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Abstract

Large scale, computationally expensive simulation models pose a particular challenge when it
comes to estimating their parameters from empirical data. Most simulation models do not possess
closed form expressions for their likelihood function, requiring the use of simulation-based inference,
such as simulated method of moments, indirect inference or approximate Bayesian computation.
However, given the high computational requirements of large-scale models, it is often difficult to
run these estimation methods, as they require more simulated runs that can feasibly be carried out.
This paper aims to address the problem by providing a full Bayesian estimation framework where
the true but intractable likelihood function of the simulation model is replaced by one generated
by a surrogate model. This is provided by a sparse variational Gaussian process, chosen for its
desirable convergence and consistency properties. The effectiveness of the approach is tested using
both a Monte Carlo analysis on a known data generating process, and an empirical application in
which the free parameters of a computationally demanding agent-based model are estimated on US
macroeconomic data.

JEL classification: C14, C15, C52, C63.

Keywords: Bayesian estimation, surrogate methods, Gaussian process, simulation models.

1 Introduction

The increasing availability of computing power has led over time to simulation methods becoming part

of the standard toolbox of researchers. Gilbert and Troitzsch (2005) argue that the appeal of these

methods within the social sciences, including economics, lie in their enabling a better understanding

and formalisation of the non-linearities or emergent phenomena pervasive in social structures. Another

motivation is that they allow scenario analysis or simulated experiments to be carried out, conditional

on the simulations being a valid representation of the phenomenon of interest. However, establishing

this precondition, a process called model validation, is challenging for social science simulations, and par-

ticularly for agent-based models (ABMs), which typically simulate the interactions of individual agents.

Fagiolo et al. (2007) put this down to the methodological challenges generated by the bottom-up design

and emergent properties of ABMs, and their resulting lack of close-form solutions for the evolution of

observable variables. Additional challenges include the heterogeneity of practices in their design and

conceptual disagreements around how best to validate ABMs.
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This paper proposes a Bayesian estimation framework for simulation models that is specifically de-

signed to be tractable on the most computationally demanding models. This will include a demonstration

on the Caiani et al. (2016) model, an ABM known for being computationally expensive. The motivation

for this focus on ABM validation is that if an estimation methodology works for the hardest models, then

it not only allows these specific models to be brought to the data more effectively, but it also improves

the state-of-the-art in general. As a result, it is important to emphasise that despite this apparently nar-

row focus, the method proposed here can have broader application to a wide range of simulation-based

models.

Gouriéroux and Monfort (1993, 1996) provide an early overview of simulation-based inference methods,

while Fagiolo et al. (2019) review how those approaches have been used, and improved on, over last

decade to estimate the parameters of these types of models. Existing methodologies tend to fall into

two categories, moment-based and likelihood-based. Both can be considered special cases of the more

general indirect inference framework (Gouriéroux et al., 1993; Smith, 1993), differing in the metric chosen

for the distance between empirical and simulated auxiliary parameters.1 Historically, the first method

implemented on ABMs is the method of simulated moments (MSM), in Gilli and Winker (2003), which

was extended by the simulated minimum distance (SMD) method of Grazzini and Richiardi (2015).

Likelihood-based methods involve simulated likelihood, see Kukacka and Barunik (2017) for a recent

application, and Bayesian estimation approaches such as Grazzini et al. (2017); Delli Gatti and Grazzini

(2020). In the last three cases, kernel density estimation (KDE) is used to obtain a non-parametric

estimate of the likelihood function from the model simulations.

Lamperti et al. (2018) make the point that these estimation methods have so far been restricted to

relatively simple ABMs, precisely because of the computational cost of running the simulations required

to generate either the simulated moments or non-parametric estimates of the likelihood function. Grazzini

et al. (2017), whose contribution to Bayesian estimation of simulation models will be discussed further

below, consider for instance the computational costs of simulating the data as part of their estimation

framework. Their conclusion is that even in the simplest of case of a 1-parameter model, simulation of

the model can represent 50% of the overall computational time, with the share increasing sharply with

model complexity.

At this point, it is important to provide some working definitions of what will be considered a large-

scale model for the purposes of the paper. A first aspect is that it is assumed that there is a limit to

the number simulation runs that can be performed, similar to the concept of limited compute budget

of Lamperti et al. (2018). This budget can be spent on multiple simulations of the same calibration,

as part of a Monte Carlo analysis of model outputs, or on a set of different calibrations, as part of a

sensitivity analysis. The rule of thumb used here is that the compute budget allows for 1000 runs, enough

to establish the MC frequencies of a model’s observables for a typical scenario analysis.2 The second

aspect is the parameter dimensionality of the model, as one should expect a correlation between compute

time and number of parameters in the simulation model: a model with a richer set of mechanisms, each

requiring dedicated parameters, will typically be computationally more expensive. Furthermore, the curse

of dimensionality implies that a higher dimensional parameter space will dilute away this limited compute

budget, complicating the exploration of the parameter space. Finally, a high parameter dimensionality

will also complicate sampling from the posterior distribution using Bayesian methods such as MCMC,

where the threshold for high dimensionality is surprisingly low. Gelman et al. (1997) show that the

1See Smith (2016) for a very clear discussion on the three variants of indirect inference based on the choice of metric.
The Wald metric is used for moment-based methods, while simulated likelihood methods are linked to the likelihood ratio
metric. In fact, the surrogate likelihood method proposed here can also be considered as a form of indirect inference, where
the auxiliary model estimated from the simulated data is the GP regression model.

2The rationale here is that if a simulation model is so computationally demanding that it is not even possible to establish
its statistical properties for a single calibration, then its usefulness is limited.
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optimal asymptotic acceptance rate of the random walk Metropolis-Hastings algorithm with respect to

the dimensionality of the target distribution is 0.234, however Gelman et al. (1996) show that even in the

well-behaved case of a multivariate Gaussian target distribution, this asymptotic behaviour is essentially

reached for as few as 6 dimensions.

The strategy proposed in the paper is to generate a surrogate likelihood function for the model, based

on Gaussian process (GP) regression, using the limited number of runs in the compute budget to generate

training data that spans the parameter space. The use of a surrogate model, or meta-model, to reduce

the computational burden of simulation models is not novel in itself. Lamperti et al. (2018), previously

mentioned, specifically investigate the use of surrogate models in facilitating ABM calibration. Salle

and Yıldızoğlu (2014), Bargigli et al. (2020) and Chen and Desiderio (2022) lie closer to the proposed

strategy, all using GP regression to generate a surrogate for an ABM. In these cases, however, the GP

surrogate aims to predict simulated moments given a set of model parameters, which can then be used

in an MSM estimation. The key efficiency improvement on these approaches, discussed further below,

is that by including lagged values of the model variables in the GP regression inputs, one obtains a

one-step-ahead predictor of the model outputs themselves. This improves performance by increasing the

amount of effective simulation data available for training the surrogate, as well as providing a functional

form that can directly be used to generate a surrogate likelihood.

The proposed approach is most closely related to two contributions in the literature. First is the

Bayesian estimation framework Grazzini et al. (2017) and Delli Gatti and Grazzini (2020), who use KDE

to generate a non-parametric likelihood function from the simulated data. They key departure here lies

in choosing a different non-parametric framework for the surrogate likelihood, in order to increase the

efficiency of the methodology with respect to the number of simulations required. The second contribution

is Platt (2021), who instead generate the surrogate likelihood using a neural network trained on the

simulated data. As will be discussed below, this is closest to the methodology proposed here, due to the

universal approximation property of neural networks that is shared with GPs.

The remainder of the paper is organised as follows. Section 2 first presents the variational GP

regression framework used to generate the surrogate likelihood, section 3 then explains how it integrates

within the wider Bayesian estimation framework for simulation models. Section 4 presents the two

applications used to test and illustrate the methodology and section 5 concludes.

2 Gaussian process regression and surrogate likelihood

2.1 A one-step-ahead multivariate GP surrogate: setup and notation

The proposed estimation framework requires two distinct Bayesian estimations, the first for estimating the

parameters of the GP regression surrogate from the simulated training data, the second for estimating

the parameters of the simulation model from the empirical data. Each step will have a prior and a

posterior, and because of the risk of confusion this creates, the notation and terminology first needs to

be made very clear. An additional concern is that most of the literature on the theoretical properties

of GP regression focuses on univariate prediction, while large-scale simulation models will typically be

estimated on multivariate data. In general, the notation will follow the GP regression literature wherever

possible, in order to facilitate presentation of the theoretical results, but is adapted to deal both with the

multivariate nature of the problem as well as the embedding of the GP regression into a wider Bayesian

estimation framework.3 The former involves vectorising over the observable variables and adopting a

block-diagonal structure for the covariance matrices, allowing the multivariate GP to be cast as a (larger)

univariate process. This makes it straightforward to show that both the derivations of the quantities of

3Specifically, the aim is to be consistent with Hensman et al. (2015), Seeger et al. (2008), and Burt et al. (2019).
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interest and the properties of the resulting GP regression in the univariate case extend to the multivariate

case. To address the second problem, and limit the potential for confusion between the two Bayesian

estimation stages, variables and parameters used during the empirical estimation step will be labelled

with a superscript ∗.
There are M empirical observable variables, which will be modelled with V latent GP variables,

that where necessary will be indexed respectively using a subscript m and v. There are T time series

observations for each variable, indexed with subscript t. The simulated data will be generated using S

samples θs from the parameter space Θ. Lower case bold letters x,y,u, etc. indicate vectors, assumed

to be column vectors unless explicitly stated otherwise, while uppercase bold letters A,B,Σ, etc. refer

to matrices. K will specifically refer to the variance-covariance matrix produced by a kernel function,

and superscripts attached to kernel matrixes, e.g. Kx,x, will refer to the set of inputs entering the

kernel function. Braces are used to refer to the full set of vectors or matrices attached to observable

and latent variables, e.g. {Av} = {A1,A2, . . . ,AV } is the set of all Av matrices attached to the latent

variables. Two vectorisation operations are required to convert these sets into single objects. The first

is the standard vectorisation operation which stacks multiple column vectors into a single vector, the

second constructs a block diagonal matrix from a set of matrices, with 0 being an appropriately sized

null matrix. 

vec({fv}) =
[
fT1 fT2 . . . fTV

]T

bdiag({Av}) =


A1 0 . . . 0

0 A2 . . . 0
...

...
. . .

...

