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The Confidence Interval of the Cross-Sectional
Distribution of Durations ∗

Huw Dixon1 and Maoshan Tian2†‡

Abstract

Tian and Dixon (2022) derived the variance of the estimator of
cross-sectional distribution of durations (CSD). In this paper, we
apply both Fieller’s method and the Delta method to derive confi-
dence interval of CSD using this variance formula. (CSD) is a new
estimator derived by Dixon (2012). It can be applied in general Tay-
lor model (GTE) by Dixon and Bihan (2012) and hospital waiting
times by Dixon and Siciliani (2009). We use Monte Carlo simulations
to evaluate the empirical size of Fieller’s method and delta method
among different sample sizes. The empirical results show that both
Fieller’s method and the delta method are valid in terms of estimat-
ing the confidence interval of CSD. Finally, we use both methods for
real data set: the UK CPI micro-price data. Depending on the ap-
plication, we see that both methods provide reasonable CIs for CSD
estimators.
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1 Introduction

The non-parametric cross-sectional distribution of durations (CSD) is de-
rived and introduced in Dixon (2012). It is a new estimator which has been
applied to CPI micro-price data (see Dixon and Bihan (2012) which uses
the French data, and Dixon and Tian (2017) which uses the UK data) and
hospital waiting time data (see Dixon and Siciliani (2009)). In this paper we
investigate the confidence intervals of CSD in order to determine the accu-
racy of the estimator. We consider two ways of doing this, Fieller’s method
and the delta method. CSD is a ratio estimator, and as such is particularly
appropriate for the Fieller method. Fieller (1932) investigated and derived
the general cumulative distribution formula for the ratio distribution w = x

y
,

where both x and y follow the normal distribution and are correlated with
each other. Fieller (1954) focused on the distribution of the ratio w where x
and y were independent from each other. In Fieller’s method, the ratio vari-
able is transformed into a linear function. The confidence interval of the ratio
variable can be obtained by solving out the quadratic roots the linear func-
tion. The alternative and more general method is the delta method which
can be employed even when the distribution of the ratio variable is unknown.
Franz (2007) gave a very good literature review of Fieller’s method and its
inferences and development, and for applications see Beyene and Moineddin
(2005).

Another related approach that we do not follow here is to derive the prob-
ability density function (pdf) of the estimator (SeeMarsaglia (1965),Cedilnik
et al. (2004),Cedilnik et al. (2006)). In the case of the CSD, this is diffi-
cult, since the expression of the CSD is relatively complicated and the pdf
of CSD may not be a familiar distribution.1 Therefore, we will focus on
the confidence interval rather than the pdf of CSD. Another approach used
by Carvalho et al. (2020) is to estimate the CSD using Bayesian methods
in the context of a DSGE macroeconomic model, to infer CSD from the
macroeconomic behaviour of the economic data. This is very different from
the non-parametric approach used here and is clearly highly dependent on
the model of the economic system employed.

Tian and Dixon (2022) derived the variance formulae for CSD and two
other related non-parametric estimators (the distribution of durations or un-
conditional hazard DD, the cross-sectional distribution of ages CSA) and

1The distributions of both the survival and hazard functions affect CSD.
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the covariance of the Kaplan-Meier (KM) estimators. Using these results,
we can apply both the Fieller and delta methods to construct the confidence
intervals for the CSD. There are some studies which focus on the compari-
son of the Fieller’s method with other numerical methods. As Polsky et al.
(1997) and Briggs et al. (1999) showed, Fieller’s method is indeed suitable for
constructing the confidence interval of ratio variables. Fan and Zhou (2007)
suggested that the Fieller method, the standard bootstrap method and the
bootstrap percentile method all provided accurate confidence intervals of
ratio variables even when the numerator and denominator follow different
distributions. Wang and Zhao (2008) suggested that the bootstrap Fieller
method provided more accurate confidence interval of the ratio variable. In
Bebu et al. (2016)’s simulation studies, the Fieller method provided the most
accurate confidence interval for the ratio variable than the other methods.
See also Cox (1990) and Gardiner et al. (2001).

In section 2 we review some basics of the non-parametric estimators of
the survival and hazard functions, CSD and the related distributions DD
and CSA. In section 3 we derive the CIs using the Fieller method: Theorem
1 states the test statistic and Theorem 2 the corresponding CIs for CSD
(Corollary 1 and 2 do the same for CSA). Lemmas 1-3 derive the CIs for
CSD, CSA and DD using the delta method. In section 4 we undertake a
Monte Carlo analysis of the empirical size of the Fieller and delta methods
for different sample sizes and significance levels. In section 5 we apply the
method to empirical data, the UK CPI price-quote data from 1998 to 2017.

2 The KM Estimators of the Survival Func-

tion

In this section, we provide a brief summary of the main points about estimat-
ing the discrete time survival and hazard functions that we require for this
paper. Kaplan and Meier (1958) provided a non-parametric estimator for the
survival function, the Kaplan-Meier (KM) estimators of the survival prob-
abilities Si ∈ [0, 1] for i = 0, 1, 2, ......, F , where F is the maximum duration
observed in the data set. The survival probability gives the probability that
the the agent remains in the same state for (strictly) more than i periods.
The actual period the agent remains in the same state is called a spell. In
the empirical application we use in this paper, the agent is a price-setter, the
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state is a particular price and a price-spell is an event where the same price is
set by the same price-setter for a number of periods (the completed duration
of the price-spell). In this paper we will only consider the case where we
observe all spells in their entirety (all spells are uncensored).

If we look across the entire data set, we can count the number of spells
that last at least k periods as Nk, and the number of failures in the k-th
period as Dk. Failure in this context means that the spell has come to an
end (for example, the price has changed). N0=N is the total number of price
spells in the initial period. The Kaplan-Meier estimator Ŝi is:

Ŝi =
i∏

k=1

Nk −Dk

Nk

(1)

Ŝi can be defined as the proportion of spells surviving for (strictly) longer
than i periods. We can set Ŝ0 = 1, since all spells last longer than zero
periods and ŜF=0 since no spell lasts more than F periods.2 Hence there
are F − 1 survival probabilities to be estimated from the data.

The hazard function hi is a conditional probability, estimated as the pro-
portion of failures amongst spells that have lasted i periods:

ĥi =
Di

Ni

(2)

We assume D0 = 0 and ĥ0 = 0 because all spells last at least 0 periods,
and ĥF = 1 since F is the longest spell observed. There remain F − 1 haz-
ards to be estimated. Clearly, the estimator of the hazard function can be
transformed into the KM estimator and vice versa. There is thus a one-to-
one mapping between the estimated hazard function and survival function.
Note that equation (2) is also the maximum likelihood estimator of the haz-
ard function.3 Therefore, the KM estimator is derived from the maximum
likelihood estimator of the hazard function.

Finally, we define two additional variables we will be using. First, the
sum of the estimated survival probabilities Ŝ =

∑F
k=0 Ŝk, and secondly h̄ as

the reciprocal of this sum.

h̄ =
1∑F

k=0 Ŝk

=
1

Ŝ
(3)

2We are only able to assume no spells last longer than F because spells are uncensored.
For example, if there were a right-censored spell that lasted F periods, we could have ŜF ¿0

3See the appendix of Tian and Dixon (2022) for a formal derivation.
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The variable h̄ is the average proportion of agents that fail each period, In
effect, this is the same as what engineers call FIT (Failures in Time). In our
example of price-setting, this is the average number of firms which change
prices per month. The variable S is the average duration of spells.

2.1 The Cross-sectional Distribution of Durations CSD

The main focus of this paper is the CSD. As a preliminary, we can define
the distribution of durations (DD), which is also known as the unconditional
hazard function. It gives the probabilities that a duration will last i periods
where i = 1, 2, ..., F . The estimator of the distribution of durations can be
written either as:

âdi = Ŝi−1ĥi, (4)

or equivalently

âdi = Ŝi−1 − Ŝi. (5)

The cross-sectional distribution of (completed) durations CSD gives the
probabilities that spells observed at a point in time will last for i periods.
The estimator of CSD can be written as:

âi =
iŜi−1ĥi

Ŝ
(6)

Closely related to CSD is the cross-sectional distribution of ages (incom-
plete durations), CSA. The estimator for CSA is:

âAi =
Ŝi−1

Ŝ
(7)

The definitions and relationships between the three distributions and their
estimators are described in detail in Tian and Dixon (2022).

2.2 Properties of estimators

In this section, we will review some earlier results and make a couple of
observations about the estimates of the survival functions, the sum of survival
probabilities and the variances of the estimators.

Breslow and Crowley (1974) showed that for the estimated survival func-
tion Ŝi with i = 0, 1, 2, ......, F , the vector V̂ = (Ŝ0, Ŝ1, ....., ŜF ) follows
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the asymptotic multivariate normal distribution:
√
n(V̂ − V )

d.∼ MN(0,Σ).
Where Σ is the variance-covariance matrix for the vector V̂ , and the vector
E(V ) is the mean value of each element in vector V̂ .

Turning to the sum of the survival probability estimates, since Ŝ0 = 1
and ŜF = 04:

Ŝ =
F∑

k=0

Ŝk = 1 +
F∑

k=1

Ŝk (8)

This follows the asymptotic normal distribution Ŝ
d.∼ N(µŜ, σ

2
Ŝ
), where

µŜ is E(Ŝ) and σ2
Ŝ
is the variance of Ŝ.

Note that each Ŝi follows the normal distribution asymptotically and
hence Ŝ also. Together, Ŝi and Ŝ follow the asymptotic multivariate normal
distribution:

Observation 1 :

√
N

[
Ŝi − µŜi

Ŝ − µŜ

]
d.∼ MN

([
0
0

]
,

[
σ2
Ŝi

σŜi,Ŝ

σŜi,Ŝ
σ2
Ŝi

])

Where N is the adjusted sample size. µŜi
is the mean value of Ŝi, µŜ =

1 + µŜ1
+ µŜ2

+ ......+ µŜF
;

V ar(Ŝi) = σ2
Ŝi
; V ar(Ŝ) = σ2

Ŝ
;

V ar(Ŝ) = σ2 =
∑F

k=1 σ
2
Ŝk

+ 2
∑F

k=1

∑F
j=1 σ

2
Ŝk,Ŝj

for k ̸= j;

σŜi,Ŝ
is the covariance of Ŝi and Ŝ; σŜi,Ŝ

= Cov(Ŝi, Ŝ) =
∑F

k=1Cov(Ŝi, Ŝk).
The variance and the covariance formula of the survival function are found
from equation (9) and (10) below.

