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Abstract

By regulating how firms collect, store, and use data, privacy laws may change the
role of data in production and alter firm demand for information technology inputs.
We study how firms respond to privacy laws in the context of the EU’s General Data
Protection Regulation (GDPR) by using seven years of data from a large global cloud-
computing provider. Our difference-in-difference estimates indicate that, in response
to the GDPR, EU firms decreased data storage by 26% and data processing by 15%
relative to comparable US firms, becoming less “data-intensive.” To estimate the costs
of the GDPR for firms, we propose and estimate a production function where data
and computation serve as inputs to the production of “information." We find that data
and computation are strong complements in production and that firm responses are
consistent with the GDPR representing a 20% increase in the cost of data on average.
Variation in the firm-level effects of the GDPR and industry-level exposure to data,
however, drives significant heterogeneity in our estimates of the impact of the GDPR
on production costs.
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1 Introduction
In the information age, the production of goods and services increasingly relies on the
processing of data (Agrawal et al., 2018; Goldfarb and Tucker, 2019). Since some of the
most valuable data concerns personal information on human subjects, its growing use has
led to new policy attention and regulation. One of the most influential privacy policies
is the European General Data Protection Regulation (GDPR), which was enacted in 2016
and affects more than 20 million firms across dozens of countries (GDPR.eu, 2019). Many
countries have since followed this example: as of early 2022, 157 countries had enacted
legislation to secure data and privacy (Greenleaf, 2022).

While these privacy laws help harmonize and improve data collection practices, they
can also be costly for firms (Johnson et al., 2022; Aridor et al., 2022; Goldberg et al.,
2023; Peukert et al., 2022). For example, privacy laws may generate a wedge between the
marginal product of data and its (perceived) marginal cost, leading firms to substitute data
with other inputs. Variations in these wedges across firms can result in misallocation of
inputs in the economy (Hsieh and Klenow, 2009). Given the increasing role of data in firm
production, understanding how privacy regulations affect firms’ input decisions is of the
utmost importance.

However, large-scale empirical evidence of how privacy laws affect firm data decisions,
the key margin targeted by privacy laws, is scant. Studying this question is complicated
for a number of reasons (Johnson, 2022). First, firms’ data and computation usage are
inherently difficult to observe, as standard firm datasets do not provide information on
these measures. Second, there is no unified framework for analyzing the role of data in firm
production (Veldkamp and Chung, 2023). Any such framework needs to be parsimonious
while having enough flexibility to allow the impact of privacy laws to depend on the
importance of data and computation for firms.

In this paper, we make progress on these fronts by studying how the GDPR affected
firms’ computation and data choices using confidential data from one of the largest global
cloud-computing providers. The cloud is an ideal setting for our study because it enables us
to observe high-frequency firm decisions about data and computation usage over a seven-
year period from 2015 to 2021. Our data contains detailed information on the monthly
cloud usage of over a hundred thousand firms and comprises hundreds of zettabytes (i.e.,
hundreds of millions of terabytes) of data and billions of core-hours.1 This data spans most
major industries, from manufacturing to finance, allowing us to analyze the impacts of
privacy regulations beyond the digital economy.

1We omit precise numbers to avoid disclosing potentially business-sensitive information.
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We first apply this data toward studying the direct impact of the GDPR on firm data
and computation choices. In our first set of analyses, we compare domestic firms in
the European Union (EU) subject to the GDPR to similar, non-treated firms from the same
industry in the US using a difference-in-differences approach. In our second set of analyses,
we develop and estimate a production function framework with data and computation.
We use this framework both to study how firms combine data and computation, and to
infer the wedges generated by the GDPR.

We begin by summarizing the key features of the GDPR that affect firm input decisions.
The GDPR is a landmark privacy policy that was enacted in 2016 and implemented in 2018.
Notably, its regulations apply to all firms in the EU, as well as non-EU firms offering goods
or services to “data subjects” within the EU. This law increased the cost of collecting and
storing data for firms by requiring firms to enhance data protection, increasing penalties
in case of data breaches, and giving consumers more information about firms’ tracking
behavior. Survey evidence suggests that GDPR compliance is costly, ranging from $1.7
million for small to medium-sized businesses to $70 million for large ones (Accenture,
2018; Hughes and Saverice-Rohan, 2018).

Next, we discuss the specific context in which we observe firm data decisions: the
cloud. Cloud computing is a widely adopted information technology (IT) that enables
firms to store and process data remotely over the internet (Byrne et al., 2018; Greenstein
and Fang, 2020; DeStefano et al., 2023). Using data from our cloud computing provider, we
observe firm-level monthly usage of “storage”—the amount of data stored in gigabytes—
and “compute”—the number of core-hours of computation. We also observe other infor-
mation, such as prices and the location of the data centers where firms source services.
We match our cloud usage data to other data sources that provide information on firm
characteristics.

Our first set of results comes from an event study design comparing data and com-
putation use among comparable firms in the EU to the US after the GDPR. We find that
EU firms store on average 26% less data than US firms two years after the GDPR. The
direction of this relative decline in storage is perhaps unsurprising, given that the GDPR
primarily regulates data usage, but the magnitude is noteworthy. Interestingly, we also
find that EU firms decreased their computation relative to US firms by 15%—implying
that firms became less data-intensive after the GDPR.2 Furthermore, we observe substan-
tial heterogeneity in the effects of the GDPR across industries. Finally, we look at how

2It is ex-ante unclear how the GDPR would affect computation; this effect theoretically depends on the
substitutability between data and computation (Acemoglu, 2002). For example, if data and computation
were strong substitutes, firms could replace data with computation to minimize the effects of the GDPR.
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the effects vary with the regulatory stringency across EU countries, as enforcement of
the GDPR is delegated to individual countries. Although the differences are not statisti-
cally significant at the 5% level, our estimates suggest that firms in countries with stricter
enforcement decrease storage and computation more than those in countries with more
lenient enforcement.

While our event study findings provide direct evidence of the impact of GDPR on
firms, they only offer a partial understanding of the associated economic costs. Motivated
by this, we propose and estimate a production function model where firms use data and
computation to produce “information” through a constant elasticity of substitution (CES)
function. This production function includes two key parameters: (i) the firm-level compute
(augmenting) productivity, which determines relative factor intensities of computation and
data (Doraszelski and Jaumandreu, 2018; Raval, 2019; Demirer, 2020) and (ii) the elasticity
of substitution between computation and data, which determines how firms respond to
changes in factor prices (Hicks, 1932). Our model can accommodate many of the uses
of data proposed in the literature, such as being an intermediate input in the production
function and augmenting firm productivity (e.g., Jones and Tonetti, 2020; Farboodi and
Veldkamp, 2022), and emphasizes the role of computation in firm production.

Our information-production model provides an input demand function that links firms’
optimal data and computation choices to input prices and model parameters. We estimate
this input demand function industry-by-industry to recover changes in the elasticity of
substitution and input demand wedges due to the GDPR.3 We estimate that data and
computation are strong complements in production, with our estimates of tbe elasticity
of substitution ranging from 0.44 (non-software services) to 0.34 (manufacturing). This
strong complementarity suggests that firms cannot easily substitute toward computation
when faced with increased data costs. To our knowledge, this is the first estimate of the
elasticity of substitution between different IT inputs.

To recover the distortion generated by the GDPR, we model it as an unobserved wedge
(to the econometrician) between the marginal cost of storing data in the cloud and the
total marginal cost that includes GDPR compliance costs. This wedge arises from various
sources, including penalties in case of breaches, higher data security requirements, and
the need for detailed data records. We estimate firm-specific wedges by attributing them
to the changes in post-GDPR input choices unexplained by changes in input prices in the
EU (relative to the US), or by changes in the elasticity of substitution.

Our production function analysis suggests that the GDPR made data storage 20%

3We also account for potential sources of endogeneity in prices by using a shift-share instrument, which we
describe in further detail in Section 5.3.1.
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more costly for firms on average. Firms in data-intensive industries face higher costs: the
effect is the largest in the software sector (24%), followed by manufacturing (18%), and
services (18%). What determines the increase in costs? To provide suggestive evidence
for this question, we correlate firm-level characteristics with our estimated firm-specific
wedges. We consider two firm characteristics: (i) firm size, measured by the number
of employees, and (ii) pre-GDPR compute productivity, estimated from the production
function specification. We find that larger and more compute-intensive firms experienced
smaller wedges from the GDPR.

In the last part of the paper, we use the model to estimate the change in the cost of
“information production” due to the increase in the cost of data storage. For this, we
calculate the cost of information with and without the GDPR wedge holding the price of
data and computation fixed. We find that the GDPR resulted in a 4% increase in the cost of
producing information, a significantly smaller impact than the increase in the cost of data.
This is primarily because data is significantly cheaper than computation and therefore
accounts for only a small share of the information cost. In other words, the GDPR targets
the less costly IT input, which limits its impact on the cost of information. Finally, we
conduct a simple back-of-the-envelope calculation assuming a CES production technology
in information and non-information inputs (e.g., capital, labor), which we calibrate using
estimates from Lashkari et al. (2023), to estimate the impact of GDPR on the production
cost. We find that production costs increase on the order of 0.5% for software firms, with
smaller effects in the less data-intensive industries.

We conduct additional analyses to show that our results are robust to many concerns.
First, we show that our results are similar when we exclude multi-cloud firms, suggesting
that results are not driven by EU firms substituting toward other cloud providers. Second,
we find similar results when estimating our empirical strategy using only start-ups, which
tend to use cloud computing as their only IT—suggesting that substitution to traditional
IT is not a large concern. Third, we show that our results are not driven by differential
trends in cloud prices in the EU and the US. Finally, we estimate our specification while
excluding firms using web services or with listed websites, showing that the results do not
only come from websites, which experienced cookie consent changes under the GDPR.

Nevertheless, we acknowledge some relevant limitations of our study. Unlike many
previous GDPR studies, our paper is based on a large sample of firms. While this allows
us to draw more generalizable conclusions about firms’ data uses, the trade-off is that
we observe less detailed information than an in-depth single-firm study. For example,
although we observe detailed measures of the quantity of information stored in our data,
we cannot be as precise about the role of data for the firm as more focused studies can be.
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We conclude the introduction by highlighting that our results do not provide a defini-
tive answer on the overall welfare impact of privacy laws. Privacy laws benefit consumers
by protecting their data and privacy (Arrieta-Ibarra et al., 2018). Despite their benefits,
compliance with them is costly for firms, and providing large-scale estimates of the asso-
ciated compliance costs is of first order importance. However, further evidence is needed
to fully understand the benefits of these laws and how they compare with any potential
harm to firms.4

Contribution to the Literature The first body of literature we contribute to is the re-
search on the impact of the GDPR on firms. These papers find that the GDPR decreased
the investment in technology ventures (Jia et al., 2021) while encouraging app exit and
discouraging app development (Kircher and Foerderer, 2020; Janßen et al., 2021). Several
papers studying the GDPR document adverse impacts on digital tracking and advertising:
the GDPR decreased the usage of tracking technology tools, such as cookies, in the im-
mediate months after implementation (Aridor et al., 2022; Lefrere et al., 2022; Lukic et al.,
2023), decreased page views and e-commerce revenue (Goldberg et al., 2023), decreased
the number of website visits (Schmitt et al., 2022), increased market concentration in the
advertising sector (Peukert et al., 2022; Johnson et al., 2022) and increased search frictions
(Zhao et al., 2021). On the benefits side, some papers argue that GDPR requirements
may have differentially filtered out low-value customers for firms, increasing the average
value of remaining consumers to advertisers (Aridor et al., 2022) and increasing effective
targeted advertising (Godinho de Matos and Adjerid, 2022).

A subset of the GDPR papers study outcomes outside the digital economy. These
papers find that the GDPR may have decreased profits, sales, and profit margins (Koski
and Valmari, 2020; Chen et al., 2022). Some papers were concerned about the effect of
privacy regulation on the competitive structure of data-intensive industries, with smaller
firms being the most affected (Campbell et al., 2015; Koski and Valmari, 2020). We note that
although most evidence suggests that the GDPR has significantly impacted data-driven
economic activity, Zhuo et al. (2021) find a null effect for short-term extensive margin
changes in the formation and termination of internet infrastructures between GDPR and
non-GDPR countries.5,

6

While our paper builds on an identification strategy similar to some of these GDPR
papers, it is different in two main aspects. First, because of the richness of our data, we
directly study firms’ data and computation decisions, margins which are directly targeted

4As shown in the literature, estimating the benefits of privacy is challenging (Acquisti et al., 2016; Lin and
Strulov-Shlain, 2023).

5More recent literature has studied California Consumer Privacy Act (Canayaz et al., 2022; Doerr et al., 2023).
6Johnson (2022) provides a comprehensive survey of this literature.
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by the regulation. In particular, our data is well-suited for studying firm adjustments on the
intensive margin, and the heterogeneity across industries. Second, we take a production
function approach. Crucially, this approach allows us to structurally estimate the role of
data and computation in production and to calculate the cost of the GDPR for firms.

Second, we contribute to the literature that incorporates data in firm production. This
literature has proposed different ways of how firms use data. Jones and Tonetti (2020)
model data as a non-rival input that is generated as a byproduct of production from
all firms in the economy. Farboodi and Veldkamp (2022) model data as a productivity-
enhancing input that helps firms accurately predict future outcomes. We complement this
literature by developing and estimating a firm production framework with data, providing
empirical estimates on how firms combine data and computation.

Third, our paper is related to the literature on misallocation, which documents large
differences in the efficiency of factor allocations resulting from various frictions (Restuccia
and Rogerson, 2008; Hsieh and Klenow, 2009). We employ a similar identification strategy
by modeling distortion as a wedge between the marginal revenue product of an input and
its price. Most of this literature abstracts from the origin of frictions, treating them as
model primitives. In contrast, we study an important regulatory change as the source of
firms’ input distortion.

Our paper also relates to the growing body of literature on the use of personal data by
firms (e.g., Bergemann and Bonatti, 2015; Arrieta-Ibarra et al., 2018; Bergemann et al., 2018;
Acemoglu et al., 2022; Bergemann and Bonatti, 2022; Bimpikis et al., 2023) by providing
empirical evidence on the value of data in firm production. We also directly contribute to
the economics of privacy literature (Goldfarb and Tucker, 2011, 2012; Acquisti et al., 2016;
Athey et al., 2017; Choi et al., 2019; Montes et al., 2019; Ichihashi, 2020; Loertscher and
Marx, 2020; Chen et al., 2021; Krähmer and Strausz, 2023) by evaluating the effects of the
largest privacy regulation on important firm outcomes.

2 Institutional Setting
This section first discusses the relevant details of the GDPR. We then describe cloud
computing technology, the setting for our primary data source in this paper.

2.1 The European General Data Protection Regulation

There is perhaps no policy more important in the modern privacy landscape than the
GDPR. As Johnson (2022) notes, "In many ways, the GDPR set the privacy regulation
agenda globally.” As such, understanding the consequences of the GDPR is vital not only
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because of its direct impacts on firms but because of its crucial role in shaping privacy
laws. In this section, we describe the key features of this policy and how they affect firms.

The GDPR is a set of rules that govern the collection, use, and storage of personal
data belonging to individuals within the EU. It was enacted in April 2016 and came into
force in May 2018. By consolidating and enhancing existing privacy provisions, the GDPR
introduced a harmonized approach to privacy regulations across the EU.7 We provide a
detailed description of the changes required for firms after GDPR in Appendix B.1 and
summarize its most important characteristics below.

Two aspects of the GDPR are particularly important for our paper. First, the GDPR
takes a data protection approach rather than a consumer protection approach as in the
US (Jones and Kaminski, 2020).8 A data protection approach imposes a set of costly
responsibilities on firms to protect data, in addition to a substantive system of individual
rights. Second, the GDPR takes a risk-based approach to data protection without clarity
on the specific measures firms must take to protect data, making implementation firm-
dependent (Hustinx, 2013; Gellert, 2018). For example, Article 25 (Data Protection by
Design and by Default) uses phrases such as "taking into account the state of the art, the
cost of implementation [. . . ] as well as the risks” and requires that controllers “implement
appropriate technical and organizational measures [. . . ] in an effective manner.” This
risk-based approach makes costs heterogeneous across firms based on the sensitivity of
data and firms’ risk preferences.

The GDPR applies whenever the firm that controls the data (“data controller”) is
established in the EU or whenever the individuals (“data subjects”) whose data is collected
are located in the EU, regardless of their citizenship or residence (Article 3). Under the
GDPR, personal data is defined broadly to include any information that can be used to
identify an individual either directly or indirectly (Article 4). This includes information
such as name, address, email address, internet protocol (IP) address, and other identifying
characteristics. It applies to all personal data, regardless of whether it is in a client or
employee context. Therefore, even business-to-business firms are subject to GDPR.

From the firm perspective, the GDPR primarily increased the cost of collecting and stor-
ing data by imposing costly responsibilities on firms. These include keeping a record of
processing activities (Article 30), designating a data protection officer (Article 37), prepar-
ing data protection impact assessments (Article 35), implementing appropriate technical
and organizational measures for data security (Article 32), providing timely notifications

7Unlike the GDPR, which is directly binding and applicable across the European Union, the preceding
Directive 95/46/EC had to be incorporated into each member state’s national laws to take effect, leading to
variation in its implementation across different jurisdictions.

8For more information on the US approach to privacy and how it compares to the GDPR, see Boyne (2018).
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in case of data breaches (Article 33), executing consumers’ requests for data transfer, era-
sure, or rectification (Article 14-21), and paying hefty penalties in case of data breaches
(Article 83). Firms also must have a legal basis for processing personal data.9

The cost of complying with the GDPR can vary significantly depending on the size and
complexity of an organization. There are no official statistics, but most survey evidence
suggests that complying with the GDPR is costly. The estimates range from an average of
$3 million (Hughes and Saverice-Rohan, 2018) and $5.5 million (Ponemon Institute, 2017) to
$13.2 million (Ponemon Institute, 2019) depending on the composition of surveyed firms.
The survey evidence indicates that a large percentage of the costs (between one-fifth and
one-half) are labor costs, followed by technology, outside consulting, and internal training
(Ponemon Institute, 2019; Hughes and Saverice-Rohan, 2019).

The changes mandated by the GDPR entail both fixed and marginal costs. For example,
the cost of having a data protection officer may not scale with data size, so the latter could
be considered mostly a fixed cost. On the other hand, the costs of handling customers’
access or deletion requests, the liability in case of a data breach, and keeping data in a
more secure environment would increase with data and firm size. As such, it may be more
sensible to interpret these kinds of costs as changes to the marginal costs. We provide
a detailed classification of GDPR costs into these fixed and variable cost categories and
present corresponding survey evidence in Appendix B.2.

In addition to these direct costs, organizations may also incur indirect costs such as
cybersecurity insurance or penalties if they are found to be non-compliant or in the case of
data leaks.10 Non-compliant firms may face fines of up to 4% of an organization’s annual
global revenue or €20 million (whichever is greater). We scraped publicly available GDPR
fine data (which we describe in detail in Appendix B.3) from a database maintained by
CMS, an international law firm.11 In Figure 1, we provide the size distribution of these
GDPR fines.12 We note two key features of these fines. First, the distribution of fine sizes
implies that enforcement is not limited to large violations: 25% of the fines have been under
€2,000. Many of these have been levied on small businesses. Second, the GDPR applies to

9Contrary to popular belief, consent is not the only appropriate legal basis that firms may use to process
personal data—consent, contractual necessity, legal obligation, vital interests, public task, and legitimate
business interest may all serve as a basis for processing data (Article 6). However, firms are required to
identify which legal basis they are using to process personal data.

10There are likely additional costs beyond the direct financial costs of compliance, including opportunity
costs associated with diverting existing employees towards GDPR compliance and expenses related to the
disruption caused by operational changes.

11See https://www.enforcementtracker.com.
12The total cumulative fines imposed under the GDPR in this dataset have amounted to over €3 billion, and

over 1,700 firms have been fined. This figure is likely to be an underestimate because not all GDPR fines are
made publicly available.
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Figure 1: Publicly Reported GDPR Fines
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Notes: The figure presents the distribution of 1,730 publicly available GDPR fines, noting that not all GDPR
fines are made public. The data collection process is described in Section 3 and we provide greater detail for
the data in Appendix B.3. Fines are presented in undeflated nominal terms (€), and five examples from the
data have been highlighted: a restaurant, a jewelry manufacturer, Google, Amazon, and Meta.

a much broader set of businesses and industries than just software and technology firms.
Figure 1 highlights some of these non-software cases, and restaurants and manufacturers
appear not infrequently in the GDPR fine data.

2.2 Our Setting: Cloud Technology

One of the primary challenges of studying firms’ responses to privacy policies has been
the fundamental difficulty of observing how firms use data. Measuring data usage for
firms with traditional IT requires both access to their servers and an accounting of usage
statistics that firms may not even keep themselves. The advent of cloud computing,
however, presents a unique opportunity to study the impact of policy changes on firm
data usage due to well-tracked measures of storage and processing.

Cloud computing provides scalable IT resources on demand over the internet. Ac-
cording to the National Institute of Standards and Technology (Mell et al., 2011), cloud
computing is defined as “a model for enabling ubiquitous, convenient, on-demand net-
work access to a shared pool of configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly provisioned and released with
minimal management effort or service provider interaction.”13 Cloud computing has ex-

13Cloud computing resources can be categorized into three forms: Infrastructure as a Service (IaaS), Platform
as a Service (PaaS), and Software as a Service (SaaS).
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perienced extremely rapid growth since its introduction.14 According to a 2020 survey by
Magoulas and Swoyer (2020), 88% of respondents used cloud computing in some form.

We focus on the two primary cloud services: storage and computation. Storage services
allow users to store data and applications in a data center, which can be accessed over the
internet. Computation services allow users to run applications and perform computations
in a virtual machine (VM). Cloud providers offer a variety of VM types with different
specifications in terms of CPU, memory, and upload and download speed. Users choose
the VM type that best meets the needs of their workload (Kilcioglu et al., 2017).

Firms use storage and computing services in multiple parts of their production process.
For example, a manufacturing company that produces goods in multiple locations may use
VMs to ensure that all of its information is available everywhere. Firms may also decide to
use storage without using computing services, e.g., a newspaper may decide to host all of
the photographs that will be displayed on its website online and provision them directly
without the need for computing. However, it is rare to observe firms using computation
without also using storage, although non-data simulations might serve as instances in
which this might occur. Firms may also add other cloud services (e.g., analytics, security)
in conjunction with their computing and storage needs.15

From the researchers’ point of view, the existence and ubiquity of the cloud provides
important advantages over traditional IT. It is possible to aggregate data from tens of thou-
sands of firms because cloud computing is typically provided by large third-party firms.
Moreover, cloud providers keep detailed records of their users’ activity for billing pur-
poses, allowing for usage to be tracked consistently over time. Despite these advantages,
there are important limitations to using data from cloud computing. First, many firms
use a mix of cloud computing and traditional IT, especially during the transition to the
cloud. In such cases, we can only observe firm data in the cloud and not from their on-site
hardware, which may limit our analysis if the GDPR changes the composition of cloud and
on-site data. Second, it is common for firms to use cloud services from multiple providers,
known as multi-cloud (Accenture, 2022) . For these firms, a reduction in cloud technology
usage from one provider could indicate substitution to another provider. We take these
concerns seriously and provide several robustness checks in our empirical strategy.

