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Abstract

This study uses the Multiplicative Error Model (MEM) to explore asymmetric volatility spillovers

between crude oil and other major asset markets. We have extended the MEM of Engle et al. (2012)

and ddd to include asymmetric volatility spillovers and developed the spillover balance as well as

asymmetric spillover indexes. We have then allowed these indexes to vary over time. Our results

reveal that the stock market is the dominant contributor to volatility spillover, while the crude oil is

mostly the volatility spillover recipient. The asymmetric spillover effects are predominantly nega-

tive in the stock and crude oil markets and positive in the bond market. We further show that the

spillover indexes are dynamic and influenced by specific events, such as the global financial crisis

and the COVID-19 pandemic, as well as varying economic conditions.
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1. Introduction1

Stocks, bonds, gold, and crude oil represent the main investment vehicles in the world markets.2

Understanding the interactions and interdependences among these assets is of significant interest3

to investors and policymakers alike. Comprehending the spillover of risks among these assets can4

provide investors with useful trading signals and greater hedging opportunities (Asadi et al., 2022).5

It can also help policymakers decide when and how to intervene in response to adverse shocks to6

achieve greater economic stability.7

The spillover of risks, which is commonly known as the volatility spillover effects, charac-8

terize how shocks and risks propagate and spread among different asset markets (Diebold and9

Yilmaz, 2012; Diebold and Yılmaz, 2015). To analyze these effects, it is important to understand10

the characteristics of the volatility itself. For instance, several studies document asymmetries in11

volatility, which imply that past returns are negatively correlated with present volatility (Bekaert12

and Wu, 2000). Such asymmetries may also be important when investigating the volatility trans-13

mission across markets (Segal et al., 2015). Thus, because of their relevance for risk valuation14

and portfolio diversification strategies (Garcia and Tsafack, 2011), both volatility and its spillover15

asymmetries need to be properly quantified.16

The realm of volatility spillover effects in financial markets has been thoroughly charted, with17

seminal works, like Gallo and Otranto (2008); Diebold and Yilmaz (2012); Diebold and Yılmaz18

(2015); Engle et al. (2012), leading the way. Typically, these studies are anchored in the Vector19

Auto-regression (VAR) models or the multivariate GARCH model, often integrating the volatility20

spillover index as highlighted by Diebold and Yilmaz (2009). However, the domain of asymmetries21

in volatility spillovers remains less traversed. While there are studies that focus on asymmetric22

spillovers in the U.S. stocks (Barunı́k et al., 2016), foreign exchange markets (Barunı́k et al.,23

2016), Australian electricity markets (Chanatásig-Niza et al., 2022), and between the crude oil and24

stock markets (Wang and Wu, 2018; Xu et al., 2019), a comprehensive exploration in this direction25

is sparse.26
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This study furthers the literature by providing new evidence on the asymmetric volatility27

spillover dynamics among major global investment vehicles. Our main contribution to the lit-28

erature stems from the use of a novel approach for analyzing the asymmetric spillover effects.29

Specifically, we employ a modified version of the Multiplicative Error Model (MEM) of Engle30

et al. (2012) to incorporate the dynamic nature of the spillover asymmetry. As highlighted by En-31

gle et al. (2012), the MEM is favored for its ability to overcome the shortcomings of the widely32

used VAR model (i.e, Diebold and Yilmaz (2009); Barunı́k et al. (2016); Barunı́k et al. (2017)),33

especially in resolving issues of zero and non-negative predictions of volatility. The MEM is34

also shown to be better suited for spillover modeling than the multivariate GARCH model (i.e.,35

Bauwens et al. (2006); Wang and Li (2021)), which imposes restrictions on the number of as-36

set markets that can be investigated. Our proposed approach allows the MEM to incorporate the37

asymmetric volatility spillovers. This development has given rise to a new spillover balance index38

and asymmetric spillover indexes, which enable us to effectively analyze the spillovers of both39

negative and positive news. We have also evolved the spillover and asymmetric indexes from their40

static versions to time-varying forms, marking a significant stride in examining the dynamic links41

and spillover effects over time. This contribution is significant, especially considering the scarce42

literature on the intricate subject of time-varying analysis, a fact supported by Apergis et al. (2017).43

The closest work to ours is that of Wang and Wu (2018) and Xu et al. (2019), who investi-44

gated asymmetric spillovers between oil and stock markets, focusing primarily on the Chinese and45

U.S markets. These studies have used VAR and Multivariate GARCH models and found that the46

negative spillovers are stronger than their positive counterparts. In a similar vein, Wang and Li47

(2021) examined asymmetric volatility spillovers between the crude oil and other financial mar-48

kets in China. Other pertinent works in this context include those by Arouri et al. (2012); Li et al.49

(2016); Siddiqui et al. (2020); Reboredo et al. (2014); Turhan et al. (2013) and Zhang and Wang50

(2014). Departing from these studies, our research explores the global interplay between crude oil,51

stock, bond, and gold markets, broadening the scope beyond the common context of the Chinese52
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financial markets. More importantly, we advance the literature by introducing a novel approach,53

which incorporates the time-varying nature of asymmetric spillovers in the modelling of both the54

dynamic links and spillover effects of positive and negative news in the global asset markets.55

Our dataset comprises S&P 500 futures (ES: CME GROUP), Treasury bond futures (US:56

CCBOT/CME GROUP), gold futures (GC: COMEX/CME GROUP), and crude oil futures (CL:57

NYMEX/CME GROUP), spanning from July 1, 2003 to August 5, 2022. We use futures rather58

than spot prices for two reasons. Firstly, futures contracts are traded for 23 hours during the sam-59

ple periods, offering a near whole-day variance, thereby enhancing the precision of the realized60

variances and semi-variances. Secondly, the fact that all four futures are traded on the same ex-61

change negates the necessity for time zone adjustments. In accordance with Barndorff-Nielsen62

et al. (2010); Barunı́k et al. (2016); Barunı́k et al. (2017); Chanatásig-Niza et al. (2022), we com-63

pute the realized variance and semi-variance from five-minute intraday returns, capturing the clos-64

ing times from day t − 1 to day t. These realized semi-variances are then used to estimate the65

asymmetric volatility spillover indexes.66

Our empirical analysis yields several interesting results. First, we document strong evidence67

that the bad volatility in the stock market spillover into other markets. We also show that the68

stock market is the main provider, whereas the oil market is the primary recipient of the volatility69

spillover. This finding is, economically, reasonable due to the considerable size of the stock mar-70

ket, which leads to the propagation of its crashes and the potential dissemination of information71

to other asset markets. Second, we uncover evidence that the total asymmetric volatility spillover72

effects across different asset markets tend to be negative and significant. Specifically, we find neg-73

ative spillover asymmetries in the stock, gold, and oil markets, but their magnitudes are larger in74

the stock market. This finding is consistent with prior studies, which show that negative spillovers75

are more prevalent than their positive counterparts (Barunı́k et al., 2016; Barunı́k et al., 2017; Xu76

et al., 2019). It also lends support to loss aversion and the disposition effect, which predicts that77

investors tend to hold on to losers and sell winners (Frazzini, 2006). Third, unlike other markets,78
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bonds exhibit significantly positive asymmetric spillover effects, implying that positive news from79

the bond market engenders more substantial spillover to other markets than negative news. This80

highlights the bond market’s quintessential role as a safe-haven during bad times. Such behav-81

ior underscores the efficacy of bonds in dampening spillover effects and their utility as valuable82

hedging vehicles during turbulent market conditions. Finally, we uncover evidence that volatility83

spillover effects across different asset markets vary considerably over time, implying that the de-84

gree and direction of spillovers are influenced by major events and economic conditions that vary85

across time. Finally, we show that the 2009 Global Financial Crisis has had a more significant and86

enduring influence on the volatility spillovers than the COVID-19 pandemic, presumably because87

the Covid-19 is a health pandemic that did not originate from the financial markets.88