The Greenwood formula Greenwood (1926) for the variance of the KM
estimator can be written as:

V̂ ar(Ŝi) = Ŝ2
i [

i∑
k=1

Dk

Nk(Nk −Dk)
] (9)

4If there are censored observations including in the data set, ŜF may not equal to zero.
Therefore, we still remain ŜF in our formula at this point.
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For our analysis, it is crucial to investigate the covariance among the
survival function estimates. It is clear that the survival estimate Ŝi is cor-
related with Ŝj for 0 < i, j < F . Breslow and Crowley (1974) investigated
the large sample properties of the hazard function estimator (2) and the sur-
vival function. They found that the off-diagonal variance-covariance matrix
of the hazard functions are all equal to zero. If the hazard function ĥi with
i = 1, 2, ......, F are collected by the vector ĥ, the joint distribution of ĥ fol-
lows the Gaussian distribution asymptotically. They also show that the vec-
tor of survival function V = (Ŝ1, ......ŜF ) converges weakly to the Gaussian
process. They derived the asymptotic covariance of the survival functions
between different periods. Tsai et al. (1987) wrote a literature review to
discuss the covariance properties of KM estimators. Tian and Dixon (2022)
applied the Taylor expansion to derive the covariance of the KM estimators
as follows (discrete time):

Ĉov(Ŝi, Ŝj) = ŜiŜj[
i∑

k=1

Dk

Nk(Nk −Dk)
] for i < j (10)

Recall the estimators CSD and DD defined in (6) and (4), and that Ŝi−1ĥi =
Ŝi−1−Ŝi. From Observation 1, Ŝi and the summation of the survival function
Ŝ follow the multivariate normal distribution asymptotically. In addition, it
follows that Ŝi−1ĥi and Ŝ also follow the multivariate normal distribution
asymptotically:

Observation 2 :

√
N

[
Ŝi−1ĥi − µŜi−1ĥi

Ŝ − µŜ

]
d.∼ MN

([
0
0

]
,

[
σ2
Ŝi−1ĥi

σŜi−1hi,Ŝ

σŜi−1ĥi,Ŝ
σ2
Ŝ

])

Where N is adjusted sample size. σ2
Ŝi−1ĥi

= V ar(Ŝi−1ĥi); σŜi−1ĥi,Ŝ
is the co-

variance between Ŝi−1ĥi and Ŝ; Cov(iŜi−1ĥi, Ŝ) = iσŜi−1ĥi,Ŝ
= i[

∑F
k=1 Cov(Ŝi−1, Ŝk)−∑F

k=1Cov(Ŝi, Ŝk)].

The covariance between iŜi−1ĥi and Ŝj can be derived as:

Cov(iŜi−1ĥi, Ŝj) = iCov(Ŝi−1 − Ŝi, Ŝj) = i[Cov(Ŝi−1, Ŝj)− Cov(Ŝi, Ŝj)]
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In other words, the Cov(iŜi−1ĥi, Ŝj) can be transformed to the covariance of
Cov(iŜi−1ĥi, Ŝ):

Cov(iŜi−1ĥi,

F∑
k=1

Ŝk) = i[Cov(Ŝi−1,
F∑

k=1

Ŝk)− Cov(Ŝi,
F∑

k=1

Ŝk)]

= i[
F∑

k=1

Cov(Ŝi−1, Ŝk)−
F∑

k=1

Cov(Ŝi, Ŝk)]

Note that Cov(Ŝi, Ŝ) = σŜi,Ŝ
=
∑F

k=1Cov(Ŝi, Ŝk). Using equation (10), we

can calculate Cov(Ŝi, Ŝ).
The variance of CSD is derived by Tian and Dixon (2022) which can be

written as:

V̂ ar(âi) = i2
V̂ ar(Ŝi−1ĥi)

Ŝ2
+i2

Ŝ2
i−1ĥ

2
i V̂ ar(Ŝ)

Ŝ4
−2i2

Ŝi−1ĥiĈov(Ŝi−1ĥi, Ŝ)

Ŝ3
(11)

After reviewing those properties, Fieller’s method can now be applied to
construct the confidence interval.

3 Confidence Intervals for the Cross-Sectional

Distributions

The Fieller method is designed to calculate the confidence intervals (CI) for
ratio estimators such as CSD and CSA, which we derive in Theorem (CSD)
and its corollary (CSA). The delta method can be also be used for non-ratio
estimators such as DD, so we use it to derive the confidence intervals for all
three distributions in Lemmas 1-3. In subsequent sections we will evaluate
the two methods using both Monte Carlo method and real data. In the cases
of CSD and CSA we can directly compare the two methods.

3.1 The Fieller Method for CSD and CSA

The CSD (8) is a ratio distribution. The numerator of the CSD is iSi−1hi

and the denominator is S =
∑F

k=0 Sk. The denominator is always above 1

(since Ŝ0=1). Hence we do not need to worry that the denominator can be
close to zero, which might make the CI for ai inaccurate.

8



Fieller (1940, 1954) proposed a method to derive the confidence interval
of the ratio of two random variables. In Fieller’s method, it requires that
the numerator and the denominator follow the bivariate normal distribution
asymptotically. From observations 1 and 2 above, CSD satisfies this require-
ment (as does CSA), so we can use Fieller’s method to derive the CIs.5

We will first derive a test statistic for the CSD estimator, which from (6)
can be written in terms of the true values:

iSi−1hi − aiS = 0

If we replace the true values iSi−1hi, and S by their estimators6 we have the
new relationship in terms of the estimators and the true value ai:

iŜi−1ĥi − ai

F∑
k=0

Ŝk
d.∼ N(0, V ar(iŜi−1ĥi − ai

F∑
k=0

Ŝk)) (12)

From (12), we have the test statistic for the null hypothesis for ai being
a certain value (for example, ai=0).

Theorem 1 : The test statistic for the CSD can be written as:

TSCSD(ai) =
iŜi−1ĥi − aiŜ

(a2i
ˆV ar(Ŝ)− 2ai ˆCov(iŜi−1ĥi, Ŝ) + ˆV ar(iŜi−1ĥi))

1
2

The TSCSD can be applied to a null hypothesis test with the critical
value from the student-t distribution. Clearly, TSCSD = 0 when ai=âi by
construction. By applying the same method, we can also derive the test
statistic for the CSA estimator.

Corollary 1 : The test statistic for the CSA can be written as:

TSCSA(a
A
i ) =

Ŝi−1 − aAi Ŝ

((aAi )
2 ˆV ar(Ŝ)− 2aAi

ˆCov(Ŝi−1, Ŝ) + ˆV ar(Ŝi−1))
1
2

5Franz (2007) provides a guide on deriving the confidence interval of ratio variables
using Fieller’s method.

6In Fieller’s theorem, iSi−1hi, and S are replaced by the population mean E(Si−1hi)

and E(S). In reality, we use the sample estimators Ŝi−1ĥi and Ŝ as the mean value
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TSCSA can also be compared with the student-t critical value to perform
the null hypothesis test.

Using Theorem 1, we can now derive the CI. If we have a desired confi-
dence level α in terms of the probability of a type 1 error, we have a range
of acceptable values of ai satisfying:

P [TSCSD(ai)] ≤ 1− α/2

If tα/2(d) is the critical value in the student-t table with d the degrees of
freedom, this implies:

iŜi−1ĥi − aiŜ ≤ tα/2(d) ∗ (a2i ˆV ar(Ŝ)− 2ai ˆCov(iŜi−1ĥi, Ŝ) + ˆV ar(iŜi−1ĥi))
1
2

(13)
Equation (13) can be written as a quadratic in ai of the form:

F (ai) = Aaia
2
i − 2Baiai + Cai ≤ 0 (14)

To derive the confidence interval of ai, we need to solve out the two roots of
equation (14) when F (ai) = 0.

Theorem 2 : The confidence interval of ai can be defined as the interval
between λ1,i and λ2,i, whicharetherootsdefinedby:

λ1,i, λ2,i =
Bai ±

√
B2

ai
− AaiCai

Aai

(15)

Where:
Aai = Ŝ2 − tα/2(d)

2V ar(Ŝ)

Bai = iŜi−1ĥiŜ − tα/2(d)
2 ˆCov(iŜi−1ĥi, Ŝ)

Cai = (iŜi−1ĥi)
2 − tα/2(d)

2 ˆV ar(iŜi−1ĥi)

λ1,i is lower bound and λ2,i is the upper bound for the estimator of CSD
at i-th period. So the true value lies within the interval λ1,i < ai < λ2,i

with probability (1− α).
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Once again, note that Ŝ, which is the denominator of CSD, is always greater
than 1. Hence we do not have to worry about an unbounded CI which
would require a different method (see Guiard (1989) and Buonaccorsi (2005)
for more details of bounded and unbounded confidence intervals with ratio
variables). We can also apply Fieller’s method to obtain the CI for CSA.

Corollary 2 : The CI for the CSA estimator can be derived by solving two
roots λ3,i and λ4,i of F (aAi ) = AaAi

a2i − 2BaAi
ai + CaAi

≤ 0. The CI of

aAi can be defined as [λ3,i, λ4,i].

λ3,i, λ4,i =
BaAi

±
√

B2
aAi

− AaAi
CaAi

AaAi

(16)

Where:
AaAi

= (Ŝ)2 − tα/2(d)
2 ˆV ar(Ŝ)

BaAi
= Ŝi−1Ŝ − tα/2(d)

2Cov(Ŝi−1, Ŝ)

CaAi
= (Ŝi−1)

2 − tα/2(d)
2V ar(Ŝi−1)

Where λ3,i is lower bound and λ4,i is the upper bound for the estimator
of CSA. So we have λ3,i < aAi < λ4,i.