14See Jin and McElheran (2017); Jin (2022); DeStefano et al. (2023) for recent studies on firm’s cloud adoption
and the impacts of cloud technology on firms.

15See several case studies of how firms in different industries use cloud computing at https://aws.amazon.
com/solutions/case-studies/, https://azure.microsoft.com/en-us/resources/customer-stories/,
and https://cloud.google.com/customers.
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3 Data
This section describes the main datasets used in the paper and presents basic summary
statistics. We leave the exact data construction details to Appendix C.

3.1 Cloud Computing Data (2015-2021)

We obtain information through one of the largest cloud technology providers. Using this
data, we observe monthly-level usage information of the universe of their customers for all
cloud services between 2015 and 2021. These services include hardware services, such as
storage, computation, and networking, as well as some software services. For each service,
we observe the number of units purchased, the location of the data center, the date, and
the price paid. Therefore, we have both the physical unit of usage and expenditures.16

We focus on storage and computation, as they are the main IT services firms use in
cloud computing, which we describe in greater detail in Appendix C.1. We measure
storage in gigabytes and computing in core-hours (number of cores × number of hours).
Core-hours are a commonly used metric to quantify the amount of computational work
done in cloud computing environments.17 We use this data to construct monthly-level
usage at the firm-location (data center) level for storage and computation from July 2015
to December 2021. As a result, we can observe data stored in the US and EU separately by
the same firm.18 Through this data, we also observe SIC industry codes, firm headquarters
location, and whether a firm is a start-up or not.19

One limitation of our dataset is that it does not allow us to see which specific data firms
are collecting nor the exact ways in which they use the data. This limits our ability to
speak to some important questions about how firms specifically use data.

3.2 Cloud Computing Usage from Other Providers (2016-2021)

To address the concern of observing data from single provider, we use an establishment-
level IT data panel produced by a marketing and information company called Aberdeen
(previously known as “Harte Hanks”). Using web crawling, surveys and publicly available
data, Aberdeen provides the adoption of cloud technology on the extensive margin from
each of the service providers (e.g., AWS, Microsoft Azure, Google Cloud) between 2016 and

16This is in contrast with most input information in production datasets, which generally include input
expenditures rather than measures of direct usage.

17To illustrate the concept, consider the example of a software engineer in a startup who runs a virtual machine
with 8 cores for 5 hours. In this case, the usage is recorded as 40 units of compute.

18It is important to note that our sample is comprised of firms rather than establishments.
19The “start-up" classification is defined internally by the cloud technology provider.

11



2021 at the yearly level. The Aberdeen dataset comprises around 3.1 million establishments
from 1.9 million companies worldwide. Previous versions of this data have been widely
used by researchers to construct measures of IT adoption, both in Europe and in the United
States.20 We use this data to identify single cloud firms and examine differential changes
in market shares in the EU and US around the GDPR for cloud providers.

3.3 Other Datasets: Firm Characteristics

Aberdeen also provides information on other firm characteristics, such as employment
and revenue from Duns & Bradstreet. We match our cloud computing data to Aberdeen
firms using a matching procedure described in Appendix C.3 based on name, location,
domain, and other information. We are able to match close to 60% of our cloud firms to
the Aberdeen dataset. We use the employment information in 2018 to define firm size. We
further augment our data by merging our primary dataset with employment data from the
Orbis firm database from Bureau van Dĳk through firm name and domain name matching.
We augment these merges with manual linking for the small share of remaining firms.
With this procedure, we link cross-sectional employment data to approximately 80% of
the European firms.

3.4 Sample Construction and Summary Statistics

We begin by presenting a framework that will allow us to classify firms by their exposure to
the GDPR. Following Section 2, Table 1 presents information on whether the GDPR applies
to firms depending on the location of the firm and data subjects (using the language from
Peukert et al., 2022). Now, while we cannot directly observe the location of each firm’s
employees and consumers, we use the fact that we can observe firm server locations to
approximate the locations of their consumers and employees. We view this as a reasonable
approximation because firms tend to choose data centers close to them to reduce latency
(Greenstein and Fang, 2020). We argue that firms based solely in one geographic region
are unlikely to use servers across the Atlantic unless they have consumers or employees
located in the other location.21

By combining information on the locations of firm server choices before the GDPR
with the locations of firm headquarters, we attempt to categorize firms into the four cases

20See e.g., Bloom et al. (2012). Note that Aberdeen’s data has undergone changes in recent years, relying more
on web scraping and extrapolation than on surveys. We conduct cross-checks with our internal data to
assess the quality of Aberdeen’s accuracy for cloud adoption. See Appendix C.3 for more details.

21One piece of evidence that supports server location choice being predictive of firm location is that when we
construct EU vs US firms classifications using only server locations, the regions assigned to 98% of the firms
coincide with the headquarter locations in our data.
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Table 1: Matrix of Firms from Peukert et al. (2022)

Firm Location
EU US

Location of
Consumer /
Employee
Data Used

Case 1 Case 3
EU GDPR applies GDPR applies

Art. 3(1) GDPR Art. 3(2) GDPR
Case 2 Case 4

US GDPR applies GDPR does not apply
Art. 3(1) GDPR –

Notes: Table is taken from Table 1 of Peukert et al. (2022). The matrix shows whether the GDPR is applicable
to firms located within and outside the EU.

described in Table 1. We consider a firm multi-national (Cases 2 and 3) if they use data
centers both in Europe and in the US. We consider a firm to be a domestic EU or US firm
(Cases 1 and 4) if they use data centers only in Europe or in the US.22 As we explain later
in the paper, our empirical strategy focuses on comparing domestic EU and US firms, and
therefore, these domestic firms constitute our main sample throughout the paper.23

As we discuss in Appendix C.2, we restrict our attention to firms that continuously
used our cloud provider’s services for the full year beginning exactly two years prior to the
introduction of the GDPR. This restriction affects only a small share of pre-GDPR storage or
computation in our sample: excluded firms are only responsible for about 10% of storage
and computation. We use this sample restriction to intentionally focus our analysis on
the effects of the GDPR on relatively stable users of cloud computing. Our sample is
therefore comprised of firms that are both responsible for the vast majority of storage and
computation in the pre-GDPR period and that have been continuously attached to our
cloud computing provider.

Table 2 presents summary statistics for our baseline sample of nearly forty thousand
firms. We categorize the industry of each firm by simply taking the industry division that
corresponds to the firm’s SIC code, and we intentionally split software firms from other
firms in the services division due to their large share in our sample.24 The majority of firms
belong to the services (43%) and software (25%) industries, but firms from manufacturing
and various other industries are also represented in our sample. While there is variation in

22We also include UK firms in our EU sample. The UK was part of the EU when the GDPR came into effect on
May 25, 2018. After the UK’s withdrawal from the EU, the GDPR was incorporated into UK law as the UK
GDPR, which largely mirrors the provisions of the GDPR, with some minor changes.

23While multinational firms are important, their exposure and responses to GDPR are more complex than
those of domestic firms, which required us to focus on domestic firms.

24We define software firms as those with SIC codes between 7370 and 7377.
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Table 2: Summary Statistics

Industry Number Share Share Mean Mean Mean Share
of Firms Compute Storage Storage Compute Data Intensity EU

Services 15,886 36.3% 31.9% 844 628 1.84 40.9%
Software 9,480 17.6% 20.8% 690 670 1.69 59.8%
Manufacturing 3,095 10.5% 11.6% 1,293 986 1.81 54.4%
Retail Trade 2,152 5.2% 5.4% 1,101 917 2.02 46.9%
Finance & Insurance 2,057 11.4% 10.8% 1,652 1,571 1.89 44.9%
Wholesale Trade 1,945 3.7% 4.5% 925 885 2.10 52.3%
Other 2,689 15.3% 15.0% 1,714 1,616 2.23 46.1%
All 37,304 100.0% 100.0% 1,000 803 1.86 48.1%

Notes: Table presents summary statistics from our matched sample of firms. A description of the sample’s
construction can be found in Section 3.1 and a more detailed description of the sample construction can be
found in Appendix C. Industries are defined as the ten divisions classified by SIC codes, with the exception
of software firms, which are carved out of the services division and represent SIC codes 7370 - 7377. For
confidentiality purposes, mean storage and compute have both been normalized such that mean storage is
denoted by 1,000 units. We calculate mean data intensity at the firm level while restricting to firms that use
both storage and computing services.

usage across industries—likely driven in part by the difference in the average size of firms
using cloud computing—we observe significant storage and computation in all industries.
We also note some slight variation in the share of firms in the US versus the EU by industry,
although each region always accounts for at least 40% of the share of firms observed.

Lastly, Column 7 of Table 2 presents the mean data intensity for each industry, which
is defined as the ratio of storage to computation. We find that the average data intensity
does not vary significantly across industries, ranging from 1.69 to 2.23. However, these
averages mask significant within-industry firm-level heterogeneity, as shown in Figure 2,
which plots the distribution of data intensity for the three largest industries in our sample.
Even within an industry, there is significant firm-level variation in data intensity across all
industries, suggesting that the role of data and computation likely vary across firms.25 This
result is consistent with the large evidence of within-industry heterogeneity in other firm
outcomes, such as productivity (Syverson, 2011), labor shares (Kehrig and Vincent, 2021),
markups (Autor et al., 2020; De Loecker et al., 2020), and management practices (Bloom
and Van Reenen, 2007). As we will see in Sections 5, taking into account this heterogeneity
will be important when modeling a production framework with data and computation.

25This result remains even if we focus on more narrowly defined 4-digit SIC industries.
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Figure 2: Histogram of Data Intensity by Industry
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Notes: Figure presents a histogram of data intensity at the firm level, defined as the ratio of data stored to
computation (the ratio of gigabytes to core hours) for each industry. Industries are defined through SIC
codes (with the exception of software firms, which are carved out of the services division). We limit to the
sample of firms who have ever used both storage and computation (𝑁 = 11, 858).

4 Event Study Evidence
In this section, we apply an event study design to study the effect of the GDPR on firms’
data storage and computing decisions. We begin by defining our empirical strategy and
providing intuition for our identifying assumptions. Next, we turn toward our baseline
estimates of the GDPR’s impact on data and computation. We also discuss the robustness
of our strategy across various alternative samples and specifications.

4.1 Empirical Strategy

Our empirical strategy aims to identify the causal effect of the GDPR on firms’ computation
and data choices. In order to identify a relevant treatment and control group for our
strategy, we turn to our classifications of firm locations from Section 3. Following Table 1,
we define “Case 1” as our treatment group and “Case 4” as our control group.

Notably, these two definitions exclude multi-national firms (i.e., those with branches
and/or consumers across countries). We choose to do so for two reasons. First, we may
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think of multi-national firms as being partially treated: only some of their data may be
subject to the GDPR. Thus, we might want to separate the estimation of the treatment
effects of these groups of firms from the firms which we consider fully treated (Case
1). Second, multi-national firms may systematically differ from the control firms that we
define (Case 4). Thus, they may potentially respond to the GDPR along different margins
than our control group, choosing to shift data storage, computation, and even business
operations into or out of the European Union.

We focus on three separate outcomes: data storage, computation, and “data intensity”
(the ratio of storage to computation). These outcomes reflect the multiple dimensions of
firm data usage that might be affected by the GDPR. Our empirical specification uses a
difference-in-differences design and estimates the following regression:

log(𝑌𝑖𝑡) =
∑
𝑞≠−1

𝛽𝑞 · 1{EU𝑖} + 𝛼𝑖 + 𝜏𝑘𝑞𝑠 + 𝜀𝑖𝑡 , (1)

where 𝑌𝑖𝑡 is the outcome of interest for firm 𝑖, in month 𝑡. We use 𝑞 to denote quarter,
𝑘 to denote industry, and 𝑠 to pre-GDPR cloud usage decile. In this specification, 𝛼𝑖
is a firm-level fixed effect that captures time-invariant firm unobservables while 𝜏𝑘𝑞𝑠 are
industry-by-quarter-by-size-decile fixed effects which allow for time trends to differ flexibly
in each quarter for an industry-size decile combination.26 We define industries using the
ten mutually exclusive and exhaustive divisions defined by one-digit SIC codes.

We restrict our analysis to the sample period from July 2015 to March 2020.27 The coef-
ficients of interest, 𝛽𝑞 , represents the difference in outcomes relative to the quarter before
the GDPR came into force. Now, because our sample conditions only on usage a full year
before the enactment of the GDPR, we allow for potential anticipation effects. The identify-
ing assumption of our empirical strategy is a conditional parallel trends assumption. We
take advantage of our large sample and allow time trends in our outcomes to vary flexibly
by industry and initial cloud usage levels in our baseline specification, with 110 distinct
bins for each quarter (11 defined industries × 10 pre-GDPR cloud usage deciles).

To discuss the short- and long-run estimates of the effect of the GDPR, we also present

26We measure cloud usage deciles for storage and computation outcomes by using a firm’s computation or
storage, respectively, as measured one year before the GDPR. For data intensity, we use terciles of firm
storage interacted with terciles of firm compute to increase power.

27Even though we have data for later periods, we end the sample in March 2020 to rule out the effects of the
COVID-19 pandemic. This sample restriction also limits the potential effects of another privacy law, the
California Consumer Privacy Act (CCCA), on the US firms in our sample. The CCCA came into effect on
January 1, 2020, and applies to businesses that collect the personal data of California residents.
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results in a table format using an alternative regression specification given by:

log(𝑌𝑖𝑡) = 𝛿1 · 1{EU𝑖} · 1{𝑡∈Jun/18-May/19} + 𝛿2 · 1{EU𝑖} · 1{𝑡∈Jun/19-May/20} + 𝛼𝑖 + 𝜏𝑘𝑞𝑠 + 𝜀𝑖𝑡 , (2)

where the notation of 𝛼𝑖 and 𝜏𝑘𝑞𝑠 is the same as in Equation (1). Our estimates are relative
to the excluded group, which is the pre-GDPR period. Thus, the short-run coefficient (𝛿1)
and long-run coefficient (𝛿2) estimates the average difference in 𝑌𝑖𝑡 between treated and
untreated firms in the first and second year after the GDPR came into force (relative to the
pre-period difference).

4.2 Results

Our main event study results are shown in Figure 3, which plots the estimated coefficients
𝛽𝑞 from Equation (1) for our three key outcomes. We discuss each of these outcomes
separately, and we present the corresponding short- and long-run estimates from Equation
(2) in Table 3.

Results on Data Storage Panel (a) of Figure 3 shows the results for data storage. First,
we find no evidence of significant differential pre-GDPR trends in the US and EU, as all
pre-GDPR coefficients are close to zero. We also find limited evidence for anticipation
effects, which is consistent with the survey evidence that only 10% of firms expected
to be compliant with the GDPR before May 2018 (Ponemon Institute, 2018). After the
implementation of the GDPR, however, firms in the EU, relative to US firms, started to
decrease their relative amount of data stored gradually, with cumulative effects growing
steadily over the two years after the GDPR. The fact that the decrease is gradual rather
than sudden may be due to the fact that it took time for firms to implement necessary
changes, as noted by Aridor et al. (2022) in the case of a large website.

The decline in data storage is perhaps not surprising, as the GDPR increased the cost
of storing data. What is perhaps more surprising, however, is the magnitude of the effect.
Table 3 shows that the short-run effect is around a 13% decrease in storage while the long-
run effect doubles to around 26%.28 This table also shows that our results are robust to the
inclusion or exclusion of the flexible time trends by industry and size-decile fixed effects.

Results on Computation Turning towards computation, we first note that there is no clear
theoretical prediction for how the GDPR should affect firm computation decisions. GDPR’s
primary goal is to protect individual data, with limited direct impact on computing.

28Importantly, firms are not necessarily deleting data, as our identification strategy relies on comparing EU
and US firms. Data storage for EU and US firms could be increasing but at different rates.
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Figure 3: Event Study Estimates of the Effect of GDPR on Cloud Inputs
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(c) Effect on Data Intensity
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Notes: Figure presents estimates of equation (1) of 𝛽𝑞 , the coefficient on the quarter of the move interacted
with our treatment indicator. The coefficient in the quarter before the GDPR’s implementation is normalized
to zero. Dotted bars represent the 95% confidence intervals, and standard errors are clustered at the firm
level. Sample sizes are presented in Table 3.
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Table 3: Short- and Long-Run Effects of GDPR
(Storage, Computing, and Data Intensity)

(1) (2) (3) (4)

Panel A. Dependent variable: Log of Storage

Short-Run Effect -0.129 -0.132 -0.125 -0.134
(0.018) (0.017) (0.017) (0.017)

Long-Run Effect -0.257 -0.260 -0.228 -0.242
(0.024) (0.024) (0.024) (0.024)

Observations 1,143,149 1,143,149 1,143,149 1,143,149
US Firms 16,409 16,409 16,409 16,409
EU Firms 16,281 16,281 16,281 16,281

Panel B. Dependent variable: Log of Computation

Short-Run Effect -0.078 -0.082 -0.132 -0.148
(0.016) (0.016) (0.016) (0.016)

Long-Run Effect -0.154 -0.164 -0.224 -0.256
(0.024) (0.024) (0.024) (0.024)

Observations 672,942 672,942 672,942 672,942
US Firms 10,294 10,294 10,294 10,294
EU Firms 8,927 8,927 8,927 8,927

Panel C. Dependent variable: Log of Data Intensity

Short-Run Effect -0.072 -0.071 -0.025 -0.021
(0.020) (0.020) (0.020) (0.019)

Long-Run Effect -0.131 -0.126 -0.049 -0.035
(0.029) (0.029) (0.029) (0.029)

Observations 418,803 418,803 418,803 418,803
US Firms 5,487 5,487 5,487 5,487
EU Firms 5,872 5,872 5,872 5,872

Time Trends Vary By: Industry × Pre- Pre-GDPR Industry -GDPR Size Deciles Size Deciles

Notes: Table presents estimates of Equation (2) of the short-run (𝛿1) and long-run (𝛿2) coefficients, which
estimate the impact of the GDPR in the first and second year after the GDPR came into force. Column (1)
presents our baseline specification, where we allow for time trends to vary flexibly across industry and pre-
industry size decile interactions. Column (2) restricts these time trends so that they only vary by pre-GDPR
size decile, while Column (3) only allows for variation at the industry level. Column (4) shows estimates
when we include no time-trend interactions. Industries are defined as the ten divisions classified by SIC
codes. Pre-GDPR size deciles are measured thirteen months before the GDPR. For data intensity, we define
“size decile” as the interaction between storage and compute terciles when measured in the period. Standard
errors are clustered at the firm level.
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Therefore, the effect of the GDPR on computation likely depends on the elasticity of
substitution between compute and data and the intensity of these inputs in the production
function. If storage and computation are strong substitutes, firms can respond to increases
in data costs by substituting away from data toward computation. This would increase
total computation. On the other hand, if data and compute are strong complements, then
an increase in data cost would lead to a decrease in computation. Thus, the direction and
magnitude of firm computation responses is ultimately an empirical question.

Panel (b) of Figure 3 shows that EU firms gradually decrease their computation relative
to US firms after the introduction of GDPR. However, the effect on computation is smaller
than what we observe for data storage, with only a 15% decline two years after GDPR.
Similar to the results on data, we find no evidence of significant differential pre-GDPR
trends in the US and EU.

The results on computation are also important because they indicate that firms do not
simply eliminate (or stop accumulating) data they do not use. One potential explanation
for our data results could be that, before GDPR, firms stored data that they never utilized
and deleted it to comply with GDPR. Our findings suggest that this hypothesis is unlikely
to hold because of the substantial reduction in computation, which we conjecture would
not have happened if data that was not being used was simply eliminated.29

Results on Data Intensity Comparisons of the magnitudes between our data storage
and computation results suggest that firms became less data-intensive after the GDPR.
However, in order to account for potential compositional effects, we investigate the effects
of the GDPR on data intensity by using the natural logarithm of the ratio of computing
to storage as an outcome. We estimate our specification on firms that used both types of
inputs for the full year beginning exactly two years before the GDPR came into force.

Panel (c) of Figure 3 shows that firm data intensity decreases immediately after the
GDPR. Panel (c) of Table 3 estimates a decrease of around 7% in the short run and 13% in
the long run. The fact that firms in the EU become less data-intensive post-GDPR (relative
to comparable US firms) suggests that storage and computing are likely complements in
production, which we revisit using a production framework in Section 5.

Robustness of Results There are several potential threats to our identification strategy.
In Appendix D, we go through the most critical threats to identification and show evidence
suggesting that these threats are not driving our results. We summarize the main exercises
below, and we leave the additional exercises (such as alternative sample definitions and

29This hypothesis appears unlikely also because cloud computing incurs a marginal cost for storing data, even
if it remains unused. Additionally, in Section 5, we find that firms are responsive to changes in cloud prices.
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alternative empirical specifications) and details in Appendix D.
The most salient identification threat is that we observe only one cloud service provider

(Appendix D.1). What we observe as declines in cloud usage could simply be firms
substituting usage towards other providers. We first show that our results are similar
when we restrict our sample to firms that only use our cloud provider (Table OA-2 and
Figure OA-7). Therefore, it is unlikely that the declines we observe are simply driven by
substitution in usage to other providers. Second, we show that results are unlikely to be
driven by firms shifting to traditional (i.e., in-house) IT services. To do so, we show that
our empirical exercise yields similar results for the start-up firms in our sample, which are
unlikely to have or use traditional IT (Table OA-4 and Figure OA-9).

Another natural explanation for our results is the possibility of differential price trends
in the EU and the US (Appendix D.2). If cloud computing providers increased their
prices in the EU relative to the US around the time of the GDPR (perhaps to cover GDPR
compliance costs, for example), we could see a decline in storage and computation even
without the GDPR having any effects on firms. To check this hypothesis, we use the paid
prices for cloud storage as a dependent variable. Appendix Figure OA-10 shows that
prices did not change differentially in the EU and the US. Cloud prices have been generally
trending downwards, but not in a differential manner between the EU and the US.

We also consider whether our results are particularly being driven by websites’ cookie
consent notices and the clauses governing the collection and storage of data from websites
(Appendix D.3). We might expect firms with active website use—which we proxy for
through the usage of cloud-based web services in our cloud provider—to be more affected
by the policy than those without. Table OA-5 shows larger treatment effects among firms
that used web services in storage and computation. However, we find that the storage and
computing adjustments of web users and non-web users are proportional and that their
reductions in data intensity are similar.