0 0 . . . AV


(1)

With these preliminaries out of the way, let Y∗ be a T ×M matrix of empirical data and let Y =

{Y1,Y2, . . . ,YS} be a set of S simulated T ×M real-valued matrices, each obtained by simulating the

model for T periods using a row vector of dΘ parameters θs ∈ Θ.4 The values in the columns of Ys and

Y∗ are assumed to be centred. Let θ∗ be a vector of simulation model parameters to be estimated from

the empirical data Y∗ using Bayesian methods. Then, ignoring the marginal data density p(Y∗), the

object of interest is the posterior density of the model parameters given the data:

p(θ∗ | Y∗) ∝ p(Y∗ | θ∗)p(θ∗) (2)

The prior probability for the parameter vector, p(θ∗) is known by definition. Using the chain rule for

probabilities, the likelihood term p(Y∗ | θ∗) can be decomposed into a product of individual densities:

p(Y∗ | θ∗) =
∏
t

p(Y∗t | Ω∗t−1,θ
∗) (3)

Where Ω∗t = {Y∗t ,Y∗t−1, . . .Y
∗
1} is the information set at t. Taking logs gives us the log-likelihood,

which is the sum of the individual log-likelihood contributions of each observation in the dataset:

ln p(Y∗ | θ∗) =
∑
t

ln p(Y∗t | Ω∗t−1,θ
∗) (4)

The key challenge facing simulation models is obtaining a predictive density for observation Y∗t given

knowledge of the previous observations Ω∗t−1 and the model parameters θ∗. As a first simplification we

restrict the information set to be Ω∗t = Yt, i.e. we only consider a one-step-ahead prediction, in order to

4It is assumed as a simplification that both the simulated and empirical data have T time-series observations, however
in general different time-series length can be used for the simulated data relative to the empirical data.
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lower the dimensionality of the surrogate model.5 The second simplification is to approximate the true

likelihood (4) with one produced by a surrogate model:

ln p(Y∗ | θ∗) ≈ ln p̂(Y∗ | θ∗) =
∑
t

ln p(Y∗t | Y∗t−1,θ
∗,Y,θ,φ) (5)

Where p(Y∗t | Y∗t−1,θ
∗,Y,θ,φ) is the one-step-ahead density for observation Y∗t , conditional on

Y∗t−1 and θ∗ obtained from a surrogate model with internal parameters φ that has been optimised on a

simulated training set Y obtained with parameter samples θ. An important notational comment is that

because any predictive density always depends on Y,θ and φ, in line with the GP regression literature,

explicit mention of these conditioning variables is dropped. Instead, p̂ is used to indicate the use of a

surrogate model conditioned on these variables. In order to further simplify the notation and ensure

consistency with the GP literature, we transform the conditioning variables Y,Y∗,θ,θ∗ into two sets of

inputs X,X∗. Assuming that 1T−1 is a T − 1 length column vector of ones, letting Ys be the simulated

observations generated by the model using parameter setting θs and letting L be the first-order lag

operator, the training inputs X are given by the following block matrix:

X =


LY1 1T−1θ1

LY2 1T−1θ2

...
...

LYS 1T−1θS

 (6)

This results in an N × d matrix of training inputs, with N = S(T − 1) training observations and

d = M + dΘ dimensions. Similarly, given the empirical dataset Y∗ and a candidate parametrisation θ∗,

the set of inputs used for evaluation is obtained as follows:

X∗ = [LY∗ 1T−1θ
∗] (7)

Where necessary, xi, xj , . . . and x∗i , x
∗
j , . . . and will denote individual rows of X and X∗ respectively,

i.e. individual observations, and X denotes the d-dimensional input space from which xi and x∗i are

drawn. It is also convenient to define y = vec(Y \ y1) and y∗ = vec(Y∗ \ y∗1) as the vectorisations of the

simulated and empirical data matrices, with the first row removed to account for the time lag.

The input data structures (6) and (7) make explicit that the unit of observation used in the likelihood

(5) is the Y∗t−1 → Y∗t transition and clarify the role of the GP as a one-step ahead surrogate predictor for

the simulation model. During the training phase, the GP parameters φ are optimised to obtain the best

fit of the GP predictions to the simulated data Ys,t given the inputs x, i.e. the lagged observations Ys,t−1

and parameter settings θs. Once the GP surrogate has been trained, it can be used in the second stage

to approximate the predictive density of the simulation model for Y∗t+1 given an empirical observation

Y∗t and a parameter vector θ∗. The additional benefit of this input structure is that it maximises the

amount of simulated data available for the GP surrogate, as all simulated observations provide a training

data point, barring the T lost by taking a time lag. This is an improvement over those existing analyses

that use the GP to provide a surrogate for simulated moments, and must therefore average the simulated

data Ys over the T dimension in order to obtain the simulated moments for θs.

In order to handle the multivariate nature of the surrogate as well as help reduce the computational

burden of the GP, we use a Linear Model of Coregionalization (LMC) to generate predictions for M

observable variables based on V latent variables, using a M × V weights matrix B. Each of the V latent

variables will be modelled using a standard univariate GP.6 Given f = vec({fv}), a N -length column

5In principle, any number of lags can be included, however this will increase the dimensionality of the input space. This
trade-off is discussed further in section 3.1

6See Alvarez et al. (2012). Because there will typically be V < M latent variables, this has the additional advantage of
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vector of predictions from V latent variables fv and B̃ = B ⊗ IN , the vectorised representation of the

LCM on the training data (X, y) is given by:

y = f̃ + ε, ε ∼ N (0,Σ2) (8)

The measurement error on each variable m is assumed to be I.I.D. Gaussian with standard deviation

σm and uncorrelated across variables, so that the variance of the vectorised error term ε is given by

Σ2 = bdiag
(
{σ2

mIN}
)
. In general, assuming a set of arbitrary gaussian distributions fv ∼ N (µv,Ωv)

for the V latent predictions, the distribution of the LCM prediction is f̃ ∼ N (µ̃, Ω̃), with the mean and

variance given by the following expressions, where µ = vec({µv}), Ω = bdiag ({Ωv}), and B̃ = B⊗ IN : µ̃ = B̃µ

Ω̃ = B̃ΩB̃T =
∑

v

(
BvB

T
v ⊗Ωv

) (9)

The second equality for the prediction variance Ω̃ corresponds to the more traditional LCM rep-

resentation provided in Alvarez et al. (2012), and will be useful for proving that existing results on

the consistency of univariate GPs readily extend to the multivariate setting. As a result of this, the

conditional distribution of the target data y given the predictions from the LCM f̃ is simply:

p(y | f̃) = N (y | µ̃ , Σ2) (10)

Each latent prediction component fv is given by a GP and follows a multivariate Gaussian distribution:

fv ∼ N (0,Kx,x
v ), [Kx,x

v ]i,j = Kv(xi, xj) (11)

Where Kv(., .) is a kernel function used for modelling the covariance of the vth latent variable. The

proposed methodology uses the following squared exponential kernel, also know in the literature as the

radial basis function (RBF) kernel, where `v is the kernel length scale specific to each latent variable:

Kv(xi, xj) = exp

(
−‖xi − xj‖

2

`2v

)
(12)

A key feature of the LCM is that in addition to extending GP regression from a univariate to a

multivariate setting, the combination of V different kernels, each capturing correlations in the training

data at different length scales `v, enable flexible modelling of the underlying data-generating process.

This set of length scales {`v} will play an important role in the discussion of the properties of the GP

surrogate in section 2.2. With Kx,x = bdiag ({Kx,x
v }), the mean and variance of the LCM predictions on

the training data X are: {
µ̃ = 0

K̃x,x = B̃Kx,xB̃T
(13)

It is important to clarify here that the while the LCM kernel, which produces K̃x,x, is constructed

as a linear combination of RBF kernels (12), it nevertheless is a valid kernel.7 Given these elements, the

likelihood of the evidence for the LCM model is given by:

p̂(y) =

∫
p(y | f̃)p(f̃)df = N

(
y | 0, K̃x,x + Σ2

)
(14)

reducing the overall number of parameters to estimate, at the cost of introducing an extra hyperparameter, i.e. the number
of latent variables to use. The choice of hyperparameter is discussed in section 3.1.

7This is because both re-scaled kernels and sums of kernels are themselves valid kernels, as explained for instance in
Rasmussen and Williams (2006).
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Marginalising out the vectorised GP latents f results in the following log-likelihood for the training

data:

ln p̂(y) = −NM
2

ln(2π)− 1

2
yT
(
K̃x,x + Σ2

)−1

y − 1

2
ln |K̃x,x + Σ2| (15)

The log-likelihood of the evidence (15) is a function of the LCM and latent GP parameters φ =

{B, `v, σm}, which implies that optimal values for φ can be obtained by maximisation. A key property

of this expression is that it can be interpreted as a penalised regression, as maximising (15) with respect

to the GP parameters φ is equivalent to minimising a combination of the squared deviation of the GP

prediction (0 in this case) from the data and a log-determinant penalisation term enforcing smoothness

of the GP prediction.8 This auto-regularisation property forms a crucial motivation for choosing GP

regression as the basis for the surrogate likelihood, and is discussed further in section 2.2.

Once the optimal GP parameters φ have been obtained from the training data, the LCM surrogate

can be used to make predictions f̃∗ for previously unseen inputs X∗. The GP nature of the surrogate

implies that these predictions and the training data jointly follow a multivariate gaussian:

p(y, f̃∗) = N
([

y

f̃∗

] ∣∣∣∣∣ 0,

[
K̃x,x + Σ2 K̃x,x∗

K̃x∗,x K̃x∗,x∗

])
(16)

The distribution the predictions conditional on the training data p(f̃∗ | y) = N
(
f̃∗ | µ̃∗, Ω̃∗

)
can be

obtained using Schur’s complement, with the prediction mean and variance functions given by:
µ̃∗ = K̃x∗,x

(
K̃x,x + Σ2

)−1

y

Ω̃∗ = K̃x∗,x∗ − K̃x∗,x
(
K̃x,x + Σ2

)−1

K̃x,x∗
(17)

The LCM with GP latent variables outlined above possesses key properties, discussed below, that

make it desirable for the computationally constrained setting. It also has the drawback that given N

training observations, the covariance matrix K̃x,x +Σ2 is N ×N . Because the matrix inversions required

to obtain the GP parameters φ from the likelihood (15) and make predictions (17) from the evaluation

inputs X∗ are O(N3), exact GP regression infeasible for large N . Section 2.3 will present the variational

approximation approach used to get around this problem.

2.2 Theoretical properties of the multivariate GP surrogate

The machine learning literature contains a range of existing results on the theoretical properties of GPs,

and the purpose of this section is to discuss how these motivate the choice of GP regression as the basis

of the surrogate. One additional result that is provided is an extension of the convergence result of Seeger

et al. (2008) from univariate GP regression to the multivariate LCM (9).

The main motivation for this choice is the universal approximation property of GP regression. In

broad terms, this means that the mean function of the GP (9) can approximate arbitrarily well any given

continuous function within a bounded interval. This property is clearly desirable in our setting, where the

quality of the surrogate model’s prediction will be a concern. This property stems from the fact that GP

regression is a kernel method, which means that before presenting the results of interest it is important

to expand on those theoretical properties of kernels that are relevant to universal approximation.9

8In fact, Bishop (2006, sections 3.1.4 and 6.4) shows using the duality of the Gram matrix that GP regression is equivalent
to ridge regression when the kernel is linear, i.e. K(xi, xj) = xTi xj .

9The discussion in this section only covers those concepts required for the properties of interest, for a more complete
discussion of the properties of kernels in the context of GP regression see chapter 6 of Rasmussen and Williams (2006) or
Kanagawa et al. (2018).
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Mercer’s theorem establishes that a positive semi-definite kernel such as (12) possesses an eigenfunction

expansion:

K(xi, xj) =

∞∑
h=0

λhψh(xi)ψh(xj) (18)

Where λ0 ≥ λ1 ≥ λ2 ≥ · · · ≥ 0 are the eigenvalues associated to a set of orthogonal eigenfunctions

ψh(.). This implies that the variance-covariance matrices produced by evaluating the kernel (11) on the

N input observations in X can be written as:

Kx,x = lim
H→∞

Ψx
HΛH(Ψx

H)T (19)

Ψx
H is an N ×H matrix where the columns are the values produced by the hth eigenfunction on the

N data points and ΛH is an H ×H diagonal matrix containing the corresponding eigenvalues λh. The

kernel is assumed to be a Hilbert-Schmidt operator, therefore
∑
h λ

2
h <∞, ensuring convergence of (19).

