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Abstract

This paper proposes a powerful alternative to the t-test of the null hypothesis

that a coefficient in linear regression is equal to zero when a regressor is mismeasured.

We assume there are two contaminated measurements of the regressor of interest.

We allow the two measurement errors to be nonclassical in the sense that they may

both be correlated with the true regressor, they may be correlated with each other,

and we do not require any location normalizations on the measurement errors. We

propose a new maximal t-statistic that is formed from the regression of the outcome

onto a maximally weighted linear combination of the two measurements. Critical

values of the test are easily computed via a multiplier bootstrap. In simulations, we

show that this new test can be significantly more powerful than t-statistics based

on OLS or IV estimates. Finally, we apply the proposed test to a study of returns

to education based on twins data from the UK. With our maximal t-test, we can

discover statistically significant returns to education when standard t-tests do not.
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1 Introduction

The presence of measurement error in regressors causes the variance of OLS and IV

estimators to be larger than those in the case without measurement error. As a result,

t-tests on the regression coefficients may suffer from poor power. This problem can be

particularly severe when the measurement errors are nonclassical, i.e., when they depend

on the true level of the regressor, and/or when they depend on measurement errors of

other measurements. In most economic applications in which the presence of measurement

error is a first-order concern, neither of these two types of dependence can be ruled out.

For example, earnings have been shown to contain measurement error so that high-

earners under-reported and low-earners over-reported true earnings (Bound, Brown, and

Mathiowetz (2001)). Therefore, measurement error must be nonclassical. In twins data

such as that in Ashenfelter and Krueger (1994) and Bonjour, Cherkas, Haskel, Hawkes,

and Spector (2003), the twins’ reports on education have been argued to be mismeasured

and nonclassical (e.g., Black, Berger, and Scott (2000), Hu and Sasaki (2017)). In this

example, one would not want to rule out the possibility that the measurement errors of the

twins are correlated because the twins are likely to possess correlated abilities to report

correctly. In the literature on estimation of the skill production function (e.g., Cunha,

Heckman, and Schennach (2010), Heckman, Pinto, and Savelyev (2013), Attanasio, Cat-

tan, Fitzsimons, Meghir, and Rubio-Codina (2020), Attanasio, Meghir, and Nix (2020)),

the measurements of skill production inputs are often elicited through the same data col-

lection process, e.g., measurements of parental inputs may come from survey responses

by the mother, which are responses recorded in short succession, on the same day, by

the same interviewer. Therefore, mistakes in such responses are likely correlated. More

generally, any study that uses repeated measurements of a latent variable is likely to incur

correlated measurement errors. Black, Berger, and Scott (2000) provide additional eco-

nomic examples for which there is evidence for the presence of nonclassical measurement

error.

In this paper, we propose to combine two measurements of the unobserved, true re-

gressor so as to construct a new (“maximal”) t-statistic that we show, in simulations,

leads to a more powerful test compared to standard t-tests. Specifically, consider the

linear regression

Y = βX∗ + ε,
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where Y is an outcome variable and X∗ an unobserved regressor. Suppose we observe

two measurements X and Z of X∗ that are uncorrelated with the regression error ε. We

want to test the null hypothesis of no effect,

H0 : β = 0 vs. H1 : β ̸= 0

using data on Y , X, and Z. If we knew a priori that the measurement errors in X and Z

were classical and that the one in Z had a larger variance than that in X, then a t-test

based on the OLS regression of Y on X would lead to a more powerful test than one

based on the OLS regression of Y on Z. In that case, one might, for example, discard

the noisier measurement Z and report only results from the regression of Y on X. The

problem with this approach is that it crucially depends on the assumption of classical

measurement error and on the knowledge of which measurement is less contaminated.

Both of these are typically difficult, if not impossible, to justify.

The new “maximal” t-statistic proposed in this paper combines the two measurements

in a data-driven fashion to make the t-statistic as large as possible. In the example above

with classical and independent measurement errors, the maximal t-statistic will automat-

ically put more weight on the precise measurement X relative to the noisy measurement

Z without the user having to know a priori which one is more precise. However, for the

new test to be valid we do not need to assume the measurement errors to be classical, i.e.,

they may depend on the true level of the regressor and the errors in the two measurements

may depend on each other. We will see in the simulations that power gains relative to

standard t-tests may be particularly large in the presence of nonclassical measurement

error.

To develop the new maximal t-test we first introduce the class of IV estimands from a

regression of Y onto an arbitrary linear combination of X and Z, using a possibly different

linear combination as the instrument. Standard OLS and IV estimands are special cases of

this class, corresponding to particular weights in the linear combinations. The t-statistic

derived from the estimator of the general estimand can then be optimized over the four

weights (two in each of the two linear combinations of X and Z), leading to our maximal

t-statistic. By maximizing over the weights we test the null of no effect for all weights

simultaneously, whereas standard OLS and IV t-tests test the null only for specific choices

of those weights.

We show that, with homoskedastic regression errors, there exists a closed-form solu-
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tion for the maximal weights in the linear combinations, leading also to a closed-form

expression of the maximal t-statistic. With more general heteroskedasticity-robust vari-

ance estimators, such closed-form expressions may not exist. It is then immediate to see

that the maximal t-statistic is in general strictly larger than standard OLS- or IV-based

t-statistics. One might therefore wonder whether it is possible to construct a more power-

ful test based on this test statistic. We propose a multiplier bootstrap procedure for the

calculation of critical values. Extensive Monte Carlo experiments confirm that the result-

ing maximal t-test is indeed very powerful. In all our simulation scenarios, the maximal

t-test dominates all other OLS- and IV-based tests, sometimes by substantial margins, or

dominates all but one, where this latter one performs similarly well.

We also show that it is not possible to improve Black, Berger, and Scott (2000)’s OLS

and IV-based identification bounds on β by considering linear combinations of X and Z.

The maximal t-test approach does therefore not lead to improved inference procedures in

the more general hypothesis testing problem of

H0 : β = b vs. H1 : β ̸= b

for some value b ∈ R.
We illustrate the empirical usefulness of our new maximal t-test by revisiting a study

of returns to schooling using twins data from the UK (Bonjour, Cherkas, Haskel, Hawkes,

and Spector (2003)). Amin (2011) removed outliers from the same data set and found

that the estimated returns in the original paper may be too large and that they may

not be statistically significant. By employing our maximal t-test, which remains powerful

even in the presence of nonclassical ME and in small samples, we can recover statistically

significant returns to education when standard t-tests as in Amin (2011) do not (e.g.,

even after removing outliers). We, therefore, view our results as providing robustness in

support of the original results in Bonjour, Cherkas, Haskel, Hawkes, and Spector (2003).

There is a large literature on identification and estimation of parametric and nonpara-

metric models with measurement error. See, for example, the surveys by Aigner, Hsiao,

Kapteyn, and Wansbeek (1984), Bound, Brown, and Mathiowetz (2001), Chen, Hong, and

Nekipelov (2011), and Schennach (2013). Valid inference in parametric models is usually

rather standard, once an identification argument and a consistent estimator have been

provided. For example, the general approach by Schennach (2014) allows GMM-like mo-

ment conditions to depend on observables and unobservables, and shows how to convert
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them into equivalent moment conditions that depend only on observables. The testing of

general hypotheses then proceeds by using standard GMM inference procedures. How-

ever, we are not aware of any work trying to improve measurement error-robust inference

methods by exploiting information in multiple measurements, which is the subject of this

paper.

2 Maximal Combination of Measurements

In this section, we explore the possibility of maximizing the t-statistic by optimally com-

bining two measurements of the latent regressor. First, we consider testing the hypothesis

of no effect and then the more general hypothesis for pre-specified effect size. We show

that, in the former problem, the t-statistic based on maximally weighted linear combi-

nations is, in general, larger than those based on the OLS and IV counterparts, but also

that this is not possible in the latter problem.

2.1 Testing the Hypothesis of No Effect

To explain the main idea of this section consider first the following simple regression model

for a scalar outcome Y and a scalar regressor X∗ satisfying

Y = βX∗ + ε. (1)

The outcome Y is observed, but X∗ is not. Instead, we observe two measurements X and

Z of X∗ that may contain measurement errors (MEs) U := X − X∗ and V := Z − X∗.

Defining ME to be additive is without loss of generality because we will neither impose

any localization restriction on the ME nor will we assume that it is independent of the

true regressor X∗. We will not even restrict the dependence among the two MEs U and

V . We assume that E(εX) = E(εZ) = 0, which is implied, for instance if the latent

regressor is exogenous (E(εX∗) = 0) and the measurement errors are nondifferential

(E(εU) = E(εV ) = 0).

Suppose we are interested in testing

H0 : β = 0 vs. H1 : β ̸= 0. (2)
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The OLS estimand of a regression of Y on X and the IV estimand from a regression of

Y on X using Z as instrument are

βOLS :=
E[Y X]

E[X2]
= β

E[(X∗)2] + E[X∗U ]

E[(X∗)2] + 2E[X∗U ] + E[U2]

βIV :=
E[Y Z]

E[XZ]
= β

E[(X∗)2] + E[X∗V ]

E[(X∗)2] + E[X∗U ] + E[X∗V ] + E[UV ]

Under the null, βOLS = βIV = 0, so the standard t-tests based on the OLS or IV esti-

mators are asymptotically of correct level regardless of the dependence structure of the

measurement system (i.e., the values of E[X∗U ], E[X∗V ], and E[UV ]).1 However, the

power of these two tests may be poor for two reasons: under any fixed and arbitrarily

large alternative β ̸= 0, at least one of the estimands βOLS and βIV is close to zero

when (a) E[X∗U ] or E[X∗V ] is negative and large in absolute values or (b) one of E[U2],

E[X∗U ], E[X∗V ], E[UV ] is large. Since the OLS and IV estimands depend on those

quantities in different ways, the resulting t-tests may possess poor power under different

data-generating processes. Similarly, one could construct t-tests based on OLS and IV

estimators with the roles of X and Z switched. Which one of these four tests is most

powerful depends on how strongly correlated X and Z are with X∗ and the dependence

structure in the measurement system. Since these quantities are not known nor estimable

without further assumptions, it is not possible to know a priori which of these tests should

be used. The purpose of this paper is to propose a new test that is powerful regardless of

the configuration of these unknown quantities.

