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the economic value of volatility timing

Luc Bauwens ∗ Yongdeng Xu†
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Abstract

Realized covariance models specify the conditional expectation of a realized covariance ma-

trix as a function of past realized covariance matrices through a GARCH-type structure.

We compare the forecasting performance of several such models in terms of economic value,

measured through economic loss functions, on two datasets. Our empirical results indicate

that the (HEAVY-type) models that use realized volatilities yield economic value and sig-

nificantly surpass the (GARCH) models that use only daily returns for daily and weekly

horizons. Among the HEAVY-type models, for a dataset of twenty-nine stocks, those that

are specified to capture the heterogeneity of the dynamics of the individual conditional vari-

ance processes and to allow these to differ from the correlation processes (namely, DCC-type

models) are more beneficial than the models that impose the same dynamics to the variance

and covariance processes (namely, BEKK-type models), whereas for the dataset of three

assets, the different models perform similarly. Finally, using a directly rescaled intra-day

covariance to estimate the full-day covariance provides more economic value than using the

overnight returns, as the latter tend to yield noisy estimators of the overnight covariance,

impairing their predictive capacity.
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1 Introduction

Forecasting the volatility (in the sense of the covariance matrix) of daily returns is important

for risk management. The current consensus, based on a large variety of empirical studies, is

that, to this end, the use of a realized measure of the daily volatility, based on intra-daily

returns, is more beneficial than the exclusive use of daily data. The intuitive explanation of this

difference is that, under suitable but realistic conditions, a realized covariance matrix is a more

precise measure of the daily volatility than a measure constructed using only daily returns.

The benefits gained thanks to the use of a realized covariance matrix are evaluated through

measures of forecasting performance, which can be of statistical or economic nature. In an influ-

ential paper, Fleming, Kirby, and Ostdiek (2003) provide a method to measure “the economic

value of volatility timing using realized volatility” and show, empirically, that the economic

value of switching from daily to intra-daily returns can be substantial. A large number of au-

thors have adopted the method of Fleming, Kirby, and Ostdiek (2003), using different models

and data.1

Whether the basic data is daily or intra-daily, the volatility forecasts are based on a time

series econometric model. Such a model specifies the conditional covariance (i.e., the conditional

expectation of the volatility) matrix of the daily return vector as a function of past data. When

the data is daily, the conditional covariance of day t is typically specified as a moving average

of the outer-products of the past returns; this can be achieved indirectly through a multivariate

GARCH model. When the data is intra-daily, the conditional covariance of day t can be specified

as a moving average of the past realized covariances. This is what Fleming et. al. (2003) did

explicitly, with a parsimonious way to define and estimate the coefficients of the moving average

terms as functions of a scalar parameter.

Several more sophisticated models for forecasting realized covariance matrices have been

developed and used since 2003. The primary contribution of this paper is to evaluate empirically

whether such “realized covariance models” are more beneficial than the simple, but successful,

models used by Fleming, Kirby, and Ostdiek (2003).

1A Google search, conducted on June 25, 2023, using the title of the paper of Fleming, Kirby, and Ostdiek
(2003), identified 778 citations;, among which e.g., Marquering and Verbeek (2004) and Bollerslev, Hood, Huss,
and Pedersen (2018). Fleming, Kirby, and Ostdiek (2003) extends Fleming, Kirby, and Ostdiek (2001) where the
authors show the economic value of switching from unconditionally efficient static portfolios to portfolios based
upon volatility models based on daily returns.
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An important and influential development of realized covariance models has consisted in

substituting a realized measure of volatility for the outer-product of the past return vector

in the conditional variance equation of a multivariate GARCH model, in particular with the

high frequency based volatility (HEAVY) class of models.2 This development was implemented

progressively, with the HEAVY-BEKK model of Noureldin, Shephard, and Sheppard (2012), the

HEAVY β-Factor-GARCH model of Sheppard and Xu (2019), and the HEAVY-DCC (dynamic

conditional correlation) of Bauwens and Xu (2022).3

A common empirical finding of these papers is that the HEAVY models have better forecast-

ing performances of the conditional covariance of daily returns than the traditional multivariate

GARCH models. When statistical performance measures are used, they differ, at least partially,

between papers, in terms of loss functions or statistical tests: in Noureldin, Shephard, and Shep-

pard (2012) and Sheppard and Xu (2019), the forecasts of different models are compared by

equal predictive accuracy (EPA) Diebold-Mariano tests, enabling only pairwise comparisons,

while Bauwens and Xu (2022) use the model confidence set (MCS) approach of Hansen, Lunde,

and Nason (2011) which enables to compare jointly a set of models. Regarding forecast per-

formance comparisons based on an economic criterion, Sheppard and Xu (2019) compare the

relative performance of pairs of models (by EPA tests) in terms of marginal expected shortfall,

which is the expected loss of an asset conditional on a factor (such as a market index) being in

a state of stress, see Acharya, Pedersen, Philippon, and Richardson (2017). Bauwens and Xu

(2022) use the MCS testing procedure to rank jointly a set of models in terms of optimal (global

minimum variance, and minimum variance) portfolio performances. None of these studies uses

the criterion of the economic value of volatility timing of Fleming, Kirby, and Ostdiek (2003).

Thus, there is plenty of scope for assessing the economic value of the HEAVY models,

including a HEAVY version that we add of the simple model of Fleming, Kirby, and Ostdiek

(2003). We implement the comparisons using two datasets. The first one is relative to futures

contracts for S&P 500, Treasury bonds and gold, for the period 2003/07/01-2022/08/05, this

being an update of the data used by Fleming, Kirby, and Ostdiek (2003). The trading of

2Two univariate models that share some similarity were first developed independently: the HEAVY model
of Shephard and Sheppard (2010) Shephard and Sheppard (2010) and the realized GARCH model of Hansen,
Huang, and Shek (2012).

3There exists a multivariate realized β-GARCH model, by Hansen, Lunde, and Voev (2014), but no realized-
BEKK and realized-DCC versions that generalize the univariate realized GARCH model of Hansen, Huang, and
Shek (2012).
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these contracts occurs almost without interruption during each trading calendar day, so that

it is possible to measure the daily volatility of a complete day through a realized covariance

measure.

The second dataset is relative to twenty-nine stocks belonging to the DJIA (Dow Jones

Industrial Average) index, for the period 2001/01/03-2018/04/16. On this type of market, the

trading period corresponds to a few hours of a day. Since a realized covariance matrix uses

the intra-daily returns available during the trading period, it underestimates the complete day

covariance matrix. A bias correction method is required. We adopt two correction methods:

the first one transforms the trading period realized covariance matrix so that it has the same

sample average as the average of the outer products of the daily (close-to-close) returns; the

second one adds the overnight variation (i.e., the outer product of the overnight return) to the

trading period realized matrix, and then transforms it in the same way as the first method

to match the sample average of the outer products of the daily (close-to-close) returns. We

compare empirically these two methods over the models we use for assessing their economic

significance and we find that the first correction method is more valuable; this is primarily due

to the noisy estimator of the overnight covariance produced by the second method.

In addition to the previous finding, our empirical results mainly confirm that the (HEAVY-

type) models that use realized volatilities yield economic value and significantly surpass the

(GARCH) models that use only daily returns; this is at least the case for daily and weekly

forecasts. Among the HEAVY-type models, those that are specified to capture the heterogeneity

of the dynamics of the individual conditional variance processes and to allow these to differ

from the correlation processes (namely, DCC-type models) are more beneficial than the models

that impose the same dynamics to the variance and covariance processes (namely, BEKK-type

models); this is the case for the dataset relative to the twenty-nine stocks, whereas for the

dataset of three assets, the different models perform similarly.

The remainder of the paper is divided in five sections. Section 2 presents the data, the

definition of the realized covariance measure and the bias correction methods used for the second

dataset. Section 3 defines the realized covariance models used in the empirical applications and

discusses the estimation results. Section 4 expounds the economic criteria used to compare

the models through out-of-sample forecasts and the related statistical methods. Section 5
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contains the empirical results. Section 6 concludes. Additional technical and empirical details

are provided in a set of appendices.

2 Realized covariance: definitions, bias correction, and data

2.1 Definitions and bias correction

Let rt = (r1t, r2t . . . rkt)
′ denote the k × 1 (close-to-close) daily return vector of day t corre-

sponding to k assets and r(j)t = (r(j)1t, r(j)2t . . . r(j)kt)
′ the corresponding j-th intra-daily return

vector at time j on day t, where j = 1, 2, ..., N . The simplest realized covariance measure for

the k assets on day t is the k × k matrix defined as

RCt =

N∑
j=1

r(j)tr
′
(j)t. (1)

Other types of realized covariance estimators which are somewhat robust to noise have been

considered, for example, the realised kernel of Barndorff-Nielsen, Hansen, Lunde, and Shephard

(2011).

Assuming that N > k, RCt is positive definite (PD). Denote by vt the k×1 realized variance

vector of day t, consisting of the diagonal elements of RCt, and by RLt the realized correlation

matrix of day t, defined as

RLt = {diag(RCt)}−1/2RCt {diag(RCt)}−1/2, (2)

where diag(RCt) is the diagonal matrix obtained by setting the off-diagonal elements of RCt

equal to zero, and the exponent −1/2 transforms each diagonal element into the inverse of its

square root. Thus, the off-diagonal elements of RLt are the realized correlation coefficients for

the asset pairs, and its diagonal elements are equal to unity.

The realized covariance measure RCt defined above uses the intra-daily returns available

during the trading period, i.e. between the opening and closing times. The overnight variation

of returns is not taken into account. Hence RCt underestimates the whole day covariance. A

bias correction method is required. We adopt two correction methods to transform RCt into a

daily covariance.
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1. Rescaling RCt to satisfy the condition that the average value (over the sample period of

T observations) of the realized covariance matrices is the same as the average value of the

outer products of the daily returns. We use the transformation formula of Sheppard and

Xu (2019), as it guarantees a PD covariance matrix:

RC2t = ΛRCtΛ
′, (3)

where Λ = Σ̄1/2M̄−1/2, Σ̄ = T−1
∑T

t=1 rtr
′
t and M̄ = T−1

∑T
t=1RCt. For a symmetric PD

matrix A, its symmetric square root, denoted byA1/2, is defined as UL1/2U ′, where U is

a matrix containing the eigenvectors of A, and L1/2 is a diagonal matrix containing the

square roots of the eigenvalues of A.

2. Adding to RCt the outer product rt,onr
′
t,on of the overnight return rt,on (the close-to-

open return preceding the trading period) as an estimate of the overnight covariance, and

rescaling the sum as in the previous case:

RC1t = Λ1(rt,onr
′
t,on +RCt)Λ

′
1, (4)

where Λ1 = Σ̄1/2M̄1
−1/2

with M̄1 = T−1
∑T

t=1(rt,onr
′
t,on +RCt).

The rescaling is used when the non-trading period corresponds to a large part of the day, or if

the addition of the overnight variation is not sufficient to ensure that the average of the rescaled

RCt is close to the average of the outer products of the daily returns.

2.2 Data

We use two datasets for the empirical analyses. The first is a dataset about the same

futures contracts as studied by Fleming, Kirby, and Ostdiek (2001): S&P 500 futures (STOCK,

hereafter), Treasury bond futures (BOND), and Gold futures (GOLD); it is named SBGF (for

Stock-Bond-Gold Futures) hereafter. The sample period is July 1, 2003 to August 5, 2022, with

a total of 4864 trading days. We choose July 1, 2003 as starting date, as trading occurs both in

the daytime and in the evening (e.g., from 7:20 to 16:00 and from 17:00 to 7:20 for BOND) from

that day. This was not the case in the dataset of Fleming, Kirby, and Ostdiek (2001), since

the trading occurred only during the daytime. Appendix A provides the exact trading times of
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the three futures contracts and explains the computation of the realized covariances from the

high-frequency data. Since the realized covariance matrices of this dataset are computed using

five-minute spaced intra-daily returns based on (approximately) 23 hours per day, they should

be close to the whole day covariances. In Table 16 (in Appendix A), it can be checked that

the average realized variances are close to the average daily squared returns, so that no bias

correction method is applied.