Let H be the Hilbert space of all functions f defined as linear combinations of these eigenfunctions using

weights fh:

f(x) =
∑
h

fhλ
1
2

hψh(x) (20)

Given a second function g similarly defined as g(x) =
∑
h ghλ

1
2

hψh(x), the inner product of this Hilbert

space is defined as 〈f, g〉H =
∑
h fhgh. From this it is possible to see thatHmeets the two criteria required

of a reproducing kernel Hilbert space (RKHS):
〈K(., xi),K(., xj)〉H =

∑
h

λ
1
2

hψh(xi)λ
1
2

hψh(xj) = K(xi, xj)

〈f(.),K(., xi)〉H =
∑
h

fhλ
1
2

hψh(xi) = f(xi)
(21)

The functions f ∈ H are linear combinations of the orthogonal basis formed by the eigenfunctions,

subject to ‖f‖2H = 〈f, f〉H <∞, i.e. the Hilbert norm of the function f being finite. The relevance of the

RKHS to this discussion is that the predicted mean function of a GP regression µ(x∗i ) on an unseen data

point x∗i , such as (17), is a linear combinations of the eigenfunctions (20) and is therefore in the RKHS.

This property underpins both consistency and convergence of GP regression.

Let Z be a compact subset of X and C(Z) be the space of continuous functions over Z. Given

f0 ∈ C(Z) the first important question that the universal approximation property aims to address is

whether there exists a function f ∈ H that approximates f0 arbitrarily well, i.e. ‖f − f0‖∞ < ε. This was

answered in the affirmative by Micchelli et al. (2006), who prove that this property holds for certain types

of kernels, referred to as universal kernels, and in fact that H = C(Z) for universal kernels. With regards

to the methodology proposed here, Wynne et al. (2021) first show that a closed bounded interval Z ⊆ Rd

meets the conditions required for GP regression to be consistent. Second, theorem 17 of Micchelli et al.

(2006) proves that the RBF kernel (12) is universal, and theorem 12 of Caponnetto et al. (2008) proves

that a multivariate kernel of the form M×K(xi, xj) is universal if and only if K is itself universal and

M is positive definite. For the LCM model (9), M = BvB
T
v , therefore the resulting LCM kernel, which

forms the basis of the surrogate model, possesses the universal approximation property on a bounded

subset of Rd.
The next consideration is convergence, i.e. whether the mean GP prediction (17) in fact converges

to the true data-generating function f0 as the size of training data set X increases. A wide range of

asymptotic consistency results in the literature establish that this is the case, for example Choi and
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Schervish (2007); Shi and Choi (2011). Recent work by Koepernik and Pfaff (2021) on the extension

of the consistency results of GP regression to non-Euclidian domains providing a very good overview of

existing results for the Euclidian case, which this works falls under. For the case analysed here, Le Gratiet

and Garnier (2015) prove almost sure convergence for Mercer Kernels (18) that are non-degenerate, i.e.

λh > 0, and have bounded features ‖ψh(x)‖∞ <∞.

However, given the chosen setting of computational constrained large-scale simulation models with

a potentially low number of parameter space samples, the bigger concern is the convergence rate of the

surrogate predictions to the true process. In addition, because exploration of the parameter space will

be carried out using a pseudo-random design of experiment, it is desirable to have some guarantees that

the surrogate prediction is not too sensitive to the potentially sparse realisations of the design. Seeger

et al. (2008) argue that in such a setting, the concept of interest is information consistency, where one

examines the asymptotic behaviour of the expected Kullback-Leibler divergence from the surrogate to

the noise distribution (10).10 The following bound is obtained using the standard formula for the KL

divergence between two Gaussians:11

DKL

[
p(y | f̃) ‖ p̂(y)

]
≤ 1

2
µ̃T
(
K̃x,x + Σ2

)−1

µ̃+
1

2
ln
|K̃x,x + Σ2|
|Σ2| (22)

As discussed above, the mean predictions of the GP regression µ̃ are in the RKHS H̃ of the LCM

kernel corresponding to K̃x,x + Σ2. The reproducing property means that the first term is simply the

Hilbert norm of the prediction, ‖µ̃‖2H̃, and is therefore bounded. The second term, known as the regret,

is equal up to an additive constant to the penalisation term in the log-likelihood (15):

R =
1

2
ln
∣∣IMN + Σ−2K̃x,x

∣∣ (23)

With ν(x) the distribution of the input data, the GP prediction is informationally consistent if

N−1Eν(x)

[
DKL

[
p(y | f̃) ‖ p̂(y)

]]
→ 0 as N → ∞, i.e. the expected KL divergence (22) per train-

ing draw from X goes to zero as the size of the training set increases. Crucially, because the first term is

bounded ‖µ̃‖2H̃ < ∞, it vanishes asymptotically and the scaling behaviour of the regret term (23) alone

controls the information consistency of GP regression. Several results have established an upper bound

on the growth of the regret term of O(lnN)d+1 for univariate GP regression with a d-dimensional training

space X , including Lemma 1 of Seeger et al. (2008). Proposition 1, below, shows that this bound on

expected regret Eν(x)[R] extends in a straightforward way to the multivariate LCM case.

Proposition: The expected regret of the LCM (23) has the following upper bound, where v∗ indicates

the latent GP variable possessing the largest regret:

Eν(x)

[
ln
∣∣IMN + Σ−2K̃x,x

∣∣] < MV

∞∑
h=0

ln
(
1 + V b2v∗,m∗σ−2

m∗λv∗,hN
)

Proof: This is provided in appendix A.

Corollary: Let the dataset observations x be distributed with a density ν(x) = N (0, 4a2Id) for a

constant a. Then the expected regret of the LCM (23) with RBF kernels (12) on X is O((logN)d+1).

This is immediate from the fact that the bound on the LCM from the main proposition is the same,

up to some multiplicative constants, as the one in Seeger et al. (2008) for the case of a single RBF kernel

10The literature on GP regression consistency is divided between work that uses an integrated mean square error (IMSE)
loss, such as the previously cited Choi and Schervish (2007); Shi and Choi (2011); Le Gratiet and Garnier (2015); Koepernik
and Pfaff (2021), and works that use the Kullback-Leibler loss, such as Seeger et al. (2008); Burt et al. (2019). The two
approaches can in fact be reconciled, see Van Der Vaart and Van Zanten (2011).

11This is expressed as an inequality as it ignores an additional term containing the trace of
(
K̃x,x + Σ2

)−1
Σ2. This

trace is strictly negative given that K̃x,x is positive definite.
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function. Assuming the same distribution for the inputs, the LCM regret with RBF kernels will therefore

will scale with N at the same rate as the regret of an single RBF kernel. A point to note is that as one

would expect, the regret of the LCM kernel (23) will be larger than the single kernel case examined in

Seeger et al. (2008), due to the fact that V copies of the worst-performing kernel enter the regret term,

which itself is multiplied by MV . Nevertheless, given that V and M are fixed for any given problem,

the scaling behaviour with respect to the number of training observations N will be the same as that of

a single RBF kernel. A key practical implication, discussed in section 3.1, is that the convergence of the

LCM learning curve will therefore tend to be determined by the regret of the kernel associated with the

smallest length scale `v∗ . Intuitively, if the output variable y changes rapidly over small ranges of X , a

small length scale will be required to accurately capture this, and for a given amount of training data

N randomly spread over X the prediction error will be larger than that of a smoother model, where the

inputs can be captured with larger length scales.

In addition to ensuring consistency and uniform convergence, the uniform approximation property also

enables a comparison with the neural network approach of Platt (2021), mentioned in the introduction.

The key justification provided by Platt (2021) for using neural networks as a surrogate is that they also

possess the universal approximation property, as proven by Hornik et al. (1989). This similarity is not

accidental, as a key result by Neal (1996) establishes that a GP can be considered as an infinitely wide

neural network.12 Specifically, this result establishes that assuming a zero-mean gaussian prior for the

network parameters, a single hidden layer neural network will converge under Bayesian learning to a GP as

the number of hidden units goes to infinity. This lines up with the RKHS representation of a GP discussed

above, where any smooth function can be approximated arbitrarily well by an infinite weighted sum over

kernel eigenfunctions. However, even if using a single layer neural network is functionally equivalent

to using a GP in terms of the flexibility of the approximation, Neal (1996) points out an important

practical difference between the methodologies in terms of over-fitting. The width of a neural network

is a hyperparameter that needs to be carefully optimised as part of the design of the network, precisely

to avoid over-fitting the training data, whereas as explained in section 2.1, the likelihood (15) used to

optimise the GP parameters is self-regularising, which limits over-fitting.13 What is lost in the trade-off

when choosing a GP regression rather than a neural network is the extra flexibility available from using

multiple hidden layers in a deep network, for instance being able to model discontinuities.14 However,

given the nature of the setting assumed here, that of a computational constraint on the generation of

training data, the design choice is to prefer a simpler, auto-regularising model that generalises well from

potentially limited training data.

Finally, there are some additional properties that are worth mentioning. First, similar to Grazzini

et al. (2017) and Platt (2021), the methodology is designed to minimise the computationally expensive

runs of the simulation model: the two-step design of the methodology fixes the computational budget for

the simulation model ex-ante, in line with Lamperti et al. (2018), and the resulting surrogate model can

be re-used when estimating the simulation model parameters on different empirical datasets. Another

desirable feature is the analytical tractability of GPs, specifically that the Gaussian form of the predictions

ensures differentiability of the resulting surrogate likelihood. This specific aspect, which will be covered

further in section 2.4, facilitates maximisation of, and sampling from, the posterior through the use

of gradient-based methods. Last of all, is the computational tractability of the method. While it is

12This argument is referenced for instance in chapter 6.4 of Bishop (2006), the preface of Rasmussen and Williams (2006)
and the introduction of Burt et al. (2019)

13This over-fitting problem also occurs to some extend with KDE methods, where the bandwidth of the KDE is also a
parameter that needs to be set with the aim of avoiding over-fitting. Optimal bandwidth selection rules are known to exist,
however.

14This trade-off can be alleviated using deep GP regression which essentially builds a network of GP layers, combining
the benefits of both approaches. This is beyond scope of this paper, but details can be found in Damianou and Lawrence
(2013).
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not feasible to obtain exact GP predictions (17) for large N , due to the O(N3) nature of the matrix

operations required, variational inference can be used to obtain very close approximations to the exact

GP predictions that scale much more favourably with N .

2.3 Scaling up: a variational approximation to the LCM

In order to reduce the computational cost of learning the GP surrogate parameters and performing

predictions on the empirical data, we use the sparse variational approach of Titsias (2009) and Hensman

et al. (2015). In this approach a small number additional observations, known as inducing points, are

introduced to augment the training observations. In terms of notation, these inducing points correspond

to a set of inputs {Zv}, known as inducing locations, which generate model predictions {uv}, known as

inducing values. Importantly, {Zv} and {uv} are not known ex ante, instead are additional parameters

of the GP that need to be estimated during the training stage.

