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Abstract: Creating the right incentives for a flexible workforce lies at the heart of the gig economy.
For most companies, a key question is how to best connect a limited number of independent
workers in their platforms with service-seeking consumers through the right pricing and matching
mechanisms. We focus on ride-hailing where drivers have significant discretion over where and
when to work across different locations. Building a spatial model, we study how a platform can
create incentives for independent drivers via prices and commissions, and how such policies affect
drivers’ search behavior across a network of locations.

Contrary to common perception, we find that the flexibility of the commissions, and not the
flexibility of prices, plays a dominant role in resolving local demand and supply mismatch. This
is because location based price hikes at the bottlenecks negatively distort the local demand and
generally do a poor job in incentivizing drivers towards such locations. Adjusting the commissions,
on the other hand, does not interfere with the local demand; creates better incentives for the
drivers, and therefore is more suitable to mitigate the effects of bottlenecks. Simulations based
on actual ride patterns from New York City and Los Angeles confirm our insights.

Keywords: Ride-sharing, Gig workers’ compensation, Flexible commission, Sharing economy

1 Introduction

Traditional taxi markets exhibit significant meeting frictions associated with taxi search and avail-
ability (Lagos, 2000; Frechette et al., 2016; Buchholz, 2021). Vacant cabs often spend a long time
waiting at certain locations while passengers wait for cabs at other locations. Using little technology,
cabs find passengers via slow dispatching from local companies or by random street hails. In recent
years, making use of new technologies—mobile devices, location tracking, navigation—ride-hailing
platforms such as Uber and Lyft disrupted the traditional taxi industry and revolutionized the trans-
portation industry as a whole by improved matching efficiency. Founded in 2010, Uber has reported
completion of 10 billion trips worldwide in just eight years (Uber, 2018) and is currently operating
in over 83 countries and 10,000 cities (Uber, 2021).

A key challenge faced by the ride-hailing industry is the shortage of drivers. Finding and keeping
drivers have always been a challenge for ride-hailing platforms as they experience significant driver
turnover (Brown, 2019; Cook et al., 2020). Indeed, according to a report by Uber, 11% of new

drivers stop driving within a month, and about half of them leave within a year (Huet, 2015c).



Driver shortage has been exacerbated recently due to a combination of factors including pandemic
related health and safety concerns (Siddiqui, 2021), the emergence of alternative work options such as
food and grocery delivery (Bursztynsky, 2021), and ongoing issues with drivers’ employment rights,
working and pay conditions (Paul, 2021). Although part of the shortage may be temporary as
several platforms are reported to be "throwing money" to drivers to address severe shortage (D.Lee,
2021), limited supply of drivers will likely stay as a key feature of the ride-hailing platforms for the
foreseeable future.

Given limited supply of drivers, how can a platform create the right incentives using alternative
compensation schemes to generate as many matches as possible? Workforce compensation plans and
incentives have been widely studied in the existing marketing literature e.g., salespeople compensation
(Bhargava and Rubel, 2019; Kim et al., 2019). Such issues, however, require renewed attention within
the context of an independent and flexible workforce commonly found in platform based industries.
Indeed, the platform cannot instruct the drivers when/where to search as it does not employ them. It
can, however, create incentives via prices and commissions, anticipating that the drivers will respond
to such incentives.

Considering the spatial differentiation of supply and demand, if the incentives are not aligned
properly, the platform inevitably experiences bottlenecks and shortages in some locations and excess
supply at other locations. In order to study the strategic impact of such incentives, we consider
alternative mechanisms in which prices and commission rates can be either fixed or flexible. With
fixed-pricing, the platform charges the same per-mile price across the entire city, whereas with flexible-
pricing it sets location-specific prices. Fixed and flexible commission rates are defined likewise. While
the fixed commission model appears to be the norm among ride-sharing platforms (in most cities
Uber gets a fixed 25% commission and drivers keep 75% of the revenue (Uber, 2020)), an alternative
approach is to charge flexible commission rates based on ride locations. Indeed, Uber has already
experimented with the possibility of charging different commission rates in different cities. For
example, in 2015 it raised the commission rate from 20% to 25% in New York, Toronto, Indianapolis,
Boston and Worcester (Huet, 2015a). Similarly, in a pilot program in San Francisco, it announced
testing a tiered structure where UberX drivers pay a 30% commission on their first 20 rides in a week,
25% on their next 20 rides, and then 20% on any rides beyond that (Huet, 2015b). These anecdotes
indicate that ridesharing platforms can indeed pursue more granular commission policies. In fact,
various platforms operating two-sided markets are already charging flexible commissions tailored for

each individual job (Taylor, 2014).



We should further mention that by flexible-pricing we do not mean "surge pricing" as practiced
by Uber, which resolves temporary overflows in demand, due to, say, major sports events or bad
weather. Instead we note that some locations have fundamentally different demand patterns as they
consistently pull in and send away more traffic than others!. Such persistent long term differences
call for flexible schemes in which prices and commission rates can be conditioned on location specific
factors. If, despite such differences, the platform pursues a rigid, fixed-price-fixed-commission rule,
then it is likely to generate fewer matches than it potentially could; thus lose out both on profits and
consumer surplus.

With this in mind, we develop an analytically tractable model, in which the platform operates on
a network of locations with differing distances and traffic flows. Being aware of the city’s layout and
traffic flows, and taking into account the prices and commission rates set by the platform, drivers
self select themselves across these locations to search for customers. We analyze three alternative
pricing and commission models and compare their performance in terms of the number of matches,
profits and consumer surplus.

Our analysis reveals several important insights. First, the flexible commission system is more
suitable to create the right incentives for drivers than the flexible price system, especially when the
platform does not have many vehicles at its disposal. When operating with a limited number of cars,
the platform’s key task is to incentivize drivers towards bottleneck locations (undesirable locations
with short trip lengths). To this end, price interventions not only distort the interior demand and
hamper profits, but also do a poor job in incentivizing drivers to spread themselves evenly across
the city. We show that even after price hikes at the bottlenecks, there still remains excess supply
at other locations, which is a waste of precious resources. In contrast, with a flexible commission
policy the number of cars does not become a constraint until the customer-to-cab ratio ("utilization
rate") hits 100% everywhere, i.e. until no car idles at any location. Up to that point, by fine-tuning
the commission rates—decreasing them at more desirable locations, increasing them at less desirable
locations, or a combination—the platform can spread the cars evenly across the city and while doing
S0, it does not distort the interior demand with unnecessary price hikes. Thanks to these features, the
flexible-commission policy outperforms the flexible-price policy by creating more matches, generating

more profits and, depending on parameters, generating more consumer surplus.

'For instance, based on actual ride patterns, we observe that in Los Angeles there is a consistently high flow of traffic
to and from Santa Monica, West Hollywood or the Los Angeles International Airport, but the same is not true for, say,
Studio City or Pacific Palisades. Relatedly, locations have different expected trip lengths, e.g. if a ride originates from
West Hollywood then it tends to last for 3.9 miles, but if it originates from Pacific Palisades then it lasts for more than
three times, 12.3 miles.



A second advantage of the flexible commission policy is that while price interventions are ob-
servable to everyone (passengers and drivers), commission interventions are observable to drivers
only. Customers do not seem to like fickle fares (Dholakia, 2015; Ariely, 2016), which means that the
flexible-price model might alienate customers and reduce profits. In contrast, the flexible commission
model achieves the demand-supply match in a more subtle way in that neither the commission rates
nor the adjustments to them are observable to the customers.

To illustrate the results in a real-world setting, we calibrate the model for New York City and Los
Angeles based on ride patterns we extracted from a publicly available connectome map on Uber’s
website. Our simulations, in line with the preceding analytical insights, underline the benefits of
flexible commissions when there is a shortage of drivers and their ability to utilize every car in a
ride. Once this aspect is controlled for, the gains from flexible pricing seem to be modest. Second,
we document that the performance of pricing models depends on how homogenous a city’s traffic
structure is in terms of the trip lengths and traffic flows. If these parameters show significant variation
across the city, then pursuing a non-flexible policy is more "costly" for the platform. Our data suggest
that Los Angeles has a less homogenous traffic structure (both in terms of trip lengths and in traffic
flows across locations) than New York; thus non-flexible rules tend to fare worse in Los Angeles than
in New York. Our subsequent simulations based on randomly generated cities with varying distances

and transition matrices further confirm these insights.

Related Literature. Our study builds upon the existing literature in the taxi industry. Lagos
(2000) highlights endogenous search frictions in the taxi-cab market. Buchholz (2021) considers a
non-stationary environment by employing data from New York City and analyzing the dynamic
spatial equilibrium of taxi-cabs. The main difference between this stream of work and our model is
that a platform sets prices and commission rates in our study, whereas there is no such platform in
this line of work with exogenous prices and commissions.

Our work is related to the emerging literature on sharing economy and peer-to-peer matching
platforms (Einav et al., 2016; Zervas et al., 2017; Eckhardt et al., 2019; Li and Srinivasan, 2019; Yao
et al., 2022) with a focus on ridehailing (Cramer and Krueger, 2016; Wang et al., 2019; Zhang et al.,
2022). While there has been increased attention on the design of on-demand ride-hailing platforms
and corresponding incentive schemes with an ultimate goal of better matching demand with supply,
most of these studies have focused on addressing short term demand fluctuations, i.e. instantaneous
imbalances between demand and supply, with dynamic "surge pricing" for given locations (Chen and

Sheldon, 2015; Banerjee et al., 2015; Castillo et al., 2017).