The second dataset consists of realized covariance matrices for twenty-nine stocks belonging

to the Dow Jones Industrial Average (DJIA) index; it is named DJ29 hereafter. The sample

period is January 3, 2001 to April 16, 2018, with a total of 4092 trading days. The same dataset

is used by Bauwens and Xu (2022) and Bauwens and Otranto (2022), where more information

is provided about the data source and construction from high-frequency data. The realized

covariance matrices are computed using synchronized five-minute returns in the trading session

that extends from 9:30 Eastern Standard Time (EST) to 16:00 EST. Overnight returns are

computed accordingly as the differences between the opening trade log-price at 9:30 EST and

the previous close log-price at 16:00 EST.

Descriptive statistics for the original and bias-corrected covariance matrices are reported in

Appendix B. The realized variances (vt, the diagonal of RCt) do not account for the overnight

variation, hence their time series means, reported in column 3 of Table 17 under the header v),

are at about 50 to 60 percent of the corresponding average squared returns (column 2). The

time series means (v1n, in column 4 of the same table) of the realized variances augmented by

the squared overnight returns but not rescaled by Λ1 as in (4) are much closer to the average

squared returns (r2). The corrected realized variances (v1t and v2t, diagonal of RC1t and RC2t)

are on average equal to the average squared returns by construction (column 2 of the table).

The time series standard deviations of the squared returns (r2), realized variances (v), and

bias-corrected realized variances (v1 and v2) satisfy the following inequalities: r2 > v1 > v2 > v

– only the inequality v1 > v2 being (marginally) reversed in six cases. The time series of the

daily squared returns are generally featuring more extreme peaks than the realized variances,

explaining the larger time series means and standard deviations of the squared returns. The

smaller time series means and standard deviations of the trading period are obviously due to the

fact that the trading period is a fraction of the day, but the addition of the overnight return to
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the realized variance of that period and the rescaling by Λ1 inflates the standard deviations more

than just rescaling by (Λ2), because the overnight variations has also some specific extremes.

Concerning the realized covariances and correlations, the bias corrections increase gener-

ally the means and standard deviations (see Tables 18 and 19) with respect to the uncor-

rected realized measures, but the differences between the average realized correlations (Rcor),

rescaled overnight return augmented realized correlations (RCor1) and scaled realized corre-

lations (RCor2) are much smaller than for the corresponding average realized variances and

covariances.

3 Realized covariance models and estimation results

3.1 Definitions of models

Table 1 – BEKK, FKO and DCC model equations

BEKK- Equation Restrictions
GARCH Gt = (1− αG − βG)H̄ + αGrt−1r

′
t−1 + βGGt−1 αG, βG ≥ 0, αG + βG < 1

HEAVY-H Ht = (1− βH)H̄ − αHM̄ + αHRCt−1 + βHHt−1 αH , βH ≥ 0, βH < 1
HEAVY-M Mt = (1− αM − βM )M̄ + αMRCt−1 + βMMt−1 αM , βM ≥ 0, αM + βM < 1

FKO- Equation Restrictions
GARCH Gt = exp(−αG)Gt−1 + αG exp(−αG)rt−1r

′
t−1 αG ≥ 0

HEAVY-H Ht = exp(−αH)Ht−1 + αH exp(−αH)RCt−1 αH ≥ 0
HEAVY-M Mt = exp(−αM )Mt−1 + exp(−αM )RCt−1 αM ≥ 0

DCC- Variance equation of asset i Restrictions
GARCH gt,i = ωG,i +AG,ir

2
t−1,i +BG,igt−1,i AG,i, BG,i ≥ 0, AG,i +BG,i < 1

HEAVY-H ht,i = ωH,i +AH,ivt−1,i +BH,iht−1,i AH,i, BH,i ≥ 0, AH,i +BH,i < 1
HEAVY-M mt,i = ωM,i +AM,ivt−1,i +BM,imt−1,i AM,i, BM,i ≥ 0, AM,i +BM,i < 1

Correlation equation
GARCH Qt = (1− αQ − βQ)R̄+ αQut−1u

′
t−1 + βQQt−1 αQ, βQ ≥ 0, βQ < 1

HEAVY-H Rt = (1− βR)R̄− αRP̄ + αRRLt−1 + βRRt−1 αR, βR ≥ 0, βR < 1
HEAVY-M Pt = (1− αP − βP )P̄ + αPRLt−1 + βPPt−1 αP , βP ≥ 0, αP + βP < 1

rt: daily return vector; RCt: realized covariance matrix of day t, see (1); FLFt = {rs for s < t}
(past daily returns); FHFt = {RCs, rs for s < t} (past realized covariance and daily returns).
-For BEKK and FKO equations: Gt = E(rtr

′
t|FLFt−1), Ht = E(rtr

′
t|FHFt−1 ), Mt = E(RCt|FHFt−1 ),

H̄ = E(rtr
′
t) ≈

∑T
t=1 rtr

′
t/T , M̄ = E(RCt) ≈

∑T
t=1RCt/T .

-For DCC-variance equations: rt,i: daily return of asset i (i-th element of rt); vt,i: realized variance
of asset i (i-th diagonal element of RCt); gt,i = E(r2t,i|FLFt−1); ht,i = E(r2t,i|FHFt−1 ); mt,i = E(vt,i|FHFt−1 ).
-For DCC-correlation equations: ut: vector of degarched returns, with i-th element ut,i=rt,i/gt,i;
RLt: realized correlation matrix, see (2); Qt = E(utu

′
t|FLFt−1), transformed into a correlation matrix

by transforming each element into a correlation coefficient; Rt = E(RLt|FHFt−1 );

Pt = E(Mt|FHFt−1 ); R̄ = E(utu
′
t) ≈

∑T
t=1 utu

′
t/T ; P̄ = E(RLt) ≈

∑T
t=1RLt/T .

7



We use the term ‘realized covariance model’ in the broad sense of a model that specifies

the conditional expectation of a covariance matrix (conditional covariance) as a function of

past realized covariance matrices. The conditional expectation in question can be that of the

covariance matrix of a (daily or other) return vector or of a realized covariance matrix. For the

former case, we consider the BEKK-HEAVY-H model of Noureldin, Shephard, and Sheppard

(2012), a model of Fleming, Kirby, and Ostdiek (2003) – see their equation (15)– which we

call FKO-HEAVY-H, and the DCC-HEAVY-H model of Bauwens and Xu (2022); the suffix -H

indicates that these models concern the conditional covariance of daily returns, usually named

Ht. For the realized covariance case, we consider the BEKK-HEAVY-M of Noureldin, Shep-

hard, and Sheppard (2012), the DCC-HEAVY-M of Bauwens and Xu (2022), to which we add

a FKO-HEAVY-M model. In Table 1, we provide the equations defining these models and the

restrictions imposed on their parameters to ensure the positive-definitness of the conditional co-

variance matrices. The table also defines the usual BEKK-GARCH and DCC-GARCH models,

to which we add the FKO-GARCH model, which is similar to the equation (14) in Fleming,

Kirby, and Ostdiek (2003). All models are in scalar version, i.e. each equation of a covariance

or correlation matrix depends on scalar parameters.

A BEKK model has one parameter more than the corresponding FKO model. Each of

these models implies that the conditional covariance matrix Vt (where Vt is one of the matrices

Gt, Ht, Mt) is a moving average of the past observed matrices Ot (rtr
′
t for GARCH, RCt for

HEAVY-H and -M), i.e. Vt = V̄ +
∑∞

j=1wjOt−j , where V̄ is a constant matrix and wj are

scalar declining weights. For FKO, V̄ = 0 and wj = α exp(−jα) (where α is αG, αH or αM ).

For BEKK, V̄ 6= 0 and wj = αβj−1. For FKO, α determines the first weight, α exp(−α), and

the rate of decline of the weights, exp(−α); for BEKK, α is the first weight and the rate of

decline is β. A DCC model has more parameters, allowing each conditional variance to have

its own weights, different from the identical weights of the realized correlations; the weights of

each conditional covariance depend on the parameters of the corresponding variances and of the

correlation process.

3.2 Full sample estimation results

The lagged RCt matrix appears in the HEAVY equations of the BEKK and FKO models,

and the lagged realized variances and correlation matrix RLt in the equations of the DCC
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models. Using RC2t instead of RCt does not change the estimated models since they differ only

by a scaling matrix that is constant, but using RC1t changes the models and their estimated

parameters. To distinguish the HEAVY models estimated with the DJ29 dataset, we use the

suffixes H1 (instead of H) or M1 (instead of M) when RC1t is used, and H2 or M2 when RC2t

is used. For the SBGF dataset, only RCt is used, so we have HEAVY-H and HEAVY-M only.

The models are estimated by the quasi-maximum likelihood (QML) method explained in

Appendix C. The full sample parameter estimates are reported in the tables of Appendix D.

For the SBGF data, the estimates of the parameters of the conditional variance equations of

BOND and GOLD of the DCC models are close within each type of model. For STOCK, the A•

coefficient (with • = G, H or M) is much higher than for the other two assets, and the B• one is

smaller; this corresponds to a stronger sensitivity of the STOCK volatility to its lagged realized

variance and a less smooth volatility. The HEAVY-H correlation process is more sensitive to

the lagged realized correlation than the HEAVY-M, but the reverse holds for the HEAVY-H

covariance process of the BEKK model (though not of FKO). The HEAVY-H first weight (w1)

of the moving average form is equal to 0.25 for FKO, 0.27 for BEKK, and the respective decline

ratios (ρ) are 0.78 and 0.68. For HEAVY-M, these values are w1 = 0.19, ρ = 0.83 for FKO,

w1 = 0.37, ρ = 0.61 for BEKK. Another noticeable feature is the quasi-identical estimates of A•

and B• of HEAVY-H and HEAVY-M for STOCK, which is not the case for BOND and GOLD.

For the DJ29 data, in each model class (DCC, BEKK, KKO), the M1 and H1 models have

rather close estimates, the M2 and H2 models also, but the estimates of a H1 (or H2) model are

different from those of the corresponding M1 (or M2) model. In M2 and H2 models, the α (β)

estimates are larger (smaller) than in the corresponding M1 and H1 models, indicating more

sensitivity of the conditional moment (variance or correlation) to the lagged realized value and

a less smooth conditional process. These differences indicate that the bias correction method

used to transform the trading period realized matrix to the whole day matrix matters. Adding

the overnight return and rescaling (method 1), instead of directly rescaling (method 2), yields

a less reactive and smoother estimated conditional process.

Comparing a specific model across the three classes, the HEAVY-H2 first weight and decline

ratio of the moving average form are equal to 0.038 and 0.96 for FKO, 0.13 and 0.86 for BEKK,

0.047 and 0.95 for the DCC correlation process, but (using the median estimates) 0.39 and
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0.60 for the DCC variance process. So, the FKO covariance process is the least sensitive and

smoothest process, followed by the DCC correlation process, the BEKK process, and the DCC

variance processes. This ranking is the same for the other four types of models.

Further insight can be gained from the partial log-likelihood (PLL) value and Bayesian

information criterion (BIC). To obtain comparable measures between the GARCH and HEAVY

models, we define, similarly to Hansen, Huang, and Shek (2012), a partial log-likelihood (PLL)

function for the time series of daily returns, which is based on the assumption that rt is Gaussian,

with zero mean and covariance matrix Vt, where Vt is Gt for a GARCH model, Ht for a HEAVY-

H, and Mt for a HEAVY-M. The PLL function formula is thus

PLLV = −1

2

T∑
t=1

(
log |Vt|+ r′tV

−1
t rt

)
for V = G,H,M. (5)

From the results reported in Tables 2 and 3 we observe that i) in the FKO and DCC classes,

HEAVY-H (or -H2) has the lowest BIC (i.e., best fit) in both datasets (HEAVY-H2 for DJ29 is

the same as HEAVY-H for SBGF); ii) in the BEKK class, HEAVY-H2 has the best fit for DJ29

data, but HEAVY-M has the best fit for SBGF data; iii) in each model category (column of the

table), the DCC model has a better fit, despite having a larger number of parameters, than the

BEKK and FKO models, and the BEKK is better than FKO (with one minor exception).