The joint distribution of the training predictions fv and inducing values uv associated with a given

latent variable is now given by the following multivariate gaussian:

p(fv,uv) = N
([

fv

uv

] ∣∣∣∣∣ 0,

[
Kx,x
v Kx,z

v

Kz,x
v Kz,z

v

])
(24)

Increasing the number of observations at the training stage might appear to go against the aim of

reducing the computational complexity, however the block construction of the joint variance-covariance

matrix means that Shur’s complement can again be used to provide the latent predictions fv conditional

on the inducing values uv:

p(fv | uv) = N (fv | Avuv, Kx,x
v −Qx,x

v ) (25)

With: {
Av = Kx,z

v (Kz,z
v )
−1

Qx,x
v = Kx,z

v (Kz,z
v )
−1

Kz,x
v

(26)

The key gain in computational terms is that obtaining the conditional distribution for fv now only

requires inverting Kz,z
v , which by design is much smaller than Kx,x

v . The marginal distribution of the

inducing values, which serves as the GP prior on the values themselves is simply:

p(uv) = N (uv | 0,Kz,z
v ) (27)

The conditional (25) and prior distributions (27) for each latent variable v are assumed to be in-

dependent of each other, which means that the equivalent joint distributions for the vectorised values

f = vec({fv}) and u = vec({uv}) can be expressed as follows:{
p(f | u) = N (f | Au, Kx,x −Qx,x)

p(u) = N (u | 0,Kz,z)
(28)

Where A = bdiag ({Av}), Kx,x = bdiag ({Kx,x
v }) and Qx,x = bdiag ({Qx,x

v }). Together with the

conditional distribution of the training targets (10), one can define the joint distribution of f , u and y

as follows.

p(f ,u,y) = p(y | f)p(f | u)p(u) (29)

As pointed out by Titsias (2009), the problem at this stage is that because of the block structure of
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the multivariate gaussian (24), if one attempts to marginalise away the inducing values u to obtain a

likelihood containing f alone, as was done for (14), one obtains a marginal density which does not depend

on the inducing locations Zv (via the kernel matrices Kx,z
v and Kz,z

v ). This means that one cannot

directly maximise the marginal likelihood with respect to Z and u. Instead, the true joint distribution

(29) is approximated by a variational distribution that, when marginalised, is still a function of Z and

u. Specifically, this joint variational distribution q(f ,u) is obtained by combining (25) with a prior

distribution on u, with prior mean m = vec({mv}) and covariance S = bdiag({Sv}).

q(f ,u) = p(f | u)q(u), q(u) = N (u |m,S) (30)

The variational prior q(u) depends on an additional set of parameters {mv,Sv}, which need to be

estimated on the training data, on top of the inducing locations Zv. This is done by ensuring that (30)

approximates the following true posterior probability of the model predictions and inducing variables

given the training data:

p(f ,u | y) = p(f | u,y)p(u | y) (31)

Comparing (30) and (31), one can see that q(f ,u) ≈ p(f ,u | y) when p(f | u) ≈ p(f | u,y) and

q(u) ≈ p(u | y). As pointed out in Titsias (2009), this happens when the inducing points defined

by {Z,u} are sufficient statistics for the full set of training observations {X,y}, and conditioning on

y in addition to u brings no additional information. This observation also encapsulates the intuition

behind sparse variational GP regression, which is to reduce the computational burden of training a

standard gaussian process on {X,y} by instead learning a much smaller set of sufficient statistics which

parametrise the variational distribution used to approximate the full GP.

Formally, the objective is to minimise the Kullback-Leibler divergence from q(f ,u) to p(f ,u | y).

DKL

[
q(f ,u) ‖ p(f ,u | y)

]
= −

∫
u

∫
f

ln
p(f ,u | y)

q(f ,u)
q(f ,u) df du (32)

Rearranging this expression provides the evidence lower bound (ELBO), which is the standard objec-

tive function used in the variational GP literature.

L(φ) =

∫
u

∫
f

ln
p(f ,u,y)

q(f ,u)
q(f ,u) df du = ln p(y)−DKL

[
q(f ,u) ‖ p(f ,u | y)

]
(33)

Given that the log of the evidence ln p(y) does not depend on the variational parameters φ, maximising

the ELBO (33) is equivalent to minimising the KL divergence (32). In addition, because the KL divergence

is strictly non-negative, maximising the (33) involves maximising a lower bound on the evidence ln p(y).

Assuming that the variational distribution q(f ,u) successfully approximates (31), the KL divergence will

tend to zero, and maximising L(φ) becomes equivalent to maximising the evidence of the exact GP

(15). A more tractable expression for L(φ) can be obtained by evaluating the integral in (33), thus

marginalising out the model predictions on the training data f and the inducing values u.15

L(φ) = lnN (y | B̃Am,Σ2)− 1

2
tr
(
Σ−1B̃ΨB̃TΣ−1

)
−DKL

[
q(u) ‖ p(u)

]
(34)

Where Ψ is the variational variance-covariance matrix of the vectorised latent variables f :

Ψ = ASAT + Kx,x −Qx,x (35)

The ELBO L(φ) is a function of the variational GP’s parameters φ = {Z,m,S,B, `,σ}, and can

15This derivation is provided in appendix B.1 for the case of the LCM.
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therfore be optimised with gradient search. A key attraction of this formulation, pointed out by Hens-

man et al. (2015), is that it can be done stochastically using random sub-samples of the training data

{X,y}, therefore further improving tractability. The consistency and convergence of this variational

approximation is proven by Burt et al. (2019, 2020) by extending the analysis of Seeger et al. (2008).

They show that for the RBF kernel, as long as the number of inducing variables scales as O((logN)d),

the average KL divergence of the variational approximation, N−1DKL

[
q(u) ‖ p(u)

]
, converges to zero

and E [L(φ)] → E [ln p(y)] This confirms that as long as enough inducing locations are used, the use of

a variational approximation instead of an exact GP does not affect the informational consistency of the

methodology.

2.4 GP prediction and surrogate likelihood

Once the GP has been trained on the simulated data, i.e. the variational GP parameters φ have been

obtained, the GP prediction for unseen input X∗ can be obtained using the variational distribution of f .

This is obtained by marginalising the inducing values u out of the joint variational distribution (30).16

q(f) = N (f | Am,Ψ) (36)

Given the AR(1) time series structure assumed for the surrogate likelihood (5) and the fact that

the predictions are already conditioned on lagged observations (7), the contribution of each (yt−1,yt)

transition should enter the likelihood independently. As a result, only the main diagonal of the variance-

covariance matrix Ψ is required to obtain the variational density of the LCM predictions f∗.

q(f̃∗) = N
(
f̃∗ | µ̃, Ψ̃

)
(37)

Where given diag(Ψ), a diagonal matrix containing the main diagonal of Ψ, the mean and variance-

covariance are: {
µ̃ = B̃Am

Ψ̃ = B̃× diag(Ψ)B̃T
(38)

Given (37) the surrogate likelihood of the empirical y∗ data using the LCM is:

p̂(y∗ | θ∗) =

∫
p(y∗ | f̃∗)q(f̃∗)df∗ = N

(
y∗ | µ̃, Ψ̃ + Σ2

)
(39)

As explained in section 2.2, a key benefit of the approach is that it is straightforward to derive the

gradient of the surrogate likelihood with respect to the underlying simulation model parameters θ∗.

Because these form part of the inputs X∗ used in the GP prediction, they only enter the surrogate

likelihood (39) through the RBF kernel (12) used to compute Kx∗,z
v .

∂Kx∗,z
v

∂θ∗i
=

(Zi − θ∗i ) (1d)
T

`2v
�Kx∗,z

v (40)

The gradient of the surrogate likelihood (39) can be obtained by applying the chain rule on the

standard derivative of a Gaussian likelihood:

16Details are provided in appendix B.2.
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∂ ln p̂(y | θ∗)
∂θ∗i

= −1

2
tr

((
Ψ̃ + Σ2

)−1 ∂Ψ̃

∂θ∗i
+ (y − µ̃) (y − µ̃)

T
(
Ψ̃ + Σ2

)−1 ∂Ψ̃

∂θ∗i

(
Ψ̃ + Σ2

)−1
)

− (y − µ̃)
T
(
Ψ̃ + Σ2

)−1 ∂µ̃

∂θ∗i

(41)

The derivatives of the LCM mean and variance functions (38) are:
∂µ̃

∂θ∗i
= B̃

∂A

∂θ∗i
m

∂Ψ̃

∂θ∗i
= B̃× diag

((
∂A

∂θ∗i

)T
(S−Kz,z) A + AT (S−Kz,z)

(
∂A

∂θ∗i

))
B̃T

(42)

Given the definitions of A in (26), we finally have the following expression, which can be calculated

using (40):

∂A

∂θ∗i
= bdiag

({
∂Av

∂θ∗i

})
= bdiag

({
∂Kx∗,z

v

∂θ∗i
(Kz,z

v )
−1

})
(43)

In practical terms it is more efficient to use automatic differentiation to carry out the gradient calcu-

lations, rather than attempt implementing these derivations directly. These do establish, however, that

the gradient of the likelihood exists, is well-behaved and ultimately depends on the gradient of the kernel

matrix with respect to the parameters in its input.

3 Bayesian estimation with GP regression surrogate (BEGRS)

Having presented the structure of the GP surrogate, its theoretical properties and the variational imple-

mentation required to obtaining it for a large training set, we now turn to the practicality of embedding

it in a wider Bayesian MCMC estimation framework.

3.1 Design of experiment and GP surrogate training

The first step, which occurs prior to actually running the estimation methodology, is the generation of the

training data X from the simulation model. This needs to be planned carefully, because as established

in section 2.2, the consistency and convergence of the GP surrogate depend in part on the distributional

properties of the training data. In addition under the assumption that the simulation model is expensive

to run, the opportunity cost of running a poor design will be high.

Several key decisions have to be made at this stage, specifically the bounds required on the underlying

parameter space Θ, the choice of design used for sampling from Θ, the number of samples to pick in that

design and the length of each simulation. It is important to emphasise that the main input in making

these decisions will be the researcher’s domain knowledge of the simulation model, possibly augmented

by any exploratory sensitivity analyses carried out during the model’s development. These will help

shed light on an important factor in these decisions, which is the variability of the mean one-step ahead

behaviour of the model over Z. As discussed in section 2.2 the size of the LCM regret (23), and therefore

the convergence of the predictions, is mainly controlled by `v∗ , the smallest length scale of the V latent

RBF kernels. In practical terms, if the average one-step ahead model predictions are very sensitive to

certain parameter values, a finer sample of points will be required to obtain a reliable surrogate. This will

affect either the number of samples required, or the chosen design.17 Similarly, domain knowledge will

17For instance, in cases where a sensitivity analysis is able to identify regions of Θ where the model predictions abruptly
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generally determine the choice of the bounds
[
θ,θ

]
on Θ, required by the methodology.18 In some cases,

the bounds will be obvious from the nature of the parameter involved (such as a share, a ratio, etc.),

however the general case, determining these bounds will require knowledge of the model’s behaviour.

