contributions that leaves the income distribution
unaffected once the output has been distributed equally? We explore this in detail in
Appendix A1 and simply report the results here. If E denotes the total endowment
given to the subjects, and C the total contributions that these players make, we find
that the contribution share of player i (ϕi ≡ ci

C ) must satisfy the following equation if
i’s income share is to remain equal to her endowment share (θi ≡ ei

E ).

ϕi = θi + β

(
1

3
− θi

)
(3.3)

If a subject’s endowment share is equal to the mean of the distribution (13), then
she should contribute in proportion to her endowment share. Otherwise, a subject
with an endowment share smaller (larger) than the mean should have a higher (lower)
contribution share than her endowment share, with the magnitude of these differences
increasing in the scale parameter (β). This implies that the poor must contribute a larger
share of their endowment than the rich if the income distribution is to be maintained.
Further, if we convert the above equation to contribution levels, we find that DNC
requires that the contribution level of the rich is lower than that of the poor.18 Seen
in this light the apparently modest contribution of the rich observed in public goods
experiments may reflect a greater underlying willingness to redistribute than appears
at first glance.

3.2. The Galbraith Mechanism (GM)

Under the GM the allocation takes place in the second stage as follows. Each player
i observes all actions taken in the first stage and proposes share aij of the outcome to
each player j 6= i such that

aij ∈ [0, 1] and aij + aik = 1,where k 6= j and k 6= i (3.4)

17 Indeed, if all subjects were to contribute fully they would simultaneously achieve the socially optimal
output and a completely even distribution of income. Even if all subjects contribute equal amounts, the
fact that they all receive the same payment from the pool (an amount higher than their contributions)
will mean inequality (as measured by the Gini coeffi cient) is reduced because there is a disproportionate
increase in the income of the poorer subjects.
18 Illustrative numbers are given in Table 1 below.
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In other words, each player proposes a fraction of Π to be received by each of the
other players. They do so simultaneously. We let qi denote player i’s final share of
the outcome Π and we assume that it is determined by: qi =

aji+aki
3 . While the GM

has freed each player from the constraint of having to protect her own interests at the
second stage, it can be easily verified that any allocation constitutes a second stage
Nash Equilibrium. Hence, at this point we have no unique theoretical prediction on
how a player might allocate between the other two players. One method of removing
the resulting arbitrariness is by explicitly incorporating a behavioural component into
the payoff function, which could be seen as reflecting the player’s subjective notion of a
“fair”allocation. But rather than imposing a solution in this way, we follow DFL and
leave the question of how the players actually allocate to be uncovered in the experiments
that follow.

In their investigation of equilibria in this contribution game with common endow-
ments, DFL found a link between effi ciency and “fairness”. Distributive justice is often
defined by the principle that a player’s entitlement towards some group outcome should
be proportional to her contribution to that outcome. DFL established that a necessary
and suffi cient condition for PC allocation behaviour under the GM to support effi ciency
(full contributions) as a SPNE of this contribution game, was that β ≥ 6

5 . However,
they also found that β ≤ 3

2 was necessary and suffi cient to obtain zero contributions as
a SPNE of this game. In these circumstances it is reasonable to consider 32 as the lowest
lower bound to support full contributions as a SPNE as only then does the GM give
clear theoretical predictions. When we relax the assumption of common endowments,
we find that the lower bounds on β for which full contributions are attainable as part
of a SPNE now depend on the distribution of endowments as well as players’allocation
behaviors. We illustrate this in the next subsection.

As in DFL, we represent the GM as an extensive game, with simultaneous moves at
each stage, using Moore and Repullo’s (1988) formulation. Under their formulation, at
each node, all players know the entire history of the moves preceding it, and they can
therefore use history-dependent strategies. Following Moore and Repullo, we define a
strategy of player i by the pair si ≡ (ci, ai (c)), where ci is a contribution level of the
player at his first information set and ai (c) ≡ (aij (c) , aik (c)) is an allocation function
that depends on the first stage contribution tuple c and that satisfies the definition of
aij . As result, qi =

aji+aki
3 must also depend on tuple c and we can therefore denote

qi by function qi(c). The allocation function ai (c) prescribes an action to player i for
each of her remaining information sets. We then refer to triple s = (s1, s2,s3) as a
strategy profile of the game. We use the same definitions of Nash Equilibrium (NE) and
Subgame Perfect Nash Equilibrium (SPNE) as in Moore and Repullo.

It can easily be verified that every function a(c) = (a1(c), a2(c), a3(c)) prescribes a
Nash equilibrium in each stage two subgame. Then, by backward induction, it suffi ces
to find the Nash Equilibrium of the resultant first stage game, by taking function a(c)
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as given. Then, c∗ ≡ (c∗i , c
∗
−i) is a Nash Equilibrium of the resultant first stage game if

and only if for all i and for all ci, we have

πi((c
∗
i , c
∗
−i), (a(c∗i , c

∗
−i))) ≥ πi((ci, c∗−i), (a(ci, c

∗
−i))) (3.5)

It should be clear that the satisfaction of the above inequality, together with the fact
that every allocation function a(c) prescribes a Nash equilibrium in each second stage
subgame, imply that s∗ is a SPNE of the game, where

s∗ = ((c∗1, a1(c
∗)), (c∗2, a2(c

∗)), (c∗3, a3(c
∗))) (3.6)

We are interested in allocation functions that support full contribution tuple e =
(e1, e2, e3) as part of a SPNE. We call e the full contribution equilibrium.

Remark 1 Under the GM, β ≤ 3
2 is necessary and suffi cient for (0, 0, 0) to be part

of a SPNE for all possible qi(c).
Proof: See the appendix A2.
In the paper, we often refer to (0, 0, 0) as the zero contribution equilibrium. Since

we are interested in instances in which our proposed mechanism rules out the zero
contribution equilibrium, we only assess the effectiveness of the mechanism in supporting
the full contribution equilibrum for all β > 3

2 .
19

3.3. Specific Allocations under the GM

We now consider two specific allocation behaviours. To simplify the discussion, where
necessary we assume a particular form of the endowment distribution (which we will
use in our experiments) that depends explicitly on a single dispersion parameter δ. In
particular, we assume the following.

e1 = (1 + δ) ε

e2 = ε

e3 = (1− δ) ε
where δ ∈ (0, 1) (3.7)

We let player 1 (R) represent the (‘rich’) player with the largest endowment, player 2
(M) denote the (‘middle’) player with the mean endowment, and player 3 (P) denote the
(‘poor’) player with the smallest endowment. We can assume, without loss of generality
ε = 1.20

19 It is possible that both a full contribution equilibrium and a low contribution equilibrium exist when
β ≤ 3

2
for some allocations in the GM.

20 In our experiments ε = 8.
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3.3.1. Allocation Shares Proportional to Contributions (PC)

If players ignore endowment differences and simply allocate shares based on relative
contributions, then player i allocation to player j will be given by

aij(c) =

{
cj

cj+ck
if cj + ck > 0

1
2 otherwise.

(3.8)

While the full details of derivations are provided in Appendix A2, we can use the
particular form of the endowment distribution and the above equation to determine the
share of each player in the full contributions equilibrium under the PC allocation as

q1(e) =
1 + δ

3

(
4 + δ

2 (2 + δ)

)
<

1 + δ

3
(3.9)

q2(e) =
4

3

(
1

4− δ2

)
>

1

3
(3.10)

q3(e) =
1− δ

3

(
4− δ

2 (2− δ)

)
>

1− δ
3

(3.11)

If full contributions are achieved under the PC allocation, then in the final income
distribution the rich player has an income share lower than his endowment share, while
the income shares of the other two players have increased. Furthermore, this redistrib-
ution is increasing in δ.

Proposition 1 Suppose that β > 3
2 , then s = ((e1, a1(e)), (e2, a2(e)), (e3, a3(e)))

is a SPNE of the game, where function a(e) = (a1(e), a2(e), a3(e)) satisfies the PC
allocation.

Proof : See the appendix A2.
Proposition 1 shows that (i) under the proportional allocation behavior, for all β >

3/2, there exist a SPNE in full contribution. Moreover, the equilibrium is independent
of the endowment inequality parameter. Taking account of our comment above, we
see that, under the proportional allocation, allowing for heterogeneous endowments
does not change the lower bound for full contributions to be part of a SPNE and for
zero contributions to be ruled out as a SPNE. The proportional allocation is robust to
unequal endowments.

3.3.2. Allocation Shares Proportional to Contribution Ratios (PCR)

In this case players’views of fairness take full account of endowment differences and
they allocate according to contribution ratios. Player i allocation to player j will be
given by
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aij(c) =


cj
ej

cj
ej
+
ck
ek

if cjej + ck
ek
> 0

1
2 otherwise.

(3.12)

The full details of derivations are provided in Appendix A3, but we can use the par-
ticular form of the endowment distribution and the above equation to again determine
the share of each player in the full contributions equilibrium under the PCR allocation
as

q1(e) =
1

3
<

1 + δ

3
(3.13)

q2(e) =
1

3
(3.14)

q3(e) =
1

3
>

1− δ
3

(3.15)

Proposition 2 Suppose that

β ≥
{

3
2 if δ ≤

1
2

1 + δ otherwise

}
.

Then, s = ((e1, a1(e)), (e2, a2(e)), (e3, a3(e))) is a SPNE of the game, where function
a(e) = (a1(e), a2(e), a3(e)) satisfies the PCR allocation.

Proof : See the appendix A3.
Propostion 2 shows that, under the PCR allocation, the lower bound for full con-

tributions to be part of a SPNE and for zero contributions to be ruled out as a SPNE
is increasing in the disperion parameter δ. If full contributions are achieved under the
PCR allocation, then the final income distribution has equal shares for all players. Com-
pared with the endowment distribution, the rich player has a lower income share, the
middle player’s income share is unchanged and the income share of the poor player has
increased. If the scale of returns is suffi ciently high that full contributions are attained,
then there is no trade-off of equity for effi ciency under the PCR allocation. Quite the
opposite, retaining some of the initial inequality also requires a sacrifice in effi ciency.

Of course, the same claim can be made for the equal shares allocation, where β ≥ 3,
is necessary and suffi cient for full contributions to be a SPNE under an equal shares
allocation. Thus, full contributions and an equal income distribution could be achieved
simultaneously. So, for the PCR allocation to have been preferred by the principal,
it would have had to be capable of achieving a full contributions equilibrium at some
β < 3.
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3.3.3. Combined Allocations MPCR

Define the allocation share of player j to player i, aji as follows

aji = γaPCji + (1− γ) aPCRji (3.16)

where γ ∈ [0, 1]. We called the above allocation the mixed PC and PCR allocation
(MPCR).

In Appendix A4 we investigate the bounds on β for allocations that are a linear
combination of the PC and PCR allocations to support the full contribution equilibrium
while ruling out the zero contribution equilibrium. This information will be useful
because our empirical results suggest that the allocations of a representative subject
can be approximated by a linear combination of these forms. We show that the lower
bound on β in these cases is the correspondingly weighted average of the bounds on PC
and PCR.

Proposition 3 Suppose that

β ≥
{

3
2 if δ ≤

1
2

1

( 2γ3 +
1−γ
1+δ )

if δ > 1
2

}
.

Then, s = ((e1, a1(e)), (e2, a2(e)), (e3, a3(e))) is a SPNE of the game, where function
a(e) = (a1(e), a2(e), a3(e)) satisfies the MPCR allocation. Moreover, the above lower
bound is decreasing in γ.

Proof : See the appendix A4.

3.4. Summary and Hypotheses

Based on the modelling above we construct Table 1 which summarises the relevant
information for the experiments described in the next section. Note that we will test
the GM under two different levels of inequality, namely δ = 1/2 and δ = 3/4. The
table presents, for each level of inequality, the minimum β required to support full
contributions as part of a SPNE , depending on players’allocation behavior, while ruling
out the zero contribution equilibrium . We will also include two control treatments, one
for each of level of inequality, in which the public output is allocated in equal shares to
each of the players.

Table 1.1: Summary of Endowment Data and β Thresholds

Low Inequality δ =
1

2
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Rich Middle Poor

ei 12 8 4
ei
E 0.5 0.33 0.17

β threshold (PC) 1.5 1.5 1.5
qi (PC) 0.45 0.36 0.19

β threshold (PCR) 1.5 1.5 1.5
qi (PCR) 0.33 0.33 0.33

High Inequality δ =
3

4

Rich Middle Poor

ei 14 8 2
ei
E 0.58 0.33 0.08

β threshold (PC) 1.5 1.5 1.5
qi (PC) 0.5 0.39 0.11

β threshold (PCR) 1.75 1.75 1.75
qi (PCR) 0.33 0.33 0.33

Notes: ei is the endowment of player i, E is the total endowment and qi is the
output share received by player i.

