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Abstract

This paper extends Meenagh and Minford (2021) to the four waves of infection in the UK by end-2021,
using the unique newly available sample-based estimates of infections created by the ONS. These allow
us to estimate the e¤ects on the Covid hospitalisation and fatality rates of vaccination and population
immunity due to past infection: the latter was the most signi�cant factor driving both trends, while the
vaccination rate also had a signi�cant short run e¤ect on the fatality rate. We also updated our policy
comparison with Sweden for the most recent data, with similar conclusions.: lower Swedish lockdown
intensity relative to personal response in waves 1 and 2 caused much lower economic costs with no
discernible e¤ect on infections.

In a previous paper, we set out a structural model of optimising households and biologically-optimised
virus behaviour, together with relevant policy interventions, to explain how the Covid virus would spread in
the UK and Sweden. We chose Sweden because its policy regime was crucially di¤erent and our focus was
on how far the UK�s more interventionist approach created di¤erent results for infections and deaths. In this
paper our aim is to study how the four di¤erent waves of virus infection the UK and Sweden have experienced
have di¤ered over time, so extending our comparative analysis over the full cycle of the pandemic that we
have observed. The two countries continued to pursue contrasting policy approaches, allowing us to draw
further policy lessons.

Evolutionary biology suggests that viruses evolve to become more transmissible and also less damaging
to health, implying a lower fatality rate, because both these developments should increase their survival
chances. If this is the case, we should �nd that across the four waves, the rate of transmission has increased
and the death rate per case has fallen independently of the progress in vaccination, which was rolled out
rapidly before and during the third wave in the UK, and a little more slowly in Sweden. We already have
evidence from the case data that transmissibility increased with each successive variant: in the UK second
wave this evidence indicated that the �Kent variant�dominant in the second wave was 50% more transmissible
than the ogininal (�rst wave) virus; and that the D-variant dominant in the UK�s third wave was 50�60%
more transmissible again than the Kent variant. However, evidence on the UK fatality rate has been harder
to �nd, partly because NHS-estimated case numbers have been a¤ected by the extent of testing. In this
paper we have used ONS-estimates of infections which are based not on those taking tests but on a �xed
sampling basis; we have then combined these from their starting point in May 2020 with the NHS data before
that, combined with ZOE data on self-reported symptoms, in order to create a full data set across all four
UK waves. This early data records those falling ill rather than those taking tests and it should therefore be
free of testing bias. For Sweden we have had access only to Johns Hopkins data which comes from Swedish
health sources and is for reported cases; since this case data will be biased by reporting processes and we
have no sample-based data, we have constructed an infections series from the data on deaths, using the UK
estimates of the infection fatality rate for the variant of the time to �nd implied infections. In this paper
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we have thus drawn on a full and reasonably reliable set of data, for estimating both structural and reduced
form models across the full Covid history for both the UK and Sweden; our aim has been to come up with
more reliable estimates of these virus features, as well as the e¤ects of vaccination and other interventions.
From this updated set of estimates we draw new policy conclusions.
We proceed as follows. First, we set out a new consistent UK series for those infected by Covid, derived

from the ONS weekly sample surveys and interpolated to give daily estimates using the ZOE daily survey
of those showing symptoms. Though the latter is a voluntary survey and so not calibrated e¢ ciently to
the UK population, it is regularly recalibrated to re�ect the ONS sample results and so can be used as
a supplementary guide to higher frequency infection. Furthermore, we can use it in its recalibrated form
to backtrack the ONS data to the earliest periods of infection before the ONS sample began. This new
data gives us a reliable series for infections from the start of the pandemic, with four �waves�of infection to
examine.
Second, we estimate our model on these four waves of infection for the UK, to get estimates of the e¤ects

of lockdown, immunity spread and social reaction in line with our �rst paper. The di¤erence is that we are
now using infections data not data on Covid deaths, which before was the only reliable data available. We
look for any e¤ects of rising vaccination too on the infection process. As in our earlier paper we use indirect
inference, using the logistic function estimates as our auxiliary model.
Third, we estimate relationships in all the waves between infections and hospitalisation and deaths. These

are simple lagged �engineering�relationships, in which we look for a simple lag of around three weeks from
infection to deaths, and of a few days from infection to hospitalisation. We expect to see progress across the
four waves in terms of falling hospitalisation and death rates, as the disease encounters increasing immunity,
better health care, and especially rising vaccination rates.
Next, we repeat this process for Sweden.
Finally, we compare and contrast the two countries�features and draw policy implications.
In the next section we repeat our account of the causal model in which both the virus and households

choose optimising strategies. The model is the same as in our earlier paper, except that we now introduce
Vaccination, V , de�ned as the population proportion double-vaccinated, as a factor inhibiting the virus�
spread. This appears as modifying the previous parameter A to become AV �

1 The Model:

Let the virus�utility at the start of the infection be given by:

UV =

1X
t=0

�t
�
ln[It �Rt]�A�t rt


�
It�1
POP

��
�t

�
where It is the number of people infected, Rt is the number of people who have recovered from Covid, rt

is the cost of the speed of infection, POP is population and �t is a variable re�ecting the varying infection-
countering behaviour found in di¤erent sections of the population � which we will model shortly. The second
term in the utility function is the cost to the virus both of a higher infection rate and of a rising lagged
population share of infected people; both of these require the virus to work harder in terms of �nding more

cases to infect.
�
It�1
POP

��
re�ects special measures of protection taken by the government (lockdown etc.),

as well as resistance rising with the expanding population share of infected people. t is days. A�t = AV �t
replaces A in our previous model, since now the vaccinated share of the population a¤ects the e¤ort required
to infect the population.
The virus maximises this utility subject to the infection state model above, viz It = rtIt�1, or in logs,

ln It = ln rt + lnSt�1. The number of days over which the epidemic lasts is in�nite because its progress is
asymptotic, never reaching full infection of the population. As noted above, the virus needs to survive and
so there must be infected people carrying the live virus for ever.
The �rst order conditions are simply found by creating the Lagrangean, while substituting the model of

Recovered into the utility function and noting that ln(It �Rt) = 1
1�� ln It �

�
1�� [ln �+ ln It�d] =

1
1�� ln It �
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�
1�� [ln �+ ln It�d]; the virus maximises, with respect to Rt and It the Lagrangean

L =
1X
t=0

E0

�
�t
�

1

1� � ln It �
�

1� � [ln �+ ln It�d]�A
�
t [rt]


�t

�
It�1
POP

���
+ �t[ln It � ln rt � ln It�1]

�
to yield:

0 =
dL

drt
= ��tA�t 
rt
�1�t

�
It�1
POP

��
� �tr�1t

whence:

��tA�t 
rt
�t
�
It�1
POP

��
= �t

Secondly, the �rst order condition w.r.t It yields:

0 =
dL

dIt
= �t

1

1� �I
�1
t � �t+d �

1� �I
�1
t � �t+1A�t+1[rt+1]
�t+1�

�
It

POP

��
I�1t + (�t � �t+1)I�1t

and so:

0 =
dL

dIt
= �t

1

1� � � �
t+d �

1� � � �
t+1[rt+1]


�t+1�

�
It

POP

��
A�t+1 + (�t � �t+1)

= �t
1

1� � � �
t+d �

1� � + �
�



�t+1 + (�t � �t+1)

It follows that: �
1�

�
1� ��



B�1

��
�t = �

�
�t

1

1� � � �
t+d �

1� �

�
where B�1 is the forward expectations operator leading the variable and keeping the expectations date given.
Hence

�t = �
�
�t

1

1� � � �
t+d �

1� �

�
=

�
1�

�
1� ��




��
Now note that

�t = ��t
rt
�t
�
It�1
POP

��
A�t

then we have:

0 = ��t
rt
�t
�
It�1
POP

��
A�t = �

�
�t

1

1� � � �
t+d �

1� �

�
=

�
1�

�
1� ��




��
or


rt

�t

�
It�1
POP

��
A�t =

1

(1� �)
h
1�

�
1� � �


�i [1� ��d]
Finally in logs we obtain:

ln rt =
1




8<:ln
24 [1� �d�]
(1� �)

�
1� �[1� �


 ]
�
35� ln 
 � ln �t � � ln� It�1POP

�
� lnA�t

9=; (1)

and so using ln It = ln rt + ln It�1
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ln It =
1




8<:ln
24 [1� �d�]
(1� �)

�
1� �[1� �


 ]
�
35� ln 
 � ln �t + � lnPOP � lnA�t

9=;+
�
1� �




�
ln It�1 (2)

Dt = �It�d;Rt = �It�d (3)