To start the discussion of what would be powerful tests in this setup, first, consider the

hypothetical case in which X∗ is observed. In that case, the t-test based on OLS of Y on

X∗ is optimal: it is uniformly most powerful unbiased in finite samples if regression errors

are normal with known variance and the regressors are fixed (Section 7.6, Lehmann and

Romano (2005)). In large samples, the t-test is asymptotically optimal under regularity

conditions without normality (Section 13.3, Lehmann and Romano (2005)). In our setup,

this test can of course not be implemented as a test can only depend on the observables

Y , X, and Z.

1Given exogeneity of X∗, the nondifferentiability of measurement errors is crucial for βOLS = βIV = 0

being an observable implication of the null.
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Next, consider tests that only use second moments of the observables, specifically

E[(X,Z)′Y ]. For the purpose of this paragraph, suppose the observables have been

demeaned. Under the null hypothesis, E[(X,Z)′Y ] = 0, while under the alternative

E[(X,Z)′Y ] = E[(X,Z)′X∗]β. We further assume that the sample average En[(X,Z)′Y ]

is normally distributed with mean E[(X,Z)′X∗]β and known variance Σ. Then, the like-

lihood ratio test of H0 versus H1 is the uniformly most powerful unbiased test. Given the

normality of En[(X,Z)′Y ], the likelihood ratio is an increasing function of

En

[
XY

ZY

]′
Σ−1En

[
XY

ZY

]
−

(
En

[
XY

ZY

]
− E

[
XX∗

ZX∗

]
β

)′

Σ−1

(
En

[
XY

ZY

]
− E

[
XX∗

ZX∗

]
β

)
.

Thus, the likelihood ratio test rejects for large absolute values of

E

[
XX∗

ZX∗

]′
Σ−1En

[
XY

ZY

]
.

This expression can be viewed as weighting two OLS and/or IV estimators (for in-

stance, En[XY ]/En(X
2) and En[ZY ]/En(Z

2)), where the weights depend on E[XX∗]

and E[ZX∗]. Since these two quantities are neither known nor estimable without further

assumptions, the likelihood ratio test is not feasible (we will refer to it as the “oracle”

test). It does, however, suggest that t-tests based on optimally weighted OLS or IV es-

timators may be more powerful than the standard t-tests based on a single OLS or IV

estimator.

Therefore, we propose a new “maximal t-test” that is based on weighted combinations

of OLS and IV estimators. To introduce this test, for any a, b ∈ R, let W (a, b) := aX+bZ

be an arbitrarily weighted linear combination of the two measurements X and Z. For

ω := (ω1, ω2, ω3, ω4)
′ ∈ R4, consider the IV estimand from the regression of Y onto the

linear combination W (ω3, ω4) using a possibly different linear combination W (ω1, ω2) as

instrument,

β(ω) :=
E[W (ω1, ω2)Y ]

E[W (ω1, ω2)W (ω3, ω4)]
. (3)

The OLS estimand of regressing Y onto X (Z) corresponds to β(1, 0, 1, 0) (β(0, 1, 0, 1))

and the IV estimand of regressing Y onto X (Z) using Z (X) as IV corresponds to

β(1, 0, 0, 1) (β(0, 1, 1, 0)).
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The null implies that β(ω) = 0 for all ω ∈ R4 and, as long as E[(X∗)2] +E[X∗V ] ̸= 0

and E[(X∗)2] + E[X∗U ] ̸= 0, one can easily show that (4) is equivalent to

H0 : sup
ω∈R

|β(ω)| = 0 vs. H1 : sup
ω∈R

|β(ω)| ≠ 0. (4)

If the regression errors are homoskedastic, we standardize the estimand by

σ2(ω) :=
σ2
ε(ω)E [W (ω1, ω2)

2]

(E[W (ω1, ω2)W (ω3, ω4)])
2 ,

where σ2
ε(ω) := E[ε(ω)2] with ε(ω) := Y −β(ω)W (ω3, ω4), is the residual variance. Given

the reformulation of the null in (4), we consider the maximal t-ratio supω∈R |t(ω)| with

t(ω) :=
β(ω)

σ(ω)
(5)

because it imposes all restrictions under the null, unlike the OLS and IV estimands which

only impose the null for one specific choice of ω.

Assumption 1. (i) E[εX] = E[εZ] = 0, E[X∗X] ̸= 0 and E[ZX∗] ̸= 0

(ii) V ar(X∗) > 0, V ar(X) > 0, V ar(Z) > 0, V ar(ε) > 0

(iii) |Corr(X,Z)| ≠ 1 and |Corr(Y,X − Z)| ≠ 1

Notice that part (i) and (ii) of this assumption allows for endogeneity of the latent re-

gressor (E[εX∗] ̸= 0), requiring only that the measurementsX and Z are exogenous. More

importantly, the assumption does not restrict the covariances (E[X∗U ], E[X∗V ], E[UV ]).

Part (i) also requires the measurements X and Z to be correlated with X∗. So, when

viewing (Y,X,Z) as three measurements of X∗, our analysis requires that two of them

are correlated with X∗ to be able to test whether the third one is also correlated with

X∗. Part (iii) requires that the two measurements are not linearly dependent and that Y

is not perfectly correlated with the difference between the two MEs.

Theorem 1. Suppose model (1) and Assumption 1 hold. Then, ω∗ := supω∈R4 |t(ω)| is
of the form ω∗ = (a∗, 1− a∗, a∗, 1− a∗) with

a∗ :=
E[XZ]E[ZY ]− E[Z2]E[XY ]

E[X(Z −X)]E[ZY ] + E[Z(X − Z)]E[XY ]

with the possibility of |a∗| = ∞ if the denominator is equal to zero.
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Since the maximal elements (ω∗
3, ω

∗
4) are equal to (ω∗

1, ω
∗
2), the estimand for the maxi-

mal weights becomes that of the OLS regression of Y onto W (a∗, 1− a∗):

β(ω∗) =
E[W (a∗, 1− a∗)Y ]

E[W (a∗, 1− a∗)2]
.

Notice that, in general, the weight a∗ may be outside [0, 1]. In fact, it may be equal to ±∞.

Interestingly the weight depends only on observable quantities based on the distribution of

(Y,X,Z), but leads to the largest possible t-ratio regardless of the unknown measurement

covariance structure (E[X∗U ], E[X∗V ], E[UV ]) of the measurement system. In this sense,

the maximal t-ratio adapts to the unknown measurement covariance structure without

the researcher having to place a priori restrictions on those covariances.

In the special case in which X contains no information about the latent regressor X∗

(i.e., X is uncorrelated with X∗), X is uncorrelated with the ME in Z, and E[Xε] = 0,

then E[XZ] = E[XY ] = 0 and the maximal weight becomes a∗ = 0. This weight

corresponds to OLS regression of Y onto Z, ignoring the second measurement X. On

the other hand, when Z contains no information about the latent regressor X∗, Z is

uncorrelated with the ME in X, and E[Zε] = 0, then E[XZ] = E[ZY ] = 0 and the

maximal weight becomes a∗ = 1. This weight corresponds to OLS regression of Y onto

X, ignoring the second measurement Z. Similarly, using the inverse function theorem one

can show that there exists an a such that β(a, 1− a, a, 1− a) equals the IV estimand (for

a regression of Y onto X (Z), using Z (X) as an instrument), but the expression for that

a-value is quite complicated.

Since the maximal weight ω∗ can attain any value on the extended real line, it is

immediately clear that the maximal t-ratio |t(ω∗)| is not smaller than the absolute value

of the corresponding OLS and the IV t-ratios. Therefore, there exist data-generating

processes for which the maximal t-ratio is strictly larger than any of them and one might

expect that imposing all restrictions of the null by testing whether the maximal t-ratio

is equal to zero might translate into favorable power properties of the test. Section 4

confirms this intuition.

Since ω∗ possesses a closed-form solution, the maximal t-ratio also does. For example,

when |a∗| < ∞, then the maximal t-ratio can be written as

t(ω∗) = sign(C)

√
A

B
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with

A := E
[
(Z E[XY ]−X E[ZY ])2

]
B := A− E[Y 2]

(
(E[XZ])2 − E[Z2]E[X2]

)
C := E[X(Z −X)]E[ZY ] + E[Z(X − Z)]E[XY ]

Under the null, the t-statistic is independent of the weight, so whether the weight is finite

or infinite does not change its functional form. Under alternatives β ̸= 0, the case |a∗| = ∞
is unlikely and occurs only in extreme cases in which the MEs are perfectly correlated

with the true regressor X∗ or the regression error ε (see Lemma 1 in the Appendix).