The remainder of the study proceeds as follows. Section 2 introduces the concept of realized89

semi-variance and the multiplicative error model for their dynamics. Section 3 proposes the volatil-90

ity spillover balance and asymmetric volatility spillovers index. Section 4 presents the dataset.91

Section 5 discusses the empirical results and Section 6 concludes.92

2. The Methodology Framework93

Andersen et al. (2001) introduced a natural estimator for the quadratic variation of a process,94

known as the realized variance (RV ), defined as the sum of frequently sampled squared returns.95

To simplify, let us assume that prices p0, . . . , pn are observed at n+ 1 intervals, evenly distributed96

over the interval [0, t]. Using these returns, the n-sample realized variance, RV , can be defined as97

follows:98

RV =
n∑

j=1

r2j (1)

where rj = pj−pj−1 is the realized variance (RV ), which converges in probability to the quadratic99

variation of log prices as the number of intraday observations increases, i.e., as n → ∞. Barndorff-100

Nielsen et al. (2010) and Patton and Sheppard (2015) further introduce a measure that decomposes101
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RV into components that are due to positive and those that are attributable to negative returns,102

terming this measure ”realized semi-variance” (RS). These estimators are defined as follows:103

RS+ =
n∑

j=1

r2j I {rj > 0} ,

RS− =
n∑

j=1

r2j I {rj < 0} .
(2)

where I{} is the indicator function that returns a value of 1 if the condition in {} is met. These esti-104

mators provide a complete decomposition of RV , in that RV = RS++RS−. This decomposition105

holds exactly for any n, as well as in the limit.106

2.1. Multiplicative Error Models107

Since the RV is non-negatively valued and highly persistent over time, we follow the work108

of Engle and Gallo (2006), Shephard and Sheppard (2010), Engle et al. (2012), and Xu et al.109

(2018) and use the MEM to model the dynamics of RV. The MEM was initially proposed by Engle110

(2002) and has been widely used for modeling the dynamics of non-negative, highly persistent111

financial time series, such as absolute return, daily range, realized volatility, trading duration,112

trading volume, and bid-ask spread. Instead of modeling the RV directly, we extend the MEM to113

incorporate RS+ and RS− in its modeling process.114

Given the information set It−1, the realized semi-variance in market i, denoted as RS+
i,t and115

RS−
i,t, is modeled as follows:116

RS+
i,t|It−1 = µ+

i,tϵ
+
i,t,

RS−
i,t|It−1 = µ−

i,tϵ
−
i,t. (3)

where i = 1, 2, ..., k, the innovation term ϵ+i,t and ϵ−i,t is a unit mean random variables, such that117

ϵ+i,t|It−1 ∼ i.i.d(1, σ+
i ) and ϵ−i,t|It−1 ∼ i.i.d(1, σ−

i ) . The conditional expectation µ+
i,t and µ−

i,t , can118
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be specified as a base MEM(1,1):119

µ+
i,t = ω+

i + α+
iiRS+

i,t−1 + β+
i µ

+
i,t−1, (4)

µ−
i,t = ω−

i + α−
iiRS−

i,t−1 + β−
i µ

−
i,t−1. (5)

Furthermore, the heterogeneous autoregressive (HAR) model of Corsi (2009) has emerged as a120

simple and powerful way to include the long-memory feature of realized volatilities. Adding HAR121

terms to the realized semi-variance equations, results in richer dynamic equations:122

µ+
i,t = ω+

i + α+
iiRS+

i,t−1 + β+
i µ

+
i,t−1 + αw+

ii RSw+
i,t−1 + αm+

ii RSm+
i,t−1, (6)

µ−
i,t = ω−

i + α−
iiRS−

i,t−1 + β−
i µ

−
i,t−1 + αw−

ii RSw−
i,t−1 + αm−

ii RSm−
i,t−1 (7)

where RSw+
i,t = 1

5

∑5
l=1RS+

i,t−l, RSm+
i,t = 1

22

∑22
l=1RS+

i,t−l, RSw−
i,t = 1

5

∑5
l=1RS−

i,t−l, RSm−
i,t =123

1
22

∑22
l=1 RS−

i,t−l. In the HAR model, RSw+
i,t and RSw−

i,t represents the medium-term weekly re-124

alized semi-variance, whereas RSm+
i,t and RSm−

i,t denote the long-term monthly realized semi-125

variance.126

To study the semi-variance spillover effects, we incorporate the lagged daily semi-variance127

observed in other markets into the specification and allow for the interactions between posi-128

tive/negative semi-variance spillover effects among different markets. This yields the following129

general semi-variance volatility spillover model:130

µ+
i,t = ω+

i + α+
iiRS+

i,t−1 + β+
i µ

+
i,t−1 +

∑
j ̸=i

α+
ijRS+

j,t−1 (8)

+
∑
i,j

α−
ijRS−

j,t−1 + αw+
ii RSw+

i,t−1 + αm+
ii RSm+

i,t−1,
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µ−
i,t = ω−

i + α−
iiRS−

i,t−1 + β−
i µ

−
i,t−1 +

∑
j ̸=i

α−
ijRS−

j,t−1 (9)

+
∑
i,j

α+
ijRS+

j,t−1 + αw−
ii RSw−

i,t−1 + αm−
ii RSm−

i,t−1.