Ct = 	It (4)

The model tells us that the daily infection rate responds inversely to the current self-isolation e¤orts of
the population, �t, and the existing (lagged) share of infected population, o¤setting these in order to keep the
costs of infection smooth over time, while still ensuring that the population gets steadily infected, ensuring
new infections inde�nitely.
We now insert household behaviour into the model. We will assume that household utility is reduced by

infection but also by the personal inconvenience of avoiding infection by self-isolation activity, �t. As this
increases, the personal costs of not participating socially and economically rise directly with the extent of
isolation, and rise indirectly the more uninfected people there are, as this lowers the personal risk of infection
from participating, which raises the net costs of self-isolating (the economic costs net of the gain in lower
infection risk). There is also a preference error, �t:
So

UH =
1X
t=0

�t

 
� ln It �

"
�t

�
POP

It

��
�t

#!
Households maximise this utility with respect to �t subject to the virus�behaviour set out above. Hence

its Lagrangean is

LH0 =
1X
t=0

E0

0B@ �t
�
� ln It � [�t(POPIt )

��t]
�

��t[ln It � 1



�
ln

�
[1��d�]

(1��)(1��[1��

 ])

�
� ln 
 � ln �t + � lnPOP � lnA�t

�
�
�
1� �




�
ln It�1]

1CA
Going through analogous Lagrangean steps to �nd the �rst order conditions yields from 0 = dL

d�t
:

�t = ��t
��t
�
POP

It

�
�t

and from

0 =
dL

dIt
= ��tI�1t + �t���t

�
POP

It

�
�tI

�1
t � �tI�1t +

�
1� �




�
�t+1I

�1
t

= ��t + �t���t
�
POP

It

�
�t � �t +

�
1� �




�
�t+1

= ��t � (�=
)�t � �t +
�
1� �




�
�t+1

= ��t +
�
1 + (�=
)�

�
1� �




�
B�1

�
(��t)

= ��t +
�
1 + �=
 � �

�
1� �




�
B�1

�(
�t
�t

�
POP

It

��
�t

)

= �1 +
�
1 + �=
 � �

�
1� �




�
B�1

�(

�t

�
POP

It

��
�t

)

so that: 
�t(POPIt )
��t = 1=

n
1 + �=
 + �[1� �


 ]
o
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ln �t = � ln
�
1 + �=
 + �

�
1� �




��
� ln 
 � ln �t � � lnPOP + � ln It

When this is substituted into the infections equation we obtain:

ln It =
1


 + �

8<:ln
24 [1� �d�]
(1� �)

�
1� �[1� �


 ]
�
35+ ln�1 + �=
 + � �1� �




��
+ (�+ �) lnPOP � lnA� � lnVt + ln �t

9=;
+

�

 � �

 + �

�
ln It�1

This is the same equation as in our earlier paper with the exception that it now includes the e¤ect of
vaccination.

2 Results

The model is estimated and tested using the method of Indirect Inference (see Le et al. 2016 for more
details). This is a simulation based method similar to simulated method of moments. To test the model an
auxiliary model is used as a descriptor of the data and we then measure how close the parameters of the
auxiliary model using the actual data are to the average of the parameters estimated from the simulated
model. If the actual data coe¢ cients are within the 95% bounds of the distribution of coe¢ cients from the
simulated data then the model is not rejected, and therefore the model is a good descriptor of the data.
When estimated the structural model parameters the parameters are varied until a set is found with the
highest p-value. This set of parameters would be the closest to the data. In this paper we use a logistic
function as the auxiliary model, which takes the form:

f(x; a; b; c) =
c

1 + e�(x�b)=a

where x is time, and the three parameters are:
a is the infection speed
b is the day when the maximum number of new infections occurred
c is the total number of recorded infected people at the end of the infection

These are the three parameters we try to match in the Indirect Inference procedure.
Table 1 shows the estimated structural parameters for the three Waves under consideration, whilst Table

2 shows the logistic function parameters for the actual data along side the mean and con�dence bounds from
the simulations.