3.2 The Delta Method

The delta method (also known as the Taylor expansion method) is an alter-
native way to find out the CIs for ratio estimators such as CSD and CSA,
and can also be applied to non-ratio estimators such as DD. Even if the
CSD and CSA estimators do not follow the normal distribution exactly, it
is still worth investigating the CIs derived by the delta method since it has
proven to be a robust method. We derive the CIs for the CSD, CSA and
DD estimators using the standard delta method, which we report in Lemmas
1-3.

Lemma 1 the CI for the CSD estimator derived by the delta method can
be written as:

λdel
1,i , λ

del
2,i = âi ± tα/2(d)

√
V̂ ar(âi) (17)
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Where V̂ ar(âi) is
7:

V̂ ar(âi) = i2
V̂ ar(Ŝi−1ĥi)

Ŝ2
+ i2

Ŝ2
i−1ĥ

2
i V̂ ar(Ŝ)

Ŝ4
− 2i2

Ŝi−1ĥiĈov(Ŝi−1ĥi, Ŝ)

Ŝ3

(18)

Lemma 2 the CI for the CSA estimators derived using the delta method
can be written as:

λdel
3,i , λ

del
4,i = âAi ± tα/2(d)

√
V̂ ar(âAi ) (19)

Where V̂ ar(âA1 ) is:

V̂ ar(âAi ) =
V̂ ar(Ŝi−1)

Ŝ2
+

Ŝ2
i−1V̂ ar(Ŝ)

Ŝ4
− 2

Ŝi−1Ĉov(Ŝi−1, Ŝ)

Ŝ3
(20)

We can derive the CI for the DD estimators, since they follow the normal
distribution asymptotically (see Observation 2).

Lemma 3 the CI for the DD estimator deriving from the delta method
can be written as:

λdel
5,i , λ

del
6,i = âdi ± tα/2(d)

√
V̂ ar(âdi ) (21)

Where V̂ ar(âdi ) is:

V̂ ar(âdi ) = (Ŝi−1ĥi)
2[
Ni −Di

NiDi

+
i−1∑
k=1

Dk

Nk(Nk −Dk)
] (22)

In the appendix, we also derive the test statistics and CIs for Ŝ and h̄.

4 Monte Carlo Simulations of CIs

In this section we evaluate both the Fieller and delta methods of deriving
CIs using a data generating process. In addition, we allow for right-censored
observations included in the sample (when some spells are not observed to
their end).

7the variances of the three estimators of the distributions V̂ ar(âi), V̂ ar(âAi ) and

V̂ ar(âdi ) have been derived by Tian and Dixon (2022)
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4.1 Data Generating Process

In this section, we describe both the data generating and right-censoring pro-
cesses. We follow Efron (1981), who used bootstrap method to calculate the
variance of KM estimators. He also explained how to simulate survival data
(including right-censored observations) and re-sample them. An observation
is uncensored when both the start date and the end date are known. An
observation is right-censored when the start date is known but the end date
is unknown.

The survival time of n-th observation can be expressed as:

tn = min(Tn, Cn) n = 1, 2, ..., N.

where Tn is the life time for n-th observation; Cn is the censored time for
n-th observation. We can define the censored coefficient zn as follows:

zn =

{
1 Tn ≤ Cn

0 Cn < Tn

The pairs observations can be defined as:

(tn, zn) =

{
(Tn, 1) min(Tn, Cn) = Tn

(Cn, 0) min(Tn, Cn) = Cn

By applying the above rules to construct the new data set, the pairs
observations can be defined and included in the new data set as:

(t1, z1), (t2, z2), ..., (tN , zN).

Before applying the KM estimator to calculate the survival function, the
observations need to be re-organized and sorted from the smallest to the
largest:(ts1, z

s
1), (t

s
2, z

s
2), ..., (t

s
N , z

s
N) where (ts1, z

s
1) = (tj, zj) depending on tj =

min(t1, ..., tj, ..., tN); zs1 = zj corresponds to ts1 = tj. At this point, the
KM estimator can be applied to calculate the survival function at each
period (ts1, ..., t

s
N). The CPI-micro price-quotes data collected each month

and there exist observations in each period (month). To simulate this type
of data set, the pairs observations can be located into each time interval
(month):[0, U1), [U1, U2), ..., [UF−1, UF ]. We use uncensored case as an exam-
ple. If there are 3 observations (ts1, 1), (t

s
2, 1) and (ts1, 1) and ts1, t

s
2, t

s
3 are all

greater than 0 and less than U1, then those three distributions are assigned
into [0, U1) and count D1 = 3 while N1 = N − 3.

We will assume the life-time T and censored-time C of the n-th observa-
tion follow the exponential distribution:

Pro(Tn > q) = exp(−2q) (23)
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Pro(Cn > p) = exp(−0.5p) (24)

Where p, q ≥ 0. Following (23) and (24), we can simulate the lifetime and
censored time and construct the pairs observations:(tn, zn). In the uncensored
case, where all observations are uncensored, tn = Tn and zn = 1 for all the
observations. If there is no censoring, the survival time of observations Tn

is applied to draw the sample directly. With censoring, we need to compare
the Tn with Cn. N is the total number of the observations in the sample and
F is the maximum length of the period. We only consider right-censored
observations, as it is standard for KM estimators to exclude left-censored
observations.

Having generated the observations (censored and uncensored), we then
assign them into five categories or intervals (months): [0, 0.1), [0.1, 0.2),
[0.2, 0.3), [0.3, 0.5) and [0.5,∞). We use the observations located in interval
[0, 0.1) as an example. In uncensored case, the survival function8 of period
[0, 0.1) can be defined as:

S0.1 = Pro(Tn ≥ 0.1) = exp(−0.2)

The hazard function is:

h0.1 = Pro(0 ≤ Tn < 0.1| 0 ≤ Tn) = 1− exp(−0.2)

Therefore, for the interval [Ui−1, Ui) where i = 1, 2, ..., F , the true value of
the survival function is:

SUi
= Pro(Tn ≥ Ui) = exp(−2Ui)

With SU0 = 1 (since min(Tn, Cn) ≥ 0). The true value of hazard function is:

hUi
=

Pro(Tn ≥ Ui−1)− Pro(Tn ≥ Ui)

Pro(Tn ≥ Ui−1)
= 1− exp[−2(Ui − Ui−i)]

The true value of DD estimator is:

adUi
= Pro(Ui−1 ≤ Tn < Ui) = SUi−1

hUi

8Note that they are not the estimators. They are the true value which is applied to
simulate the data set.
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In Fieller’s method, the CSD estimator at period i is ai =
iSi−1hi

S
. So we

need to find out the true value of Si−1hi and S and calculate the value of ai
9. The value of the CSD estimator is:

aUi
=

i.adUi

S

Where S =
∑UF

k=U0
Sk. The value of the CSA estimator10 is:

aAUi
=

SUi−1

S

When the right-censored observations included, the uncensored ratio is
Pro(Tn < Cn) =

2
2+0.5

= 0.8 11 while the censored ratio is 0.2 in the sample.
In other words, there are 80% observations are uncensored while 20% of the
samples are right-censored. The survival function for the interval [Ui−1, Ui)
including right-censored observations is:

SUi
= Pro(min(Tn, Cn) ≥ Ui) = exp(−2.5Ui)

The hazard function is:

hUi
= Pro(Ui−1 ≤ min(Tn, Cn) < Ui|min(Tn, Cn) ≥ Ui−1) = [1−exp(−2.5(Ui−Ui−1))]

After having the true value of survival function and the hazard function, we
can construct the CSD, CSA and DD estimators.

Another common approach which is used is to exclude censored data from
the numerator of the hazard function. In this case we have the alternative
hazard function h∗

Ui
where:

h∗
Ui

= Pro(Tn ≤ Cn).hUi
= 0.8[1− exp(−2.5(Ui − Ui−1))]

We do not use this hazard formulation, not least because when combined
with the three distributions, it implies that all censored spells last longer

9The mean value (or true value) of ratio variable is very hard to find out when the
numerator is correlated with the denominator. In Fieller’s theorem, we only need to find
out the true value of Si−1hi and S separately and apply them to construct the benchmark
value ai as the real value of CSD estimator. We also use the similar way to find out the
value of aAi in simulation.

10In CSA estimator, there does not exist aAU0
due to the definition. It start from aAU1

.
11The details of this algebra can be found in probability and stochastic calculus text-

books.
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than F periods (or in this case infinity). In effect, by using hUi
we treat

censored spells as if they were uncensored when estimating the hazard and
survival functions and the three distributions. Censoring simply operates to
shorten the spells we observe. However, in Table 5 we provide an illustration
using h∗

Ui
.12

4.2 The Confidence Interval of Cross-Sectional Distri-
butions

In this section, we investigate the empirical sizes of the Fieller’s method
and delta method for the CIs of the estimators of CSD, CSA and DD.
The purpose is that we want to find out whether both Fieller’s method and
delta method are valid for the CI of CSD and CSA estimators. We also
test whether the CI calculated from delta method of DD estimator is valid
(accuracy of delta method for the CI).

To evaluate the empirical size, the idea is that we evaluate whether
the true values are located in their CI in each simulation for each inter-
val [Ui−1, Ui), i = 1, 2, ..., F . After 100,000 simulations, we count how many
times the true values ( iSi−1hi

S
, Si∑

S
and Si−1hi) are included in their CI which

gives the empirical size. If the empirical size is close to α, then it means the
CI is accurate.

Step 1: We use the data generated according to section 4.1 to calculate
CSD, CSA and DD estimators over the five duration categories, i = 1...F .
The sample sizes for each simulation are either N = 50, N = 100, N =
200 and N = 400. Since we do not know the exact distribution of the
CSD, CSA and DD13, to evaluating the empirical sizes of those methods,
we investigate whether the ”true” values of CSD and CSA are located in
their CI calculated using Fieller’s method and the delta method; and for
the DD estimator if Si−1hi is located in the CI calculated from the delta
method. The significant levels chosen are the standard ones α (type I error)
being 10%, 5% and 1%.