Now suppose there are additional, correctly measured, exogenous regressorsR, E(εR) =

0, so that

Y = βX∗ + γ′R + ε. (6)

Denote by X̃, Z̃, Ỹ the residuals of regressions of X, Z, Y onto R and let W̃ (a, b) :=

aX̃ + bZ̃. Define β̃(ω) like β(ω), replacing W (a, b) by W̃ (a, b), and σ̃2(ω) like σ2(ω),

replacing Y,W (a, b), β(ω) by Ỹ , W̃ (a, b), β̃(ω). The t-ratio is then defined as

t̃(ω) :=
β̃(ω)

σ̃(ω)
. (7)

The OLS estimand of regressing Y onto (X,R) corresponds to β̃(1, 0, 1, 0), the IV estimand

regressing Y onto (X,R) using (Z,R) as IVs corresponds to β̃(1, 0, 0, 1).

The maximal t-ratio and its maximizer can then be found using the result in Theo-

rem 1:

Corollary 1. Suppose (6) and Assumption 1 hold with (Y,X,Z) replaced by (Ỹ , X̃, Z̃).

Then, ω̃∗ := supω∈R4 |t̃(ω)| is of the form ω̃∗ = (ã∗, 1− ã∗, ã∗, 1− ã∗) with

ã∗ :=
E[X̃Z̃]E[Z̃Ỹ ]− E[Z̃2]E[X̃Ỹ ]

E[X̃(Z̃ − X̃)]E[Z̃Ỹ ] + E[Z̃(X̃ − Z̃)]E[X̃Ỹ ]

with the possibility of |ã∗| = ∞ if the denominator is equal to zero.

The t-ratios defined in (5) and (7) use asymptotic variance expressions for homoskedas-

tic regression errors. We now consider conditional heteroskedasticity in the regression
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model (6), i.e., when the conditional variance of the regression error given X∗ is not

independent of X∗. In this case, we are interested in the t-ratio

t̄(ω) :=
β̃(ω)

σ̄(ω)
,

where the variance is

σ̄2(ω) :=
E[ε̃(ω)2W̃ (ω3, ω4)

2]

(E[W̃ (ω1, ω2)W̃ (ω3, ω4)])2

with ε̃(ω) := Ỹ − β̃(ω)W̃ (ω1, ω2).

Without any further restrictions on the form of heteroskedasticity, there does not in

general exist a closed-form expression for the maximal weights nor the maximal t-ratio.

However, we can show that the four-dimensional optimization problem over ω can be

reduced to a two-dimensional one, which simplifies implementation significantly.

Theorem 2. Suppose model (6) and Assumption 1 hold with (Y,X,Z) replaced by (Ỹ , X̃, Z̃).

Then, for any ω := (ω1, ω2, ω3, ω4) ∈ R4, there exist a1, a2 ∈ R such that, for ω′ :=

(a1, 1− a1, a2, 1− a2),

t̄(ω) = t̄(ω′).

Remark 1. In principle, one could construct a test statistic for H0 using more compli-

cated, non-linear combinations of X and Z rather than the linear combinations as in the

definition of W (a, b). For example, one could consider W (a, b) := a′p(X) + b′q(Z), where

a, b ∈ RK, and p(·) and q(·) are K-dimensional vectors of basis functions (e.g., polynomi-

als or splines). The results of this section can easily be extended to this case. However,

allowing for interaction terms between the basis functions of X and Z would require more

involved arguments and we leave these for future work. In this paper, we focus on linear

combinations because we place more importance on the practical usefulness of the method

and because we want to avoid the maximal t-statistic depending on higher-order moments

of (Y,X,Z) which would make it more sensitive to outliers.

2.2 Testing General Hypotheses

In this section, we consider testing the more general hypothesis

H0 : β = b vs. H1 : β ̸= b (8)

11



for some b ∈ R in the simple regression model (1). Under the null of no effect, (2), the

estimand β(a) considered in the previous section is zero for all weights a. This is not

the case under the more general null (8) because β is not identified under Assumption

1. However, one can construct bounds for β based on observable quantities by imposing

further assumptions on correlations between MEs and X∗. To describe these bounds

consider the following notation. Because of Theorem 2, it suffices to consider linear

combinations of measurements with weights a and 1 − a, so we simplify the notation to

W (a) := aX + (1− a)Z. Let

βOLS(a) :=
E[W (a)Y ]

E[W (a)2]

be the OLS estimand of a regression of Y on W (a), and

βOLS−INV (a) :=
E[Y 2]

E[W (a)Y ]

that of the reverse regression. Similarly, the IV estimand from a regression of Y on W (a)

using W (b) as an instrument is

βIV (a, b) :=
E[W (b)Y ]

E[W (b)W (a)]
.

Assumption 2. E[εX∗] = E[εU ] = E[εV ] = 0

Assumption 3. E[X∗X] > 0 and E[X∗Z] > 0

Assumption 4. E[X∗X] ≥ E[XZ] > 0 and E[X∗Z] ≥ E[XZ] > 0

Assumption 5. E[UX] ≥ 0 and E[V Z] ≥ 0

Assumption 6. E[X∗U ] ≤ 0 and E[X∗V ] ≤ 0

Assumption 2 means X∗ is exogenous and MEs are nondifferential. Assumptions 3 and

5 require that the MEs are not too severely correlated withX∗ so that covariances between

MEs and X∗ do not dominate the variances of X∗ and MEs respectively. Assumption 4 is

a stronger version of Assumption 3, which implies the correlation between X∗ and either

of mismeasured variables is stronger than the correlation between X and Z. Assumption

6 allows the MEs to be nonclassical and negatively correlated with X∗, which is likely

to be the case when X∗ has bounded support. Black, Berger, and Scott (2000) present

detailed discussions on the above assumptions and show how to construct bounds on β

under the assumptions.2 The assumptions are untestable and stronger than Assumption

2Lemma 2 in the appendix provides a slightly modified statement and derivation for those bounds.
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1 but still substantially weaker than the classical ME assumption.

For the discussion in this section, suppose β ≥ 0 (similar results hold for the case

β ≤ 0). First, the OLS estimand and the inverse OLS estimand form lower and upper

bounds on the regression coefficient:

max
a=0,1

βOLS(a) ≤ β ≤ min
a=0,1

βOLS−INV (a).

The IV estimand provides an additional bound that may or may not be tighter than the

OLS bound,

β ≤ min
a=0,1

βIV (a, 1− a).

We now show that the bounds cannot be refined by considering linear combinations of

measurements.

Theorem 3. Suppose β ≥ 0. Then:

1. Under Assumptions 2, 3, and 5, βOLS(a) ≤ β holds only for a ∈ {0, 1}.

2. Under Assumptions 2, 3, and 6, β ≤ βOLS−INV (a) holds only for a ∈ [0, 1].

3. Under Assumptions 2 and 4, β ≤ βIV (a, 1− a) holds only for a ∈ {0, 1}.

The first and third statements of this theorem imply that it is impossible to refine the

OLS and IV bounds using linear combinations of measurements. The proof shows that,

for any a ̸∈ {0, 1}, we can find a data-generating process satisfying the assumptions of the

theorem for which the inequalities are violated. The second part of the theorem states

that the inverse OLS bound holds for all a ∈ [0, 1]. However, because the inverse OLS

estimand is inversely related to a linear function of the weight a, it is easy to see that the

tightest bound, mina∈[0,1] βOLS−INV (a), is achieved by either a = 0 or a = 1. Therefore,

the inverse OLS bound also cannot be refined by considering linear combinations of the

two measurements.

Under the null hypothesis of no effect, (2), the estimand β(a) is equal to zero for

all weights a, but it varies with a under the alternative. This is why it was possible to

improve the power of the t-test by choosing a carefully. In the case of testing the general

null (8), however, the estimand of interest is the set of possible β values consistent with

the data,

Θ(a1, a2, a3) := {β ∈ R : βOLS(a1) ≤ β ≤ min{βOLS−INV (a2), βIV (a3, 1− a3)}} .
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These sets contain the identified set for β and thus are valid outer sets for any (a1, a2, a3) ∈
{0, 1}3, but they are not for any other value of (a1, a2, a3). Therefore, we cannot take linear
combinations of the measurements to tighten the identified set or improve inference as in

the approach of the previous section.

3 The Maximal t-Test

In this section, we propose a powerful t-test of the hypothesis (2), making use of the

maximal combination of two measurements. We want to allow for heteroskedasticity-

robust variance estimators in the construction of the t-statistic. As we have shown in

Theorem 2, for the calculation of the maximal t-statistic, we do not have to consider

general weights ω in R4, but only weights of the form (a1, 1 − a1, a2, 1 − a2). A direct

implementation of this result could consider the test statistic

max
a=(a1,a2)∈R2

∣∣t̂(a1, 1− a1, a2, 1− a2)
∣∣ ,

where t̂ is an estimator of t multiplied by
√
n. Under standard conditions, it is easy to

show that t̂(·) weakly converges to a Gaussian process, so that by the delta method the

maximal t-statistic converges to the supremum of that limiting process. Unfortunately,

it is difficult to construct critical values from this process because its covariance function

depends upon the unknown data-generating process. We, therefore, propose a simple

multiplier bootstrap method to calculate critical values.

Suppose we observe an i.i.d. sample Yn := {(Yi, Xi, Zi)}ni=1 from the distribution of

(Y,X,Z) and ignore additional, correctly measured covariates. We describe a procedure

that applies to numerical optimization of the t-ratio. Define a grid of weights ω1, . . . , ωp

of the form ωj = (aj,1, 1 − aj,1, aj,2, 1 − aj,2)
′ for some (aj,1, aj,2)

′ ∈ R2. Let W1ij :=

ωj,1Xi + ωj,2Zi, W2ij := ωj,3Xi + ωj,4Zi, σ2
j := E[ε2iW

2
1ij], and σ̂2

j some estimator of

σ2
j . The notation En[·] denotes the average over the index 1 ≤ i ≤ n, so for example

En[xij] = n−1
∑n

i=1 xij.