Table 1.2: Control Rounds 1-5 δ =
5

8
, β = 1.7

ei 13 8 3

πi (e1, e2, e3) (ES) 13.6 13.6 13.6
πi (3, 3, 3) (ES) 15.1 10.1 5.1

ci
C (DNC) 0.19 0.33 0.48

Notes: ci is the contribution of player i and C is the total contribution. The β
threshold is for the rich player to contribute fully assuming that the others contribute
fully. This threshold also works for the other two players as it is the maximum of all
such β thresholds across the players.

A comparison of output shares at full contributions with endowment shares reveals
that all the allocations considered involve redistribution and this redistribution reduces
inequality. In the case of ES and PCR, inequality is eliminated at full contributions. The
reduction in inequality under PC is much more muted. Away from full contributions
the change in the income distribution will depend on the actual contributions of the
players, but a presumption remains that a significant increase in average contributions
will be accompanied by a reduction in inequality. This is because, beyond some point
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the increase in average contributions can only happen if the contributions of the rich
increase disproportionately.

In the first 5 (control) rounds of our experiment, we will not implement the GM, but
instead employ the equal sharing mechanism standard in the public goods literature.
The lower part of Table 1 relates to these rounds, in which δ is set at 5/8 and β at 1.7. If
all subjects contribute fully, then they all gain. But these gains differ quite widely across
the subjects; the rich gain only 0.6 while the poor gain 10.6. If all subjects contribute
the same amount (equal to the lowest endowment, 3), again they all gain, but this time
the gains are equal (at 2.1) and the effect on income inequality is less pronounced.21 If
contributions are to be such that the income distribution is unchanged, then the poor
must put up 48% of the total contributions, compared with only 19% for the rich. We
suggest that very few subjects are likely to view such a pattern of contributions as ‘fair’,
and that contributions under equal shares are likely to result in reduced inequality.

Our choices of values for the scale of returns parameter (β) are guided by the numbers
reported in Table 1. We know that full contributions is an SPNE under ES if β > 3,
so our principal-agent problem only exists for β < 3.22 We choose 4 different values for
β. The objective is to include some values under which full contributions is a SPNE for
both allocation types and inequality levels, and others where full contributions is not
supported as an SPNE in at least one case. Thus when β = 2.2, both allocations can
achieve an SPNE, and the same is true of β = 1.8, but this value is close to the threshold
of 1.75 for the PCR in the high inequality case. Only PC has full contributions as a
SPNE at β = 1.6 for all inequality levels. While if β = 1.2 zero contributions are an
SPNE of the game, lending some ambiguity to the possible outcomes.

Based on all we have considered, what do we expect our experiments to show?
From DFL we expect subjects to allocate in accordance with some notion of fairness in
the second stage and this to quickly impact on contributions in the first stage. Since
fair shares are positively related to contributions (directly in the case of PC and more
indirectly in the case of PCR) we expect average contributions to increase (relative to
the equal shares control). Further, as fair allocations also involve inequality reducing
redistribution, we expect the increase in average contributions to be accompanied by a
reduction in inequality (which we will measure by the Gini Index). Thus, we expect to
find that the GM both improves effi ciency and reduces inequality.

Whether the GM will achieve full contributions and full equality is more problematic.
Our choice of parameters allows for such a possibility, but only if the subjects make the
appropriate allocation choices. The endowment differences are based entirely on luck
and experimental subjects have been shown to be tolerant of significant redistribution
in such circumstances. That said, experimental subjects also have been found to have
21The highest income is now 3 times the lowest compared with 4 times at the endowment stage.
22Although our results below strongly suggest that β might need to be significantly greater than 3 to

actually achieve full contributions when endowments are heterogeneous.
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quite divergent views on how much redistribution is ‘fair’. Achieving full effi ciency may
involve a wide disparity in the gains from contributing, and subjects may be willing
to restrict contributions that are pareto improving, if they feel others are getting a
disproportionate share of the benefits.

Using the results of this section and drawing on our brief review of the existing
experimental literature we put forward the following hypotheses. First, regarding the
control treatments in which we impose equal sharing of the public output, we have

ES1 Average contributions decline as the rounds progress and
ES2 Increased endowment inequality will lead to lower average contributions.
Hypothesis ES1 is a standard result, independent of endowment heterogeneity. ES2

may or may not be confirmed —the experimental literature is ambiguous on this. The
next hypotheses are alternative hypotheses relating contributions to endowments. The
positive contributions that we expect to observe in the control cases (where self-interest
would imply zero contributions) reflect reciprocity based on some underlying notion of
fairness. The two alternative notions of fairness that arise in our case relate to equal
contribution ratios and equal contribution levels. Thus, we have for any given level of
endowment inequality:

ES3 (a) The contribution ratio of the rich is not significantly different from that of
the poor; or (b) the contribution level of the rich is not significantly different from that
of the poor.

Second, for the GM treatments we have several hypotheses derived from theory, the
performance of the GM under homogeneous endowments and the behaviour of subjects
under equal shares when endowments are heterogeneous. These are:

GM1 For a given the level of endowment inequality, average contributions will (a)
be higher than under the equal sharing mechanism; (b) increase or remain steady as
the rounds progress; and (c) be positively related to the scale of returns (β).

GM2 For a given scale of returns, average contributions will be negatively related
to the level of endowment inequality.

GM3 For given levels of endowment inequality and scale of returns, (a) the contri-
bution ratio of the rich is not significantly different from that of the poor; or (b) the
contribution level of the rich is not significantly different from that of the poor.

We expect that the allocation behavior of subjects might reflect a mix of proportional
allocations based on contributions (PC) and proportional allocations based on contri-
bution ratios (PCR), and that this mix may vary depending on the scale of returns and
the level of endowment inequality. But we are unable to draw any hypotheses on these
variations based on the literature. Since both allocations tend to reduce inequality,
however, we expect that:

GM4 For a given level of endowment inequality, the final income distribution is less
unequal than both (a) the endowment distribution; and (b) that in the corresponding
control treatment.
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These are the hypotheses that we take to the data.

4. Experimental Design and Procedure

As explained in the previous section, we focus on two levels of endowment inequality,
under each of which we ran four treatments with different β, providing a total of eight
GM treatments. As in DFL, we also required a baseline against which to compare the
effects of the GM. We therefore implemented Control treatments for both Low Inequality
(LI) and High Inequality (HI), which used an equal sharing mechanism. In each Control
treatment, we set β at 2.2, equal to its highest value in any GM treatment. Thus, we
compare the effectiveness of the GM against our baseline under circumstances where
the scale of returns on production should either make a successful outcome under the
GM as diffi cult as in the baseline (when β = 2.2), or even more diffi cult (when β < 2.2).
In short, we set tough tests for the GM to pass.

All treatments consisted of 15 rounds of the game. In all cases, subjects first played
five rounds with the equal sharing mechanism. In the GM treatments, the GM was
introduced in the sixth round and then remained in force until the end of the experiment.
In the Control treatments, the equal sharing mechanism instead continued throughout.
In the first five rounds, we set β = 1.7 and δ = 5/8 in all treatments.23 Our interest
is in studying behaviour under the GM in rounds 6-15, and comparing this against
behaviour during the same rounds in the Control treatments. Based on the public
goods game literature, we expected contributions to decline across the first five rounds;
by introducing the GM after this point, our aim was to test the impact of a potentially
effi ciency-enhancing mechanism from a starting point of low effi ciency (as was done by
DFL and as has been done in tests of other effi ciency-improving mechanisms (e.g. Fehr
and Gachter, 2000).

The treatment names and design can be found in Table 2. Subjects initially received
instructions for the first five rounds and were provided no information about rounds 6-15
until after the end of the fifth round. All treatments used a stranger matching design,
with subjects randomly re-allocated to new trios after each round, and unable to track
the identity of other players across rounds. In each round, it was randomly determined
which subjects within each trio would be rich, middle or poor. Each session consisted
of nine subjects.

We employed a between-subjects design with each subject only participating in one
treatment. 36 sessions were run, with a total of 324 subjects. Most treatments had
four sessions each, while there were three sessions each for the Low Inequality (LI)
GM treatments with β = 1.2 and 1.6 and the High Inequality (HI) GM treatments
23Therefore, not only did we hold constant across treatments the conditions under which the first five

rounds were played, we also held constant across treatments the fact that both β and δ changed when
subjects entered the sixth round.
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with β = 1.8 and 2.2.24 We ran 20 sessions at Zhejiang University of Finance and
Economics (ZUFE), and 16 sessions at the University of Nottingham Ningbo China
(UNNC); at ZUFE subjects were recruited using the lab’s WeChat-based participant
management system, while at UNNC they were recruited using the ORSEE platform
(Greiner, 2015). All subjects were Chinese undergraduate or postgraduate students.25

The language of instruction was Chinese.26 The instructions were distributed in written
form and also read aloud by the experimenter; subjects were required to correctly answer
comprehension test questions before rounds 1 and 6. Copies of the instructions (English
and Chinese) are available in Online Appendix B.

Neutral language was used. Subjects’initial endowments were referred to as tokens
held in their Individual Fund. In the first stage, they were asked to choose a number
of tokens —which could be any integer between 0 and their full endowment —to move
into a Group Fund. It was explained that any token kept in an Individual Fund would
be worth 1 experimental currency unit (ECU) to that subject, while any token moved
to the Group Fund would become worth β ECU and would then be allocated between
group members depending on the sharing mechanism being used in the given round.
In rounds with the GM, subjects were told that after the first stage of the game they
would receive feedback on each member’s contribution (all interactions were anonymous,
but group members were identified as either player 1, 2 or 3, so each member’s initial
endowment would also be common knowledge). Each would then be assigned one-third
of the ECUs generated in the Group Fund and tasked with allocating this between the
other two players. Under the GM, each player’s earnings were given by the number of
tokens kept in their Individual Fund, added to the ECUs allocated to them by each
of the other two players.27 Under the equal sharing mechanism, earnings were instead
given by tokens kept in the Individual Fund, added to one-third of the ECUs created
in the Group Fund. At the end of each round, subjects received a summary of the
starting endowments, first stage contributions, second stage allocation decisions (in
rounds with the GM) and eventual earnings of all players in their trio. The experiment
was computerized, using Z-Tree (Fischbacher, 2007).

24We were unable to fill fourth sessions for these treatments, because campus access restrictions
during the Covid-19 pandemic prevented the laboratories at which we collected data from recruiting
participants from neighbouring universities, as they would otherwise have been able to do to increase
sample sizes
25The average age was 20. 61% of subjects were female. Subjects were students of a wide range of

disciplines, the most common being economics (44%) and business (24%).
26Following best practice, the instructions —initially written in English —were translated by one person

into Chinese, and independently back-translated into English by another; all discrepancies between the
original and the back-translation were resolved through consultation with a bilingual research assistant,
who also checked in full the Chinese version for accuracy.
27Allocations were not required to be integers (in many cases this would be impossible) but instead

could be made with a resolution of 0.1.
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The ECU subjects accumulated from all rounds would be exchanged into Chinese
yuan at the end of the experiment, at an exchange rate of 2.5 ECU = 1 yuan. Sessions
lasted about one hour on average, and mean earnings were 64.65 yuan.28 The experi-
ments were conducted between April and July 2021, during which time this was worth
approximately 10 USD.

Table 2: Treatment Design (treament names and mechanisms for rounds 6-15)

β δ Sessions Subjects

LI control ES 2.2 0.5 UNNC 2 + ZUFE 2 36
LI GM2.2 GM 2.2 0.5 UNNC 2 + ZUFE 2 36
LI GM1.8 GM 1.8 0.5 UNNC 2 + ZUFE 2 36
LI GM1.6 GM 1.6 0.5 UNNC 1 + ZUFE 2 27
LI GM1.2 GM 1.2 0.5 UNNC 1 + ZUFE 2 27
HI control ES 2.2 0.75 UNNC 2 + ZUFE 2 36
HI GM2.2 GM 2.2 0.75 UNNC 1 + ZUFE 2 27
HI GM1.8 GM 1.8 0.75 UNNC 1 + ZUFE 2 27
HI GM1.6 GM 1.6 0.75 UNNC 2 + ZUFE 2 36
HI GM1.2 GM 1.2 0.75 UNNC 2 + ZUFE 2 36
Total UNNC 16 + ZUFE 20 324

5. Results

5.1. Average Contributions

We focus first on average contribution levels, aggregating across all players in each
trio. Figure 1 plots, by treatment, how these evolve across all rounds. Low Inequality
treatments are displayed in the top panel, while High Inequality treatments are shown
in the bottom panel. Note that 8 is the maximum possible average contribution, as this
is equal to the average endowment of tokens within each trio.