12For example, in medical applications there might be interest in the occurrence of a
very specific outcome (heart attack, death) rather than monitoring what happens in cases
where this does not occur.

13TheDD estimator should follow the normal distribution asymptotically. At this point,
we want to use the DGP to double check whether the DD estimator follows the normal
distribution asymptotically. In other words, does the delta method provides accurate CIs
for DD.
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Step 2: Repeat the step 1 by M = 100, 000 times. This generates 100, 000
CIs for each of the CSD, CSA andDD estimators for each of the 5 categories
(time periods) in the different sample sizes. We can evaluate the number of
times when the true values are included in the estimated CIs. Furthermore,
if the empirical size is close to α, it means that the CI is accurate.

4.2.1 The Results without Censoring

Table (1), (2) and (3) show the empirical size of the three estimators without
censoring. Table (1) lists the empirical sizes for the CSD. In the first
column, it shows the categories of the CSD estimators. In terms of the
DGP , the observations are assigned into five categories: [0, 0.1), [0.1, 0.2),
[0.2, 0.3), [0.3, 0.5) and [0.5,∞). For example, a0.1 means the CSD estimator
of category [0, 0.1); ainf means the CSD estimator of category [0.5,∞). In
other words, a0.1 can be also known as CSD estimator for the first period;
ainf can be also known as CSD estimator for the fifth period. When we
set the theoretically empirical size is 10 % with N=50, it can be seen that
the empirical sample size of CI from Fieller’s method is superior to delta
method except in the first period. When the theoretically empirical size is
5 %, the 5 periods CIs from Fieller’s method are closer to 5 % compared
with delta method. With respect to 1 %, we still have the same result that
CI from Fieller’s method are closer to 1 % for all periods. When the sample
size increased to 100 and 200, the performances of Fieller’s method and delta
method are nearly the same when α=10 % and 5 %. In the case of 1 %, it
can be seen that the empirical size calculated from Fieller’s method are closer
to 1 % for all periods compared with delta method. When the sample size
increased to 400 and α=10 %, it can be seen that empirical size of Fieller’s
method is superior to delta method for a0.1, a0.2, a0.3 and ainf . With respect
to N=400 and α= 5 %, the empirical size of Fieller’s method is closer to 5
% compared with delta method. In terms of 1 %, empirical size of all the
5 periods CI of CSD from Fieller’s method is superior to delta method.
Therefore, we can make the a conclusion that the CI of CSD calculated
by Fieller’s method provides a more accurate empirical size when all the
observations are uncensored. In addition, even though the delta method is
inferior to Fieller’s method, it is still a valid method to calculate the CI for
CSD.

Table (2) provides the empirical size for the CSA estimators. When
N=50, both Fieller’s method and delta method give a similar empirical size
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for CSA estimators even though empirical results are slightly biased, partic-
ularly for the 1% case, where both methods reject too many true values. For
larger sample sizes (N=100, 200 and 400), the empirical sample size is quite
accurate for all significance levels 10%, 5% and 1%. In addition, there are
no significant differences of empirical size calculated from Fieller’s method
and the delta method. We also calculate the empirical size of Ŝ, for which
we only use the delta method. Again, this is quite accurate in larger sample
sizes, and in small sample N = 50 performs the worst for the 1% significance
level.

Table (3) describes the empirical size for the DD estimators using the
delta method. When the sample size is 50, it can be seen that the empirical
size is acceptable when the type I error is 10% except ad0.2 and ad0.3. In terms
of the 5%, the empirical result is quite good even the sample size is small.
While the type I error is chosen to be 1%, the empirical size is slightly far
from 1% except the last period of DD estimator adinf . When the sample size
increases to 100, 200 and 400, all the empirical size of the DD estimators
tend to be very close to the theoretically empirical size (10%, 5% and 1%).
In other words, we use the DGP to show that the delta method is valid for
DD estimator. The empirical size is improved with the increased sample
size.

4.2.2 The Results with Censoring

Table (4), (5) and (6) show the empirical size of the three estimators when
there is censoring of spells as outlined previously.

Table (4) shows the empirical size of the CSD when the censored obser-
vations are included in the sample. As we can seen when the α=10 % and
N=50, the empirical size of a0.2, a0.3, a0.5 and ainf calculated from Fieller’s
method are slightly closer to 10 % while a0.1 calculated from delta method
is closer to 10 %. When α=5 %, all the five periods of CSD from Fieller’s
method are slightly superior to delta method. When α=1 %, the empiri-
cal size is significantly improved and closer to 1 % calculated from Fieller’s
method. When the sample size increase to 100 and 200, Fieller’s method
is still better than delta method even both methods provide quite accurate
empirical size. When the sample size increase to 400 with α=10 % and 5 %,
both methods provide quite similar empirical size. With respect to α=1 %,
Fieller’s method is superior to delta method. In conclusion, empirical size
of the CSD calculated from Fieller’s method is more accurate when there
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are censored observations. However, delta method is also valid since it still
provides an acceptable empirical size.

With respect to CSA estimators including the censored observations, the
empirical result can be found in table (5). Both methods give a quite accurate
empirical size even the sample size N=50 while the empirical size of the CSA
estimator in last period is a little far from the theoretically empirical size.
With the increase of the sample size, the empirical size of the CSA estimator
of the last period is significantly improved. Especially, the empirical size is
quite accurate for all the CSA estimators when N=400. Note that we have
an additional coefficient included, aA∗

inf +1, which is calculated by using the
alternative and commonly used hazard formulation h∗

Ui
. We provide this

merely as an illustrative example and we do not use it elsewhere in the
paper.14

Table (6) gives the empirical size for DD estimator calculated by the
delta method. For the small sample (N=50), the empirical size of DD is far
from the theoretically empirical size (α=10%, 5% and 1%). However, with
larger samples, the empirical size of DD estimators in all 5 periods are close
to the theoretically empirical size. In other words, the delta method is valid
for CI of DD estimators depending on the simulation.

5 Application to CPI Micro-Price Data

From the Monte Carlo simulations, we can see that whilst both Fieller’s
method and the delta method can be applied to calculate the CI of the
CSD, Fieller’s method can potentially improve the empirical size. In this
section, we apply both methods to calculate CI of the CSD and CSA and
the delta method for DD using the UK CPI micro-price data.15 Since this
is a big data set, given the simulation results we would expect our CIs to be
accurate and similar for both methods.

14In some applications, a particular endpoint is the focus. For example, in medical
studies, the occurrence of a heart attack might be the end point. This is captured by h∗

Ui
,

and there is no interest in spells where no heart attack is observed.
15In an earlier version of the paper we also used data on UK health service waiting time

data, as used in Dixon and Siciliani (2009)]
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5.1 Description of the UK CPI Price-Quote Data

We use the UK micro-price data used to construct the monthly CPI inflation
statistics. The CPI micro data is obtained from the UK Office for National
Statistics (ONS). This data set gives over 100,000 price-quotes each month
across over 700 items sampled from different sellers across the UK in order to
measure CPI inflation: it includes over 30 million price-quotes from December
1998 to January 2017. These monthly price quotes are collected ”locally” by
the ONS officers (other prices which are collected centrally are not included
in the data set).

From the price-quotes, we can construct price-spells: these are the se-
quences of monthly quotes where an individual price-setter sets the same
price for a particular item each month. These spells are sorted into dura-
tions of 1-61 months. For i = 1, 2, ..., 61, a price spell has duration i if it lasts
exactly i months. For example if the duration is 12 months, that means we
observe twelve consecutive months where the seller set the same price and in
both the preceding and following month set a different price. The only ex-
ception is 61 months, where all spells of 61 months or longer are counted. It
is common practice to truncate the distribution in this way. For applications
of this type of data and distributions in dynamic macroeconomic models,
see for example Dixon and Bihan (2012) using French CPI data and Dixon
(2012) using the UK data. Following these two papers, we do not use left-
censored spells and assume that right-censored spells end with price-changes.
Furthermore, we exclude sales from the data. There are some standard issues
with the CPI data, and here we simply follow the normal conventions (see
for example Cavallo (2016), Nakamura and Steinsson (2008), Dixon and Tian
(2017) and Dixon et al. (2020)). A description of the data and more detailed
discussion of methods is included in the Appendix 7.2.

5.2 Empirical Results

First we use Theorem 1 to perform a null hypothesis test on CSD which
we report for a range of durations in table (7). The null hypothesis is that
the coefficients are equal to the mean coefficient across all durations i: âi =
E(âi) = 0.0164. In other words, we want to test whether the CSD estimators
are equal to their collective arithmetic mean in each period i (if it were
accepted for all durations, then we wold have a uniform distribution). As
can be seen from table (7), all test statistics of all the CSD estimators are
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significant and reject the null hypothesis.16. In addition, we also report the
null hypothesis tests for Ŝ = 10.75 and h̄ = 0.0955. The value tested for
h̄ is the arithmetic mean hazard across all durations, and the value for Ŝ is
its reciprocal. Both test statistics clearly reject the null as we would expect.
Having shown how to use Theorem 1 (Corollary 1 for h̄, Lemma 3 for Ŝ) to
preform a null hypothesis test, we now move on to use we Theorem 2 and
Lemma 1 to construct the CIs for CSD estimators, along with CSA, DD,
h̄ and S.

In Figure 1 we show the estimated coefficients for the three distributions
in months 1-60 (the full CI results for months 1-61 are given in the online
appendix for each distribution). We do not depict the CIs, as these are very
small due to the large sample size. However, we can compare the precision
of the estimates, being the ratio of the absolute size of the CI relative to the
coefficient, with a higher value representing a less precise estimate. These are
depicted in Figure 2 for months 1-60. We can see that the precision of CSD
and DD estimates are almost the same after a few months. In month 1 the
precision of CSD is 0.44% whilst DD is 0.28%. However, in later months
the difference in precision is very small (less than 0.2% in absolute terms).
In general, as time goes on the CI increases relative to the estimate: from
below 0.5% in the first months, to over 10% for CSD and DD. The fact
that the DD and CSD have such similar levels of precision reflects the fact
that the CSD estimator is equal to the product of constant i and h̄ times
the corresponding DD estimator. The estimator h̄ has a very small variance
realtive to the DD estimator. Hence precision of DD and CSD are very
similar. The fall in precision as i increases reflects the fact that the number
of spells and price changes (D and N) become smaller over time. CSA is
significantly more precise than CSD and DD, although it too becomes less
precise for longer durations. The reason for the higher precision of CSA is
because the variance of Ŝi is less than the variance of ˆSi−1ĥi, since ĥi is highly
variable. In the online appendix, we show the CIs of the three distributions
for months 1-60.