A main feature of our study is the investigation and direct comparison of the trade-offs associated
with fixed vs. flexible price and commission models. Ride-sharing platforms’ pricing, wage and
compensation decisions have attracted attention (Cachon et al., 2017; Hu and Zhou, 2019); however,
these studies do not explicitly take into account spatial features of the city in which the platform
operates. Indeed, a key aspect of the process of matching demand with supply in ride-sharing is the
spatial differentiation of consumer demand and the direct influence of pricing policies on strategic
search behavior of drivers across various locations, which has received relatively little attention in
the literature. Exceptions include Guda and Subramanian (2019) which study surge pricing and
information sharing in a two-zone-two-period setup. Their main interest is to understand when and
in which market zones the platform will use a surge price and explore its implications. Our focus,
however, is stationary characteristics such as different demand patterns across various locations in a
city (i.e., transition matrix that governs customers’ moves), which are arguably as critical as short
term demand fluctuations across locations. Bimpikis et al. (2019) explore spatial price discrimination
for a ride-sharing platform; however, in their model, the platform has access to an infinite supply of
potential drivers, thus the number of cars does not become a constraint. In contrast, in our model the
number of drivers—especially if it is insufficient—plays a crucial role in explaining the performance
of different compensation schemes.

Finally, our work has connections with the marketing literature on incentives and compensation
plan design (Basu et al., 1985; Coughlan and Sen, 1989; Jain, 2012; Chan et al., 2014). Previous
literature empirically analyzed implications of various compensation schemes including commission
and bonus based plans (Misra and Nair, 2011; Kishore et al., 2013; Chung et al., 2014; Kim et al.,
2019), and analytically explored how to best align salesperson’s incentives with those of the firm’s
by considering moral hazard issues (Raju and Srinivasan, 1996; Kalra et al., 2003; Schéttner, 2017).
More recent work focused on two-sided market platforms and examined compensation of salespeople
employed by such platforms in the presence of network effects (Bhargava and Rubel, 2019). A
common aim in this literature is to understand how different compensation schemes affect effort
choices of the salespeople who have considerable autonomy and flexibility in their work. In a similar
spirit, our study investigates how an on-demand platform designs incentives to effectively manage a

highly independent and flexible workforce.



2 Model

Environment. Time is discrete and continues forever. We consider a city that consists of n > 2
locations and is populated by a continuum of people with size 1 and a continuum of cars with size
f. The number of people and cars at location ¢ are denoted by y; > 0 and z; > 0 and they satisfy
Yiiyi = land Y ;" x; = 0. The physical distance between locations ¢ and j is denoted by d; ;
and people’s moves across these locations are governed by a Markov process, characterized by the

exogenous row stochastic transition matrix 7' = (a; ;) where a; ; > 0 denotes the probability that

nxn
a person at location i wants to go to location j.?

People and cabs are matched via an online platform that sets prices and commission rates.
People’s willingness to pay is uniformly distributed in [0, 1], so, if the platform sets price p; at

location 7 then there are

ri =y (1 — p;)

passengers ("riders") willing to hire a cab at that location. Remaining people are assumed to use
public transport or other means to travel, and they do not generate any revenue for the platform.
The platform’s software identifies cabs and passengers at location ¢ and creates matches according
to the following matching function:

m; = min {r;,z;} .

Cabs can drive only a single passenger per trip, and the assignments are random; thus, the probability

that a driver who is searching at location ¢ finds a passenger is equal to

Occasionally, we refer to n; as the utilization rate at location ¢, because from the platform’s point of
view 7); represents the percentage of cabs utilized in a ride.

In addition to matching passengers to cabs, the platform sets prices and commission rates across
the city. In terms of notation p; refers to the per-mile price associated with rides originating from
location 4. Similarly the commission rate ¢; refers to the percentage of the revenue that the driver
keeps after completing a ride originating from location ¢. Drivers participate in this market if their
expected earning is greater than or equal to their outside option, W, which is the exogenous wage

they could earn in the labor market.

2The strict positivity of x;, y; and a;,; ensures that we avoid absorbing or null recurrent states in the steady state
equilibrium.



The timing of events is as follows. Each period starts with a "matching session" in which vacant
cars at each location are matched with passengers. All rides take one period to complete.®> We ignore
operating costs (petrol, insurance etc.) as one can redefine the outside option net of such costs. At
the end of each period, passengers reach their destinations, matches are dissolved and the process
starts again. Cars with no passengers must wait for the next matching session, however in the mean
time they are free to relocate to another location. When deciding where to search, drivers not only
take into account the probability of finding a customer 7, but also the price p;, the commission rate

¢; and the average trip length originating from that location. Below we analyze the drivers’ problem.

Drivers. Let V; denote the value of searching at location ¢ before the matching session starts,
and Uj; be the value of being unmatched once the session ends. A cab that is unable to get a passenger
can either stay in the same location to search again in the next period, or move to another location
if it is more advantegous to search there. It follows that the value of being unmatched at location ¢
at the end of a period is equal to the discounted value of searching at the best location in the city at

the beginning of the next period, i.e
U; = max {pV1,...,8V,} for all i.
Now turn to V;. We have

n
Vi=mn, Z a; jmax {c;pidi; + BV, Uit + (1 —n;) Us.
j=1
With probability 7, the driver is assigned to a passenger, and with probability a;; the passenger
travels to location j. If the driver agrees to take this trip, then his payoff is equal to share of the
revenue ¢;p;0; ; plus the discounted value of searching at location j, given by BVj. If he refuses to
travel to location j then he idles for that period and walks away with U;. Drivers are allowed to refuse
a match, but if they do so, they must wait until the next round, i.e. they cannot instantaneously
re-enter the matching pool in an effort to draw a better ride. With probability 1 — 7, he gets no

passenger at all, in which case, again, he obtains Uj.

31n reality, trips may not finish exactly within the same time window; however, it is safe to assume that on a per mile
basis long distance trips complete faster than short distance trips (e.g., expressways vs inner city roads); and therefore
are more preferable to drivers. This preference creates an imbalance across the locations and affects drivers’ search
decision and the platform’s pricing decision. The equal travel time assumption creates this imbalance in an analytically
tractable way. It is also a common assumption in the literature; see for instance Besbes et al. (2021), Banerjee et al.
(2018) or Lagos (2000).



Steady State Equilibrium. We focus on a steady state in which the distribution of people and
cabs across locations remains stationary. To ensure this, we require the number of incoming rides to

a location to be equal to the number of outgoing rides from that location, i.e.

mg; = 1,471 + ...+ Qn,iMn, for all i.

The left hand side represents the outflow from 4, whereas the right hand side is the inflow into 1.
Since each ride consists of one passenger and one car, the equation above ensures that in the steady

state the number of cars and passengers at each location remain unchanged. The relationship holds

across the entire city, so letting m = (my, ..., m,) we write
m = mT, (1)
where _ )
0 aip a1n
az 1 0 .. A2n
T —
| Gn1 Gp2 . 0 |

Lemma 1 The number of rides in the steady state satisfies
m; = o; M, (2)

where o > 0 is the unique steady state vector of the transition matrix T and M = Z?Zl m;.

In words, if there are a total M moves in the city, then a fraction o; € (0,1) of those moves
must be originating from location ¢. In the steady state, the incoming and outgoing traffic flows are
equal to each other, so an alternative interpretation of (2) is that a fraction o; of the traffic must be
directed towards i. Either way, the parameter o; is a proxy of how attractive the location is. If o; is
high, then we infer that location ¢ is highly attractive as it pulls in and sends away a lot of traffic.

Furthermore, we require that in the steady state no location should be more profitable than

others; thus drivers should be indifferent across locations, i.e.
Vi=.=V,=VWV. (3)

The indifference condition has two implications. First, we have U; = SV for all ¢, which means that



in equilirium drivers have no strict incentive to relocate and search at another location. Second, in
equilibrium drivers would not turn down a match and go empty in search of a better opportunity. To
see why, note that if a driver idles, he earns U; = SV, whereas if he accepts a match, then he earns
picid;; + BV. Clearly the second expression is larger than the first; hence no driver idles voluntarily.
Our notion of the steady is characterized by (i) the stationarity of the distribution of people and
cars across locations, captured by (1), and (i¢) drivers’ indifference across locations, captured by (3).
Of course, temporary or even cyclical imbalances in the flow of traffic due to, say, rush hours, bad
weather, football games etc. may actually violate these conditions. We ignore such fluctuations and
take a rather long term view of the market, and posit that there cannot be a persistent difference
between incoming and outgoing traffic at any location; thus (7) must hold. Similarly, there cannot be
a persistent difference across locations in terms of expected profit; thus (4) most hold. This notion of
equilibrium is common in the literature, e.g. Lagos (2000), as it yields analytically tractable results.
We show that such an equilibrium always exists and it is generally unique under operating models
2 and 3 (below we provide the descriptions of the operating models). Under model 1 we can prove
existence in the interior case, but not in the corner case, though in the numerical simulations the
equilibrium still materializes. Conditions (1) and (3), therefore, are necessary but not sufficient for
the existence of a steady state equilibrium.
Simplifying V;, we have
V(1 = B) = n;picid; for all 4, (4)

where

di =7 ai;6i; (5)
j=1

is the average trip length of a ride originating from ¢. We label the locations from 1 to n in such a
way that

di <dg < ...<dpy

i.e. location 1 has the shortest expected trip length, whereas location n has the longest. (With no
loss of generality we ignore equalities.) Note that d; depends on both on d; ; and a; j; thus a location

does not have to be physically the closest to other locations to have the smallest d;.

Ezample 1. Consider the city in Figure 1 (left panel) and suppose that the transition probabilities
are equal to each other (middle panel), i.e. a;; = 1/4 and a;; = 0. The expected trip lengths are



A A

Figure 1: Layout and traffic flows

equal to?

da =3.72, dp =4.66 dc =3.16, dp =5.41, dg =6.09.