In all treatments, average contributions declined during the control period (rounds
1 to 5).29 In every case, even in the Control treatments, we then observe a jump in
28Note that this represented a high level of incentivization for a lab experiment in China, and much

more than most students would be able to earn from available sources of employment. In 2021, legal
minimum wages in Zhejiang Province, where both universities are located, were in the vicinity of 20
RMB per hour.
29We find no significant differences in contributions between different treatments in rounds 1-5, as

established by regressions reported in Table C1, Online Appendix C. This is important as it suggests
that the treatment effects we will report for rounds 6-15 are due to the treatment variables themselves,
rather than the result of random sampling errors which would be likely to also manifest in observable
differences in behaviour during the first five rounds.
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contribution levels in round 6.30 After round 6, average contributions again drifted
downwards in both Control treatments, confirming Hypothesis ES1.31 This mirrors the
common pattern of low cooperation observed in lab experiments using equal sharing
mechanisms. However, Hypothesis ES2, that average contributions are significantly
lower with higher inequality, is not supported other than in Round 6, as demonstrated
by regression output reported in Table C2, Online Appendix C.32

The evolution of average contributions differs markedly between treatments once the
GM is introduced in round 6. For both degrees of inequality, contributions in rounds
6-15 under the GM exceeded those under the ES allocation, regardless of the level of
β the GM operated under, consistent with Hypothesis GM1(a). In the Low Inequality
GM1.2, High Inequality GM1.2 and High Inequality GM1.6 treatments, contributions
remained roughly steady throughout these rounds, indicating that the effectiveness of
the GM was modest in these cases.33 In all other treatments, average contributions
rose, consistent with Hypothesis GM1(b).34 We note that the cases where average
contributions remained steady are those we flagged where PCR does not lead to full
contributions as part of SPNE for the contribution game and PC does not lead to full
contributions as a unique SPNE in two of the cases.

Under Low Inequality GM1.6 and High Inequality GM1.8 subjects were contributing
a majority of their tokens by the final round (5.48 and 5.33 respectively), while in
the remaining three treatments average contributions were above 7 by the penultimate

30This may be because in the Control treatments β increases in round 6, or may simply be a ‘restart
effect’(e.g. Andreoni, 1988; Chaudhuri, 2018).
31 In every session of both Control treatments, average contributions are lower in round 15 than in

round 6. Pooling across both Control treatments, a Wilcoxon signed-rank test finds this difference in
within-session averages between rounds 6 and 15 to be significant (p = 0.01). A simple OLS model
run on all data from rounds 6-15 of the Control treatments, in which the dependent variable is a
subject’s contribution and the sole independent variable is the round number, finds a significant negative
relationship between the dependent and independent variables (p = 0.003). See Regression (2) in Table
C2, Online Appendix C.
32Mann-Whitney tests, comparing session averages in contributions between the High and Low In-

equality Control treatments produce results echoing those of the regressions: the High Inequality sessions
have significantly higher contributions specifically in round 6 (p = 0)
33DFL also found that the positive impact of the GM was relatively modest for β = 1.2 with no

inequality in endowments. However, in their case they did find contributions continued to increase
somewhat over the 10 rounds the GM was used.
34To formally verify this, we ran simple OLS models — reported in Table C3, Online Appendix C

—which regressed amount contributed against round number, separately on data from rounds 6-15 of
each of the eight GM treatments. The relationship is positive and significant at the 5% level for all
Low Inequality treatments with β ≥ 1.6 and for the High Inequality GM2.2 treatment, and statistically
insignificant for other treatments. The insignificant result for High Inequality GM1.8, despite the visible
upward trend, may be related to only having three sessions in this treatment (the standard errors are
clustered by session). We are unable to address Hypothesis GM1(b) using non-parametric tests on
session averages due to an insuffi cient number of sessions in each treatment.
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round. This suggests that the GM can (almost) support full contributions under δ = 1/2
if β is at least 1.8, and under δ = 3/4 if β is at least 2.2. In two out of the four Low
Inequality GM1.8 sessions, one out of the three High Inequality GM1.8 sessions, and
one out of the four Low Inequality GM2.2 sessions, all nine subjects contributed fully
in the final round.

To address the significance of treatment differences, in Table 3 we present OLS re-
gressions in which the dependent variable is an individual’s contribution level in a given
round. Our primary analysis comes from Regression (1), which uses data from across
rounds 6-15 and from all treatments. We include dummy variables for each level of β
under which the GM operated; the coeffi cients on these variables are interpreted as the
increase in contributions under the GM at each β relative to the Control treatments,
thereby providing a general test of the effectiveness of the GM under each β, pooling
across the High and Low Inequality conditions. Also included is a dummy for High In-
equality, and controls for subjects’age, gender and degree (a dummy for those majoring
in economics) as well as the location of the experiment.35 Standard errors are adjusted
for heteroskedasticity by treating each session as providing one cluster of observations.

35We note that the results in this table and in subsequent tables do not meaningfully differ between
UNNC and ZUFE despite these being two culturally quite different universities. Adding interaction
terms between university and treatment variables in the regressions does not yield significant results.
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Figure 1:Average Contributions

The coeffi cients on the β-dummies in Regression (1) are positive and significant, in-
dicating that even the GM with β as low as 1.2 significantly outperformed the baseline
equal sharing mechanism (where, recall, β was much higher).36 This confirms Hypoth-
esis GM1(a). At the bottom of Table 3 we report p-values on linear restriction tests,
comparing contribution levels between the different GM treatments. All pairwise com-
parisons are significant except for GM2.2 —GM1.8 and GM1.6 —GM1.2; this implies
that in general increasing β does increase contributions, but not substantially when β
rises above 1.8, perhaps because contributions are already close to a maximum.

36Similar results are obtained by Mann-Whitney tests: session averages in amount contributed across
rounds 6-15 are significantly higher in all four β versions of the GM treatments than in the Control
treatments (all p < 0.05).
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The other regressions in Table 3 disaggregate the analysis. Regressions (2) and (3)
include data from only the Low and High Inequality treatments respectively. These
results also show that the GM always outperformed the baseline, although the effect is
only (weakly) significant for β = 1.2 under High Inequality. The linear restriction tests
show GM2.2 significantly outperforms GM1.8 under High Inequality, but the two do not
significantly differ under Low Inequality. Regressions (4) and (5) include all treatments
but data only from rounds 6 and 15 respectively. In round 6, the Control treatments
are only significantly outperformed by the GM with β = 2.2 and β = 1.6 (and none of
the GM treatments significantly differ from one another), while in round 15 each GM
treatment yields significantly higher contributions than the Control. This confirms that
the positive effects of the GM take time to emerge most strongly.

Overall, these results establish that the effi ciency-generating power of the GM is
robust to different combinations of β and δ. Hypothesis GM1(c), that average contri-
butions are increasing in β for a given δ, is broadly supported. However, there is only
partial support for Hypothesis GM2, that average contributions are decreasing in δ for a
given β. Figure 1 demonstrates some tendency for contributions to be greater under the
lower δ, especially for β = 1.8 and β = 1.6. Regression (1) also finds this, although the
negative coeffi cient on High Inequality is significant only at the 10% level. Regressions
run specifically on data from the GM treatments with a given β (reported in Table C4,
Online Appendix C) find the difference between High and Low inequality treatments is
significant for β = 1.8 but not other levels of β. 37

37Under PCR, increasing δ from 0.5 to 0.75 results in the minimum β to support full contributions
increasing from 1.5 to 1.75. So, we would expect the level of inequality to most strongly affect contri-
butions when β is in or close to this range. PC supports full contributions for both values of β and
δ.
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Table 3: OLS regressions on tokens contributed (rounds 6-15)

(1) (2) (3) (4) (5)
Full Sample HI LI r6 r15

GM2.2 4.087*** 4.463*** 3.915*** 1.092** 5.790***
(0.355) (0.320) (0.510) (0.391) (0.467)

GM1.8 3.595*** 2.302** 4.566*** 0.678 5.357***
(0.528) (0.684) (0.338) (0.566) (0.654)

GM1.6 2.160*** 1.926*** 2.546*** 0.710* 3.188***
(0.243) (0.289) (0.256) (0.328) (0.439)

GM1.2 1.393* 1.473† 1.322 0.722 1.406*
(0.580) (0.829) (0.782) (0.614) (0.566)

HI -0.596† -0.142 -0.652
(0.342) (0.355) (0.416)

ZUFE -0.187 0.494 -0.648† -0.398 -0.416
(0.319) (0.429) (0.318) (0.413) (0.398)

Age 0.0366 0.127 -0.0391 0.0602 0.0981
(0.0563) (0.0785) (0.0550) (0.0834) (0.110)

Female -0.445* -0.674* -0.298 -0.578* 0.0120
(0.177) (0.281) (0.203) (0.268) (0.301)

Economics 0.227 -0.282 0.598* -0.104 0.558
(0.203) (0.277) (0.220) (0.329) (0.372)

Constant 1.730 -0.481 3.043* 2.148 -0.345
(1.128) (1.618) (1.115) (1.579) (2.133)

Observations 3240 1620 1620 324 324
R2 0.224 0.190 0.310 0.044 0.378

Linear Restriction Tests (p-values)

GM2.2 vs GM1.8 0.419 0.005 0.248 0.515 0.567
GM2.2 vs GM1.6 <0.001 <0.001 0.015 0.347 <0.001
GM2.2 vs GM1.2 <0.001 0.003 0.011 0.575 <0.001
GM1.8 vs GM1.6 0.012 0.577 <0.001 0.954 0.005
GM1.8 vs GM1.2 0.007 0.458 <0.001 0.955 <0.001
GM1.6 vs GM1.2 0.213 0.586 0.144 0.985 0.007

Notes: r6 and r15 refer to data only from rounds 6 and 15 respectively. The de-
pendent variable is the number of tokens contributed. Only data from rounds 6-15 are
included. The omitted treatment category is Control. Standard errors, in parentheses,
are clustered by session (36 clusters in Regessions (1), (4) and (5); 18 in Regressions
(2) and (3)). † p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001.
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5.2. Gini Coeffi cients

We illustrate the average Gini coeffi cients of the income distribution after each round
for each treatment in Figure 2. The results resemble a mirror image of Figure 1, and
in combination the two figures clearly illustrate that inequality is high when effi ciency
is low and vice versa. The Gini measures for the two endowment distributions (0.222
and 0.333 for the low and for the high inequality, respectively) are also indicated by the
points LI and HI on the vertical axes in Figure 2. The control and all the GM treatments
result in reduced inequality relative to the endowment distribution, with the exception
of the control under low inequality. This confirms Hypothesis GM4(a).38 Table 4 reports
the equivalent regressions to those in Table 3 with the Gini as the dependent variable.
The significance of coeffi cients almost exactly reflects that in Table 3. GM1.2 is never
significant, but all the other scale of return dummies are, except in regression (4) which
is for round 6 only, where none of these dummies are significant.39 When it comes
to reducing inequality, the GM outperforms the control treatment, except for β = 1.2
when there is no significant difference between them. The linear restriction tests are
mostly significant, which shows that inequality generally decreases as the scale of returns
increases. Hypothesis GM4(b), that for a given level of endowment inequality, the final
income distribution is less unequal than that of the corresponding control, is strongly
supported.

38We ran Wilcoxon signed rank tests, separately for the GM treatments at the four different levels
of β, testing whether the average Gini coeffi cient in a given session, based on post-round income and
pooling all observations from rounds 6-15, is significantly different from that session’s endowment Gini
level. All test results are significant at the 5% level. We lack a suffi cient number of sessions to conduct
such tests separately for all eight treatments.
39The significance of the dummy denoting the high inequality treatment in Table 6 indicates that,

while the GM has been successful in reducing inequality in both the high and low inequality treatments,
inequality still remains higher in the former.
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Figure 2: Gini Coeffi cients
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Table 4: OLS regressions on Gini (rounds 6-15)

(1) (2) (3) (4) (5)
Full Sample HI LI r6 r15

GM2.2 -0.0990*** -0.127*** -0.0779*** -0.0299 -0.129***
(0.0139) (0.0224) (0.0121) (0.0281) (0.0193)

GM1.8 -0.0632*** -0.0581* -0.0661*** -0.0275 -0.0877***
(0.0134) (0.0216) (0.0130) (0.0232) (0.0230)

GM1.6 -0.0531*** -0.0582** -0.0490*** -0.0107 -0.0692***
(0.0123) (0.0189) (0.0112) (0.0163) (0.0182)

GM1.2 -0.00522 -0.0112 -0.00132 0.0141 0.0170
(0.0209) (0.0345) (0.0198) (0.0229) (0.0218)

HI 0.0657*** 0.0583*** 0.0774***
(0.0100) (0.0154) (0.0123)

Constant 0.179*** 0.266*** 0.177*** 0.219*** 0.183***
(0.0308) (0.0470) (0.0325) (0.0500) (0.0394)

Observations 1080 540 540 108 108
R2 0.400 0.280 0.292 0.245 0.629

Linear Restriction Tests (p-values)

GM2.2 vs GM1.8 0.010 0.002 0.374 0.935 0.046
GM2.2 vs GM1.6 <0.001 <0.001 0.014 0.433 <0.001
GM2.2 vs GM1.2 <0.001 0.004 0.001 0.145 <0.001
GM1.8 vs GM1.6 0.377 0.996 0.158 0.391 0.345
GM1.8 vs GM1.2 0.007 0.184 0.004 0.110 <0.001
GM1.6 vs GM1.2 0.022 0.160 0.025 0.219 <0.001

Notes: r6 and r15 refer to data only from rounds 6 and 15 respectively. The depen-
dent variable is the group-level Gini. Only data from rounds 6-15 are included. There
is one observation per each group of three players. The omitted treatment category is
Control. Standard errors, in parentheses, are clustered by session (36 clusters in Re-
gressions (1), (4) and (5); 18 in Regressions (2) and (3)). Control variables for Age,
Location, Female and Major were included, but found to be insignificant except for two
isolated cases, both negative —age in regression (4) and major in regression (3). † p <
0.1, * p < 0.05, ** p < 0.01, *** p < 0.001.