Wave 1 Wave 2 Waves 3-4

 74:8847 68:9229 85:5612
� 3:3705 3:5940 5:3381
� �9:3384 �5:1107 �8:4966
� 0:1457 0:3192 0:9270
�=� 23:1 11:3 5:8
� NA 0:1947 0:7610
(�+ �)=(
 + �) 0:047 0:056 0:071
Wald 0:2972 8:9507 10:6825
P-value 0:9639 0:0827 0:0574

Table 1: Structural Model Parameter Estimates for the Three Waves
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Wave 1 Actual Lower 2.5% Upper 2.5% Mean IN/OUT
a 8:8239 0:2840 33:4295 9:8216 IN
b 65:2579 41:3138 135:0159 73:5042 IN
c 4464493:4789 2164690:1735 16852446:2495 6608217:7604 IN
Wave 2
a 31:1942 3:0204 51:5670 13:6528 IN
b 172:3836 39:1620 148:4174 70:8923 OUT
c 18625762:1456 7610184:5821 20037886:5767 16071419:0855 IN
Waves 3�4
a 34:5802 2:1590 38:8036 8:3632 IN
b 141:2116 29:2303 104:9454 48:7938 OUT
c 19821214:5578 4626993:9865 20072732:2153 14350683:6932 IN

Table 2: Auxiliary Model Parameter Bounds for the Waves

2.1 Comments on UK results:

We �nd that Waves 1 and 2 have virtually the same parameters. In both the lockdown factor, �, is a
large multiple of the personal response factor, �, re�ecting large lockdown interventions in both. With the
third-fourth wave the estimates change sharply, re�ecting the vaccine roll-out. 
, the degree of immunity
rises sharply; � also rises as resistance to the virus increases with higher penetration, due to so many being
vaccinated. Also � rises with people responding much more to increased penetration, being made more
con�dent by the vaccine. The vaccine penetration itself has of course a direct e¤ect on the virus�progress,
absent in previous waves.
The three Waves di¤er in the overall numbers infected:

Actual c Model Mean c Model Steady-state Data
Wave 1 4:5 6:6 4:7 4:7
Wave 2 18:6 16:1 18:2 18:2
Wave 3 19:8 14:4 17:3 17:3

Table 3: Table of Results for Total Infected (millions)

We can see here that the logistic c value is reasonably matched by the model mean, while the steady
state of the model is constrained in estimation (via the constant) to equal the data total. It is striking how
many fewer were infected in the �rst wave than in the second two, where about four and a half times as
many were infected in total.
Deaths however were about equal in total in the �rst two waves: this underlines how high the initial

death rate was and how much it fell in the second wave (by a factor of 4). The death rate fell steadily across
all waves, falling to a far lower rate from the third wave with vaccination as can be seen in Figure 1.

Figure 1: Deaths and Infections
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2.2 Analysing trends in the hospitalisation and death rates of the UK:

Figure 2 shows the evolution of two ratios: deaths to hospitalisations and hospitalisations to infections,
where hospitalisations are measured by those in hospital. The �nal plot in Figure 2 shows the number of
people estimated to have Covid. In all ratios we can see that even though the estimated number infected is
increasing as we progress through the waves, the ratios are decreasing.

Figure 2: Data on Infections, Hospitalisation and Deaths over the 4 Waves

The key question as we move forward into Wave 4 is how the hospitalisation and death rates will evolve.
If these are disengaged from the infection rate, then it becomes possible to continue �living with Covid�.
If however they remain high enough to precipitate excessive numbers of hospitalisations and deaths, then
further lockdown interventions will be forced back into the agenda.
We examine this by regressing hospitalisation/cases on the double-vaccination rate and the cumulated

number infected as percent of the population (PCINF , to proxy rising immunity) and the percentage of
the population fully vaccinated (V ACC, a weighted average of the percentage of the population who have
had either 2 or 3 vaccinations). We then do the same for deaths/lagged hospitalisations; here PCINF will
also pick up the e¤ect of the better treatments that have emerged with the experience of infection. For the
Wave 4 numbers we may also �nd an e¤ect of the rising booster rate.
To discover what might be driving the trends in the virus� behaviour we took the detailed UK data

on estimated cases, hospitalisations and deaths and regressed the hospitalisation ratio to lagged infections
and the deaths ratio to lagged hospitalisations to determine the roles of vaccines and immunity on the
evolving �gures. We would expect that vaccines would have a steady e¤ect but that immunity would have
an increasing e¤ect as the virus aged.
Figure 3 shows the percentage of the population that have Covid and vaccinated.
We found that there are cointegrating relationships to both the hospitalisation (i.e. those in hospital)