Location C sits at the intersection of routes, and as expected, it has the shortest trip length; thus,
it can be labelled as location 1. A ranks second; so it is 2, B is 3, D is 4 and E is 5. Now suppose
C attracts more traffic than other locations, e.g. suppose that 70% of traffic out of any location
is directed towards C, while the remaining 30% is shared equally between the other three locations
(i.e. ajc = 0.7 and a; ; = 0.1, where 4, j # C). As for the traffic out of C, suppose it is still equally
shared across the four destinations (i.e. ac; = 0.25). These flows are depicted in the right panel of

Figure 1. The expected trip lengths are now equal to

dy =283, dg=3.06, do=2316, dp=3.96, dg="5.67.

Now A and B, despite being physically more remote, have shorter trip lengths than C. This is
because when calculating, say, dp the short distance épc = 2 has a weight of 70% whereas the
longer distances, say dp g = 7.4, have only 10% each. The imbalance in the traffic flow changes the
ranking; so, now location A ought to be labelled as 1, B as 2, C as 3, D as 4 and finally E as 5.
The re-labelling is important for the following reason. From a driver’s perspective the location
with the minimum d; is the least desirable location, and in model 1 this location turns into a
bottleneck if there are not sufficiently many cars in the city. The bottleneck location is typically the
most central one—the one with a short physical distance to every other location—however, as the
example illustrates, this is not always the case. Moreover, the location of the bottleneck may change
as the flow of traffic changes. Throughout the paper we use the numerical labels to refer to locations,

but one should be wary that these labels are relative and may change as the transition matrix or the

*Consider location A and note that 64,5 = 4.24, da,c = 2.24, 64,p = 5.24, and 64,5 = 3.16. Since a;; = 1/4, the
expected length of a trip originating from A is equal to da = (4.24 + 2.24 + 5.24 + 3.16) /4 = 3.72. Other trip lengths
can be calculated similarly.

10



layout of the city changes (e.g. road closures or new roads creating new links).
Drivers participate only if V' > W, i.e. if their expected earnings is greater than or equal to their

outside option W. The platform will not pay more than W, thus
npicid; = W(l1 — ) = w, (6)
where w can be thought as the per-period wage. After substituting for n, the equality becomes
m;pic;d; = x;w, for all 4. (7)

Combining (2) and (7) with the fact that ) ;" , ; = 6 we obtain

oipicid;

n—ea 8)
>j—105pjcid; (

T, =

which pins down the number of cars at location ¢ as a function of prices, commission rates, trip
lengths and the attractiveness of each location. Drivers prefer locations that are more attractive
(high 0;°) and that have longer trip lengths (high d;). In addition to these exogenous parameters, x;
depends on the price p; and the commission rate ¢;. The platform can encourage drivers to search at

location ¢ by raising p; or ¢;. Such decisions are part of the platform’s problem, which we study next.

Platform’s Problem and the Definition of the Equilibrium. The platform’s per-period

earnings at location ¢ is equal to
n
mi= Y mipi (1= ¢i)ai6i; = mipi (1 - c;) d;.
j=1

The second equality follows from (5). Adding different ;s across all locations yields the city-wide
profit, 7. We have

n n n
= E T = g m;pid; — E m;p;cid; .
i—1 i—1 =l

~
Revenue Payout to Drivers

Focus on the term relating to the payout to the drivers. Recall that drivers must be indifferent across

®In equilibrium %; (the number of passengers at location 7) is proportional to ;. Thus z; tends to be high at locations
where there are more customers.

11



locations, i.e. (7) must hold across all locations. Thus

z”: m;picid; = zn::ciw = fw. (9)
i=1 i=1

There are 6 drivers operating in the market, and via commissions, they each expect to earn w per

period, so the total payout to drivers is equal to fw. Substituting this relationship into 7 yields
n
= Zmipidi — Ow. (10)
i=1

The substitution eliminates commission rates from the platform’s objective function. The platform
picks prices to maximize the revenue while the commission rate(s) satisfy ensure drivers’ participation
and indifference via (7). Note that in the steady state payoffs are time invariant; thus the platform’s
lifetime profit is simply equal to Il = 7/ (1 — 3).

A steady state equilibrium is a time invariant tuple {(p;, ¢;, i, y;)};—, such that (i) the platform
maximizes its lifetime profit; (ii) drivers participate and they are indifferent across locations; (iii) the
inflow of moves equals to the outflow at each location; (iv) the total measures of cabs and passengers

are equal to # and 1, respectively. Within this setup, we will analyze three different operating models:

e Model 1 - Flexible Prices, Fixed Commission Rate: p; is location specific, but ¢; = ¢ for all 4.
e Model 2 - Fixed Price, Flexible Commission Rates: p; = p for all ¢ but ¢; is location specific

e Model 3 - Flexible Prices, Flexible Commission Rates: Both p; and ¢; are location specific.

3 Operating Models

3.1 Model 1: Flexible Prices, Fixed Commission Rate

We start with the claim that in equilibrium no location exhibits excess demand.
Lemma 2 There cannot be an equilibrium in which x; < r; at any location.

The proof is in the appendix; here we provide a brief sketch of the proof. Fix some p and let S
denote the set of locations in which demand is greater than or equal to supply with at least one
location exhibiting excess demand, and S the set of locations with excess supply. First suppose that

Si is non-empty. If the platform increases the price(s) in Sp infinitesimally and it leaves the prices in

12



S intact, then some of the drivers in S will move towards Sy, creating more rides at (slightly) higher
prices. Furthermore, if the price rise is kept at a minimum, then despite losing drivers, none of the
locations in &7 will fall into excess demand, which means that the platform can still create the same
number of rides at the same prices in &7. The intervention is profitable because the platform earns
more in Sy while maintaining the same profits in §1. Now, suppose S; is empty. This means that all
cars in the city are being used in a ride and yet there is still excess demand at some location(s). But
this implies that prices are too low; and, again there is a profitable intervention. Combining both
arguments, we see that an equilibrium fails to exist if z; < r;.

Per Lemma 2, r; < x; < m; = r; for all 4. Since m; = o;M and > ; y; = 1, we have

1 op]
M=—— and m;=1m7r;= ,
h(p) h(p)
where
. - o . a . . g(p)
h(p) = ; o 9P = ;Uzpzdz and  Q(p) = 35 (11)

Substituting for m;, we have m = Q (p) — fw. The platform solves

max Q(p) — 6w s.t. r; <x; for all 4.
P

Note that the constraints r; < x; follow from Lemma 2 and they require the number of passengers

to be less than or equal to the number of drivers at each location.
Lemma 3 The objective function Q (p) is strictly concave in p.

The proof is in the appendix. Now focus on the constraint r; < z;. Substituting for r; and z; we
have

ri < x; < Q(p) < pidib.
The Lagrangian of the platform’s problem can be written as
L=Q(p)— 0w+ > X[pidi0 — Q(p)],

where \; is the multiplier associated with the constraint at location i. The first order condition with

respect to p; is given by

[1 — Zn: )\i] Q; (p) + \id;0 = 0, (12)
=1
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Di Di

Figure 2: Left: nonbinding constraint (high #), Right: binding constraint (low 0)

where

/ _ Ui o Q(p)
i (p) = h(p) [dl (1 —po?] ‘

Figure 2 illustrates two scenarios: one in which the constraint p;d;# > () associated with location 7 is
slack (left panel) and the other in which the constraint is binding (right panel). The feasible portion
of Q satisfying p;d;0 > € is highlighted in bold. Whether or not the constraint binds depends on
how large 6 is, i.e. how many cars there are in a city. If 8 is high then the constraint is slack, and
the platform can pick the interior price p; satisfying the first order condition. If 6 is low, then the
constraint binds, pushing the platform to pick the corner price that equates demand and supply at
that location ("price intervention"). In what follows we prove that the constraints bind in an orderly
fashion, starting at the location with the shortest trip length (location 1), then at the location with

the second shortest trip length (location 2) and so on.
Lemma 4 If A\, =0 then Agy1 = 0. Similarly if \y11 > 0 then A\ > 0.

Letting £ = 0,1, .. we refer to regime-k as the outcome in which the first k& constraints are active.

Prices in regime-k satisfy
pFdi0 = Q(p*) fori =1,...k and (1 —pM)32d; = Q(p*) fori=k+1,..,n (13)

The first set of equations follow from the fact that the constraints bind at locations 1 through k,
whereas the second set of equations are due to the first order conditions at locations k + 1 through

n. The (unconstrained) case, k = 0, can be solved analytically, which we report in the following
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proposition. For k > 1 we need numerical simulations.

Proposition 1 If 0 > 01, where 01 is given by (19), then the platform sets

EU (d) and Cmterior — 49wE52f(\/;l)

interior __

where

Ey (d) = anaidi and By (Vd) = anai\/dj. (14)
i=1 i=1

The interior equilibrium emerges if there are sufficiently many cars in the city (6 > 6;). The
abundance of cars allows the platform to set interior prices without worrying about incentivizing
drivers towards undesirable locations. In such an equilibrium, prices satisfy p%ﬂterior < pi‘j:frior, ie.
the platform sets higher prices at locations with longer trip lengths. This relationship can also be
seen in Figure 3 (left panel), where prices in the interior region 6 > 0 satisfy p; < ... < p5.5 The
platform faces a standard trade-off between extensive and intensive margin effects. On the extensive
margin, it generates more matches by lowering prices, whereas on the intensive margin it raises more
money from each ride by increasing prices. The intensive margin effect is stronger at locations with
longer trip lengths: raising the price may cause a drop in the local demand, but if the location has
a high d; then the long trip length more than covers this loss. The opposite is true at locations
with a low d;. Taking these considerations into account, the platform sets prices satisfying the above
relationship.