4 Model evaluation criteria

For comparing the economic value of the models defined in Section 3, we use three economic

loss functions (defined in section 4.1) and compute them for a set of out-of-sample forecasts.

Because the loss values may differ between models due to the inevitable estimation imprecision

inherent to the use of a finite sample of data, we employ the model confidence set (MCS)

statistical method (briefly exposed in section 4.2) to assess the significance of the loss differences

between the models. In addition, we use the measure of economic value proposed by Fleming

et al. (2001, 2003) for comparing two models, i.e., the return an investor (with a given risk

aversion) would be willing to sacrifice to switch from one model to another. Like Bollerslev,

Patton, and Quadvlieg (2018), we assess the statistical significance of the sacrificed return via

the reality check of White (2000).
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4.1 Economic loss functions

We adopt the widely used economic loss functions of global minimum variance (GMV) and

minimum variance (MV) portfolio; see e.g. Engle and Colacito (2006), and Engle and Kelly

(2012). We denote by Vt the covariance matrix forecast of a model for day t of the forecast

period, and by Ts the number of days of the forecast period. For each day, we compute the

optimal GMV portfolio weight vector wt that is the solution of the minimization of ŵ′tVtŵt

under the constraint that the weights add up to 1, allowing short sales, and we compute the

implied optimal GMV portfolio return w′trt (where rt is the observed return). Next we compute

the forecast variance of the Ts returns, which is the GMV loss function for the considered

model. A superior model according to this loss function produces an optimal portfolio with

lower variance. To compute the MV loss function, we proceed in the same way, except that the

optimal weight vector minimizes the same function as above, under the additional constraint

that ŵ′trt be larger than a fixed threshold that we set at 10 percent (annually). To compute the

optimal MV weights, we need an estimate of the expected return, which we fix at the sample

mean of the observed returns of the forecast period.

For each model and portfolio allocation criterion, we compute three characteristics of the

optimal weight vectors wt = (wt,1wt,2 . . . wt,k)
′ of the forecast period. These characteristics,

introduced by Bollerslev, Patton, and Quadvlieg (2018), are the portfolio concentration COt,

the portfolio total short positions SPt, and the portfolio turnover TOt from day t to day t+ 1,

defined as

COt = (
k∑
i=1

w2
t,i)

1/2, (6)

SPt =
k∑
i=1

wt,i1{wt,i<0}, (7)

TOt =

k∑
i=1

∣∣∣wt+1,i − wt,i
1 + rt,i

1 + w′trt

∣∣∣. (8)

Portfolios with less concentration and short positions may be of interest for practical implemen-

tation and reducing transaction costs. The turnover measure is relevant if transaction costs are

proportional to it, in which case the portfolio return is reduced and becomes

rwt(c) = w′trt − c TOt. (9)
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We compare the models by the MCS procedure using the forecast sample average of each

characteristic as “loss” function.

To compare the economic significance of the different forecasting models, we also consider

the utility-based framework of Fleming et al. (2001, 2003), also used in Bollerslev, Patton, and

Quadvlieg (2018) and many other papers. Assuming that an investor has a quadratic utility

function with absolute risk aversion parameter γ, the realized daily utility generated by the

optimal portfolio based on the covariance forecasts from model a, is defined as

U
(
r
(a)
wt (c), γ

)
=
(

1 + r
(a)
wt (c)

)
− γ

2(1 + γ)

(
1 + r

(a)
wt (c)

)2
, (10)

where r
(a)
wt (c) is the optimal (GMV or MV) portfolio return of day t obtained with model a

for transaction cost c. We use as additional loss function the forecast sample average of (10)

multiplied by -1.

Following Fleming, Kirby, and Ostdiek (2003), the economic value of using model b instead

of model a can be measured by solving for ∆γ the equation

Ts∑
t=1

U
(
r
(a)
wt (c), γ

)
=

Ts∑
t=1

U
(
r
(b)
wt (c)−∆γ(c), γ

)
, (11)

where ∆γ(c) can be interpreted as the return the investor with absolute risk aversion γ would

be willing to sacrifice to switch from using model a to using model b. The above equation can

be solved analytically as explained in Appendix E.

4.2 The model confidence set statistical procedure

The MCS procedure allows reasearchers to compare a set of models through a loss function

based on the forecasts of the models of the considered set – in our setup these forecasts are

the covariance matrix forecasts. The procedure compares the models jointly, without the need

to choose arbitrarily a reference model. It has been developed by Hansen, Lunde, and Nason

(2003) and further elaborated by Hansen, Lunde, and Nason (2011); it has become a widespread

tool for model comparison.4

For a chosen loss function, and a initial set of models M0, the loss difference between each

pair of models in the set is computed (at every time point t = 1, . . . , Ts of the forecast period),

so that for models a and b, we get Dt,ab = Lt,a − Lt,b, where Lt,. is the chosen loss function

4A Google search on ”the model confidence set” found 1993 citations on June 27, 2023.
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(e.g., the GMV loss). At each step of the procedure, the null hypothesis of equal predictive

accuracy, E[Dt,ab] = 0, is tested for ∀a > b ∈ M, a subset of models M⊂M0, with M =M0

at the initial step. If H0 is rejected at a chosen significance level α (e.g., 0.05 or 5 percent),

the worst performing model is removed from M; hence, a model is removed from M only

if it is significantly inferior to the other models. This procedure is continued until a set of

models includes no model that can be rejected at the level α, the resulting set being the model

confidence set at the 1− α confidence level. The procedure does not necessarily select a single

best model, as it may end with a set models of equal forecasting ability, which may be the initial

set M0.

The test statistic for the null hypothesis E[Dt,ab] = 0 is the range statistic of Hansen, Lunde,

and Nason (2011):

max
a,b∈M

| Dab |√
V̂ar(Dab)

, (12)

where Dab = 1
Ts

∑Ts
t=1Dt,ab, and the estimated variance V̂ar(Dab) is obtained by a bootstrap

approach (Hansen, Lunde, and Nason (2003)), with 5,000 replications and block length of 22.

5 Empirical results: comparisons of out-of-sample forecasts

To compute out-of-sample forecasts, each model is first estimated on the sample of 3,000

observations starting at the first date of the available data, and out-of-sample forecasts for the

next five observations (3001-3005) are computed from the estimated model. Next, each model

is re-estimated on the window of 3,000 observations from observation 6 to 3005, and the five

forecasts (3006-3010) are computed. The procedure is continued until the end of the sample

and results in a total of Ts = 1092 out-of-sample forecasts for s = 1, 1088 for s = 5, and 1071

for s = 22 for the DJ29 dataset, and Ts = 1864 out-of-sample forecasts for s = 1, 1860 for s = 5,

and 1,843 for s = 22 for the SBGF dataset.

5.1 SBGF data

5.1.1 Loss functions and portfolio features (Tables 4-6)

For the GMV and MV loss functions (see the StDev columns in the tables), at horizons 1 and

5, in each case the six realized covariance models form the MCS95 (i.e., the model confidence set,

at the 95% level of confidence, obtained by comparing the nine models); thus, the three models
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that use only daily data (DCC-GARCH, BEKK-GARCH, FKO) are excluded. At horizon 22,

for GMV, the MCS95 consists only of the four BEKK and DCC realized covariance models;

for MV, the three DCC models, the BEKK-HEAVY-H, and the simple FKO model form the

MCS95, this being the single setup in which two models that use only daily data are in MCS95.

Considering all these results, we can conclude that i) the realized covariance models are superior

to the GARCH models, and ii) the HEAVY-M and HEAVY-H models perform similarly.

Using the (opposite of the) utility function as loss criterion (see the Utility columns) with risk

aversion parameter γ equal to 1 and transaction cost set to zero, the nine models are included

in the MCS95, whatever the horizon and portfolio type, with the exception, at horizon 1 for the

MV utilities, that the models that use only daily data (DCC-GARCH, BEKK-GARCH, FKO)

are not in the MCS95.

Considering the average return values (see the Return columns), the nine models are in each

MCS95, except the models that use only daily data (DCC-GARCH, BEKK-GARCH, FKO) at

horizon 22 for MV portfolio returns. The higher level of MV returns than of GMV returns is

due to the imposed constraint on the expected returns in the MV optimization.

The average concentration (column CO in the tables) and the the importance of short

positions (SP column, in absolute value) of the HEAVY-M portfolio is lower than or equal to

the value for the corresponding HEAVY-H. For both criteria, each of the six MCS95 includes

from one to four models (except for SP of GMV at horizon 22, where the SP values are all

very close to zero so that eight models are in the MCS95). Concerning the average turnover

(TO column), the nine models are in each of the six MCS95, and the values do not differ much

between the models (except one outlier).

5.1.2 Economic value of model switching (Tables 7-9)

The second column of each table reports the economic gain ∆γ(c) – see (11) – of using the

HEAVY-H model instead of the HEAVY-M and the GARCH model of the same class, when the

risk aversion parameter γ is equal to 1 and the transaction cost is set to zero; for example in the

DCC class, for horizon 1 and GMV portfolio, using HEAVY-H instead of GARCH, is worth 10.9

basis points, which is a statistically significant value at the 5% level based on the reality check

of White (2000), while switching from HEAVY-M to HEAVY-H entails an insignificant loss of

3.1 points. Considering the three model classes, three horizons and two types of portfolio, the
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results confirm i) the positive economic value of each realized covariance (HEAVY-H) model

with respect to the corresponding model that uses only daily data (with two exceptions, at

horizon 22, for FKO), this being statistically significant in ten among the eighteen comparisons,

and ii) the equivalence of the HEAVY-M and HEAVY-H models, since the gains or losses are

small and insignificant.

The last three columns of each table provide a view of the impact of increasing the risk

aversion parameter from 1 to 10, and the transaction cost from 0 to 0.01.

For a given value of the transaction cost, the increase of the risk aversion parameter amplifies

the economic gain or loss of using the HEAVY-H model instead of the HEAVY-M and the

GARCH model of the same class; for example, at horizon 1, for γ = 10 and c = 0, the gain of

switching from DCC-GARCH to DCC-HEAVY-H is 90.4 instead of 10.9 for γ = 1 and c = 0.

The number of significant gains or losses increases slightly when the risk aversion increases

(from 10 to 13 for the changes from GARCH to HEAVY-H, and from 0 to 3 for HEAVY-M to

HEAVY-H).

For a given value of the risk aversion parameter, the increase of the transaction cost (from

0 to 0.01) has a small impact on the economic gains or losses: in almost all comparisons, a

gain remains a gain, a significant gain remains a significant gain, and likewise for losses. The

differences of values of the gains or losses are very small, with the single exception at horizon 1,

for MV portfolio, of switching from BEKK-GARCH to BEKK–HEAVY-H: for γ = 1, the gain

is multiplied by almost 4, for γ = 10, by 2.

In each table, and for each portfolio type, the last block (of three rows) shows the results for

switches between the HEAVY-H models of the three classes (BEKK, DCC, FKO), since these

are the best performing models in their own class. Like for the comparisons commented above,

the gains or losses are stable with respect to the transaction cost, and they are boosted by the

higher risk aversion. Nevertheless, the differences between the models are mostly small and

insignificant for horizons 1 and 5, whereas at horizon 22 they are big and significant, especially

for γ = 10. Except for the monthly horizon where the FKO model performs better than DCC

and BEKK, the three HEAVY-H models can be considered as equivalent.
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5.2 DJ29 data

5.2.1 Loss functions and portfolio features (Tables 10-12)

About the two ways to transform the realized covariance of the trading period into a daily

covariance, no model (HEAVY-H1 or -M1) that uses the first correction (RC1t) is included in

one of the MCS95 for the GMV and MV loss functions (see the StDev columns in the tables).