4.3 Heterogeneity

By Industry The relationship between storage and computation may vary by industry,
depending on how each industry incorporates data inputs into its production processes.
For this reason, we investigate whether the effects of GDPR on data and computation
vary across four mutually exclusive and exhaustive industry groups: software firms, non-
software service firms, manufacturing firms, and all other industries. Table 4 shows our
estimates of the short- and long-run impacts of the GDPR when we estimate Equation (2)
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across different industry groups.30 One striking result is that the direction of our primary
findings—declines in storage, computation, and data intensity—are the same across all
industry groups. Furthermore, there are detectable effects in storage and computation
across all industries. This immediately suggests that our results are not being driven by a
single industry and that the effects of the GDPR are not simply limited to software firms,
but instead affect firms across all industries.

Furthermore, we find substantial heterogeneity between industries in the magnitudes
of the effects. Panel A shows that the most significant decreases in storage in response to
the GDPR come from manufacturing firms (40% in the long run), followed by software
firms (25%), and non-software service firms (18%). Similarly, Panel B shows that for
computation, the fall is largest in magnitude for manufacturing (32% in the long run),
followed by service firms (15% for software and 10% for non-software services in the long
run).

While it may seem surprising that IT-intensive industries like software and non-
software service firms seem to have more muted responses to the GDPR, this may reflect
differences in the ability of firms in a given industry to shift away from data in their pro-
duction functions or compliance cost. For example, manufacturing firms might simply be
able to substitute from data to capital and labor more efficiently than other industries or
they might have higher compliance costs. Similarly, service firms may be less responsive to
the GDPR simply because storage and computation are essential parts of their production
processes.

Finally, Panel C of Table 4 shows results for data intensity. We find that data intensity
decreases in all industries, however the standard errors are wide for some estimates. The
point estimates suggest that long-run data intensity decreases the most in the industries
with the smallest declines in storage and computation.

By Enforcement Stringency Although the GDPR harmonized the regulation surround-
ing data protection, enforcement was delegated to each country’s data protection authority.
Thus, enforcement stringency can vary across countries in practice, in part because of the
resource availability to each data protection authority (Johnson, 2022). Because of these
differences, we might expect firms in countries with more lenient regulators to respond
less to the GDPR. To test this hypothesis, we use a measure of strictness created by Johnson
et al. (2022) using data from European Commission (2008) that varies at the country level.31

30We show the quarterly dynamics in Figures OA-1 and OA-2, and the (lack of) pretrends at the industry level.
31This measure assigns a z-score to each country based on the perception of firms within that country about

the regulators’ strictness. For more information, see Johnson et al. (2022).
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Table 4: Short- and Long-Run Effects of GDPR
(Heterogeneous Effects by Industry Classification)

Baseline Software Non-Software Manufacturing Other
Services Services Industries

(1) (2) (3) (4) (5)

Panel A. Dependent variable: Log of Storage

Short-Run Effect -0.129 -0.113 -0.080 -0.259 -0.190
(0.018) (0.035) (0.026) (0.063) (0.037)

Long-Run Effect -0.257 -0.253 -0.180 -0.404 -0.354
(0.024) (0.048) (0.036) (0.086) (0.051)

Observations 1,143,149 291,781 486,457 94,612 270,299
US Firms 16,409 3,196 8,141 1,141 3,931
EU Firms 16,281 5,150 5,912 1,508 3,711

Panel B. Dependent variable: Log of Compute

Short-Run Effect -0.078 -0.078 -0.048 -0.171 -0.077
(0.016) (0.032) (0.024) (0.051) (0.033)

Long-Run Effect -0.154 -0.150 -0.100 -0.322 -0.163
(0.024) (0.050) (0.037) (0.073) (0.049)

Observations 672,942 165,752 270,846 65,532 170,812
US Firms 10,294 2,050 4,623 900 2,721
EU Firms 8,927 2,747 3,204 914 2,062

Panel C. Dependent variable: Log of Data Intensity

Short-Run Effect -0.072 -0.084 -0.084 -0.078 -0.043
(0.020) (0.042) (0.031) (0.066) (0.039)

Long-Run Effect -0.131 -0.196 -0.161 -0.043 -0.069
(0.029) (0.064) (0.045) (0.097) (0.055)

Observations 418,804 103,606 168,020 41,449 105,729
US Firms 5,487 1,054 2,473 496 1,464
EU Firms 5,872 1,755 2,123 610 1,384

Notes: Table presents estimates of equation (2) of 𝛿1 and 𝛿2, re-estimated across for various industry divisions.
For comparison, Column (1) presents our baseline estimates across all industry divisions. Column (2) restricts
our sample to software firms, which are defined through SIC codes 7370 - 7377. Column (3) restricts the
sample to non-software service firms, Column (4) restricts the sample to firms in the manufacturing division,
and column (5) presents estimates on the remaining firms in the sample (non-software, non-services, and
non-manufacturing industry divisions). Standard errors are clustered at the firm level.
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Table 5: Effect of Strictness
on Short- and Long-Run Effects of GDPR

Storage Compute Intensity
(1) (2) (3)

Short-Run Effect -0.028 -0.061 -0.042
(0.044) (0.032) (0.042)

Long-Run Effect -0.040 -0.047 -0.015
(0.055) (0.049) (0.059)

Observations 1,143,149 672,942 418,803
EU Firms 16,281 8,927 5,872

Notes: Table presents estimates of equation 2 with an additional term to measure the effect of above-median
GDPR strictness. The short-run term captures the triple interaction of the short-run post-GDPR coefficient,
the EU categorical variable, and a categorical variable indicating firms in above-median enforcement coun-
tries. The long-run term repeats the same procedure but uses the long-run post-GDPR period instead.
Strictness is measured according to Johnson et al. (2022) using data from European Commission (2008).
We continue to define industries as the ten divisions classified by SIC codes. Pre-GDPR size deciles are
measured thirteen months before the GDPR. For data intensity, we define “size decile” as the interaction
between storage and compute terciles when measured in the period. Standard errors are clustered at the
firm level.
˙

We collapse this measure above and below the normalized median strictness in the survey
and assign each firm their country’s regulator’s strictness.

We modify Equation (2) by adding two additional coefficients to capture potential het-
erogeneity by enforcement stringency. We create a categorical variable indicating firms in
above-median enforcement countries, and we interact this variable with the EU categori-
cal variable and our long-run and short-run post-GDPR indicators. Our main coefficients
of interest (the triple interactions) measure the short- and long-run differences in 𝑌𝑖𝑡 for
EU firms with above-median strictness relative to those with below-median strictness
post-GDPR.

Table 5 summarizes these results. The interaction coefficients—although many are not
statistically significant—suggest that firms in above-median strictness countries face larger
declines in storage, computation, and data intensity. In the short run, storage goes down
by 2.8 pp. more in above-median strictness countries than in below-median ones, while
computation goes down by 6.1 pp. In the long run, storage and computation go down by
4 pp. and 4.7 pp. more in above-median strictness countries, respectively. Similarly, data
intensity decreases are larger for firms in the above-median strictness countries. Overall,
these findings suggest a non-negligible role for enforcement stringency beyond the simple
presence of privacy regulation itself.
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4.4 Discussion

Our results so far suggest that EU firms responded to the GDPR by storing less, computing
less, and becoming less data-intensive relative to US firms. These results are important for
several reasons. First, we provide direct and large-scale evidence that firms comply with
the GDPR by significantly reducing their data and computation. Second, we show that the
GDPR affects firms’ input choices by changing the composition of data and computation
used in firm production. Third, the results are not driven by a single industry, by a
single country, or exclusively by website firms that are affected by cookie consent policy,
indicating the far-reaching implications of the GDPR across many industries.

Although these findings provide insights into the impact of privacy laws on firm
behavior, they do not offer a comprehensive understanding of firm-specific economic
costs. Such an analysis requires understanding how firms use data in production and the
different adjustment margins of firms. For this reason, we take a more structural approach
in the next section.

5 A Model of Production with Data
This section introduces a production function framework with data and estimates its
structural parameters. We use our framework to consider both how firms use data and
computation in production and how privacy regulations might affect these decisions. Since
data serves as an input in production, any regulatory-induced increase in input costs will
inevitably impact firms’ input choices. Therefore, we model the GDPR as a gap between
the actual cost of data and the perceived cost of data that include regulatory costs. We
focus on estimating the size of this wedge and its implications for firms.

Our framework is designed to be flexible in terms of how data and computation are
integrated into firm production. There currently is no standardized framework for how
data enters the production function, and there is likely considerable heterogeneity in
how firms use data. For this reason, we model only the relationship between data and
computation in firm production rather than modeling a full production function with
standard inputs such as labor and capital. We introduce the model below.

5.1 Production Function with Data

Firms produce information by processing data, which requires two inputs: data and
computation. We assume the following constant elasticity of substitution (CES) form for
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the information production function:

𝐼𝑖𝑡 =
(
𝜔𝑐
𝑖𝑡(𝐶𝑖𝑡)

𝜌 + 𝛼𝐷
𝜌
𝑖𝑡

)1/𝜌
,

where 𝐶𝑖𝑡 represents the amount of computation performed by firm 𝑖 in month 𝑡, 𝐷𝑖𝑡 is
the amount of data stored by firm 𝑖 in month 𝑡, and 𝜔𝑐

𝑖𝑡
is compute productivity. The

parameter 𝜎 = (1/(1 − 𝜌)) is the elasticity of substitution between data and computing.
The parameters of the production function are industry-specific as we estimate the model
separately by each industry.

Our model includes a firm-specific compute productivity term, 𝜔𝑐
𝑖𝑡

, to capture hetero-
geneity in computing productivity.32 This choice is motivated by the substantial variation
in the firms’ data intensity, as reported in Figure 2 of Section 3. This heterogeneity can arise
for two reasons. First, there could be inherent production technology differences between
firms on how they could use data, making the information production more data-intensive
for some firms than others. Second, even if the production technology is the same, some
firms may have higher-quality computation resources (e.g., higher-quality software tools
and more skilled engineers) to generate the same amount of information with less data.
Our paper is agnostic about the source of 𝜔𝑐

𝑖𝑡
. However, we believe it is essential to account

for such heterogeneity.
We also intentionally refrain from specifying how information is integrated into the

production function, as firms can use information in different ways.33 As a result, our
model remains general enough to capture several of the common ways that data has been
modeled as using information, including augmenting overall firm productivity (Jones
and Tonetti, 2020), serving as an input in production (Bessen et al., 2022), enhancing labor
productivity (Agrawal et al., 2019), and enabling firms to target customers better or forecast
demand (Eeckhout and Veldkamp, 2022). These include all of the following cases (omitting
subscripts for ease of notation):

𝑌 = 𝑓 (𝐾, 𝐿)𝜔(𝐼) (productivity increasing)

𝑌 = 𝑓 (𝐾, 𝐿, 𝐼)𝜔 (input in production)

𝑌 = 𝑓 (𝐾, 𝜔𝐿(𝐼) · 𝐿)𝜔 (labor-augmenting)

𝑅 = 𝑝(𝐼) ·
(
𝑓 (𝐾, 𝐿)𝜔

)
(price discrimination)

32The literature typically calls this term “factor-augmenting productivity.” We use the term “compute pro-
ductivity” instead of “compute-augmenting productivity” for the sake of brevity.

33Even though this limits some counterfactual analysis we could conduct, we consider it a reasonable trade-off
given the large-scale nature of our study, which covers many firms and industries.
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In these examples, 𝐾, 𝐿, 𝑌, and 𝑅 are capital, labor, output, and revenue: 𝜔 is Hicks-
neutral productivity, 𝜔𝐿 is labor-augmenting productivity, and 𝑝 is the output price. In
each specification, information affects a different part of the production function.

Our approach relies on estimating input demand functions under the assumption that
firms choose inputs to minimize information production costs. In particular, we assume
that 𝐶𝑖𝑡 and 𝐷𝑖𝑡 are variable inputs that firms optimize every period. We view this
assumption as reasonable for cloud computing, where providers typically follow a pay-
as-you-go model and firms can easily adjust their usage of storage and computation on-
demand. We also assume that firms are price-takers in the input markets for computation
and storage. We again view this assumption as reasonable for cloud computing because
cloud providers typically post list prices and firms pay by the hour.34

We use 𝑝𝑐
𝑖𝑡

and 𝑝𝑑
𝑖𝑡

to denote the input prices for computation and storage, which may
vary across firms. We observe both the list prices and the actual prices paid by firms. In
theory, all firms should face uniform cloud computing prices since they can access all data
centers. However, latency effects and switching costs between data centers may restrict
firms’ ability to use all data centers, leading to different consideration sets for different
firms (and thus differential prices). In addition, potential negotiated discounts may also
result in heterogeneous prices. Based on the assumptions of cost minimization, we derive
the following first-order condition for firms’ data and computing choices from the CES
production function:

log
(𝐶𝑖𝑡
𝐷𝑖𝑡

)
= 𝛾 + 𝜎 log

( 𝑝𝑑
𝑖𝑡

𝑝𝑐
𝑖𝑡

)
+ 𝜎 log(𝜔𝑐

𝑖𝑡), (3)

where 𝛾 = −𝜎 log(𝛼). We provide the complete derivations in Appendix E.1. We also
show that we get the same first-order condition if we were to include labor (e.g., software
engineers) in the information production function in Appendix E.2.

According to this first-order condition, the relationship between input ratios and input
prices is governed by the elasticity of substitution between these two inputs. When the
price of data (relative to compute) is higher, firms substitute towards computation, with
an intensity of 𝜎. A notable feature of this equation is that the elasticity of substitution

34All cloud providers offer discounts if firms commit to using cloud resources over a specific period of time.
These discounts are called “reserved instance” or “committed use” discounts, depending on the provider.
These discounts are typically applied to the list price. A survey of 750 large companies conducted in 2023
suggests that only one-third of companies use these discounts (Flexera, 2023). This number is most likely
lower during our sample period and among small firms. Moreover, firms that receive quantity discounts
can resell or refund their commitments for a small fee for most major cloud providers. Therefore, we believe
that linear prices are good approximations even for these firms.
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between computation and data can be estimated from firms’ input demand alone, without
observing other inputs or outputs. This property arises from the homotheticity property of
the CES production function, commonly used in the literature for estimating the elasticity
of substitution (Doraszelski and Jaumandreu, 2018; Raval, 2019; Demirer, 2020).

Although our framework expands upon the production function literature by consider-
ing computation and data, it does have some limitations. While we account for variations
in data quality across firms using 𝜔𝑐

𝑖𝑡
, we assume that data is homogenous within a single

firm. This assumption might be strong since, in reality, firms may have different types
of data with varying quality. This limitation would become particularly relevant if, for
example, the GDPR affected the data composition of firms. To relax this assumption, we
would need to include different data types in production, which we do not observe. It
is worth noting, however, that the assumption of homogenous inputs within a firm is a
common practice in production function research, primarily due to data limitations.

One important way our approach differs from previous literature is that we recognize
that data must be processed to generate useful information, and we therefore include
computation as an additional input along with data. As the modeling of data in firm
production is an active area of research, we view our framework as complementary to the
existing literature (e.g., Jones and Tonetti, 2020; Farboodi and Veldkamp, 2022).35

5.2 The GDPR as a Cost Shock to Data

This section incorporates the effects of the GDPR into our production framework. We
model the GDPR as a firm-level cost shock to data inputs—as we have extensively argued
they are the main focus of GDPR regulations. While some aspects of the GDPR do
pertain to computation, the impacts of the regulation on data are significantly larger, and
computation is less salient to regulators than data.36

As mentioned before in Section 2 and in Appendix B.2, the GDPR increased the fixed
and variable costs of data storage. For example, variable costs of storing data increase
because of the customer “delete requests,” whose number and difficulty may increase
with the amount of data a firm stores. Similarly, the probability of a data breach and
of penalties in case of non-compliance likely increase with the amount of data that firms
collect.37 By contrast, fixed costs increase because of one-time expenses that do not vary
with the amount of data a firm has—e.g., hiring data protection officers, developing a data
protection management system, or implementing organization measures. Since fixed costs

35See Veldkamp and Chung (2023) for an excellent review of this literature.
36If the GDPR’s impact on computation costs is non-negligible, our wedge estimate will identify the ratio of

data to compute wedges. In this case, our estimate of the wedge will be conservative.
37This observation aligns with the fact that larger firms tend to receive more substantial fines.
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should not affect input demand, we focus on modeling the variable cost.
We make the following assumptions about data costs before and after the GDPR:

Pre-GDPR: 𝑝̃𝑑𝑖𝑡 = 𝑝𝑑𝑖𝑡 , Post-GDPR: 𝑝̃𝑑𝑖𝑡 = (1 + 𝜆𝑖)𝑝𝑑𝑖𝑡 .

Here, 𝑝𝑑
𝑖𝑡

represents the marginal cost of data without the GDPR (i.e., the cost of storing
data paid to the cloud provider), and 𝑝̃𝑑

𝑖𝑡
is the marginal cost of data after accounting for

the costs introduced by the GDPR. Therefore, 𝜆𝑖 denotes the wedge between the actual
cost of data and the total cost that includes complying with GDPR. We follow the literature
and model 𝜆𝑖 as a multiplicative wedge (e.g., Chari et al., 2007; Hsieh and Klenow, 2009).
This wedge is firm-specific because compliance costs will likely be heterogeneous across
firms, depending on their size and the types of data they collect. Alternatively, we can also
interpret 𝜆𝑖 as each firm’s perceived cost of the GDPR, as they may hold different beliefs
about enforcement or have varying levels of risk aversion that affect the expected cost of
liability in the event of a data breach.

5.3 Identification of Parameters

Our end goal is to estimate two parameters: the firm-level wedges introduced by the GDPR
(𝜆𝑖) and the elasticity of substitution between computation and data (𝜎). To illustrate
the potential identification problems when estimating 𝜆𝑖 and 𝜎, consider the first-order
condition in Equation (3) after the GDPR for EU firms:

log
(𝐶𝑖𝑡
𝐷𝑖𝑡

)
= 𝛾 + 𝜎 log

( 𝑝𝑑
𝑖𝑡

𝑝𝑐
𝑖𝑡

)
+ 𝜎 log(1 + 𝜆𝑖) + 𝜎 log(𝜔𝑐

𝑖𝑡). (4)

This first-order condition reveals a fundamental challenge for identification: the cost of the
GDPR, log(1+𝜆𝑖), cannot be separately identified from the mean of firm-specific compute
productivity post-GDPR (𝜔𝑐

𝑖𝑡
). Intuitively, firms may decrease their data intensity either

because their compute productivity has increased or because the GDPR has imposed
additional data costs. Without additional information, we cannot distinguish these two
cases. Therefore, to identify the GDPR wedge, we need to control for changes in firm-
specific computing technology. To this end, we impose the assumption that compute
productivity can be decomposed as follows:

log(𝜔𝑐
𝑖𝑡) = log(𝜔𝑐

𝑖 ) + log(𝜙𝑐𝑡 ) + log(𝜂𝑖𝑡). (5)
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Equation (5) specifies that the compute productivity term can be decomposed into a
firm-specific component (𝜔𝑐

𝑖
), an industry-specific time trend (𝜙𝑐𝑡 ), and an idiosyncratic

component (𝜂𝑖𝑡). This decomposition suggests that we need to control for (i) log(𝜔𝑐
𝑖
)

to identify firm-specific wedges and (ii) log(𝜙𝑐𝑡 ) to identify the industry-specific level of
wedges by the GDPR.

Our identification strategy therefore involves two steps. In the first step, we recover
𝜔𝑐
𝑖

and 𝜙𝑐𝑡 using data from EU firms in the pre-GDPR period and data from US firms.
In particular, we assume that firm-specific compute technology does not change after the
GDPR and that each EU industry follow the same compute-technology time-trend as the
same industry in the US. These assumptions allow us to control for firm-specific computing
technology in the second step, where we estimate the cost of the GDPR as a percentage
of the observed data input cost. We explain each of these steps below and provide more
detail in Appendix F.4.

5.3.1 First Step: Identification of Compute Productivity and Elasticity of Substitution

To estimate the elasticity of substitution and firm-level compute productivity, we use
pre-GDPR data and estimate the following equation:

log
(𝐶𝑖𝑡
𝐷𝑖𝑡

)
= 𝛾 + 𝜎1 log

( 𝑝𝑑
𝑖𝑡

𝑝𝑐
𝑖𝑡

)
+ 𝜎1 log(𝜔𝑐

𝑖 ) + 𝜎1 log(𝜙𝑐𝑡 ) + 𝜎1 log(𝜂𝑖𝑡), (6)

where 𝜎1 is the pre-GDPR elasticity of substitution. There are two important considerations
when estimating this equation. First, the estimation requires variation in the data-to-
compute price ratio across firms over time. Second, these prices might be correlated
with unobservable and time-varying compute productivity shocks (𝜂𝑖𝑡). To address this
endogeneity, it is important to understand the factors contributing to the heterogeneity
and price changes in cloud computing.

Cloud computing providers display their prices for various cloud computing products
on their websites, which typically vary depending on the region where the data center
is located. These posted prices can be considered orthogonal to the firm-levelosyncratic
compute productivity shocks (𝜂𝑖𝑡) because it is unlikely that any firm is large enough to
affect them. In addition, cost improvements and increased competition were the main
drivers of price changes in the last decade (Byrne et al., 2018). However, the prices that
firms pay may differ from these list prices for two reasons. First, firms may have differential
preferences over data center locations.38 Second, firms may receive a percentage discount

38For example, firms typically choose data centers closer to their operations to reduce latency.
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from the listed price based on long-term commitments or bargaining power, as discussed
earlier.

These two sources of price heterogeneity can create endogeneity. For instance, firms
that experience a high compute productivity shock may be more willing to switch be-
tween data centers to take advantage of lower prices, resulting in a correlation between
the firm’s compute productivity and the prices it faces. In addition, firms with high com-
pute productivity may negotiate higher discounts. We address these potential sources of
endogeneity by developing a shift-share design (Bartik, 1991; Goldsmith-Pinkham et al.,
2020; Borusyak et al., 2022).

We first introduce the broad intuition behind our instrument. Our shift-share design
addresses these two potential sources of endogeneity in prices by leveraging two features
of our data. First, because we observe both list prices and negotiated prices, we can use
changes in list prices to instrument for the changes in negotiated prices. These changes,
however, are still predictive of the prices that firms face because discounts are applied to
list prices.39

Second, we construct a measure of exposure to specific data centers for each firm and
period. We use historical exposure shares rather than contemporary ones because previous
data center choices are sunk. However, previous data center choices remain predictive
of current data centers firms use because of the switching costs associated with moving
data between data center locations. Transferring data from one location to another can
be time-consuming and expensive, especially for large or complex datasets. As a result,
firms’ location choices are highly persistent over time.