Drivers prefer higher prices and longer trip lengths, so one might ask how they can be indifferent
across locations if in equilibrium p; and d; move in the same direction. The answer is the probability
of finding a customer. Location n has the longest expected trip length and the highest price; so, it
attracts more cars (per customer) than any other location. As a result, it has the lowest customer-
to-cab ratio, 7;, making it the most difficult location for a driver to find a customer. In contrast,
location 1 has the highest n;, which makes up for the short trip length and the low price. In general,
the customer-to-cab ratios satisfy n,, < ... < n;. Notice, however, since @ is sufficiently large, even at
location 1 there is excess supply, i.e. n; < 1.

If 0 falls below 6; (0.74 in Figure 3) then the interior demand cannot be sustained with the

available cars in the city and the constraints r; < x; start to bind, starting at location 1. In response,

In the simulations, for the purpose of exposition, we consider a city with only five locations. The layout of the city
and the transition matrix are as in Figure 1, right panel. In Section 4.5 we calibrate the model for New York City and
Los Angeles using real world ride patterns from Uber. The results from both sets of simulations are qualitatively very
similar.
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Figure 3: Equilibrium Prices

the platform increases p;, which diminishes the local demand r; and increases the local supply x1
(by encouraging more drivers towards that location).” The price intervention matches the demand
and supply, so 7; = 1 at location 1, but at every other location 7, is still less than 1.% In other
words, the insufficient number of cars in the city forces the platform to conduct a price intervention
at location 1—a diversion from the interior equilibrium—yet there is still excess supply at other
locations. If the platform could somehow divert drivers from excess supply locations towards location
1 without disturbing the interior price there, then it could earn more. However, within the confines
of the current model (single commission rate) it cannot do that. Location 1, from the platform’s
perspective, turns into a bottleneck.

As 6 falls further down, the constraints r; < x; start to bind at more locations, forcing the
platform to intervene and raise the price at those locations: if 6 falls below 0.65 then po starts to rise,
and if it falls below 0.62 then p3 starts to rise to match the demand and supply at those locations.
Notice that even though the model cannot avoid bottlenecks, it still deals with them locally. The
platform uses location specific prices to intervene, and as a result, it does not disturb the demand
at other locations too much. For instance, in Figure 3 when 6 falls below 6, the price at location 1
surges up, but prices at remaining (unconstrained) locations stay rather unchanged.

The above observations seem to resonate with the surge pricing strategy employed by Uber. The
surge pricing scheme kicks in when the number of passengers asking for a ride at a location exceeds
the number of available drivers at that location, which in our model is equivalent to the constraint

r; < x; becoming active. Uber executives defend the surge pricing practice saying it serves their

Tt is straightforward to verify that r1 = % decreases while 1 = LI:IG increases in p;.

8Per Lemma 4 the constraints bind in an orderly fashion. If § falls below 01 then , = 1 and n, < 1 for i > 2. If it
falls further down, then n; =n, =1 and n, < 1 for ¢ > 3, and so on.
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goal of "relentless reliability to manage the marketplace math so that supply and demand match
as perfectly as possible in the face of ever-shifting, highly unpredictable circumstances"(Wohlsen,
2013). Our results seem to confirm a similar insight. Indeed when p; surges up at location 1, the
local demand r; goes down while the local supply ;1 goes up. Furthermore, Uber’s practice is location
specific, i.e. while the price may surge at an excess demand location, it remains unchanged at other
locations. This outcome is also similar to what we observe in our simulations.

In highlighting our model’s insights that may be relevant to real practice such as surge pricing,
we should note the following caveat. Our model is based on a steady state setting; as such Figure
3 depicts steady state equilibrium prices associated with different values of 8. Uber’s surge pricing
practice, on the other hand, appears to be a temporary and transitional solution; thus, it may not

be directly comparable to our steady state results.

Proposition 2 Prices in regime-k are bounded below by pmin = 1+ 0/2 — \/60?/4 4 0 and satisfy

P> > p’g > Pmin and Pmin < p’,jﬂ <.<pk.

Even though we are unable to analytically characterize prices in regime-k when k > 1, we can
still pin down their lower bound puiy. It is easy to verify that as 6 drops pmin rises, which indicates
that the platform responds to a decreasing number of cars by increasing prices. The second part
of the proposition establishes that at locations 1, ..., k prices are inversely related to the trip length,
which is the opposite of what we have seen in Proposition 1. The reason is that at locations 1, ..., k
the constraints r; < x; bind, thus drivers’ indifference condition boils down to p;d; = p;d;. If d; is

less than d; then p; must exceed pj;; else drivers cannot be indifferent.

3.2 Model 2: Fixed Price, Flexible Commission Rates

We start by arguing that Lemma 2 is still valid, i.e. there cannot be an equilibrium in which a
location exhibits excess demand. Save for some minor differences (instead of prices, the platform
uses commission rates to incentivize drivers towards excess demand locations) the proof remains the
same; thus we only provide a sketch of the proof in here. To start, suppose that S; is non-empty.
If the platform leaves the price p as well as the commission rates in Sy intact, but reduces the
commission rates in S1, then some drivers in §; would flow towards locations in Sy, creating more
rides there.” If the reduction is infinitesimally small (call it ;), then despite losing drivers to S,

none of the locations in &1 would fall into excess demand, and the remaining drivers would still be

oicidi0
>oojcid;?

9The number of drivers at location i, T = increases in ¢; and decreases in ¢;s.
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able to serve the initial demand.'® Overall, the platform would not lose any profits in Sy, yet it would
create more rides and more profits in Sg rendering the intervention profitable. Now suppose &7 is
empty, i.e. at every location we have z; < r; with at least one inequality strict. Since all cars are
being used in a ride, and there is still some excess demand, the platform can earn more by increasing
p to the point where demand equals to supply at every location, rendering the conjectured outcome
a non-equilibrium. In conclusion, so long as there is excess demand in the city, the platform has a
profitable intervention; thus, there cannot be an equilibrium in which z; < r; at any .

The claim establishes that r; < x;, and therefore, m; = r; = y; (1 — p) for all 7. In addition, since

m; =o;M and > ; y; = 1 we have
m;=r;=0;(1—p).
Substituting this relationship, and p; = p into (10) yields
7= (1—p)pE, (d) — Ow. (15)

The platform solves max, 7 s.t. 7; < x; for all 4. Substituting for r; and x;, we have
n
Ti < Ti; < (1 *p) Zaicidi < Cldlg
i=1

A commission vector c is incentive compatible if it satisfies drivers’ indifference across locations, i.e.

it satisfies equation (7). After substituting for m; and x; this is equivalent to
n
(1— p)pz o;dic; = Ow. (16)
i=1
It follows that

ri <z & w < peid;.

Recall that in model 1 the constraints became active in an orderly fashion, starting at location 1 and

then at location 2 and so on. Here this is no longer the case.

Lemma 5 Fix p. Suppose there exists an incentive compatible ¢ under which r; < x; for 1 < k and

r; = x; fori > k. Then there exists another incentive compatible &€ under which r; < x; for all i.

10Quch ¢; exists because locations in 81 exhibit excess supply. Since z; > r; < ¢;pd; > w for all ¢ € S1, and since
the inequality is strict, there exists e; > 0 satisfying (¢; — €;) pd; > w.
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The proof is in the appendix. The idea is that we can generate a new ¢ by marginally shaving off
the rates of ¢ at locations where the constraint is slack (but without rendering any of these constraints
binding) and marginally increasing the rates at locations where the constraint is binding. Thus, by
construction all constraints will be slack under the new €.

The Lemma rules out the possibility that r; < x; for some locations and r; = x; at other locations.
Either the constraints are slack at all locations or they bind at all locations. We can now characterize

the equilibrium.

Proposition 3 If§ > 0y = % then all locations exhibit excess supply, i.e. r; < x; for all i. The
platform sets pierior = %, however the commission rates are indeterminate: there exists a continuum
of ¢ satisfying incentive compatibility while ensuring r; < x; for alli. If, however, 8 < 0y, then r; = x;

for all i, i.e. no cab idles at any location, and the platform sets

1-0)d;

pCOT'HCT‘ — 1 _ 9 and C’L.COT'TLCT —

If 6 is sufficiently large, then the platform can experiment with a wide range of commission
schemes and still keep the customer-to-cab ratio n; below 1 at all locations. Below we present an

example for such an outcome.

Ezample 2. Consider the city in Figure 1 and let 6 = 1 and w = 0.6. Furthermore recall that
ds > dy > ... > dj, i.e. location 5 has the longest expected travel distance, location 4 has the second
longest, and so on. Since 6 > 05 we deal with the interior equilibrium, which exhibits a continuum

of commission rates, including ¢ and €& below.

Location | ¢; n; | G M;

1 0.85 | 0.5 0.67 | 0.63

2 0.78 | 0.5 | 0.67 | 0.59
3 0.76 | 0.5 | 0.67 | 0.57
4 0.61 | 0.5 | 0.67 | 0.45
5 0.42 | 0.5 | 0.67 | 0.32

Table 1 — Equilibrium Commissions

It is straightforward to check that ¢ and € are incentive compatible (they satisfy 16) and that the

constraints w < pc;d; are all slack under both commission vectors; hence they both can be posted
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in equilibrium.!! With c the rates satisfy c5 < ... < ¢, i.e. the longer a location’s expected travel
distance d;, the lower its commission rate. Drivers want both ¢; and d; to be large, so under ¢ no
location is more popular for the drivers than the other (note that the customer-to-cab ratio 7; is
the same across locations), because the commission rates counterbalance the travel distances. In
contrast, ¢ is a fixed-commission system where ¢; = ... = é;5. As a result, location 5 becomes the
most popular among the drivers—it has the smallest 7),—location 4 becomes the second most popular
and so on.

The selection of commissions is not confined to ¢ and &; if § > @5 then the platform can pick a
continuum of other rates. But as 6 gets closer to the threshold #, the platform must increase the
rates at locations with a small d; and decrease the rates at locations with a large d; to counterbalance
the distance effect.