In contrast, the models that use the second correction (RC2t) often belong to the MCS95;

in particular the DCC-HEAVY-M2 and -H2 models are in each of the six MCS95; the FKO-

HEAVY-M2 model is in three of them, FKO-HEAVY-H2 in five, BEKK-HEAVY-M2 in four,

and BEKK-HEAVY-H2 in one. In brief, i) the models (H2 and M2) using the RC2t realized

covariances perform better than the models (H1 and M1) using RC1t, and ii) the DCC models

perform better than the FKO and BEKK models; this second finding is not much surprising for

models of dimension 29, since DCC is more flexible than BEKK and FKO, by allowing different

parameters in the individual variance processes and in the latter with respect to the correlation

process.

The models that use only the daily returns are rarely included in the (StDev) GMV and

MV MCS95, except the FKO model (included in the three GMV MCS95 and one MV), which

has smaller losses than DCC-GARCH and BEKK-GARCH.

Using the (opposite of the) utility function as loss criterion (see the Utility columns) with

risk aversion parameter γ equal to 1 and transaction cost set to zero, the fifteen models are

considered as equivalent at horizon 22 and for MV loss at horizon 5; at horizon 1, the included

models are the M2 and H2 models, i.e., the same as for the corresponding StDev losses (with

one exception: BEKK-HEAVY-H2 is included for GMV Utility, not for StDev). Considering

the average return values (see the Return columns), the fifteen models are in each MCS95.

The average concentration (column CO in the tables) and the importance (in absolute value)

of short positions (SP column) of the HEAVY-M2 and -H2 portfolios are lower than or equal

to the values for the corresponding HEAVY-M1 and -H1 models. For each measure, the six

MCS95 contain the DCC-HEAVY-H2 model, plus two other models at most. Concerning the

average turnover (TO column), the fifteen models are all in each of the six MCS95, and the

values do not differ much between the models.
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5.2.2 Economic value of model switching (Tables 13-15)

The second column of each table reports the economic gain ∆γ(c) – see (11) – of using the

HEAVY-H2 model instead of each other model of the same class; for example, in the FKO class,

for horizon 1 and MV portfolio, using HEAVY-H2 instead of HEAVY-H1 is worth 76.8 basis

points, which is a significant value at the 5% level based on the reality check of White (2000),

and switching from HEAVY-M2 to HEAVY-H2 entails a n insignificant loss of 2.9 basis points.

The main findings from these economic gain comparisons are summarized in three items:

i) The HEAVY-H2 model entails a gain with respect to the HEAVY-H1 and -M1 models

of the same class in 34 cases (over 36); only two losses occur (at horizon 22, for GMV,

BEKK), but they are not statistically significant (at the 5% level); on the contrary, several

gains are statistically significant (12 at horizon 1, 8 at horizon 5, and 5 at horizon 22).

This set of results confirms the better performance of the models using RC2t with respect

to the models using RC1t, already mentioned for the GMV and MV loss functions.

ii) Switching from HEAVY-M2 to HEAVY-H2 provides no significant gain or loss in the six

possible comparisons at horizon 1, one significant loss at horizon 5 (for GMV, BEKK),

and one significant gain at horizon 22 (for GMV, DCC). The performances of these two

types of models can be considered as broadly equivalent.

iii) Switching from the DCC-GARCH model to the DCC-HEAVY-H2 corresponding model

entails a statistically significant gain in the six possible comparisons, i.e. at each horizon

and for each loss function; the gain values (∆1) are important, being between 40.5 and

108.3 basis points. Switching from BEKK-GARCH to BEKK-HEAVY-H2 creates a sig-

nificantly positive gain in four cases, and switching from FKO to FKO-HEAVY-H2 entails

insignificant gains or losses. Using realized covariances as inputs in the DCC class is more

valuable than in the other two classes.

The last three columns of each table provide a view of the impact of increasing the risk

aversion parameter from 1 to 10, and the transaction cost from 0 to 0.01.

For a given value of the transaction cost, the increase of the risk aversion parameter amplifies

the economic gain or loss of using the HEAVY-H2 model instead of the other HEAVY models

(M2, M1, H1) and the GARCH model of the same class; for example, at horizon 22, for γ = 10
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and c = 0, the gain of switching from DCC-GARCH to DCC-HEAVY-H2 is 265.7 basis points

instead of 40.5 for γ = 1 and c = 0. The significant gains or losses for γ = 1 remain significant

for γ = 10 in most cases.

For a given value of the risk aversion parameter, the increase of the transaction cost (from 0

to 0.01) has in many comparisons a strong effect on the economic gains or losses: there are sign

switches, but less so when both values are significant. The differences of values of the gains or

losses vary a lot, and several are important.

In each table, and for each portfolio type, the last block (of three rows) shows the results for

switches between the HEAVY-H2 models of the three classes (BEKK, DCC, FKO), since these

are the best performing models in their own class. Like for the comparisons commented above,

the gains or losses are amplified by the higher transaction cost and risk aversion parameter.

Switching from BEKK to DCC creates significant gains when they are positive; losses occur

only for horizon 5 and transaction cost 0.01, but they are statistically insignificant. Switching

from FKO to BEKK results in 19 losses (out of 24 cases), among which only six are significant;

none of the five gains is significant. Switching from DCC to FKO entails losses in all cases but

one (at horizon 5, GMV portfolio, γ = 1 and c = 0.01) but they are statistically insignificant

(except at horizon 5, GMV portfolio, γ = 10 and c = 0). In brief, the BEKK-HEAVY-H2 is less

valuable than the corresponding DCC and FKO models,, and FKO seems more valuable than

DCC, although there is no statistical support for this conclusion.

5.3 Synthesis of empirical findings

The main findings for both datasets can be summarized in three items:

1. The models utilizing the high-frequency intra-day data, namely, the HEAVY-M and

HEAVY-H models for the SBGF dataset and the HEAVY-M2 and HEAVY-H2 models

for the DJ29 dataset, exhibit a significant improvement in forecasting performance for the

daily covariance when the forecasting horizon is short (i.e., daily or weekly). However,

for forecasting monthly-ahead, the gains or losses are marginal and statistically insignifi-

cant. This observation aligns with the findings in univariate volatility forecasting, as, for

example, in Lyocsa, Molnar, and Vyrost (2021).

2. For the DJ29 dataset, the models using the first bias correction method (i.e., HEAVY-M1
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and HEAVY-H1), which employs the overnight returns to construct the full-day covari-

ance, are not as effective as the models using the second bias correction method (i.e.,

HEAVY-M2 and HEAVY-H2), where the covariance of the intraday returns is directly

rescaled to the full-day covariance. The primary reason for this is that the overnight

returns yield noisy estimators of the overnight covariance.

3. For the small portfolios of three assets of the SBGF dataset, the DCC, BEKK, and FKO

models, exhibit similar performances. Conversely, for the larger portfolio of twenty-nine

assets of the DJ29 dataset, the DCC model outperforms the BEKK and FKO models. The

reason is that the the DCC model is able to capture the heterogeneity of the individual

variance processes, which is more important for twenty-nine assets than for three.

In brief, the most promising model for a large cross section of assets appears to be the

HEAVY-H2 model, which exclusively uses intraday returns and directly models the daily co-

variance matrix employing a GARCH model structure, but with the lagged realized covariance

matrix as driving variable.

6 Conclusions

It is known, since Fleming, Kirby, and Ostdiek (2003), that realized covariance (RC) models,

i.e., multivariate volatility models that employ high-frequency data to measure the multivariate

volatility, yield significant additional economic value with respect to GARCH models that em-

ploy only daily data. We show empirically that this holds also for more recently developed RC

models with respect to the models used by Fleming, Kirby, and Ostdiek (2003). For relatively

homogenous data, the different types of models (DCC, BEKK, FKO) provide similar results,

but for heterogenous data, DCC-type RC models have an edge.

For the datasets we use, we find that the benefit of the RC models is important for one

to five days ahead forecast horizons, not for a monthly horizon. Attention should be paid to

the way by which the full day covariance matrix is constructed, when the data do not allow

to measure the latter completely from the trading period intraday returns. Adding the outer

product of overnight returns to correct the trading period covariance matrix before rescaling

the latter does not seem advantageous, with respect to directly rescaling the trading period

covariance to the full day one. More empirical research is needed, based on different data, is
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needed to add further evidence on such issues.
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Table 2 – PLL and BIC on full sample of SBGF data

p GARCH HEAVY-H HEAVY-M

Partial log-likelihood (PLL)
DCC- 11 -17138 -16712 -16837
BEKK- 2 -17266 -16915 -16845
FKO- 1 -17497 -16900 -16920

Bayesian information criterion (BIC)
DCC- 7.050 6.875 6.927
BEKK- 7.103 6.959 6.930
FKO- 7.196 6.951 6.959

p: number of estimated parameters; PLL: see eq. (5). Bold
values: minimum BIC in row. Underlined values: minimum BIC
in column.

Table 3 – PLL and BIC on full sample of DJ29 data

p GARCH HEAVY-M1 HEAVY-H1 HEAVY-M2 HEAVY-H2

Partial log-likelihood (PLL)
DCC- 89 -187724 -188090 -186778 -186205 -184187
BEKK- 2 -191475 -188526 -188269 -186711 -185452
FKO- 1 -193771 -190610 -190592 -189158 -188699

Bayesian information criterion (BIC)
DCC- 91.76 91.93 91.29 91.01 90.03
BEKK- 93.59 92.15 92.02 91.26 90.65
FKO- 94.71 93.16 93.15 92.45 92.23

p: number of estimated parameters; PLL: see eq. (5). Bold values: minimum BIC in row. Under-
lined values: minimum BIC in column.
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Table 4 – Loss function comparisons at daily horizon (s=1) for SBGF data

GMV portfolio
TO CO SP Return StDev Utility

DCC-GARCH 0.724 0.682 -0.056 2.018 6.919 0.707
DCC-HEAVY-M 0.753 0.665 -0.009 2.375 6.692 0.710
DCC-HEAVY-H 0.928 0.692 -0.083 2.388 6.738 0.710

BEKK-GARCH 0.682 0.685 -0.069 1.742 6.960 0.705
BEKK-HEAVY-M 0.805 0.653 -0.026 2.268 6.743 0.709
BEKK-HEAVY-H 0.790 0.687 -0.079 1.828 6.787 0.708

FKO 0.941 0.682 -0.073 1.617 6.976 0.705
FKO-HEAVY-M 0.656 0.653 -0.012 2.077 6.742 0.709
FKO-HEAVY-H 0.832 0.654 -0.018 2.149 6.739 0.709

MV portfolio
TO CO SP Return StDev Utility

DCC-GARCH 1.628 0.947 -0.191 9.872 14.571 0.559
DCC-HEAVY-M 1.660 0.951 -0.186 10.944 14.279 0.569
DCC-HEAVY-H 1.848 0.960 -0.192 10.954 14.315 0.568

BEKK-GARCH 2.613 0.943 -0.213 9.392 14.704 0.553
BEKK-HEAVY-M 2.041 0.945 -0.198 10.339 14.263 0.568
BEKK-HEAVY-H 2.709 0.964 -0.243 10.459 14.302 0.568

FKO 2.247 0.963 -0.225 9.043 14.788 0.551
FKO-HEAVY-M 1.800 0.952 -0.205 10.465 14.325
FKO-HEAVY-H 2.327 0.954 -0.204 10.319 14.293