5.3. Contributions by Player Types

To better understand what drives the average contribution results, we next consider how
much an agent contributes under different circumstances. Table 5 presents the average
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contribution ratios by subjects in the role of rich, middle and poor in each treatment,
both combined across rounds 6-15 and in round 15 only. In every treatment, averaging
across rounds 6-15, the poor contributed the highest proportion of their endowments,
followed by middle and then rich.

Regression results (in Table C5, Online Appendix C) for the control treatments
show that Hypothesis ES3(a) ‘that the contribution ratio of the rich is not significantly
different from that of the poor’ is rejected when the data is combined across rounds
6-15 and both control treatments; it is also weakly rejected for the treatment with high
inequality; but cannot be rejected for the treatment with low inequality. In conjunction
with Table 5 these results indicate that the contribution ratio of the poor is significantly
higher than that of the rich when inequality is high, but is not significantly different if
inequality is low. The alternate Hypothesis ES3(b) ‘that the contribution level of the
rich is not significantly different from that of the poor’is also rejected therefore. Here
we find that the contribution levels of the rich are significantly higher than those of
the poor. This reflects a pattern of behavior that persists throughout the remainder
of our experimental results. In terms of contributions to public output, subjects make
the highest absolute contributions when rich, and contribute the highest income share
when poor.
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Table 5: Average proportion of endowment contributed by player type

Poor Middle Rich

r6-15 r6-15 r6-15
LI Control 0.288 0.278 0.219
HI Control 0.333 0.233 0.182
LI GM2.2 0.869 0.759 0.679
HI GM2.2 0.961 0.8 0.754
LI GM1.8 0.89 0.811 0.787
HI GM1.8 0.861 0.586 0.448
LI GM1.6 0.733 0.561 0.485
HI GM1.6 0.867 0.488 0.382
LI GM1.2 0.667 0.41 0.292
HI GM1.2 0.875 0.48 0.323

r15 r15 r15
LI Control 0.188 0.219 0.16
HI Control 0.208 0.177 0.131
LI GM2.2 0.958 0.885 0.847
HI GM2.2 1 0.986 0.905
LI GM1.8 1 0.969 0.965
HI GM1.8 1 0.778 0.556
LI GM1.6 0.833 0.708 0.62
HI GM1.6 0.958 0.448 0.387
LI GM1.2 0.611 0.361 0.056
HI GM1.2 0.958 0.5 0.244

Notes: r6 - 15 refers to data from round 6 to round 15. r15 refers to data only from
round 15.

The differences in contribution ratios between types are starkest in the GM treat-
ments with lower β. High contribution ratios by the poor are uniform across almost all
GM treatments; averaging over all rounds they always contributed the majority of their
endowments, and by the final round their average contributions had increased to 100%
or close in all treatments except for Low Inequality GM1.2. The contribution ratios of
the middle were more variable, reaching close to full contributions in the final rounds
of the Low Inequality GM2.2, Low Inequality GM1.8 and High Inequality GM2.2 treat-
ments, but falling below 50% in the treatments with β = 1.2. The rich also raised their
contributions to close to 100% in the Low Inequality GM2.2, Low Inequality GM1.8 and
High Inequality GM2.2 treatments, but their contributions were even lower than those
of the middle in the other treatments and fell close to zero by the last rounds of the
GM1.2 treatments. We discuss these differences in Section 6.
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The regression results (in Table C6, Online Appendix C) indicate that Hypothesis
GM3(a) ‘that for given levels of endowment inequality and scale of returns, the con-
tribution ratio of the rich is not significantly different from that of the poor’; can be
rejected in favor of the poor contributing a higher proportion than the rich in all cases.
Similarly (see Table C7, Online Appendix C), Hypothesis GM3(b) ‘that for given levels
of endowment inequality and scale of returns, the contribution level of the rich is not
significantly different from that of the poor, can be rejected in favor of the rich having
higher contribution levels than the poor when β ≥ 1.6 (except for when β = 1.8 and
inequality is high). There is no significant difference in the contribution levels when
β = 1.2. While both contributions and contribution ratios are generally higher, the pat-
tern of the poor having the higher contribution ratio and the rich the higher contribution
level found in the control treatments persists under the GM.

5.4. Allocations by player type

We turn next to the question of how players allocate the first stage output in the game’s
second stage. Recall that under the GM, each subject must allocate one-third of the
ECU in the Group Fund between the two other players. The following analysis considers
only each player i’s allocation towards player j, where player j is defined as the remaining
player with the lower initial endowment. Player i’s allocation towards the other player
(player k) can be deduced trivially as the remaining part of the one-third of the Group
Fund that player i did not allocate to player j.

The horizontal axis in the upper panel of Figure 3 represents the absolute amount
contributed in the first stage by player j relative to that of player k —that is, cj

cj+ck
. The

vertical axis represents the fraction of player i’s combined allocation given to player j —
that is, aij

aij+aik
. Circle sizes represent the relative frequency of particular observations.

Data is pooled from all GM treatments, rounds 6-15. Allocations along the 45-degree
line would be consistent with player i following PC behavior. In contrast to DFL, who
found that with equal endowments about half of the allocations in the experiment were
located on this 45-degree line, in our case we observe that only 14.7% are.40 However,
deviations from the line tend to be systematic: 76.9% of the observations lie above it.
This reveals that allocators tend to reward a given contribution more if it comes from
the player with the lower endowment.

40DFL note that in some cases it is mathematically impossible for the allocator to set aij
aij+aik

exactly

equal to cj
cj+ck

. They therefore define allocations as proportionalist if the difference between the two is

no more than 0.05. Under this criterion, 28.8% of the allocations in our study are consistent with PC,
compared to 70.6% in DFL.
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Figure 3:Allocation Decisions

33



As few subjects appear to be perfect PC allocators, this raises the possibility that
many are perfect PCR allocators, i.e. the fraction they allocate as player i to player j is
given by the proportion of player j’s endowment that j contributed relative to the pro-
portion of player k’s endowment that k contributed. In such cases aij

aij+aik
=

cj/ej
c/ej+ck/ek

.
The lower panel of Figure 3 explores this possibility. Here, the horizontal axis repre-
sents cj/ej

c/ej+ck/ek
, while the vertical axis still represents aij

aij+aik
, and an observation along

the 45-degree line would be consistent with player i being a perfect PCR allocator.41

We see that allocations are generally targeted more closely to the 45-degree line than
they are in the upper panel, with 19.9% of observations lying precisely on the line and
40.6% at most 0.05 units above or below it, suggesting that PCR allocation behavior is
empirically more relevant than PC allocation behavior. However, there is in this case a
slight tendency for observations to lie below the 45-degree line (53.7% do) rather than
above it (only 26.4%). This reveals that subjects who contributed a given proportion of
their endowment —relative to that contributed by their team-mate —received a larger
allocation if they were contributing out of a larger endowment. In other words, the allo-
cation a player received was positively influenced by this player’s absolute contribution,
not just by the proportion of their endowment they contributed.

The insights above are confirmed by the OLS regressions in Table 6. The dependent
variable is the fraction each player i allocates to each player j. Player j’s bilateral relative
contribution RC cj

cj+ck
and relative contribution ratio RCR cj/ej

c/ej+ck/ek
are both included

as independent variables, along with dummy variables for treatment (level of β and δ)
and controls for location and demographics. In regression (1), which contains the full
sample, both the RC and the RCR terms have strongly significant positive coeffi cients,
which shows that allocators do indeed respond to both. However, the coeffi cient on
the RCR is much larger, from which we can discern that allocators primarily reward
contributors on the basis of their contribution ratios. This regression indicates that
aggregate allocations can be characterized as reflecting a mix of PC and PCR allocation
behaviors. 42

Intriguingly, however, the weights on the PC and PCR allocations seem to depend on
the allocator’s endowment, as revealed by regressions (2), (3) and (4) which separately
analyze the allocation choices by player type. The rich are slightly biased towards RC

41 In both panels of Figure 3, for observations where the values of the numerator and denominator of
the term represented on the horizontal axis are both equal to zero, we set the value of the variable equal
to 0.5.
42Any equal shares allocations would appear on a horizontal line through 0.5 on the vertical axis on

each panel of Figure 3, and there are slight clusters along these lines. 13.0% of observations are at exactly
0.5 and 27.1% are between 0.45 and 0.55. We cannot strictly attribute all of these observations to a
pure equal sharing allocation strategy, however, because they are also consistent with the other types of
allocation strategies, including but not restricted to cases where both players made equal contributions
or had equal contribution ratios.
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over RCR, which results in them rewarding the middle handsomely for contributing a
mediocre share of their endowment.43 The poor, on the other hand, base their alloca-
tions strongly on RCR, to the extent that RC does not figure as a significant motivator;
which tends to result in the rich receiving little payback for contributions that are large
in absolute terms but stingy in relation to their endowment. The rich favour the (rela-
tively) rich, while the poor do the opposite. What is particularly noteworthy here is that
the allocation behavior is so strongly influenced by a subject’s status within the trio,
even though this status can change every round and despite the fact that a subject’s
allocation decision has no effect on her own earnings in the round in question.4445

Table 6: OLS regressions on allocation to player j

(1) (2) (3) (4)
Full Sample P M R

RC 0.335*** 0.111 0.319*** 0.500***
(0.0383) (0.112) (0.0719) (0.0559)

RCR 0.615*** 0.903*** 0.622*** 0.407***
(0.0546) (0.123) (0.106) (0.0622)

GM1.8 -0.0223 -0.0190 -0.0135 -0.0333
(0.0158) (0.0122) (0.0236) (0.0199)

GM1.6 -0.0116 0.0106 -0.0131 -0.0311
(0.0151) (0.0150) (0.0236) (0.0187)

GM1.2 -0.00791 0.00381 -0.0166 -0.0141
(0.0130) (0.0188) (0.0189) (0.0159)

HI 0.0134 -0.00623 0.00954 0.0510**
(0.00958) (0.00960) (0.0172) (0.0151)

Constant -0.0368 0.121† -0.0976 -0.0770
(0.0734) (0.0606) (0.103) (0.0950)

Observations 2520 840 840 840
R2 0.621 0.718 0.618 0.509

43A Chow Test on regression (1) with added dummy variables for Middle and Rich and interactions
between those variables and RC and RCR finds that RC weakly differs between poor and rich (p=0.099)
and RCR differs between poor and rich (p=0.014). Neither significantly differ between Poor and Middle.
44While the weights estimated on PC and PCR in these models differ depending on the allocator’s

status, they do not substantively differ depending on the levels of β and δ. See the regressions in Table
C8, Online Appendix C, which run separate regressions for different treatments.
45 In our data, females are more pro-redistribution than males. The significant coeffi cient on Female

in Equation (1) indicates that, for any given set of contributions by Players j and k, a female allocator
tends to give more to Player j than a male would. This is particularly the case when the allocator is rich
(regression (4)). Note that we also detected a gender difference in Table 3, with females contributing
significantly less than males in stage one of the game.
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Notes: The dependent variable is the share of player i’s combined allocation going
to player j (the disadvantaged player). Data from all GM treatments, rounds 6-15, are
included. The omitted treatment category is GM2.2. Standard errors, in parentheses,
are clustered by session (28 clusters in each regression). Controls for location and de-
mographics were also included and were insignificant, except that older subjects tended
to allocate less to the poor and more to the middle, while female subjects allocated more
to the rich. † p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001.

5.5. Relationship between contributions and earnings

We have seen how contribution levels vary across treatments and player types, and we
have studied the patterns of allocation behavior. We now ask how useful the latter are
in explaining the former. One question to consider is under which circumstances it is, in
reality, profitable for subjects to contribute fully under the GM. To address this, we plot
the average net return subjects receive on each available contribution level, where net
return is defined as the ECUs a player receives through allocations in stage two minus
the ECUs the player sacrificed through contributions in stage one. Figure 4 presents
these plots separately for each type of player in each treatment. The contribution level
for which average net returns are highest represents a player’s expected ex-post payoff-
maximizing strategy.