Our maximal t-statistic is defined as |t̂(ω)| optimized over the grid ω1, . . . , ωp:

T := max
ω∈{ω1,...,ωp}

∣∣t̂(ω)∣∣ = max
1≤j≤p

∣∣∣∣√nEn[W1ijYi]

σ̂j

∣∣∣∣ .
We now describe the construction of critical values using a multiplier bootstrap. Let

{ebi}ni=1, b = 1, . . . , B, be an i.i.d. sequence of standard normally distributed random
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variables that are independent of Yn and the residual ε̂ij := Yi − β̂jW2ij where β̂j is the

IV estimator from a regression of Yi onto W2ij using W1ij as instrument. We define the

bootstrap statistic

T b := max
1≤j≤p

∣∣∣∣√nEn[eiW1ij ε̂ij]

σ̂j

∣∣∣∣ , b = 1, . . . , B,

and the bootstrap critical value

cα := conditional (1− α)− quantile of T b given the data Yn.

We reject H0 if and only if T > cα.

The validity of this bootstrap critical value can be shown using the high-dimensional

central limit theorem in Corollary 3.1 of Chernozhukov, Chetverikov, and Kato (2013).

It implies that the test has a limiting rejection probability under the null equal to the

nominal level α and is consistent against any fixed alternative violating the null. The

result requires only mild conditions on the data-generating process and, in particular,

allows the vector W1ij to grow at a rate that is an exponential function of the sample size.

This means that we can consider grids for the weights ω1, . . . , ωp of very large size p.

Remark 2. In simulations and empirical applications, we also consider a version of the

maximal t-test in which we impose homoskedasticity (E[ε2i |W1ij = w] does not vary with

w) by using the variance estimator σ̂2
j = σ̂2

ε,jEn[W
2
1ij] where σ̂2

ε,j is the sample variance of

ε̂ij.

While clearly desirable, a full analysis of optimal tests in the current setup with latent

variables is left for future work. In this paper, we simply take inspiration from the

infeasible likelihood ratio (“oracle”) test which optimally weights OLS and IV estimators,

and propose a feasible alternative that maximizes the t-ratio over all possible weights. In

the next section, we show in simulations that this new test may indeed be significantly

more powerful than existing alternatives.

4 Simulations

This section studies the finite sample performance of the maximal t-test described in

Section 3. We consider the simple regression model in (1) with the two measurements X

15



and Z generated from X = X∗ + U and Z = X∗ + V withX∗

U

V

 ∼ N


00
0

 ,

 1 σX∗U σX∗V

σX∗U σ2
U σUV

σX∗V σUV σ2
V




and ε ∼ N(0, 1) is independent of (X∗, U, V ). The null hypothesis holds with β = 0. To

generate alternatives we increase β on a grid up to 0.8. We define seven different scenarios

in which we vary the parameters σ2
U , σ

2
V , σUV . Table 1 defines those scenarios. We vary

the covariances σX∗U and σX∗V in each scenario. We generate 1, 000 Monte Carlo samples

of size n = 200.

Scenario σ2
U , σ

2
V σUV σX∗U σX∗V

0 0,1 0 0 −0.3 or −0.5

1 2 0 −0.3 or −0.7 −0.3 or −0.7

2 2 0.5 −0.3 or −0.7 −0.3 or −0.7

3 2 -0.5 −0.3 or −0.7 −0.3 or −0.7

4 1 0 −0.3 or −0.5 −0.3 or −0.5

5 1 0.3 −0.3 or −0.5 −0.3 or −0.5

6 1 -0.3 −0.3 or −0.5 −0.3 or −0.5

Table 1: Parameter values in each scenario.

We consider five tests. The first is the oracle test using the true correlation structure

between X∗ and MEs. When one of two measurements does not have measurement error,

the oracle test is the standard t-test based on the correctly measured measurement only.

If both measurements are mismeasured, the oracle test uses the optimal weights, E[XX∗]

and E[ZX∗], for X and Z respectively to generate the optimal linear combination W .

Then the oracle test is the standard t-test based on the OLS estimator from a regression

of Y on W. We also consider t-tests based on the OLS estimator from a regression of

Y on X (“OLS w/ x”) and of Y on Z (“OLS w/ z”), respectively. The fourth (“IV

x|z”) is the t-test based on the IV estimator from a regression of Y on X using Z as an

instrument. The last (“tmax”) is the maximal t-test with the multiplier bootstrap critical

value described in Section 3. We use B = 1, 000 bootstrap samples and an equally spaced

grid of weights in the interval [0, 1] with a distance of 0.2 between the grid points. All
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tests are implemented with the homoskedastic variance estimator described in Remark 2

and a nominal level of 0.05.
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Figure 1: Rejection probabilities in scenario 0, for σX∗V ∈ {−0.3,−0.5} varying from left

to right.

We first investigate Scenario 0 where X does not have measurement error (X = X∗)

and only Z is contaminated. Figure 1 shows the power curve for each test. The size is

well controlled under the null by all the tests considered. The OLS-based test using X

only is the most powerful as expected. Our maximal t-test performs very similarly to

the oracle test, although it is slightly less powerful as we do not use the information on

the true correlation structure. The optimal weight is on average very close to 1 whenever

β ≥ 0.2, meaning that our test only uses X when the null is not true. The other two tests

are far less powerful than the oracle test. The same pattern is observed when we adjust

the values of σ2
V and σX∗V . This result shows that our test is nearly optimal if one of the

two measurements does not suffer from measurement error.

Table 2 provides the null rejection frequencies of the tests and Figures 2–7 the power

curves for Scenarios 1–6. All tests control the size well as expected. The power, however,

varies significantly among them. The findings can be summarized as follows. First, our
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σX∗U σX∗V Test S1 S2 S3 S4 S5 S6

strong strong Oracle 0.045 0.051 0.045 0.051 0.052 0.053

OLS w/ x 0.048 0.052 0.060 0.045 0.055 0.049

OLS w/ z 0.047 0.040 0.062 0.047 0.054 0.051

IV x|z 0.021 0.002 0.052 0.002 0.035 0.026

tmax 0.050 0.054 0.062 0.063 0.071 0.062

strong weak Oracle 0.058 0.046 0.056 0.044 0.052 0.050

OLS w/ x 0.054 0.057 0.055 0.062 0.056 0.052

OLS w/ z 0.058 0.050 0.048 0.049 0.047 0.038

IV x|z 0.000 0.014 0.025 0.005 0.032 0.000

tmax 0.066 0.052 0.066 0.056 0.053 0.062

weak strong Oracle 0.046 0.049 0.054 0.058 0.062 0.059

OLS w/ x 0.051 0.041 0.054 0.057 0.056 0.056

OLS w/ z 0.046 0.045 0.045 0.042 0.060 0.048

IV x|z 0.000 0.019 0.026 0.013 0.050 0.000

tmax 0.058 0.046 0.062 0.062 0.066 0.063

weak weak Oracle 0.052 0.036 0.051 0.039 0.053 0.054

OLS w/ x 0.052 0.052 0.049 0.040 0.058 0.040

OLS w/ z 0.053 0.039 0.055 0.044 0.050 0.040

IV x|z 0.005 0.023 0.000 0.024 0.045 0.002

tmax 0.060 0.047 0.057 0.041 0.065 0.054

Table 2: Null rejection probabilities in the six different scenarios. The values of σX∗U and

σX∗V vary between “strong” (-0.7 for scenarios 1–3; -0.5 for scenarios 4–6) and “weak”

(-0.3 for all scenarios).

maximal t-test performs very similarly to the oracle test which is obviously most powerful

in all scenarios. Second, in none of the scenarios and parameter combinations, the maximal

t-test is dominated by another non-oracle test. In most of them, the maximal t-test strictly

dominates all other non-oracle tests (e.g., in scenarios 3 and 6). When the maximal t-test

does not strictly dominate all other tests, then it does strictly dominate all but one of the

tests, with the latter possessing power roughly equal to that of the maximal t-test. In

most of the scenarios and parameter combinations, the power gains of the maximal t-test
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relative to the others are significant(e.g., scenarios 3 and 6). Third, a common feature

among all simulation results is that when the measurement X is more precise than Z,

then the OLS-based test using X dominates the OLS-based test using Z and the former

is closer to the maximal t-test in terms of power (compare, for example, the upper-left

and the lower-right panels in Figure 2). Our maximal t-test either dominates both or

is equal to the more powerful of the two tests. In this sense, it automatically adapts

to the unknown covariance structure in the measurement system and puts more weight

on the more informative measurement. Lastly, in almost all scenarios and parameter

combinations, the IV-based t-test performs the poorest.

Exogeneity of X∗ and nondifferentiability of MEs are crucial for the transformed null

(4) being an observable implication of β = 0. In Appendix C, we show in further sim-

ulations that our tests are robust to small deviations from nondifferentiability, at least

for the data-generating processes we consider. This robustness property may of course be

lost for other data-generating processes.

5 Empirical Illustration: Returns to Schooling

In this section, we revisit the empirical work by Bonjour, Cherkas, Haskel, Hawkes, and

Spector (2003) who studied the returns to schooling using data from monozygotic twins.3

Bonjour, Cherkas, Haskel, Hawkes, and Spector (2003) estimate that each additional year

of schooling increases hourly wage by 7.7%, which is statistically significant at the 5%

level.4 Amin (2011) argues that this result is largely driven by a few outliers in the data

set. In particular, one pair of twins have a very large difference in their hourly earnings

(£94.18) with only a 2-year schooling gap, whereas the average difference of hourly wages

with a 2-year difference in education is only £7.74. Amin (2011) shows that, after removing

this outlier, the estimated return to schooling is only 5.1% and it is no longer significant

at the 5% level.