TO: average (over forecast sample) turnover;
CO: average portfolio concentration;
SP: average of short positions;
Return: average of optimal portfolio annualized returns for transaction cost = 0;
StDev: corresponding standard deviation;
Utility: mean of utilities defined by (10), with γ = 1, c = 0 and (a) the model indicated in the
first column.
Bold values in columns 2-7 identify the models included in the 95% MCS computed for the
nine models of each portfolio type.
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Table 5 – Loss function comparisons at weekly horizon (s=5) for SBGF data

GMV portfolio
TO CO SP Return StDev Utility

DCC-GARCH 0.885 0.682 -0.057 1.921 6.933 0.706
DCC-HEAVY-M 0.773 0.653 -0.009 2.520 6.741 0.710
DCC-HEAVY-H 1.456 0.689 -0.067 2.228 6.768 0.709

BEKK-GARCH 0.728 0.685 -0.061 1.876 6.869 0.707
BEKK-HEAVY-M 0.853 0.655 -0.025 2.358 6.744 0.710
BEKK-HEAVY-H 0.989 0.688 -0.065 2.082 6.765 0.709

FKO 0.979 0.685 -0.065 1.690 6.916 0.706
FKO-HEAVY-M 0.827 0.653 -0.014 2.489 6.828 0.709
FKO-HEAVY-H 0.982 0.653 -0.018 2.516 6.825 0.709

MV portfolio
TO CO SP Return StDev Utility

DCC-GARCH 1.925 0.935 -0.193 10.233 14.799 0.553
DCC-HEAVY-M 1.587 0.933 -0.193 10.967 14.519 0.562
DCC-HEAVY-H 1.692 0.947 -0.203 10.944 14.566 0.561

BEKK-GARCH 2.031 0.933 -0.208 9.700 14.896 0.549
BEKK-HEAVY-M 9.086 0.929 -0.191 10.833 14.473 0.563
BEKK-HEAVY-H 1.901 0.945 -0.230 11.030 14.414 0.565

FKO 1.636 0.939 -0.210 10.107 14.867 0.551
FKO-HEAVY-M 1.560 0.948 -0.202 11.617 14.555 0.563
FKO-HEAVY-H 1.613 0.948 -0.202 11.578 14.545 0.563

For explanations, see note below Table 4.
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Table 6 – Loss function comparisons at monthly horizon (s=22) for SBGF data

GMV portfolio
TO CO SP Return StDev Utility

DCC-GARCH 1.288 0.688 -0.001 1.723 7.160 0.703
DCC-HEAVY-M 0.972 0.673 0.000 2.107 7.037 0.705
DCC-HEAVY-H 0.641 0.710 0.000 1.875 7.013 0.705

BEKK-GARCH 1.610 0.687 -0.001 1.706 7.314 0.700
BEKK-HEAVY-M 0.822 0.665 0.000 2.710 7.068 0.706
BEKK-HEAVY-H 1.765 0.692 0.000 2.587 7.044 0.706

FKO 1.519 0.686 -0.004 1.995 7.351 0.700
FKO-HEAVY-M 1.705 0.653 0.000 2.965 7.574 0.699
FKO-HEAVY-H 1.709 0.653 0.000 2.965 7.574 0.699

MV portfolio
TO CO SP Return StDev Utility

DCC-GARCH 2.168 0.882 -0.167 8.170 14.613 0.554
DCC-HEAVY-M 2.660 0.890 -0.177 10.011 14.625 0.557
DCC-HEAVY-H 3.331 0.905 -0.192 9.959 14.683 0.556

BEKK-GARCH 1.799 0.880 -0.164 8.197 14.598 0.555
BEKK-HEAVY-M 1.584 0.869 -0.143 10.160 14.722 0.555
BEKK-HEAVY-H 1.854 0.876 -0.170 10.383 14.515 0.561

FKO 1.659 0.902 -0.171 8.175 14.648 0.553
FKO-HEAVY-M 2.704 0.911 -0.164 10.606 14.863 0.552
FKO-HEAVY-H 2.826 0.911 -0.164 10.606 14.863 0.552

For explanations, see note below Table 4.
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Table 7 – Economic values of switching between models for two risk aversion parameters γ and two
transaction costs c, at daily horizon (s=1) for SBGF data

γ=1 γ=10
c=0 c=0.01 c=0 c=0.01

GMV portfolio
from DCC-GARCH to DCC-HEAVY-H 10.9 11.9 90.4 87.8
from DCC-HEAVY-M to DCC-HEAVY-H -3.1 -3.4 -37.1 -39.7

from BEKK-GARCH to BEKK-HEAVY-H 8.7 7.5 86.0 84.9
from BEKK-HEAVY-M to BEKK-HEAVY-H -7.4 -7.5 -39.5 -39.2

from FKO to FKO-HEAVY-H 13.6 14.1 101.2 101.9
from FKO-HEAVY-M to FKO-HEAVY-H 1.1 0.6 3.0 0.8

from BEKK-HEAVY-H to DCC-HEAVY-H 9.1 8.7 39.2 37.2
from FKO-HEAVY-H to BEKK-HEAVY-H -6.6 -6.5 -42.2 -41.2
from DCC-HEAVY-H to FKO-HEAVY-H -2.5 -2.4 -3.2 -1.7

MV portfolio
from DCC-GARCH to DCC-HEAVY-H 27.6 27.1 253.7 250.7
from DCC-HEAVY-M to DCC-HEAVY-H -5.5 -6.5 -143.4 -145.4

from BEKK-GARCH to BEKK-HEAVY-H 37.4 134.6 322.7 658.6
from BEKK-HEAVY-M to BEKK-HEAVY-H -5.2 -9.1 -148.7 -152.6

from FKO to FKO-HEAVY-H 53.7 53.6 401.2 398.6
from FKO-HEAVY-M to FKO-HEAVY-H 4.2 3.1 63.4 55.0

from BEKK-HEAVY-H to DCC-HEAVY-H 3.2 8.3 -30.0 19.8
from FKO-HEAVY-H to BEKK-HEAVY-H 1.0 -4.0 -22.9 -73.6
from DCC-HEAVY-H to FKO-HEAVY-H -3.2 -5.2 40.4 32.3

The numerical values are the ∆γ(c) as defined by (11) for γ and c indicated in the headers, i.e. the
economic gain (if positive) or loss (if negative) of switching from one model to another.
Underlined values indicate statistical significance at the 5% level.
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Table 8 – Economic values of switching between models for two risk aversion parameters γ and two
transaction costs c, at weekly horizon (s=5) for SBGF data

γ=1 γ=10
c=0 c=0.01 c=0 c=0.01

GMV portfolio
from DCC-GARCH to DCC-HEAVY-H 9.6 5.3 64.8 58.4
from DCC-HEAVY-M to DCC-HEAVY-H -5.0 -6.3 -24.2 -34.6

from BEKK-GARCH to BEKK-HEAVY-H 4.1 3.7 41.9 39.2
from BEKK-HEAVY-M to BEKK-HEAVY-H -4.2 -4.7 -19.3 -21.1

from FKO to FKO-HEAVY-H 6.2 6.1 31.8 13.5
from FKO-HEAVY-M to FKO-HEAVY-H 0.5 0.2 2.5 0.2

from BEKK-HEAVY-H to DCC-HEAVY-H 1.3 0.4 -0.4 -7.1
from FKO-HEAVY-H to BEKK-HEAVY-H -0.5 -0.4 37.0 37.0
from DCC-HEAVY-H to FKO-HEAVY-H -1.2 -0.2 -44.6 -36.7

MV portfolio
from DCC-GARCH to DCC-HEAVY-H 14.7 15.6 211.6 212.7
from DCC-HEAVY-M to DCC-HEAVY-H -7.7 -8.6 -143.5 -145.7

from BEKK-GARCH to BEKK-HEAVY-H 54.6 54.7 398.6 399.1
from BEKK-HEAVY-M to BEKK-HEAVY-H 10.9 37.4 111.5 254.3

from FKO to FKO-HEAVY-H 41.3 41.8 318.6 317.4
from FKO-HEAVY-M to FKO-HEAVY-H 1.2 1.1 24.4 24.0

from BEKK-HEAVY-H to DCC-HEAVY-H -24.2 -23.8 -143.9 35.9
from FKO-HEAVY-H to BEKK-HEAVY-H 14.7 14.5 196.7 93.6
from DCC-HEAVY-H to FKO-HEAVY-H 10.1 10.0 52.9 54.4

For explanations, see note below Table 7.
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Table 9 – Economic values of switching between models for two risk aversion parameters γ and two
transaction costs c, at monthly horizon (s=22) for SBGF data

γ=1 γ=10
c=0 c=0.01 c=0 c=0.01

GMV portfolio
from DCC-GARCH to DCC-HEAVY-H 12.1 14.3 15.0 17.2
from DCC-HEAVY-M to DCC-HEAVY-H -0.8 0.2 15.5 19.3

from BEKK-GARCH to BEKK-HEAVY-H 28.3 30.4 14.6 28.1
from BEKK-HEAVY-M to BEKK-HEAVY-H 0.5 -2.0 16.9 2.0

from FKO to FKO-HEAVY-H -7.2 -6.0 -132.9 -123.3
from FKO-HEAVY-M to FKO-HEAVY-H -0.2 -0.2 -0.3 -0.3

from BEKK-HEAVY-H to DCC-HEAVY-H -4.9 -2.3 16.5 31.4
from FKO-HEAVY-H to BEKK-HEAVY-H 35.3 34.9 268.2 266.3
from DCC-HEAVY-H to FKO-HEAVY-H -30.3 -32.7 -272.3 -278.7

MV portfolio
from DCC-GARCH to DCC-HEAVY-H 7.3 7.9 -104.2 -94.0
from DCC-HEAVY-M to DCC-HEAVY-H -10.0 -11.6 -105.8 -111.4

from BEKK-GARCH to BEKK-HEAVY-H 34.4 35.5 151.4 160.3
from BEKK-HEAVY-M to BEKK-HEAVY-H 33.9 33.3 270.1 267.6

from FKO to FKO-HEAVY-H -9.4 -11.9 -255.4 -263.9
from FKO-HEAVY-M to FKO-HEAVY-H -1.8 -1.0 -1.1 -5.2

from BEKK-HEAVY-H to DCC-HEAVY-H -30.5 -33.7 -236.0 -245.8
from FKO-HEAVY-H to BEKK-HEAVY-H 51.4 53.3 379.9 386.8
from DCC-HEAVY-H to FKO-HEAVY-H -21.6 -20.9 -241.6 -238.3

For explanations, see note below Table 7.
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Table 10 – Economic value comparisons at daily horizon (s=1) for DJ29 data

GMV portfolio
TO CO SP Return StDev Utility

DCC-GARCH 4.134 0.499 -0.423 1.106 11.640 0.618
DCC-HEAVY-M1 4.316 0.502 -0.473 -1.084 11.451 0.618
DCC-HEAVY-H1 5.608 0.467 -0.404 -1.290 11.241 0.622
DCC-HEAVY-M2 3.410 0.451 -0.366 1.333 10.822 0.637
DCC-HEAVY-H2 3.715 0.441 -0.348 1.596 10.793 0.638

BEKK-GARCH 3.883 0.482 -0.411 -3.086 11.111 0.621
BEKK-HEAVY-M1 4.502 0.511 -0.496 -2.584 11.350 0.617
BEKK-HEAVY-H1 5.125 0.513 -0.481 -3.023 11.308 0.617
BEKK-HEAVY-M2 3.242 0.470 -0.407 -0.535 10.765 0.634
BEKK-HEAVY-H2 4.221 0.510 -0.480 -2.757 10.990 0.625

FKO 7.240 0.452 -0.428 0.296 10.848 0.634
FKO-HEAVY-M1 9.461 0.512 -0.527 -2.127 11.453 0.616
FKO-HEAVY-H1 4.144 0.508 -0.516 -2.032 11.431 0.616
FKO-HEAVY-M2 2.832 0.463 -0.415 0.348 10.833 0.634
FKO-HEAVY-H2 2.857 0.452 -0.392 1.037 10.875 0.635