ratio to infections and the death ratio to hospitalisations from the vaccination rate and the overall past total
infection rate, proxying the resulting immunity. We �nd also a clear error-correcting equation relating the
change in these series to the current shocks to vaccination (negative) to current infections (positive) and the
lagged deviation from trend (negative); all of these e¤ects are signi�cant. However, these regressions suggest
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Figure 3: Vaccinations and Infections

that vaccinations, when the various vaccine elements are weighted together to create a meaningful vaccine
variable, were less important than immunity (proxied by the cumulative total/population of those infected,
PCINF ) in reducing the trends in hospital/cases and in deaths/those in hospital. The V ACC weighted
variable is insigni�cant in both cointegrating regressions while PCINF is signi�cant and rightly signed in
both. This trend e¤ect in PCINF is picking up the early tendency of hospitalisation and deaths to fall well
before vaccination started. Nevertheless, both variables have signii�cant short run impacts as well. So both
play an important role.

IHI3 DIH10
Long Run Relationship
Constant 0:387331��� 0:025383���

V ACC �0:048444 0:002388
PCINF �0:639231��� �0:023662���

ECM Regression
Constant 0:017141 �0:002265���
�(V ACC) �3:593752 �0:717900��
�(PCINF ) �13:17548 2:803055���

Long Run Residual(-1) �0:482439��� �0:393575���
Cointegrating ADF p-value 0:003666 0:023863
IHI3=(In Hospital)/Infections(-3), DIH10=Deaths/(In Hospital(-10))
���p<0.01, ��p<0.05, �p<0.10

Table 4: Trends in the Virus Behaviour

These regressions suggest that vaccinations were less important than immunity in reducing the trends in
hospital totals and deaths. The V ACC weighted variable is insigni�cant in both cointegrating regressions
while PCINF is signi�cant and rightly signed in both.

3 Data and results for Sweden:

3.1 Data

The number of reported cases from the Swedish Health Agency and deaths reported via Johns Hopkins are
shown in Figure 4.
It would seem that, given the likely death rate and the deaths data, the Swedish cases are a considerable
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Figure 4: Swedish COVID cases and deaths

underestimate of infections. We therefore use the death rates for the UK to estimate Swedish infections.
Total deaths/total infections for each UK wave are:

Start Date End Date Death Rate
Wave 1 30/01/2020 05/07/2020 0:008542
Wave 2 06/07/2020 08/05/2021 0:004769
Wave 3 09/05/2021 0:000863

Table 5: Death Rate for UK Waves

If we apply these to Swedish deaths from Covid we obtain:

Figure 5: Estimated Swedish COVID infections

This gives a total infected over all waves of 5,126,659, approximately half the population; this compares
with around 65% for the UK and is therefore of a plausible order of magnitude. It is this infections data
that we use for our Swedish estimates.
Finally, for vaccinations we use data from the Our World in Data database (Mathieu et al., 2021). Weekly

data is available from 03/01/2021�06/02/2022, and the data available at irregular frequency after this date,
therefore we have interpolated the data to a daily frequency.
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Figure 6: Fraction of Swedish population fully vaccinated

3.2 Estimates of Swedish model

After estimating the model for the four waves we found that the model could not �t for Waves 3 and 4. A
possible explanation for this is that the data for these waves do not look S-shaped as in a logistic function; in
e¤ect these waves look most like the start of on uncompleted wave and hence do not �t our auxiliary model
which applies to a fully completed wave. The structural parameters are shown in Table 6, and the auxiliary
model parameters in Table 7. For Wave 1 we found that the model �ts very well with a P-value of 0:458,
and all of the auxiliary model parameters are within the 95% bounds from the simulations and very close to
the mean. For Wave 2 the models also �ts well with a P-value of 0:1554, though it slightly over predicts the
c coe¢ cient of the auxiliary model.