Following Engle et al. (2012) and Xu et al. (2018), the semi-variance models in (8) and (9) can131

be estimated using quasi-maximum likelihood estimation. This is under the assumption that the132

innovation terms ϵ+i,t|It−1 and ϵ−i,t|It−1 follow exponential distributions.133

3. Spillover Analysis134

Engle et al. (2012) and Xu et al. (2018) propose a quantitative measure for the volatility135

spillover effects across multiple markets, premised on the measure of spillovers as responses to136

shocks. Following their methodology, we derive analogous measures for our semi-variance mod-137

els.138

Let RS+
t = (RS+

1,t, RS+
2,t, · · ·, RS+

k,t)
′, µ+

t = (µ+
1,t, µ

+
2,t, · · ·, µ+

k,t)
′, RSw+

t = (RSw+
1,t , RSw+

2,t , · ·139

·, RSw+
k,t )

′, RSm+
t = (RSm+

1,t , RSm+
2,t , · · ·, RSm+

k,t )
′ and ϵ+t = (ϵ+1,t, ϵ

+
2,t, · · ·, ϵ+k,t)′ . Let RS−

t =140

(RS−
1,t, RS−

2,t, · · ·, RS−
k,t)

′, µ−
t = (µ−

1,t, µ
−
2,t, · · ·, µ−

k,t)
′, RSw−

t = (RSw−
1,t , RSw−

2,t , · · ·, RSw−
k,t )

′,141

RSm−
t = (RSm−

1,t , RSm−
2,t , · · ·, RSm−

k,t )
′ and ϵ−t = (ϵ−1,t, ϵ

−
2,t, · · ·, ϵ−k,t)′ . Conditional on the in-142

formation available at time t, (8) and (9) can be stacked in a compact matrix form as143

µ+
t

µ−
t

 =

ω+

ω−

+

 A+ A+−

A−+ A−


RS+

t−1

RS−
t−1

+

B+

B−


µ+

t−1

µ−
t−1


+

Aw+

Aw−


RSw+

t−1

RSw−
t−1

+

Am+

Am−


RSm+

t−1

RSm−
t−1

 (10)

If further assuming xt = (RS+
t
′
, RS−

t
′
)′, µt = (µ+

t
′, µ−

t
′)′, xw

t = (RSw+
t

′
, RSw−

t
′
)′, xm

t =144

8



(RSm+
t

′
, RSm−

t
′
)′ and ϵt = (ϵ+t

′, ϵ−t
′)′ , (3) and (10) can be expressed as:145

xt = µt ⊙ ϵt, ϵt ∼ D(1,Σ),

µt = ω +Axt−1 +Bµt−1 +Awxw
t−1 +Amxm

t−1. (11)

where ⊙ denotes the Hadmard (element by element) product. The innovation vector ϵt has support146

over [0,+∞), with a unit mean vector 1 and general variance-covariance matrix Σ. The first two147

moment conditions of the vector MEM are given by E(xt|Ωt) = µt and var(xt|Ωt) = µtµ
′
t ⊙Σ,148

with the latter being a positive definite matrix by construction.149

By defining appropriate error term, the above process (i.e., equation (11)) can be written as150

VARMA(1,1). Given this representation, the covariance stationarity condition requires that the151

largest eigenvalue of A + B + Aw + Am to be less than unity. Consequently, the unconditional152

first moment can be obtained as E(xt) = (I2k −A+B+Aw +Am)−1 ω.153

Next, we derive a multiple-step ahead forecasting xt+τ (where τ > 0). The forecast is com-154

puted at date t, but since it is not known, it needs to be substituted with its corresponding condi-155

tional expectation µt+τ |t. Hence:156

µt+1|t = ω +Axt +Bµt +Awxw
t +Amxm

t , (12)

and for 2 ≤ τ < 22,157

µt+τ |t = ω + (A+B)µt+τ−1 +Awxw
t+τ−1 +Amxm

t+τ−1, (13)

where xw
t+τ−1|t = 1

5

∑5
l=1 xt+τ−l|t, xm

t+τ−1|t = 1
22

∑22
l=1 xt+τ−l|t and xt+τ−l|t = µt+τ−l|t if τ > l.158

And then, for any τ ≥ 22,159

µt+τ |t = ω + (A+B+Aw +Am)µt+τ−1, (14)

9



which can be solved recursively for any horizon τ .160

The terms µ+
t+τ and µ−

t+τ can then be extracted from µt+τ |t. Once µ+
t+τ and µ−

t+τ are obtained,161

the multiple-step ahead forecasts of RVt+τ |t can be directly derived as follows:162

E(RVt+τ |t) = µ+
t+τ |t + µ−

t+τ |t, (15)

where RVt = (RV1,t, RV2,t, · · ·, RVk,t)
′.163

Next, we derive a spillover balance index and spillover asymmetry measure. Let us recall that164

the MEM in a system,165

xt = µt ⊙ ϵt, ϵt ∼ D(1,Σ). (16)

The innovation vector ϵt has a mean vector 1 with all components unity and general variance-166

covariance matrix Σ. We can interpret µt+τ = E(xt+τ |It, ϵt) = 1, that is, the expectation of167

xt+τ conditional on ϵt being equal to the unit vector 1: this is the basis for the dynamic forecast168

obtained before. Let us now derive a different dynamic solution, µ(i)
t+τ = E(xt+τ |It, ϵt = 1+ s(i))169

, for a generic ith element s(i), where i = 1, 2, ..., 2k . The ith element equal to the unconditional170

standard deviation of ϵi,t and the other terms j ̸= i equal to the linear projectionE(ϵj,t|ϵi,t =171

1 + σi) = 1 + σi
σi,j

σ2
i

. The element-by-element division (⊘) of the two vectors,172

ρ
(i)
t,τ = µ

(i)
t+τ ⊘ µt+τ − 1. (17)

Given the multiplicative nature of the model, ρ(i)t,τ gives us the set of responses (relative changes)173

in the forecast profile starting at time t for a horizon τ brought about a 1 standard deviation shock174

in the ith market. The cumulated impact of the shock from market i to market j is:175

Φj,i
t =

K∑
τ=1

ρ
(i)
t,τ . (18)
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The total spillover effect (TSI) as:176

TSI =
∑
i ̸=j

T∑
t=1

Φj,i
t (19)

which measures the overall contribution of volatility spillover shocks across markets.177

This is also a way to assess the total change induced by the shock of different markets. Follow-178

ing Engle et al. (2012), we express the spillover balance as the ratio of the average responses “to”179

to the average response “from” (excluding one’s own):180

Balancei =

∑
j ̸=i

∑T
t=1Φ

j,i
t∑

j ̸=i

∑T
t=1 Φ

i,j
t

. (20)

A value bigger than unity signals that the market is a net creator of volatility spillover.181

The use of semi-variances in the model estimation allows us to distinguish between the spillovers182

from positive and those from negative returns. This, in turn, enables us to quantify the asymme-183

tries in the volatility spillovers over time. Following Barunı́k et al. (2015), we define directional184

spillover from an asset i to (ST) all other assets (excluding one’s own) as:185

ST−
i =

∑
j ̸=i

T∑
t=1

Φj,i
t (21)

for i = 1, 2, ..., k and for j = 1, 2, ..., 2k, and186

ST+
i =

∑
j ̸=i

T∑
t=1

Φj,i
t (22)

for i = k + 1, k + 2, ..., 2k and for j = 1, 2, ..., 2k.187

We compute the spillover asymmetry measure (ASM) index as188

ASMi = ST+
i − ST−

i , i = 1, 2, ..., k (23)