With regards to picking a specific design for drawing training samples θ from Θ, a large literature

already details the available options and their relative benefits, for instance Santner et al. (2018). A few

important considerations for the proposed methodology merit discussion. As emphasised by Lamperti

et al. (2018), the fact that computational costs are a factor means that any chosen design must have good

space-filling properties. A popular category in this respect is the Latin hypercube design (LHD), which

Santner et al. (2018) show typically provides very good predictive performance. Salle and Yıldızoğlu

(2014) also provide evidence that using the near orthogonal Latin hypercube (NOLH) design of Cioppa

and Lucas (2007) improves prediction accuracy of GP surrogates, due to the additional orthogonality

property of the samples. This is not necessarily applicable here: given that the inputs in the training

data (6) contain both parameter samples θ and lagged time-series data Y, X will be not orthogonal

if general, even if the parameters samples θ are. The main drawback of LHD and NOLH approaches,

however, is that the design is fixed, and additional samples cannot easily be added ex-post if the initial

simulation run is found to be insufficient. Lamperti et al. (2018) advocate instead for the use of Sobol

sequences, which can easily be extended while maintaining their space-filling properties. While both

Santner et al. (2018) and Liefvendahl and Stocki (2006) show that Sobol designs produce less precise

predictions than LHD, due to the greater range of inter-point distances, the practical difference between

the two is minimal, especially as S increases. All these considerations combine to motivate the use of a

Sobol sequence design in the applications of section 4.

In addition to picking a design, one needs to choose the number of samples S to draw from Θ and

the length of the simulated time-series T , which together determine the number of training observations

N = S(T − 1). Two aims should guide this choice, first N should be as large as possible given the

computational constraint, in order to improve the convergence of the surrogate. Second, S should also be

as large as possible, to ensure good space-filling of the training samples θ. The strategy adopted for the

applications in section 4 is therefore to pick a value of T that is in line with the number of observations

in the empirical data, and then infer S from the number of T -length simulations that can feasible be run

within the computational budget. This is where a Sobol design can be useful, as an initial design that

turns out to have insufficient samples S for the purposes of training the surrogate can be augmented

ex-post, without the original simulated data having to be discarded.

Once the simulated data Y is generated and has been combined with the parameters samples to form

the training data X (6), the next step is to pick the two main hyperparameters of the variational GP

regression framework. These are the number of latent variables V to use as the basis of the multivariate

LCM, and the number of inducing points Z to use in the variational approximation. The number of

latent variables can be chosen with the help of a principal component analysis (PCA) or a factor analysis

of the simulated data Y. A few clarifying comments are required here, however. Firstly, the structure

of the LCM prediction (8) means that Y is assumed to contain additive, variable-specific, noise on top

of the linear combination of latent predictions fv. This suggests that factor analysis, which allows for

this, might be preferable to the strict orthogonal decomposition of Y provided by PCA. In either case,

it is important to note that the loadings obtained via either approach will not, in general match the

LCM loadings B. This is because the latent variables of the LCM model are designed to capture the

correlations in the training inputs X at different length scales `v, a constraint that the latent factors

obtained via factor analysis or PCA do not possess. Therefore, these analyses should be used only to

change, it might be beneficial to pick an adaptive design that samples those regions more densely.
18As explained in section 2.2, the universal approximation property holds on a compact subset Z of the full input space
X , assumed to be Rd in our case. Because X contains Θ, picking Z ⊆ X involves picking a bounded interval for Θ.
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determine the minimal number of latent variables required to summarize the data.

Less guidance is available regarding the number of inducing points to choose. The O((logN)d) bounds

found by Burt et al. (2019, 2020) only offer a scaling guarantee, not a method of calculating the number

of inducing points required. In addition, they point out that if the d-dimensional covariates fall on a

lower-dimensional manifold embedded in X , then the scaling is driven by the dimensions of the manifold.

This is likely to be the case here, given that X contains lagged values of the simulated data Y, which

itself is assumed to be reducible to a smaller number of latent variables V . However, the variational

approximation will converge once a sufficient number of inducing points has been included, after which

adding further inducing points no longer improves performance. The practical process suggested in the

literature is therefore to run the GP regression several times, with an increasing number of inducing

points, and identify the threshold at which adding further points no longer improves the ELBO (34).
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(c) Case 1: identified parameter
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(d) Case 2: no identification

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5x

p(x)
GP likelihood, yobs = 0.5

Soft prior

BEGRS posterior

(e) Case 1: posterior identification

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5x

p(x)
GP likelihood, yobs = −3

Soft prior

BEGRS posterior

(f) Case 2: no posterior identification

Figure 1: Illustration of surrogate GP likelihood
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3.2 Minimal parameter prior, posterior estimation and identification issues

The ultimate purpose of the GP surrogate is to provide a low-cost approximation of the simulation

model’s likelihood p(y∗|θ∗), given empirical data y∗ and a candidate parameter vector θ∗, thus enabling

the use of Bayesian methods to determine the posterior p(θ∗|y∗). The availability of the gradient of the

surrogate likelihood (41) means that as long as the prior for the parameter vector θ∗ is differentiable,

one can do so using gradient-based methods. This is illustrated in the section 4 applications, where the

BFGS algorithm is used to find the posterior mode, and Hamiltonian Monte-Carlo (HMC) - specifically

the NUTS algorithm - is used to determine the posterior density.

While the specific choice of parameter prior p(θ∗) is up to the researcher, the use of a GP regression

surrogate imposes a minimal requirement. As explained previously, GP regression converges to the true

f0 in a compact subset of Z of the wider input space X , requiring in particular a set of bounds
[
θ,θ

]
for the parameter space Θ. The kernel, however, is defined over all of X , and serves as the GP’s prior

over the space of all continuous functions C(X ). This is illustrated in figure 1(a), where the GP prior

is defined over R, whereas in figure 1(b) the posterior functions only converge to the true DGP on the

bounded interval in which training data is available. Intuitively, outside of that interval, no training

data was observed and the GP prior entirely determines the GP posterior. This results in a surrogate

likelihood that is defined over all of RdΘ but trained only for values of θ ∈
[
θ,θ

]
. This property is the

reason why the parameter prior p(θ∗) in the second stage must restrict the analysis to the
[
θ,θ

]
bounds,

and will also produces an very distinctive identification failure, which is discussed further below.

In principle, a continuous uniform distribution defined over
[
θ,θ

]
is sufficient to ensure that a Bayesian

estimation produces estimates for θ∗ within those bounds. In practice, however, the discontinuity at the

boundary will create problems for gradient-based algorithms, which would defeat the purpose of having

the gradient of the likelihood. Instead, to ensure that the gradient of the prior is defined at the boundary

of the parameter space itself, we recommend using a smooth relaxation of the uniform distribution. This

can be carried out using the following double sigmoid function, where α > 0 controls the slope of the

sigmoid at the boundary:

p(θ∗) =
∏
i

1

1 + e−α(θ∗
i−θ)

1

1 + e−α(θ−θ∗
i )

(44)

The boundary slope parameter α can be chosen to make this soft minimal prior arbitrarily close

to being flat and uninformative within the bounds, and arbitrarily close to zero elsewhere. There will

nevertheless be a smooth transition across the bounds themselves, ensuring the existence of the gradient

at those locations. This generates the following log prior and log prior gradient, which can be used

alongside the log-likelihood and its gradient.
ln p(θ∗) = −

∑
i

(
ln
(

1 + e−α(θ∗
i−θ)

)
+ ln

(
1 + e−α(θ−θ∗

i )
))

∂ ln p(θ∗)

∂θ∗i
= α

(
e−α(θ∗

i−θ)

1 + e−α(θ∗
i−θ)

+
e−α(θ−θ∗

i )

1 + e−α(θ−θ∗
i )

) (45)

The reason why a well-defined gradient on the bounds is a key requirement is because of the potential

identification failure mentioned above. Figures 1(c) and (e) illustrate what happens in the well-behaved,

identified, case where an empirical observation is consistent with the range of simulated outputs pro-

duced in the training data. Even though the resulting surrogate likelihood displays two clear modes

corresponding to the most likely parameter values, it takes non-zero values outside of the bounds, due

to the GP prior dominating the GP posterior in those locations. Figures 1(d) and (f) illustrate what

happens if instead the empirical observation is out of line with the training data. In this case, any con-
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tinuous function over X (as given by the GP prior) is preferable to the GP’s surrogate prediction and

the mode of the likelihood will lie outside of the bounds
[
θ,θ

]
. In general, therefore, when there are

parameters that are not well identified, any gradient-based method will be lead to attempt searches close

to or outside of the boundaries of the parameter space. A discontinuous prior at the boundaries would

risk stalling these methods, which is not the case of the soft prior (44) which heavily penalises paths

outside of the parameter bounds, but does not forbid them. This will result in a very distinctive peak at

the parameter boundary itself, visible in figure 1(f), a signal that the surrogate likelihood is pushing the

posterior outside of the bounds while the parameter prior is keeping it inside.19

The purpose of the uninformative and minimal prior (44) is therefore simply to ensure that Bayesian

estimates of θ∗ remain inside the bounds
[
θ,θ

]
, while also ensuring that any identification failures do not

stall the BFGS and NUTS algorithms via an undefined gradient at the bounds themselves. It is entirely

possible to use a more informative prior, the only requirement, in line with the arguments above, being

that it needs to be smooth across the bounds
[
θ,θ

]
and take arbitrarily low values outside of them. An

important warning, however, is that care must be taken when integrating prior information, because the

resulting prior can easily overpower the surrogate likelihood. The surrogate will potentially be much

flatter than the true, unobserved, likelihood of the model due to the fact that the GP prediction contains

prediction error on top of the standard noise term, and in the case where the computational constraint

restricts the amount of training data available, this GP prediction error might be sizeable.

4 Applications

Two applications are provided to illustrate the surrogate estimation framework laid out above. The first

is a Monte Carlo parameter recovery exercise, demonstrating the consistency of the approach under ideal

conditions, while the second is a full estimation exercise on a large simulation model using real data. Both

estimations were carried out using the companion BEGRS toolbox developed for the methodology.20

4.1 Simulation results on known data generating process

The purpose of this initial exercise is to establish that the proposed BEGRS framework can indeed achieve

the theoretical claims outlined above, i.e. that it can produce consistent parameter estimates with a small

number of simulation runs relative to the dimensionality of the parameters space. This is done by running

a Monte Carlo exercise on the following VAR(1) specification, and attempting to recover a known matrix

of parameters B.

Xt = BXt−1 + ηt, ηt
i.i.d∼ N (0,Σ),

{
Σi,i = 1

Σi,j = ρ, i 6= j
(46)

The number of observable variables is set to M = 4, leading to 16 auto-regressive parameters to be

estimated in B. It is important to point out that only B is estimated via BEGRS, as the additive noise

is captured directly during the training of the GP regression. Instead, the level of correlation between

variables ρ forms part of the setting of the Monte Carlo exercise, by verifying that the LCM surrogate

can correctly cope with correlated additive noise.

19Of course, a likelihood gradient that points outside of the bounds might genuinely be a signal that the bounds were too
narrow. However if the problem persists upon re-running the analysis with additional training data on wider bounds, then
one can be confident of an identification problem.