More formally, the shift-share design combines list prices with variation in firms’ pre-
existing data center location choices. We construct instruments 𝑧𝑑

𝑖𝑡
and 𝑧𝑐

𝑖𝑡
for the data

storage and computation prices each firm 𝑖 faces at time 𝑡. The exposure shares for each
service in a given period are calculated as the share of firm 𝑖’s usage in a given data
center relative to the firm’s total demand. This differential exposure gives us the following
equation for the instrument:

𝑧
{𝑐,𝑑}
𝑖𝑡

=
∑
𝑙∈ℒ

𝑠
{𝑐,𝑑}
𝑖𝑙(𝑡−12)𝑝

{𝑐,𝑑}
𝑙𝑡

(7)

where 𝑠
{𝑐,𝑑}
𝑖𝑙(𝑡−12) denotes firm 𝑖’s usage share for data center location 𝑙 as measured 12

months before 𝑡, 𝑝{𝑐,𝑑}
𝑙𝑡

is the price index for each service in location 𝑙 at time 𝑡, and ℒ

denotes the set of data center locations.40 Our exposure shares are lagged by 12 months
because contemporaneous exposure shares are susceptible to reverse causality. While shift-

39We provide more information about cloud computing pricing in Appendix F.1.
40We provide more detail on our price index construction in Appendix F.2.
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share instruments can be driven by assumptions about either the exogeneity of “shares"
or the independence and exogeneity of “shocks" (Borusyak et al., 2022), the identifying
assumption underlying our exposure shares is most similar to the “shares" assumption
discussed in Goldsmith-Pinkham et al. (2020). In particular, the exclusion restriction
behind our shift-share design is that contemporary shocks to the compute productivity of
each firm are exogenous to the changes in the ratio of list prices of cloud computing in the
firm’s historical data center choices, controlling for industry-specific trends.41

We use 𝑧𝑐
𝑖𝑡
/𝑧𝑑

𝑖𝑡
as an instrument for price ratio 𝑝𝑑

𝑖𝑡
/𝑝𝑐

𝑖𝑡
and estimate Equation (6) for three

EU industries (software, non-software services, and manufacturing) separately using pre-
GDPR data, as the pre-GDPR data does not include a regulatory wedge. This allows us to
estimate firm-specific compute productivity (𝜔𝑐

𝑖
) and elasticity of substitution parameter

before the GDPR. We also estimate Equation (6) for US industries over the entire sample
period, as US firms do not experience regulatory distortion either before or after the
GDPR. This allows us to recover the industry-specific compute productivity trends, 𝜙𝑐𝑡 for
US industries.

5.3.2 Second Step: Identification of the Cost of the GDPR

In the second step, we use the EU post-GDPR data to estimate the wedge generated by the
GDPR (𝜆𝑖) and the EU post-GDPR elasticity of substitution between compute and storage.
Incorporating this into the firm’s input demand, we obtain the following equation:

log
(𝐶𝑖𝑡
𝐷𝑖𝑡

)
= 𝛾 + 𝜎2 log

( 𝑝𝑑
𝑖𝑡

𝑝𝑐
𝑖𝑡

)
+ 𝜎2 log(1 + 𝜆𝑖) + 𝜎2 log(𝜔𝑐

𝑖 ) + 𝜎2 log(𝜙𝑡) + 𝜎2 log(𝜂𝑖𝑡), (8)

where 𝜎2 is the post-GDPR elasticity of substitution. Here, unlike the pre-GDPR input
demand equation, the additional term 𝜆𝑖 affects the ratio of computing to storage. The
higher the cost of the GDPR, 𝜆𝑖 , the more likely firms are to substitute away from data
toward computation. In order to use this equation for identifying𝜆𝑖 , we make the following
assumptions:

Assumption 1. Firm-specific compute productivity remains the same after the GDPR.

We note that this assumption still allows for industry-specific trends in computation
due to log(𝜙𝑡), as we can see from Equation (5). The assumption also does not restrict

41One example of a potential threat to identification would be if idiosyncratic compute productivity shocks
are strongly correlated over time after accounting for aggregate industry time trends, and this caused firms
to select data centers with specific trends in the ratio of prices. However, given that our model is estimated
with the ratio of prices rather than direct price levels and considering that forecasting data center-specific
trends in these price ratios is difficult, we view our identification assumption as reasonable for the setting.
We provide further details for the instrumental variable construction in Appendix F.3.
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firms’ abilities to respond to the GDPR by changing their compute-to-storage ratio. Rather,
it implies that the firm-specific component of the underlying information production
technology remains the same.

At this point, it is worth discussing our approach and comparing it to the approaches
taken in the literature that estimates wedges. The large literature on misallocation iden-
tifies distortions as the difference between the marginal product of an input and its price
(Restuccia and Rogerson, 2008; Hsieh and Klenow, 2009). The typical approach in that
literature assumes that firms have the same production technology. This assumption is
needed because otherwise the firm-specific wedges cannot be distinguished from arbi-
trary firm-level heterogeneity in production technology. We face the same identification
problem but take a different approach. Instead of assuming homogeneous production
technology, we allow for heterogeneity through compute productivity but assume that
this heterogeneity is time-invariant within a window of a few years. We note that both ap-
proaches have strengths and weaknesses, but we believe that in our context, it is essential
to allow for heterogeneous production technology.

We also differ from the misallocation literature by using input demand functions for
two variable inputs—one distorted and one not—instead of estimating a full production
function. The underlying idea is that we can net out the sources of distortions that are
common to both inputs, such as market power and adjustment costs, and recover the
distortion specific to data input. This identification strategy is similar to the approach
used in the literature to identify input market power from the ratio between two variable
inputs (Morlacco, 2020; Kirov and Traina, 2023).

Assumption 2. EU and US industries follow the same time trends in aggregate compute technology
post-GDPR.

This is the second critical assumption necessary for identifying the cost of the GDPR.
The identification of wedges requires controlling for aggregate changes in compute pro-
ductivity. Otherwise, the changes in the computation-to-data ratio of EU firms due to
GDPR may be attributed to differential aggregate trends in compute productivity in the
EU. Therefore, we use the estimated post-GDPR industry trend from the US firms to control
for industry trends in the EU. In particular, the parallel trends we find within industries
before the GDPR in our reduced-form results are consistent with this assumption.

With these two assumptions, we can estimate the following equation:

log
(𝐶𝑖𝑡
𝐷𝑖𝑡

)
= 𝛾2 + 𝜎2

(
log

( 𝑝𝑑
𝑖𝑡

𝑝𝑐
𝑖𝑡

)
+ log(𝜙̂𝑡)

)
+ 𝜎2

(
log(1 + 𝜆𝑖) + log(𝜔̂𝑐

𝑖 )
)
+ log(𝜂𝑖𝑡), (9)

33



Table 6: Elasticity of Substitution Results by Industry

Industry Software Services Manufacturing
OLS IV OLS IV OLS IV

Elasticity of Substitution (𝜎) 0.45 0.41 0.45 0.44 0.38 0.34
(0.02) (0.03) (0.02) (0.04) (0.04) (0.05)

First-Stage (Instrument) - 0.15 - 0.16 - 0.18
- (0.01) - (0.01) - (0.01)

Firm FE ✓ ✓ ✓ ✓ ✓ ✓
Month FE ✓ ✓ ✓ ✓ ✓ ✓

F-Stat - 5,637 - 5,147 - 1,949
Observations 130,560 130,560 106,594 106,594 44,708 44,708

Notes: Table presents our estimation results of the elasticity of substitution between storage and computing
(𝜎) across industries. Estimates are presented for pre-GDPR elasticities for EU firms (𝜎𝐸𝑈1 ). Standard errors
are calculated using 100 bootstrap repetitions at the firm level.

where 𝜔̂𝑐
𝑖

denotes estimates of compute productivity using pre-GDPR data and 𝜙̂𝑖 denotes
the estimates of compute productivity trend of the US firms. This equation allows us to
estimate our main object of interest (𝜆𝑖) along with the post-GDPR elasticity of substitution
between computing and data.42 Our specification is therefore flexible enough to allow for
and to measure changes in firm production technology post-GDPR.

We estimate this equation using post-GDPR data of EU firms to obtain firm-specific
wedges. For standard errors, we use a bootstrap procedure to account for generated
regressors. The bootstrap procedure treats firms as independent observations and re-
samples firms with replacement within an industry in 100 bootstrap repetitions. We
provide the details of the estimation procedure in Appendix F.

6 Production Function Estimation Results
This section provides results on the elasticity of substitution between data and computa-
tion, the wedges introduced by the GDPR, and how these wedges translate into production
costs.

42Appendix F.5 provides useful intuition behind the identification of 𝜆𝑖 . Roughly speaking, the estimated
wedges capture the variation in data intensity (the ratio between inputs) among comparable EU and US
firms that is not explained by changes in prices, changes (over time or across regions) in the elasticity of
substitution, or differences in compute productivity.
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Figure 4: Elasticity of Substitution Between Storage and Computing for EU firms
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Notes: Figure presents our estimation results of the elasticity of substitution between storage and computing
(𝜎) across industries, and we present separate estimates for the pre- and post-GDPR (𝜎1 and 𝜎2, respectively).
Solid lines denote the 95% confidence intervals, and standard errors are calculated using 100 bootstrap
repetitions at the firm level.

6.1 The Elasticity of Substitution Between Data and Computation

We begin by presenting estimates for the elasticity of substitution using pre-GDPR data.
Table 6 presents these elasticities for three industries separately—services, software, and
manufacturing—using both OLS and IV estimates. We also present the first-stage estimates
for each industry and their associated 𝐹-statistics. The first-stage coefficients are positive,
indicating a positive relationship between our shift-share instruments and the contem-
poraneous prices faced by firms. Our results also indicate 𝐹-statistics in the thousands,
suggesting that our instruments strongly correlate with the endogenous variables.

Our estimated elasticities suggest that data and computation are strong complements in
all industries, which is consistent with our event study results in Section 4. The estimated
elasticities range from 0.34 to 0.44, and the larger magnitudes in the software industry
suggest that software firms can more easily substitute between data and computation.
Furthermore, our IV estimates are smaller than the OLS ones. This bias is consistent
with our intuition that firms with higher computing productivity may be more likely to
search for lower relative computation prices and to negotiate higher relative discounts on
computation.

We also assess whether the GDPR led to a meaningful change in production technology
by allowing for the elasticity of substitution to differ before and after GDPR. Figure 4
separately reports the elasticity of substitution estimates before and after the GDPR for
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Figure 5: Wedge Estimates
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Notes: This figure presents our estimation results for the wedge induced by the GDPR (𝜆𝑖). Panel (a) presents
the average estimated wedge for firms within each industry. Panel (b) presents the full distribution of
estimated wedges. Solid lines denote the 95% confidence intervals, and standard errors are calculated using
100 bootstrap repetitions at the firm level.

EU firms. While the results suggest a slight decline in the elasticity of substitution in
all industries, the magnitudes are not large enough to be economically meaningful. We
therefore conclude that EU firms did not significantly alter their information production
process after the GDPR.43

Finally, although we are not aware of any previous estimates of the elasticity of substitu-
tion between data and computation, it is still informative to compare these estimates with
the estimated substitutability between other inputs. While the estimates vary, they range
from 0.3 to 0.7 for capital and labor (Caballero et al., 1995; Chirinko, 2008; Raval, 2019) and
from 1.5 to 3 for labor and intermediate inputs such as materials (Chan, 2023; Peter and
Ruane, 2023). This indicates that data and computation are more complementary than
traditional inputs. We view these elasticity of substitution estimates as a contribution to
the production function literature, as there is very little empirical evidence on how firms
use data despite its growing importance. The strong complementarity also highlights the
crucial role that computational resources play in processing data and the growing role of
computation in the modern firm production function.

43In Appendix Figure OA-3, we repeat this exercise for US firms for comparison. We find comparable elasticities
of substitution for firms in the US and similarly cannot reject the null that there are no changes in the elasticity
of substitution for US firms.
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Figure 6: Wedge Heterogeneity by Firm Size, Compute Productivity and IT Intensity
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Notes: Figure presents our estimation results for the wedge induced by the GDPR (𝜆𝑖), averaging across
firms within each of the given groups. Panel (a) shows these estimates across the five firm-size quintiles,
while Panel (b) shows these estimates across the five compute productivity (𝜔𝑐

𝑖
) quintiles computed using

pre-GDPR estimates. Solid lines denote the 95% confidence intervals, and standard errors are calculated
using 100 bootstrap repetitions at the firm level.

6.2 The Regulatory Wedge Induced by the GDPR

Next, we examine our estimates of the wedges introduced by the GDPR (𝜆𝑖). Panel (a)
of Figure 5 displays the average wedge for EU firms across industries together with the
95% confidence intervals. The findings indicate that the average wedge in all industries is
statistically significantly different from zero, implying that the GDPR has raised the cost
of data for businesses. The wedge is the highest for software firms at 24%, and these larger
magnitudes may reflect higher average exposure to the costs of the GDPR among software
firms. These average estimates, however, hide substantial firm-level heterogeneity. As
shown in Panel (b) of Figure 5, there is considerable heterogeneity in the wedge generated
by the GDPR. For some firms, the wedge is close to zero, while for others, it can be as large
as one.44

To better understand this heterogeneity and to study the determinants of these regu-
latory wedges, we look at how firm-level variables are correlated with this wedge. We
consider two firm characteristics: (i) firm size, as measured by the number of employees,
and (ii) compute productivity, as measured by pre-GDPR 𝜔𝑐

𝑖𝑡
estimates. The results are

reported in Figure 6. Panel (a) shows the average wedge estimates across the five firm-size
quintiles, where the quintiles are calculated within each industry. The results suggest
that the distortionary effects of the GDPR are highest for the smallest firms, with a wedge
equivalent to a 25% tax, and with monotonically decreasing effects as the firm size gets

44A small fraction of our wedge estimates are negative, which we attribute to noise in the estimation.
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bigger. This finding is consistent with other evidence on the effects of the GPPR in the
literature (Campbell et al., 2015; Koski and Valmari, 2020; Goldberg et al., 2023) and may
reflect the fact that larger firms have more resources to comply with the GDPR. In panel
(b), we report the wedge distribution across quantiles of the compute productivity distri-
bution. There is a strong inverse monotonic relationship between compute productivity
and the data cost of the GDPR. As firms become more compute-intensive, the magnitude
of the wedge decreases from 26% in the first quantile to 15% in the last quantile.

6.3 The Effect of the GDPR on the Cost of Information

How do the additional data costs resulting from the GDPR affect firms’ production costs
and input decisions? To answer this, we begin by deriving how our estimated wedges affect
the cost of producing a given level of information or the “cost of information.” Given data
and computation prices, the cost of information is given by:

𝐶𝐼∗(𝐼𝑖𝑡 , 𝑝𝑖𝑡 ,𝜆𝑖) = 𝐼𝑖𝑡

(
(𝜔𝑐

𝑖𝑡)
𝜎 (
𝑝𝑐𝑖𝑡

)1−𝜎 + 𝛼𝜎
(
(1 + 𝜆𝑖)𝑝𝑑𝑖𝑡

)1−𝜎
)1/(𝜎−1)

, (10)

with the full derivation provided in Appendix E.3.
We use Equation (10) to estimate the increase in the cost of information post-GDPR by

considering two scenarios: (i) a case in which there was no wedge (𝜆𝑖 = 0) and the cost
of data was simply the cloud cost 𝑝𝑑

𝑖𝑡
, and (ii) the realized case in which the cost for firms

included the costs of regulations: (1 + 𝜆𝑖)𝑝𝑑𝑖𝑡 . To implement this calculation, we use our
estimates of key model parameters, such as each firm’s compute technology, input prices,
and the elasticity of substitution. These parameters allow us to estimate the counterfactual
information cost with and without the privacy regulation for each firm at a monthly level.

The results for the percentage increases in information costs are reported in Figure 7.
Panel (a) shows the average change in the cost of information by industry, plotting the mean
along with standard errors. These results suggest that changes in the cost of information
were significantly lower than changes in the cost of data. The average increase in the cost
of information in the manufacturing industry is 2.5%, while it is 4.2% in software and 2.6%
in the services industry. Once again, however, these average estimates hide considerable
firm-level heterogeneity in information cost changes, which we document in Panel (b).

The increase in the cost of information is considerably smaller than that the increase in
the cost of data. To further understand why, we decompose in Appendix E.4 the increase
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Figure 7: Results on Information Cost
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Notes: Figure presents our estimation results for the change in the cost of information induced by the GDPR.
As discussed in the text, we calculate the increase in the cost of information by using Equation (10) to compare
the cost of information with our estimated wedge (𝜆̂𝑖) to the cost of information in the counterfactual with no
wedge (𝜆𝑖 = 0). Panel (a) presents the average estimated increase in the cost of information for firms within
each industry. Solid lines denote the 95% confidence intervals, and standard errors are calculated using 100
bootstrap repetitions at the firm level. Panel (b) presents the full distribution of the estimated increase in the
cost of information.

in the information cost as:

d𝐶𝐼∗
𝑖𝑡

d𝜆𝑖
𝜆𝑖
𝐶𝐼∗

𝑖𝑡

=

(����𝑠𝑑𝑖𝑡 𝜆𝑖 ����)
direct effect (+)

+
[
𝑠𝑑𝑖𝑡

(
𝜕𝐷∗

𝑖𝑡

𝜕𝜆𝑖

𝜆𝑖
𝐷∗
𝑖𝑡

)
+

(
1 − 𝑠𝑑𝑖𝑡

) (
𝜕𝐶∗

𝑖𝑡

𝜕𝜆𝑖

𝜆𝑖
𝐶∗
𝑖𝑡

)]
firm re-adjustment margin (-)

where the first term—the direct effect—represents the increase in costs if firms do not re-
optimize their input mix, while the second term—the firm re-adjustment margin—is the
extent to which firms can mitigate the increase in costs by substituting data for computation
while holding production fixed. Conceptually, if firms do not re-optimize their inputs, the
increase in the cost of information would be determined by the expenditure share of data
(𝑠𝑑
𝑖𝑡

) multiplied by the wedge (hence the positive direct effect). However, firms’ input re-
optimization would reduce this effect depending on the elasticity of substitution, 𝜎 (hence
the negative re-adjustment margin).

Both channels explain why the (average) cost of information increase is about a fifth of
the size of the (average) wedge. First, we find that the direct effect is small (3.9%, as shown
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by Figure OA-4(a)) because data is significantly cheaper than computation and accounts for
an average expenditure share of only 19% in information production costs. Second, given
the strong complementarity of data and computation, firms are limited in their ability to
mitigate the increase in the information cost by substituting data storage for computation.
Therefore, the average firm re-adjustment margin is only −0.2% (see Figure OA-4(b)).

To summarize, our production framework suggests that the GDPR lead to a 3.7%
average increase in the cost of information despite the 20% average increase in the cost of
data because data accounts for a small share of the information cost in firm production
relative to compute.

6.4 The Effect of the GDPR on Firm Production Costs

Finally, we estimate the impact of the wedges imposed by GDPR on firm production costs.
Up until now, we limited the scope of our analysis to the firm’s production of information.
This allowed our framework to accommodate multiple specifications for how information
might be integrated into the production function. In this subsection, however, we sacrifice
some generality to analyze how changes in the cost of information translate into changes
in production costs for firms under additional assumptions.

We follow Lashkari et al. (2023) by using a nested and homothetic CES production
technology, where information 𝐼 is combined with a constant returns to scale aggregator
of non-information inputs such as capital and labor, 𝑀(𝐿, 𝐾, ·). We denote the production
function by:

𝑌𝑖 = 𝜈𝑖

[
𝛼𝑖𝐼

𝜌̄−1
𝜌̄

𝑖
+ (1 − 𝛼𝑖)𝑀

𝜌̄−1
𝜌̄

𝑖
)
] 𝜌̄

𝜌̄−1

, (11)

where 𝜈𝑖 denotes firm-specific productivity, 𝛼𝑖 denotes firm-specific information intensity
in production, and 𝜌̄ is a key parameter that represents the elasticity of substitution between
information and non-information inputs.

Rather than expressing the unit cost function as in Equation (10), which required
data on prices and other firm-level parameters, we show in Appendix G.1 that under some
simplifying assumptions—that all inputs are flexible, inputs have common prices, and that
firms do not have market power—we can use aggregate industry-level data and cost shares
to derive how information cost changes translate into production costs. More explicitly,
we can provide a benchmark for the effect of the GDPR on production costs using only
the cost share of information (𝑠 𝐼

𝑖
) and elasticity of substitution between information and
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Table 7: Effects of GDPR on Production Costs

Software Services Manufacturing
(1) (2) (3)

Key Parameter Estimates
Increase in Information Costs (𝜃𝑖)

Mean increase 0.04 0.03 0.02
5th - 95th percentile increase [0.03 - 0.05] [0.02 - 0.04] [0.01 - 0.03]

Elasticity of Substitution (𝜌̄)
Lashkari et al. (2023) 0.83 0.18 0.17

Information Expenditure Share (𝑠 𝐼
𝑖
)

Median share 11.8% 5.0% 3.1%
Range of estimates 8.7% - 16.7% 2.9% - 5.0% 2.3% - 3.3%

Results
Increase in Production Costs (𝜁𝑖)

Mean increase 0.47% 0.15% 0.06%
Range of estimates [0.26% - 0.82%] [0.06% - 0.20%] [0.02% - 0.10%]

Notes: Table presents estimates of Equation (12) calibrated with increases in the cost of information estimated
in Section 6.3 and information expenditure shares estimated from Aberdeen and other industry surveys for
each industry. The mean increase in production costs is calculated with the mean increase in information
costs and the median information expenditure share. The contribution to the GDP is calculated using OECD
National Accounts using the output approach. The range of estimates is calculated by combining the 5th - 95th

percentile increases in information costs with the lower and upper range of information expenditure share
estimates, respectively. The cost attributed to the GDPR is the multiplication of the increase in production
costs, the contribution to the GDP, and the 2018 EU GDP at 2018 current prices. Column (1) presents these
estimates for software firms, which are defined through SIC codes 7370 - 7377 in our data. Column (2)
presents estimates for non-software service firms. Column (3) presents estimates for manufacturing firms.
Appendix G provides more detail about the information expenditure share estimates, the point estimates of
𝜌̄ taken from Lashkari et al. (2023), and our calculation of the contribution to the GDP by industry.

non-information inputs (𝜌̄) as sufficient statistics:

𝜁𝑖 =
(
(1 + 𝜃𝑖)1−𝜌̄ · 𝑠 𝐼𝑖 + 1 − 𝑠 𝐼𝑖

) 1
1−𝜌̄ − 1, (12)

where 𝜁𝑖 represents the increase in production costs that arise from 𝜃𝑖 , the increase in
the information cost. Equation (12) reveals intuitive comparative statics: a given increase
in the cost of information translates into larger increases in production costs for larger
information shares (𝑠 𝐼

𝑖
) and lower elasticities (𝜌̄).