A positive ASM indicates that spillovers from positive realized semi-variances are larger than those189
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from negative realized semi-variances, and the opposite is true for a negative ASM. By contrast, if190

ASM takes a value of zero, the volatility spillover measures are symmetric. The total asymmetric191

spillover effect (TASM) is computed as:192

TASM =
∑
i

ASMi (24)

To test the significance of ASMi and TASM , we use the bootstrapped standard error (see193

Appendix A)194

4. Dataset195

Our data comprises four futures contracts: S&P 500 futures (ES: CME GROUP), Treasury196

bond futures (US: CCBOT/CME GROUP), gold futures (GC: COMEX/CME GROUP), and crude197

oil futures (CL: NYMEX/CME GROUP). The first three contracts were studied by Fleming et al.198

(2001, 2003). Our sample period spans from July 1, 2003 to August 5, 2022, over a total of199

4,864 trading days. The data are obtained from TickData, Inc. We selected July 1, 2003, as200

our starting date because it encompasses both daytime and evening, ensuring that our estimated201

realized variance represents a reasonable proxy for the whole-day variance.202

There are two benefits to using futures rather than spot prices in our analysis. First, the futures203

contracts are traded for 23 hours during the sample periods, which closely approximates the whole-204

day variance, enhancing the accuracy of the realized variance estimates. Second, the four futures205

contracts used in our analysis are traded on the same exchange, eliminating the need for time zone206

adjustments. Thus, the use of futures contracts does not only simplifies the analysis, but also allows207

us to make more accurate comparisons across the different markets.208

Our portfolios are rebalanced at specific times each day during different periods, i.e., at 13:30209

each day between 07/01/2003 and 01/31/2007, at 15:15 each day between 02/01/2007 and 11/17/2012,210

and at 16:00 each day between 11/18/2012 and 08/05/2022. We calculate the realized variance and211
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semi-variance using all intraday returns between day t and t− 1 and use the last transaction prices212

before the chosen close times as the close prices. This procedure is consistent with Fleming et al.213

(2001, 2003). Table 1 presents the trading close times and date ranges for the four assets.214

Insert Table 1 here215

Table 2 summarizes the descriptive statistics for the realized variance and semi-variances.216

Crude oil displays the highest volatility, while bonds exhibit the lowest mean of realized variance217

and semi-variance. This implies that crude oil is riskier than the other markets, possibly due to its218

lower liquidity, susceptibility to natural disasters, and sensitivity to geopolitical risks. This finding219

is consistent with Xu et al. (2019), who reported a risk ratio of oil to stock that is notably similar220

to ours. The negative semi-variance contributes slightly more than its positive counterpart to the221

total realized variances of the asset markets. The Ljung Box statistic shows strong serial autocor-222

relations in both the realized variance and semi-variance. The overdispersion, which is the ratio of223

standard deviation to mean, ranges from 1.1 to 2.1. This large overdispersion requires a high value224

of α (ARCH coefficient) in GARCH/MEM models. Additionally, the positive skewedness and225

high leptokurtic together with overdispersion, indicates that a more flexible distribution is required226

for modeling the realized variance.227

Insert Table 2 here228

Figure 1 shows that asset volatility increases considerably during global financial crisis. Sub-229

sequently, the realized variance declines significantly and jumps occasionally. At the start of the230

COVID-19 pandemic, there was a sharp increase in volatility, but this was not as persistent as in the231

case of global financial crisis. The graph also shows that the realized variance and semi-variance232

are highly persistent over time, suggesting that the effects of the information transmitted by positive233

and negative returns cannot be eradicated completely over a short period of time. These features,234

along with the Ljung Box statistics in Table 2, suggest that MEM-type models are well-suited for235
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modeling the dynamics of the realized semi-variances. Additionally, the semi-variances associated236

with two of the four assets in our sample tend to move in tandem with their corresponding realized237

variances. Notably, the common volatility spikes across the various markets occurred during the238

2008 Global Financial Crisis and the 2019 Coronavirus outbreak.239

Insert Figure 1 here240

5. Empirical Results241

Based on the equation-by-equation estimation results, we proceed to select a more parsimo-242

nious specification, based on the significance of the zero restrictions. The large number of coef-243

ficients in the general specification of equations (8) and (9) yields inefficient parameter estimates244

and, therefore, less precise spillover forecasts analysis (Engle et al., 2012). We report only the co-245

efficients estimates that are significant at 5 percent level or better in Table 3. The model diagnostics246

are summarized in the lower panel of Table 3. where the values of the log-likelihood functions,247

Bayesian Information Criteria (BIC) and Ljung box (LB) statistics for residuals are reported.248

Insert Table 3 here249

We find significant interactions between good and bad volatility within each of the four markets250

included in the analysis. For example, bad volatility of bonds has significantly positive effect on251

the good volatility of bonds, and vice versa. Similar patterns are observed in the cases of gold and252

crude oil. However, the stock market appears to be an exception, with only bad volatility exerting253

a significantly positive influence on the good volatility. Across the four markets, we also show that254

the magnitude of the effect of bad volatility on good volatility is larger than that of good volatility255

on bad volatility1 , indicating that the bad volatility dominates the semi-variance dynamics. We also256

notice that the bad volatility of the stock market exerts significant influences on both the good and257

1Similar patterns have been shown by earlier studies (see, e.g., Patton and Sheppard (2015).
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bad volatility of the other three markets (see the row of RS−1
j,t−1). Finally, the two HAR parameters,258

αw and αm, are significant in all cases, implying a high level of persistence in the semi-variances.259

The LB statistics are small and insignificant, suggesting that our model successfully captures the260

dynamics of the semi-variance processes.261

5.1. Volatility spillover effects262

In this section, we quantify the volatility spillover effect with the aim to answer the following263

questions: (1) Which markets, if any, serve as the primary net provider or receiver of spillovers?264