Table(8) shows a selection of coefficients across each of the 5-years CSD
and its CIs calculated from Fieller’s method to 4 decimal places, which are
the same for the delta method.17 The reason is the large large number of

16Although we do not report the values, this null hypothesis is rejected for all the
estimated coefficients i = 1...61

17The differences exist after 7 decimal places.
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observations, which makes the delta method robust for CSD estimators.
As we can see, the selected coefficients whilst not monotonic are tending to
become smaller (from 0.057 when i=2 to 0.002 for i=52). There is a long
fat tail, with 8% of price spells lasting more than 48 months and 6% longer
than 60 months. All the CIs in table (8) exclude 0, and so all the CSD
estimators are significantly different from 0. The Table also reports the first
6 months of CSA and DD, and at the bottom the estimate and CI of Ŝ,
with the results for h̄ given by âA1 . Note that this estimate of h̄ is similar to
that reported in Dixon and Tian (2017) which used a slightly different time
period.

Whilst the focus of this paper is on evaluating the estimates of the CIs
of the three distributions, it is worth noting that the estimates in the on-
line appendix themselves satisfy the identities we earlier outlined earlier. In
particular, we can note that from equations (3) and (7) we have:

âAi = h̄ = 0.1733 (25)

Our estimate of S̄ above implies that the average duration of a price spell
is just under 6 months, and that the two distributions CSD and DD ”cross”
between 5 and 6 months, which we see from Table 8 is indeed the case:

âd5 = 0.056 > 0.049 = â5

âd6 = 0.046 < 0.048 = â6

These two examples illustrate how the estimators we are using satisfy
the theoretical relationships that hold for the underlying distributions (see
appendix 7.2 for some further key relationships). It remains a further topic
for research to see if we can link the CIs for the different distributions in a
similar manner and possibly improve the CIs by deriving them jointly.

6 Conclusion

CSD is a new estimator which has been applied in economics and survival
analysis. By applying the theoretical results of Tian and Dixon (2022), we
provide the analytic formulae of the confidence interval for the CSD, CSA
and DD estimators. The CIs of the CSD and CSA estimator can be calcu-
late from Fieller’s method and delta method while the CI of DD estimator
can be derived from delta method. In this paper, the Filler’s method and the
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delta method are applied to derive the CIs of the CSD and CSA estimators
(delta method for DD estimator) and to derive associated test statistics. To
compare the CIs from the two methods, we use the Monte Carlo simulations
to evaluate the empirical size. We simulate 5 period CSD, CSA and DD
estimators with the sample size N=50, 100, 200 and 400 with type I error
= 10 %, 5 % and 1 %. The empirical results of the simulations indicate
that Fieller’s method is superior to the delta method whether censored ob-
servations are included or excluded. However, the delta method still provide
acceptable CIs for CSD and CSA estimators in large samples. Furthermore,
the CIs of DD and S and h̄ estimators derived from the delta method are
also accurate.

Finally, we use both methods in real data sets: the UK CPI micro price
quotes data. We provide estimates of CSD estimators,the CIs and test
statistics, and similarly for CSA, DD, S and h̄. In all cases we have very
precise estimates of the coefficients, with small CIs which exclude zero. Even
very long durations of up to 60 months have significant coefficients despite
the small proportion of spells surviving that long. Due to the large sample
size, both the Fieller and delta methods yield almost the same CIs, with
only minor differences.

We believe that these results provide a solid foundation for using the
CSD estimator, and that it will go on to have many more applications in
different contexts. Furthermore, the linking together of three distributions
allows us to estimate all three distributions from different types of data: if
you can estimate one, you can estimate them all.

7 Appendix

7.1 Derivation of CI and test statistics for Ŝ and h̄

First recall that we have the expression for the variance of the sum of survival
probabilities:

V ar(Ŝ) = V ar(Ŝ0 + Ŝ1 + ...+ ŜF ) =
F∑

k=1

V ar(Ŝk) + 2
F∑

k ̸=j

Cov(Ŝk, Ŝj)

By applying the Greenwood formula and the covariance formula as in equa-
tions (9) and (10), we can calculate the variance of Ŝ. Turning to V ar(h̄),
we could develop an expression using the definition:
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V ar(h̄) = V ar(1/Ŝ)

However, it is not easy to use this definition to derive V ar(h̄). Instead, we
can use the delta method from Lemma 2 and substitute αA

1 = h̄ into equation
(20). Noting that since Ŝ0 = 1, we have ˆCov(Ŝ0, Ŝ) = 0 and ˆV ar(Ŝ0) = 0.
Hence (20) simplifies to:

V ar(h̄) =
V ar(Ŝ)

Ŝ4
(26)

We can now calculate the CI for Ŝ and h̄. Since the summation Ŝ follows
the multi-normal distribution asymptotically (from observations 1 and 2), we
can write its CI in the standard form:

Ŝ − t1−α/2(d)

√
ˆV ar(Ŝ) < S < Ŝ + t1−α/2(d)

√
ˆV ar(Ŝ)

The corresponding hypothesis test statistic is therefore:

TSS =
S − Ŝ√

ˆV arŜ

If we set the null hypothesis H0 : Ŝ = X, we then have the test for
whether Ŝ is significantly different from X.

TSS =
Ŝ −X√

ˆV arŜ
(27)

Recall that since S0 = 1, the estimator Ŝ cannot be less than 1. When S=1,
we have the case where no spells last more than 1 period. In the case of the
price data this would mean that all prices change each period. The test of
null hypothesis H0 : S = 1 would then be a test that there was no nominal
rigidity in the economy.

Turning to h̄, by analogous arguments we have the test statistic:

TSh̄ =
h̄∗ − h̄

ˆV ar(h̄)
1
2

(28)

where the variance is given by (26). The CI takes the form:

h̄− t1−α/2(d)

√
ˆV ar(h̄) < h̄∗ < h̄+ t1−α/2(d)

√
ˆV ar(h̄)
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7.2 Relationships between Estimators

There are many direct links between the estimators of the three distributions
DD, CSD and CSA and the Survival function Si and hazard function hi,
which are described in detail in Tian and Dixon (2022) (Table 1). These
relationships include:

h̄ =
F∑
i=1

âi
i

(29)

h̄ =
1∑F

i i.âdk
(30)

Ŝi = 1−
∑

k<(i+1)

âdk (31)

âi = i(âAi − âAi+1) (32)

We can also derive a new result using (31),

Ŝ = 1 +
F∑

k=2

âdk +
F∑

k=3

âdk.... =
F∑

k=1

(F − k + 1)âdk (33)

7.3 Description of CPI-Data

We use the CPI micro data obtained from the UK Office for National Statis-
tics (ONS), the UK government’s statistics department. The data includes
over 30 million price quotes from December 1998 to January 2017. These
monthly price quotes are collected ”locally” by the ONS officers. The dura-
tion of the price spell means that how long the price set by a specific retailer
in a specific region for a specific item spell lasts, in terms of a sequence of
identical price-quotes across consecutive months.

In terms of the UK CPI micro data, the observations are divided into
13 divisions which are associated with the Classification of Individual Con-
sumption According to Purpose (COICOP). The COICOP codes including
5-6 digit numbers are applied to classify the goods and the services. After
2015, ONS also reports the COICOP5 codes which give more details for ob-
servations. The locally collected data which we were able to use covers 11
of the two digit COICOP divisions. There are multi-observations for the
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same item, since the prices are collected from different shops and regions to
make a representative sample. There are 12 regions used to construct the
data, including London, Scotland, Wales and Northern Ireland etc. There
also exist the shop codes for the different brands of shops such as Tesco and
Sainsbury.

There exist the weighted coefficients for the shop, the region, the item
and the COICOP division (COICOP weight). The weighted coefficients can
be applied to calculate the weighted price (aggregate price). Therefore, the
different levels of the indices can be generated. The weighted coefficients of
different regions are named as stratum weight in the data.

There exist some indicators for the price quotes. An indicator ”S” gives
the information that the observation is on ”sale”. In addition, if the price
quote of observation is missing, an indicator factor ”M” is assigned to the
observation. An indicator ”T” is assigned to the observation when the ob-
servation is temporary out of the stock.

There exist the records of the start date and end date for each observation.
This is a very useful information when the censored and truncation problems
are considered. Currently, some observations are still tracked and included
in the CPI framework so that the end date is 999999. Since ONS may change
the CPI framework each year, some goods and services may not be included
in the CPI framework. In such cases, old items are replaced by new items.

For each observation, both the price and log price are given in the data.
Those values can be applied to calculate the frequency and the size of the
price changes. There are sometimes gaps, where the price quotes are missing
for some period and reappear later. The ONS uses the missing indicator is
”M” for these cases. There are several methods to deal with this problem. If
the price quote is missing in a special period, the price can be assumed as the
same as the its last record until the price quote appears again. See Cavallo
(2016) for an evaluation of this approach and comparison with alternatives
considered in Nakamura and Steinsson (2008). Here we use the last record
for the missing price quotes.

In addition, some price-quotes are sales, temporary or terminal discounts.
Many studies argue that the data including sales may affect the economic
relevance of the duration and frequency, so we follow the common practice
and replace the sale price by its previous record (the same method used to
deal with missing price). Another issue is ”outliers”: some price quotes may
be increased by 200 percent or 300 percent in one month. In reality, this is
more likely to be a mis-measurement rather than an actual like-for-like price

26



rise. If prices increased more than 130 percent month on month, they are
deleted from the data. Likewise, if the prices are decreased more than 75
percent, they are also deleted from the data. (See Nakamura and Steinsson
(2008), Dixon and Tian (2017) and Dixon et al. (2020) for a discussion of
this and other data issues)
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Table 1: The Empirical Size of CSD
All the Observations Are Uncensored.