If 0 falls below 0o, then the platform can no longer avoid the constraints, so n; hits 1 at all
locations and the platform operates at a 100% utilization rate everywhere in the city. Since the
number of cars in the city is not sufficient to address the interior demand, the price, inevitably,
starts to rise (Figure 3, the middle panel). The equilibrium price materializes at the point where the
aggregate demand can be addressed with the number of available cars.

Model 2 gives the platform the ability to avoid bottlenecks. Thanks to the flexible commission
structure, the platform does not resort to a price intervention until the passenger-to-cab ratio is
equal to 100% at every location. Up to that point, by adjusting the commission rates—increasing
them at less desirable locations, decreasing them at more desirable locations, or a combination—the
platform manages to spread the cars evenly and serve the (unconstrained) demand associated with

the interior solution. Thus, in contrast to the previous model, no location turns into a bottleneck.

3.3 Model 3: Flexible Prices, Flexible Commission Rates

Finally we turn to the most flexible scheme. As before, there cannot be an equilibrium in which
x; < r; at any ¢. Since r; < z; we can write m; = r; = y; (1 — p;) and since m; = o;M, and

>or v =1, we have
g

h(p)

""Recall that in our benchmark (the right hand side panel of Figure 1) the trip lengths are di = 2.83, da = 3.06,
ds = 3.16, ds = 3.96, d5s = 5.67. The steady state vector is equal to o = (0.15,0.15,0.4,0.15,0.15) . Using these numbers
one can verify that (i) (1 —p)p> .}, oidic; = 0w and (ii) w < pegd; under both ¢ and é&.

m; =1, =
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Substituting for m;, the platform’s profit is equal to
m=Q(p) — Ow,

where Q (p) is given by (11). The constraint r; < x;, after substituting for r; and z;, can be written

as
Yo oipicid;
h(p)

The commission vector ¢ must be incentive compatible, i.e. it must satisfy (7). Substituting for m;

r <z e < pic;d;0 for all 1. (17)

and z;, the condition becomes
Yoy oipidic
h(p)

Combining (17) and (18), the constraint associated with location ¢ can be rewritten as

= fw. (18)

r; < x; & w < picd; for all 4.

Since the commission rates are flexible, either the constraints are slack at all locations (i.e. p;c;d; > w
for all ) or they bind at all locations (i.e. p;c;d; = w for all 7). In other words, there cannot be a
scenario where p;c;d; > w for some locations and p;c;d; = w at other locations. When faced with such
an outcome, the platform can simply shave off the the commission rates at excess supply locations
and increase the rates at constrained locations to slacken those constraints. The proof of this claim
is practically the same as the proof of Lemma 5; thus it is skipped in here.

Es(d)

Proposition 4 If 0 > 03 = 262 (V)

then all locations exhibit excess supply, i.e. T; < xz; for all 7.

The platform sets
B, (d)

; T VaB. (V)

but the interior commission rates are indeterminate. If, however, § < 03, then no location exhibits

interior __

excess supply. Along such an outcome the platform sets

E,(Vd)8
pgorner — 1 _ (f) and corner __ w

i Vi ‘T 4 VAR,

With sufficiently many cars in the city (§ > 63) the equilibrium is interior and no constraint r; < ;
is active. Thanks to the flexible nature of the commissions, the platform avoids the constraints until
6 = 3. Up to that point, by fine tuning the location specific rates, the platform incentivizes the

drivers to spread themselves across the city in an even way, and thereby, it avoids bottlenecks. If,
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however, 6 falls below 63, then the interior demand cannot be addressed with the number of available
cars, so prices start to rise (Figure 3, right panel).

Equilibrium prices satisfy p; < p;y1, i.e. the platform sets higher prices at locations with a
high d;. This relationship is similar to what we saw in model 1 and it has the same intuition: at
locations with a high d; the intensive margin effect (raising the price to generate more revenue) is
more dominant when compared to the extensive margin effect (lowering the price to create more
matches). Raising the price may cause a drop in demand, but if the location has a high d; then the
trip length more than covers the loss in demand, which induces the platform to set marginally higher
prices at such locations. In model 1 this relationship broke down in the corner region because in
that model prices at bottleneck locations had to surge up to incentivize drivers. In here commission
rates are employed for this purpose; thus the relationship remains valid both in the interior and the
corner equilibria.

Note that the interior commission rates are indeterminate. If there are sufficiently many cars
in the city then there exists a continuum of payoff-equivalent equilibria in which the platform may
select from alternative commission structures. A corollary is that, if 8 is sufficiently large then the
platform can implement a fixed commission system (¢; = ¢ for all 7) without loss of optimality.

Model 3 will serve as a benchmark in our comparisons as the other models are special cases of

Model 3.

4 Comparisons

We now compare the schemes in terms of the number of matches, the amount of profits, and the
amount of consumer surplus they generate. The comparisons, inevitably, depend on whether equi-

libria are interior or corner, so we start with the relevant 6;s.
Proposition 5 The thresholds satisfy 61 > 635 > 65.

To see why 6; > 03, note that in model 3, the parameter § does not become a constraint until
n; = 1 at every location. In contrast, in model 1 the constraint becomes active as soon as n; = 1 at
location 1 while there is still excess supply at other locations. This explains why model 3 needs fewer
cars to maintain its unconstrained outcome. As for 3 > 5, below we show that model 3 generates
more matches than model 2 in its interior equilibrium. Naturally, it needs more cars in order to

sustain those matches.
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When comparing the performance of different models, one has to pay attention to these thresholds.
For instance, model 1 allows the platform to tailor prices according to location specific factors; so,
one would expect it to generate more profits than the single-price model (model 2). Notice, however,
model 1 requires a large 6 to sustain its interior equilibrium whereas model 2 does not. If 0 is less
than 6; but more than 6, then the comparison involves the corner outcome of model 1 and the

interior outcome of model 2, which is not clear.

4.1 Number of Matches

Under models 1 and 3 we have m; = 0;/h (p), and therefore M = 1/h (p). Similarly, under model
2, m; = o0; (1 —p), thus M = (1 — p). After substituting for equilibrium prices we have
Bo(d) . 3 B Bo(d) 9
v 00 2 >0 v 00
0 if 6 < 0y

simulations lf 9 S él 9 1f 6 S 93
Proposition 6 In terms of generating matches model 8 outperforms model 2: Mg > Ma if 0 > 05
and Ms = My if 0 < 0. Model 1’s performance varies: if @ > 01, then it creates as many matches as

model 3 does, but if @ < Oy, then it creates fewer matches than model 2 does.

In the interior equilibrium of a model (# > 6;) the number of cars does not enter into the
platform’s problem as a constraint; thus, the resulting M; is independent of §. This is why M;
associated with model i is flat when 6 > 6; in Figure 4. The parameter 6 filters into M; only when
there is an insufficient number of cars in the city.

Models 1 and 3 produce the same number of matches, and indeed the same prices and profits, if
0 is large enough for both models to exhibit their interior outcomes (6 > ;). This is because both
models are based on flexible-pricing, as such, the platform maximizes the same objective function.
The models differ in terms of their flexibility in commissions, but if § is large enough this difference
becomes irrelevant because with sufficiently many cars at its disposal, the platform can satisfy those
constraints with either commission format.

As 0 starts to fall, however, the number of cars becomes relevant and M; depends mainly on the
platform’s ability to spread a limited number of cars evenly without running into bottlenecks. With
few cars in the city (generally if § < 1) we see that models 2 and 3 generate more matches than

model 1. This is because the utilization rate—equilibrium passenger-to-cab ratio—in those models
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Figure 4: Number of Matches (left), Profits (middle), Consumer Surplus (right)

hits 100% at every location. In contrast, the utilization rate in model 1 is equal to 100% only at
locations with a small d; while remaining locations exhibit excess supply. This, of course, is a waste

of resources, causing the platform to create fewer matches than it potentially could.

4.2 Profits

In models 1 and 3 we have 7 = Q (p) — fw. Substituting for equilibrium prices we have

4;3((% ;— 0w if6> 0, | 4;523(% — fw if 6> 5
T = o ., ana w3 = g _
simulations if 6 < 6, O[E, (d) — OE2(Vd)] — bw if 6 < 63

Going through similar steps, w2 can be written as

Eq(d)

7 — Qw if9>92

0(1—60)E, (d) —w if0<by

T =

Figure 4 (middle panel) shows that 7; has a concave trajectory, peaking around ;. In the region
6 > 6; the number of cars does not enter into the platform’s problem as a constraint; thus neither
m; nor p;, and therefore, nor the platform’s revenue depend on 6. The cost 6w, however, increases in
6. Since the revenue is flat while the cost increases, the profit falls when 6 > ;. From the platform’s
point of view having a 6 more than 6; is a waste of resources, because the additional drivers do not
generate any new matches (they constitute excess supply), yet they ought to be paid w each, which
is a drain on the profits.

In the region § < 6; the constraint(s) become active. As 6 decreases, fewer matches are created
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and the revenue falls. The cost component 6w, too, falls with 6, so the direction of change in the profit
depends on the strength of these movements. The simulation suggests that when 8 is sufficiently close
to 0;, the fall in revenue is only minimal, thus the profit initially increases and reaches its maximum
slightly below 6;. This suggests that when  is endogenized, the platform would want to create a

small degree of shortage in the number of cabs.

Proposition 7 In terms of profits model 3 strictly outperforms model 2, i.e. w3 > mo for any 0.
Model 1’s performance varies: if @ > 61, then it generates as much profit as model 3 does, thus

outperforms model 2, but if 0 < 09, then it performs worse than model 2.

The relative performance of models depends on how large 6 is. If > ; then, as noted above, the
distinguishing feature for a model is whether its prices are flexible, because the constraints r; < x;
can be satisfied with either commission structure. The proposition establishes that if 6 is large then
flexible price models (1 and 3) generate more profits than the single price model (2).

