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Abstract

Maximum Likelihood (ML) shows both lower power and higher bias in small sample
Monte Carlo experiments than Indirect Inference (II) and II�s higher power comes from
its use of the model-restricted distribution of the auxiliary model coe¢ cients (Le et al.
2016). We show here that II�s higher power causes it to have lower bias, because false
parameter values are rejected more frequently under II; this greater rejection frequency
is partly o¤set by a lower tendency for ML to choose unrejected false parameters
as estimates, due again to its lower power allowing greater competition from rival
unrejected parameter sets.
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1 Introduction

In two recent surveys of indirect inference estimation Le et al. (2016) and Meenagh et al.
(2019) have found byMonte Carlo experiment that in small samples the indirect inference (II)
test has much greater power than direct inference in its most widely used form of maximum
likelihood (ML). So much so that in practice the power of the II procedure needs to be limited
by reducing the size of the auxiliary model in order to ensure �nding a tractable model that
can pass the test threshold. These surveys also found that in small sample estimation II
produced much lower bias than ML. Meenagh et al. (2019) noted (p.606): �This property
(of low small sample bias) comes from the high power of the test in rejecting false parameter
values.� In this note we attempt to quantify this small sample relationship between power
and bias under ML and II.
Let us �rst recap each procedure. In ML the structural model is taken to the data and

the estimation searches over its parameters, including those of the ARMA error processes,
to minimise the sum of squared reduced form residuals. The joint likelihood of the data,
conditional on the model, is maximised when this sum is minimised.
By contrast, in II, the data is �rst represented by an auxiliary model, which is simply

a set of parameters which best describe the data behaviour. For expositional purposes we
will take these to be the parameters of the unknown structural model�s reduced form VAR
� as Meenagh et al. (2019) demonstrate, II gives approximately the same results whatever
the form of the auxiliary model, provided each form has the same number of descriptive
parameters � the forms they explore are moments and impulse response functions. Suppose
we examine the VAR parameters, we can think of the structural model we are estimating as
implying a joint normal distribution of these reduced form parameters, which we illustrate
for two parameters in Figure 1.
We can generate this Likelihood distribution of the two parameters, �1,�2, by bootstrap-

ping the structural model with its shocks and estimating a VAR on each bootstrap. The
cumulative probability of these two parameters�squared deviation from the model�s mean
prediction (the peak likelihood point) weighted by the inverse of their variance-covariance
matrix, V , is represented by a chi-squared distribution where k, the degrees of freedom, is
given by the number of VAR parameters. If the two parameters have a low correlation, then
each is weighted by 1/its variance. The weight on �1 falls relative to the other�s with a rising
covariance/its variance.
In Figure 1 one can see the likelihood distribution of the di¤erent data-estimated reduced

form coe¢ cients, �1,�2, according to the model parameters- the top frame showing one with
zero correlation between the two �s , the bottom frame one with a high positive correlation. In
II the parameters of the model are searched over to �nd those that have the highest likelihood,
given the data-estimated coe¢ cients shown by the red or blue dots; the parameters whose
peak likelihood gets closest to the data dots will be the II estimates. In ML the red or
blue dots of the data are directly taken as the ML reduced form coe¢ cients; and the model
structural parameters are reverse-engineered to produce the ones closest to them.
Thus take a model y = f(�; �) which has a reduced form y = v(�; �). Assume it is

identi�ed so that there is a unique v corresponding to a particular f ; thus given v we can
discover f and vice versa. Suppose now on a sample y0 we obtain an estimate bv(y0): In II
we compute the likelihood of bv(y0) conditional on the model and the data, thus L[bv(y0) j
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Figure 1: Bivariate normal distribution with correlation of 0 and 0.9. Two possible data
points shown: x=0.1, 0.9 and y=0.0

y0; f(�; �)]; we then search over � to �nd the maximum likelihood; this is the II estimate. If
unbiased, it will on average be the f corresponding to v. In general we �nd low bias in II.
In terms of our diagram bv is the blue or red dot and the joint distribution of the estimated
model will be close to being centred around it. Now ML in principle does the same, choosing
the ML values of � that generate bv as their solution of y0 = f(�; �):
It would seem therefore that the two estimates of the structural parameters should be

the same. Indeed, it has been shown (e.g. by Gourieroux et al, 1993) that this is the case
asymptotically, i.e. for very large samples. Both estimators are consistent in large samples,
implying no bias.
However, in small samples � such as are typical in macroeconomics � they are not

typically the same and we �nd bias in both according to our Monte Carlo experiments.