Now, we turn towards estimating 𝜁𝑖 . First, we note that we previously calculated 𝜃𝑖
in Section 6.3. Next, we need the elasticity of substitution between information and non-
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information inputs. As estimating requires information on non-data inputs (e.g., capital
and labor), we rely on the estimates by Lashkari et al. (2023).45

Finally, we turn towards the last remaining estimates needed to calculate 𝜁𝑖 : the infor-
mation expenditure shares 𝑠 𝐼

𝑖
. We cannot calculate these directly from our data. In fact,

estimates are difficult to calculate directly at the firm level more generally, as most pro-
duction datasets do not provide information on “information-related inputs."46 Instead,
we proxy for information costs by using IT-related expenditures to estimate a range of
information cost shares at the industry level.

For this purpose, we turn to the Aberdeen data set and various industry-level surveys,
which we discuss in detail in Appendix G.2.47 While we might expect each source to
suffer from distinct drawbacks, we find that the sources generate remarkably consistent
estimates for the information share of expenditure across industries. Appendix Table
OA-10 provides the estimates from each source separately, and we both use the median
estimate and interquartile range of estimates for our calculations.

We present our parameter estimates and the estimated ranges for 𝜁𝑖 from Equation
(12) in Table 7. We estimate that production costs increase 0.47% on average for software
firms. These average increases are significantly larger than the mean increases which we
calculate for services and manufacturing firms, which are 0.15% and 0.06%, respectively.
This difference is primarily driven by the larger information expenditure shares of software
firms: the median expenditure share estimate for software firms is 11.8% compared to 3.1%
for manufacturing firms. This difference is compounded by the fact that software firms
also face the largest average wedges and resulting increases in the cost of information.

To provide a sense of the quantitative magnitudes associated with our estimated in-
creases in production costs, we multiply our estimates (𝜁𝑖)by the amount of GDP accounted
for by each industry in the Euro Area in 2018.48 This exercise implies an annual variable
production cost increase for the software industry on the order of €3 billion. Furthermore,
although service and manufacturing industries experienced smaller relative increases in
production costs, the importance of these industries implies associated annual GDPR costs

45Lashkari et al. (2023) study France from 1995 - 2007. Although their setting predates ours, their compre-
hensive data on firm-level information technology investment and industry-level estimates are useful in
considering how the wedges introduced by privacy laws might translate into production costs for firms.

46While some researchers have leveraged data from the U.S. Census to track spending on digital technologies
(e.g., Zolas et al., 2021; McElheran et al., 2023), they do not provide relevant industry-level estimates of this
statistic that we could use for our estimation.

47While these sources only partially capture the information expenditure share and capture different samples
of firms, we aim to provide a range of plausible values by combining estimates across surveys and years.

48Our estimates of the GDP accounted by each industry (and their share of the GDP) are €639 billion (5.53%),
€7.84 trillion (67.86%), and €1.95 trillion (16.88%) for software, services, and manufacturing, respectively.
We discuss how we attribute GDP to industries in greater detail in Appendix G.2.
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on the order of €11.8 and €1.2 billion, respectively.49
We view these results as providing evidence that the direct impacts of the GDPR

that we estimated translated into highly heterogeneous effects on production costs, with
substantial increases in production costs for data and information-intensive industries.

7 Conclusions
In this paper, we examine the impact of the GDPR on firm data input choices. Comparing
EU firms affected by the GDPR to similar firms in the US, we document that the GDPR
decreased the amount of data used by firms. Firms subject to the GDPR decrease the
amount of data stored by 26% and the amount of computation by 15% by the second
year after the GDPR, becoming less data-intensive. Our results contribute to the literature
documenting the costs of GDPR, complementing the existing literature by focusing on
data outcomes that have been rarely studied.

We also map the observed shift in input choices to the production cost of the GDPR
using a production function model that we develop and estimate. Our data allows us
to estimate “data usage” as a multi-dimensional object composed of both storage and
computation units. We propose a framework in which firms produce “information," an
intermediate good, using storage and computation as inputs. We show that data storage
and computation are complements in production. To our knowledge, these are the first
estimates of such a trade-off. Having estimated these results, we then use our model to
measure the cost of the GDPR, and we find that the measures that firms had to adopt
are equivalent to an increase in the cost of data storage of around 20%, with substantial
variation both within and across industries. Software industries, whose firms may be
more exposed to the GDPR than manufacturing firms, and small firms, which may find
compliance more costly, experience more significant distortions in their demand for storage
and computation.

Using our estimates of key model parameters, such as firm-level compute technology,
input prices, and the elasticity of substitution between data storage and computation, we
find that these increases in the costs of data for firms translate into significant increases
in “information" production costs, with average increases on the order of 3%. Finally,
by using information as an input in a flexible nested-CES framework, we show that un-
der standard assumptions, our estimated wedges translate into extremely heterogeneous
increases in production costs across industries. These effects range from smaller 0.06%

49These numbers are in the same ballpark as some of the available estimates from surveys. For example, Ernst
& Young consultants argued that in 2018, the largest 500 corporations in the world were on track to spend a
total of $7.8 billion to comply with GDPR (Bloomberg Businessweek, 2018).
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increases in production costs for manufacturing firms to substantially larger estimates of
0.47% increases in production costs for data and information-intensive industries such as
software.

Our results reinforce the importance of studying the impact of privacy regulation on
firm production, and they emphasize the importance of considering “data usage” as a
multi-dimensional object and studying how firms combine data and computation. We
reiterate, however, that this paper is only a partial analysis of the welfare effects of the
GDPR. This paper is completely agnostic to the benefits that consumers derive from the
information disclosures provided by the GDPR or the surplus derived from the increased
privacy protections that such a law entails. A full welfare analysis must incorporate these
benefits into a single estimation framework.
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A Additional Exhibits

Figure OA-1: Event Study Estimates of the Effect of GDPR on Cloud Inputs
(Effects on Storage by Industry)
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(b) Non-Software Services Firms
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(c) Manufacturing Firms
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(d) Other Firms
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Notes: Figure presents estimates of equation (1) of 𝛽𝑞 , the coefficient on the quarter of the move interacted
with our treatment indicator, when the outcome is log storage. The coefficient in the quarter before the
GDPR’s implementation is normalized to zero. Dashed bars represent the 95 percent confidence intervals,
and standard errors are clustered at the firm level. Results are broken down by industry, and red dots show
the main estimates from the paper. The full definition of industries and the corresponding observation
numbers are available in Table 4.
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Figure OA-2: Event Study Estimates of the Effect of GDPR on Cloud Inputs
(Effects on Compute by Industry)
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(c) Manufacturing Firms
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(d) Other Firms
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Notes: Figure presents estimates of equation (1) of 𝛽𝑞 , the coefficient on the quarter of the move interacted
with our treatment indicator, when the outcome is log computation. The coefficient in the quarter before the
GDPR’s implementation is normalized to zero. Dashed bars represent the 95 percent confidence intervals,
and standard errors are clustered at the firm level. Results are broken down by industry, and red dots show
the main estimates from the paper. The full definition of industries and the corresponding observation
numbers are available in Table 4.
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Figure OA-3: Elasticity of Substitution Between Storage and Computing for US Firms

0.0

0.2

0.4

0.6

Software Services Manufacturing

E
la

st
ic

ity
 o

f S
ub

st
itu

tio
n

Pre−GDPR

Post−GDPR

Notes: This table presents our estimation results of the elasticity of substitution between storage and comput-
ing (𝜎) across industries. We present separate estimates for the pre- and post-GDPR (𝜎1 and 𝜎2, respectively).
Standard errors are calculated using 100 bootstrap repetitions.

Figure OA-4: Additional Results on Information Cost
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Notes: Figure presents our additional estimation results for the change in the cost of information induced
by the GDPR. Panel (a) presents the average estimated increase in the cost of information by the pre-GDPR
level of the total expenditures in data. Panel (b) shows our estimates of the "firm re-adjustment" contribution
to the total change in the cost of information, computed firm by firm as the difference between the increase
in the cost of information and the first order approximation given by the data expenditure share times the
wedge.
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B The Impact of the GDPR on Firms

B.1 GDPR Summary

In this section, we present a more detailed description of the GDPR. In particular, we focus
on the main changes that firms must implement to comply with the GDPR. This section
is compiled from information presented in IT Governance Privacy Team (2017), Dibble
(2019), Voigt and Von dem Bussche (2017), O’Kane (2017) and original GDPR legal text.

Definition of Controller and Processor (Article 4). A controller is defined as an entity
that determines the purposes and means of processing personal data. A processor, on the
other hand, is defined as an entity that processes personal data on behalf of a controller.
Under the GDPR, a processor is not considered a third party, so the controller can involve
a processor at its discretion and does not need a legal basis to do so. If a processor is
chosen, it must be suitable and provide sufficient guarantees to implement appropriate
technical and organizational measures that meet GDPR requirements and protect data
subjects’ rights. Both parties must enter into a written contract or other legal agreement to
bind the processor to the necessary conditions.

Records of Processing Activities (Article 30). Controllers and processors must create
records of their processing activities that include details on the purposes of processing, the
categories of data being processed, and descriptions of the technical and organizational
security measures in place. There are exceptions to record-keeping requirements for
organizations with fewer than 250 employees, unless the processing it carries out is likely to
result in a risk to the rights and freedoms of data subjects, the processing is not occasional,
or the processing includes special categories of data.

Designation of a Data Protection Officer (Article 37). GDPR requires data controllers
and processors to designate a Data Protection Officer (DPO) in the following cases: (i) the
processing is carried out by a public authority or body, except for courts acting in their
judicial capacity; (ii) the core activities of the controller or the processor involve regular
and systematic monitoring of data subjects on a large scale; (iii) the core activities of the
controller or the processor consist of processing on a large scale of special categories of
data listed in Article 9 and Article 10.

Preparing a Data Protection Impact Assessment (Article 35). If an intended processing
activity, especially one involving new technologies, is likely to result in a high risk to the
rights and freedoms of data subjects, then firms must conduct a Data Protection Impact
Assessment (PIA) to identify and implement appropriate measures to mitigate privacy
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risks. The PIA should be conducted at the start of a project so that all stakeholders are
aware of any potential privacy risks. The PIA should include the following components:
(i) a systematic description of the purposes and planned processing operations, including
the controller’s legitimate interests (if applicable); (ii) an assessment of the necessity and
proportionality of the processing in relation to the purpose; (iii) an assessment of the risks
to the rights and freedoms of the data subjects; and (iv) the measures planned to address
these risks.

Technical and Organizational Measures for Data Security (Article 32). The controllers
must put in place technical and organizational measures to ensure the protection of per-
sonal data. They should implement appropriate data protection policies that are pro-
portionate to their processing activities with a risk-based approach. The GDPR does not
specify a specific set of security controls that firms must implement, but rather encourages
data controllers and processors to implement "appropriate" controls based on risk.

Data Subject Rights (Article 14-21). Under the GDPR, individuals have extensive rights
when their personal data is collected by data controllers. These rights include the right to
request data erasure, data transfer, and data access. If a request is made by a data subject,
the firm must respond to the request without undue delay and generally within one month
of receiving the request. As a result, firms may need to proactively fulfill a number of
obligations so that they are able to quickly provide information about their processing,
erase personal data, provide or transfer specific data, or correct incomplete personal data.

Data Breach Notification (Article 33). Under the GDPR, controllers have a general duty
to report personal data breaches to Supervisory Authorities within 72 hours of becoming
aware of it. When a personal data breach is likely to result in a high risk to the rights and
freedoms of natural persons, the controller must notify the affected data subjects without
undue delay.

Penalties and Increased Liability Risk (Article 83). The GDPR makes it easier for data
subjects to bring civil claims against data controllers and processors. The data subject
does not need to have suffered financial loss or material damage (e.g., loss or destruction
of goods or property) to bring a claim. They can also claim for non-material damage, such
as distress or hurt feelings. The GDPR sets out two levels of administrative fines. The
higher level of fines can be up to €20 million or 4% of the total global annual turnover
of the preceding financial year, whichever is higher. This level applies to infringements
of certain fundamental principles, such as the basic rights and freedoms of individuals.
The lower level of fines can be up to €10 million or 2% of the total global annual turnover
of the preceding financial year, whichever is higher. This level applies to other types of
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infringements.

B.2 The Compliance Cost of the GDPR

Compliance with the GDPR is likely to create significant costs for firms. Some of these costs
are one-time fixed costs that are associated with actions required for initial compliance with
the GDPR, while others are ongoing variable costs required for continuous compliance.
In this section, we present evidence highlighting the impact of the GDPR on firm costs
collected from various firm surveys. See Chander et al. (2021) for an overview of the costs
of compliance associated with data privacy laws for businesses.

Although there are no official statistics available on the overall cost impact of the
GDPR, surveys provide information on the cost of compliance with GDPR regulations.
The estimates range from an average of $3 million (Hughes and Saverice-Rohan, 2018) and
$5.47 (Ponemon Institute, 2017) to $13.2 million (Ponemon Institute, 2019) depending on
the composition surveyed firms. Importantly, the responses to these surveys indicate that
these costs do not consist solely of one-time costs, and firms expect to incur these costs
repeatedly (Ponemon Institute, 2019). Studies that provide a breakdown of these costs
indicate that a high percentage of the costs (between one-fifth and one-half) are the labor
costs of privacy compliance personnel. Technology accounts for 12 to 17% of total GDPR
cost depending on the study. Outside consultants and lawyers accounted for another 19
to 24%, depending on the study (Ponemon Institute, 2019; Hughes and Saverice-Rohan,
2019).

B.2.1 Fixed and Sunk Costs

Operational Changes for Data Security and Processing The GDPR potentially requires
many operational changes from firms, such as implementing data protection management
systems. These changes involve sunk and fixed costs. The cost component associated with
operational changes can be quite large, independent of the quantity of data a firm has
or uses. This is because firms must develop and implement technical and organizational
measures to comply with potential consumer requests and other reporting requirements
for data breaches. Other components of fixed costs include data mapping, writing privacy
notices, and training employees on GDPR compliance.

Data Protection Officer The GDPR requires a data protection officer (DPO) for some
firms depending on their data processing activity. Even though DPO is a primarily fixed
cost, it can also be seen as a variable cost since the number of employed DPOs can increase
with firm size and data. A survey by IAPP with 370 respondents suggests that 18% of
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firms have appointed multiple DPO (Hughes and Saverice-Rohan, 2017), indicating that
DPO could be a variable cost for large firms.

B.2.2 Variable Costs

Some of the costs associated with GDPR compliance are variable and scale with the
size of the organization and the amount of data it possesses. According to a survey
conducted by DataGrail, 88% of firms spend over $1 million, and 12% spend more than
$10 million annually to maintain GDPR compliance (DataGrail, 2020). The heterogeneity
in continuous compliance costs suggests that some costs are variable and change with
firm size and amount of stored data. Below we provide some examples of variable GDPR
compliance costs.

Handling Customer Requests Under the GDPR, consumers have the right to have their
data erased, transferred, or even made available for their downloading. The costs of han-
dling these requests are likely to be variable, as companies with more data are more likely
to receive requests. Survey evidence supports this conclusion. According to (DataGrail,
2020) 58% of companies receive more than 11 customer requests per month and 28% re-
ceive more than 100 requests. More than half of companies have at least 26 employees
managing these requests. Moreover, only 1% of companies report fully automating these
requests, with 64% handling them entirely manually.

Recording Data Processing Activities An important aspect of the GDPR is creating a
plan for new projects that involve data collection and processing. For example, if a firm
needs to implement a new machine learning algorithm with new variables, it must do
a detailed analysis for risk assessment, cost-benefit analysis, and necessary safeguards to
prevent potential future issues. This constitutes a significant project-specific cost that might
affect the cost-benefit trade-off for implementing new data collection projects. Therefore,
some projects that involve data might not be implemented due to this additional cost.

Improved Data Security Keeping data in a more secure environment can also increase
the variable cost of data, especially for cloud computing users. Cloud providers offer
different tiers of security for their storage services, with higher levels of security typically
corresponding to higher costs. Purchasing these additional storage services as a result of
the GDPR would increase the marginal cost of storing data for firms.

Liabilities The maximum penalties under the GDPR include fines of up to €20 million
or 4% of the company’s global annual revenue, whichever is greater. However, the actual
penalty amount is determined by the nature and severity of the violation and is likely to
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be increasing with the amount of data stored by the firm. Moreover, one can imagine that
the probability of a cyberattack could increase with the amount of data. Another related
variable cost is cybersecurity insurance. Of the 1,263 organizations surveyed in Ponemon
Institute (2019), 31% of respondents purchased insurance covering cyber-risks. Of those
insured, 43% had insurance coverage for GDPR fines and penalties.

B.3 Publicly Available GDPR Fine Data

Our primary source of publicly available fine data is a database maintained by CMS Legal
Services, a large international law firm that operates in over 40 countries. This data
provides an overview of the public fines and penalties that data protection authorities
have imposed under the GDPR. Although not all fines are made public, the data on public
fines is quite rich, containing the fine amount, the entity being fined, the country of the
fine, and the GDPR articles under which the fine was leveled.50 The database contains
more than €3 billion in fines levied in the five years after the implementation of the GDPR.
Furthermore, there are primary and secondary sources associated with each of the fines
in the database.

For each fine, we scrape the fine amount, the entity that it was levied on, the date, and
the reason that the fine was levied. In Figure 1 in the paper, we show the distribution of
fine sizes, highlighting that there is considerable variation in the size of the fines. There is
also substantial variation in the specific reasons that fines were levied, and these reasons
fall into eight categories: (a) insufficient legal basis for data processing, (b)insufficient
involvement of data protection officer, (c) insufficient technical and organizational mea-
sures to ensure information security, (d) insufficient fulfillment of information obligations,
(e) non-compliance with general data processing principles, (f) insufficient fulfillment
of data subjects rights, (g) insufficient cooperation with the supervisory authority, and
(h)insufficient fulfillment of data breach notification obligations. For brevity, we label
these as “legal basis", “data protection officer", “data security", “information obligations",
“data principles", “data subject rights", “non-cooperation", and “data breach notifications"
respectively.

In Figure OA-5, we show the share of fines that were levied under each reason and the
median fine size conditional on the reason. Perhaps unsurprisingly, data security concerns
result in the largest types of fines. The median fines for insufficient information security
and insufficient notification of data breaches are €15,000 and €18,850 respectively, while the
median fines for non-cooperation and insufficient fulfillment of information obligations

50We scraped this data in May 2023 through https://www.enforcementtracker.com/.
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Figure OA-5: Publicly Reported GDPR Fines
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Notes: Figure presents the distribution of reasons given for GDPR fines, using the publicly reported fine
data described in Appendix Section B.3. Fine reasons are derived from the GDPR Article quoted in the fine,
and these reasons are broken out into eight categories by CMS Law. We drop the 1.5% of fines that have no
quoted GDPR article. These categories are described in further detail in Appendix Section B.3. The median
fine size by reason is provided in blue text on the right side of the figure.

are €3,000 and €2,000 respectively. Overall, the distribution of the reasons given for the
publicly available GDPR fines suggests that fines may be levied against firms for a variety
of reasons.
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C Data Appendix

C.1 Cloud Computing Details

Cloud computing resources can be categorized into three forms: Infrastructure as a Ser-
vice (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS). IaaS provides
storage, computing and networking services on demand. PaaS provides a complete de-
velopment environment in the cloud, providing low-level infrastructure for development.
SaaS provides packaged software services ready to be deployed and used. In this section,
we provide details on how firms perform computation and storage in cloud computing.

C.1.1 Computation

Firms that require computation on the cloud typically opt for virtual machines (VMs).
VMs are a type of cloud computing “compute" product that allows users to create and
manage virtual machines instead of maintaining their own physical hardware.51 These
VMs run on virtualized infrastructure provided by a cloud computing provider and can
access software and computing resources. These machines are typically fully customizable
and controlled by the user. Cloud computing VMs can be configured in various ways.
Some of the features of virtual machines that can be customized include memory, storage,
networking options, CPU, operating system, and the location of the data center that hosts
the VM. Cloud computing providers offer hundreds of different configurations, and the
user chooses the exact configuration when requesting a VM.

In our paper, we use the number of CPU cores in a virtual machine as the key measure
of computation outcome because this is the key vertical VM characteristics that determines
computing performance. We note, however, that this approach does not take into account
heterogeneity in other characteristics, such as how much memory and network capability
is combined with the number of cores.

The unit of observation is "core hours" which refers to the amount of computing time
used by a virtual machine (VM) instance over a given period. The number of core hours
used by a VM instance is calculated by multiplying the number of CPU cores by the
number of hours the instance is running. For example, if a user runs a VM instance with 4
CPU cores for 10 hours, the total core hours used would be 4 x 10 = 40 core hours. Cloud
providers typically use core hours as the relevant measure of VM usage for billing users.

51There are other “compute" products—such as containers and serverless computing—that were also available
during our sample period, but they were not extensively used.
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C.1.2 Storage

Cloud providers offer a wide range of storage products that can be used for various
purposes, including storing and managing data, backing up and recovering data, and
archiving data for long-term retention. These products can be categorized into two types:
disk storage and database storage. Disk storage provides physical hardware where firms
can store a wide variety of data, including operating system files, applications, documents,
and multimedia files. Disk storage can include different physical configurations, such as
Hard Disk Drives (HDDs) and Solid-State Drives (SSDs), as well as Storage Area Networks.
Disk storage can also differ based on other characteristics such as upload and download
speed. Databases, on the other hand, are collections of structured data that are hosted and
managed in a cloud computing environment by a cloud provider. The differentiation of
databases refers to the various types of databases available and their specific features and
characteristics, such as MySQL, NoSQL, Oracle, and PostgreSQL.

Firms typically use storage in one of two ways. First, when a firm creates a VM on a
cloud provider’s infrastructure, it can choose the amount of disk storage that it needs and
specify the performance and reliability characteristics that it requires. They would use
this disk storage when doing computation in that virtual machine. Second, firms might
request either disk storage or databases to store and manage application data, and this
storage might be used for supporting real-time applications and services or as archiving
storage.

Our unit of observation for storage is storage capacity or the amount of storage space
used. This is typically measured in gigabytes (GB) or terabytes (TB) and represents a direct
measure of how much data firms store, although it does not measure the ways in which
storage products may be vertically or horizontally differentiated. An important example
of storage differentiation is upload and download speed.

C.2 Sample Selection and Cleaning

In this section, we discuss our sample construction in greater detail. We define a firm as
a unique internal identifier for whom we are able to observe industry classification and
location information. Using this definition, we are able to capture approximately 90% of
storage and 95% of computation in our entire sample.