Wave 1 Wave 2

 149:0657 138:8889
� 6:3528 1:4370
� �19:1283 �2:2917
� 0:7525 0:2541
�=� 8:44 5:65
� NA 0:1445
(�+ �)=(
 + �) 0:047 0:011
Wald 2:3474 5:2320
P-value 0:4580 0:1554

Table 6: Structural Model Parameter Estimates for the �rst Two Waves for Sweden

Wave 1 Actual Lower 2.5% Upper 2.5% Mean IN/OUT
a 17:7081 8:8439 21:6103 13:9386 IN
b 57:7389 47:4391 66:7075 54:9981 IN
c 685587:4326 603729:3359 825439:7868 697683:8315 IN
Wave 2
a 39:5683 33:7709 56:8983 44:3651 IN
b 53:3256 48:2126 78:9809 61:9125 IN
c 2669698:6920 2742545:9734 3451924:9276 3104045:5320 OUT

Table 7: Auxiliary Model Parameter Bounds for the Waves, Sweden

In our previous estimates (Meenagh and Minford, 2021) for Sweden (replicated in Table 8), which were
based on deaths and were directly comparable with our UK estimates, also based on deaths, we found that
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the lockdown parameter for the UK was much larger than Sweden�s while the personal response parameter,
�, was much smaller; the ratio of the lockdown to the personal response parameter, �=�, was therefore
much lower in Sweden than in the UK. In our latest estimates for Sweden the Swedish ratio of lockdown to
personal response is also lower than the UK�s in both waves, averaging about 7 compared with 17, which
tallies with our earlier result; it is also similar to the UK�s wave 3/4 (at 5.6) which tallies with the UK�s
policy shift away from lockdown to vaccination. So on the central policy issue of the use of mandatory
relative to advisory intervention the latest results do cohere with our earlier ones and with what we know
about the two countries�policies.

UK Sweden Global
� 0:0084 0:0052 0:0015
� 4:11 0:151 2:55

 59:53 40:59 79:02
� 0:17 2:95 0:62
�=� 24:2 0:05 4:11
(�+ �)=(
 + �) 0:07 0:07 0:04
Constant �11:94 �8:605 �10:36

% Population Infected to Date 7 7 7
% Population Infected Long Term 7 7 7
Reported/Actual Infections (inverse) 0:0499(20) 0:0442(23) 0:0337(30)
P-value 0:93 0:82 0:70

Table 8: Structural Model Parameter Estimates

4 Economic costs of Covid policies

We noted in our previous paper that Sweden�s Covid policies based on less direct intervention and more
advice for personal behaviour caused much less economic cost in the �rst wave while leaving the course of
infection virtually the same. We �nd the same here with our updated estimates. Sweden�s less interventionist
approach in both Wave 1 and Wave 2 resulted in a much smaller loss of GDP relative to its pre-Covid level,
as shown in Figure 7. The UK�s approach abandoned lockdown in favour of vaccination and advice in waves
3/4, to conform to Sweden�s.

Figure 7: Real GDP during the COVID waves

Again, the updated pattern of the two countries�cumulative infections is hard to distinguish, as Figure
8.
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Figure 8: Cumulative Infections (in logs) for UK and Sweden

What we see is that on average in Wave 1 UK GDP was down 8:5% on pre-Covid (2019 Q4) versus 3:8%
for Swedish GDP; and in Wave 2 UK GDP is down 8:5% vs Sweden being down 1:1%; in Wave3 UK GDP
was 1.7% below the pre-Covid level, whereas Sweden recovered to 2:2% above the pre-Covid level. Thus,
weighting each wave equally, the average loss from UK policy vs Sweden�s was 5:3% over the pandemic as a
whole.

5 Conclusions

In this paper we have used the model of Covid transmission set out in Meenagh and Minford (2021) to extend
our empirical estimates to the fuller data on the pandemic up to the end of 2021 by which time there had
been four waves of infection in the UK. We used the newly available sample-based estimates of infections
created by the ONS in place of infections estimated from deaths that we used before. These new and reliable
estimates allowed us also to relate the progress of the disease, including its hospitalisation and fatality rate,
to vaccination and population immunity due to prior infection. Finally, we updated our comparison with
Sweden for the most recent data. Unfortunately, there is no equivalent sample-based data for infections
there � as the ONS sample survey approach has not been carried out anywhere else in the world to our
knowledge.
Our updated results are much in line with our earlier ones: the Swedish lockdown intensity relative to

personal response was well below the UK�s in the �rst two waves and resulted in much lower economic costs
while leaving the course of the disease hardly altered. By wave 3/4 the UK had moved away from lockdown
and its estimated relative intensity fell with it, accompanied by lower economic costs.
Our unique UK sample-based data led us to �nd that the most signi�cant factor driving the trends in

hospitalisation and deaths was the population�s accumulated infection rate, a measure of its herd immunity.
The vaccination rate also had a signi�cant short run e¤ect on the fatality rate.
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