The following observations stand out from Figure 4. First, contributing fully always
maximizes expected payoffs for the poor; in every treatment, the highest returns for
the player with the lowest endowment came from contributing the whole endowment.
Secondly, the middle maximizes expected payoffs by fully contributing when β = 2.2, 1.8
or 1.6.46 When β = 1.2, there is no clear relationship between the middle’s contribution
and the payoffearned. Thirdly, the rich maximizes expected payoffs by fully contributing
only under β = 2.2 or 1.8.47 When β = 1.6, there is an unclear relationship between
the contributions and payoffs for the rich, while for β = 1.2 they would generally
maximize payoffs by contributing zero (as their received allocations tend to be less than
the amount they contribute for any positive contribution). These results are consistent
with our expectations based on the theory discussed above in the sense that when
β ≥ 1.8 full contributions is an SPNE under both the PC and PCR allocations, while
when 1.8 ≥ β ≥ 1.6 full contributions is only an SPNE for the PC allocation. In those

46There is a caveat. The highest average net returns for the Middle in the High Inequality GM2.2
and Low Inequality GM1.6 treatments actually came from contributing 2 and 7 tokens respectively.
However, these behaviours were only observed on three and one instances respectively, so these high
returns are likely to be outliers. In both treatments, there is a clear upward trend in the net returns as
the Middle’s contributions increase towards the maximum.
47A similar caveat applies as in the previous footnote. The expected payoff maximizing contribution

levels are 10 in High Inequality GM2.2 and 11 in Low Inequality GM1.8, but this is based on only 16
and 3 observations respectively.
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cases when full contributions is not a SPNE, it is especially the rich that don’t find it
in their interests to contribute fully. Note that this is partly the consequence of the
different allocation strategies being followed by different player types; the poor have a
particularly strong tendency to follow PCR allocations, which result in lower benefits
to the rich than PC allocations would.

These findings help to explain the contributions proffered by each player type, as
reported in Table 5. Specifically, the low contributions of the Rich in the β = 1.2 sessions
and mediocre contributions in the β = 1.6 sessions, the mediocre contributions of the
Middle under β = 1.2, and the high contributions of the Poor in all cases, are consistent
with subjects following rational income maximizing strategies. Relative to expected
ex post payoff maximization, we do see some tendency for under-contribution. For
instance, the Middle did not reach anywhere close to full contributions under β = 1.6,
even though doing so would have ex post maximized their expected payoffs. This may
be explained by risk aversion, or even a variant of betrayal aversion (e.g. Bohnet et al.,
2008). It is noteworthy, however, that we do not observe any obvious influence of social
preferences, which in many other economic games with voluntary contributions have
been found to push contributions well above the level predicted by standard economic
theory (see e.g. Chaudhuri, 2011).

Overall, it is clear that the GM with heterogeneous endowment is able to work to
some extent even with low returns to production, because players with low endowments
can be easily motivated to contribute. However, the GM is most effective when β = 1.8
or even higher, because only then might all player types be incentivized to contribute
fully.
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Figure 4: Net Returns on Contributions

Note: Data from rounds 6-15 is included.

5.6. Payoffs

Although allocation strategies based on contribution ratios —rather than contribution
levels —disincentivize contributions from well-endowed players, they do have the effect,
likely to be considered beneficial, of strongly redistributing from rich to poor, thereby
mitigating the inequality built into the start of each round.
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To explore this effect, Figure 5 presents average payoffs per round for the different
player types in each treatment during rounds 6-15. In the treatments where the GM
is successful in achieving high contributions, the inequality in payoffs between types is
quite small. For instance, in High Inequality GM2.2, where the starting endowments
are 2,8 and 14, respectively, the corresponding average payoffs per round using the
GM mechanism are 14.2, 15.5 and 16.9. In contrast, treatments in which the GM is less
successful in boosting contributions leave large amounts of inequality between types —in
High Inequality GM1.2, for example, the average payoffs per round for the three player
types are 4.8, 8.4 and 12.9. This illustrates an intriguing feature of the GM: inequality
is minimized in cases where effi ciency is maximized, contrary to what is conventionally
expected in other economic contexts (e.g Okun, 2015).

Figure 5 serves to illustrate two effects in particular. First, in mitigating inequality,
the GM does a better job than the equal sharing mechanism. For instance, the High
Inequality Control treatment results in average payoffs per round of 4.8, 8.4 and 12.9
for the three player types —much more dispersed than are the average payoffs in the
GM treatment with equivalent β and δ. Second, the differences in earnings between
treatments are small for rich players but dramatic for poor players. When the GM
works well, it’s the less well-endowed who primarily benefit from it.
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Figure 5: Average Payoffs

6. Summary and Conclusions

As noted in the Introduction, our experiments generate results relating to effi ciency,
inequality and agent contribution and allocation behavior. We discuss each in turn.

6.1. Effi ciency

The GM improves effi ciency. Average contributions in the GM treatments exceeded
those in the equal-shares control treatments for both levels of inequality and all levels
of the scale of returns considered. As expected, this performance was sensitive to the
level of endowment inequality and the scale of returns. By the final round a group’s
total contributions in GM2.2 and LI GM1.8 averaged 93% of the group’s combined
endowments, with 82% of subjects contributing fully, numbers comparable to the overall
averages found in DFL (92% and 83%, respectively). The GM was less successful at
lower levels of the scale of returns. The corresponding numbers for HI GM1.8 and
GM1.6 were 61% and 43%; and for GM1.2 32% and 28%. All of these are significantly
higher than those for the control treatments (17% and 0%).

While the GM has been shown to work well even when subjects have heterogeneous
endowments, there is clearly scope for further refinements. Our experiments have identi-
fied the endowment types that are ‘under-contributing’(see the discussion below) which

40



is where these refinements might best be aimed. But in their absence, our results suggest
that if choosing between two teams with the same average endowments, the principal
might find it more profitable to employ that which has the more uniform endowment.

6.2. Inequality

At the same time as the GM improves effi ciency it reduces inequality. The ‘fair’alloca-
tions that the subjects employ induce higher contributions and the two in combination
involve redistribution in favor of the subject with the lower endowment. But there is a
limit. Unless the scale of returns is suffi ciently high (β ≥ 1.8), the rich agent may be
unwilling to make a full contribution. In general there is no tradeoff between effi ciency
and equity for the agents under the GM. The only trade-off involves the principal offer-
ing a higher β (thereby sacrificing profits) to extract the last few tokens from the rich
agent.

We have used the principal-agent problem as the context for our discussion of the
GM, and in that context income inequality among the agents may be of no concern to the
principal. However, this does not mean it is entirely irrelevant. It is surely comforting
for the principal to know that any concern that the agents have about income inequality
when making their allocations does not seem likely to hamper the principal’s objective
of raising contributions.

Our results indicate that the principal will need to have some information on the
general distribution of the agents’endowments in order to set the appropriate scale of
returns to attract full contributions. But, as long as the agents themselves are aware of
each other’s precise endowments and contributions before the allocation stage, the GM
can deliver full contributions without the principal having this specific knowledge.

6.3. Agent Behavior

As noted earlier, individual subjects’contribution and allocation decisions seem to be
sensitive to their endowment levels in a consistent way. As the experimental literature
shows, under the equal-share allocation, subjects when poor contribute a higher share
of their endowments than they do when rich. Moreover, subjects when rich contribute
a larger amount than they do when poor. Our experiments show that this contribution
behavior continues to hold under the GM, even as the GM raises average contributions.
Further, when it comes to allocations under the GM, agents allocate to each other
according to a weighted average of PC and PCR; putting a higher weight on the PCR
when poor than when rich. Thus, in both their contribution and allocation decision-
making, agents consistently place greater emphasis on contribution levels when they are
rich, and on contribution ratios when they are poor.
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A corollary of this is that we can use the subjects’allocation behavior to infer some-
thing about their willingness to redistribute. If subjects focus on the PC in making their
allocation decisions, they are effectively ignoring the endowment distribution. While if
they focus on the PCR then they are taking the endowment distribution fully into ac-
count when making their allocations. In our experiments subjects appear to be using a
weighted average of both; however, the weights depend on their current endowment in
a consistent way. When they are rich agents put a higher weight on PC than when they
are poor, implying that an agent is more willing to redistribute on the basis of income
differences when poor than when rich.

Our experimental results showed that where the GM failed to support full contri-
butions (in treatments with β = 1.8 or lower) the main barrier was the reluctance of
subjects to contribute when then they have the largest endowment. In sub-section 5.5
above we found evidence that these subjects under-contribute relative to their payoff
maximization contribution. This cannot be because they are concerned that larger con-
tributions might lead to greater inequality (i.e. inequality aversion), because we have
shown that the opposite is the case. Could it be that, beyond some point, effi ciency-
improving contributions are held back by the rich precisely because others receive a
disproportionate share of the benefits, and the rich regard this as an ‘unfair’erosion of
their status associated with higher relative income? 48

More generally, it was clear from our review of the experimental literature on the
VCM that subjects take more than narrow self-interest (i.e. own income) into account
in making their decisions. Early experiments with common endowments and equal-
shares allocations found positive contributions where self-interest suggested otherwise.
A range of answers (e.g. altruism, inequality aversion, cooperation) were then offered to
the question ‘why do subjects contribute so much?’ When heterogeneous endowments
were investigated, the question became ‘why do some agents contribute (dispropor-
tionately) more than others?’ and some of the previous answers (e.g. altruism and
inequality aversion) were found wanting. Now the GM poses the opposing quandary.
‘Why do (some) agents hold back their contributions when narrow self-interest suggests
the contrary?’ Risk and betrayal aversion, along with potential erosion of status, are
possible solutions, and finding a set of preferences to answer all these questions is a
challenge for future research.

6.4. Concluding Remarks

Overall, the GM is showing itself to be a promising mechanism. DFL demonstrated it to
be effi ciency-enhancing and here we have shown that its effi ciency-enhancing properties
are robust to a more realistic environment involving heterogenous endowments. Fur-

48A parallel result to that of Kuy & Salmon (2013) who found that the poor were reluctant to
contribute fully if the rich received as disproportionate share of the benefits.
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thermore, we have shown it simultaneously reduces inequality. In the experiments above
we excluded the possibility of discriminatory preferences or collusion by subgroups of
players, by maintaining players’anonymity. We also rotated players across endowment
levels and teams between rounds. In practice an individual player’s endowment (ability)
doesn’t vary this much in a short space of time; team membership is likely to remain
fairly constant across several rounds; and team members are unlikely to be anonymous,
opening the possibility that allocations may be influenced by interpersonal relations as
well as contributions.49 It is time to test the GM in settings even closer to reality.

7. Appendix

7.1. Appendix A1

7.1.1. Fixed allocation share

In a fixed share allocation, a player’s allocation share is unaffected by his contributions
—i.e.

qi (c) =
−
qi for all c.

Then the condition for player i to prefer full contributions ei to any other contribu-
tion level ci, given the other players make full contributions is

−
qiβE ≥

−
qiβ [ci + E−i] + ei − ci or

β ≥ 1
−
qi

Only when β exceeds the inverse of the smallest allocation share are full contributions
a part of an equilibrium of the game. The smallest allocation share is maximised when
all shares are equal, in which case we requireβ ≥ 3. If the principal were to allocate
fixed shares and wished to minimise β, then equal shares cannot be improved upon.

7.1.2. Distribution Neutral Contributions

Player j’s initial income is given by ej , and the initial aggregate income is E. We let
yj denote j’s income and Y denote the aggregate income, after contributions have been
made and the output has been allocated. Then DNC will need to satisfy the condition
that all subjects’ income shares are the same before and after the output has been
allocated.That is,

yj
Y

=
ej
E
≡ θj for all j, (7.1)

49Further discussion of this possibility can be found in Dong (2017).
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where θj is player j’s endowment share. Equation (7.1) can be rewritten as

yj
ej

=
Y

E
≡ ρ for all j, (7.2)

Player j’s contribution is cj , and we denote total contributions by C. Under an
equal shares allocation

yj = ej − cj +
β

3
C (7.3)

Substituting in condition (7.2) gives

yj
ej

= 1− cj
ej

+
β

3

C

ej
(7.4)

= 1 +
β
3C − cj
ej

(7.5)

Hence,

ρ− 1 =
C
(
β
3 −

cj
C

)
ej

=

C
E

(
β
3 − ϕj

)
θj

for all j (7.6)

where ϕj ≡ cj
C is player j’s contribution share. Solving (7.6) for ϕj we find

ϕj =
β

3
− θj [ρ− 1]

E

C
(7.7)

Summing across the agents gives

3∑
j=1

ϕj = β − [ρ− 1]
E

C

3∑
j=1

θj . (7.8)

Since
3∑
j=1

ϕj =
3∑
j=1

θj = 1, we can solve for ρ − 1 = [β − 1] CE and hence substitute

back into (7.7),
obtaining

ϕj = θj + β

[
1

3
− θj

]
(7.9)

The above equation gives the contribution shares required to maintain the in-
come distribution under an equal-shares allocation. If a subject’s endowment share is
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equal to the mean of the distribution (1/3), then she should contribute in proportion to
her endowment share. Otherwise, a subject with an endowment share smaller (larger)
than the mean should have a higher (lower) contribution share than her endowment
share, with the magnitude of these differences increasing in the scale parameter (β).
This implies that the poor must contribute a larger share of their endowment than
the rich if the income distribution is to be maintained. Converting the equation to
contribution levels we find:

cj − ck = [θj − θk] [1− β]C

for all k 6= j (7.10)

Since β > 1,(7.10) implies that the contribution of the subject with the larger
endowment share will be lower than that of the subject with the lower endowment
share.