However, with an insufficient 6, the platform’s ability to avoid bottlenecks and spread the cars
around evenly becomes a more important feature than fine tuning the prices. Indeed, when 6 < 0
we see that 73 &~ 79 > m1. With a limited number of cars, flexible commission models (2 and 3)
achieve a 100% passenger-to-cab ratio at every location, whereas in the single commission model (1)
this ratio is equal to 100% only at some location(s) while other locations exhibit excess supply. It is

no surprise that with such a waste of precious resources the latter model is not as profitable.

4.3 Consumer Surplus

The consumer surplus at location ¢ is given by

1

CS; — Zyiaméi,j/ (’U — pi> dF (’U) y
j=1 Di

where F' (v) is the cdf governing a passenger’s willingness to pay and y; is the mass of passengers at

location i. Noting that » 7, a;;0;; = d; and F' (v) = v (uniform distribution) we have

1 1
csi = 5yid; (1 —pi)’ = gmidi (1 —pi).
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The second equation follows from the fact that in equilibrium m; = y; (1 — p;) . The consumer surplus

for the entire city is equal to

n n
cS = chi = %Zmzdl (1 —pi).
=1 =1

Similar to profits, consumer surplus is linked to the number of matches and, generally, it follows
the same pattern as M; (Figure 4, right panel). For instance, if 0 is large, then we see that the
flexible price models (1 and 3) generate more matches, and therefore, more consumer surplus than
the single-price model (2). As 6 falls, the flexibility of the commission structure starts to become
more important. In this region (roughly 6 < ) flexible commission models (2 and 3) create more
matches, and more consumer surplus, than the single commission model (1).

Combining these observations with the ones in the previous section, we note that if 6 falls below
61 then models 2 and 3 create not only more profits but also more consumer surplus than model
1. The observation is somewhat counter-intuitive, as one may think that if profits are high, then
consumer surplus should be low and vice versa. This would be the case if the size of the pie (total
surplus) was fixed; however in here, models 2 and 3 generate more matches, and therefore a higher
total surplus than model 1—or a bigger pie to continue with the analogy—so, they may indeed create

more profits and more consumer surplus.

4.4 Comparative Statics

Here we explore comparative statics pertaining to the transition matrix 7. A change in some a; ;
changes the steady state vector, expected trip lengths, and thereby all equilibrium objects. For
analytic tractability, suppose that we are interested in some location ¢ and that passengers at any
other location j wish to move to i with the same probability ¢ € (0, 1), that is a;; = ¢. Furthermore,
passengers at j visit remaining locations with identical probabilities, i.e. aj; = % for j, k # 1.
Finally, passengers at 7 visit other locations also with identical probabilities, i.e. a;; = ﬁ Figure

5 (right panel) provides an illustration of these flows. With this specification, the steady state

distribution can be computed as:

1

mforj#i.

q
;= —— d P =
o; 144 and o

A rise in q increases the flow of traffic towards . In the steady state, such an increase must be met

with a drop in the flows towards other locations. This is why an increase in ¢ causes o; to rise but
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Figure 5: Comparative Statics

o;s to fall. Recall that a high value of o; indicates that the location is attractive as it pulls in and
sends away a lot of traffic.

A change in ¢ affects expected trip lengths as well. For tractability suppose that the distance
between the location of interest and every other location is equal to § and the distance between any

other location is equal to 4, i.e.
0ji=0 and 0§ =20 for j,k #i.

Clearly, if 0 < & then i is a central location and if § > & then it is peripheral. Figure 5 provides two

examples for such layouts.'?> With this simplification the expected trip lengths can be computed as:

di=9 and dj=qo+(1—-¢q)é.

In what follows we study the impact of ¢ on prices and profits, starting with model 3.
Model 3: Multiple Prices, Multiple Commission Rates

Proposition 8 Suppose ¢ increases and location i becomes more attractive. If § < 6, i.e. if location
1 15 a short distance away from other locations, then p; increases while the platform’s profit decreases.

If§ > 6 then these relationships are reversed.

In the proof we show that dp;/dq is inversely related to the rate of change in EU(\/g), which
represents the average trip length in the city. If § < 6 then a rise in ¢ decreases EU(\/@ Indeed if a
short-distance location becomes more attractive, then the average trip length in the entire city falls.

In response, the platform increases the price at that location.

12We are interested in location A; thus ¢ = A. In the left panel the distance between ¢ and any other location is § = 5
whereas the distance between two other locations is § = 10. In this layout i is physically central as it is only a short
distance away from other locations. In contrast, in the middle panel the distance between i and any other location is
8 = 8 whereas the distance between two other locations is = 4. In this layout ¢ is peripheral.
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Even though the price goes up, the profits fall. There are two reasons for this. First, the rising
q increases o; but decreases o;s; thus we end up with more short-distance trips (associated with
location i) and fewer long-distance trips (associated with other locations). Second, the increasing
q causes djs to fall, which means that even the previously longer trips get shorter. Profits fall as
a result. If § > S, i.e. if location ¢ sits far away from other locations, then these relationships are

reversed.
Model 2: Single Price, Multiple Commission Rates

Remark 1 In model 2 the price is independent of the transition matriz T'. In response to a change
in the flow of traffic the platform does not update the price; instead it updates the commissions.
Customers, crucially, do not observe such adjustments. The direction of change in the platform’s
profit is same as above: if a location with a relatively small d; becomes more attractive then the

platform earns less (and vice versa).

In model 2 both the interior price and the corner price are independent of d; and ¢;. This means
that fluctuations in the transition matrix do not affect the equilibrium price at all—the platform
charges the same per-mile price irrespective of T'. This outcome, incidentally, is not specific to the
simplified environment presented in this section—prices are independent of d; and o; under any
physical layout and transition matrix. Instead of the price, the platform works with the commission
rates to respond to the fluctuations in the flow of traffic. If, for instance, a change in T" causes d; to
increase then the platform responds by decreasing ¢; at that location, because in equilibrium ¢; and
d; are inversely related (Proposition 3).

In this model the platform conducts its fine-tuning via commissions, and crucially these changes
are not seen by the customers (they are observed only by the drivers); so from the customers’ point
of view, the per-mile price not only is the same everywhere, but also is stable. We know that model
3 outperforms model 2 (in terms of profits) due to its additional flexibility in pricing. However, if
the transition matrix T' changes then so do all prices and commissions in model 3, which means
that the platform not only has to set location-specific price and commission rates, but also must be
actively updating those objects based on fluctuations in 7. So much variation and adjustment in
prices might turn off some customers and cause them to turn to alternative means of travel. If one
factors in the presence of such (behavioral) customers then the profits under model 3 would diminish
as the customer base would shrink. The simulations suggest that the difference between 7o and w3

is modest. Taking the above consideration into account, model 2 might, in fact, outperform model 3
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if a non-negligible portion of the customers were to behave as above.

Model 1: Flexible Prices, Single Commission
Comparative statics pertaining to model 1 in its interior region is the same as model 3, because
the unconstrained versions of both models produce identical equilibrium objects (prices, matches,
profits). In its corner region, in addition to the factors listed in Proposition 8, the direction of
change in p; depends on whether location 7 is a bottleneck or not. Since the net effect is somewhat
cumbersome to disentangle, we skip the details in here.

More importantly, model 1 is based on flexible pricing, as such it is subject to the same criticism
above: the platform posts different prices at different locations and it must update those prices as
the transition matrix changes. So much variation and adjustment in prices might turn off some

customers.

4.5 Calibration

In what follows we calibrate the model for New York City and Los Angeles based on real world ride
patterns we extracted from a publicly available connectome map of rides on Uber’s website (Uber,
2019; Bimpikis et al., 2019). Much like a classical connectome map showing point-to-point spatial
connectivity of neural pathways in the brain, the connectome map that was available on Uber’s
website included a visual map of the ride patterns during a single month among the neighborhoods
of these cities. Actual ride frequencies, however, were not readily available in this visual map.
Using the open html code of the website, we were able to extract data including borders defining
various neighborhoods in both cities (much like the n locations in our model), the latitude/longitude
coordinates defining the center of each neighborhood and the relative likelihood of a ride going from
one coordinate to the other during July 2014. We then created the transition matrix 7" using the ride
patterns between the nodes, and the distance matrix via Google Maps API using the coordinates of
the nodes (see the Appendix for the transition and distance matrices for NYC).!?

Based on the transition matrix 7" which comprises of actual aggregate ride patterns in both cities,
we next calculate the platform’s profit under each scheme and cross-compare their performances. This

helps us illustrate our results in a real-world setting. Figure 6 depicts equilibrium profits against the

3In both cities some diagonal elements of the transition matrices are non-zero, which means that a number of rides
started and ended within the same neighborhood, e.g. Upper East Side in NYC. Similarly some non-diagonal elements
were zero, indicating no rides took place between those locations. These facts violate our assumptions that a; ; > 0 and
a;,; = 0, but they do not affect the inner workings of the model. Our assumptions are sufficient, but not necessary, to
ensure that the transition matrix has a unique steady state vector o. Our calculations show that the transition matrices
associated with both cities are ergodic; thus they both have unique steady state vectors.
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Figure 6: Profit Ratios

the number of available cars, 6. Model 3 (flexible prices, flexible commissions) is the most versatile
operating system and encompasses the other models as special cases; as such 73 serves as a benchmark
in the simulations. The panel on the left hand side illustrates m; as a fraction of m3; likewise the
panel on the right hand side illustrates 7o /3.