(2) How is good and bad volatility transmitted within each market? And (3) are volatility spillovers265

symmetric or asymmetric? To explore these questions, we employ the spillover balance index and266

asymmetric spillover measure derived in Section 3. A value of a spillover balance index that is267

greater (smaller) than unity indicates that the asset is a net provider (receiver) of spillover. A268

significantly negative asymmetric measure implies that the spillovers from negative news cause269

more shocks to other markets than their counterparts from positive news, and vice versa. The270

results are presented in Table 4.271

Insert Table 4 here272

For the ease of exposition, hereafter we refer to spillovers from bad and good volatility as273

negative and positive spillovers, respectively. Firstly, the spillover balance indexes in the second-274

to-last of Table 4 indicate that stock volatility is the primary provider of spillovers, with spillover275

balances of 3.43 and 2.13 from bad and good volatility, respectively. Gold and oil, on the other276

hand, are spillover recipients, as their spillover balance indexes are less than unity. The observed277

imbalance is largely attributed to the significant transmission of negative shocks from the stock278

market, impacting both the good and bad volatility in the oil market. This observation aligns with279

the findings presented in Table 3, suggesting that the stock market is the primary conduit of volatil-280

ity spillovers. The bond market seems to be more balanced, with spillover balances from the bad281

and good volatility being 1.08 and 1.24, respectively. The prevalent influence of the stock market282
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is presumably rooted in its extensive size and renown for dispersing risks (Yang and Zhou, 2017),283

coupled with the oil market’s illiquidity, which is often susceptible to natural disasters and geopo-284

litical uncertainties, making it a ”recipient” of risks. Intriguingly, this conclusion contrasts with the285

results of Wang and Li (2021), who found that crude oil instigates volatility in the Shanghai stock286

index. A plausible explanation for this divergence lies in the contextual differences. Specifically,287

unlike our study, which focuses on the global context, Wang and Li (2021) examined the inter-play288

between WTI crude oil and the Chinese stock market. Since the Chinese stock market is relatively289

local and less accessible to international investors, its ability to induce volatility in the crude oil290

market is potentially limited.291

The last row of Table 4 reports the asymmetric measures of the volatility spillover. The TASM292

of the four assets is negative and significant (-24.39), indicating the presence of asymmetric volatil-293

ity spillover among these assets. The stock market has the largest significantly negative asymmetry294

index (ASM = -24.62), suggesting that the stock market creates more negative than positive shocks295

for other markets. For the gold and oil markets, the asymmetry index is negative and insignificant,296

suggesting no asymmetric volatility spillover effects between these two assets. Interestingly, the297

bond market has the significantly positive asymmetry index (ASM=7.18), implying that the bond298

market creates more positive than negative shocks to other market. The unfavorable news in the299

stock and crude oil markets can have a beneficial impact on the bond market, as investors tend to300

seek refuge in safe-haven assets during stock market crashes to mitigate risk. Further support for301

the negative relationship between stocks and bonds can be found in Chiang et al. (2015), while302

evidence of the negative relationship between oil and bond markets is provided by Ciner et al.303

(2013). This elucidated the crucial role bonds as safe haven instruments during bad times. In304

other words, this evidence indicates that bonds can effectively mitigate spillover effects and offer305

valuable hedging opportunities for investors.306

Overall, we document a complex interconnectedness among the four asset markets, with the307

stock market playing a central role in transmitting volatility spillovers. The oil market appears to308
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be the primary recipient of these spillovers, while contributing minimally to the volatility in other309

markets. Furthermore, we find evidence of asymmetric spillover effects, particularly in the stock310

and bond markets. In the bond market, the spillover balance of good volatility is larger than of311

bad volatility, and the ASM index is significantly greater than zero. This suggests that spillover of312

shocks from good news are more prevalent than that from bad news. This direction of asymmetry313

differs significantly from those in other markets.314

5.2. Dynamics Analysis315

To better understand the time series evolution of volatility spillovers, we estimate equations (8)316

and (9) using a rolling window of 500 days to allow for the spillovers to change over time. This317

approach enables us to derive time-varying spillover balance indexes and asymmetric spillovers.318

This dynamic analysis also enables us to investigate the impact other events, such as the global319

financial crisis, Eurozone debt crisis, and the recent COVID-19 pandemic, on spillovers across320

markets.321

5.2.1. Dynamics of Total Spillovers322

The plot in Figure 2 indicates that the volatility spillover effects increase sharply during the323

global financial crisis (i.e., between 2008 and 2009). The timing of the spikes identified in the324

total volatility spillovers during the year 2009 and at the end of 2010 in the stock market are325

remarkably similar those reported in Fengler and Gisler (2015). After the financial crisis, the total326

volatility spillover remained stable and low until 2014, followed by several jumps between 2015327

and 2016. These timings correspond to the stock market selloff, in which the Dow Jones Industrial328

Average fell by 530.94 (3.1%) on August 21, 2015. The total spillover effects in 2015/16 may329

have possibly originated from the big selloffs and two flash crashes in the stock market. There330

were also some increments of volatility spillover effects during the recent COVID-19 pandemic,331

i.e., between 2020 and 2022. However, the fluctuations of total volatility spillover effects were not332

as significant as those observed during the global financial crisis, plausibly because the Covid-19333
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is a health pandemic that did not originate from the financial market. Overall, the cyclical behavior334

observed in our Figure 2 aligns closely with findings in Wang and Li (2021) and Xu et al. (2019)2.335

Insert Figure 2 here336

Figure 3 presents the time-varying TASM index. The total asymmetric index is negative for337

most of the sample periods, indicating that volatility spillovers caused by negative news are greater338

than those resulted from the positive news. However, during a few periods, such as the period pre-339

ceding the subprime mortgage (i.e., 2006-2007), the asymmetry approaches zero or even becomes340

positive. These periods suggest that the negative and positive return shocks led to similar sizes341

of volatility spillovers across asset markets. The period between 2007 and 2009 had the largest342

asymmetry, with the spillover index bottoming out around February 2009. This is expected, as343

the spillovers were widespread during the global financial crisis. The COVID-19 pandemic period344

also displays a clear negative asymmetry in volatility spillovers, although the magnitude of the345

asymmetry is not quite as substantial as that of the global financial crisis. The volatility spillovers346

were more significant during the financial crisis and exacerbated by the European Sovereign Debt347

crisis. These negative spillovers lasted over seven years and then began to diminish gradually.348

This indicates the effect of global financial crisis is long lasting. Xu et al. (2019) reported similar349

results for the total asymmetric spillover of volatility between the oil and stock markets. They also350

observed dips around the years 2009, 2010, and 2015 and corroborate the prevalence of negative351

volatility.352

Insert Figure 3 here353

5.2.2. Dynamics of Spillover Balance Index354

Figures 4 and 5 present the dynamics of the spillover balance index for each asset market. Fig-355

ure 4 shows that the spillover balance of the stock market’s bad volatility of stocks is greater than356

2See Figures 3 and 9 in Wang and Li (2021) and Figure 1 in Xu et al. (2019)
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unity for most of the sample period, indicating that this market is a net provider of bad volatility357

spillover. Similarly, in Figure 5, the spillover balance indexes of the good volatility associated358

with each of the four asset markets are mostly greater than unity, albeit their magnitudes are much359

smaller than spillover indexes of the bad volatility. These findings are consistent with Table 4,360

which indicates the dominance of negative asymmetric spillovers. Interestingly, during the period361

2009-2013, the bad volatility spillover index of the stock market is close to unity, suggesting that362

the volatility spillover has been dissipated to other markets. Overall, we find that the stock market363

is a net provider of spillover, especially during significant events, such as the 2008 Global Financial364

Crisis, massive stock market selloffs, and the two major flash crashes in 2015.365