This section aims to apply our new t-test, which in simulations is more powerful than

3The UK twins data were collected from St. Thomas’ U.K. Adult Twin Registry.
4Ashenfelter and Krueger (1994) estimated a much larger return (12-16%, significant at the 1% level)

using the US twins data. Rouse (1999) extended the US data set by adding survey results from subsequent

years (1992, 1993, and 1995) and suggested that the returns may be much smaller (9.5%). She also found

mixed evidence of their statistical significance.
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Figure 2: Rejection probabilities in scenario 1, for σX∗V ∈ {−0.3,−0.7} varying from top

to bottom and σX∗U ∈ {−0.3,−0.7} varying from left to right.
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Figure 3: Rejection probabilities in scenario 2, for σX∗V ∈ {−0.3,−0.7} varying from top

to bottom and σX∗U ∈ {−0.3,−0.7} varying from left to right.
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Figure 4: Rejection probabilities in scenario 3, for σX∗V ∈ {−0.3,−0.7} varying from top

to bottom and σX∗U ∈ {−0.3,−0.7} varying from left to right.
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Figure 5: Rejection probabilities in scenario 4, for σX∗V ∈ {−0.3,−0.5} varying from top

to bottom and σX∗U ∈ {−0.3,−0.5} varying from left to right.
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Figure 6: Rejection probabilities in scenario 5, for σX∗V ∈ {−0.3,−0.5} varying from top

to bottom and σX∗U ∈ {−0.3,−0.5} varying from left to right.
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Figure 7: Rejection probabilities in scenario 6, for σX∗V ∈ {−0.3,−0.5} varying from top

to bottom and σX∗U ∈ {−0.3,−0.5} varying from left to right.
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standard OLS- and IV-based t-tests, and see whether we can find statistically significant

returns to schooling in the UK data set. To this end, for a pair of twins, let Y1 and

Y2 be log wages of the first and second twins. Denote by X1 and X2 their respective

self-reported levels of education. In addition, the second twin is asked to report the

education of the first twin, Z1, and the first to report the education of the second, Z2. We

consider the regression models (1) and (6) with Y = Y1 − Y2 the difference of log wages,

X∗ the difference of true education levels, X = X1 − X2 the difference of self-reported

education, and Z = Z1 − Z2 the difference of cross-reported education. R contains

additional covariates such as marital status and work experience. To study the returns

to schooling in the UK, we use Bonjour, Cherkas, Haskel, Hawkes, and Spector (2003)’s

data set which is publicly available.

First, we test the null of no ME in self-reported education levels using the nonpara-

metric test in Wilhelm (2019).5 The test statistic is 0.00115 and the critical value 0.00361,

leading to a p-value of 0.4. Hence we cannot reject the null hypothesis of no ME in self-

reported education. There is not enough information in the data set to reject the null.

This could simply be because the sample size (214) is too small so the nonparametric test

does not have enough power. Therefore, in the second step, we impose the linearity of

the wage equation and perform the test of no ME again. To do this we regress Y onto

both X and Z (and a constant). We find that the p-value of the coefficient estimate of

Z is around 0.1 (t-statistic of 1.628). Therefore, with the assumption of linearity, we still

suspect the presence of measurement errors while the tests do not strongly reject the null

of no ME. (Hausman (1978) and Lee and Wilhelm (2020)). This finding is consistent with

the possibility that the nonparametric test has low power because of the small sample

size and thus fails to reject, but the test imposing linearity of the conditional expectation

is more powerful. Since the education variable is discrete, we know that by construction

ME (if there is any) cannot be classical because it has to depend on the true level of

education.

We now apply our maximal t-test imposing homoskedasticity (both Bonjour, Cherkas,

Haskel, Hawkes, and Spector (2003) and Amin (2011) assume homoskedasticity, too)

as described in Remark 2. We implement our maximal t-test with B = 5, 000 bootstrap

replications and an equally-spaced grid of weights ω1, . . . , ωp such that ωj = ((j−1)/n, 1−
5We implement the test based on Delgado and Manteiga (2001)’s Cramér-von Mises statistic for the

null hypothesis (9) in Wilhelm (2019) with µ(y) = y, a Gaussian kernel, and 1, 000 bootstrap replications.
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(j−1)/n, (j−1)/n, 1−(j−1)/n) for j = 1, . . . , p = n+1. We have also used grids that are

twice the size as well as half the size, but the test results were almost identical. We consider

several subsamples of the data, using from 30 to 214 (the full sample) observations. Table 3

shows the results of our maximal t-test (“maxt”) and compares it to three other tests: the

t-test based on the OLS estimator from a regression of Y on X (“OLS w/ x”), the t-test

based on the OLS estimator from a regression of Y on Z (“OLS w/ z”), and the t-test

based on the IV estimator from a regression of Y on X using Z as instrument (“IV”).

The latter three tests also employ variance estimators imposing homoskedasticity. The

table also shows the maximizer of our t-statistic (“â∗”) defined as the first element of the

grid point ωj at which the t-statistic is maximized, the 95%-critical value (“95% CV”),

and the p-value of our test from the multiplier bootstrap.

Our maximal t-test rejects the null of no effect for all sample sizes greater than 60.

Bonjour, Cherkas, Haskel, Hawkes, and Spector (2003) consider the OLS estimator using

X and the IV estimator using Z as an instrument forX, among others. These do reject for

the full sample, but not for all smaller samples. The OLS-based and IV-based tests reject

the null for 110 or larger sizes. The findings in this empirical application are consistent

with the simulation results. They could, for example, be interpreted similarly to the

upper-right panel of Figures 3 and 6. It is plausible that twins may have similar “ability

to report correctly” in the sense that U and V are positively correlated. As the OLS-based

test using Z does not reject more often than the one using X, the findings are consistent

with X and Z being similarly mismeasured. The covariance structure of (X∗, U, V ) is not

identified and thus cannot be consistently estimated, so we cannot learn from data a priori

which measurement is more precise, whether linear combinations of measurements help

improve power, and therefore which of the many different possible OLS and IV tests to

use. However, our maximal t-test adapts to the unknown covariance structure, thus does

not require such knowledge, and is more powerful. Without assuming homoskedasticity,

all tests perform similarly and start rejecting around sample sizes of 50− 70 as reported

in Table 4.6

we also test the null hypothesis of no returns to schooling after removing outliers.

As Amin (2011) suggests, we first drop an observation that has the absolute difference

in hourly wages > 90. Then, we sequentially drop further outliers with the absolute

6The OLS and IV t-tests are implemented with Eicker-Huber-White heteroskedasticity robust standard

errors.
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n OLS w/ x OLS w/ z IV â∗ tmax 95% CV p-value

30 0.35 0.22 0.22 0.77 0.36 1.41 0.77

40 0.26 0.24 0.24 0.55 0.30 1.24 0.79

50 0.86 0.77 0.77 0.58 0.94 1.26 0.16

60 1.00 0.94 0.94 0.57 1.08 1.26 0.10

70 1.17 1.32 1.31 0.36 1.38 1.17 0.02

80 1.04 1.35 1.33 0.21 1.37 1.16 0.02

90 1.22 1.24 1.24 0.47 1.37 1.21 0.02

100 1.27 1.23 1.23 0.55 1.36 1.18 0.02

110 1.96 2.61 2.55 0.04 2.62 2.20 0.02

120 1.99 2.76 2.69 0.00 2.76 2.25 0.02

130 2.01 3.31 3.16 0.00 3.31 2.28 0.00

140 1.96 3.19 3.06 0.00 3.19 2.22 0.01

150 2.16 3.05 2.97 0.00 3.05 2.20 0.01

160 2.24 2.95 2.89 0.09 2.96 2.27 0.01

170 2.04 3.19 3.07 0.02 3.20 2.18 0.00

180 1.64 2.79 2.70 0.00 2.79 2.25 0.02

190 2.02 2.92 2.85 0.06 2.92 2.14 0.01

200 1.97 2.73 2.68 0.09 2.73 2.28 0.01

214 1.74 2.37 2.34 0.10 2.38 2.22 0.04

Table 3: Tests using homoskedastic standard errors applied to first n observations of the

data set from Bonjour, Cherkas, Haskel, Hawkes, and Spector (2003); rejections at the

5% level are highlighted in bold face.

difference greater than 75, 65, and 60. In each step, we lose 1 observation. The results

are displayed in Table 5. After dispensing with the most extreme outlier, the OLS and

IV estimates are no longer significant even at the 10% level. Our maximal t-test, on the

contrary, rejects the null hypothesis of no effect at around the 6.5% level. The maximal

t-test results remain significant at the 5.6% and 7.7% levels after we drop the second

and third most extreme outliers respectively. And thereby our test supports the original

conclusion in Bonjour, Cherkas, Haskel, Hawkes, and Spector (2003) that the returns to

schooling is significantly different from 0 even when a few extreme outliers are removed
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n OLS w/ x OLS w/ z IV â∗ tmax 95% CV p-value

30 0.49 0.46 0.48 0.43 0.56 2.25 0.81

40 0.43 0.59 0.61 0.20 0.61 2.23 0.77

50 1.34 1.77 2.00 0.28 1.93 2.27 0.11

60 1.58 2.16 2.39 0.27 2.31 2.23 0.04

70 1.98 3.13 3.16 0.23 3.30 2.28 0.00

80 1.78 3.21 3.28 0.18 3.31 2.29 0.00

90 2.03 2.83 2.96 0.26 3.09 2.28 0.01

100 2.22 2.73 2.82 0.29 2.94 2.29 0.01

110 2.80 2.30 2.16 0.94 2.81 2.24 0.01

120 2.80 2.38 2.24 0.87 2.83 2.18 0.01

130 3.03 2.86 2.57 0.75 3.17 2.23 0.00

140 2.92 2.80 2.52 0.72 3.08 2.22 0.00

150 2.90 2.67 2.43 0.73 3.04 2.24 0.01

160 3.01 2.56 2.35 0.82 3.08 2.26 0.00

170 2.76 2.90 2.48 0.60 3.07 2.27 0.01

180 2.11 2.46 2.18 0.34 2.50 2.19 0.02

190 2.59 2.65 2.36 0.60 2.85 2.22 0.01

200 2.49 2.42 2.22 0.67 2.67 2.22 0.02

214 2.20 2.12 1.99 0.67 2.35 2.22 0.04

Table 4: Tests using heteroskedasticity robust standard errors applied to first n obser-

vations of the data set from Bonjour, Cherkas, Haskel, Hawkes, and Spector (2003);

rejections at the 5% level are highlighted in bold face.

from the sample.