2 Explanation for the di¤erence in small sample bias

The question we wish to answer here is why the two estimates di¤er in small samples and
the quantitative contribution of the causes.
Le et al. (2016) showed that the power of the II and the ML-based LR tests of the model

f(�; �) di¤ered; speci�cally II was substantially more powerful. This occurred when the II
test used as the distribution of v implied by f(�; �) the model-restricted distribution. If on
the other hand it used the distribution of v from the reduced form data-implied distribution,
then the power of II was reduced to equality with that of LR. Thus the power of the II test
was considerably greater than that of the ML-based LR test � the reason being that the II
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test used the distribution of v as restricted by the model under test, whereas the LR test used
the reduced form v distribution from the data. In Figure 2 we show a stylised illustration
of this point: the �gure shows the situation for the likelihood distribution of bv(�),the vector
of auxiliary model features (ordered according to their Wald value under the model, with
parameter vector �, indicated), under the restricted and unrestricted cases. To the left we
see the distribution under the true model, with �TRUE; to the right we see the distribution
under the false model, �FALSE. In the top panel this is given by the unrestricted distribution
taken from the data, which is the same as the left hand distribution. In the bottom panel,
it is given by the distribution generated by the false parameter model in conjunction with
the errors implied by the model and the data. It can be seen that this latter distribution lies
more narrowly around the central false average due to the inward pull of the false parameters
on the simulations.

Figure 2: Comparison of rejection rates of unrestricted and restricted distributions ofbv(�FALSE)
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Table 1 shows the relative power of the II and ML tests on a 3 variable VAR (1) and
is replicated from Le et al. (2016) Table 1, where the Direct Inference column shows the
results based on the LR test.

Percent Mis-speci�ed Indirect Inference Direct Inference
True 5:0 5:0
1 19:8 6:3
3 52:1 8:8
5 87:3 13:1
7 99:4 21:6
10 100:0 53:4
15 100:0 99:3
20 100:0 99:7

Table 1: Rejection Rates for Wald and Likelihood Ratio for 3 Variable VAR(1)

We can now turn to the implications of this greater power in II testing for the bias that
arises in estimation by II and ML on small samples. The bias we estimate in our Monte
Carlo (MC) experiments is de�ned as B = E(b�)� �, where the expectation is across all the
MC pseudo-samples from the true model. We can express this de�nition in terms of all the
possible sets of � arranged in order of falsity, thus B = �i=%F (�i � �)Pi where each �i is the
set of parameters of i% falseness and Pi is the frequency with which these are estimated in
the MC samples. We can think of estimation by II or ML as a process related to rejecting
model parameters that fail each test respectively; if a false parameter set is rejected, it
cannot become an estimate, and if not rejected for a sample, it can go on to become an
estimate for that sample. We also need to know the probability for either II or ML that,
conditional on not being rejected, a parameter set � will then be chosen as an estimate. Call
these probabilities in turn P1 for the probability of non-rejection, and P2 for the probability
of selection conditional on non-rejection. The MC experiments give us directly Pi1 as one
minus the rejection rate for �i.while we can obtain Pi from our MC results directly as the
proportion of estimates that are False to each extent. Then we derive Pi2 from Pi = Pi1�Pi2.
To gauge Pi2 we argue as follows: a � parameter set that has not been rejected will still not
be selected as an estimate if there is an unrejected � of lesser falseness available instead that
dominates it in the competition to become an estimate.
Table 2 shows the small sample bias of the two estimators in the Monte Carlo experiment,

replicated from Table 3 from Le et al. (2016), clearly showing the big reduction in the bias
under II versus ML.
We show next the predicted two probabilities and biases for II and ML in Table 3. For

this table we have repeated the bias analysis with a fresh set of 1000 samples from the same
model, yielding di¤erent absolute mean biases, as one would expect; in this set the ML bias
is about the same, the II bias rather smaller. What we see is that on average an unrejected
� is 60% more likely to survive to being estimated under II as under ML. We suggest this
is because II has a generally higher rejection rate than ML, so that an unrejected � faces
less competition from other unrejected �, and so has a greater probability of surviving to
estimation. Under ML the probability of survival is inversely correlated with the probability
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Starting Mean Bias (%) Absolute Mean Bias (%) Ratio
(true) coef II FIML II FIML II/FIML

Steady-state elasticity of capital adjustment ' 5:74 �0:900 5:297 0:900 5:297 0:16