7.1.3. Distribution Neutral Allocation (DNA)

A DNA will need to satisfy the condition that all players’income shares are the same
before and after the contributions and allocations have occurred (i.e. after the game
has been played) that is, equations (7.1) and (7.2) above are satisfied.

Consider an allocation to player j (Aj) such that

Aj = cj + θj (β − 1)C (7.11)

That is, the allocation to player j is equal to her contribution plus a share of the surplus
equal to her initial income share.

Then

yj = ej − cj +Aj

= ej + θj (β − 1)C

= ej +
ej
E

(β − 1)C

= ej

(
1 + (β − 1)

C

E

)
Hence (7.11) is a DNA allocation. Note that (7.11) gives the amount allocated to

player j. If we convert this to j’s allocated share of the pool (aj), we obtain

aj =
Aj
βC

=
cj
βC

+
β − 1

β
θj (7.12)
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=
1

β
ϕj +

[
1− 1

β

]
θj

= θj +
1

β
[ϕj − θj ] (7.13)

Thus j’s allocation share under a distribution neutral allocation is:
(i) A positively weighted average of j’s endowment and contribution shares,

with the weight on the endowment share increasing in β.
(ii) Equal to its endowment share, plus an adjustment that depends on the

difference between j’s contribution and endowment shares. If j’s contribution share ex-
ceeds her endowment share, she receives an allocation share larger than her endowment
share to maintain the income distribution.

If all players contribute fully, then ϕj = θj for all j, and j’s allocation share is equal
to her endowment share.

7.2. Appendix A2

7.2.1. Proof of Remark 1

Setting c∗ = (0, 0, 0), inequality (3.5) becomes

qi(c
∗)β [0] + ei ≥ qi(ci, c∗−i)β [ci] + ei − ci , where ci 6= 0.

The above can be simplified to
qi(ci, c

∗
−i)β ≤ 1.

If qi(ci, c∗−i) = 0, then the above inequality is satisfied for all β. If qi(ci, c∗−i) 6= 0,
then the above inequality is satisfied for all β satisfying

β ≤ 1

qi(ci, c∗−i)
.

Since qi(ci, c∗−i) can take a maximum value of
2
3 under the GM, we obtain the desired

inequality.�

7.2.2. Proof of Proposition 1 (PC)

Let e denote tuple (e1, e2, e2). Our aim is to show that β > 3
2 implies that s =

((e1, a1(e)), (e2, a2(e)), (e3, a3(e))) is a SPNE of the game, where function a(e) = (a1(e), a2(e), a3(e))
satisfies the PC allocation. We can therefore set c∗ = e in inequality (3.5) so that (3.5)
becomes

πi((ei, e−i), (a(ei, e−i))) ≥ πi((ci, e−i), (a(ci, e−i)) (7.14)
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for each i and for all ci. Using the formula for πi, the above can be reduced to

qi(e)β [ei + ej + ek] ≥ qi(ci,e−i)β [ci + ej + ek] + ei − ci. (7.15)

Note that under the GM, under the PC allocation, for a given arbitrary contribution

tuple c, qi(c) = 1
3

[(
ci

ci+cj

)
+
(

ci
ci+ck

)]
. To prove proposition 1, it suffi ces to show that

the above inequality holds for all β > 3
2 for each i and for all ci. Since players are

heterogeneous, we will show that the inequality is satisfied for each player. Indeed, we
shall consider a pair of inequalities for each player, one in which ci > 0 and another in
which ci = 0.

We start with player 2. First, suppose that c2 > 0. Using the qi(c) formula and
expressing the endowments in terms of the dispersion parameter δ viz. (3.7), with the
assumption that ε = 1, and after simplifying, inequality (7.15) reduces to the following.

3βq2(e)− 1 ≥ βc2
3

(
[2c2 + 2] [c2 + 2]

c22 + 2c2 + 1− δ2

)
− c2 (7.16)

We next consider the case where c2 = 0. Then, the inequality becomes

q2(e)β [e1 + e2 + e3] ≥ e2 or

3βq2(e) ≥ 1

This leads to the following lower bound on β for the case where c2 = 0

β ≥ 1

3q2(e)

Now, using the qi(c) formula and expressing the endowments in terms of the disper-
sion parameter δ viz. (3.7),with the assumption that ε = 1, after simplifying, it can be

shown that q2(e) = 4
3

(
1

4−δ2
)
. Thus, the lower bound on β for the case where c2 = 0

becomes

β ≥ 4− δ2
4

. (7.17)

As result, (7.16) and (7.17) give the inequalities that need to be satisfied so that
player 2 does not deviate from the equilibrium.

We next consider player 1. First suppose that c1 > 0. Using the qi(c) formula and
expressing the endowments in terms of the dispersion parameter δ viz. (3.7), with the
assumption that ε = 1, and after simplifying, inequality (7.15) reduces to the following.

3βq1(e)− (1 + δ) ≥ βc1
3

(
[2c1 + 2− δ] [c1 + 2− δ]
c21 + (2− δ) c1 + 1− δ

)
− c1 (7.18)
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We next suppose that c1 = 0. Then, the inequality becomes

q1(e)β [e1 + e2 + e3] ≥ e1 or

β ≥ 1 + δ

3q1(e)

Now, using the qi(c) formula and expressing the endowments in terms of the disper-
sion parameter δ viz. (3.7), with the assumption that ε = 1, after simplifying, it can be

shown that q1(e) = 1+δ
3

(
4+δ
2(2+δ)

)
. Thus, the lower bound on β becomes

β ≥ 2 (2 + δ)

4 + δ
(7.19)

As result, (7.18) and (7.19) give the inequalities that need to be satisfied so that
player 1 does not deviate from the equilibrium.

We finally consider player 3. First, suppose that c3 > 0. Using the qi(c)
formula and expressing the endowments in terms of the dispersion parameter δ viz.
(3.7), with the assumption that ε = 1, and after simplifying, inequality (7.15) reduces
to the following.

3βq3(e)− (1− δ) ≥ βc3
3

(
[2c3 + 2 + δ] [c3 + 2 + δ]

c23 + (2 + δ) c3 + 1 + δ

)
− c3 (7.20)

We next suppose that c3 = 0. Then the inequality becomes

q3(e)β [e1 + e2 + e3] ≥ e3 or

β ≥ 1− δ
3q3(e)

=
(1− δ)

3
.

1

q3(e)

Now, using the qi(c) formula and expressing the endowments in terms of the disper-
sion parameter δ viz. (3.7), with the assumption that ε = 1, after simplifying, it can be

shown that q3(e) = 1−δ
3

(
4−δ
2(2−δ)

)
. Thus, the lower bound on β becomes

β ≥ 2 (2− δ)
4− δ (7.21)

As result, (7.20) and (7.21) give the inequalities that need to be satisfied so that
player 3 does not deviate from the equilibrium.

Next, for the case where ci > 0, for all β > 3
2 , we establish a useful monotonicity

property of the RHS of inequalities (7.16), (7.18) and (7.20) for players 2, 1 and 3
respectively. The result is given in terms of the following lemma.
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Lemma 1: Suppose that β > 3
2 , then the RHS of inequalities (7.16), (7.18) and

(7.20) for players 2, 1 and 3 respectively are strictly monotonically increasing in ci for
all i and ci > 0.

Proof : Since ci ∈ Ei ⊆ [0, ei], it suffi ces to show that for each i, the partial
derivative of the RHS of inequalities (7.16), (7.18) and (7.20) are strictly positive when
β > 3

2 , for all ci ∈ (0, ei]. We start with player 2. The derivative of the RHS of the
inequality (7.16) is given by

β

3


(c22+2c2+1−δ2)(6c22+12c2+4)

(c22+2c2+1−δ2)
2 −

((2c32+6c22+4c2))(2c2+2)

(c22+2c2+1−δ2)
2


−1

It can be shown that the above expression is strictly positive if and only if the
following inequality is satisfied.(

c22 + 2c2 + 1− δ2
)(

[2β − 1] c22 + [4β − 2] c2 +
4

3
β −

(
1− δ2

))
−

β

3

[
2c32 + 6c22 + 4c2

]
[2c2 + 2] > 0 (7.22)

For player 1, it can be shown that the derivative of the RHS of the inequality (7.18)
is given by

β

3


(c21+(2−δ)c1+1−δ)(6c21+6(2−δ)c1+(2−δ)

2)
(c21+(2−δ)c1+1−δ)

2 −
(2c31+3(2−δ)c21+(2−δ)

2c1)(2c1+2−δ)

(c21+(2−δ)c1+1−δ)
2


−1

It can be shown that the above expression is strictly positive if and only if the
following inequality is satisfied.(
c21 + (2− δ) c1 + 1− δ

)(
[2β − 1] c21 + [2β (2− δ)− (2− δ)] c1 +

β

3
(2− δ)2 − (1− δ)

)
−

β

3

[
2c31 + 3 (2− δ) c21 + (2− δ)2 c1

]
[2c1 + (2− δ)] > 0 (7.23)

For player 3, it can be shown that the derivative of the RHS of the inequality (7.20)
is given by

β

3


(c23+(2+δ)c3+1+δ)(6c23+6(2+δ)c3+(2+δ)

2)
(c23+(2+δ)c3+1+δ)

2 −
((2c33+3(2+δ)c23+(2+δ)

2c3))(2c3+2+δ)

(c23+(2+δ)c3+1+δ)
2
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−1

It can be shown that the above expression is strictly positive if and only if the
following inequality is satisfied.

(
c23 + (2 + δ) c3 + 1 + δ

)(
[2β − 1] c23 + [2β (2 + δ)− (2 + δ)] c3 +

β

3
(2 + δ)2 − (1 + δ)

)
−

β

3

[
2c33 + 3 (2 + δ) c23 + (2 + δ)2 c3

]
[2c3 + (2 + δ)] > 0 (7.24)

Since ci ∈ (0, ei] and β > 3
2 , it can be shown that the coeffi cients of the terms in c

n
2 ,

cn1 and c
n
3 (where n = 0, 1, 2, 3, 4) on the LHS of inequalities (7.22), (7.23) and (7.24)

respecitively, which are polynomials of order 4, are strictly positive. Therefore, the RHS
of (7.16), (7.18) and (7.20) are strictly increasing in ci.�

Proof of Proposition 1 : From Lemma 1, we know that the RHS of (7.16), (7.18)
and (7.20) are strictly increasing in ci for players 2,1, and 3 respectively, and therefore,
fixing c−i at e−i, no ci ∈ (0, ei) can be part of a SPNE. Now, β > 3

2 also ensures that
inequalities (7.17), (7.19) and (7.21) are satisfied and, therefore, deviations by choosing
ci = 0 are not profitable for all i. Moreover, at ci = ei, (7.16), (7.18) and (7.20) are
satisfied with equality. Hence, ci = ei is part of the proposed SPNE of the game under
the PC allocation. �

7.3. Appendix A3

7.3.1. Proof of Proposition 2 (PCR)

Our aim is to show that s = ((e1, a1(e)), (e2, a2(e)), (e3, a3(e))) is a SPNE of the game,
where function a(e) = (a1(e), a2(e), a3(e)) satisfies the PCR allocation if

β ≥
{

3
2 if δ ≤

1
2

1 + δ otherwise

}
.

As in the proof of proposition 1, we divide inequality (7.15) into two cases; (i) ci = 0
and (ii) ci > 0. Then, (7.15) can be rewritten as

qi(e)β [ei + ej + ek] ≥ qi(0,e−i)β [ej + ek] + ei

if ci = 0, and (7.25)

[
β
qi(e)

ci(e)
− 1

]
ei ≥

[
β
qi(ci,e−i)
ci(ci,e−i)

− 1

]
ci

if ci > 0. (7.26)
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In the latter case, for endowment tuple e, we denote qi(e)
ci(e)

by R (e) and qi(ci,e−i)
ci(ci,e−i)

by

Ri (ci, e−i).50

Note that under the GM, under the PCR allocation, for a given arbitrary contribu-

tion tuple c, qi (c) = 1
3

[
ci
ei

ci
ei
+
cj
ej

+
ci
ei

ci
ei
+
ck
ek

]
. Thus, for each i, we have qi(e) = 1

3 and

qi (ci, e−i) =
1

3

[
ci
ei

ci
ei

+ 1
+

ci
ei

ci
ei

+ 1

]

=
2

3

[
ci

ci + ei

]
It can be shown that the qi (ci, e−i) function above under the PCR satisfies the

following.51

(I) Strict Monotonicity over all pairs (ci, e−i): qi(e) > qi(ci,e−i) for all i and (ci, e−i)
such that ci 6= ei.