As a final robustness check, we also include additional covariates in the regression.

The dataset contains various characteristics of twins. As in Bonjour, Cherkas, Haskel,

Hawkes, and Spector (2003) and Amin (2011), we control for marital status, working

part-time, region to live, and current work experience; see Table 6. The inclusion of these

covariates further decreases our maximal t-test’s p-values so that it rejects the null at the

5% level even when all four most extreme observations are removed. The OLS and IV

estimates, on the other hand, are only significant in 1 or 2 subsamples at the 10% level.
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OLS IV â∗ tmax

Full sample 1.744 2.340 0.10 2.376

(n = 214) (0.083) (0.020) (0.034)

abs. wage dif. < 90 1.495 1.616 0.39 1.705

(n = 213) (0.136) (0.108) (0.065)

abs. wage dif. < 75 1.528 1.651 0.39 1.742

(n = 212) (0.128) (0.100) (0.056)

abs. wage dif. < 65 1.572 1.228 0.84 1.584

(n = 211) (0.118) (0.221) (0.077)

abs. wage dif. < 60 1.496 1.313 0.68 1.545

(n = 210) (0.136) (0.191) (0.114)

Table 5: Robustness of the results when outliers are removed; the numbers in parentheses

are p-values.

OLS IV â∗ tmax

Full sample 1.628 2.312 0.02 2.350

(n = 214) (0.105) (0.022) (0.037)

abs. wage dif. < 90 1.495 1.630 0.38 1.714

(n = 213) (0.137) (0.105) (0.065)

abs. wage dif. < 75 1.622 1.733 0.41 1.837

(n = 212) (0.107) (0.085) (0.050)

abs. wage dif. < 65 1.715 1.288 0.90 1.719

(n = 211) (0.088) (0.199) (0.047)

abs. wage dif. < 60 1.833 1.510 0.77 1.861

(n = 210) (0.068) (0.133) (0.047)

Table 6: Robustness of the results with additional covariates (marriage, working part-time,

living in London or the South East, and work experience) when outliers are removed; the

numbers in parentheses are p-values.

In conclusion, employing our maximal t-test, which remains powerful even in the pres-

ence of nonclassical ME in schooling, we have been able to recover statistically significant

returns to schooling even after removing the most extreme observations. This finding is
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in contrast to those in Amin (2011) and provides further robustness in support of the

original findings by Bonjour, Cherkas, Haskel, Hawkes, and Spector (2003). This empiri-

cal application clearly illustrates that our new test can secure the statistical significance

of estimates of interest when standard t-tests cannot.
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Appendix

A Finiteness of the Optimal Weights

Assumption 7. (i) E[XY ] ̸= 0, E[ZY ] ̸= 0, and (ii) |corr(X∗, (Z −X))| ≠ 1.

The possibility of |a∗| = ∞ can be ruled out under a set of weak assumptions. The

first part implies that β ̸= 0. It also rules out the cases in which the MEs are perfectly

negatively correlated with the true variable (E[(X∗)2] = −E[X∗U ] = −E[X∗V ]). The

last part means that the true variable is not recovered from Z −X.

Lemma 1. Suppose (1) and Assumption 1 and 7 hold. Then, the maximal weight a∗ is

finite.

|a∗| < ∞

Proof of Lemma 1. The numerator of a∗ in Theorem 1 is finite if the denominator is

nonzero, then |a∗| < ∞.

C := E[X(Z −X)]E[ZY ]− E[Z(Z −X)]E[XY ]

By Assumption 1 (i), E[XY ] = βE[XX∗] and E[ZY ] = βE[ZX∗]. Then C trivially

becomes zero when β = 0 or E[(X∗)2] + E[X∗U ] = E[(X∗)2] + E[X∗V ] = 0. These are

ruled out by Assumption 7. The other cases in which C is zero are the following.

1. E[Z(Z −X)] = 0 and E[X(Z −X)] = 0

2. E[X(Z−X)]
E[Z(Z−X)]

= E[XY ]
E[ZY ]

= E[(X∗)2]+E[X∗U ]
E[(X∗)2]+E[X∗V ]

The first case implies that X = Z and is ruled out by (iii) of Assumption 1. The second

case indicates that the ratio of E[X(Z − X)] to E[Z(Z − X)] is equal to the ratio of

E[(X∗)2] + E[X∗U ] to E[(X∗)2] + E[X∗V ]. Therefore, for a constant γ ̸= 0,

E[XZ −X2] = γ(E[(X∗)2] + E[X∗U ]), E[Z2 −XZ] = γ(E[(X∗)2] + E[X∗V ]).
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By simple algebra,

E[X∗V ]− (1 + γ)E[X∗U ] + E[UV ]− E[U2] = γE[(X∗)2]

(1− γ)E[X∗V ]− E[X∗U ] + E[V 2]− E[UV ] = γE[(X∗)2]

and therefore,

γ(E[X∗V ]− E[X∗U ]) = E[V 2]− 2E[UV ] + E[U2]

and this implies that

γE[X∗(V − U)] = E[(V − U)2] =⇒ X∗ =
1

γ
(V − U) =

1

γ
(Z −X).

As Assumption 7 rules out perfect positive and negative correlation between X∗ and

Z − X, such a possibility is ruled out. Therefore, the denominator C is non-zero, and

hence a∗ is finite. Q.E.D.

B Proofs

B.1 Proofs for Section 2

Proof of Theorem 1. First, we show that

sup
ω∈R4

t(ω)2 = sup
a∈R

t(a, 1− a, a, 1− a)2. (9)

To this end, notice that given ω = (ω1, ω2, ω3, ω4),

β(ω) =
E[W (ω1, ω2)Y ]

E[W (ω1, ω2)W (ω3, ω4)]
, σ2(ω) =

σ2
ε(ω)E [W (ω1, ω2)

2]

(E [W (ω1, ω2)W (ω3, ω4)])2

and the t-ratio becomes

t(ω) =
β(ω)

σ(ω)
=

E[W (ω1, ω2)Y ]

σε(ω)
√

E [W (ω1, ω2)2]
.

σ2
ε(ω) = E[(Y − β(ω)W (ω3, ω4))

2] is minimized at ω = (ω3, ω4, ω3, ω4) since the OLS es-

timand β(ω3, ω4, ω3, ω4) = E[W (ω3, ω4)Y ]/E[W (ω3, ω4)
2] minimizes the residual variance

by construction. This implies that

σε(ω3, ω4, ω3, ω4) ≤ σε(ω1, ω2, ω3, ω4). (10)
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Let (ω∗
3, ω

∗
4) be the minimizer of σ2

ε(ω3, ω4, ω3, ω4). By straightforward algebra,

σ2
ε(ω3, ω4, ω3, ω4) = E

[
(Y − E[W (ω3, ω4)Y ]

E[W (ω3, ω4)2]
W (ω3, ω4))

2

]
= E[Y 2]− 2

E[(W (ω3, ω4)Y ])2

E[W (ω3, ω4)2]
+

(E[W (ω3, ω4)Y ])2

E[W (ω3, ω4)2]

= E[Y 2]− E[(W (ω3, ω4)Y ])2

E[W (ω3, ω4)2]
,

and E[(W (ω3,ω4)Y ])2

E[W (ω3,ω4)2]
is maximized at (ω∗

3, ω
∗
4). This result with (10) implies that

|t(ω)| ≤ 1

σε(ω∗
3, ω

∗
4, ω

∗
3, ω

∗
4)

∣∣∣∣∣ E[W (ω∗
3, ω

∗
4)Y ]√

E [W (ω∗
3, ω

∗
4)

2]

∣∣∣∣∣ = |t(ω∗
3, ω

∗
4, ω

∗
3, ω

∗
4)|

as both 1
σε(a,b,a,b)

and

∣∣∣∣ E[W (a,b)Y ]√
E[W (a,b)2]

∣∣∣∣ are maximized at (a, b) = (ω∗
3, ω

∗
4). By Assumption 1(ii),

there is no linear combination of X and Z that is equal to zero so that, together with the

positive variance Assumption 1(i), we have E[W (a, b)2] ̸= 0 for all (a, b) ∈ R2 \ {(0, 0)}.
Hence, the solution exists.

Now we can optimize the t-ratio over only two weights so that

sup
ω∈R4

t2(ω1, ω2, ω3, ω4) = sup
(ω1,ω2)∈R2

t2(ω1, ω2, ω1, ω2) ∀ω ∈ R4.