Elasticity of consumption �c 1:38 �5:804 �7:941 5:804 7:941 0:73

External habit formation � 0:71 �13:403 �21:240 13:403 21:240 0:63

Probability of not changing wages �w 0:70 �0:480 �3:671 0:480 3:671 0:13

Elasticity of labour supply �L 1:83 0:759 �8:086 0:759 8:086 0:093

Probability of not changing prices �p 0:66 �1:776 0:027 1:776 0:027 65:8

Wage indexation �w 0:58 �0:978 6:188 0:978 6:188 0:158

Price indexation �p 0:24 0:483 3:228 0:483 3:228 0:15

Elasticity of capital utilisation  0:54 �13:056 �29:562 13:056 29:562 0:44

Share of �xed costs in production (+1) � 1:50 �1:590 2:069 1:590 2:069 0:75

Taylor Rule response to in�ation rp 2:04 7:820 2:815 7:820 2:815 2:78

Interest rate smoothing � 0:81 �0:843 �0:089 0:843 0:089 9:47

Taylor Rule response to output ry 0:08 �4:686 �29:825 4:686 29:825 0:16

Taylor Rule response to change in output r�y 0:22 �5:587 0:171 5:587 0:171 32:7

Average �2:861 �5:758 4:155 8:586 0:48

Table 2: Bias of Indirect Inference and FIML

of non-rejection of the neighbouring � closer to the truth: we suggest this is because the
higher the chances of their non-rejection, the greater is the competition from them � see
the bottom frame of Figure 3. What we see under II is di¤erent � the top frame of Figure 3.
Survival chances of false �, if unrejected, are low at the two extremes � both when close to
true and when extremely false. Thus competition from better alternatives is greatest either
close to the truth (when the truth is a serious rival), or very far from the truth (when the less
absurdly false are serious rivals). This shift of survival probability to the extremes weakens
the tendency for II to reduce bias, by increasing the estimation chances of the middlingly
false values which contribute most to the bias after taking account of rejection.

� : %False� II Pi1 Pi2 Pi � : %False�ML Pi1 Pi2 Pi
1 0:80 0:09 0:07 1 0:94 0:00 0:00
2 0:64 0:81 0:52 2 0:92 0:02 0:02
3 0:48 0:61 0:29 3 0:91 0:08 0:06
4 0:31 0:27 0:08 4 0:89 0:02 0:016
5 0:13 0:13 0:02 5 0:87 0:02 0:018
6 0:07 0:07 0:01 6 0:82 0:05 0:042
7 0:01 0:00 0:00 7 0:78 0:16 0:122

8� 9 0:62 0:54 0:332
10 0:00 0:00 10 0:47 0:43 0:20

11� 14 0:40 0:58 0:23
15 0:00 0:00 15 0:00 0:00
20 0:00 0:00 20 0:00 0:00

Predicted Bias*
= E(b�)� � 5:9 0:42 2:46

Predicted Bias*
= E(b�)� � 33 0:26 8:7

*The entries for this row, for each of II and ML, are in turn:P
i Pi1�i;[

P
i Pi�i]=[

P
i Pi1�i;]; and

P
i Pi�i

Table 3: Predicted probabilities and bias
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Figure 3: Predicted probabilities and biases for II and ML

Summarising our �ndings, our Monte Carlo experiments have shown that the lower bias
of II compared to ML comes primarily from a much higher rejection rate of false coe¢ cients.
This advantage is to a modest extent o¤set by the higher probability under II that unre-
jected false coe¢ cients will survive to become estimates. We interpret this in terms of the
competition between unrejected coe¢ cients: this is greater under ML than II because there
are more unrejected coe¢ cients to choose from at all levels of falseness. This competition
also behaves di¤erently across the range of falseness, increasing with falseness under ML as
nonrejection falls, but intensifying under II at both extremes, either close to truth or highly
false.

3 Conclusions

In this note, we have re�ected on the reasons that Maximum Likelihood (ML) shows both
lower power and higher bias in small samples than Indirect Inference (II), drawing on the
earlier work of Le et al. (2016) and Meenagh et al. (2019), based on extensive Monte
Carlo experiments. It emerges from this work that when ML is being used, the likelihood
distribution of bv, the auxiliary parameter vector from the model under test, has a variance
given by the unrestricted distribution of the errors whereas when II is used it is given by the
variance of their distribution as restricted by the � of the model being tested, which is much
smaller. This is the source of the higher power of II, as explained by Le et al. (2016). This in
turn implies that II will have lower bias, because as sample data from the true model varies,
false parameter values will be rejected much more frequently under II; this greater rejection
frequency is partly o¤set by a lower tendency for ML to choose unrejected false parameters
as estimates, due again to its lower power allowing greater competition from rival unrejected
parameter sets.
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