20The toolbox, which is available from https://github.com/Sylvain-Barde/begrs, runs in Python and is based on the
GPytorch implementation of Gaussian processes of Gardner et al. (2018). This enables the use of GPU acceleration for the
training and likelihood calculation. This is not a requirement, as the GP surrogate can be trained and the mode of the
posterior found on a standard desktop PC. However, it is highly recommended for more time-consuming MCMC methods
such as NUTS.
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Figure 2: Stability and coverage of VAR parameterisations

Both the training and testing datasets consist of S = 1000 series of T = 200 observations each. The

difference between the two is that the S training series were each generated with a distinct Bs matrix

sampled from the 16-dimensional parameter space, while the Monte Carlo replications in the testing data

all uses the same B∗ matrix. This results in N = S(T − 1) = 199, 000 training observations.21 All the

individual Bi,j parameters are drawn from the [−0.7, 0.7] range, allowing the use of a 16-dimensional

Sobol sequence to draw training samples for the 1000 training series. Each training sample was checked

to ensure that the eigenvalues of the resulting Bs matrices lie within the unit circle.22 Figure 2 shows a

scatter plot of the eigenvalues for all 1000 resulting training samples, showing good space-filling of the

unit circle.

For the testing data, an additional stable parameterisation B∗ was drawn from further in the Sobol

sequence. This ensures that the target parameter vector for the estimation is located in between the

training samples and is therefore as distinct as possible from any of them. This is to eliminate the

possibility of the methodology appearing to perform well due to luck, should the parameterisation used

for testing lie close to one of the samples used in training. Once the testing parameters were picked, 1000

Monte Carlo series of 200 observations each were generated with random draws from ηt. Estimates of B∗

were obtained for each series using the mode of the BEGRS posterior B̂∗gp with the minimal prior (44),

as well as the standard maximum likelihood VAR estimator B̂∗ml, for purposes of comparison.

In the interest of space, the full set of results is provided in appendix C, and only a summary of the

key result is shown in table 1, confirming the theoretical discussions from the previous sections. For a

large enough number of inducing points, the bias on the BEGRS estimates B̂gp compared to the true

value, displayed in the first column, is very small, statistically insignificant and indistinguishable from

the bias of the maximum likelihood estimate B̂ml. This is in line with the GP regression consistency

arguments made above. As expected, performance degrades as the number of inducing points is reduced,

following an interesting pattern where consistency fails for entire rows of B∗ but is maintained for others,

rather than affecting all estimates. This is symptomatic of the GP surrogate being unable to provide

good predictions for the corresponding variable, suggesting that the LCM has not converged for that

variable. A final comment is that the results are comparable across varying levels of correlations ρ.
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Table 1: Summary results for the bias of BEGRS estimates of VAR parameters

Number of inducing points

Parameter 250 500 1000

B∗
1,1 0.154 0.000 −0.022 −0.020

B∗
1,2 0.113 −0.008 0.015 0.003

B∗
1,3 0.409 0.001 0.000 −0.015

B∗
1,4 −0.531 0.020 0.003 0.044

B∗
2,1 −0.496 0.000 0.039 0.056

B∗
2,2 −0.196 −0.006 0.039 0.026

B∗
2,3 0.081 0.022 −0.032 0.014

B∗
2,4 −0.065 0.007 −0.017 0.010

B∗
3,1 −0.155 0.058 −0.211∗∗∗ −0.000

B∗
3,2 −0.273 0.005 0.012 0.033

B∗
3,3 −0.068 −0.021 0.452∗∗∗ 0.004

B∗
3,4 −0.128 −0.032 −0.384∗∗∗ −0.065

B∗
4,1 −0.338 0.585∗∗∗ −0.024 0.036

B∗
4,2 −0.597 1.037∗∗∗ 0.029 0.045

B∗
4,3 0.195 −0.425∗∗∗ 0.007 −0.017

B∗
4,4 0.459 −0.360∗∗∗ −0.051 −0.044

Note: These results present the bias of the BEGRS es-
timate E[B̂∗

gp]−B∗ over 1000 Monte Carlo replications
for ρ = 0.5. Stars indicate rejection of the null that
B̂∗

gp follows the sampling distribution of the maximum

likelihood estimate B̂∗
ml, at the 10%, 5% and 1% level

respectively.

4.2 Empirical application to a large-scale ABM

The final test of the methodology is a full empirical estimation of the free parameters in the Caiani

et al. (2016) model, which offers a good practical illustration of the type of computationally constrained

setting to which it can be applied. This model was developed following the financial crisis and great

recession of 2008-2009 as a way of improving understanding of the endogenous emergence and contagion

of financial shocks in the real economy. In order to achieve this, the model combines a stock-flow consistent

approach with fully-fledged commercial and financial networks between households, banks and vertically

differentiated firms. This enables both the replication on aggregate of the deep recessions that follow

severe financial crises, as well as the analysis at a disaggregated level of the mechanisms that drive them.

The framework has been used to analyse policy scenarios such as the effect of fiscal policy design on

inequality (Caiani et al., 2019), the effect of fiscal targets in a monetary union (Caiani et al., 2018) and

the transmission of monetary policy (Schasfoort et al., 2017).

This model is also useful beyond its applications to policy scenarios, precisely because its computa-

tional requirements make it a valuable testbed for validation methodologies aimed at large-scale models,

for example the simulation model selection tool of Barde (2020). The model’s high computational re-

quirement stems from the stock-flow consistent simulation of credit and deposit networks between banks,

consumers and firms, mentioned above. As a result of this, full estimation of the model’s free parameters

from empirical data has never been carried out. Instead, the existing work using this model and its ex-

tensions has typically relied on validation strategies involving replication of stylised facts combined with

coarse-grid sensitivity analyses for a small subset of the free parameters. By contrast, we show here that

21Note that the order of magnitude for the number of training observations is in line with that of Platt (2021), who use
S = 100 and T = 1000. The flipping of the S and T dimensions compared to their analysis is explained by the aim to
maintain a reasonable density of the S parameter space samples in the face of a higher dimensionality (16 vs. 3-7).

221233 draws were required to obtain 1000 stable parametrisations, meaning that 18.9% of raw samples had to be discarded
as unstable.
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Table 2: Caiani et al. (2016) free parameter estimates

Prior Posterior estimate

Parameter Original Range Mode Mean

Bank risk aversion (C firms) ζc 3.92245 1 - 10 6.292 6.226
Bank risk aversion (K firms) ζk 21.5133 5 - 40 21.168 21.264
Profit Weight in firm inv. γ1 0.01 0.01 - 0.04 0.018 0.018
Capacity Util. Weight in firm inv. γ2 0.02 0.01 - 0.04 0.033 0.031
Cons. Firms Precautionary Deposits σ 1 0.5 - 1.5 0.860 0.863
Intensity of choice - C/K markets εCK 0.15 0.05 - 0.3 0.153 0.160
Intensity of choice - credit/deposit εcd 0.2 0.05 - 0.3 0.227 0.234
Adaptive expectation parameter λ 0.25 0.1 - 0.8 0.692 0.666
Labour turnover ratio ϑ 0.05 0.025 - 0.15 0.033 0.046
Folded normal std. dev. σ2

FN 0.0094 0.005 - 0.015 0.015 0.015
Haircut param. for defaulted firms ι 0.5 0.3 - 0.7 0.321 0.357
Unemp. threshold in wage revision ν 0.08 0.05 - 0.11 0.108 0.105

Table 3: Caiani et al. (2016) MIC goodness-of-fit analysis

L r π ∆y ∆c ∆i ∆w Aggr.

Original 949.98 2617.81 1903.02 937.05 1027.53 924.44 1554.42 10258.37
Mode 940.50 1313.51 986.31 947.59 907.70 1042.65 1171.27 7862.78
Mean 925.62 1268.94 998.51 952.18 889.40 1049.73 1172.99 7816.96

Note: The aggregate MIC score over the dataset is not the sum of the variable-level scores. This is
because there is mutual information between the variables that must be discarded in the aggregate
measurement to avoid double-counting. See Barde (2020) for further details.

the BEGRS methodology can successfully estimate all the free parameters from standard US macroeco-

nomic time-series data, using only 1000 simulation runs. As was the case in Barde (2020), the analysis

uses the Smets and Wouters (2007) data set, with T = 169 quarterly observations for the deviation of

labour hours from trend L, the real policy rate r, the rate of inflation π, and the real first log difference

of output, consumption ∆c, investment ∆i and wages ∆w.

The model has 12 free parameters that are not set from direct observation or inferred from the steady-

state constraints. These parameters and their chosen bounds are listed in table 2. The bounds on the

first 5 parameters are the ones used in the original Caiani et al. (2016) sensitivity analysis, while the

bounds on the remaining 7 parameters are set to allow reasonable variation both above and below the

value used in the original paper. In cases where the parameter is naturally bounded in [0, 1] (such as the

adaptive expectations parameter λ and the haircut parameter ι), the bounds were set some distance from

those natural bounds to avoid pathological behaviour from the simulations. The simulation data used to

train the GP surrogate was generated using S = 1000 series of T = 200 observations, each series using

a sample drawn from a 12-dimensional Sobol sequence, similar to the VAR application in the previous

section.23 The prior used in the analysis is again the minimal prior (44) on the parameter bounds, with

α = 20.

The last two columns of table 2 show two sets of BEGRS estimates: the mode of the posterior,

obtained using BFGS, and the mean of the posterior, estimated from 10,000 NUTS iterations. While

the estimates for some parameters, such as the second risk aversion, the intensities of choice or labour

turnover are close to the values used in by the original authors, others diverge clearly, like the expectation

parameter. The marginal frequencies of the NUTS iterations are shown in figures 3 and 4. These show

that estimates for several of the parameters lie very close to the boundaries of the parameter space:

23A 300 observation burn-in period was included, making each simulation run 500 observations long. The average run
time per simulation is 44 minutes, and the use of a 36-worker HPC node reduces the total run time for S = 1000 to a more
manageable 21 hours.
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the standard deviation of the folded normal σ2
FN which govern the randomness of decision-making, the

unemployment threshold in wage revision ν and to a lesser extent the haircut parameter for defaulted

firms ι. These three cases, particularly σ2
FN , very probably display the distinctive identification problem

discussed in section 3.2.
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Figure 3: NUTS samples for estimated parameters, Part 1

Given these potential identification problems, and also the relatively wide posterior distributions on

some of the parameters, one may legitimately question whether the BEGRS estimates improve on the

original calibration. Unlike the VAR application, there is no point of reference available to establish,

for instance, whether the GP surrogate has converged on the training data. In order to evaluate the

improvement in goodness of fit, we replicate the analysis of Barde (2020) and use the multivariate Markov

information criterion (MIC) for both the original calibration and the BEGRS estimates.24 The scores

24The MIC is an extension of the Akaike information criterion (AIC), in that it provides an unbiased estimate of the
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Figure 4: NUTS samples for estimated parameters, Part 2

obtained for each calibration, both at the variable and aggregate levels, are provided in table 3. These

confirm that both sets of estimates bring a large and significant improvement to the goodness-of-fit of

the model on the Smets and Wouters (2007) dataset compared to the original calibration. Barde (2020)

showed that the latter was characterised by reasonable performance on the aggregate quantities (L, ∆y,

∆c and ∆i) but a very poor fit on the aggregate prices (r, π and ∆w). Both sets of BEGRS estimates

improve the poor fit of the three price variables, at the cost of a slightly worse performance on ∆i. This

strongly suggests that the training step of the GP regression has run successfully.

cross-entropy between a model and some empirical data. Its main feature is that it can be calculated directly from the
simulated data produced by a Markov process. See Barde (2020) for further details.
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5 Conclusion

This paper outlines and tests a Bayesian estimation framework specifically aimed at computationally

demanding simulating models. This contribution is not the only estimation framework available for

simulation models, not is it claimed that is the best in all cases. However, the framework as a whole is

designed with computational constraints in mind, in order to make the best use of a potentially limited

amount of training data. Core to this are the use of a one-step ahead predictor, which leverages the

time-dimension of the simulated data to increase the number of training observations, and the use of GP

regression as the surrogate model. This choice is driven by the desirable theoretical properties of the GP

surrogate, notably the universal approximation property, proven converge with minimal assumptions on

the underlying model, and the self-regularisation property of the GP estimation, which limits overfitting

on potentially limited training data. The paper extends a pre-existing result on GP regression to show

that the method is consistent, and demonstrates the functionality of the approach by providing the first

existing empirical estimation of all the free parameters of a large-scale, computationally intensive ABM.