First, the fixed-commission model (model 1) performs well when 6 is large but it suffers when
0 is small. For instance in New York if # > 0.6 (left panel) then 7 /73 exceeds 90%; however, if
0 < 0.2 then the ratio drops below 70%. The corresponding numbers in Los Angeles are even lower,
because its traffic pattern is more varied than New York (more on this below). To see why, notice
that with a large fleet (high €) the platform does not run into bottlenecks, so, the flexibility of the
commissions becomes rather unimportant. With a small fleet, however, bottlenecks are unavoidable
and in model 1, due to the fixed commission structure, it is impossible to achieve a high utilization
rate. This is why we observe a sharp drop in relative performance when 6 falls.

Interestingly, model 2 exhibits the opposite pattern: if 6 is large then, due to its fixed-price nature,
it underperforms the benchmark, but if 6 is small then the difference vanishes. The underperformance
is not too severe either: in New York it is generally less than 5% and in Los Angeles less than 10%.
The result underlines the importance of flexible commissions and its ability to utilize every car in a
ride. Once this aspect is controlled for, the gains from location-specific pricing seem to be modest in
comparison, especially when the fleet size is small.

While flexible pricing may appear as a first option to addess local demand and supply mismatch,
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Figure 7: Traffic Imbalance and Profits in Randomly Generated Cities

our simulations highlight the importance of a flexible commission structure when there is a limited
number of drivers. We find that when faced with a shortage of drivers it is the flexibility of the
commissions, and not the flexibility of prices, that enables the platform to create more matches and
generate more profits.

Finally, the performance of a model depends on how uniform the traffic pattern is. If the com-
ponents of o vary significantly, then we say the traffic in that city is rather non-uniform (relative to
another city) as some locations are significantly more popular than others. A similar argument ap-
plies if the components of the distance vector d vary too much. In our model the equilibrium objects
(prices and commissions) depend on o; and d;; if they vary too much across locations, then so do
prices and commissions. A non-uniform traffic structure, therefore, calls for significantly varied prices
and commission rates across locations. The implication is that in a city where these variables differ
significantly, pursuing a non-flexible policy is more costly. In New York the coefficient of variation
for o is 0.98, for d it is 0.32. The corresponding numbers in Los Angeles are 1.52 and 0.35, implying
that Los Angeles indeed has a more varied traffic structure than New York. This explains why in
the simulations the inflexible rules—price-wise or commission-wise—fare worse in Los Angeles than
they do in New York.

In order to confirm the last insight, we randomly generated 400 cities, each consisting of 25
locations with distances varying from 2 to 10 miles. Accompanying transition matrices, too, were
randomly generated. In each map, we computed the profits under each scheme (7w, 72 and m3), as

well as the coefficient of variation of o : the higher the coefficient of variation, the more varied the
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traffic pattern in that city. Figure 7 plots 71 /73 and 72 /73 in each map against the corresponding
coefficient of variation. The downward trend in both panels confirms the above insight: pursuing
a fixed rule—price-wise, commission-wise or both—becomes more costly for the platform as traffic

patterns become more varied (as the coefficient of variation rises).

5 Concluding Remarks

On-demand platforms exhibit unique characteristics in terms of the nature of the work and supply
of the workers. With limited number of independent workers having significant discretion over when
and where to work, platforms need to rely on economic instruments and market forces to effectively
serve consumers. In such an incentive-based, fluid economy, it is imperative to understand market
implications and dynamics associated with various, often competing, incentive schemes. Focusing on
ride-sharing platforms with spatially differentiated supply and demand, we analyze the selection and
performance of prices and commissions— two common economic instruments—in creating the right
incentives for independent drivers.

Our results suggest that a location-specific flexible commission policy is more effective in matching
demand and supply than flexible pricing, especially if the platform does not have sufficiently many
drivers at its disposal. In the absence of flexible commissions, the platform resorts to price hikes to
prevent excess demand; however such interventions not only distort the unconstrained demand—and
hamper profits—but also do a relatively poor job in incentivizing drivers to spread themselves evenly
across the city. We show that, even after such price hikes, there is still excess supply at other more
desirable locations, which, from the platform’s point of view, is a waste of precious resources.

In contrast, with a flexible commission policy, by fine tuning the per-mile rates—decreasing
them at more desirable locations, increasing them at less desirable locations, or a combination—the
platform can spread the cars evenly across the city and avoid bottlenecks. With such a policy, the
number of cars does not become a constraint until the customer-to-cab ratio hits 100% everywhere,
i.e. until no car idles at any location. In our comparisons, we find that avoiding bottlenecks and
utilizing every car in a ride is a significantly more important factor for profits than tailoring prices
according to location-specific elements.

A second potential advantage of using commissions, rather than prices, in aligning supply with
demand is the fact that commission rates are not observable by the customers. Whether the platform
charges different commission rates at different locations, or whether it changes them, or keeps them

intact, are only observed by the drivers. Customers experience the impact of such interventions (e.g.
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an increase in the number of drivers at a location), but they do not observe the actual commission
rates. In contrast, price modifications are observed by everyone, including the customers. It is
conceivable that such flexible price policy might alienate certain customers and reduce profitability.

The recent rise of the ‘gig’ economy brings about new and unique challenges to marketplaces in
that it is the norm rather than the exception for on-demand platforms to rely on a limited number of
independent contractors as opposed to permanent workers to serve customers. On-demand providers
from rides (Uber, Lyft) to deliveries (Grubhub, Deliveroo) to household tasks (Handy, Task Rabbit)
employ gig workers who work on a fluid and flexible basis, yet the legal status of such workers is
a major area of contention. Unlike regular employers, these providers cannot dictate such flexible
workforce on what to do or when to do with regards to their work. Instead, they must rely on
right incentives and market forces to provide effective service to consumers. Our work provides an
important contribution by offering critical insights into the use and implications of two main economic
instruments—prices and commissions—in effective management of gig workers in emerging two-sided

market platforms.
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6 Appendix A— Proofs

Proof of Lemma 1. A Markov chain with a finite state space is said to be reqular if a power of
its transition matrix has only positive entries. In our model n is finite and since a;; > 0 it is easy
to verify that 72 has only positive entries. It follows that the Markov chain associated with 7' is

regular, and thus ergodic. For an ergodic Markov chain, there is a unique steady state vector

n
o= (01,..,0,) with o; > 0 and Zai =1
i=1

satisfying & = oT. Furthermore, any vector v > 0 such that v = vT" must be a multiple of o (see
Grinstead and Snell (1998), Theorem 11.10). The steady state condition m = mT, therefore, implies

that m; = (o, where { > 0 is a positive scalar. Since ) ;" ;0; =1 we have (=>" ;m; =M. 1

Proof of Lemma 2. Let Sy denote the set of locations in which demand is less than or equal to
supply with at least one location with excess demand, i.e. So={i € Ny : r; < z;} with at least one in-

equality strict. Similarly let S; denote the set of excess supply locations, i.e. S1={i € Ny :r; > x;}.

Case 1 - 81 # 0 : Since x; < r; we have n; = 1 for all i € Sp. Similarly z; > r; < n, < 1foralli € S;.

The indifference condition (6) implies
pid; = pjdj, for all ¢,j € Sy and pid; < pjdj, for all ¢ € Sy and j € Sy.

Suppose that the platform leaves prices in S intact but increases prices in Sy to p) = p; + €;, where

g; is positive but infinitesimally small and satisfies
gid; = €jdj, for all 1,] € So.

Note that pid; = p’;d;, which means 7} = 7 for all 4, j € So. It follows that either 7; = 1 or n7; < 1

for all ¢ € Sp. If ¢; is small enough then one can ensure that
ni=1, foralli €Sy and pid; < pjd;, for all i € Sp and j € Sy,

i.e. no location in Sy exhibits excess supply and no location in S; exhibits excess demand. Recall
that x; < r; at least at one location in Sy, whereas x; > r; at every location in S;. Such an g; exists

because the inequalities are strict and €; can be infinitesimally small. Now we can compare profits.
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Locations in Sy: Prices are higher after the intervention. As for the number of rides, recall that prior
to the intervention m; = ;. The fact that n; = 1 implies that after the intervention we still have

m); = x; however, note that z > ;. To see why, recall that

g O ipid;0
i .-
=1 04Pjd;
After the intervention, prices in Sy go up while prices in S; remain the same. Since €;d; = €;d; we

have pid; = p;-dj for all ¢,j € Sy. Taking location ¢ as a reference point we have

Uip;die

! .
T, = for all i € Sg.
YD Y s, 05t Djes, OiPidj

It is easy to verify that x > x; because p, > p;. Since both the prices and the number of rides go

up, the platform earns more in Sy than it did before.

Locations in Si: Prices remain intact. The number of rides is also the same as before, because after
the intervention we still have n} < 1; thus the number of rides is still equal to y; (1 —p;) (recall
that p; remains unchanged). It follows that the platform earns the same in S; as it did before. The
intervention allows the platform to move idle drivers in S; to Sp and earn more; thus the initially

conjectured outcome cannot be an equilibrium.