Our results also show that the bond market is generally a provider of bad volatility spillover,366

especially during the period 2015-2017 as well as during and after the Covid-19 pandemic. How-367

ever, the good news from the bond market has also provided large spillover effects during the period368

from 2006 to 2008, i.e., before the global financial crisis. This may be due to investors flocking to369

safety and buying bonds during the financial crisis, signaling the spillover of good news. It is diffi-370

cult to conclude whether the bond market is a net spillover provider or a net spillover receiver, as its371

spillover balance index remains above and below unity for almost equal proportions of time. The372

bond market was relatively a spillover provider for good volatility during the 2008 global financial373

crisis and the massive stock market selloff of 2015, while it was relatively a spillover provider of374

bad volatility during the period from 2014 to 2015, when a massive stock market selloff and flash375

crash took place.376

The gold market behaved rather differently, as it is neither a net spillover provider nor a net377

spillover receiver of news. Both its good and bad spillover balance indexes are above unity during378

the period 2009-2017, reaching their peaks between 2014 and 2015. This timing coincides with the379

massive stock market selloffs and flash crashes. The results also indicate that the gold market was380

dissipating positive and negative risks between 2009 and 2017. At the end of the sample window,381

i.e., around 2022, there have been steep increases in good and bad volatility spillovers transmitted382
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from the bond to the other markets.383

Since around mid-2007, the crude oil market mostly served as a spillover receiver, with spillover384

balance indexes fluctuating evenly between zero and two. Combined with the results in Table 3,385

the bad volatility spillover to the oil market is transmitted from both the stock market and within386

the crude oil market itself. Interestingly, the bad volatility of the oil market exhibited mild cyclical387

behavior around the cutoff point, with a spillover balance index of one, peaks during the years388

2007, 2012, 2018, and 2022, and troughs in 2006 as well as over the period 2014-2017. However,389

the good volatility of the oil market was transmitted to other markets only in 2005-2007, which390

could be the calm prelude before the crash in the stock market. Subsequently, the crude oil began391

to receive spillovers from the other markets, except for the years 2014 and 2022, where there was392

a brief temporary balance between the spillover balance indexes.393

Insert Figure 4 & 5 here394

5.2.3. Dynamics of Asymmetric spillover index395

Figure 6 displays the dynamics of the ASM spillover index of each asset market. For the stock396

market, the ASM index is mostly negative, with a large negative asymmetric effect reported during397

and after the global financial crisis (i.e., the period 2008-2011). The negative spillovers intensi-398

fied following the collapse of Lehman Brothers in September 2008 and were further exacerbated399

during the Eurozone crisis. However, the net spillover effect of the stock market was dampened400

during subsequent events, such as the debt ceiling debate in 2011, fiscal cliff in 2012, government401

shutdown in 2013, and the stock market selloff in 2015. The net spillover effect dipped more dur-402

ing the Global Financial Crisis than other periods. Asadi et al. (2022) suggest that stock market403

crashes significantly impact profitability, overhead cost, and competitiveness in raw material mar-404

kets, which may explain how shocks of bad volatility of the stock market contributed to spreading405

the spillover effects to other markets. Ghosh et al. (2021) also argue that technological inefficiency406

and a weak outlook may affect other markets, supporting the argument that the negative spillover407
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effect caused by the flash crash in 2015 was transmitted to other markets. Overall, this implies408

that the stock market is the main driver of bad volatility, which spreads negative shocks to other409

markets.410

Interestingly, the ASM index in the bond market is positive most of the time, suggesting that411

the positive news from the bond market exerts more influence on other markets than negative412

news. As bonds provide investors with relatively stable incomes during crises, they are regarded as413

useful hedging instruments during periods of market turmoil. This, in turn, explains why economic414

downturns may bring good news to the bond market, which is then transmitted to other markets.415

However, the period near 2015-2016 experienced a negative spillover shock for a few months,416

indicating a shift in negative shocks from the stock to the bond market. But shortly after, investors417

fled to safety and, consequently, causing the bond market to spillover the good volatility. Near the418

end of 2018, a drop in the ASM to zero corresponded to rising tariffs and trade policy tensions,419

particularly between the US and China, and the impact of the Covid-19 health pandemic on the420

global economy.421

As for gold, the first half of the sample was positively asymmetric, while the second half ex-422

hibited a negative asymmetry. Interestingly, we observe several similarities in the movement of the423

net volatility spillover between the bond and gold markets. This may be due to the hedging benefits424

of these two instruments, as gold and bond markets are typically considered safe haven assets (see,425

e.g., Agyei-Ampomah et al. (2014)). However, the range of the gold market’s ASM fluctuations426

are not as wide as those of the bond market, indicating a relatively more stable volatility spillover427

effect of the gold market.428

The negative returns in the crude oil caused spillover shocks in all markets, with the ASM429

index being negative most of the time. The dominance of negative asymmetries is also reported430

by Xu et al. (2019), who investigated the asymmetric volatility transmission between the crude431

oil and stock market, and by Pham et al. (2022) in the context of cryptocurrency and thermal coal432

futures. The volatility spillover effect of the crude oil market displays similar behavior patterns433
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to that of the stock market, but with a narrower range of fluctuations, possibly due to relative size434

difference between the two markets. The asymmetric measure in the oil market moves in the same435

direction as its counterpart in the stock market, except for the period around 2015, when a spike in436

the positive volatility was observed in the crude oil, but not in the stock market.437

Insert Figure 6 here438

5.3. Robustness check439

We have also conducted several checks to verify the sensitivity of our results to the choice of440

forecasting horizons and rolling windows. The results from these tests are largely consistent with441

our primary analysis and our conclusions remain largely unchanged. Details of these additional442

tests and their associated results are provided in Appendix B.443

5.4. Discussion and policy implications444

Overall, our TASM results indicate that the negative volatility spillovers are more prevalent445

than positive volatility spillovers at the aggregate level. This is consistent with the theory of loss446

aversion in behavioral finance, where investors are emotionally attached to negative news than447

positive news. Our finding that the TASM is mostly negative and takes a long time to become448

positive is also in line with the disposition effect of Frazzini (2006), which suggests that investors449

tend to hold on to losers and sell winners. Furthermore, our evidence that the spillover from bad to450

good volatility is stronger than that from good to bad volatility is supported by Bollen and Whaley451

(2004)’s view that the buying pressure from investors tends to increase during episodes of high452

volatility.453

Another interesting finding is that the stock market is the main provider, whereas the oil market454

is the main receiver, of volatility spillover and that the oil market has a limited spillover effect on455

other markets. This may be attributed to the stock market’s considerable size, causing its crashes to456

spread to other markets. In addition, due to potential information transmission across asset markets457
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(related to market efficiency), negative shocks in the stock market may be immediately transmitted458

to the oil market. The bond and gold markets behave differently, as they are generally viewed as459

safe haven (Bredin et al., 2015), where investors seek safety during times of market stress.460