Several caveats of the proposed methodology do merit discussion. First, the estimation framework

detailed here does not offer a panacea: a sizeable amount of simulation data is still required, increasingly

so as the dimensionality of the parameter space dΘ grows beyond the baseline of 10-20 parameters used

here. The use of a one-step ahead GP surrogate helps to maximise the amount of training data available

from simulation runs, and the two-step nature of the approach ensures that the surrogate can be re-used

for different empirical datasets, however it does not eliminate the need for time-consuming simulation in

the first place. An important item for future research will be the exploration of the trade-off between the

parameter dimensionality of the model and the number of simulation runs required for good performance.

Second, the BEGRS framework outlined above nests two distinct Bayesian estimations, the first

estimating the GP parameters from the training data, the second using the GP surrogate to estimate the

model parameters from the empirical data. This means that in addition to the standard concerns relating

to identification of the simulation model parameters, one additionally needs to verify that the surrogate

likelihood generated by the GP is itself valid, i.e. that the first-stage estimation of the GP has converged.

The learning curve obtained by the ELBO can assist in evaluation whether this is the case, however given

the computational constraint, there may be little that can be done to improve the situation if the cause

of any detected issue is a relative lack of training data. A key recommendation, therefore, is to always

run a post-estimation goodness-of-fit test, as was done for the empirical application, to assess whether

the BEGRS estimates genuinely bring an improvement to the model fit.

Finally, a related concern is that the performance of the methodology does rest on the model satisfying

a key assumption, namely that the mean one-step-ahead prediction is a continuous function in the input

space X . Discontinuities, or even very rapid changes in the mean function will be captured in the GP

surrogate via the use of a kernel with a very short length scale `v. Because the convergence of the GP

surrogate varies inversely with the shortest length scale used, the presence of such discontinuities will

degrade the performance of the surrogate for any fixed amount of training data, or equivalently impose a

higher training data requirement in order to achieve a given performance. This reinforces the point made

above that domain knowledge of the simulation model is an important input in the process.
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A Proof for the bound on LCM regret

The main lemma used in Seeger et al. (2008) to derive the bound on the regret term requires that the kernel

possess an eigenexpansion (18) and the eigenvalues have a finite Hilbert-Schmidt norm,
∑
h λh <∞.

Lemma 1 (from Seeger et al., 2008): Let K be a kernel possessing an eigenexpansion (18) and

Kx,x be the covariance matrix resulting from applying the kernel to a dataset X containing N observations

drawn from density function ν(x). Then, given a constant c > 0, we have:

Eν(x) [R] = Eν(x)

[
ln
∣∣IN + cKx,x

∣∣] ≤
∞∑
h=0

ln (1 + cλhN)

Proof: The expected regret term Eν(x)

[
ln
∣∣IN+cKx,x

∣∣] can be written in terms of the eigenexpansion

(18) and rearranged using Sylvester’s determinant identity:

Eν(x)

[
ln
∣∣IN + cKx,x

∣∣] = lim
H→∞

Eν(x)

[
ln
∣∣IN + cΨx

HΛH(Ψx
H)T

∣∣]
= lim
H→∞

Eν(x)

[
ln
∣∣IH + cΛ

1/2
H (Ψx

H)TΨx
HΛ

1/2
H

∣∣]
The expected regret can now be bounded using Jensen’s inequality and the concavity of the logarithm:

Eν(x)

[
ln
∣∣IN + cKx,x

∣∣] ≤ lim
H→∞

ln
∣∣∣IH + cEν(x)

[
Λ

1/2
H (Ψx

H)TΨx
HΛ

1/2
H

]∣∣∣
= lim
H→∞

ln
∣∣∣IH + cΛHNEν(x)

[
N−1(Ψx

H)TΨx
H

]∣∣∣
=

∞∑
h=0

ln (1 + cλhN)

The final expression for the bound relies on the fact that the orthogonality of the kernel eigenfunctions

ensures that E
[
N−1(Ψx

H)TΨx
H

]
= IH . The resulting bound is thus the log determinant of a diagonal

matrix, which is just the sum of the logarithm of the diagonal entries. �

This lemma directly provides the proof for the regret bound in Seeger et al. (2008) by making use

of Sylvester’s determinant identity. By changing the order of summation in the determinant, one can

exploit the eigenexpansion of the kernel and obtain a bound that depends on an infinite sum over the

eigenvalue spectrum of the kernel. This strategy does not work directly for the LCM kernel (13), which

is a linear combination of V different kernels. While linear combinations of kernels are themselves valid

kernels and will possess an eigenexpansion (18), their eigenvalue spectrum cannot be determined from

the spectrum of the individual kernels in the sum, which complicates the analysis of the bound. This is

because the eigenfunctions of the individual kernels depend on each kernel’s length scale parameter `v.

The resulting kernel matrices Kx,x
v are therefore not simultaneously diagonalisable. The strategy used

here to obtain a tractable bound for the LCM is instead to show that the regret of the LCM kernel is

bounded below a fixed multiple of the regret of worst-performing kernel in the linear combination.

Lemma 2: Let K̃x,x =
∑
v∈v αvK

x,x
v be a linear combination of V distinct N × N kernel matrices

Kx,x
v with weights αv > 0, where v = {1, 2, ..., V } is the set of indices identifying each kernel matrix and

weight. Given an arbitrary constant c > 0, the following bound exists:

∣∣IN + cK̃x,x
∣∣ <

∣∣IN + V cαv∗Kx,x
v∗

∣∣V
Where:

v∗ = arg max
v∈v

∣∣IN + V cαvK
x,x
v

∣∣
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Proof: First, use the fact that K̃x,x is a linear combination of V kernels to express the determinant

as the following sum:

∣∣IN + cK̃x,x
∣∣ =

∣∣∣∑
v∈v

Mv

∣∣∣ , Mv =
1

V
IN + cαvK

x,x
v

By factorising out the determinants of the individual elements |Mv|, this can be rewritten as the

product of the determinants of Mv and a determinant term containing the inverses of Mv:

∣∣IN + cK̃x,x
∣∣ =

(∏
v∈v
|Mv|

) ∣∣∣∣∑v∈v

∏
p∈v\v

(Mp)
−1

∣∣∣∣
<
(∏

v∈v
|Mv|

) ∣∣∣∣∑v∈v

∏
p∈v\v

1

λminp

IN

∣∣∣∣
≤
(∏

v∈v
|Mv|

)
|V IN |V =

∏
v∈v
|VMv|

=
∏

v∈v

∣∣IN + V cαvK
x,x
v

∣∣
The first upper bound in this expression can be obtained by replacing (Mv)

−1
by IN/λ

min
v , where

λminv is the smallest eigenvalue of Mv. The second bound comes from the fact that because Kx,x
v is

positive semi-definite and commutes with IN , the eigenvalues of Mv are real-valued and λminv ≥ 1/V .

Finally, if v∗ is the index for the kernel Kx,x
v∗ such that |Mv∗ | = maxv∈v |Mv|, then we have:

∣∣IN + cK̃x,x
∣∣ <

∏
v∈v

∣∣IN + V cαvK
x,x
v

∣∣ <
∣∣IN + V cαv∗Kx,x

v∗

∣∣V
�

In our case K̃x,x results from a linear combination of RBF kernels (12), and two factors affect which

kernel v∗ ends up being performing the worst. The first is the length scale of the kernel `v, where the lower

the length scale, the higher the regret due to the lower smoothness of the resulting prediction. The second

factor is the weight, where the higher αv the higher the regret. However, this bound applies regardless

of the type of kernel, which means that in principle it applies to any arbitrary linear combination of

different kernel types. This carries across to the proposition below, which combines lemmas 1 and 2 to

provide a bound for the regret of the LCM (23).

Proposition (from section 2.2): The expected regret of the LCM (23) has the following upper

bound, where v∗ indicates the latent GP variable possessing the largest regret:

Eν(x)

[
ln
∣∣IMN + Σ−2K̃x,x

∣∣] < MV

∞∑
h=0

ln
(
1 + V b2v∗,m∗σ−2

m∗λv∗,hN
)

Proof: First of all, we rearrange the regret to explicitly reveal the block diagonal structure of the

LCM kernel matrix K̃x,x, induced by the use of the Kronecker product on the latent kernel matrices

Kx,x
v :

R = ln
∣∣IMN + Σ−2K̃x,x

∣∣
= ln

∣∣∣IMN + Σ−2B̃Kx,xB̃T
∣∣∣

= ln
∣∣∣IMN + Σ−2

(∑
v

BvB
T
v ⊗Kx,x

v

) ∣∣∣
From this, we can determine the sequence of bounds provided below. First, the block diagonal

structure of the regret means that Fischer’s determinant inequality can be used to bound it below the

sum of the log determinants of the main diagonal blocks. This first bound is the sum of M regret terms,

each of which is the regret of a linear combination of V kernel matrices. Using lemma 2, each term in this

29



sum is itself bounded above by a multiple of the regret of the worst-performing kernels for that variable

m. Note that in the second inequality, the index v∗ identifying the largest regret term might be different

across the M variables, due to the variable and kernel-specific weights bv,m and noises σm. This can be

addressed by identifying the variable m∗ with the largest regret term, leading to the third inequality.