Case 2 - §; = (): Along this outcome z; < r; for all 4 = 1,...,n with at least one inequality strict;
thus n; = 1 for all ¢ = 1,..,n. Pick location j as a reference point, and note that since n; = 1 the
indifference condition (6) becomes p;d; = pjd;, for all i. Substituting this relationship into (8) we

have z; = 0,0 for all i. Recall that r; = y; (1 — p;); thus x; < r; < y; > 0,0/(1 — p;). It follows that

Z> 71 <:>A ] <0,
;y ;1—@- (pj)

where
n

~1
0;d;
The second step obtains because y ;* ; y; = 1 and p;d; = p;d;. The inequality A (pj) < 0 is strict
because at least one location has x; < ;. Note that A increases in p; and A (1) > 0. Since A (p;) < 0,
there exists some p}; € (pj, 1) satisfying A(p);) = 0. So, if the platform increases p; to p; at location j,
while also ensuring that pid; = p)d; at other locations, then x; = r; for all i, i.e. no location exhibits

excess demand. Prior to the intervention we had z; < r;, with at least one strict inequality; thus
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the number of rides was equal to m; = x; = 0,0 for all i. After the intervention we have x} = r/;
thus, the number of rides is still equal to m] = z = 0,0 for all i. Prices, on the other hand, are
now higher, which means that the platform earns more than before. It follows that the initially

conjectured outcome cannot be an equilibrium. W

Proof of Lemma 3. We start by showing that h~!(p)is strictly concave. The strategy is to establish

that h~! (p) lies underneath its linearization at some p°, which is given by

i G

' (p)=h~'(p%) + VE ' (p°) (p - P°) = >
T 1]

The function is concave if A= (p) < h~! (p), ie. if

[n oi r L oi(l—-p) = o
7 ) — M %
Do <2 D
_ 0 _ 10)2 _m.
i & i=1 (1 =p7) L=pi

Letting t; = ?i(j;f;é) and s; = , /1%, the inequality becomes

n 2 n n
[Z tz‘Si] < Zt?ZS?
=1 =1 =1

The result follows from Cauchy-Scwharz. Note that the inequality is strict; thus h~!(p)is strictly
concave. Observe that Q = g(p)h~'(p), where g is linear and increasing; whereas h~! is strictly

concave and decreasing in p. Thus 2 is strictly concave (see Boyd et al. (2004), pg. 119).1

Proof of Lemma 4. Start with the first claim. If Ay = 0 then the constraint is slack at location k,
thus (i) prdi® > Q2 (p). Furthermore the first order condition implies €}, = 0; thus (ii) dj (1 — i) =
Q(p). (In the first order condition, the term 1 —>""" | A; cannot be equal to zero, because otherwise
(12) fails to hold at any location with a positive \;.)

Now by contradiction suppose Agy1 > 0. Since the constraint is assumed to bind at location
k41 we have (iil) pgr1dis+16 = Q (p). Furthermore, since Q is strictly concave and the constraint is
assumed to bind we have Q) ,; < 0, thus (iv) dg41 (1 —prs1)? < Q(p). Since diyq > di, equations

(ii) and (iv) together imply that

di (1 — pk)2 > diy1 (1 - pk+1)2 = Pk+1 > Dk-
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Notice, however, (i) and (iii) together imply that py > pri1; a contradiction. Thus A\;11 cannot be

positive; so, it must be zero. The second part of the Lemma is proved similarly. Il

Proof of Proposition 1. In the unconstrained case (k = 0) prices satisfy (1 —p;)*d; = Q for all
i=1,...,n. (We omit the superscript 0 when understood.) It follows that p; =1 — (1 — p;) \/d;/d;;

hence

_Q=p)Vdi,
9—7&(\/@ [1—(1—pi) VdiBo(Vd)].

Solving (1 — pi)2 d; = Q for p; yields the expression in the body of the proposition. The equilibrium
commission rate can be obtained by substituting p; into (9). For this (interior) equilibrium to emerge
we need p1di6 > €2, i.e. the constraint at location 1 ought to be slack. After substituting for prices,

the condition is equivalent to

EZ (d)
9E,(v/d)[2d1E,(Vd) — Va1 By (d)]

0 > 91 = (19)

If the constraint is slack at location 1 then it is slack at every other location (Lemma 4); thus 6 > 60,

is sufficient. W

Proof of Proposition 2. In regime-k we have
(1 —pf)2dy < Q(PF) and  pf. d10 > Q(pY)

The first inequality is due to the fact that the constraint binds at location k, whereas the second
one obtains because the constraint is slack at location k£ 4 1. Since constraints kick in in an orderly
fashion we do not need to worry about constraints prior to k or after k + 1. Furthermore, per (13),
pllz and p’,z 41 satisfy

Pedid = dir1(1 — pjyq)? = Q(p").

Substituting these relationships into the inequalities above reveals that both pg and pg 41 exceed Prin.

The inequalities pertaining to the other prices follow from the fact that d; < d;4.1.1

Proof of Lemma 5. The commission vector c is incentive compatible if it satisfies (7), which, after

substituting for m; and x; is equivalent to

(1-— p)pz o;d;c; = Ow.
=1

41



Furthermore, recall that r; < z; < w < pc¢;d;. Per our conjecture, under ¢ we have pc;d; > w for
i < k and pc;d; = w for i > k+ 1.1 We will construct a new & by marginally shaving off the rates of
c at locations where the constraint is slack (but without rendering any of these constraints binding)

and marginally increasing the rates at locations where the constraint is binding. Let

~

G=c —¢gfori<k and ¢é =c¢ +e fori>k+1,

where (g1, ...,&,) € (0,1)" is an arbitrarily small tuple satisfying

k n
ZO‘idi&' = Z O‘idif-ji.
=1

i=k+1

Note that

n

n k
Z Uidiéi = Z Uidi (Ci — €i> + Z Uidi (Ci + EZ‘) = Zaidici,
i=1 i=1

i=k+1
thus € is incentive compatible. In addition, since (£1,...,£,) can be picked arbitrarily small, the

inequality p;¢;d; > w can be satisfied for all . B

Proof of Proposition 3. Ignoring the constraints, it is straightforward to show that the platform
sets p = 1/2. The constraints are slack if w < pe;d;, i.e. if 2w < ¢;d; for all i. The commission rates

must satisfy (16), which, after substituting for p = 1/2 becomes
n
Z aidici = 40w. (20)
i=1

There are n commission rates, a single equality constraint and n inequality constraints. Substituting
2w = ¢;d; into (20) yields the lower bound 05 = 0.5; thus if # > 05 then there exists a continuum of
commission rates satisfying the system above, i.e. we have a continuum of equilibria, each with the
same (interior) price p = 1/2, but different commission rates. If § < 0.5 then all constraints must
bind, i.e. w = pe;d; for all i. These equalities, together with (16), uniquely pin down the solution as

p=1—0and ¢;=w/(1—-0)d;.

Proof of Proposition 4. Suppose the constraints are slack. Then the platform’s problem is the

interior

same as the unconstrained problem in model 1; thus pj is the same as the interior price there.

MFor ease of exposition, we assume that the constraints are slack at locations 1, ..., k and bind at k+1, .., n; however,
this is without loss in generality. The proof can be recast when the constraints are slack/binding at some randomly
selected locations.
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Now suppose the constraints are active, i.e. suppose p;c;d; = w, for all 4. Substituting these equalities

into (18) yields h (p) = 1/6. The platform, therefore, solves

max Q(p) — 6w s.t. h(p)=1/0,
P

while the commission rates are uniquely pinned down via p;c;d; = w, for all i. Letting A denote
the Lagrange multiplier, the first order condition with respect to p; is given by (recall that  (p) is

strictly concave and h (p) is strictly convex)
di (1 —p;)> =Q+ M (p), for all i.
Since the right hand side is not indexed by i, we have

di(l—p)l=d(1—p)?=p=1—1-p;)/d;/d;.

Combining this relationship with the constraint h (p) = 1/6 yields the expression for the corner price
in the body of the proposition. The commission rates can be recovered from p;c;d; = w, whereas the

threshold 3 can be obtained via 6 = 1/h (pmtm‘”) .

Proof of Proposition 5. First we show that B, (d) > E2(+/d). The inequality can be written as

n 2
Zaidi> ZUZ\/E] .
=1

Letting t; = \/o,;d; and s; = \/o; and noting that > o; = 1, the inequality becomes

n n n 2
Z t? Z SZ2 > [Z tisi] .
=1 =1 =1

The result follows from Cauchy-Schwarz. It is straightforward to show that the inequalities (i)
01 > 03 and (ii) 63 > 03 boil down to, respectively, (i) E2(v/d) > dy and (ii) E, (d) > E2(V/d). The

first inequality holds because d; < d; whereas the second inequality is already established above. B

Proof of Proposition 6. Focus on M, and Mz and suppose that 8 < 6,. Since 03 > 605, we
have My = M3 = #. Now suppose 3 < 6 < 5. In this region M3z = 6, whereas My = 1/2. Since
0 > 6y = 0.5 we have Mz > My. Finally, if § > 03 then Mz = E, (d) /2E2(v/d) and My = 1/2. The
inequality M3z > Ms obtains because E, (d) > E2(v/d). B
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Proof of Proposition 7. We will show that w3 > mwa. There are three cases to consider:
(i) Suppose 6 > 03. In this region 73 > 73 obtains because E, (d) > E2(V/d).
(i) Suppose 6y < 6 < 03. The inequality 73 > 72 holds if

Q[EU (d) - QE?,(\/g)] > K, (d) /4'

Since 6 > 63 the left hand side is increasing in 6; thus for a sufficient condition substitute § = 85 and
note that inequality holds if E, (d) > E2(v/d), which is true (proof of Proposition 5)
(iii) Suppose 02 > 6. The inequality w3 > 75 holds if B, (d) > E2(v/d), which is true.
As for m note that if # > 61 then m; = ms3; thus, per the arguments above 7 > mo. If, however,

0 < 0, then we need numerical simulations to establish the magnitude of ;.M

Proof of Proposition 8. Since d; is independent of ¢, we have

interior
dp},

dq

b [ B g

where

B, (d) = 205008 anq EJ(\@:@'

It is straightforward to show that if § < 0 then both E (v/d) < 0 and [E, (d) /Es(v/d)]’ < 0; thus p;

increases in ¢. Turning to profits,

dﬂ.inte'rio'r‘ d Eo d dmcorner d
o [anh] and o B (@ - 0B (VD)

From the previous step it is clear that if § < & then miterior falls in q. As for m§°™¢" observe that

dre™me" /dg decreases in 6. If § = O3 then wirterior = gsorner thus dn§™™°" /dg < 0. In the corner

equilibrium 6 < @3, thus dr$°™°" /dg < 0 whenever 0 < 3. B

7 Appendix B— Transition and Distance Matrices
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