Finally, we find that for the bond market, the overall spillover balance of good volatility is461

greater than that of bad volatility. This may be because investors, who seek safety from bonds,462

interpret stock market crashes as buying signals in the bond market.463

In terms of policy implications, researchers have been consistently calling for more efforts on464

the part of regulator authorities to better measure and monitor the risks and uncertainties in differ-465

ent asset markets (Fengler and Gisler, 2015; Chiang et al., 2015). Our methodological innovation466

should serve as a useful tool for policymakers, who are interested in understanding and monitoring467

volatility transmission among different markets. The finding that stock market is the main trans-468

mitter of negative shocks also supports the need for the stock market to be more heavily regulated469

(Ghosh et al., 2021). Regulatory policies, such as the circuit breaker, can prevent asset bubbles470

(Turhan et al., 2013), restrict the volatility spillovers within the stock market, and minimize the471

spread of negative volatility from the stock market to the other markets (Li et al., 2016). Further-472

more, this study shows that the bond market spills over good volatility during the financial crisis.473

Policies need to be implemented to keep a moderate amount of good volatility in the bond market.474

In addition, as there is significant awareness of the speculative fluctuations in the cryptocurrency475

market (Pham et al., 2022), policies can be made to minimize the impact of cryptocurrency on476

other markets. When policies are announced, policymakers need to assess their full impact (Ciner477

et al., 2013) and ability to mitigate financial distresses (Jiang et al., 2019). Furthermore, consider-478

ing the potential amplification of the volatility caused by the releases of negative news, regulators479

should work with media to ensure responsible reporting. A more accurate and balanced informa-480

tion dissemination can mitigate panic and overreaction in the markets. Moreover, as suggested by481

Barunı́k et al. (2015) in the context of petroleum markets, introduction of regulations for institu-482

tions can similarly be made across the four markets to reduce spillover effects. As a preventive483
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measure, macroeconomic policies can also be designed to control the impact of global crude oil484

industry and encourage the development of alternative sustainable energy resources (Jiang et al.,485

2019), Finally, given the susceptibility of oil markets to geopolitical and other global events, di-486

versifying the energy portfolio and increasing investments in sustainable energy can mitigate the487

risks associated with oil market volatility.488

6. Conclusion489

This study uses a Multiplicative Error Model (MEM) to investigate the asymmetric volatility490

spillovers across four major global asset markets, namely stocks, bonds, gold, and crude oil. This491

approach overcomes some important shortcomings of other popular models, including VAR and492

multivariate GARCH models. The asymmetric volatility spillover index derived from the MEM493

enables us to capture more accurately the impact of positive and negative news on different markets494

as well as the interdependence of the volatility transmission across these markets. We have also495

expanded the scope of the volatility spillover balance and asymmetric spillover indexes to reflect496

their time-varying features.497

Our novel empirical model offers new insights into volatility spillovers between different asset498

markets. Firstly, we find that the volatility spillovers are time varying, and both the degree and the499

direction of the spillovers are influenced by changes in economic conditions. Secondly, we identify500

the net providers and the net receivers of volatility spillovers. Specifically, we find that the stock501

market is the provider, the bond and gold markets are largely balanced, while the crude oil market502

mostly serves as a receiver of volatility spillovers. Thirdly, we show that the asymmetric spillover503

effects are mostly negative in the cases of the stock and crude oil markets and positive in the bond504

market. Fourthly, we investigate the impact of the variation in economic conditions, such as the505

global financial crisis, the Eurozone crisis, and the COVID-19 pandemic, on volatility spillovers506

among asset markets. We provide evidence that such events exert a significant influence on both507

the magnitude and direction of spillovers and that the spillover effects are amplified during times508
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of economic stress. Finally, we shed light on the role of safe-haven assets, namely gold and bonds,509

in times of market volatility. We find that these assets help mitigate spillover effects and provide510

hedging opportunities for investors.511
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Table 1 – Data description for different assets

Futures Contracts Close Time Date Range
Gold futures 13:30 07/01/2003 - 12/03/2006

17:00 12/04/2006 - 08/05/2022
Bond futures 16:00 07/01/2003 - 08/05/2022
Stock futures 15:15 07/01/2003 - 11/17/2012

16:00 11/18/2012 - 08/05/2022
Crude oil futures 15:15 07/01/2003 - 01/31/2007

13:30 02/01/2007 - 08/05/2022
Notes: This table reports the close time and date range for the
four different types of futures contract.
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Table 2 – Summary statistics

Mean Std Min Max Skewness Kurtosis LB(12)
Panel A: Realized volatilities

Stock 1.298 2.623 0.031 39.409 7.016 69.668 34164
Bond 0.450 0.487 0.002 10.262 8.191 123.104 14195
Gold 1.285 1.575 0.054 23.827 5.536 52.738 17833
Oil 4.743 5.230 0.100 56.532 3.940 25.414 38341

Panel B: Realized Negative semi-variance RS−

Stock 0.657 1.362 0.009 21.746 7.367 78.635 32211
Bond 0.231 0.266 0.002 5.749 0.215 109.360 11097
Gold 0.651 0.850 0.023 13.561 5.654 55.834 15097
Oil 2.398 2.697 0.057 27.729 3.837 24.197 35996

Panel C: Realized Positive semi-variance RS+

Stock 0.641 1.299 0.013 20.219 6.963 68.269 32197
Bond 0.219 0.245 0.001 5.478 8.018 117.477 12572
Gold 0.634 0.772 0.031 11.846 5.453 51.249 17448
Oil 2.345 2.636 0.043 29.651 4.068 27.433 35112

Notes: This table reports summary statistics of realized volatilities and semi-variances. LB(12)
is the Ljung–Box statistics for the serial correlation of order 12.
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Table 3 – Estimated Results

Negative semi-variance Positive semi-variance
Stock Bond Gold Oil Stock Bond Gold Oil

w 0.040 0.030 0.021 0.053 0.029 0.011 0.028 0.027
α 0.546 0.114 0.224 0.258 0.016 0.105 0.087 0.059
β 0.164 0.041 0.440 0.257 0.196 0.587 0.328 0.403
αw 0.189 0.257 0.000 0.171 0.156 0.000 0.100 0.083
αw 0.080 0.272 0.139 0.178 0.052 0.072 0.180 0.102

RS−
j,t−1 Stock 0.024 0.060 0.340 0.572 0.020 0.072 0.210

Bond -0.021 0.157
Gold 0.071 0.239
Oil 0.323

RS+
j,t−1 Stock -0.53 -0.267 -0.014 -0.060 -0.168

Bond -0.092 0.122 -0.120
Gold 0.165 -0.092
Oil -0.002 0.105
LL -167.36 2962 -1537 -7769 37.95 3210 -1475 -7623
BIC 394.12 -5864 3151 15624 -16.50 -6361 3019 15314
LB(12) 10.93 9.37 15.91 7.41 23.84 19.58 14.13 23.12

LL denotes the values of the log-likelihood. BIC is Bayesian Information Criteria. LB(12)
denotes the Ljung Box statistics up to order 12.
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Table 4 – Bad and Good Volatility Spillovers