R ≤
∑
m

ln
∣∣∣IN + σ−2

m

∑
v
b2v,mKx,x

v

∣∣∣
<
∑
m

V ln
∣∣∣IN + V σ−2

m b2v∗,mKx,x
v∗

∣∣∣
< MV ln

∣∣∣IN + V σ−2
m∗b

2
v∗,m∗Kx,x

v∗

∣∣∣
At this point, the LCM regret term is bounded below an expression containing the regret of a single

kernel matrix Kx,x
v∗ . Using lemma 1, we obtain the following bound for the expectation of that regret:

MV × Eν(x)

[
ln
∣∣∣IN + V σ−2

m∗b
2
v∗,m∗Kx,x

v∗

∣∣∣] < MV

∞∑
h=0

ln
(
1 + V b2v∗,m∗σ−2

m∗λv∗,hN
)

�

B Derivations for the variational approximation of the LCM

B.1 Derivation of the LCM ELBO

Replacing the definition of the joint (29) and variational (30) distributions:

L(φ) =

∫
u

∫
f

ln
p(y | f)p(f | u)p(u)

p(f | u)q(u)
q(f ,u) df du

L(φ) =

∫
u

∫
f

ln p(y | f)p(f | u)q(u) df du +

∫
u

∫
f

ln
p(u)

q(u)
q(f ,u) df du

L(φ) =

∫
u

(∫
f

ln p(y | f)p(f | u) df

)
q(u) du +

∫
u

ln
p(u)

q(u)

(∫
f

q(f ,u) df

)
du

L(φ) =

∫
u

(∫
f

ln p(y | f)p(f | u) df

)
q(u) du +

∫
u

ln
p(u)

q(u)
q(u) du

A first simplification is that the last term of this expression is simply the Kullback-Leibler divergence

from q(u) to p(u):

L(φ) =

∫
u

(∫
f

ln p(y | f)p(f | u) df

)
q(u) du−DKL

[
q(u) ‖ p(u)

]
Where:

DKL

[
q(u) ‖ p(u)

]
= −

∫
u

ln
p(u)

q(u)
q(u) du

Given the distributions (27) and (30) for p(u) and q(u), this term can be calculated using the standard

formula for the Kullback-Leibler divergence between two multivariate normal distributions. Given the

multivariate normal densities (10) and (25) for p(y | f) and p(f | u), one can evaluate the remaining

integral:
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L(φ) =

∫
u

(∫
f

[
−1

2
ln
∣∣2πΣ2

∣∣− 1

2
(y − µ̃)TΣ−2(y − µ̃)

]
p(f | u) df

)
q(u) du

−DKL

[
q(u) ‖ p(u)

]
L(φ) =

1

2
ln
∣∣2πΣ2

∣∣− 1

2

∫
u

(∫
f

(
yTΣ−2y − 2µ̃TΣ−2y + µ̃TΣ−2µ̃

)
p(f | u) df

)
q(u) du

−DKL

[
q(u) ‖ p(u)

]
Taking advantage of the fact that for a vector a we have aTa = tr(aaT ), we can write:

L(φ) = −1

2
ln
∣∣2πΣ2

∣∣− 1

2

∫
u

(∫
f

tr
(
Σ−1

(
yyT − 2yµ̃T + µ̃µ̃T

)
Σ−1

)
p(f | u) df

)
q(u) du

−DKL

[
q(u) ‖ p(u)

]
Given the LCM prediction f̃ = B̃f , one can take the expectation of the trace term with respect to

the conditional distribution of the latent variables p(f | u) = N (f | Au, Kx,x −Qx,x):

L(φ) = −1

2
ln
∣∣2πΣ2

∣∣− 1

2

∫
u

(
tr
(
Σ−1

(
yyT − 2yuTAT B̃T + B̃AuuTAT B̃T

+ B̃Kx,xB̃T − B̃Qx,xB̃T
)

Σ−1
))

q(u) du−DKL

[
q(u) ‖ p(u)

]

L(φ) = −1

2
ln
∣∣2πΣ2

∣∣− 1

2

∫
u

tr
(
Σ−1

(
yyT − 2yuTAT B̃T + B̃AuuTAT B̃T

)
Σ−1

)
q(u) du

− 1

2
tr
(
Σ−1B̃ (Kx,x −Qx,x) B̃TΣ−1

)
−DKL

[
q(u) ‖ p(u)

]
Taking expectation of the trace term with respect to q(u) = N (f |m, S):

L(φ) = −1

2
ln
∣∣2πΣ2

∣∣− 1

2
tr
(
Σ−1

(
yyT − 2ymTAT B̃T + B̃AmmTAT B̃T + B̃ASAT B̃T

)
Σ−1

)
− 1

2
tr
(
Σ−1B̃ (Kx,x −Qx,x) B̃TΣ−1

)
−DKL

[
q(u) ‖ p(u)

]

L(φ) = −1

2
ln
∣∣2πΣ2

∣∣− 1

2

(
y − B̃Am

)T
Σ−2

(
y − B̃Am

)
− 1

2
tr
(
Σ−1B̃ASAT B̃TΣ−1

)
− 1

2
tr
(
Σ−1B̃ (Kx,x −Qx,x) B̃TΣ−1

)
−DKL

[
q(u) ‖ p(u)

]
The first set of terms are simply the log-likelihood of a multivariate normal distribution, resulting in

equation (34), provided in the main section.

L(φ) = lnN (y | B̃Am,Σ2)− 1

2
tr
(
Σ−1B̃

(
ASAT + Kx,x −Qx,x

)
B̃TΣ−1

)
−DKL

[
q(u) ‖ p(u)

]
B.2 Derivation of the LCM predictive density

This is obtained by marginalising the inducing values u out of the joint variational distribution (30):

q(f) =

∫
u

p(f | u)q(u) du
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Explicitly writing out the gaussian density functions for p(f | u) and q(u) using (28) and (30):

q(f) =

∫
u

exp

(
−1

2
ln |2π (Kx,x −Qx,x)| − 1

2
(f −Au)

T
(Kx,x −Qx,x)

−1
(f −Au)

−1

2
ln |2πS| − 1

2
(u−m)

T
S−1 (u−m)

)
du

Leaving the treatment of the determinants aside for the moment, the quadratic forms can be expanded

as follows:

q(f) =

∫
u

exp

(
−1

2
ln |2π (Kx,x −Qx,x)| − 1

2
ln |2πS|

− 1

2

[
fT (Kx,x −Qx,x)

−1
f + uTAT (Kx,x −Qx,x)

−1
Au− 2fT (Kx,x −Qx,x)

−1
Au
]

−1

2

[
uTS−1u + mTS−1m− 2mTS−1u

])
du

Setting Γ−1 = S−1 + AT (Kx,x −Qx,x)
−1

A and gathering the terms containing u:

q(f) =

∫
u

exp

(
−1

2
ln |2π (Kx,x −Qx,x)| − 1

2
ln |2πS|

− 1

2

[
uTΓ−1u− 2

(
fT (Kx,x −Qx,x)

−1
A + mTS−1

)
u
]

−1

2

[
fT (Kx,x −Qx,x)

−1
f + mTS−1m

])
du

Completing the square using g = Γ
(
AT (Kx,x −Qx,x)

−1
f + S−1m

)
results in:

q(f) =

∫
u

exp

(
−1

2
ln |2π (Kx,x −Qx,x)| − 1

2
ln |2πS| − 1

2
(u− g)

T
Γ−1 (u− g)

− 1

2

[
fT (Kx,x −Qx,x)

−1
f + mTS−1m

]
−1

2

[
−
(
AT (Kx,x −Qx,x)

−1
f + S−1m

)T
Γ
(
AT (Kx,x −Qx,x)

−1
f + S−1m

)])
du

Expanding the quadratic form around Γ and factorising like terms produces:

q(f) =

∫
u

exp

(
−1

2
ln |2π (Kx,x −Qx,x)| − 1

2
ln |2πS| − 1

2
(u− g)

T
Γ−1 (u− g)

−1

2

[
fTΨ−1f + mTS−1 (S− Γ) S−1m− 2fT (Kx,x −Qx,x)

−1
AΓS−1m

])
du

(A-1)

With:

Ψ−1 = (Kx,x −Qx,x)
−1 − (Kx,x −Qx,x)

−1
AΓAT (Kx,x −Qx,x)

−1

In order to clean up the expression for q(f) further, we need to obtain more tractable expressions for

Ψ and Γ. This can be obtained by using the Woodbury matrix identity twice. First, we use it to obtain

the expression for Ψ, using the fact that Γ =
(
S−1 + AT (Kx,x −Qx,x)

−1
A
)−1

:

Ψ = Kx,x −Qx,x + ASAT

Second, we apply the Woodbury identity on Γ−1 to get:
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Γ = S− SAT
[
Kx,x −Qx,x + ASAT

]−1
AS = S− SATΨ−1AS

Rearranging the expression for Γ allows us to simplify the S−1 (S− Γ) S−1 term in (A-1):

S−1 (S− Γ) S−1 = ATΨ−1A

Similarly, rearranging the definition of Γ−1 gives S−1 = Γ−1 −AT (Kx,x −Qx,x)
−1

A. This allows

us to simplify the (Kx,x −Qx,x)
−1

AΓS−1 term in (A-1):

(Kx,x −Qx,x)
−1

AΓS−1 = (Kx,x −Qx,x)
−1

AΓ
[
Γ−1 −AT (Kx,x −Qx,x)

−1
A
]

=
[
(Kx,x −Qx,x)

−1 − (Kx,x −Qx,x)
−1

AΓAT (Kx,x −Qx,x)
−1
]

A

= Ψ−1A

Replacing these in the expression for q(f) enables the closing of the second square:

q(f) =

∫
u

exp

(
−1

2
ln |2π (Kx,x −Qx,x)| − 1

2
ln |2πS| − 1

2
(u− g)

T
Γ−1 (u− g)

−1

2

[
fTΨ−1f + mTATΨ−1Am− 2Ψ−1Am

])
du

q(f) =

∫
u

exp

(
−1

2
ln |2π (Kx,x −Qx,x)| − 1

2
ln |2πS| − 1

2
(u− g)

T
Γ−1 (u− g)

−1

2
(f −Am)

T
Ψ−1 (f −Am)

)
du

(A-2)

The last step is to tidy up the determinant terms that we initially set aside. First, the determinant

of Γ−1 can be factorised as follows:

∣∣Γ−1
∣∣ =

∣∣∣S−1 + AT (Kx,x −Qx,x)
−1

A
∣∣∣

=
∣∣∣I + AT (Kx,x −Qx,x)

−1
AS
∣∣∣ ∣∣S−1

∣∣
The determinant of Ψ can similarly be factorised, using the matrix determinant lemma:

|Ψ| =
∣∣(Kx,x −Qx,x) + ASAT

∣∣
=
∣∣∣S−1 + AT (Kx,x −Qx,x)

−1
A
∣∣∣ |S| |(Kx,x −Qx,x)|

=
∣∣∣I + AT (Kx,x −Qx,x)

−1
AS
∣∣∣ |(Kx,x −Qx,x)|

This allows us to establish the following equalities:

|Ψ| |Γ| = |Ψ|
|Γ−1| =

|(Kx,x −Qx,x)|
|S−1| = |(Kx,x −Qx,x)| |S|

The expression (A-2) can now explicitly be written as the product of two multivariate normal distri-

butions, where the distribution of f no longer depends on u, making the marginalisation straightforward.

q(f) = exp

(
−1

2
ln |2πΨ| − 1

2
(f −Am)

T
Ψ−1 (f −Am)

)
×
∫
u

exp

(
−1

2
ln |2πΓ| − 1

2
(u− g)

T
Γ−1 (u− g)

)
du

The integral with respect to u sums to one, resulting in q(f) = N (f | Am,Ψ), which is equation (36).
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C Full VAR Monte Carlo tables

Table A-1: Monte Carlo results for BEGRS estimation of VAR specification, 1000 inducing points
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Table A-2: Monte Carlo results for BEGRS estimation of VAR specification, 500 inducing points
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Table A-3: Monte Carlo results for BEGRS estimation of VAR specification, 250 inducing points
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