(II) Maximum punishment for zero effort: qi(0,e−i) = 0 for all i.
We first consider inequality (7.26), which can be rewritten as follows

[βRi (e)− 1] ei ≥ [βRi (ci, e−i)− 1] ci or

β (Ri (e) ei −Ri (ci, e−i) ci) ≥ ei − ci (7.27)

Now, assumption (I) ensures that (Ri (e) ei −Ri (ci, e−i) ci) > 0. This is because

(Ri (e) ei −Ri (ci, e−i) ci) > 0 iff

Ri (e)

Ri (ci, e−i)
>
ci
ei
iff

qi(e) [ei + ej + ek] > qi(ci,e−i) [ci + ej + ek] (which holds by (I))

Inequality (7.27) implies a lower bound on β for the case where ci > 0, as follows.

β ≥ ei − ci
Ri (e) ei −Ri (ci, e−i) ci

(7.28)

The above inequality will be used in proof of proposition 2 for the case where ci > 0.

50Note that a similar approach was employed in DFL.
51 Incidentally, the allocation under PC also satisfies these properties.
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Proof of Proposition 2We first consider the case where ci > 0. Thus, we can use
inequality(7.28) directly. In order to do this, we first compute the following expressions.

Ri (e) =

−
s

3ei

where
−
s = ei + ej + ek

Ri (ci, e−i) =

2
3

[
ci

ci+ei

]
ci

ci+
−
s−ei

=

2
3

[
ci +

−
s − ei

]
ci + ei

Hence,

Ri (e) ei =

−
s

3

and

Ri (ci, e−i) ci =
2

3
ci

[
ci +

−
s − ei

ci + ei

]
Therefore, (7.28) becomes

β ≥
3
(
e2i − c2i

)
−2c2i − ci

−
s +

−
sei + 2ciei

Using (3.7) and letting ε = 1, we have the following bounds for for case where ci > 0,
for each player.

For player 2,

β ≥
3
(
1− c22

)
−2c22 − 3c2 + 3 + 2c2

=

3 (1 + c2)

2c2 + 3

As the RHS of the above inequality is increasing in c2, we set c2 = e2 to obtain

β ≥ 6

5
(7.29)
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For player 3,

β ≥
3
(

(1− δ)2 − c23
)

−2c23 − 3c3 + 3(1− δ) + 2c3(1− δ)
=

3 (1− δ + c3)

2c3 + 3

As the RHS of the above inequality is increasing in c3, we set c3 = e3 to obtain

β ≥ 6 (1− δ)
5− 2δ

(7.30)

The RHS of the above is decreasing in δ.
For player 1,

β ≥
3
(

(1 + δ)2 − c21
)

−2c21 − 3c1 + 3(1 + δ) + 2c1(1 + δ)
=

3 (1 + δ + c1)

2c1 + 3

Suppose δ = 1
2 , then we obtain

β ≥ 3

2

Suppose δ < 1
2 . Then, the RHS of the inequality is increasing in c1, we set c1 = e1 to

obtain

β ≥ 6 (1 + δ)

2(1 + δ) + 3

The RHS of the above is increasing in δ.
Suppose δ > 1

2 . Then, the RHS of the inequality is decreasing in c1, we set c1 → 0
to obtain

β ≥ lim
c1→0

3 (1 + δ + c1)

2c1 + 3
=

3 (1 + δ)

3
= 1 + δ

The RHS of the above is increasing in δ. We therefore conclude that the lower bound
for player 1 of

β ≥
{

3
2 if δ ≤

1
2

1 + δ otherwise

}
(7.31)

will ensure that the LHS is greater or equal to the RHS for all values of δ. (as noted in
Remark 1 after equation (3.6), we do consider bounds below 3

2 in all of our results as
for these values, a zero effort SPNE always exists). We also observe from inequalities
(7.29), (7.30) and (7.31) that the maximum lower bounds of all the three players is
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given by inequality (7.31), that is, only the bound of player 1(the rich player). Hence,
in order to ensure that no player deviates at the proposed SPNE, we need to impose
inequality (7.31) for the case where ci > 0.

For the case where ci = 0, using inequality (7.25), it can be shown that β ≥ 1 for
player 3, β ≥ 1−δ for player 2 and β ≥ 1+δ for player 1 are suffi cient for the inequality
to hold for the respective players. But the latter conditions are implied by the bounds
given in (7.31). This completes the proof.�

7.4. Appendix A4

7.4.1. Proof of Proposition 3 (MPCR)

Our aim is to show that s = ((e1, a1(e)), (e2, a2(e)), (e3, a3(e))) is a SPNE of the game,
where function a(e) = (a1(e), a2(e), a3(e)) satisfies the MPCR allocation if

β ≥
{

3
2 if δ ≤

1
2

1

( 2γ3 +
1−γ
1+δ )

if δ > 1
2

}

For a given arbitrary contribution tuple c, the allocation share of player j to player i,
aji as follows

aji = γaPCji + (1− γ) aPCRji

= γ

(
ci

ci + ck

)
+ (1− γ)

ci
ei

ci
ei

+ ck
ek

if both ci + ck > 0 and
ci
ei

+
ck
ek

> 0 hold.
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It can be shown that the above is a well-defined allocation in the GM. It can also
be shown that for a given arbitrary contribution tuple c, the resultant share of player i
will be given by

qi(c) = γqPCi + (1− γ) qPCRi

=
γ

3

[(
ci

ci + cj

)
+

(
ci

ci + ck

)]
+

(1− γ)

3

[
ci
ei

ci
ei

+
cj
ej

+

ci
ei

ci
ei

+ ck
ek

]
52As before, we assume that each of the two terms in the expression takes value 1

2
if its denominator

is equal to zero.
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It suffi ces to show that inequality (7.15) holds for all ci. The following definitions
will help in establishing the proof of the proposition.

Let β [ei + ej + ek] ≡ Ui (e) and β [ci + ej + ek] ≡ Ui(ci,e−i). Moreover, let
ei − ci ≡ 4ci , qi(e)− qi(ci,e−i) ≡ 4q (ci) and Ui (e)− Ui(ci,e−i) ≡ 4U (ci). Then,

inequality (7.15) becomes

(qi(ci,e−i) +4q (ci)) (Ui(ci, e−i) +4U (ci)) ≥

qi(ci,e−i)Ui(ci, e−i) +4ci
which reduces to

β4ciqi(ci,e−i) +4q (ci)Ui(ci, e−i) + β4q (ci)4ci ≥ 4ci (7.32)

We will show the inequality holds for player 1 (the rich player).54

We first establish the lower bounds on β for the case where γ = 0.
Using (3.7) and with the assumption that ε = 1, it can be shown that for player 1

4qPCR1 =
1

3

(
4c1

c1 + 1 + δ

)
Then, the above inequality becomes

2β

3

(
c14c1

c1 + 1 + δ

)
+
β

3

(
4c1 [c1 + 2− δ]
c1 + 1 + δ

)
+
β

3

(
4c1.4c1
c1 + 1 + δ

)
≥ 4c1

which reduces to

β

3

[(
2c1

c1 + 1 + δ

)
+

(
[c1 + 2− δ]
c1 + 1 + δ

)
+

(
4c1

c1 + 1 + δ

)]
≥ 1

β

3
≥ c1 + 1 + δ

2 + 3c1 − δ + 1 + δ − c1
Simplifying, we have

β

3
≥ c1 + 1 + δ

3 + 2c1
(7.33)

This leads to the exact same inequality as what was found in the proof of proposition
2, that is, (7.31) and hence, we have the following bound.

β ≥
{

3
2 if δ ≤

1
2

1 + δ otherwise

}
53As before, we obtain that each of the two terms in the expression takes value 1

2
if its denominator

is equal to zero.
54The same can be established for players 2 and 3 using similar steps.
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We next consider the case where γ = 1 for which we have

q1(e) =
1

3

(
1 + δ

2 + δ
+

1 + δ

2

)
and

4qPC1 =
1

3

(
1 + δ

2 + δ
− c1

(c1 + 1)
+

1 + δ

2
− c1

(c1 + 1− δ)

)
Simplifying, we have

4qPC1 =
1

3

(
4c1

(c1 + 1) (2 + δ)
+

(1− δ)4c1
2 (c1 + 1− δ)

)
Inequality (7.32) becomes

β

3

 ( c1
c1+1

+ c1
c1+1−δ

)
+ (c1 + 2− δ)

(
1

(c1+1)(2+δ)
+ (1−δ)

2(c1+1+δ)

)
+

4c1
(

1
(c1+1)(2+δ)

+ (1−δ)
2(c1+1+δ)

)  ≥ 1,

which reduces to
β

3

[
c1 + 3

2+δ

c1 + 1
+
c1 + 3(1−δ)

2

c1 + 1− δ

]
≥ 1

Let K ≡ 3
2+δ and L ≡

3(1−δ)
2 . Then, after simplifying, the above inequality becomes

β

3
≥ c21 + (2− δ) c1 + 1− δ

2c21 + (2− δ +K + L) c1 + L+K(1− δ) (7.34)

Multiplying by the denominator on both sides, we have quadratic expressions on
both sides on the inequality. We can therefore make the RHS 0. Then, we claim that
β > 3

2 is a suffi cient condition for the coeffi cient terms in c
n
1 (where n = 0, 1, 2) of the

reduced LHS of the inequality to be positive. For the term in c21, this conclusion is
straightforward. For the constant term, we need to show that

β

3
(L+K(1− δ)) ≥ 1− δ

The above simplifies to
β

2
≥ 2 + δ

4 + δ

which is satisfied by β > 3
2 . We next turn to the term in c1 which leads to the

following inequality.
β

3
(2− δ +K + L) ≥ (2− δ)
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The above can be simplified to the following

β

3
≥ 8− 2δ2

−5δ2 − 3δ + 20

which is satisfied by β > 3
2 .

Now that we have inequalities (7.33) and (7.34) for the extreme cases where γ = 0
and γ = 1, we can establish the bounds for the mixed proportional allocation, that is,

when qi = γqPCi + (1− γ) qPCRi . Let A = 3(c1+1+δ)
3+2c1

and B =
3(c21+(2−δ)c1+1−δ)

2c21+(2−δ+K+L)c1+L+K(1−δ)
from inequalities (7.33) and (7.34) respectively. Then, by the previous argument for
γ = 0, we know that A is bounded above by 3

2 if δ ≤
1
2 and by 1 + δ otherwise. We also

know by the inequalities for the case where γ = 1, that B is bounded above by 3
2 .

55

Then, on the one hand, from the above arguments, we have the following two in-
equalities.

γ
1

B
β ≥ γ

and
(1− γ)

1

A
β ≥ 1− γ

which can be combined to the following inequality.

γ
1

B
β + (1− γ)

1

A
β ≥ 1 (7.35)

On the other hand, inequality (7.32) becomes

γ
(
β4ciqPCi (ci,e−i) +4qPC (ci)Ui(ci, e−i) + β4qPC (ci)4ci

)
+ (1− γ)

(
β4ciqPCRi (ci,e−i) +4qPCR (ci)Ui(ci, e−i) + β4qPCR (ci)4ci

)
≥ 4ci

The above simplifies to

γ
1

B
β + (1− γ)

1

A
β ≥ 1,

which is nothing but inquality (7.35).
Hence, the bound for the mixed allocation becomes

β ≥ 1

inf
c1

(
γ
B + 1−γ

A

)
≥ 1(

inf
c1

γ
B + inf

c1

1−γ
A

)
55 In fact these bounds are the respective supremums of A and B over e1.
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=
1(

2γ
3 + 1−γ

1+δ

) if δ > 1

2
(7.36)

If δ ≤ 1
2 , the bound is

3
2 . Now taking the derivative of the RHS of (7.36) with respect

to γ, we have

dRHS

dγ
= −

 1(
2γ
3 + 1−γ

1+δ

)
2(2

3
− 1

1 + δ

)
if δ >

1

2

Since 2
3 −

1
1+δ ≥ 0, the sign of the above is negative and hence, we get a negative

relationship between γ (the weight assigned to the PC) and the lowest beta needed to
support full effort as SPNE. This completes the proof.�
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Online Appendix C 

Table C1: OLS regressions on tokens contributed (rounds 1-5) 

 (1) (2) (3) 

 Full Sample High Inequality Low Inequality 

GM2.2 0.261 0.645 0.00706 

 (0.322) (0.503) (0.373) 

    

GM1.8 0.495 -0.0382 0.810 

 (0.482) (0.509) (0.686) 

    

GM1.6 0.102 0.314 -0.0744 

 (0.245) (0.307) (0.382) 

    

GM1.2 0.507 0.810 0.0692 

 (0.600) (0.847) (0.841) 

    

High Inequality -0.184   

 (0.303)   

    

ZUFE -0.499† -0.446 -0.472 

 (0.287) (0.376) (0.421) 

    

Age 0.128 0.181† 0.0968 

 (0.0772) (0.0970) (0.118) 

    

Female -0.00683 -0.400 0.357 

 (0.189) (0.248) (0.248) 

    

Economics 0.195 0.214 0.129 

 (0.175) (0.212) (0.257) 

    

Constant -0.255 -1.411 0.232 

 (1.543) (1.847) (2.316) 

Observations 1620 810 810 

R2 0.021 0.044 0.037 

Linear Restriction Tests (p-values) 