MV portfolio
TO CO SP Return StDev Utility

DCC-GARCH 3.314 0.524 -0.520 9.059 12.253 0.619
DCC-HEAVY-M1 5.299 0.541 -0.599 7.135 12.182 0.617
DCC-HEAVY-H1 3.660 0.500 -0.511 5.820 11.896 0.621
DCC-HEAVY-M2 3.120 0.492 -0.498 10.102 11.510 0.638
DCC-HEAVY-H2 4.002 0.478 -0.466 8.838 11.337 0.640

BEKK-GARCH 7.261 0.513 -0.524 3.288 12.473 0.602
BEKK-HEAVY-M1 5.895 0.557 -0.624 7.233 12.052 0.620
BEKK-HEAVY-H1 4.600 0.557 -0.611 6.815 11.981 0.621
BEKK-HEAVY-M2 4.569 0.516 -0.541 8.504 11.501 0.635
BEKK-HEAVY-H2 3.961 0.551 -0.608 6.738 11.628 0.629

FKO 4.176 0.491 -0.539 7.977 11.461 0.635
FKO-HEAVY-M1 5.472 0.561 -0.652 7.605 12.150 0.619
FKO-HEAVY-H1 3.948 0.558 -0.646 7.578 12.116 0.619
FKO-HEAVY-M2 4.661 0.512 -0.536 9.154 11.633 0.634
FKO-HEAVY-H2 3.401 0.501 -0.518 9.850 11.710 0.633

For explanations, see note below Table 4.
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Table 11 – Economic value comparisons at weekly horizon (s=5) for DJ29 data

GMV portfolio
TO CO SP Return StDev Utility

DCC-GARCH 2.997 0.485 -0.409 -0.042 11.466 0.620
DCC-HEAVY-M1 5.143 0.504 -0.463 -1.101 11.430 0.618
DCC-HEAVY-H1 3.476 0.472 -0.378 0.463 11.244 0.626
DCC-HEAVY-M2 3.087 0.447 -0.329 0.630 11.004 0.631
DCC-HEAVY-H2 3.594 0.430 -0.312 1.468 10.948 0.634

BEKK-GARCH 3.145 0.482 -0.409 -3.643 11.174 0.619
BEKK-HEAVY-M1 4.811 0.511 -0.492 -1.713 11.450 0.617
BEKK-HEAVY-H1 3.607 0.512 -0.476 -1.870 11.418 0.617
BEKK-HEAVY-M2 2.648 0.471 -0.397 0.077 11.074 0.629
BEKK-HEAVY-H2 2.881 0.505 -0.459 -1.864 11.231 0.621

FKO 3.243 0.451 -0.428 -0.452 10.986 0.629
FKO-HEAVY-M1 4.118 0.512 -0.527 -1.467 11.550 0.615
FKO-HEAVY-H1 4.626 0.508 -0.516 -1.397 11.527 0.616
FKO-HEAVY-M2 3.734 0.462 -0.413 1.330 11.164 0.629
FKO-HEAVY-H2 3.813 0.452 -0.393 1.775 11.081 0.632

MV portfolio
TO CO SP Return StDev Utility

DCC-GARCH 3.763 0.513 -0.512 7.558 12.372 0.613
DCC-HEAVY-M1 3.674 0.547 -0.591 9.672 12.122 0.623
DCC-HEAVY-H1 3.963 0.517 -0.516 9.330 11.917 0.627
DCC-HEAVY-M2 3.718 0.485 -0.470 10.590 11.858 0.631
DCC-HEAVY-H2 4.638 0.473 -0.451 9.895 11.682 0.634

BEKK-GARCH 4.368 0.515 -0.533 5.115 12.039 0.616
BEKK-HEAVY-M1 8.211 0.558 -0.631 8.893 12.265 0.618
BEKK-HEAVY-H1 4.441 0.558 -0.617 8.810 12.219 0.619
BEKK-HEAVY-M2 3.813 0.518 -0.547 10.021 11.930 0.628
BEKK-HEAVY-H2 3.916 0.548 -0.601 9.009 12.048 0.624

FKO 3.359 0.494 -0.546 8.039 11.649 0.631
FKO-HEAVY-M1 4.455 0.564 -0.662 8.938 12.354 0.616
FKO-HEAVY-H1 3.932 0.561 -0.656 8.865 12.318 0.617
FKO-HEAVY-M2 3.116 0.515 -0.544 10.758 12.060 0.627
FKO-HEAVY-H2 3.185 0.504 -0.528 11.172 12.000 0.629

For explanations, see note below Table 4.
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Table 12 – Economic value comparisons at monthly horizon (s=22) for DJ29 data

GMV portfolio
TO CO SP Return StDev Utility

DCC-GARCH 2.848 0.462 -0.357 -0.855 11.482 0.618
DCC-HEAVY-M1 2.971 0.507 -0.424 -1.339 11.416 0.618
DCC-HEAVY-H1 2.959 0.483 -0.355 -0.338 11.342 0.622
DCC-HEAVY-M2 3.837 0.458 -0.331 -2.094 11.198 0.622
DCC-HEAVY-H2 2.463 0.445 -0.289 -0.924 11.114 0.626

BEKK-GARCH 4.929 0.483 -0.402 -4.913 11.603 0.607
BEKK-HEAVY-M1 4.764 0.511 -0.479 -1.114 11.574 0.615
BEKK-HEAVY-H1 4.008 0.512 -0.461 -1.264 11.557 0.615
BEKK-HEAVY-M2 3.185 0.478 -0.383 -0.047 11.484 0.619
BEKK-HEAVY-H2 3.629 0.507 -0.439 -1.667 11.562 0.614

FKO 4.140 0.451 -0.428 -0.290 11.260 0.624
FKO-HEAVY-M1 5.061 0.512 -0.526 -0.735 11.701 0.613
FKO-HEAVY-H1 4.611 0.509 -0.518 -0.775 11.682 0.613
FKO-HEAVY-M2 5.244 0.460 -0.408 2.284 11.537 0.623
FKO-HEAVY-H2 3.234 0.453 -0.393 2.807 11.379 0.627

MV portfolio
TO CO SP Return StDev Utility

DCC-GARCH 2.794 0.491 -0.481 7.615 12.192 0.618
DCC-HEAVY-M1 3.246 0.550 -0.567 9.941 12.253 0.621
DCC-HEAVY-H1 3.083 0.528 -0.515 9.425 12.130 0.623
DCC-HEAVY-M2 4.888 0.488 -0.475 9.586 12.096 0.624
DCC-HEAVY-H2 2.636 0.481 -0.445 9.478 11.933 0.627

BEKK-GARCH 4.008 0.517 -0.546 5.095 12.601 0.603
BEKK-HEAVY-M1 4.602 0.557 -0.634 10.474 12.476 0.616
BEKK-HEAVY-H1 3.948 0.556 -0.621 10.376 12.460 0.616
BEKK-HEAVY-M2 5.741 0.521 -0.554 10.600 12.383 0.619
BEKK-HEAVY-H2 4.591 0.548 -0.610 10.092 12.425 0.617

FKO 4.433 0.497 -0.552 8.957 11.899 0.627
FKO-HEAVY-M1 5.163 0.566 -0.672 10.550 12.596 0.613
FKO-HEAVY-H1 4.306 0.564 -0.667 10.411 12.567 0.614
FKO-HEAVY-M2 3.627 0.516 -0.549 11.778 12.536 0.617
FKO-HEAVY-H2 4.765 0.508 -0.537 12.375 12.375 0.622

For explanations, see note below Table 4.
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Table 13 – Economic values of switching between models for two risk aversion parameters γ and two
transaction costs c, at daily horizon (s=1) for DJ29 data

γ=1 γ=10
c=0 c=0.01 c=0 c=0.01

GMV portfolio
from DCC-GARCH to DCC-HEAVY-H2 98.5 164.1 496.2 671.7
from DCC-HEAVY-M1 to DCC-HEAVY-H2 77.4 152.3 152.9 532.0
from DCC-HEAVY-H1 to DCC-HEAVY-H2 98.5 198.9 255.7 675.6
from DCC-HEAVY-M2 to DCC-HEAVY-H2 5.9 11.5 33.7 93.8

from BEKK-GARCH to BEKK-HEAVY-H2 16.7 -366.0 104.9 -509.7
from BEKK-HEAVY-M1 to BEKK-HEAVY-H2 37.6 -128.8 228.6 -166.4
from BEKK-HEAVY-H1 to BEKK-HEAVY-H2 37.9 -173.5 249.7 -165.7
from BEKK-HEAVY-M2 to BEKK-HEAVY-H2 -26.7 -323.1 -279.7 -365.8

from FKO to FKO-HEAVY-H2 4.5 513.6 -23.9 713.7
from FKO-HEAVY-M1 to FKO-HEAVY-H2 91.4 114.7 379.8 417.0
from FKO-HEAVY-H1 to FKO-HEAVY-H2 94.8 591.7 390.6 756.4
from FKO-HEAVY-M2 to FKO-HEAVY-H2 2.4 472.2 -45.1 298.7

from BEKK-HEAVY-H2 to DCC-HEAVY-H2 64.6 424.9 195.2 539.8
from FKO-HEAVY-H2 to BEKK-HEAVY-H2 -50.6 -336.0 -179.6 -365.5
from DCC-HEAVY-H2 to FKO-HEAVY-H2 -14.6 0.4 -136.8 -19.8

MV portfolio
from DCC-GARCH to DCC-HEAVY-H2 107.4 113.1 592.4 604.7
from DCC-HEAVY-M1 to DCC-HEAVY-H2 96.0 210.0 440.5 749.3
from DCC-HEAVY-H1 to DCC-HEAVY-H2 117.4 283.6 567.0 930.8
from DCC-HEAVY-M2 to DCC-HEAVY-H2 8.5 -15.8 186.6 42.8

from BEKK-GARCH to BEKK-HEAVY-H2 135.9 267.3 564.5 883.4
from BEKK-HEAVY-M1 to BEKK-HEAVY-H2 42.0 -114.6 309.0 -249.4
from BEKK-HEAVY-H1 to BEKK-HEAVY-H2 46.8 -25.7 349.3 -136.7
from BEKK-HEAVY-M2 to BEKK-HEAVY-H2 -33.5 -196.7 -185.2 -149.4

from FKO to FKO-HEAVY-H2 -11.6 111.6 -154.2 388.0
from FKO-HEAVY-M1 to FKO-HEAVY-H2 72.3 199.9 371.2 727.6
from FKO-HEAVY-H1 to FKO-HEAVY-H2 76.8 139.5 390.1 545.8
from FKO-HEAVY-M2 to FKO-HEAVY-H2 -2.9 41.3 -154.9 199.5

from BEKK-HEAVY-H2 to DCC-HEAVY-H2 55.3 224.6 286.6 794.7
from FKO-HEAVY-H2 to BEKK-HEAVY-H2 -21.6 -219.4 83.8 -257.5
from DCC-HEAVY-H2 to FKO-HEAVY-H2 -35.5 -21.3 -154.2 -188.5

For explanations, see note below Table 7.
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Table 14 – Economic values of switching between models for two risk aversion parameters γ and two
transaction costs c, at daily horizon (s=5) for DJ29 data