Next, notice that

β

(
ω1

ω1 + ω2

,
ω2

ω1 + ω2

,
ω1

ω1 + ω2

,
ω2

ω1 + ω2

)
= β(ω1, ω2, ω1, ω2)(ω1 + ω2)

and

σ2

(
ω1

ω1 + ω2

,
ω2

ω1 + ω2

,
ω1

ω1 + ω2

,
ω2

ω1 + ω2

)
= σ2(ω1, ω2, ω1, ω2)(ω1 + ω2)

2.

Therefore, the weights in the t-ratio can be standardized to sum up to one,

t2
(

ω1

ω1 + ω2

,
ω2

ω1 + ω2

,
ω1

ω1 + ω2

,
ω2

ω1 + ω2

)
= t2(ω1, ω2, ω1, ω2),

and (9) follows.
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By a slight abuse of notation denote t(a) := t(a, 1 − a, a, 1 − a). t(a) is a twice

continuously differentiable function. To find the maximizer of t(a)2 we consider first the

first-order condition with respect to a,

∂

∂a
t(a)2 = 0. (11)

Suppose C ̸= 0, then this equation has two solutions,

a∗1 :=
E[Y Z]

E[Y Z]− E[XZ]

and

a∗2 :=
E[XZ]E[ZY ]− E[Z2]E[XY ]

C
.

The first solution yields t(a∗1)
2 = 0 and, therefore, cannot be the supremum. The second

solution yields

t(a∗2)
2 = n

A

B
.

By the Cauchy Schwarz inequality, (E[XZ])2 ≤ E[Z2]E[X2], but equality is ruled out by

Assumption 1(ii). Since A ≥ 0 and E[Y 2] > 0, we have B > 0. It remains to show that

this is indeed the supremum. For β = 0, the t-ratio equals zero and is independent of

the weight a. Therefore, we can restrict attention to the case β ̸= 0. First, consider the

second derivative at the postulated maximizer:

∂2

∂a2
t(a)2

∣∣∣∣
a=a∗2

= −2E[Y 2]C4

AB2
< 0.

The inequality follows because A > 0 whenever β ̸= 0, otherwise V ar(Z − λX) = 0 for

λ = E(ZY )/E(XY ) which is ruled out by Assumption 1(ii). Also, B > 0, C ̸= 0, and

Assumption 1(i) guarantees that E(Y 2) > 0. Therefore, a∗2 is a local maximizer. Since

the t-ratio is a continuously differentiable function, a∗2 is also a global maximizer of the

squared t-ratio as long as the squared t-ratio’s limit as a → ±∞ is smaller than (or equal

to) its value at a∗2. One can show that the two limits are equal and that they are smaller

than (or equal to) the squared t-ratio at a∗2 if the following condition holds:

−E[Y 2]C2

BD
≥ 0 (12)

where

D := (E[Y (X − Z)])2 − E[Y 2]E[(X − Z)2].
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By the Cauchy-Schwarz inequality, we have D ≤ 0, but equality is ruled out by Assump-

tion 1(iii), so D < 0. D < 0 and B > 0 then imply that (12) holds and we thus have

shown that a∗2 is indeed the global maximizer of the squared t-ratio when C ̸= 0. We now

turn to the case C = 0. In this case, the first-order condition (11) has only one solution,

a∗3 :=
E(ZY ) [E(XZ)E(ZY )− E(XY )E(Z2)]

E(XY )(E(XY )− 2E(ZY ))E(Z2) + (2(XZ)− E(X2))(EZY )2
,

which, when substituted back into the t-ratio yields t(a∗3) = 0 and therefore cannot be a

maximizer. Therefore, the maximum of the t-ratio is

lim
a→∞

t(a)2 = lim
a→−∞

t(a)2 = −(E[(X − Z)Y ])2

D
> 0

which is also equal to t(a∗2)
2 because a∗2 = ∞ when C = 0. In conclusion, a∗2 is the

global maximizer of the squared t-ratio for any value of C. The expression for t(a∗2)

follows simply by evaluating the t-ratio at the global maximizer and some straightforward

algebra. Q.E.D.

Proof of Theorem 2. The t-ratio can be written as

t̄(ω) =
β̃(ω)

σ̄(ω)
=

E[W̃ (ω3, ω4)Ỹ ]√
E[ε̃(ω)2W̃ (ω3, ω4)2]

.

Define ω̃ =
(

ω1

ω1+ω2
, ω2

ω1+ω2
, ω3

ω3+ω4
, ω4

ω3+ω4

)
. Then,

ε̃(ω̃) = Ỹ − β̃(ω̃)W̃

(
ω1

ω1 + ω2

,
ω2

ω1 + ω2

)

= Ỹ −
E
[
W̃ (ω3,ω4)
ω3+ω4

Ỹ
]

E
[
W̃ (ω1,ω2)
ω1+ω2

W̃ (ω3,ω4)
ω3+ω4

] W̃ (ω1, ω2)

ω1 + ω2

= Ỹ − β̃(ω)W̃ (ω1, ω2)

= ε̃(ω)

and therefore it is obvious that

t̄(ω̃) =

E[W̃ (ω3,ω4)Ỹ ]
ω3+ω4√

E

[
ε̃(ω)2

[
W̃ (ω3,ω4)
ω3+ω4

]2] =
E[W̃ (ω3, ω4)Ỹ ]√
E[ε̃(ω)2W̃ (ω3, ω4)2]

= t̄(ω).
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Define that a1 :=
ω1

ω1+ω2
and a2 :=

ω3

ω3+ω4
. Then,

t̄(ω) = t̄(a1, 1− a1, a2, 1− a2).

Q.E.D.

The following lemma is a slightly modified version of results in Black, Berger, and

Scott (2000):

Lemma 2. 1. Under Assumptions 2, 3, and 5, if β ≥ 0,

max
a=0,1

βOLS(a) ≤ β, (13)

and, if β ≤ 0, then

β ≤ min
a=0,1

βOLS(a). (14)

2. Under Assumptions 2, 3, and 6, if β ≥ 0,

β ≤ min
a=0,1

βOLS−INV (a), (15)

and, if β ≤ 0, then

max
a=0,1

βOLS−INV (a) ≤ β. (16)

3. Under Assumptions 2 and 4, if β ≥ 0,

β ≤ min
a=0,1

βIV (a, 1− a), (17)

and, if β ≤ 0, then

max
a=0,1

βIV (a, 1− a) ≤ β. (18)

Proof. First, notice that by Assumption 2,

βOLS(a) = β · E[X∗W (a)]

E[X∗W (a)] + E[U(a)W (a)]
(19)

where U(a) := aU+(1−a)V . By Assumptions 3 and 5, E[X∗W (a)] > 0 and E[U(a)W (a)] ≥
0 for a = 0, 1, so

E[X∗W (a)]

E[X∗W (a)] + E[U(a)W (a)]
≤ 1
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and the lower bound in (15) and the upper bound in (16) follow. Now, notice that

Assumption 2 also implies

βOLS−INV (a) =
β2E[(X∗)2] + E[ε2]

βE[X∗W (a)]
(20)

By Assumptions 3 and 6, if β ≥ 0, then

βOLS−INV (a) ≥
β2E[(X∗)2]

βE[X∗W (a)]
≥ β,

yielding the upper bound in (15). The lower bound in (16) for β ≤ 0 follows from the

same argument by reversing the above inequalities.

Now, we show that the IV bounds hold. Notice that by Assumption 2,

βIV (a, 1− a) = β · E[X∗W (1− a)]

E[W (a)W (1− a)]
. (21)

Assumption 4 then implies that, for a = 0, 1, the numerator and denominator are both

positive and the latter is not larger than the former, so the IV bounds (17) and (18)

follow. Q.E.D.

Proof of Theorem 3. To simplify the presentation we use the notation σAB for E[AB]

and σ2
A for E[A2], where A and B are random variables. Consider the first statement of

the theorem. First, notice that the OLS bound holds for a ∈ {0, 1} by Lemma 2. From

the proof of Lemma 2, we know that βOLS(a) ≤ β holds if, and only if,

E[X∗W (a)]

E[X∗W (a)] + E[U(a)W (a)]
≤ 1. (22)

To show that this inequality holds only for a ∈ {0, 1} and not for any other value of a,

we assume that a ̸∈ {0, 1} and then construct a data-generating process characterized by

(σεX∗ , σεU , σεV , σ
2
X∗ , σ2

U , σ
2
V , σUV , σX∗U , σX∗V )

which satisfies all assumptions of the theorem, but violates (22).

Suppose 0 < a < 1. Let ϵ > 0 and σ2
U > 0. Set σUV = σX∗U = σεX∗ = σεU = σεV = 0,

σ2
X∗ = σ2

V = aσ2
U/(1− a) + ϵ, and σX∗V = −σ2

V + aϵ/2. Then Assumption 2 holds. Since

σX∗V + σUV ≤ 0, σX∗U + σUV ≤ 0, and

E[XZ] = σ2
X∗ + σX∗U + σX∗V + σUV =

aϵ

2
> 0,
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Assumption 4 holds, which implies Assumption 3. Assumption 5 is satisfied by definition

of the above quantities. We also have

E[X∗W (a)] = aE[X∗X] + (1− a)E[X∗Z] > 0.

By the definition of σ2
V ,

σ2
V =

a2σ2
U + (1− a)2σ2

V

1− a
+ aϵ,

so that

(1− a)σX∗V < −(a2σ2
U + (1− a)2σ2

V )

and thus

E[U(a)W (a)] = aσ2
U + (1− a)2σ2

V + (1− a)σX∗V < 0.