From Bad Volatility From Good Volatility
Stock Bond Gold Oil Stock Bond Gold Oil Total From

To Bad Volatility
Stock 15.96 2.66 4.30 2.95 9.07 3.93 4.24 1.84 19.91
Bond 7.87 3.62 2.87 1.63 5.10 3.58 2.76 1.20 21.43
Gold 9.71 4.96 12.48 2.35 6.67 5.10 9.79 1.82 30.62
Oil 16.06 3.95 7.23 13.02 9.67 6.01 5.89 7.61 48.81

To Good Volatility
Stock 16.36 2.75 4.43 3.03 9.47 4.04 4.37 1.90 20.52
Bond 8.71 4.13 3.27 1.88 5.78 5.09 3.34 1.41 24.40
Gold 9.67 4.70 11.60 2.42 6.61 5.06 9.66 1.90 30.36
Oil 16.31 4.13 7.41 13.14 9.90 6.20 6.16 8.07 50.11

Total To 68.34 23.16 29.50 14.27 43.72 30.34 26.75 10.07

Balance 3.43 1.08 0.96 0.29 2.13 1.24 0.88 0.20

ASM -24.62** 7.18** -2.75 -4.20 TASM -24.39**
The table presents spillovers for the full sample with a forecast horizon of τ = 200 days.
We use bootstrapped standard errors with 1,000 resamplings to test the significance of
ASM and TASM. The ** symbol denotes significance at the 5% level.
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Figure 2 – Total Volatility Spillovers
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Figure 3 – Total Asymmetric Spillovers (TASM )
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Appendix A: Bootstrap standard error512

The definitions of TASM and ASMi aid in testing our initial hypotheses concerning the sym-513

metry of spillovers. When utilizing these spillover asymmetry measures, the two hypotheses are514

redefined as follows:515

H1
0 : TASM = 0 against H1

A : TASM ̸= 0

H2
0 : ASMi = 0 against H2

A : ASMi ̸= 0, for i = 1, 2, .., k.

(25)

To test the hypotheses about the symmetry of volatility spillovers, we opt to bootstrap the516

measures. It’s crucial to ensure that the empirical results are not attributable to estimation errors517

from the MEM or discretization errors from realized semi-variances. The latter, in particular, could518

be significant due to the limited number of observations during the day in the real data used for the519

computation of realized semi-variance.520

We bootstrap the two realized semicovariance data directly from (11). The LB statistics, as521

shown in the last column of Table 3, suggest that the estimated residuals do not exhibit autocorre-522

lation, thus we can bootstrap the data from these residuals. The bootstrap procedure is as follows:523

• After estimation, acquire the fitted residual ϵ̂t.524

• Bootstrap new residuals from ϵ̂t, denoted as ϵbt , where b = 1, 2, ..., 1000. The residuals are525

bootstrapped 1,000 times.526

• Then, the realized semi-variance data Xi can be simulated from the vector MEM model as527

follows:528

xb
t = µb

t ⊙ ϵbt ,

µb
t = ω̂ + Âxb

t−1 + b̂µb
t−1 + Âwxw,b

t−1 + Âmxm,b
t−1. (26)

where xw,b
t−1 =

1
5

∑5
l=1 x

b
t−l, x

m,b
t−1 =

1
22

∑22
l=1 x

b
t−l,529
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• For each set of simulated data, we estimate the model and calculate TASM and ASMi.530

Using 1,000 bootstrapped processes, we obtain the bootstrapped standard errors of TASM and531

ASMi. We then test the significance of the two null hypotheses.532

Appendix B: Robustness checks533

To assess robustness, we first re-evaluate the volatility spillover effects in Table 4 using differ-534

ent forecast horizons of τ = 100, τ = 30, and τ = 10. Secondly, we present both the spillover535

index and the asymmetric spillover index using a shorter 200-day rolling window.536

Table 5 displays the bad and good volatility spillover effects when a forecasting horizon of τ =537

10 is employed3. From Table 5, the spillover effects, including the spillover balance and TASM538

results, are qualitatively consistent with Table 4. Stocks exhibit the largest negative volatility539

spillover, while the TASM spillover is both negative and significant. The only difference is that540

the values in Table 4 are larger than those in Table 5. This is expected, as our volatility spillover is541

calculated as the sum of shock effects across all future forecasting horizons.542

Insert Table 5 here543

Figure 7 and 8 present the dynamics of total volatility and asymmetric spillovers using a 200-544

day rolling window4. Our core findings remain consistent. The global financial crisis greatly545

affected market interconnectedness. While the COVID-19 pandemic increased volatility spillovers,546

its impact was less pronounced than the financial crisis. The asymmetric spillover index was mostly547

negative. The most significant asymmetry occurred during 2007-2009, with the COVID-19 period548

showing lesser negative asymmetry. The difference observed from Figure 7 and 8 is that 2015/16549

exhibited pronounced high total volatility spillover effects and larger negative asymmetric effects.550

3The forecast horizons of τ = 100 and τ = 200 days yield results very similar to the τ = 10 case. These are not
shown to save space but are available upon request.

4Details on individual asset market asymmetries are available upon request
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This might be attributed to our use of a shorter rolling window. The 2015/16 stock market sell-off551

had a significant but relatively short-lived impact on volatility. When a shorter rolling window is552

employed, this effect appears more pronounced.553

Insert Figure 7 & 8 here554
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Table 5 – Bad and Good Volatility Spillovers

From Bad Volatility From Good Volatility
Stock Bond Gold Oil Stock Bond Gold Oil Total From

To Bad Volatility
Stock 11.00 1.84 3.02 2.05 6.31 2.77 2.98 1.29 13.95
Bond 5.33 3.44 2.20 1.16 3.66 3.11 2.10 0.91 15.36
Gold 6.64 3.74 9.20 2.08 4.65 3.79 7.11 1.54 22.45
Crude Oil 7.64 2.43 4.17 7.81 4.73 3.42 3.25 4.53 25.64

To Good Volatility
Stock 11.27 1.92 3.12 2.11 6.64 2.84 3.08 1.34 14.42
Bond 6.00 3.91 2.55 1.38 4.24 4.56 2.63 1.11 17.91
Gold 6.57 3.52 8.44 2.09 4.58 3.76 7.08 1.58 22.10
Crude Oil 7.70 2.56 4.26 7.78 4.85 3.54 3.44 4.91 26.35

Total To 39.89 16.01 19.33 10.87 26.71 20.12 17.47 7.78

Balance 2.86 1.04 0.86 0.42 1.85 1.12 0.79 0.30

Asym -13.18** 4.11** -1.86 -3.09 TASM -14.02**
The table presents spillovers for the full sample with a forecast horizon of τ = 10 days.
We use bootstrapped standard errors with 1,000 resamplings to test the significance of
ASM and TASM. The ** symbol denotes significance at the 5% level.
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