γ=1 γ=10
c=0 c=0.01 c=0 c=0.01

GMV portfolio
from DCC-GARCH to DCC-HEAVY-H2 72.5 -199.8 359.3 -324.2
from DCC-HEAVY-M1 to DCC-HEAVY-H2 42.8 169.5 238.6 475.0
from DCC-HEAVY-H1 to DCC-HEAVY-H2 78.8 -187.2 183.6 -325.0
from DCC-HEAVY-M2 to DCC-HEAVY-H2 14.6 -179.3 65.3 -324.3

from BEKK-GARCH to BEKK-HEAVY-H2 11.6 24.3 -44.6 48.1
from BEKK-HEAVY-M1 to BEKK-HEAVY-H2 21.1 41.1 153.9 218.5
from BEKK-HEAVY-H1 to BEKK-HEAVY-H2 23.3 90.7 174.4 395.2
from BEKK-HEAVY-M2 to BEKK-HEAVY-H2 -36.9 118.6 -270.7 240.3

from FKO to FKO-HEAVY-H2 11.8 25.6 -119.9 -138.3
from FKO-HEAVY-M1 to FKO-HEAVY-H2 81.3 86.6 188.7 309.1
from FKO-HEAVY-H1 to FKO-HEAVY-H2 84.7 71.5 153.8 257.1
from FKO-HEAVY-M2 to FKO-HEAVY-H2 13.8 66.5 87.7 307.1

from BEKK-HEAVY-H2 to DCC-HEAVY-H2 64.2 -121.8 198.1 -224.4
from FKO-HEAVY-H2 to BEKK-HEAVY-H2 -44.8 -11.3 -44.8 93.3
from DCC-HEAVY-H2 to FKO-HEAVY-H2 -11.7 179.2 -234.4 149.9

MV portfolio
from DCC-GARCH to DCC-HEAVY-H2 108.2 68.6 517.5 394.2
from DCC-HEAVY-M1 to DCC-HEAVY-H2 34.6 -37.4 253.8 -209.7
from DCC-HEAVY-H1 to DCC-HEAVY-H2 56.7 -27.1 384.5 -110.5
from DCC-HEAVY-M2 to DCC-HEAVY-H2 15.4 -64.9 201.8 -298.0

from BEKK-GARCH to BEKK-HEAVY-H2 38.1 72.8 25.4 244.7
from BEKK-HEAVY-M1 to BEKK-HEAVY-H2 24.1 44.0 200.5 274.3
from BEKK-HEAVY-H1 to BEKK-HEAVY-H2 28.6 483.4 237.2 667.5
from BEKK-HEAVY-M2 to BEKK-HEAVY-H2 -25.7 144.7 -162.7 183.6

from FKO to FKO-HEAVY-H2 -12.5 -29.1 -141.2 -186.6
from FKO-HEAVY-M1 to FKO-HEAVY-H2 63.1 8.0 330.6 -79.8
from FKO-HEAVY-H1 to FKO-HEAVY-H2 67.4 29.2 352.9 99.3
from FKO-HEAVY-M2 to FKO-HEAVY-H2 12.1 -61.4 98.7 -187.0

from BEKK-HEAVY-H2 to DCC-HEAVY-H2 53.9 -23.7 342.2 -146.9
from FKO-HEAVY-H2 to BEKK-HEAVY-H2 -28.3 26.7 -94.8 290.4
from DCC-HEAVY-H2 to FKO-HEAVY-H2 -27.4 -3.3 -141.1 -196.3

For explanations, see note below Table 7.
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Table 15 – Economic values of switching between models for two risk aversion parameters γ and two
transaction costs c, at daily horizon (s=22) for DJ29 data

γ=1 γ=10
c=0 c=0.01 c=0 c=0.01

GMV portfolio
from DCC-GARCH to DCC-HEAVY-H2 40.5 16.9 265.7 152.4
from DCC-HEAVY-M1 to DCC-HEAVY-H2 19.6 -3.8 179.2 42.2
from DCC-HEAVY-H1 to DCC-HEAVY-H2 37.8 11.7 230.4 88.0
from DCC-HEAVY-M2 to DCC-HEAVY-H2 21.1 27.4 88.0 94.6

from BEKK-GARCH to BEKK-HEAVY-H2 37.2 136.3 70.1 472.9
from BEKK-HEAVY-M1 to BEKK-HEAVY-H2 -4.7 54.6 -9.4 267.3
from BEKK-HEAVY-H1 to BEKK-HEAVY-H2 -4.2 67.5 8.5 313.6
from BEKK-HEAVY-M2 to BEKK-HEAVY-H2 -25.1 -36.2 -131.0 -251.8

from FKO to FKO-HEAVY-H2 17.5 105.5 -224.0 277.5
from FKO-HEAVY-M1 to FKO-HEAVY-H2 70.4 136.1 269.4 455.0
from FKO-HEAVY-H1 to FKO-HEAVY-H2 72.1 308.1 280.1 506.4
from FKO-HEAVY-M2 to FKO-HEAVY-H2 23.4 91.8 155.0 392.9

from BEKK-HEAVY-H2 to DCC-HEAVY-H2 57.4 47.4 311.4 238.6
from FKO-HEAVY-H2 to BEKK-HEAVY-H2 -66.0 -77.1 -268.7 -305.8
from DCC-HEAVY-H2 to FKO-HEAVY-H2 7.4 29.0 -224.0 -65.6

MV portfolio
from DCC-GARCH to DCC-HEAVY-H2 51.3 55.8 276.9 282.8
from DCC-HEAVY-M1 to DCC-HEAVY-H2 25.5 153.7 223.1 652.6
from DCC-HEAVY-H1 to DCC-HEAVY-H2 35.9 47.8 310.7 327.7
from DCC-HEAVY-M2 to DCC-HEAVY-H2 20.0 102.1 193.5 483.6

from BEKK-GARCH to BEKK-HEAVY-H2 72.9 291.4 238.4 931.0
from BEKK-HEAVY-M1 to BEKK-HEAVY-H2 2.0 -21.9 59.4 -198.1
from BEKK-HEAVY-H1 to BEKK-HEAVY-H2 3.1 7.3 81.2 102.3
from BEKK-HEAVY-M2 to BEKK-HEAVY-H2 -11.4 36.0 -152.1 234.8

from FKO to FKO-HEAVY-H2 -26.7 330.6 -129.1 474.1
from FKO-HEAVY-M1 to FKO-HEAVY-H2 45.6 14.9 249.5 -6.8
from FKO-HEAVY-H1 to FKO-HEAVY-H2 47.0 47.4 272.8 224.2
from FKO-HEAVY-M2 to FKO-HEAVY-H2 27.8 -21.2 217.4 -152.8

from BEKK-HEAVY-H2 to DCC-HEAVY-H2 55.8 105.0 412.9 522.6
from FKO-HEAVY-H2 to BEKK-HEAVY-H2 -30.3 -11.7 -151.7 83.3
from DCC-HEAVY-H2 to FKO-HEAVY-H2 -28.4 -98.4 -128.9 -177.5

For explanations, see note below Table 7.
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Appendices

A SGBF data description

The data are obtained from TickData, Inc. for the futures contracts S&P 500 futures (ES:

CME GROUP), Treasury bond futures (US:CCBOT/CME GROUP), and gold futures (GC:

COMEX/CME GROUP). The sample period is July 1, 2003 to August 5, 2022.

The trading close times (US central standard times) of the three futures contracts are as fol-

lows: 1) Gold futures contract closes at 13:30 between 01/07/2003 and 03/12/2006, and closes

at 17:00 between 04/12/2006 and 05/08/2022; 2) Bond futures contract closes at 16:00 between

01/07/2003 and 05/08/2022; 3) Stock futuresA contract closes at 15:15 between 01/07/2003

and 17/11/2012, and closes at 16:00 between 18/11/2012 and 05/08/2022. Therefore, we as-

sume that portfolios are rebalanced at 13:30 each day between 01/07/2003 and 03/12/2006, at

15:15 each day between 04/12/2006 and 17/11/2012, and at 16:00 each day between between

18/11/2012 and 05/08/2022. The last transaction prices before the chosen close time as the

close price. This procedure is the same as in Fleming, Kirby, and Ostdiek (2003).

Table 16 – Descriptive statistics - SBGF data

r2 v Mean Cov. & Mean Cor.
Mean StDev Max Mean StDev Max STOCK BOND GOLD

STOCK 3.544 14.931 453 3.571 9.240 205 1 -0.271 0.022
BOND 1.059 2.286 69.6 1.163 1.313 28.6 -0.599 1 0.118
GOLD 3.081 8.742 294 3.347 4.299 62.2 0.171 0.191 1

Column 1: asset type; Columns 2 and 5: time-series (ts) means; Columns 3 and 6: ts standard deviations;
Columns 4 and 7: ts maximum; r2: squared returns; v: realized variances; Columns 8-10: ts means of realized
covariances and (in italics) realized correlations. The means, standard deviations and maximum are annualized
values, in percentage, i.e., multiplied by 252 and by 100.

To compute the realized measures, we follow the method of Fleming, Kirby, and Ostdiek

(2003). We use the five-minute returns from close time on day t-1 to close time on day t:

We construct the realized variances using all of these returns. For the realized covariances,

however, we can use only the returns that are contemporaneous across markets. For example,

the returns after 1:30 pm in the stock and bond markets cannot be used to compute the realized

covariances with gold because the gold market is closed. Since this reduces the number of

available observations, we construct the realized covariances using the the two-step procedure

of Fleming, Kirby, and Ostdiek (2003). First, we use the contemporaneous returns to compute
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a preliminary set of realized variances and covariances, from which we compute the realized

correlations. Second, we convert these correlations back into covariances using the realized

variances based on the entire set of five-minute returns.

Table 16 provides summary descriptive statistics of the data. The realized variances are

computed based on 23 hours (approximately, depending on the years) of intra-daily returns,

hence they should be close to the daily squared return, which can be observed from Table 16.

However, one can notice that that average values of the realized variances (v) are slightly higher

than the average of the daily squared returns. On the contrary, their standard deviations are

much smaller, the reason is that large squared returns are very often more extreme than large

realized variances. This can be seen on Figure 1, which shows the squared returns and realized

variances of each asset during two periods: 2008, a year of low volatility until September and

extreme volatility afterwards (the ‘subprime mortgage’ crisis), and 2021/08/06-2022/08/05, a

period of low and intermediate volatility level.
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Figure 1 – Annualized realized variances (RV) and squared returns

36



B DJ29 data description

Table 17 – Descriptive statistics of realized variances - DJ29 data

Means Standard deviations
Stock r2, v1, v2 v v1n r2 v v1 v2

AAPL 14.234 8.245 13.282 38.982 13.685 30.774 23.518
AXP 13.076 6.954 10.287 47.122 16.866 33.420 31.377
BA 8.840 4.778 7.224 25.816 7.509 25.357 14.339
CAT 10.185 5.533 8.659 26.481 9.073 19.289 17.456
CSCO 14.258 6.757 12.111 49.812 11.748 35.429 24.869
CVX 6.626 3.821 5.406 24.317 7.842 12.517 14.494
DIS 8.780 4.982 7.794 29.172 9.612 27.002 16.823
DWDP 12.212 4.472 8.055 39.113 7.083 29.715 19.246
GE 9.325 5.443 8.657 31.200 13.038 23.675 22.089
GS 13.384 7.237 11.184 53.465 24.863 49.495 42.384
HD 8.693 5.126 7.617 25.575 8.983 18.212 15.473
IBM 5.962 3.294 5.428 17.718 6.665 14.236 11.880
INTC 12.664 6.639 11.069 39.711 10.013 32.934 19.395
JNJ 3.312 2.200 3.311 15.043 4.162 13.106 6.472
JPM 16.069 8.037 12.266 65.176 20.037 38.165 39.965
KO 3.670 2.386 3.421 12.768 4.270 6.619 6.682
MCD 4.934 3.325 4.949 14.781 6.226 9.708 9.314
MMM 5.010 3.082 4.412 13.578 6.715 9.726 10.740
MRK 7.651 4.036 6.697 44.891 11.360 41.629 21.284
MSFT 8.476 4.386 7.077 26.000 6.698 18.103 13.108
NKE 8.030 4.239 6.666 29.404 6.486 23.422 12.436
PFE 5.966 3.700 6.003 19.551 5.469 16.303 9.377
PG 3.303 2.166 3.140 9.719 3.919 6.032 6.195
TRV 8.294 4.426 6.892 37.886 11.525 25.514 21.335
UNH 9.918 5.063 7.641 49.433 8.985 22.767 18.015
UTX 6.889 3.589 5.333 40.373 6.405 19.416 12.782
VZ 5.795 3.841 5.374 16.791 7.173 10.420 10.989
WMT 4.651 3.066 4.408 13.598 5.453 8.455 8.223
XOM 5.906 3.594 5.084 21.656 8.155 11.951 13.775