GM2.2 vs GM1.8 

GM2.2 vs GM1.6 

GM2.2 vs GM1.2 

GM1.8 vs GM1.6 

GM1.8 vs GM1.2 

GM1.6 vs GM1.2 

0.654 

0.605 

0.706 

0.403 

0.987 

0.502 

0.230 

0.477 

0.866 

0.439 

0.392 

0.543 

0.301 

0.833 

0.942 

0.237 

0.482 

0.871 
Notes: The dependent variable is number of tokens contributed. Only data from rounds 1-5 are included. The 

omitted treatment category is Control. Standard errors, in parentheses, are clustered by session (36 clusters in 

Regression (1); 18 in Regressions (2) and (3)).  
†
 p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001 

 



Table C2: OLS regressions on tokens contributed in Control treatments (rounds 6-15) 

 (1) (2) (3) (4) 

 All All Round 6 Round 15 

High Inequality -0.346  -0.976* -0.258 

 (0.284)  (0.403) (0.458) 

     

ZUFE 0.351  -0.0849 0.202 

 (0.323)  (0.496) (0.421) 

     

Age 0.0871  0.103 0.0848 

 (0.0851)  (0.156) (0.113) 

     

Female -0.149  -0.249 0.348 

 (0.427)  (0.702) (0.449) 

     

Economics -0.132  0.136 0.308 

 (0.434)  (0.804) (0.305) 

     

Period  -0.123**   

  (0.028)   

     

Constant 0.290 3.139*** 1.202 -0.713 

 (1.605) (0.319) (2.991) (2.167) 

Observations 720 720 72 72 
R2 0.022 0.036 0.049 0.037 

Notes: The dependent variable is number of tokens contributed. Only data from Control treatments 

and rounds 6-15 are included. Standard errors, in parentheses, are clustered by session (8 clusters).    
† p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001 



Table C3: OLS regressions on tokens contributed in GM treatments (rounds 6-15) 

 (1) (2) (3) (4) (5) (6) (7) (8) 

 𝛽 = 2.2,  

δ = 0.75 

𝛽 = 1.8, 

δ = 0.75 

𝛽 = 1.6, 

δ = 0.75 

𝛽 = 1.2, 

δ = 0.75 

𝛽 = 2.2,  

δ = 0.5 

𝛽 = 1.8, 

δ = 0.5 

𝛽 = 1.6, 

δ = 0.5 

𝛽 = 1.2, 

δ = 0.5 

Period 0.409* 0.303 0.021 -0.081 0.380** 0.381* 0.300* -0.081 

 (0.087) (0.126) (0.064) (0.070) (0.063) (0.096) (0.032) (0.029) 

         

         

Constant 2.001 1.043 3.441* 4.216† 1.909† 2.493 1.266† 4.001† 

 (0.996) (0.905) (0.663) (1.451) (0.620) (1.402) (0.401) (1.110) 

Observations 270 270 360 360 360 360 270 270 

R2 0.075 0.055 0.001 0.005 0.133 0.113 0.128 0.010 

Notes: The dependent variable is the number of tokens contributed. Only data from the GM 

treatments and rounds 6-15 are included. Each model includes data only from one treatment, as 

indicated at the top of the table. Standard errors, in parentheses, are clustered by session (3 clusters 

in Regressions (1), (2), (7) and (8); 4 in Regressions (3), (4), (5) and (6)). † p < 0.1, * p < 0.05, ** p < 0.01, 
*** p < 0.001 

 



Table C4: OLS regressions on tokens contributed (rounds 6-15) 

 (1) (2) (3) (4) 

 GM2.2 GM1.8 GM1.6 GM1.2 

High Inequality 0.465 -2.475* -0.693 0.277 

 (0.676) (0.742) (0.377) (1.266) 

     

ZUFE -0.290 -0.707 -0.662† 0.415 

 (0.682) (0.486) (0.282) (1.025) 

     

Age -0.0400 0.0427 0.234 0.0380 

 (0.0814) (0.148) (0.142) (0.195) 

     

Female -0.382 -0.763 -1.209** -0.173 

 (0.328) (0.726) (0.317) (0.294) 

     

Economics -0.181 0.646 0.821* -0.106 

 (0.524) (0.536) (0.240) (0.426) 

     

Constant 7.167** 6.313 0.509 2.244 

 (1.615) (3.394) (2.879) (3.534) 

Observations 630 630 630 630 

R2 0.008 0.111 0.093 0.009 
Notes: The dependent variable is number of tokens contributed. Only data from GM treatments and rounds 6-15 

are included. Regression (1) includes data only from sessions with β=2.2; Regression (2) includes data only 

from sessions with β=1.8; Regression (3) includes data only from sessions with β=1.6; Regression (4) includes 

data only from sessions with β=1.2. Standard errors, in parentheses, are clustered by session (7 clusters in each 

model).  
†
 p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001 

 

Table C5: OLS regressions on Contribution Ratios and Contributions in Control Treatments -

analysis of player type 

 Contribution Ratios Contribution Levels  

 (1) 
All Control 

(2) 
HI 

(3) 
LI 

(1) 
All Control 

(2) 
HI 

(3) 
LI 

 

Middle -0.0547 
(0.034) 

-0.1000 
(0.0634) 

-0.00937 
(0.0216) 

1.137*** 
(0.155) 

1.200* 
(0.284) 

1.075** 
(0.171) 

 

Rich -0.110* 
(0.0352) 

-0.152↑ 
(0.0511) 

-0.0687 
(0.0450) 

1.675** 
(0.333) 

1.875* 
(0.512) 

1.475↑ 
(0.479) 

 

Constant 0.310*** 
(0.0291) 

0.333* 
(0.0583) 

0.287*** 
(0.0143) 

0.908*** 
(0.109) 

0.667* 
(0.117) 

1.150*** 
(0.0571) 

 

Obs 720 360 360 720 360 360  

𝑅2 0.031 0.059 0.014 0.138 0.201 0.096  

        

Notes: Only data from the Control treatments and rounds 6-15 are included. The omitted player type 

is Poor. Standard errors, in parentheses, are clustered by session (8 clusters in Regression (1); 4 in 

Regressions (2) and (3)). ↑ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001 

  



Table C6: OLS regressions on contribution ratios in GM treatments – analysis of player type 

 (1) (2) (3) (4) (5) (6) (7) (8) 

 𝛽 = 2.2,  

δ = 0.75 

𝛽 = 1.8, 

δ = 0.75 

𝛽 = 1.6, 

δ = 0.75 

𝛽 = 1.2, 

δ = 0.75 

𝛽 = 2.2,  

δ = 0.5 

𝛽 = 1.8, 

δ = 0.5 

𝛽 = 1.6, 

δ = 0.5 

𝛽 = 1.2, 

δ = 0.5 

Middle -0.161 -0.275* -0.379** -0.395* -0.109† -0.0781* -0.172** -0.257* 

 (0.0611) (0.0361) (0.0323) (0.113) (0.0397) (0.0243) (0.0164) (0.0507) 

         

Rich -0.207* -0.413* -0.485*** -0.552** -0.190† -0.103† -0.248* -0.375* 

 (0.0217) (0.0566) (0.0360) (0.0794) (0.0666) (0.0392) (0.0463) (0.0725) 

         

Constant 0.961*** 0.861** 0.867*** 0.875*** 0.869*** 0.890*** 0.733** 0.667* 

 (0.0223) (0.0712) (0.0426) (0.0663) (0.0384) (0.0456) (0.0653) (0.144) 

Observations 270 270 360 360 360 360 270 270 

R2 0.129 0.232 0.420 0.344 0.084 0.033 0.148 0.235 

Notes: The dependent variable is the contribution ratio. Only data from the GM treatments and 

rounds 6-15 are included. Each model includes data only from one treatment, as indicated at the top 

of the table. The omitted player type is Poor. Standard errors, in parentheses, are clustered by session 

(3 clusters in Regressions (1), (2), (7) and (8); 4 in Regressions (3), (4), (5) and (6)). We note that in the 

regressions with only 3 clusters, an F-statistic cannot be estimated. † p < 0.1, * p < 0.05, ** p < 0.01, *** 

p < 0.001 



Table C7: OLS regressions on tokens contributed in GM treatments – analysis of player type 

 (1) (2) (3) (4) (5) (6) (7) (8) 

 𝛽 = 2.2,  

δ = 0.75 
𝛽 = 1.8, 

δ = 0.75 
𝛽 = 1.6, 

δ = 0.75 
𝛽 = 1.2, 

δ = 0.75 
𝛽 = 2.2,  

δ = 0.5 
𝛽 = 1.8, 

δ = 0.5 
𝛽 = 1.6, 

δ = 0.5 
𝛽 = 1.2, 

δ = 0.5 

Middle 4.478** 2.967† 2.167*** 2.092 2.600** 2.933*** 1.556** 0.611 

 (0.359) (0.704) (0.0874) (1.117) (0.426) (0.171) (0.137) (0.359) 

         

Rich 8.633** 4.556 3.608* 2.767 4.675* 5.883** 2.889** 0.833 

 (0.476) (1.612) (0.678) (1.354) (0.987) (0.642) (0.195) (0.770) 

         

Constant 1.922*** 1.722** 1.733*** 1.750*** 3.475*** 3.558*** 2.933** 2.667* 

 (0.0446) (0.142) (0.0852) (0.133) (0.153) (0.182) (0.261) (0.577) 

Observations 270 270 360 360 360 360 270 270 

R2 0.676 0.258 0.289 0.129 0.409 0.541 0.240 0.022 

Notes: The dependent variable is tokens contributed. Only data from the GM treatments and rounds 

6-15 are included. Each model includes data only from one treatment, as indicated at the top of the 

table. The omitted player type is Poor. Standard errors, in parentheses, are clustered by session (3 

clusters in Regressions (1), (2), (7) and (8); 4 in Regressions (3), (4), (5) and (6)). We note that in the 

regressions with only 3 clusters, an F-statistic cannot be estimated.  † p < 0.1, * p < 0.05, ** p < 0.01, *** 

p < 0.001 

 



Table C8: OLS regressions on allocation to player j 

 (1) (2) (3) (4) (5) (6) 

 High 

Inequality 

Low 

Inequality 

GM2.2 GM1.8 GM1.6 GM1.2 

𝑒𝑗 (𝑒𝑗 + 𝑒𝑘)⁄  0.358*** 0.304*** 0.265** 0.321* 0.331*** 0.414** 

 (0.0470) (0.0415) (0.0536) (0.100) (0.0407) (0.0904) 

       

(𝑒𝑗 𝑓𝑗)/ (𝑒𝑗 𝑓𝑗⁄ + 𝑒𝑘 𝑓𝑘)⁄⁄  0.574*** 0.698*** 0.668*** 0.679** 0.661*** 0.506** 

 (0.0710) (0.0539) (0.0798) (0.136) (0.0530) (0.123) 

       

GM1.8 -0.0588** 0.00503     

 (0.0178) (0.0165)     

       

GM1.6 -0.0491* 0.0215     

 (0.0183) (0.0133)     

       

GM1.2 -0.0309† 0.00471     

 (0.0163) (0.0149)     

       

ZUFE -

0.000962 

-0.0181 0.0165 -0.0440† -0.0206 -

0.000131 

 (0.0114) (0.0130) (0.0159) (0.0215) (0.0215) (0.0134) 

       

Age 0.00838† -

0.000963 

-

0.00675† 

0.00936 0.0104 0.00710 

 (0.00455) (0.00283) (0.00338) (0.00551) (0.00850) (0.00436) 

       

Female 0.0397* 0.00167 0.0153 0.0263† 0.0165 0.0255 

 (0.0134) (0.0108) (0.0187) (0.0128) (0.0196) (0.0251) 

       

Economics -0.0173 0.0220 0.00341 0.0116 0.00861 -0.0218 

 (0.0129) (0.0141) (0.0151) (0.0131) (0.0299) (0.0199) 

       

High Inequality   0.0372 -0.0107 -0.0143 0.0283† 

   (0.0204) (0.0198) (0.0100) (0.0141) 

       

Constant -0.0693 0.0283 0.163† -0.170 -0.174 -0.0760 

 (0.0952) (0.0539) (0.0705) (0.112) (0.166) (0.0728) 

Observations 1260 1260 630 630 630 630 

R2 0.618 0.637 0.441 0.586 0.624 0.704 
Notes: The dependent variable is the share of player i’s combined allocation going to player j (the disadvantaged 

player). Data from GM treatments, rounds 6-15, are included; Regression (1) contains only data from High 

Inequality sessions; Regression (2) contains only data from Low Inequality sessions; Regression (3) contains 

only data from sessions with β=2.2; Regression (4) contains only data from sessions with β=1.8; Model (5) 

contains only data from sessions with β=1.6; Regression (6) contains only data from sessions with β=1.2. The 

omitted treatment category is GM2.2. Standard errors, in parentheses, are clustered by session (14 clusters in 

regressions (1) and (2); 7 clusters in other regressions).  
†
 p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001 
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