Next, we clean the data by removing outlying observations. In order to tag a firm as an
outlier, we require that we observe the firm’s usage in the months immediately preceding
and following a given month. We define outliers as large and sudden temporary spikes or
temporary dips. These are months where a firm’s usage is either twenty times more or less
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usage than the same firm’s usage in the months immediately preceding and following the
month. We also filter these by minimum size change, to ensure that we are not spuriously
removing small firms with more volatile usage. This cleaning removes less than 0.1 percent
of observations. We also worked with internal employees to conduct some minor cleaning
to remove a small fraction of firms whose observations are affected by the introduction
and phaseout of older service models for our provider.

We then construct our sample by conditioning on continuous firm observation for
one full year exactly two years before the GDPR. Although the resulting sample of firms is
smaller, conditioning on the continuously observed firms does not significantly change the
share of data that we observe. In fact, these continuously observed firms are responsible
for about 90 percent of storage and computation before the GDPR. We present summary
statistics on these sets of firms below in Table OA-1. While for confidentiality, we cannot
provide direct comparisons between the number of firms before and after this conditioning,
the mean storage and compute are given relative to a baseline normalization of 1,000 mean
units of storage for our baseline sample in Table 2. We can see that our we restrict to a
larger sample of firms in our baseline sample.

Table OA-1: Summary Statistics: Before Conditioning on Observation Period

Industry Share Share Share Mean Mean Share
of Firms Compute Storage Storage Compute EU

Software 18.0 20.6 16.6 341 331 58.6
Services 47.1 34.5 38.6 408 296 38.2
Manufacturing 7.7 11.4 10.2 593 518 55.5
Other 27.2 33.6 34.6 651 479 49.7

All 100 100 100 468 345 46.3

Notes: Table presents summary statistics from our matched sample of firms. A description of the sample’s
construction can be found in Section 3.1 and a more detailed description of the sample construction can be
found in Appendix C. This sample presents firms in Cases 1 and 4, as described in Table 1. For confidentiality
purposes, we do not report the total number of firms. We also normalize the units of mean storage and mean
computation such that everything is presented relative to a mean of 1,000 mean storage units in our baseline
sample (Table 2).

C.3 Aberdeen Sample

Aberdeen is a market research firm that provides valuable information on firms’ hardware
and software investments. They gather this information from various sources. Every year,
they survey a sample of senior IT executives about their software and hardware usage and
extrapolate this information to non-surveyed firms. Additionally, they conduct large-scale
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data collection efforts, such as web scraping job postings and purchasing customer lists
from vendors to identify software choices. Our understanding is that technology adoption
information comes only from the latter source. This data also includes sales, the number
of employees, industry, and a DUNS number, and these firm characteristics are sourced
from Duns & Bradstreet. Our sample of Aberdeen data covers the period from 2015 to
2021 at the annual level. The data from Aberdeen has been used to study digitization and
technology adoption (Graetz and Michaels, 2018; Tuzel and Zhang, 2021).

We use Aberdeen to measure the market shares of cloud providers in Europe and US.
Aberdeen provides information at two levels: the site level and the enterprise level. A site
refers to a physical location, while an enterprise corresponds to a firm (which may have
multiple sites). The data includes unique site and enterprise IDs and a crosswalk that
links the two. On average, the dataset covers more than 2 million sites and the technology
adoption information is reported at the site level. We aggregate this site-level information
to the enterprise level by assuming that if at least one site of an enterprise uses a technology
from a given provider, the enterprise uses the technology from that provider.

C.3.1 Match Procedure Between Aberdeen and Cloud Data

Aberdeen’s data contains valuable information, such as revenue and employment, that we
use to study the heterogeneity of our results and to illustrate how firms use the cloud.
However, there is no single identifier we can use to match the anonymous cloud provider’s
data to Aberdeen, so we must resort to ‘non-exact’ procedures (also known as fuzzy
matching) to link these two datasets. In both the cloud provider’s and Aberdeen’s data,
we observe names, DUNS numbers, websites (URL), and partial address information,
including postal codes, city, state, and country of the given firms. Additionally, we observe
both the subsidiary name and the parent company’s name in the Aberdeen data, which
provides us with two potential strings to match each of our observations in our cloud data.
Below we provide detail on the matching algorithm.

We use the Jaro-Winkler (JW) distance to match names, which considers the number
of transpositions and the number of matching characters between two strings. Intuitively,
strings with more characters in common and requiring fewer transpositions for one string
to be contained within the other have lower distances. For the same number of character
matches and transpositions, the JW distance is smaller for strings that match the first
characters of the strings.52

For each firm in the cloud computing dataset, we find the “closest” match in the

52In terms of the implementation, we use the Firm Merge Project (available at https://github.com/
microsoft/firm-merge-project) to implement the JW distance in finite time.
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Aberdeen dataset (either by using the parents or the subsidiaries’ name). We sequentially
match using the following criteria and say that two firms are a match if both:

1. Share the same DUNS number, or

2. Share the same website, or

3. Are in the same postal code and the name distance is less than 0.1, or

4. Are in the same city and the name distance is less than 0.08, or

5. Are in the same state and the name distance is less than 0.07, or

6. Are in the same country and the name distance is less than 0.065, or

7. Are in the same region (e.g., EU) and the name distance is less than 0.045.

Suppose a firm in the cloud computing data has multiple matches in the Aberdeen data.
In that case, we hierarchize based on the same order as we list our criteria above.53 Note
that we also allow for “looser” string matching when the geographic region in which we
search for a given firm is smaller. These cutoffs were chosen by visually inspecting the
data and balancing the false-positive and false-negative matches.

With this procedure, we are able to match close to 60% of firms in our baseline sample
to Aberdeen firms. We use this matched sample to study the heterogeneity of our result
based on firm’s employment size. The change of firm employment over time is not as
reliable at Aberdeen as the employment information does not change for a significant
number of firms over time. For this reason, we use the employment information in 2018
to define firm size.

C.3.2 Aberdeen Cross-check with Internal Data

Even though Aberdeen was widely used to measure IT spending in the 2000s, the data
has undergone changes in recent years, broadening its focus from hardware spending
to software adoption. While hardware expenditure predominantly relied on surveys,
the information on technology adoption at a larger scale mainly relies on web scraping,
publicly available information, and extrapolation. This raises the question of how reliable
the Aberdeen data is for technology adoption information. We find ourselves in a unique

53For example, for a firm in the cloud computing data that we match by criteria (1) and (3) to different firms in
the Aberdeen data, we only keep the match in criteria (1), given that DUNS numbers are designed as unique
firm identifiers.

OA - 15



position to offer a partial answer to this question because we possess internal data from
one of the largest cloud providers and cross-check Aberdeen data for this provider.

To implement this, we utilize the matched Aberdeen-internal data sample to investigate
whether Aberdeen accurately reports the adoption of our cloud computing provider. In
particular, we examine the true positive and false negative rates: (i) the proportion of actual
users of our cloud product that are correctly labeled, and (ii) the proportion of users who
do not use our cloud product that are correctly labeled. We find that the true positive rate
is 64 percent, increasing with firm size, and the true negative rate is 66 percent, decreasing
with firm size. This result suggests that while the Aberdeen data is not 100% accurate, it
still provides a valuable signal about cloud adoption.

OA - 16



D Robustness Checks
This Appendix goes through the most critical threats to identification. We first study
substitution to other providers in Appendix D.1. We then investigate whether differential
price changes (between the EU and the US) may be driving our results in Appendix D.2.
We study firms with and without website usage (to measure the extent to which cookie
collection drives our results) in Appendix D.3. Finally, we show that our results are robust
to alternative choices of empirical strategies, sample selection procedures, and extensive
margin / attrition in Appendix D.4.

D.1 Substitution to Other Providers

This section documents that substitution (to other cloud providers or to in-house IT ser-
vices) is unlikely to drive our results. We provide a battery of exercises, each of which
shows that substitution is unlikely to generate the patterns we observe in the data.

Substitution to Other Cloud Providers “Multi-cloud” usage—where firms get cloud
services from multiple cloud computing providers—-is common among firms. Industry
surveys suggest that 70 percent of cloud users are multi-cloud. Multi-cloud usage could
be a potential issue because we observe usage from only one cloud computing provider,
leading to incomplete data on cloud usage. If the GDPR changed the relative attractiveness
between our cloud computing provider and other providers, perhaps in terms of how easily
they accommodated GDPR regulations, then there could have been a differential change
in our provider’s market share in Europe and the US around the GDPR. This would pose
an identification challenge for us.

In particular, we might attribute a decline in cloud storage and computing to firms
simply switching their cloud usage to other providers. We note, however, that firms that
conduct both storage and computing are likely to do both with the same provider because
data cannot be stored with one provider but processed with another. For example, there
are essentially no observations where a firm uses cloud computing with our provider
without using cloud storage. Thus, our data intensity results should be less affected by
any changes in the relative attractiveness of cloud providers.

We attempt to address the identification challenge to our storage and computing results
with three additional exercises. First, we bring an external dataset, Aberdeen, that provides
information on firms’ technology adoption and which vendors they get cloud services
from. Using this dataset, we look at our provider’s share of firms that receive services
from each of the top cloud providers in Europe and US before and after GDPR and plot
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them in Appendix Figure OA-6. We find that the share of firms that are using our cloud
provider has moderately increased over time, while the share of firms using the other
cloud providers has decreased. Thus, we do not expect the relative attractiveness of the
cloud provider that we observe to have decreased after GDPR.

Figure OA-6: Change in Share of Firms Using Cloud Providers in the EU vs the US
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Notes: Figure presents estimates of the difference in the share of firms who use different cloud providers in
the EU vs the US. The data source is Aberdeen (formerly known as Harte Hanks). The dependent variable
on the left panel is equal to one if a firm uses the cloud provider that we study in this paper. The dependent
variable in the right panel is equal to one if a firm uses any of the other cloud providers. The coefficients
plot the difference in the share of firms who use the given cloud provider in the EU minus the share of firms
using the same provider in the US, normalizing to the differences in 2018.

Second, we identify single cloud firms using Aberdeen again and estimate our empir-
ical specification using only these firms. In Appendix C.3.2 we assess the reliability of
Aberdeen data to identify these single-cloud firms and show that Aberdeen data provides
useful information to detect single-cloud firms. Appendix Table OA-2 and Appendix Fig-
ure OA-7 present our estimates using this sample, which are quite similar to our baseline
estimates across all outcomes. As discussed in the paper’s main body, it is unlikely that
the declines we observe are simply driven by substitution in usage to other providers.

Finally, as discussed in Appendix B.1, the GDPR is likely to make multi-cloud usage
more difficult. Thus, switching between cloud providers is more likely to occur on the
extensive margin rather than the intensive margin. Thus, any cloud usage declines in a
sample of firms that continuously use our provider are unlikely to be driven by switching
between cloud providers. Appendix Table OA-3 presents estimates from a balanced panel
of firms, where positive cloud computing usage is observed two years before and after the
GDPR. These estimated coefficients for the short-run and long-run impacts of the GDPR are
quite similar to our baseline estimates. In particular, they are consistent with our findings
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Figure OA-7: Event Study Estimates of the Effect of GDPR on Cloud Inputs
(Excluding Multi-Cloud Firms)
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Notes: Figure presents estimates of equation (1) of 𝛽𝑞 , the coefficient on the quarter of the move interacted
with our treatment indicator. The coefficient in the quarter before the GDPR’s implementation is normalized
to zero. The outcome in each subpanel is denoted by the subpanel title. Dashed bars represent the 95 percent
confidence intervals, and standard errors are clustered at the firm level. Sample sizes are presented in Table
OA-2. The sample is composed of firms that do not use multiple cloud computing providers.
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Table OA-2: Short- and Long-Run Effects of GDPR
(Excluding Multi-Cloud Firms)

Storage Compute Data Intensity
(1) (2) (3)

Short-Run Effect -0.128 -0.085 -0.061
(0.020) (0.019) (0.023)

Long-Run Effect -0.258 -0.170 -0.121
(0.027) (0.028) (0.034)

Observations 944,982 530,123 328,973
US Firms 13,166 7,891 4,152
EU Firms 14,112 7,415 4,832

Notes: Table presents estimates of equation (2) of the short-run (𝛿1) and long-run (𝛿2) coefficients, which
estimate the impact of the GDPR in the first and second year after the GDPR came into force. Column
(1) estimates the effect on storage. Column (2) estimates the effect on computation. Column (3) presents
estimates of the data intensity. The sample excludes multi-cloud firms as described in Appendix D. Industries
are defined as the ten divisions classified by SIC codes, with the addition of a "software" division, which
we carve out of the services division and define through SIC codes 7370 - 7377. Pre-GDPR size deciles are
measured thirteen months before the GDPR. For data intensity, we define “size decile” as the interaction
between storage and compute terciles when measured in the period. Standard errors are clustered at the
firm level.

of a large decrease in both compute and storage alongside a decrease in data intensity.
Thus, the results from our balanced panel in Appendix Table OA-3 and Appendix Figure
OA-8 suggest that the declines in computation and storage we observe are not driven by
switching between providers.

Substitution to Traditional IT Next, we consider that firms might use both traditional IT
and cloud computing. To the extent that we cannot observe traditional IT usage, declines in
cloud computing may reflect re-allocations towards traditional IT rather than true declines
in computing. While increasing cloud computing adoption rates suggest that this margin
may not play an important role, we consider the possibility that post-GDPR, European
firms might have changed allocation between two ITs differently from the US firms.

This would invalidate our identification arguments for the effects of compute and
storage, though it should not necessarily affect the results on data intensity. To provide
a robustness check for this, we focus on start-ups, which are unlikely to be switching to
traditional IT. These are young software firms for which the upfront costs of traditional IT
make it unlikely for them to switch towards these technologies as they are likely to face
larger costs than e.g., more established firms. In Appendix Table OA-4 and Figure OA-9,
we actually find larger effects for these firms rather than smaller effects. This suggests that
the observed declines in computing and storage are unlikely to be driven by substitution
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Figure OA-8: Event Study Estimates of the Effect of GDPR on Cloud Inputs
(Balanced Panel Estimates)
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Notes: Figure presents estimates of equation (1) of 𝛽𝑞 , the coefficient on the quarter of the move interacted
with our treatment indicator. The coefficient in the quarter before the GDPR’s implementation is normalized
to zero. The outcome in each subpanel is denoted by the subpanel title. Dashed bars represent the 95 percent
confidence intervals, and standard errors are clustered at the firm level. Sample sizes are presented in Table
OA-2. The sample is a balanced panel, and details can be found in Appendix Section D.
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Table OA-3: Short- and Long-Run Effects of GDPR
(Balanced Panel Estimates)

Storage Compute Data Intensity
(1) (2) (3)

Short-Run Effect -0.221 -0.115 -0.046
(0.024) (0.020) (0.027)

Long-Run Effect -0.373 -0.205 -0.104
(0.030) (0.029) (0.037)

Observations 608,562 363,793 227,022
US Firms 7,588 5,126 2,872
EU Firms 7,953 4,112 2,849

Notes: Table presents estimates of equation (2) of the short-run (𝛿1) and long-run (𝛿2) coefficients, which
estimate the impact of the GDPR in the first and second year after the GDPR came into force. Column
(1) estimates the effect on storage. Column (2) estimates the effect on computation. Column (3) presents
estimates of the data intensity. The sample is a balanced panel, which is constructed as described in
Appendix D. Industries are defined as the ten divisions classified by SIC codes, with the addition of a
"software" division, which we carve out of the services division and define through SIC codes 7370 - 7377.
Pre-GDPR size deciles are measured thirteen months before the GDPR. For data intensity, we define “size
decile” as the interaction between storage and compute terciles when measured in the period. Standard
errors are clustered at the firm level.

to traditional IT.

Table OA-4: Short- and Long-Run Effects of GDPR
(Start-Ups Firms)

Storage Compute Data Intensity
(1) (2) (3)

Short-Run Effect -0.241 -0.100 -0.069
(0.036) (0.027) (0.034)

Long-Run Effect -0.424 -0.202 -0.165
(0.047) (0.040) (0.049)

Observations 311,128 267,066 157,616
US Firms 4,550 4,101 2,190
EU Firms 3,819 3,179 1,974

Notes: Table presents estimates of equation (2) of the short-run (𝛿1) and long-run (𝛿2) coefficients, which
estimate the impact of the GDPR in the first and second year after the GDPR came into force. Column
(1) estimates the effect on storage. Column (2) estimates the effect on computation. Column (3) presents
estimates of the data intensity. The sample is composed of start-up firms, classified according to a definition
internal to the cloud provider. Industries are defined as the ten divisions classified by SIC codes, with the
addition of a "software" division, which we carve out of the services division and define through SIC codes
7370 - 7377. Pre-GDPR size deciles are measured thirteen months before the GDPR. For data intensity, we
define “size decile” as the interaction between storage and compute terciles when measured in the period.
Standard errors are clustered at the firm level.
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Figure OA-9: Event Study Estimates of the Effect of GDPR on Cloud Inputs
(Start-Up Firms)
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Notes: Figure presents estimates of equation (1) of 𝛽𝑞 , the coefficient on the quarter of the move interacted
with our treatment indicator. The coefficient in the quarter before the GDPR’s implementation is normalized
to zero. The outcome in each subpanel is denoted by the subpanel title. Dashed bars represent the 95 percent
confidence intervals, and standard errors are clustered at the firm level. Sample sizes are presented in Table
OA-4. The sample is composed of start-up firms, where start-ups are labeled according to a definition
internal to the cloud provider.

OA - 23



D.2 Price Changes

One natural channel through which the GDPR may have affected firms is through price
changes in cloud computing. This would suggest our results might capture pricing re-
sponses by cloud providers rather than the GDPR’s direct impact on firms. For example,
if cloud computing providers increase their prices in the European Union relative to the
United States, this could confound our estimates. While conversations with internal em-
ployees suggest that there were no explicit pricing responses to the passage of the GDPR,
we also examine the data for evidence of any differential pricing trends between the EU
and the US, either in listed or paid prices. Appendix Figure OA-10 presents our results
when we estimate our event study specification using paid prices as the outcome. We find
no evidence of significant differential price changes.

Figure OA-10: Event Study Estimates of the Effect of GDPR on Cloud Inputs
(Effects on Paid Prices)
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(b) Compute Prices

-.4

-.35

-.3

-.25

-.2

-.15

-.1

-.05

0

.05

-8 -6 -4 -2 0 2 4 6
Quarter Relative to GDPR (June 2018)

Usage Prices

Percent Change in Compute and Compute Prices

Notes: Figure presents estimates of equation (1) of 𝛽𝑞 , the coefficient on the quarter of the move interacted
with our treatment indicator. The coefficient in the quarter before the GDPR’s implementation is normalized
to zero. The outcome in each subpanel is denoted by the subpanel title. Dashed bars represent the 95 percent
confidence intervals, and standard errors are clustered at the firm level. The dependent variables shown in
blue are our baseline estimates. The dependent variable shown in red is the paid price for each product.

D.3 Websites and Cookie Collection

One of the most salient aspects of the GDPR is the requirement that firms receive consent
for the collection of data. This is particularly important in the case of websites and cookies:
post-GDPR, websites that need to collect personal information must get explicit consent.
As studied by Aridor et al. (2022), there may also be selection in terms of which consumers
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choose to opt out of data collection and how valuable the remaining data is.
We aim to study whether our main effects are driven by the GDPR’s effect on websites

and how important the selection channel might be for our sample. To examine whether
or not web usage is driving our effects, we turn towards Table OA-5, where we proxy
for active website use through the usage of cloud-based web services. These are services
provided by our cloud provider that firms use to host their websites.

Re-estimating our empirical specification using firms with and without websites, we
indeed find that firms using web services seem to have been more affected by the GDPR
regulations: the effects on storage and computing are twice as large as those for non-
active website users. However, the results remain statistically significant for non-active
website users, and we additionally find that the adjustments in data intensity are similar.
These results suggest that our effects are not solely driven by exposure to the GDPR’s
web-based cookie consent requirements. Similarly, restricting our sample to firms with no
listed websites (regardless of whether that website is hosted within our cloud provider)
provides qualitatively similar results. Results for the latter are available upon request.

D.4 Additional Robustness Exercises

Alternative Empirical Specifications The analyses in Section 4 are robust to several
alternative specifications, including running our specification at the monthly level, the
exclusion of various fixed effects, and alternative log-like transformation specification
choices. Appendix Table OA-6 presents our event study results when the time periods are
defined at the monthly level rather than at the quarterly level. In our main specification, we
estimate coefficients and fixed effects at the quarterly level to preserve data confidentiality
and increase the precision of our estimates. We find that our estimated coefficients are
stable when we allow time trends to vary flexibly at the monthly level. The magnitudes of
the estimated declines in storage, declines in computation, and decreases in data intensity
are all quite similar to our baseline results.

We also consider the robustness of our analysis to the exclusion of our fixed effects. Our
baseline specification allows for time trends to vary flexibly by industry and pre-GDPR
size deciles. In the paper’s Table 3, we consider alternative fixed effect specifications,
including allowing time trends to only vary by industry, pre-GDPR size deciles, and not
allowing them to vary at all. We continue to observe the same features of our baseline
results, including large long-run declines in storage and compute and moderate decreases
in data intensity.

Finally, we consider alternative log-like transformations. Our baseline specification
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Table OA-5: Short- and Long-Run Effects of GDPR
(Heterogeneous Effects by Usage of Cloud-Based Web Services)

Baseline Web Users Non-Web Users
(1) (2) (3)

Panel A. Dependent variable: Log of Storage

Short-Run Effect -0.129 -0.242 -0.080
(0.018) (0.020) (0.010)

Long-Run Effect -0.257 -0.421 -0.174
(0.024) (0.024) (0.015)

Observations 1,143,149 255,057 888,092
US Firms 16,409 3,632 12,777
EU Firms 16,281 3,166 13,115

Panel B. Dependent variable: Log of Compute

Short-Run Effect -0.078 -0.124 -0.026
(0.016) (0.011) (0.010)

Long-Run Effect -0.154 -0.241 -0.060
(0.024) (0.018) (0.019)

Observations 672,942 343,286 329,656
US Firms 10,294 5,243 5,051
EU Firms 8,927 4,297 4,630

Panel C. Dependent variable: Log of Data Intensity

Short-Run Effect -0.072 -0.066 -0.084
(0.020) (0.013) (0.013)

Long-Run Effect -0.131 -0.118 -0.112
(0.029) (0.023) (0.024)

Observations 418,804 198,352 220,452
US Firms 5,487 2,714 2,773
EU Firms 5,872 2,608 3,264

Notes: Table presents estimates of equation (2) of 𝛿1 and 𝛿2, splitting our sample separately into firms that
were observed using cloud-based web services with our provider between 24 and 13 months before the
GDPR and those which were not. For comparison, Column (1) presents our baseline estimates across the
full sample. Standard errors are clustered at the firm level.
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Table OA-6: Short- and Long-Run Effects of GDPR
(Monthly Specification)

Storage Compute Data Intensity
(1) (2) (3)

Short-Run Effect -0.141 -0.085 -0.079
(0.018) (0.017) (0.021)

Long-Run Effect -0.291 -0.174 -0.136
(0.026) (0.027) (0.033)

Observations 1,143,149 672942 418,803
US Firms 16,409 10,294 5,487
EU Firms 16,281 8,927 5,872

Notes: Table presents estimates of equation (2) of 𝛿1 and 𝛿2, but where we allow our time trends to vary at
the monthly level rather than the quarterly-level. Industries are defined as the ten divisions classified by
SIC codes, with the addition of a "software" division, which we carve out of the services division and define
through SIC codes 7370 - 7377. Pre-GDPR size deciles are measured thirteen months before the GDPR.
For data intensity, we define “size decile” as the interaction between storage and compute terciles when
measured in the period. Standard errors are clustered at the firm level.

uses log(𝑥). In Appendix Table OA-7 below, we consider using asinh and log(𝑥 + 1). We
find essentially no difference between these transformations, suggesting that our results
are not sensitive to the behavior of our outcome transformations around zero.