Min 3.303 2.166 3.140 9.719 3.919 6.032 6.195
Max 16.069 8.245 13.282 65.176 24.863 49.495 42.384
Med 8.294 4.386 6.892 26.481 7.842 19.416 14.494

Column 1: stock tickers. Columns 2-4: time-series averages; Columns 5-9: time-series
standard deviations; r2: squared returns; v1: rescaled realized variances with overnight
squared returns, see (4); v2: rescaled realized variances, see (3) ; v: realized variances, see
(1); v1n: realized variances with overnight squared returns, not rescaled. Rows ”Min”,
”Max”, and ”Med” report the minimum, maximum, and median across the stocks. All
values are annualized, in percentage.
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Table 18 – Descriptive statistics of realized covariances - DJ29
data

Means Standard deviations
Stock RC RC1 &RC2 RC RC1 RC2

AAPL 2.135 3.775 4.589 9.113 8.202
AXP 2.239 5.139 5.573 13.015 12.448
BA 1.754 3.691 4.096 10.709 8.598
CAT 2.040 4.267 4.806 9.586 9.966
CSCO 2.156 4.454 4.535 9.753 9.283
CVX 1.625 3.314 4.638 8.566 9.357
DIS 1.806 4.095 4.241 10.782 9.402
DWDP 1.867 4.468 4.319 10.330 10.191
GE 2.061 4.272 5.096 10.816 10.374
GS 2.210 4.935 6.009 14.036 12.724
HD 1.934 3.759 4.649 9.486 8.966
IBM 1.631 3.167 3.963 7.066 7.545
INTC 2.200 4.450 4.321 9.261 8.733
JNJ 1.114 2.049 2.798 5.497 5.301
JPM 2.398 5.466 5.811 13.017 13.202
KO 1.184 2.073 3.020 5.175 5.405
MCD 1.295 2.204 3.354 5.800 5.846
MMM 1.592 3.162 3.755 6.958 7.459
MRK 1.433 2.726 3.618 7.020 7.106
MSFT 1.847 3.765 3.847 7.907 7.858
NKE 1.520 3.201 3.595 7.932 7.443
PFE 1.453 2.840 3.396 7.117 6.823
PG 1.130 1.988 2.909 5.177 5.294
TRV 1.544 3.670 4.191 11.009 9.499
UNH 1.422 2.949 4.020 8.846 8.422
UTX 1.658 3.738 4.091 9.888 8.876
VZ 1.515 2.775 3.975 6.823 7.222
WMT 1.379 2.359 3.205 5.676 5.544
XOM 1.636 3.231 4.635 8.274 9.007

Min 1.114 1.988 2.798 5.175 5.294
Max 2.398 5.466 6.009 14.036 13.202
Med 1.636 3.670 4.096 8.846 8.598

Column 1: stock tickers. Columns 2-4: means of the time series aver-
ages of the realized covariances of each stock with the other 28 stocks;
Columns 5-7: standard deviations of the time series averages of the re-
alized covariances of each stock with the other 28 stocks; RC: realized
covariances, see (1); RC1: rescaled realized covariances with overnight
cross-products of returns, see (4); RC2: rescaled realized covariances,
see (3). Rows ”Min”, ”Max”, and ”Med” report the minimum, max-
imum, and median across the stocks. All values are annualized, in
percentage.
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Table 19 – Descriptive statistics of realized correlations - DJ29 data

Means Standard deviations
Stock RCor RCor1 RCor2 RCor RCor1 RCor2

AAPL 0.326 0.349 0.326 0.152 0.213 0.152
AXP 0.447 0.462 0.447 0.145 0.183 0.145
BA 0.378 0.396 0.378 0.159 0.203 0.159
CAT 0.398 0.422 0.398 0.156 0.198 0.156
CSCO 0.367 0.405 0.367 0.148 0.192 0.148
CVX 0.377 0.393 0.377 0.174 0.217 0.174
DIS 0.422 0.447 0.422 0.160 0.196 0.160
DWDP 0.385 0.416 0.385 0.157 0.204 0.157
GE 0.426 0.441 0.426 0.150 0.189 0.150
GS 0.418 0.425 0.418 0.143 0.184 0.143
HD 0.375 0.399 0.375 0.156 0.198 0.156
IBM 0.382 0.418 0.382 0.154 0.193 0.154
INTC 0.382 0.413 0.382 0.146 0.188 0.146
JNJ 0.349 0.380 0.349 0.162 0.206 0.162
JPM 0.429 0.438 0.429 0.143 0.182 0.143
KO 0.318 0.350 0.318 0.160 0.203 0.160
MCD 0.303 0.330 0.303 0.163 0.210 0.163
MMM 0.435 0.460 0.435 0.160 0.194 0.160
MRK 0.304 0.347 0.304 0.162 0.210 0.162
MSFT 0.382 0.419 0.382 0.149 0.188 0.149
NKE 0.336 0.370 0.336 0.162 0.204 0.162
PFE 0.347 0.386 0.347 0.160 0.204 0.160
PG 0.324 0.354 0.324 0.160 0.203 0.160
TRV 0.397 0.413 0.397 0.159 0.200 0.159
UNH 0.284 0.313 0.284 0.162 0.212 0.162
UTX 0.435 0.453 0.435 0.155 0.191 0.155
VZ 0.326 0.351 0.326 0.164 0.205 0.164
WMT 0.317 0.352 0.317 0.159 0.196 0.159
XOM 0.395 0.413 0.395 0.170 0.210 0.170

Min 0.284 0.313 0.284 0.143 0.182 0.143
Max 0.447 0.462 0.447 0.174 0.217 0.174
Med 0.378 0.405 0.378 0.159 0.200 0.159

Column 1: stock tickers. Columns 2-4: means of the time series averages of
the realized correlations of each stock with the other 28 stocks;
Columns 5-7: standard deviations of the time series averages of the realized
correlations of each stock with the other 28 stocks; RCor: realized correlations
(2) from realized covariances (1); RCor1: correlations from rescaled realized
covariances (4); RCor2: correlations from rescaled realized covariances (3).
Rows ”Min”, ”Max”, and ”Mean” report the minimum, maximum, and mean
across the stocks. .

39



C Quasi-maximum likelihood estimation

To define a quasi-likelihood function for the GARCH and HEAVY-H conditional covariance

equations, we add the assumption that the conditional distribution of the return vector is

multivariate Gaussian, Nk(0, Vt), where Vt is Gt for a GARCH equation and Ht for a HEAVY-

H equation. The quasi-log-likelihood function for T observations, given initial values, is

QLNV (θV ) = −1

2

T∑
t=1

(
log |Vt|+ r′tV

−1
t rt

)
, (C1)

where θV is the parameter vector of the corresponding model. This function can be maximized

numerically with respect to θV for the BEKK and FKO models. For the DCC models, a two-step

estimation procedure is used, whereby the parameters of the variance equations are estimated

in the first step, and the parameters of the correlation equation are estimated in the second

step, see Engle (2002).

For the HEAVY-M equations, we assume that the conditional distribution of RCt is a central

Wishart distribution of dimension k , Wk(ν,Mt/ν), where ν is the degrees of freedom parameter

(restricted by ν > k − 1) and Mt is the conditional mean of RCt. The quasi-log-likelihood

function for a sample of T observations, given initial conditions, is

QLWM (θM ) = −ν
2

T∑
t=1

[
log |Mt|+ tr(M−1t RCt)

]
(C2)

This function can be maximized numerically with respect to θM (independently of the value

of ν, which can be set equal to one) in a single step for the BEKK and FKO models. For the

DCC models, a two-step estimation procedure is used, similarly to the two-step procedure for

the Gaussian – see Bauwens and Xu (2022).
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D Estimation results on full samples

Table 20 – Parameter estimates (and robust t-statistics) for SBGF data

GARCH HEAVY-H HEAVY-M

DCC Conditional Variance
AG BG AH BH AM BM

STOCK 0.140 0.833 0.606 0.379 0.601 0.384
BOND 0.044 0.946 0.110 0.876 0.235 0.728
GOLD 0.043 0.949 0.154 0.813 0.304 0.673

Conditional Correlation
αQ βQ αR βR αP βP

0.033 0.949 0.435 0.564 0.222 0.758
(6.32) (99.14) (6.78) (8,80) (24.53) (73.00)

BEKK αG βG αH βH αM βM
0.057 0.934 0.272 0.684 0.372 0.606

(11.90) (130.49) (8.38) (17.42) (36.46) (13.26)

FKO αG αH αM
0.034 0.253 0.186

(10.52) (13.57) (26.22)

Table 21 – Parameter estimates and robust t-statistics) for DJ29 data

GARCH HEAVY-M1 HEAVY-H1 HEAVY-M2 HEAVY-H2

DCC Conditional Variance
AG BG AM BM AH BH AM BM AH BH

Min 0.025 0.826 0.055 0.000 0.057 0.381 0.174 0.139 0.296 0.508
Med 0.068 0.918 0.294 0.675 0.233 0.738 0.401 0.568 0.387 0.597
Max 0.123 0.970 0.995 0.937 0.538 0.939 0.794 0.788 0.479 0.683

Conditional Correlation
αQ βQ αP βP αR βR αP βP αR βR

0.003 0.988 0.053 0.913 0.019 0.976 0.089 0.866 0.047 0.942
( 9.30) (475.08) ( 5.19) (43.85) (25.67) (881.07) (10.74) (53.78) (29.79) (439.64)

BEKK αG βG αM βM αH βH αM βM αH βH
0.009 0.988 0.049 0.935 0.033 0.961 0.191 0.755 0.134 0.856

(25.96) (1893.80) ( 4.13) (54.06) (192.59) ( 7.79) (14.02) (37.81) (137.42) (30.21)

FKO αG αM αH αM αH
0.0055 0.018 0.016 0.086 0.038
(17.05) (14.71) (8.11) (23.81) (6.71)

For DCC Conditional Variance: Min is the minimum of the 29 estimates, Med the median, and Max the maximum.

E Solving equation (10)

We solve (10) after dividing both sides by Ts. For lighter notations, we use the symbol Y

for ∆γ , we set a = 1, b = 2, we denote by U1 the utility function divided by Ts on the left

side of (10), and by U2(Y ) the function on the right side divided by Ts. So, we must find Y

such that U1 = U2(Y ). By direct developments, we get U1 = 1 − A + (1 − 2A)S1 − AV1, and
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U2 = 1−A+(1−2A)S2−AV2+(2A−1+2AS2)Y −AY 2, where A = 0.5γ/(1+γ), Si =
∑Ts

t=1 rit,

and Vi =
∑Ts

t=1 r
2
it, for i = 1, 2, rit being the optimal portfolio return of period t for model i,

i.e., rit stands for r
(i)
wt of (10).

By subtracting U2(Y ) from U1 using the expressions above, we get the quadratic equation

AY 2 + BY + C = 0, where A is defined above, B = 1 − 2A(1 + S2), and C = (1 − 2A)(S1 −

S2) +A(V2−V1). This equation has two real roots if B2− 4AC ≥ 0. The solution of interest as

measure of economic gain (the maximum fee an investor would sacrifice to switch from model

1 to model 2) is the smallest root, if it is positive. If the smallest root is negative, its opposite

is the gain of switching from model 2 to 1.
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