CSD Fieller’s Method Delta Method
N=50 10% 5% 1% 10% 5% 1%
a0.1 0.11706 0.06797 0.02880 0.10930 0.07703 0.03588
a0.2 0.12486 0.06902 0.03148 0.12463 0.07383 0.03877
a0.3 0.13422 0.07447 0.04167 0.13588 0.07994 0.04454
a0.5 0.11700 0.06844 0.02502 0.11945 0.07104 0.02731
ainf 0.11139 0.05849 0.01520 0.11061 0.06077 0.01607

N=100 10% 5% 1% 10% 5% 1%
a0.1 0.10798 0.05931 0.01822 0.10723 0.06146 0.02115
a0.2 0.11185 0.06153 0.01980 0.11110 0.06327 0.02267
a0.3 0.11475 0.06641 0.02288 0.11575 0.06843 0.02520
a0.5 0.10902 0.05843 0.01626 0.11009 0.05990 0.01716
ainf 0.10379 0.05459 0.01235 0.10448 0.05536 0.01325

N=200 10% 5% 1% 10% 5% 1%
a0.1 0.10436 0.05461 0.01386 0.10490 0.05543 0.01629
a0.2 0.10579 0.05607 0.01447 0.10651 0.05644 0.01593
a0.3 0.10611 0.05771 0.01590 0.10645 0.05847 0.01683
a0.5 0.10594 0.05547 0.01331 0.10632 0.05618 0.01363
ainf 0.10151 0.05096 0.01079 0.10208 0.05179 0.01098

N=400 10% 5% 1% 10% 5% 1%
a0.1 0.10238 0.05279 0.01117 0.10236 0.05272 0.01235
a0.2 0.10204 0.05323 0.01285 0.10242 0.05371 0.01354
a0.3 0.10506 0.05608 0.01327 0.10505 0.05690 0.01389
a0.5 0.10169 0.05125 0.01103 0.10189 0.05162 0.01119
ainf 0.10083 0.05111 0.01045 0.10107 0.05114 0.01048



Table 2: The Empirical Size of CSA and S
All the Observations Are Uncensored.

CSA Fieller’s Method Delta Method
N=50 10% 5% 1% 10% 5% 1%
aA0.1 0.10692 0.05872 0.01881 0.10734 0.05934 0.01876
aA0.2 0.11187 0.06070 0.01730 0.10705 0.05756 0.01631
aA0.3 0.10803 0.05657 0.01364 0.10161 0.05087 0.01059
aA0.5 0.10912 0.05862 0.01437 0.10770 0.05907 0.01738
aAinf 0.11139 0.05849 0.01520 0.11061 0.06077 0.01607
S - - - 0.10953 0.05852 0.01528

N=100 10% 5% 1% 10% 5% 1%
aA0.1 0.10298 0.05407 0.01437 0.10327 0.05390 0.01438
aA0.2 0.10539 0.05646 0.01429 0.10331 0.05424 0.01381
aA0.3 0.10564 0.05460 0.01297 0.10184 0.05163 0.01152
aA0.5 0.10401 0.05419 0.01237 0.10339 0.05459 0.01367
aAinf 0.10379 0.05459 0.01235 0.10448 0.05536 0.01325
S - - - 0.10416 0.05374 0.01248

N=200 10% 5% 1% 10% 5% 1%
aA0.1 0.10207 0.05305 0.01223 0.10176 0.05307 0.01230
aA0.2 0.10114 0.05220 0.01226 0.10012 0.05155 0.01218
aA0.3 0.10135 0.05204 0.01103 0.10007 0.05042 0.01039
aA0.5 0.10347 0.05334 0.01128 0.10320 0.05271 0.01210
aAinf 0.10151 0.05096 0.01079 0.10208 0.05179 0.01098
S - - - 0.10297 0.05253 0.01112

N=400 10% 5% 1% 10% 5% 1%
aA0.1 0.09976 0.05094 0.01088 0.09966 0.05088 0.01088
aA0.2 0.10162 0.05112 0.01161 0.10111 0.05075 0.01138
aA0.3 0.10178 0.05140 0.01045 0.10083 0.05093 0.01024
aA0.5 0.10257 0.05189 0.01023 0.10225 0.05189 0.01080
aAinf 0.10083 0.05111 0.01045 0.10107 0.05114 0.01048
S - - - 0.10066 0.05074 0.01034



Table 3: The Empirical Size of DD
All the Observations Are Uncensored.
DD Delta Method
N=50 10% 5% 1%
ad0.1 0.11476 0.05060 0.04012
ad0.2 0.14394 0.05930 0.03939
ad0.3 0.16189 0.06179 0.04783
ad0.5 0.11701 0.05094 0.04060
adinf 0.11067 0.05840 0.01232

N=100 10% 5% 1%
ad0.1 0.09859 0.05451 0.02117
ad0.2 0.09494 0.07047 0.01469
ad0.3 0.10292 0.08796 0.03554
ad0.5 0.09875 0.05476 0.02085
adinf 0.11943 0.04810 0.01275

N=200 10% 5% 1%
ad0.1 0.10677 0.04689 0.01470
ad0.2 0.11640 0.06549 0.01215
ad0.3 0.10624 0.05727 0.01384
ad0.5 0.10982 0.04871 0.01473
adinf 0.09074 0.04690 0.01255

N=400 10% 5% 1%
ad0.1 0.09411 0.05327 0.01019
ad0.2 0.09455 0.05117 0.01422
ad0.3 0.09675 0.06276 0.01589
ad0.5 0.10429 0.05260 0.01065
adinf 0.09643 0.04874 0.01089



Table 4: The Empirical Size of CSD Estimators
Censored Observations are included.

CSD Fieller’s Method Delta Method
N=50 10% 5% 1% 10% 5% 1%
a0.1 0.12561 0.06816 0.02796 0.12029 0.07627 0.03920
a0.2 0.11852 0.07538 0.02887 0.12049 0.07646 0.03586
a0.3 0.12470 0.08555 0.03445 0.12633 0.08643 0.04173
a0.5 0.12113 0.07295 0.02976 0.12365 0.07571 0.03280
ainf 0.10836 0.05978 0.01652 0.11110 0.06201 0.01787

N=100 10% 5% 1% 10% 5% 1%
a0.1 0.11175 0.06162 0.01865 0.10949 0.06318 0.02245
a0.2 0.11248 0.06281 0.02068 0.11185 0.06465 0.02365
a0.3 0.11582 0.06767 0.02410 0.11627 0.06919 0.02679
a0.5 0.10965 0.06042 0.01822 0.11077 0.06209 0.01950
ainf 0.10645 0.05527 0.01263 0.10877 0.05741 0.01375

N=200 10% 5% 1% 10% 5% 1%
a0.1 0.10787 0.05733 0.01530 0.010726 0.05772 0.01714
a0.2 0.10558 0.05590 0.01498 0.10539 0.05744 0.01669
a0.3 0.10869 0.05864 0.01669 0.10885 0.05920 0.01788
a0.5 0.10573 0.05554 0.01440 0.10650 0.05625 0.01496
ainf 0.10485 0.05443 0.01228 0.10616 0.05513 0.01293

N=400 10% 5% 1% 10% 5% 1%
a0.1 0.10514 0.05431 0.01226 0.10489 0.05481 0.01333
a0.2 0.10207 0.05257 0.01245 0.10202 0.05325 0.01343
a0.3 0.10465 0.05420 0.01339 0.10494 0.05488 0.01419
a0.5 0.10383 0.05318 0.01176 0.10397 0.05354 0.01204
ainf 0.10165 0.05084 0.01105 0.10216 0.05139 0.01134



Table 5: The Empirical Size of CSA and S
Censored Observations are included.

CSA Fieller’s Method Delta Method
N=50 10% 5% 1% 10% 5% 1%
aA0.1 0.10215 0.05637 0.01786 0.10231 0.05685 0.01842
aA0.2 0.10397 0.05697 0.01464 0.10313 0.05606 0.01591
aA0.3 0.10618 0.05463 0.01319 0.09893 0.04853 0.00970
aA0.4 0.10823 0.05839 0.01481 0.10537 0.05707 0.01617
aAinf 0.10851 0.05944 0.01535 0.11137 0.06163 0.01773

aAinf +1∗ 0.13182 0.06381 0.00263 0.13299 0.06275 0.00271
S - - - 0.10293 0.05371 0.01367

N=100 10% 5% 1% 10% 5% 1%
aA0.1 0.10255 0.05408 0.01481 0.10247 0.05416 0.01496
aA0.2 0.10426 0.05501 0.01289 0.10280 0.05420 0.01306
aA0.3 0.10521 0.05349 0.01235 0.10204 0.05044 0.01039
aA0.5 0.10478 0.05408 0.01289 0.10399 0.05435 0.01365
aAinf 0.10407 0.05428 0.01276 0.10440 0.05522 0.01351

aAinf +1∗ 0.12890 0.08086 0.04062 0.12987 0.08133 0.03894
S - - - 0.10364 0.05455 0.01256

N=200 10% 5% 1% 10% 5% 1%
aA0.1 0.10164 0.05164 0.01203 0.10168 0.05173 0.01208
aA0.2 0.10325 0.05304 0.01154 0.10222 0.05289 0.01189
aA0.3 0.10222 0.05173 0.01127 0.10030 0.05001 0.01018
aA0.5 0.10278 0.05187 0.01134 0.10209 0.05188 0.01212
aAinf 0.10338 0.05350 0.01174 0.10371 0.05354 0.01212

aAinf +1∗ 0.11641 0.06840 0.02515 0.11708 0.06833 0.02427
S - - - 0.10272 0.05191 0.01084

N=400 10% 5% 1% 10% 5% 1%
aA0.1 0.10179 0.05099 0.01123 0.10177 0.05103 0.01126
aA0.2 0.10155 0.05148 0.01141 0.10098 0.05121 0.01144
aA0.3 0.10048 0.05036 0.00995 0.09943 0.04943 0.00964
aA0.5 0.10197 0.05155 0.01109 0.10184 0.05201 0.01144
aAinf 0.10144 0.05186 0.01141 0.10122 0.05191 0.01141

aAinf +1∗ 0.10831 0.05844 0.01729 0.10885 0.05824 0.01679
S - - - 0.10214 0.05094 0.01085



Table 6: The Empirical Size of DD Estimator
Censored Observations are included.