Therefore, (22) is violated.

Suppose a < 0. Let ϵ > 0, δ > 0, and σ2
U > 0. If a < −2, then pick δ small enough so

that δ ≤ −4ϵ/(2 + a). Set σX∗U = σεX∗ = σεU = σεV = 0, σUV = −aσ2
U/(2(1 − a)) + ϵ,

σ2
V = 2σUV + aσ2

U/(1− a)− δ, σX∗V = −σ2
V − δa/2, and σ2

X∗ = σ2
V (1− a).

Then Assumption 2 holds. Assumption 3 holds because E[XX∗] = σ2
X∗ + σX∗U =

σ2
X∗ > 0 and

E[ZX∗] = σ2
X∗ + σX∗V = σ2

V (1− a)− σ2
V − δa

2
> 0.

Assumption 5 is satisfied by definition of the above quantities. We also have

E[X∗W (a)] = σ2
X∗+aσX∗U+(1−a)σX∗V = σ2

X∗−(1−a)σ2
V −

(1− a)aδ

2
= −(1− a)aδ

2
> 0.

By the definition of σ2
V ,

σ2
V =

a2σ2
U + (1− a)2σ2

V + 2a(1− a)σUV

1− a
− aδ,

so that

(1− a)σX∗V < −(a2σ2
U + (1− a)2σ2

V + 2a(1− a)σUV )

and thus

E[U(a)W (a)] = aσ2
U + (1− a)2σ2

V + 2a(1− a)σUV + (1− a)σX∗V < 0.

Therefore, (22) is violated.
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In the case a > 1, we can construct a data-generating process violating (22) in a

similar fashion as in the case a < 0.

Now, consider the second statement of the theorem. From the proof of Lemma 2, we

know that the inverse OLS bound holds if, and only if,

β2E[(X∗)2] + E[ε2]

βE[X∗W (a)]
≥ β. (23)

This inequality holds for all a ∈ [0, 1] by the same reasoning as in the proof of Lemma 2

because E[X∗W (a)] > E[(X∗)2] for all a ∈ [0, 1].

To show that (23) does not hold for any a outside the interval [0, 1], we construct a

data-generating process that satisfies all assumptions of the theorem but violates (23).

If a < 0, pick σ2
X∗ > 0, σX∗U ≤ 0, σX∗V ≤ 0, such that E[X∗X] > (1 − 1/a)E[X∗Z],

σ2
X∗ + σX∗U > 0, and σ2

X∗ + σX∗V > 0. If a > 1, then pick σ2
X∗ > 0, σX∗U ≤ 0, σX∗V ≤ 0

such that E[X∗X] < (1 − 1/a)E[X∗Z], σ2
X∗ + σX∗U > 0, and σ2

X∗ + σX∗V > 0. In both

cases, Assumptions 3 and 6 hold and Assumption 2 can, as above, be satisfied by simply

choosing the three covariances to be zero. However,

E[X∗W (a)] = aE[XX∗] + (1− a)E[ZX∗] < 0

and thus (23) is violated.

Finally, consider the third statement of the theorem. The IV bound holds if, and only

if,
E[X∗W (1− a)]

E[W (a)W (1− a)]
≥ 1. (24)

Suppose 0 < a < 1. Set σUV = σX∗V = σX∗U = σεX∗ = σεU = σεV = 0 and let σ2
U , σ

2
V , σ

2
X∗

any positive values. Then Assumptions 2 and 4 hold. However,

E[X∗W (1− a)] = σ2
X∗ + E[X∗U(1− a)] = σ2

X∗ > 0

and

E[U(a)W (1− a)] = a(1− a)(σ2
U + σ2

V ) > 0,

which means the bound (24) is violated.

Suppose a < 0. Set σUV = σX∗V = σεX∗ = σεU = σεV = 0. Pick σ2
U , σ

2
V > 0 and σX∗U

small enough so it satisfies σX∗U < −(1 − a)(σ2
U + σ2

V ). Choose σ2
X∗ > −(1 − a)σX∗U .

Then Assumptions 2 and 4 are satisfied because

E[XZ] > aσX∗U > 0
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and σX∗U + σUV ≤ 0 and σX∗V + σUV ≤ 0. However,

E[X∗W (1− a)] = σ2
X∗ + (1− a)σX∗U + aσX∗V > 0

and

E[U(a)W (1− a)] = a(1− a)(σ2
U + σ2

V ) + aσX∗U > 0,

which means, again, the bound (24) is violated. In the case a > 1, such a violation of

(24) can be created in a similar fashion. Q.E.D.

C Simulations without nondifferentiability

Nondifferentiability of measurement errors and exogeneity of X∗ is required for βOLS =

βIV = 0 to be a testable implication of the null of no effect. If either of these condi-

tions is violated, the null stated in (4) is no longer equivalent to β = 0. To investigate

the robustness properties of our test, we conduct further simulations in which we allow

one measurement error, V, to be positively or negatively correlated with ε. Other than

nondifferentiability, the simulation design employed here closely mirrors that of Section

4. Table 7 displays the parameter values used in each scenario.

Scenario σV ε σ2
U , σ

2
V σUV σX∗U σX∗V

1 0.05 2 0 −0.3 or −0.7 −0.3 or −0.7

2 0.05 2 0.5 −0.3 or −0.7 −0.3 or −0.7

3 0.05 2 -0.5 −0.3 or −0.7 −0.3 or −0.7

4 -0.05 2 0 −0.3 or −0.5 −0.3 or −0.5

5 -0.05 2 0.5 −0.3 or −0.5 −0.3 or −0.5

6 -0.05 2 -0.5 −0.3 or −0.5 −0.3 or −0.5

Table 7: Parameter values in each scenario.

Our test is shown to be robust to small deviation from nondifferentiability. As illus-

trated in Figures 8–13, the simulation results exhibit analogous patterns to those presented

in Section 4. Slight size distortion is observed across the scenarios. The rejection frequen-

cies under the null (β = 0) are reported in Table 8. Only the standard t-test based on

the OLS of Y on X (a contaminated measurement with nondifferential ME) controls the
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size around the nominal level. This is naturally the case because supω∈R |β(ω)| deviates
from 0 without nondifferentiability.

This robustness property may of course be lost for other data-generating processes

in which both MEs are differential or X∗ is endogenous. In general, the strength of the

correlation between MEs and ε or betweenX∗ and ε determines the extent of the distortion

in size and power. This additional exercise clearly shows that the nondifferentiability of

measurement errors is crucial to guarantee the validity of our test.

σX∗U σX∗V Test S1 S2 S3 S4 S5 S6

strong strong Oracle 0.070 0.053 0.101 0.082 0.066 0.098

OLS w/ x 0.038 0.045 0.048 0.050 0.054 0.052

OLS w/ z 0.085 0.092 0.074 0.091 0.079 0.095

IV x|z 0.033 0.005 0.065 0.036 0.002 0.085

tmax 0.076 0.074 0.097 0.087 0.081 0.105

strong weak Oracle 0.072 0.075 0.089 0.064 0.059 0.071

OLS w/ x 0.048 0.055 0.046 0.043 0.045 0.041

OLS w/ z 0.077 0.073 0.076 0.072 0.064 0.085

IV x|z 0.001 0.037 0.038 0.003 0.033 0.045

tmax 0.077 0.076 0.082 0.072 0.061 0.077

weak strong Oracle 0.067 0.064 0.075 0.068 0.066 0.073

OLS w/ x 0.048 0.042 0.059 0.066 0.059 0.044

OLS w/ z 0.080 0.091 0.070 0.095 0.100 0.085

IV x|z 0.001 0.046 0.038 0.000 0.040 0.038

tmax 0.085 0.084 0.084 0.088 0.088 0.072

weak weak Oracle 0.066 0.068 0.052 0.060 0.057 0.060

OLS w/ x 0.050 0.060 0.043 0.032 0.082 0.057

OLS w/ z 0.089 0.085 0.072 0.074 0.058 0.074

IV x|z 0.017 0.061 0.002 0.011 0.072 0.001

tmax 0.084 0.088 0.067 0.066 0.072 0.074

Table 8: Null rejection probabilities in the six different scenarios. The values of σX∗U and

σX∗V vary between “strong” (-0.7 for scenarios 1–3; -0.5 for scenarios 4–6) and “weak”

(-0.3 for all scenarios).
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Figure 8: Rejection probabilities in scenario 1, for σX∗V ∈ {−0.3,−0.7} varying from top

to bottom and σX∗U ∈ {−0.3,−0.7} varying from left to right.
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Figure 9: Rejection probabilities in scenario 2, for σX∗V ∈ {−0.3,−0.7} varying from top

to bottom and σX∗U ∈ {−0.3,−0.7} varying from left to right.
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Figure 10: Rejection probabilities in scenario 3, for σX∗V ∈ {−0.3,−0.7} varying from

top to bottom and σX∗U ∈ {−0.3,−0.7} varying from left to right.
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Figure 11: Rejection probabilities in scenario 4, for σX∗V ∈ {−0.3,−0.7} varying from

top to bottom and σX∗U ∈ {−0.3,−0.7} varying from left to right.
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Figure 12: Rejection probabilities in scenario 5, for σX∗V ∈ {−0.3,−0.7} varying from

top to bottom and σX∗U ∈ {−0.3,−0.7} varying from left to right.
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Figure 13: Rejection probabilities in scenario 6, for σX∗V ∈ {−0.3,−0.7} varying from

top to bottom and σX∗U ∈ {−0.3,−0.7} varying from left to right.
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