Table OA-7: Short- and Long-Run Effects of GDPR
(Alternative Transformations)

Baseline Asinh Log(x + 1)
(1) (2) (3)

Storage:

Short-Run Effect -0.129 -0.129 -0.126
(0.018) (0.018) (0.019)

Long-Run Effect -0.257 -0.257 -0.253
(0.024) (0.025) (0.026)

Compute:

Short-Run Effect -0.078 -0.077 -0.076
(0.016) (0.016) (0.016)

Long-Run Effect -0.154 -0.153 -0.153
(0.024) (0.024) (0.025)

Notes: Table presents estimates of equation (2) of the short-run (𝛿1) and long-run (𝛿2) coefficients, which
estimate the impact of the GDPR in the first and second year after the GDPR came into force. Column (1)
shows our baseline specification with the natural lograithm of 𝑥. Column (2) transforms outcomes using the
inverse hyperbolic sine. Column (3) transforms outcomes by taking the logarithm (base 10) of 𝑥 + 1.
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Alternative Sample Definitions We also discuss the robustness of our analyses in Section
4 to alternative sample definitions. In particular, we show that our estimated coefficients
are relatively stable when estimated when conditioning on a different window of pre-
GPDR usage, and when using a larger and more inclusive definition of “firms" where we
don’t require any internal or external industry or operating information.

First, we consider alternative windows of pre-GDPR usage. In our baseline sample,
we use firms for whom we observe cloud usage continuously for a whole year exactly
two years before the GDPR. Appendix Table OA-8 presents estimates from the samples
constructed by instead conditioning on continuous observation one-year before the GDPR
(column 2) and both years before the GDPR (column 3).

Table OA-8: Short- and Long-Run Effects of GDPR
(Alternative Pre-GDPR Usage Windows)

(1) (2) (3)

Storage:

Short-Run Effect -0.129 -0.101 -0.144
(0.018) (0.029) (0.024)

Long-Run Effect -0.257 -0.283 -0.299
(0.024) (0.039) (0.034)

Compute:

Short-Run Effect -0.078 -0.078 -0.083
(0.016) (0.021) (0.021)

Long-Run Effect -0.154 -0.178 -0.178
(0.024) (0.033) (0.033)

Data Intensity:

Short-Run Effect -0.072 -0.066 -0.063
(0.020) (0.023) (0.023)

Long-Run Effect -0.131 -0.128 -0.121
(0.029) (0.035) (0.035)

Usage Observed During Year:
Two Years Before GDPR ✓ ✓
One Year Before GDPR ✓ ✓

Notes: Table presents estimates of equation (2) of the short-run (𝛿1) and long-run (𝛿2) coefficients, which
estimate the impact of the GDPR in the first and second year after the GDPR came into force. Column
(1) shows our baseline specification. Column (2) conditions on observing firms for the year before GDPR
(instead of two years before). Column (3) restricts the sample to firms continuously observed for the full two
years before GDPR. Industries are defined as the ten divisions classified by SIC codes, with the addition of
a "software" division, which we carve out of the services division and define through SIC codes 7370 - 7377.
Pre-GDPR size deciles are measured thirteen months before the GDPR. For data intensity, we define “size
decile” as the interaction between storage and compute terciles when measured in the period. Standard
errors are clustered at the firm level.
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Finally, we consider using a larger and more inclusive definition of “firms". Per Ap-
pendix C, we define firms in our baseline sample by requiring that there be either internal
or external information on the firm’s industry and country. In this larger sample, we drop
the restriction that we must observe the firm’s industry. Because there is no industry
information, we amend the specification in equation (2) so that fixed effects do not vary
by industry. Appendix Table OA-9 below presents our estimates using this alternative
sample.

Table OA-9: Short- and Long-Run Effects of GDPR
(More Inclusive Definition of Firms)

Storage Compute Data Intensity
(1) (2) (3)

Short-Run Effect -0.073 -0.059 -0.063
(0.013) (0.013) (0.015)

Long-Run Effect -0.151 -0.113 -0.117
(0.018) (0.020) (0.022)

Observations 2,224,810 1,097,922 756,996
US Firms 34,876 18,037 10,807
EU Firms 31,622 15,004 10,299

Notes: Table presents estimates of equation (2) of the short-run (𝛿1) and long-run (𝛿2) coefficients, which
estimate the impact of the GDPR in the first and second year after the GDPR came into force. However, we
do not allow the fixed effects to vary across industries (not all firms have industry information). Column
(1) estimates the effect on storage. Column (2) estimates the effect on computation. Column (3) presents
estimates of the data intensity. The sample incorporates firms for which we do not observe industry
information, as described in Appendix D. Pre-GDPR size deciles are measured thirteen months before the
GDPR. For data intensity, we define “size decile” as the interaction between storage and compute terciles
when measured in the period. Standard errors are clustered at the firm level.

Extensive Margin Although Appendix Table OA-3 suggests that our baseline estimates
are similar when we use a balanced panel of firms, we also directly examine whether the
GDPR caused differential attrition between firms in the European Union and the United
States. We study this using the following same specification but replacing the outcome
variable with an indicator for whether the firm has exited our sample. We present these
results in Appendix Figure OA-11.
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Figure OA-11: Event Study Estimates of the Effect of GDPR on Cloud Inputs
(Differential Attrition)
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(b) Compute Sample
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Notes: Figure presents estimates of equation (1) of 𝛽𝑞 , the coefficient on the quarter of the move interacted
with our treatment indicator. The coefficient in the quarter before the GDPR’s implementation is normalized
to zero. The outcome in each subpanel is denoted by the subpanel title. Dashed bars represent the 95 percent
confidence intervals, and standard errors are clustered at the firm level. In contrast to the main figures, the
dependent variable is an indicator for whether the firm has exited our sample.
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E Technical Appendix
This section provides the derivation of the results in Section 5.

E.1 First-Order Conditions

Assume that firms produce according to the following production function:

𝑦𝑖𝑡 = 𝑓 (𝑋𝑖𝑡 , 𝐼𝑖𝑡 , 𝜔𝑖𝑡),

where 𝐼𝑖𝑡 represents information,𝑋𝑖𝑡 is a vector of other observed inputs, and𝜔𝑖𝑡 represents
unobserved inputs. We assume that the information is produced according to the following
technology:

𝐼𝑖𝑡 =
(
𝜔𝑐
𝑖𝑡(𝐶𝑖𝑡)

𝜌 + 𝛼𝐷
𝜌
𝑖𝑡

)1/𝜌
.

Without loss of generality, we can normalize 𝛼 = 1 due to the homotheticity of the CES
production function:

(
𝜔𝑐
𝑖𝑡
(𝐶𝑖𝑡)𝜌 + 𝛼𝐷

𝜌
𝑖𝑡

)1/𝜌
= 𝛼𝜌

(
𝜔𝑐
𝑖𝑡
/𝛼(𝐶𝑖𝑡)𝜌 + 𝐷𝜌

𝑖𝑡

)1/𝜌.
We assume that firms choose variable inputs to minimize the cost of production taking

prices as given, a necessary condition for profit maximization. We also assume that firms
take productivity 𝜔𝑐

𝑖𝑡
as given which follows an exogenous process. This cost minimization

problem can be written as:

min
𝐶𝑖𝑡 ,𝐷𝑖𝑡

𝑝𝑐
𝑖𝑡
𝐶𝑖𝑡 + 𝑝𝑑𝑖𝑡𝐷𝑖𝑡 + 𝑝𝑥𝑖𝑡𝑋

𝑣
𝑖𝑡

s.t. 𝑓 (𝑋𝑖𝑡 , 𝐼𝑖𝑡 , 𝜔𝑖𝑡) ≥ 𝑌̄𝑖𝑡 ,

where 𝑌̄𝑖𝑡 is the target level of production and 𝑋𝑣
𝑖𝑡

denotes variable inputs. The FOCs with
respect to 𝐶𝑖𝑡 and 𝐷𝑖𝑡 can be written as:

𝜆𝑖𝑡 𝑓2(𝑋𝑖𝑡 , 𝐼𝑖𝑡 , 𝜔𝑖𝑡)
(
𝜔𝑐
𝑖𝑡(𝐶𝑖𝑡)

𝜌 + 𝐷𝜌
𝑖𝑡

)1/(𝜌−1)
𝜌𝐶

(𝜌−1)
𝑖𝑡

𝑤𝑐
𝑖𝑡 = 𝑝𝑐𝑖𝑡

𝜆𝑖𝑡 𝑓2(𝑋𝑖𝑡 , 𝐼𝑖𝑡 , 𝜔𝑖𝑡)
(
𝜔𝑐
𝑖𝑡(𝐶𝑖𝑡)

𝜌 + 𝐷𝜌
𝑖𝑡

)1/(𝜌−1)
𝜌𝐷

(𝜌−1)
𝑖𝑡

= 𝑝𝑑𝑖𝑡

where 𝜆𝑖𝑡 is the Lagrange multiplier. Taking the ratio of the two FOCs, we obtain:(𝐶𝑖𝑡
𝐷𝑖𝑡

) (𝜌−1)
𝜔𝑐
𝑖𝑡 =

𝑝𝑐
𝑖𝑡

𝑝𝑑
𝑖𝑡
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Taking the logarithm and rearranging the terms yields:

(1 − 𝜌) log
(𝐶𝑖𝑡
𝐷𝑖𝑡

)
− log(𝜔𝑐

𝑖𝑡) = log
( 𝑝𝑑

𝑖𝑡

𝑝𝑐
𝑖𝑡

)
(13)

By using 𝜎 = 1/(1 − 𝜌), we can obtain Equation (3) as presented in the main text

log
(𝐶𝑖𝑡
𝐷𝑖𝑡

)
= 𝜎 log

( 𝑝𝑑
𝑖𝑡

𝑝𝑐
𝑖𝑡

)
+ 𝜎 log(𝜔𝑐

𝑖𝑡). (14)

E.2 Including Labor in Information Production Function

In this section, we demonstrate that the derivation of the FOCs remains valid even if the
information production function includes labor input in the CES form. We consider labor
in the information production function because firms might require software engineers to
process data. To illustrate this scenario, we consider a nested CES form where data and
computation are nested:

𝐼𝑖𝑡 =
( (
𝜔𝑐
𝑖𝑡(𝐶𝑖𝑡)

𝜌 + 𝐷𝜌
𝑖𝑡

)𝑣/𝜌 + 𝛼𝐿𝐿
𝑣
𝑖𝑡

)1/𝑣

Taking the first-order conditions with respect to 𝐶𝑖𝑡 and 𝐷𝑖𝑡 , we obtain:

𝜆𝑖𝑡 𝑓2(𝑋𝑖𝑡 , 𝐼𝑖𝑡 , 𝜔𝑖𝑡)
( (
𝜔𝑐
𝑖𝑡(𝐶𝑖𝑡)

𝜌 + 𝐷𝜌
𝑖𝑡

)𝑣/𝜌 + 𝛼𝐿𝐿
𝑣
𝑖𝑡

)1/𝑣−1 (
𝜔𝑐
𝑖𝑡(𝐶𝑖𝑡)

𝜌 + 𝐷𝜌
𝑖𝑡

)𝑣/(𝜌−1)
𝜌𝐶

(𝜌−1)
𝑖𝑡

𝑤𝑐
𝑖𝑡 = 𝑝𝑐𝑖𝑡

𝜆𝑖𝑡 𝑓2(𝑋𝑖𝑡 , 𝐼𝑖𝑡 , 𝜔𝑖𝑡)
( (
𝜔𝑐
𝑖𝑡(𝐶𝑖𝑡)

𝜌 + 𝐷𝜌
𝑖𝑡

)𝑣/𝜌 + 𝛼𝐿𝐿
𝑣
𝑖𝑡

)1/𝑣−1 (
𝜔𝑐
𝑖𝑡(𝐶𝑖𝑡)

𝜌 + 𝐷𝜌
𝑖𝑡

)𝑣/(𝜌−1)
𝜌𝐷

(𝜌−1)
𝑖𝑡

= 𝑝𝑑𝑖𝑡

Taking the ratio of these FOCs yields the same equation as above:(𝐶𝑖𝑡
𝐷𝑖𝑡

) (𝜌−1)
𝜔𝑐
𝑖𝑡 =

𝑝𝑐
𝑖𝑡

𝑝𝑑
𝑖𝑡

.

Therefore, the information production function can accommodate labor. It is important to
note that this result relies on the specific nested CES functional form used in this analysis.
For instance, if data and labor were nested, the ratio of FOCs would involve labor and our
equivalence result would break down.

E.3 Derivation for Cost of Information

In this section, we derive the formula for the cost of information given by Equation (10). To
ease notation, we drop the subscript and use 𝑝𝑐 and 𝑝𝑑 to denote the price of computation
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and data, respectively. We also use 𝜔 in place of 𝜔𝑐 . From the first-order conditions, we
obtain:

𝐷1−𝜌 =
𝑝𝑐

𝑝𝑑

1
𝜔
𝐶1−𝜌 , (15)

which yields:

𝑝
𝜌/(𝜌−1)
𝑑

𝐶𝜌𝜔𝜌/(𝜌−1) = 𝑝
𝜌/(𝜌−1)
𝑐 𝐷𝜌.

Adding 𝑝𝜌/(𝜌−1)
𝑐 𝜔𝐶𝜌 to both sides of Equation (15) and simplifying yields:

𝐶𝑝𝑐
(
𝑝
𝜌/(𝜌−1)
𝑐 𝜔 + 𝜔𝜌/(𝜌−1)𝑝

𝜌/(𝜌−1)
𝑑

)1/𝜌
= 𝑝

𝜌/(𝜌−1)
𝑐

(
𝐷𝜌 + 𝜔𝐶𝜌)1/𝜌

. (16)

Similarly, adding 𝜔1/(𝜌−1)𝑝
𝜌/(𝜌−1)
𝑑

𝐷𝜌 to Equation (15) and simplifying yields:

𝐷𝑝𝑑
(
𝑝
𝜌/(𝜌−1)
𝑐 𝜔 + 𝜔𝜌/(𝜌−1)𝑝

𝜌/(𝜌−1)
𝑑

)1/𝜌 = 𝜔1/(𝜌−1)𝑝
𝜌/(𝜌−1)
𝑑

(
𝐷𝜌 + 𝜔𝐶𝜌)1/𝜌

. (17)

Adding Equations (16) and (17) and using 𝐼 =
(
𝐷𝜌 + 𝜔𝐶𝜌

)1/𝜌, we arrive at:

(
𝐷𝑝𝑑 + 𝐶𝑝𝑐

)
𝜔1/𝜌 = 𝐼

(
𝜔1/(𝜌−1)𝑝

𝜌/(𝜌−1)
𝑑

+ 𝑝𝜌/(𝜌−1)
𝑐

) (𝜌−1)/𝜌
.

To derive the cost of information, we need to express the sum
(
𝐷𝑝𝑑 +𝐶𝑝𝑐

)
as a function of

𝐼 and prices. We do this by isolating the sum on one side of the equation:(
𝐷𝑝𝑑 + 𝐶𝑝𝑐

)
= 𝐼

(
𝑝
𝜌/(𝜌−1)
𝑑

+ 𝜔1/1−𝜌𝑝
𝜌/(𝜌−1)
𝑐

) (𝜌−1)/𝜌

= 𝐼

(
(𝜔)𝜎

( 1
𝑝𝑐

)𝜎−1
+

( 1
𝑝𝑑

)𝜎−1
)1/(𝜎−1)

.

Finally, using 𝜎 = 1/(1 − 𝜌), we arrive at the desired cost function equation.

𝐶𝐼∗(𝐼𝑖𝑡 , 𝑝𝑖𝑡) = 𝐼𝑖𝑡

(
(𝜔𝑐

𝑖𝑡)
𝜎
( 1
𝑝𝑐
𝑖𝑡

)𝜎−1
+

( 1
𝑝𝑑
𝑖𝑡

)𝜎−1
)1/(𝜎−1)

.

E.4 Cost of Information Decomposition

In this section, we derive the formula for the decomposition of the cost of information.
We drop all subscripts to ease notation and start by substituting the values for the cost
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minimizing information cost, 𝐶𝐼∗, as:

𝐶𝐼∗(𝐼 , 𝑝,𝜆) = 𝑝𝑐𝐶
∗(𝐼 , 𝑝,𝜆) + 𝑝𝑑𝐷∗(𝐼 , 𝑝,𝜆)

where 𝐶∗(𝐼 , 𝑝,𝜆) and 𝐷∗(𝐼 , 𝑝,𝜆) are the arguments of the cost-minimizing function. We
will remove the function arguments to ease out notation even more. The total derivative
with respect to 𝜆 is obtaining by differentiating both sides with respect to 𝜆:

d𝐶𝐼∗

d𝜆 = 𝑝𝑐
dC∗

d𝜆 + 𝑝𝑑𝐷∗ + 𝑝𝑑(1 + 𝜆)dD∗

d𝜆

Multiplying both sides by 𝜆/𝐶𝐼∗ we obtain:

d𝐶𝐼∗

d𝜆
𝜆
𝐶𝐼∗

= 𝑝𝑐
dC∗

d𝜆
𝜆
𝐶∗ + 𝜆

(
𝑝𝑑𝐷

∗

𝐶𝐼∗

)
+ 𝑝𝑑(1 + 𝜆)dD∗

d𝜆
𝜆
𝐶∗

Rearranging terms, and multiplying the first term by 𝐶∗/𝐶∗, and the third by𝐷∗/𝐷∗ we get

d𝐶𝐼∗

d𝜆
𝜆
𝐶𝐼∗

= 𝜆

(
𝑝𝑑𝐷

∗

𝐶𝐼∗

)
+

(
𝑝𝑐𝐶

∗

𝐶𝐼∗

) [
dC∗

d𝜆
𝜆
𝐶∗

]
+

(
𝑝𝑑(1 + 𝜆)𝐷∗

𝐶𝐼∗

) [
dD∗

d𝜆
𝜆
𝐷∗

]
and finally recognizing that the terms in parenthesis are the expenditure shares 𝑠𝑑 and 𝑠𝑐 ,
and the terms in squared parenthesis are the elasticities, we get to the following equation:

𝜀(𝐶𝐼∗𝑖𝑡 ,𝜆𝑖) = 𝑠𝑑𝑖𝑡 · 𝜆𝑖 +
[
𝑠𝑑𝑖𝑡 · 𝜀(𝐷

∗
𝑖𝑡 ,𝜆𝑖) + 𝑠

𝑐
𝑖𝑡 · 𝜀(𝐶

∗
𝑖𝑡 ,𝜆𝑖)

]
.
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F Model Estimation Details
This section provides details on cloud computing pricing, the instrumental variable strat-
egy, our estimation procedure, and intuition for our identification.

F.1 Cloud Computing Pricing

Our estimation of the elasticity of substitution is identified by how firms adjust their input
demand to price changes. To provide context for the main sources of price variation, this
subsection presents an overview of pricing in cloud computing.

Cloud computing providers typically consider a variety of factors when choosing cloud
prices in different locations. Some of these factors may include the cost of electricity, the
availability of skilled labor, the cost of real estate, tax incentives, regulatory requirements,
and the availability and cost of network connectivity. Additionally, firms may consider the
level of competition in each location and the pricing strategies of different cloud providers.

The pricing of cloud services in the last decade has been characterized by a steady
decline across all providers. As cloud providers have achieved economies of scale and
improved their technological infrastructure, they have been able to offer lower prices
to customers. In addition, increased competition among cloud providers in attracting
customers has also contributed to lower prices. Byrne et al. (2018) constructs a price
index for AWS over the last decade and investigates how prices have evolved. They found
that AWS computation prices fell at an average annual rate of about 7 percent, database
prices fell at an average annual rate of more than 11 percent, and storage disk prices
fell at an annual rate of more than 17 percent. Part of this price decline is driven by
competition. Byrne et al. (2018) finds that AWS prices dropped more significantly when
Microsoft Azure entered the market, at 10.5 percent, 22 percent, and about 25 percent for
computation, database, and storage, respectively, between 2014 and 2016

The last decade has seen a notable trend of declining cloud prices despite increasing
demand. This suggests that factors such as competition and technological advances have
been the major drivers of cloud pricing in the last decade.

F.2 Price Index Construction

Our instrumental variable strategy relies on constructing firm- and location-specific price
indices. This section describes how we construct those price indices.

To obtain firm-specific price indices, we simply calculate the unit price paid by the firm
by dividing the monthly total spending on compute and storage by the total quantity of
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compute and storage, respectively. This gives us firm-specific compute and storage price
indices, which can vary either because of the discounts negotiated by firms or variation
in location-specific prices. We divide the price of storage by the price of computation to
obtain a firm-specific storage-to-compute price ratio. Since this ratio involves some outliers
due to small values in the dominator, we winsorize these variables by the top and bottom
2 percentiles. We also construct the storage-to-compute ratio for each firm and apply the
same winsorization procedure.