DD Delta Method
N=50 10% 5% 1%
ad0.1 0.12502 0.05482 0.01737
ad0.2 0.10530 0.07979 0.02418
ad0.3 0.11625 0.08935 0.03371
ad0.5 0.12385 0.07481 0.03331
adinf 0.11304 0.06395 0.01955

N=100 10% 5% 1%
ad0.1 0.12259 0.05928 0.01290
ad0.2 0.11444 0.06556 0.02251
ad0.3 0.11480 0.07002 0.02702
ad0.5 0.11080 0.06112 0.01970
adinf 0.10659 0.05619 0.01353

N=200 10% 5% 1%
ad0.1 0.10273 0.06141 0.01389
ad0.2 0.10578 0.05687 0.01573
ad0.3 0.10908 0.05960 0.01739
ad0.5 0.10628 0.05649 0.01507
adinf 0.10540 0.05449 0.01199

N=400 10% 5% 1%
ad0.1 0.10607 0.06041 0.01275
ad0.2 0.10197 0.05235 0.01266
ad0.3 0.10489 0.05474 0.01370
ad0.5 0.10319 0.05358 0.01229
adinf 0.10161 0.05200 0.01116



Table 7: The Test Statistics Calculated from Theorem 2 for CSD Estimators
of UK Micro-CPI Data from 1998m12 to 2017m1. The Null Hypothesis is:
âi = E(âi) = 0.01639344

â1 â2 â3 â4
−629.96 −569.72 −561.64 −550.47

â5 â6 â7 â8
−587.13 −579.87 −598.88 −587.01

â9 â10 â11 â12
−624.34 −631.83 −603.61 −544.72

â13 â14 â15 â16
−674.64 −705.80 −720.86 −711.95

â25 â26 â27 â28
−788.83 −805.47 −806.84 −788.51

â37 â38 â39 â40
−857.54 −854.13 −863.24 −854.20

â49 â50 â51 â52
−879.51 −888.84 −892.93 −881.19

Ŝ h̄
−8.76 8.68
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Table 8: The 90% Confidence Interval of Different Estimators for CPI Data
From 1998m12 to 2017m1

CSD Fieller’s Method Precision
â1=0.0491 [0.0490, 0.0493] 0.50%
â2=0.0572 [0.0570, 0.0574] 0.56%
â3=0.0565 [0.0563, 0.0566] 0.64%
â4=0.0564 [0.0562, 0.0566] 0.70%
â5=0.0486 [0.0484, 0.0488] 0.81%
â6=0.0481 [0.0479, 0.0483] 0.87%
â7=0.0437 [0.0435, 0.0439] 0.97%
â8=0.0441 [0.0439, 0.0444] 1.02%
â9=0.0374 [0.0490, 0.0493] 1.16%
â10=0.0353 [0.0570, 0.0574] 1.25%
â11=0.0382 [0.0563, 0.0566] 1.26%
â12=0.0457 [0.0562, 0.0566] 1.20%
â13=0.0270 [0.0268, 0.0273] 1.60%
â14=0.0227 [0.0225, 0.0229] 1.81%
â15=0.0204 [0.0202, 0.0206] 1.97%
â16=0.0208 [0.0206, 0.0210] 2.02%
â25=0.0105 [0.0103, 0.0107] 3.57%
â26=0.0090 [0.0089, 0.0092] 3.92%
â27=0.0087 [0.0086, 0.0089] 4.06%
â28=0.0098 [0.0096, 0.0100] 3.90%
â37=0.0044 [0.0043, 0.0046] 6.72%
â38=0.0045 [0.0043, 0.0047] 6.73%
â39=0.0040 [0.0038, 0.0041] 7.27%
â40=0.0043 [0.0042, 0.0045] 7.04%
â49=0.0027 [0.0026, 0.0028] 9.88%
â50=0.0023 [0.0022, 0.0024] 10.83%
â51=0.0021 [0.0020, 0.0022] 11.41%
â52=0.0025 [0.0024, 0.0027] 10.54%

CSA Fieller’s Method Precision
h̄=0.1733 [0.1730, 0.1736] 0.35%

aâA2 =0.1242 [0.1240, 0.1244] 0.33%
âA3 =0.0956 [0.0954, 0.0957] 0.33%
âA4 =0.0768 [0.0766, 0.0769] 0.32%
âA5 =0.0627 [0.0626, 0.0628] 0.32%
âA6 =0.0530 [0.0529, 0.0530] 0.32%

DD Delta Method Precision
âd1=0.2835 [0.2831, 0.2839] 0.28%
âd2=0.1650 [0.1647, 0.1653] 0.40%
âd3=0.1086 [0.1083, 0.1089] 0.51%
âd4=0.0813 [0.0811, 0.0816] 0.59%
âd5=0.0561 [0.0558, 0.0563] 0.72%
âd6=0.0463 [0.0461, 0.0465] 0.80%
Sum of Si Delta Method Precision

Ŝ=5.7699 [5.7599, 5.7798] 0.35%
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Figure 1: The three distributions estimated from the UK CPI data
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The Confidence Interval of the Cross-Sectional
Distribution of Durations: Online Appendix

Huw Dixon and Maoshan Tian

In this online appendix we provide the full range of estimates and confi-
dence intervals up to and including 60 months of the estimates and the CIs of
CSD, DD and CSA. For CSD and CSA we show the CIs calculated using
the Fieller and delta method. The results for CSD are in Table OA1, CSA
in Table OA2 and DD in Table OA3. We also depict the hazard function
estimates in Figure 1 for all durations, and the estimates and CIs in figures
1-3 for the 5th year (months 49-60) for each of the three distributions. Table
OA1 shows the CSD estimators of UK CPI price-quotes from 1998m12 to
2017m1. Since Fieller’s method and delta method provide nearly the same
CIs when there are only 4 decimal places included, so the column CI in
table OA1 is the results from both Fieller’s method and delta method. The
column P in table OA1 is the precision ratio from Fieller’s method and delta
method. Tale OA2 shows the CSA estimators of UK CPI price-quotes from
1998m12 to 2017m1. We also combine results of Fieller’s method and delta
method for the CI and P since they are nearly the same if we only report 4
decimal places (the differences exists when we include 7 or 8 decimal places.)
Table OA3 shows the DD estimators of UK CPI price-quotes from 1998m12
to 2017m1. We only use delta method to calculate the CI and P for DD
estimators.
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Table OA1 The 90% CI of CSD for CPI Data From 1998m12 to 2017m1

CSD CI P
â1= 0.0491 [0.0490, 0.0493] 0.0050
â2= 0.0572 [0.0570, 0.0574] 0.0056
â3= 0.0565 [0.0563, 0.0566] 0.0064
â4= 0.0564 [0.0562, 0.0566] 0.0070
â5= 0.0486 [0.0484, 0.0488] 0.0081
â6= 0.0481 [0.0479, 0.0483] 0.0087
â7= 0.0437 [0.0435, 0.0439] 0.0097
â8= 0.0441 [0.0439, 0.0444] 0.0102
â9= 0.0374 [0.0372, 0.0376] 0.0116
â10= 0.0353 [0.0351, 0.0355] 0.0125
â11= 0.0382 [0.0379, 0.0384] 0.0126
â12= 0.0457 [0.0454, 0.0460] 0.0120
â13= 0.0270 [0.0268, 0.0273] 0.0162
â14= 0.0227 [0.0225, 0.0229] 0.0183
â15= 0.0204 [0.0203, 0.0206] 0.0199
â16= 0.0208 [0.0206, 0.0210] 0.0203
â17= 0.0171 [0.0170, 0.0173] 0.0231
â18= 0.0170 [0.0168, 0.0172] 0.0239
â19= 0.0150 [0.0148, 0.0151] 0.0261
â20= 0.0167 [0.0165, 0.0169] 0.0253
â21= 0.0134 [0.0132, 0.0136] 0.0290
â22= 0.0134 [0.0132, 0.0136] 0.0297
â23= 0.0152 [0.0150, 0.0154] 0.0284
â24= 0.0153 [0.0151, 0.0155] 0.0289
â25= 0.0105 [0.0103, 0.0107] 0.0357
â26= 0.0090 [0.0089, 0.0092] 0.0393
â27= 0.0087 [0.0086, 0.0089] 0.0407
â28= 0.0098 [0.0096, 0.0100] 0.0390
â29= 0.0077 [0.0075, 0.0079] 0.0449
â30= 0.0073 [0.0071, 0.0075] 0.0470
â31= 0.0074 [0.0073, 0.0076] 0.0473
â32= 0.0070 [0.0069, 0.0072] 0.0494
â33= 0.0064 [0.0062, 0.0065] 0.0528
â34= 0.0064 [0.0062, 0.0066] 0.0535
â35= 0.0078 [0.0076, 0.0080] 0.0490
â36= 0.0062 [0.0061, 0.0064] 0.0557
â37= 0.0044 [0.0043, 0.0046] 0.0671
â38= 0.0045 [0.0043, 0.0047] 0.0674
â39= 0.0040 [0.0038, 0.0041] 0.0727
â40= 0.0043 [0.0042, 0.0045] 0.0704
â41= 0.0035 [0.0034, 0.0037] 0.0790
â42= 0.0038 [0.0036, 0.0039] 0.0772
â43= 0.0028 [0.0027, 0.0029] 0.0909
â44= 0.0033 [0.0031, 0.0034] 0.0849
â45= 0.0027 [0.0026, 0.0029] 0.0943
â46= 0.0029 [0.0028, 0.0031] 0.0921
â47= 0.0044 [0.0043, 0.0046] 0.0755
â48= 0.0034 [0.0033, 0.0036] 0.0869
â49= 0.0027 [0.0026, 0.0028] 0.0988
â50= 0.0023 [0.0022, 0.0024] 0.1083
â51= 0.0021 [0.0020, 0.0022] 0.1142
â52= 0.0025 [0.0024, 0.0027] 0.1054
â53= 0.0019 [0.0018, 0.0020] 0.1233
â54= 0.0020 [0.0019, 0.0021] 0.1214
â55= 0.0016 [0.0015, 0.0017] 0.1353
â56= 0.0022 [0.0021, 0.0023] 0.1172
â57= 0.0020 [0.0018, 0.0021] 0.1252
â58= 0.0016 [0.0015, 0.0017] 0.1387
â59= 0.0024 [0.0023, 0.0026] 0.1145
â60= 0.0018 [0.0017, 0.0019] 0.1346
â61= 0.0621 [0.0614, 0.0627] 0.0219
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Table OA2The 90% CI of CSA for CPI Data From 1998m12 to 2017m1

CSA CI P
âA1 = 0.1733 [0.1730, 0.1736] 0.0035
âA2 = 0.1242 [0.1240, 0.1244] 0.0033
âA3 = 0.0956 [0.0954, 0.0957] 0.0033
âA4 = 0.0768 [0.0766, 0.0769] 0.0032
âA5 = 0.0627 [0.0626, 0.0628] 0.0032
âA6 = 0.0530 [0.0529, 0.0530] 0.0032
âA7 = 0.0449 [0.0449, 0.0450] 0.0033
âA8 = 0.0387 [0.0386, 0.0388] 0.0033
âA9 = 0.0332 [0.0331, 0.0332] 0.0034
âA10= 0.0290 [0.0290, 0.0291] 0.0036
âA11= 0.0255 [0.0254, 0.0255] 0.0037
âA12= 0.0220 [0.0220, 0.0221] 0.0040
âA13= 0.0182 [0.0182, 0.0182] 0.0043
âA14= 0.0161 [0.0161, 0.0162] 0.0046
âA15= 0.0145 [0.0145, 0.0145] 0.0048
âA16= 0.0131 [0.0131, 0.0132] 0.0051
âA17= 0.0118 [0.0118, 0.0119] 0.0054
âA18= 0.0108 [0.0108, 0.0109] 0.0056
âA19= 0.0099 [0.0099, 0.0099] 0.0059
âA20= 0.0091 [0.0091, 0.0091] 0.0062
âA21= 0.0083 [0.0082, 0.0083] 0.0066
âA22= 0.0076 [0.0076, 0.0077] 0.0069
âA23= 0.0070 [0.0070, 0.0070] 0.0073
âA24= 0.0064 [0.0063, 0.0064] 0.0077
âA25= 0.0057 [0.0057, 0.0057] 0.0082
âA26= 0.0053 [0.0053, 0.0053] 0.0085
âA27= 0.0050 [0.0049, 0.0050] 0.0089
âA28= 0.0046 [0.0046, 0.0047] 0.0093
âA29= 0.0043 [0.0043, 0.0043] 0.0097
âA30= 0.0040 [0.0040, 0.0040] 0.0101
âA31= 0.0038 [0.0038, 0.0038] 0.0104
âA32= 0.0035 [0.0035, 0.0036] 0.0108
âA33= 0.0033 [0.0033, 0.0033] 0.0113
âA34= 0.0031 [0.0031, 0.0031] 0.0117
âA35= 0.0029 [0.0029, 0.0029] 0.0121
âA36= 0.0027 [0.0027, 0.0027] 0.0126
âA37= 0.0025 [0.0025, 0.0026] 0.0131
âA38= 0.0024 [0.0024, 0.0024] 0.0135
âA39= 0.0023 [0.0023, 0.0023] 0.0139
âA40= 0.0022 [0.0022, 0.0022] 0.0142
âA41= 0.0021 [0.0021, 0.0021] 0.0147
âA42= 0.0020 [0.0020, 0.0020] 0.0150
âA43= 0.0019 [0.0019, 0.0019] 0.0154
âA44= 0.0018 [0.0018, 0.0019] 0.0157
âA45= 0.0018 [0.0018, 0.0018] 0.0161
âA46= 0.0017 [0.0017, 0.0017] 0.0164
âA47= 0.0016 [0.0016, 0.0017] 0.0168
âA48= 0.0016 [0.0015, 0.0016] 0.0173
âA49= 0.0015 [0.0015, 0.0015] 0.0178
âA50= 0.0014 [0.0014, 0.0014] 0.0182
âA51= 0.0014 [0.0014, 0.0014] 0.0185
âA52= 0.0013 [0.0013, 0.0014] 0.0188
âA53= 0.0013 [0.0013, 0.0013] 0.0192
âA54= 0.0013 [0.0012, 0.0013] 0.0195
âA55= 0.0012 [0.0012, 0.0012] 0.0198
âA56= 0.0012 [0.0012, 0.0012] 0.0201
âA57= 0.0012 [0.0011, 0.0012] 0.0205
âA58= 0.0011 [0.0011, 0.0011] 0.0208
âA59= 0.0011 [0.0011, 0.0011] 0.0211
âA60= 0.0010 [0.0010, 0.0011] 0.0216
âA61= 0.0010 [0.0010, 0.0010] 0.0219
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Table OA3The 90% CI of DD for CPI Data From 1998m12 to 2017m1

DD CI P
âd1 = 0.2835 [0.2831, 0.2839] 0.0028
âd2 = 0.1650 [0.1647, 0.1653] 0.0040
âd3 = 0.1086 [0.1083, 0.1089] 0.0051
âd4 = 0.0813 [0.0811, 0.0816] 0.0059
âd5 = 0.0561 [0.0558, 0.0563] 0.0072
âd6 = 0.0463 [0.0461, 0.0465] 0.0080
âd7 = 0.0360 [0.0359, 0.0362] 0.0091
âd8 = 0.0318 [0.0317, 0.0320] 0.0097
âd9 = 0.0240 [0.0239, 0.0241] 0.0113
âd10= 0.0204 [0.0202, 0.0205] 0.0123
âd11= 0.0200 [0.0199, 0.0201] 0.0124
âd12= 0.0220 [0.0218, 0.0221] 0.0118
âd13= 0.0120 [0.0119, 0.0121] 0.0160
âd14= 0.0094 [0.0093, 0.0094] 0.0182
âd15= 0.0079 [0.0078, 0.0079] 0.0198
âd16= 0.0075 [0.0074, 0.0076] 0.0203
âd17= 0.0058 [0.0058, 0.0059] 0.0231
âd18= 0.0054 [0.0054, 0.0055] 0.0239
âd19= 0.0045 [0.0045, 0.0046] 0.0262
âd20= 0.0048 [0.0048, 0.0049] 0.0254
âd21= 0.0037 [0.0036, 0.0037] 0.0291
âd22= 0.0035 [0.0035, 0.0036] 0.0298
âd23= 0.0038 [0.0038, 0.0039] 0.0285
âd24= 0.0037 [0.0036, 0.0037] 0.0291
âd25= 0.0024 [0.0024, 0.0025] 0.0359
âd26= 0.0020 [0.0020, 0.0020] 0.0394
âd27= 0.0019 [0.0018, 0.0019] 0.0408
âd28= 0.0020 [0.0020, 0.0021] 0.0392
âd29= 0.0015 [0.0015, 0.0016] 0.0451
âd30= 0.0014 [0.0014, 0.0014] 0.0472
âd31= 0.0014 [0.0013, 0.0014] 0.0475
âd32= 0.0013 [0.0012, 0.0013] 0.0496
âd33= 0.0011 [0.0011, 0.0011] 0.0530
âd34= 0.0011 [0.0011, 0.0011] 0.0536
âd35= 0.0013 [0.0013, 0.0013] 0.0492
âd36= 0.0010 [0.0010, 0.0010] 0.0559
âd37= 0.0007 [0.0007, 0.0007] 0.0674
âd38= 0.0007 [0.0007, 0.0007] 0.0676
âd39= 0.0006 [0.0006, 0.0006] 0.0729
âd40= 0.0006 [0.0006, 0.0006] 0.0706
âd41= 0.0005 [0.0005, 0.0005] 0.0793
âd42= 0.0005 [0.0005, 0.0005] 0.0774
âd43= 0.0004 [0.0004, 0.0004] 0.0911
âd44= 0.0004 [0.0004, 0.0004] 0.0851
âd45= 0.0003 [0.0003, 0.0004] 0.0945
âd46= 0.0004 [0.0003, 0.0004] 0.0922
âd47= 0.0005 [0.0005, 0.0006] 0.0757
âd48= 0.0004 [0.0004, 0.0004] 0.0871
âd49= 0.0003 [0.0003, 0.0003] 0.0990
âd50= 0.0003 [0.0003, 0.0003] 0.1085
âd51= 0.0002 [0.0002, 0.0003] 0.1143
âd52= 0.0003 [0.0003, 0.0003] 0.1056
âd53= 0.0002 [0.0002, 0.0002] 0.1234
âd54= 0.0002 [0.0002, 0.0002] 0.1216
âd55= 0.0002 [0.0002, 0.0002] 0.1354
âd56= 0.0002 [0.0002, 0.0002] 0.1173
âd57= 0.0002 [0.0002, 0.0002] 0.1253
âd58= 0.0002 [0.0002, 0.0002] 0.1388
âd59= 0.0002 [0.0002, 0.0003] 0.1147
âd60= 0.0002 [0.0002, 0.0002] 0.1348
âd61= 0.0059 [0.0058, 0.0059] 0.0230
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Figure 1: The Hazard Function of UK Micro-CPI Data
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Figure 2: The CSD Estimators and Its CIs of UK Micro-CPI Data for the
Fifth Year
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Figure 3: The CSA Estimators and Its CIs of UK Micro-CPI Data for the
Fifth Year
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Figure 4: The DD Estimators and Its CIs of UK Micro-CPI Data for the
Fifth Year
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