We also calculate location-specific price indices for computation and storage for our
sample period. An important issue to account for when calculating these price indices is
the entry and exit of products. All cloud providers have introduced a variety of products
in the last decade. We construct the price index in the following manner: for any given
data location, we first identify products that are available in two adjacent periods, 𝑡 and
𝑡 + 1. We then use the following formula to calculate the price change in location 𝑙:

𝑟
𝑗

𝑙𝑡
=

∑
𝑖 𝑝

𝑗

𝑖𝑙(𝑡+1)𝑞
𝑗

𝑖𝑙𝑡∑
𝑖 𝑝

𝑗

𝑖𝑙𝑡
𝑞
𝑗

𝑖𝑙𝑡

where 𝑗 ∈ {𝑐, 𝑑} denoting computation and storage, 𝑞 𝑗
𝑖𝑙𝑡

is the total quantity of product 𝑖 in
location 𝑙 at time 𝑡. We calculate this price change for every location-month combination
in our sample and construct a price index by cumulatively multiplying the changes in the
price index, that is 𝑝 𝑗

𝑙𝑡
=

∏
1≤ 𝑗≤𝑡 𝑟

𝑗

𝑙 𝑗
, where 𝑗 ∈ {𝑐, 𝑑} denoting computation and storage.

F.3 Instrumental Variable Strategy

Our instrumental variable strategy relies on the assumption that firms’ choice of data
center location is persistent. This assumption is based on the fact that the cost of moving
large datasets from one data center to another is typically high. The cost of moving data
to another data center in cloud computing can depend on several factors, including the
amount of data being transferred, the distance between the source and destination data
centers, and the pricing policies of the cloud service provider (García-Dorado and Rao,
2015). Some cloud service providers may charge a fee for data transfer, and there may
be additional costs associated with data migration, such as network bandwidth charges,
storage costs, and downtime or disruption to services during the migration process.54 Even
though the specific costs and risks of data migration will depend on the migration plan

54See https://aws.amazon.com/blogs/architecture/overview-of-data-transfer-costs-for-common-architectures/, https:
//azure.microsoft.com/en-us/pricing/details/bandwidth/, and https://cloud.google.com/storage-transfer/pricing for
data transfer costs for top cloud computing providers.
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and the cloud service provider, it is typically considered too costly by industry experts.
We use the persistance in data center location that comes from switching cost to design

a shift-share instrumental variable strategy. Formally, each firm has exposure to different
locations and pays different prices in each location due to variations in list prices and
firm-specific discounts. We denote firm specific price indices by 𝑝𝑑

𝑖𝑡
and 𝑝𝑐

𝑖𝑡
for data

and computation, respectively. This price could be endogenous because the firm may
negotiate lower prices or change its exposure to different locations based on productivity.
To instrument for these prices, we use the list prices of storage in location 𝑙, given by 𝑝𝑙𝑡 .
This price is plausibly exogenous to changes in firm productivity because, after controlling
for industry-specific trends, no firm is likely to affect list prices in a specific location.
Additionally, we attempt to further purge these shares of endogeneity by taking lags, as
contemporary shares may be susceptible to reverse causality. Hence, our instrument for
data is given by 𝑧𝑑

𝑖𝑡
=

∑
𝑠𝑑
𝑖(𝑡−12)𝑙𝑝

𝑑
𝑙𝑡

for storage and 𝑧𝑐
𝑖𝑡

for computation calculated similarly.
Finally, we use 𝑧𝑐

𝑖𝑡
/𝑧𝑑

𝑖𝑡
to instrument for 𝑝𝑐

𝑖𝑡
/𝑝𝑑

𝑖𝑡
in the production function estimation.

Since we need the 12 months lagged exposure of each firm, we lose the first 12 months of
observations when implementing this instrumental variable strategy.

F.4 Estimation Details

Our identification strategy relies on the assumptions that the industry-specific cloud pro-
ductivity trend in Europe would have followed that of US firms in the absence of GDPR,
and that firm-specific compute technology does not change post-GDPR. To operationalize
these assumptions, we follow a two-step estimation strategy

In the first step, we estimate the following equation for US firms using the entire sample
period with our IV strategy:

log
(𝐶𝑖𝑡
𝐷𝑖𝑡

)
= 𝛾 + 𝜎𝑈𝑆1 log

( 𝑝𝑑
𝑖𝑡

𝑝𝑐
𝑖𝑡

)
+ 𝜎𝑈𝑆1 log(𝜔𝑐

𝑖 ) + 𝜎𝑈𝑆1 log(𝜙𝑐𝑡 ) + 𝜎𝑈𝑆1 log(𝜂𝑖𝑡), (18)

When estimating this equation, we normalize 𝛾 to zero because it is not separately identi-
fied from the mean of 𝜔𝑐

𝑖
. We also normalize 𝜙𝑐1 to 1 so that productivity trend is relative to

the initial period. Since, by assumption, the US firms have not been exposed to GDPR, this
equation identifies the industry-specific compute productivity trends, or 𝜙̂𝑐𝑡 in Equation
(9). By Assumption (2), the EU industries follow the same trend and we use the estimated
𝜙̂𝑐𝑡 for EU firms.55 Next, we estimate the same equation using EU firms only with pre-
GDPR data. This estimation identifies 𝜔̂𝑐

𝑖
in Equation (9) because there is no distortion

55We also estimate Equation (18) using pre- and post-GDPR data for US firms to separately identify the
elasticity of substitution before and after the implementation of GDPR.
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before GDPR to estimate 𝜎𝐸𝑈1 . We report the associated elasticity estimates in Figure 4 as
the pre-GDPR elasticity of substitution estimates.

These first-step estimations identify provide us with 𝜔̂𝑐
𝑖

and 𝜙̂𝑡 . Using those we finally
estimate Equation (9):

log
(𝐶𝑖𝑡
𝐷𝑖𝑡

)
= 𝛾2 + 𝜎𝐸𝑈2

(
log

( 𝑝𝑑
𝑖𝑡

𝑝𝑐
𝑖𝑡

)
+ log(𝜙̂𝑡)

)
+ 𝜎𝐸𝑈2

(
log(1 + 𝜆𝑖) + log(𝜔̂𝑐

𝑖 )
)
+ log(𝜂𝑖𝑡).

by constructing the right-hand side variable. We report 𝜎𝐸𝑈2 as the post-GDPR elasticity of
substitution estimates in Figure 4. To estimate the wedge, 𝜆𝑖 , we subtract log(𝜔̂𝑐

𝑖
) from the

estimated fixed effects in Equation (9) (after accounting for 𝜎𝐸𝑈2 ). We report the estimates
of 𝜆𝑖 in Figure 5. To account for uncertainty in first-step estimates in standard errors, we
follow a bootstrap procedure with 100 repetitions. We resample firms with replacement
in each industry-continent group and apply the entire estimation procedure.

We use Equation (10) to estimate the change in the cost of information, with results
reported in Section 6.3. For the estimated 𝜔𝑐

𝑖
, we calculate the cost of information by

setting 𝜆𝑖 to its estimated value and 0, which gives us the change in the cost of information
due to GDPR. Since prices change over time, we calculate this change in information cost
at every observed price point and report the distribution at the month-firm level.

To do the decomposition presented in Equation 6.3, we calculate the cost share of data
every period using firm’s data input demand and prices. The direct effect is obtained
by multiplying the data share with firm-specific wedges. The second term (firm re-
adjustment) is obtained by subtracting the direct effect from the change in the cost of
information. Similar to above, we calculate this change in information cost at every
observed price point and report the distribution at the month-firm level.

F.5 Identification Intuition for the Firm-Specific Wedges

Having outlined our estimation strategy in the previous subsection, we now explain how
our assumptions help us identify the per-firm wedge in the cost of storing data, 𝜆𝑖 . The
main goal is to provide intuition on the variation 𝜆𝑖 is intended to capture. We provide
intuition for the case where the elasticity of substitution is the same in the EU and in the
US (but may vary pre and post-GDPR) as the more general case provides no additional
intuition but involves more cumbersome notation. We consciously abuse notation in this
section as its main goal is to provide simple equations.

Consider two firms in the same industry, one in the EU (𝑘) and one in the US (𝑗) with
the same levels of firm-level compute productivity 𝜔𝑐

𝑘
= 𝜔𝑐

𝑗
. For simplicity (to not carry
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terms around), assume both firms have the same time-varying shocks (i.e., log𝜂𝑘𝑡 = log𝜂 𝑗𝑡
for all 𝑡).56 Subtracting the pre-GDPR first order condition (Equation 6) of the US firm
from the EU firm equation in a period 𝑡 before GDPR implies that:

Δ𝑖

(𝐶𝑖𝑡
𝐷𝑖𝑡

)
= 𝜎1Δ𝑖

( 𝑝𝑑
𝑖𝑡

𝑝𝑐
𝑖𝑡

)
(19)

where we define Δ𝑖(𝑋𝑖𝑡) as the across-firm (EU vs. US) difference in the logarithm of 𝑋𝑖𝑡 at
time 𝑡 (i.e., Δ𝑖(𝑋𝑖𝑡) ≡ log𝑋𝑘𝑡 − log𝑋𝑗𝑡). Note that Assumption 2 (i.e., EU and US industries
follow the same compute augmenting productivity time trend) allows us to get rid of 𝜙𝑐𝑡 if
we look at two firms within the same period 𝑡. Similarly, by focusing on comparable firms
(𝑘 and 𝑗), we get rid of 𝜔𝑐

𝑘
and 𝜔𝑐

𝑗
.

Analogously, focusing on a period 𝑡 after GDPR was enacted, we can use the post-
GDPR identifying equation (Equation 8) in a similar fashion as before (focusing on the
same two firms) to obtain:

Δ𝑖

(𝐶𝑖𝑡
𝐷𝑖𝑡

)
= 𝜎2Δ𝑖

( 𝑝𝑑
𝑖𝑡

𝑝𝑐
𝑖𝑡

)
+ 𝜎2 log(1 + 𝜆𝑖) (20)

where the extra term is the increase in the cost (𝜆𝑖) incurred by the firm in the EU but not
by the firm in the US. Subtracting both equations, rearranging terms, and some algebra,
we get:

ΔΔ𝑖𝑡

(𝐶𝑖𝑡
𝐷𝑖𝑡

)
= 𝜎2ΔΔ𝑖𝑡

( 𝑝𝑑
𝑖𝑡

𝑝𝑐
𝑖𝑡

)
+ (𝜎2 − 𝜎1)Δ𝑖

( 𝑝𝑑
𝑖𝑡

𝑝𝑐
𝑖𝑡

)
+ 𝜎2 log(1 + 𝜆𝑖) (21)

where ΔΔ𝑖𝑡(𝑋𝑖𝑡) is the double difference across the EU and US firms and before and after
GDPR (i.e., ΔΔ𝑖𝑡(𝑋𝑖𝑡) ≡ Δ𝑖(𝑋𝑖𝑡) − Δ𝑖(𝑋𝑖𝑡) in our case). These double differences are akin to
the ones one would need to generate a difference in difference estimate (e.g., to those in
Section 4 of the paper).

Equation (21) provides useful intuition about what 𝜆𝑖 , the post-GDPR wedge, is in-
tended to capture. Loosely speaking, the wedge captures the variation in the shift in the
compute intensity (across EU and US firms, before and after GDPR) that is not explained
by changes in the shift in the relative prices, or by pre- and post-GDPR differences in
the elasticity of substitution between compute and storage across comparable EU and US
firms.57 Given the above equation, one would intuitively expect firms that face larger

56Otherwise, we can work with expectations and use precise (but somewhat cumbersome) notation.
57The more general case that we estimate, where the elasticity of substitution differs between EU and US firms

has a similar intuition, but also involves the difference in the changes in 𝜎 between the US and the EU, before
and after GDPR. We estimate that these differences are not economically important in our context.
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changes in the compute intensity (the negative of the data intensity) to be those that have
larger wedges.

Reassuringly, the intuition we explain above is also consistent with our estimated
wedges. Recall that we show in the paper that firms became less data-intensive (equiv-
alently, more compute-intensive) after GDPR. Importantly, we show that industries with
larger changes in compute-intensity are those with larger wedges. Panel C of Table 4 shows
that the changes in the data intensity are smaller (in absolute value) for manufacturing
firms, followed by non-software services, and then by software services. Similarly, our
average wedge estimates (shown in Figure 5) have the same ordering: manufacturing firms
face smaller wedges, followed by non-software services, and finally by software services.

Interestingly, Equations (21) and (20) also show that level changes in 𝐶𝑖𝑡 and𝐷𝑖𝑡 are not
enough to identify 𝜆𝑖 . Note that we cannot infer that firms with larger responses in levels
would have larger (or smaller) wedges. In fact, to rationalize the level responses of compute
and storage, one would need additional assumptions over the full production function.
To explain the responses in levels, we would need to construct a model that incorporates
the elasticity of substitution between information and other traditional inputs (e.g., capital
and labor), which we intentionally refrain from doing in this paper.
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G Effects on Production Costs

G.1 The Effect of Changes in Information Costs on Production Costs

In this section, we consider how changes in information costs translate into changes in
production costs under various benchmark production function specifications. Per Section
6.4, this exercise aims to derive simple sufficient statistics under various functional form
assumptions for the total increase in the cost of producing goods and services arising from
the change in the cost of data storage. As such, we leverage the assumption that firms face
linear prices (𝑝) for all inputs. Thus, the resulting cost function is given by:

𝐶
(
𝑌̄, 𝑝, 𝜃

)
= 𝑝𝐿𝐿

∗ (𝑌̄, 𝑝, 𝜃)
+ 𝑝𝐾𝐾∗ (𝑌̄, 𝑝, 𝜃)

+ 𝑝𝐼 𝐼∗
(
𝑌̄, 𝑝, 𝜃

)
.

where 𝜃 is the percentage increase in the information cost.
We first consider two edge cases—Leontief and linear production functions—where

information is a perfect complement and a substitute for other inputs. These provide us
with intuitive bounds for how changes in the costs of information might translate into
production costs. Next, we consider an intermediate case with Cobb-Douglas production
technology and derive a simple equation for how changes in information costs translate
into production costs after firms re-optimize between inputs. Finally, we analyze a nested
CES with information and non-information inputs.

Leontief Production Function

We first consider the simple case of a Leontief production function, where inputs must be
combined in fixed proportions:

𝑌 = min
(
𝐿

𝛼
,
𝐾

𝛽
,
𝐼

𝛾

)
.

Cost minimization immediately implies that for any given level of production, the input
demand functions are given by:

𝐿∗ = 𝛼𝑌̄

𝐾∗ = 𝛽𝑌̄

𝐼∗ = 𝛾𝑌̄

In this case, the cost function is therefore linear in prices, and a 𝜃 percentage increase in
the cost of information causes an 𝜃 · 𝑠 𝐼

𝑖𝑡
percentage increase in the cost of production.
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Linear Production Function

The case of a linear production function is straightforward, as firms simply choose the
most cost-effective input or mix between them if they are equally cost-effective.

𝑌 = 𝛼𝐿 + 𝛽𝐾 + 𝛾𝐼

In the interior case where firms were previously producing with non-zero capital or non-
zero labor, cost minimization immediately implies that a 𝜃 percentage increase in the cost
of information translates into a zero percentage increase in the cost of production.

Cobb-Douglas Production Function

Next, we consider the effects of a 𝜃 percentage increase in the cost of information for a
Cobb-Douglas production function given by

𝑌 = 𝐿𝛼𝐾𝛽𝐼𝛾

First-order conditions imply the following information demand function:

𝐼∗ = 𝑌̄
1

𝛾+𝛼+𝛽 ·
(
𝑝𝐼

𝛾

) −𝛼−𝛽
𝛾+𝛼+𝛽

·
(
𝛽

𝑝𝐾

) −𝛽
𝛾+𝛼+𝛽

·
(
𝛼

𝑝𝐿

) −𝛼
𝛾+𝛼+𝛽

This immediately implies that a𝜃percentage increase in 𝑝𝐼 induces a 𝛿 =

[
(1 + 𝜃)−

𝛼+𝛽
𝛾+𝛼+𝛽 − 1

]
percentage decrease in 𝐼∗.58 Next, we note that first-order conditions imply that a 𝛾 share
of total firm costs will be spent on information:

𝛾 =
𝑝𝐼 · 𝐼∗

(
𝑌̄, 𝑝, 𝜃

)
𝐸

(
𝑌̄, 𝑝, 𝜃

) .

Using the change in information expenditure resulting from the 𝜃 increase in information
prices and the 𝛿 decrease in 𝐼∗ derived above, we have that a 𝜃 percentage increase in 𝑝𝐼

will lead to a 𝜁 percentage increase in production costs, where 𝜁 = (1 + 𝜃)𝛾 − 1.59

58For marginal changes, using log transformations and taking derivatives yields 𝜕 log 𝐼
𝜕 log 𝑝𝐼 =

𝛼+𝛽
𝛾+𝛼+𝛽 .

59Once again using log transformations and taking derivatives yields the intuitive expression 𝜕 log(𝐸)
𝜕 log(𝑝𝐼 ) = 1 −

𝛼+𝛽
𝛾+𝛼+𝛽 for marginal changes from 𝜃 = 0.
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CES Production Function

Finally, we consider a simple nested constant elasticity of substitution production technol-
ogy, where information 𝐼 is combined with a constant returns to scale aggregator of all
non-information inputs 𝑀(𝐿, 𝐾). We denote the outer nest by

𝑌𝑖 = 𝜈𝑖

[
𝛼𝐼

𝜌̄−1
𝜌̄

𝑖
+ (1 − 𝛼)𝑀

𝜌̄−1
𝜌̄

𝑖
)
] 𝜌̄

𝜌̄−1

.

where 𝜈𝑖 represents firm-specific productivity, 𝑎𝑖 represents firm-specific information in-
tensity in production, and 𝜌̄ denotes the elasticity of substitution between information
and non-information inputs. We drop the firm-specific subscripts moving forward for
notational simplicity.

Next, we note that because 𝑀(𝐿, 𝐾, ·) exhibits constant returns to scale, the linear
prices of labor and capital – 𝑝𝐿 and 𝑝𝐾 – imply a linear unit cost for the intermediate
non-information aggregate 𝑀. We denote that unit cost by 𝑝𝑀 .60 This therefore yields the
unit cost function

𝑐(𝑝𝐼 , 𝑝𝑀) = 1
𝜈

(
𝛼𝜌̄(𝑝𝐼)1−𝜌̄ + (1 − 𝛼)𝜌̄(𝑝𝑀)1−𝜌̄

) 1
1−𝜌̄
.

Now, denote the equilibrium information expenditure share as 𝑠∗
𝐼
≡ 𝑝𝐼 ·𝐼

𝑝𝑀 ·𝑀+𝑝𝐼 ·𝐼 . Combining
this with first-order conditions allows us to express this term as

𝑠∗
𝐼

1 − 𝑠∗
𝐼

=

(
𝑝𝐼

𝑝𝑀

)1−𝜌̄ ( 𝛼
1 − 𝛼

) 𝜌̄
.

Finally, we can use this equivalence to express the effects of a 𝜃 percentage increase in 𝑝𝐼
on production costs using only model parameters and 𝑠∗

𝐼
:

60Deriving the explicit formula for the unit cost of the intermediate good yields 𝑝𝑀 =

1
𝛾

(
𝛽𝜎𝑝(1−𝜎)

𝐿
+ (1 − 𝛽)𝜎𝑝(1−𝜎)

𝐾

) 1
1−𝜎 .
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𝑐
(
(1 + 𝜃)𝑝𝐼 , 𝑝𝑀

)
𝑐 (𝑝𝐼 , 𝑝𝑀) =

(
(1 + 𝜃)1−𝜌̄𝛼𝜌̄𝑝

1−𝜌̄
𝐼

+ (1 − 𝛼)𝜌̄𝑝1−𝜌̄
𝑀

𝛼𝜌̄𝑝
1−𝜌̄
𝐼

+ (1 − 𝛼)𝜌̄𝑝1−𝜌̄
𝑀

) 1
1−𝜌̄

=

( (1 + 𝜃)1−𝜌̄
( 𝛼

1−𝛼
) 𝜌̄ (

𝑝𝐼
𝑝𝑀

)1−𝜌̄
+ 1( 𝛼

1−𝛼
) 𝜌̄ (

𝑝𝐼
𝑝𝑀

)1−𝜌̄
+ 1

) 1
1−𝜌̄

=

(
(1 + 𝜃)1−𝜌̄𝑠∗𝐼 + 1 − 𝑠∗𝐼

) 1
1−𝜌̄

.

Thus, a 𝜃 percentage increase in 𝑝𝐼 yields a
(
(1 + 𝜃)1−𝜌̄ · 𝑠∗

𝐼
+ 1 − 𝑠∗

𝐼

) 1
1−𝜌̄ − 1 percentage

increase in production costs.

G.2 Estimating Key Calibration Parameters

We show in the section above that the information share of expenditure is crucial to
calculating how an increase in the cost of information translates to production costs. In
the nested CES production technology we analyze above, the vector with the elasticity of
substitution between information and non-information inputs and the information cost
share is a sufficient statistic for this effect. We discuss estimates of both parameters below.

First, we combine various data sources to suggest a reasonable range for the information
cost share. We provide these estimates in Table OA-10. Next, we discuss each of those
data sources separately. Finally, we discuss mapping estimates from Lashkari et al. (2023)
of the elasticity of substitution between IT and non-IT inputs into our setting.

Aberdeen

We begin by turning to the Aberdeen data set, which we discuss in Section 3.2 and
in Appendix C.3. The Aberdeen data provides estimates of site-level IT spending and
revenue, which we collapse to the firm level. Unfortunately, we are unable to directly
observe total firm expenditures, so we proxy instead with firm revenue. We construct the
average share of IT revenue spent for European and US firms in 2017 and 2018. We further
use the four-digit SIC codes from the data to identify and partition firms that belong to our
three primary industries of interest: software, non-software services, and manufacturing.
We find that, somewhat unsurprisingly, software firms spend the highest share of their
revenue on IT, followed by non-software services and then manufacturing.
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Table OA-10: Estimates for the Information Share of Expenditure by Industry

Software Services Manufacturing
(1) (2) (3)

Aberdeen Estimates
Aberdeen (EU 2017) 16.7% 3.7% 3.3%
Aberdeen (EU 2018) 14.9% 2.9% 2.9%
Aberdeen (US 2017) 8.7% 4.9% 3.0%
Aberdeen (US 2018) 8.7% 5.0% 3.2%

Survey Estimates
Flexera (2020) 24.7% 6.7% 4.1%
Gartner (2022) 7.1% 5.4% 2.3%
Computer Economics (2019) – – 1.4% - 3.2%

Notes: Table presents estimates for the information share of expenditure by industry. All estimates are
formed by calculating or observing the average share of firm revenue spent on IT. Column (1) presents these
estimates for software firms, which are defined in the Aberdeen data through SIC codes 7370 - 7377. Column
(2) presents estimates for non-software service firms. Column (3) presents estimates for manufacturing
firms. Further details on the Aberdeen data and the survey estimates are provided in Appendix G.2.

Industry Surveys

Next, we use industry surveys as supportive evidence that the ranges suggested by Ab-
erdeen data are reasonable. These surveys include Flexera, Gartner, and Computer Eco-
nomics. These are specifically Flexera’s 2020 State of Technology Spending Report, Gartner’s
IT Key Metrics Data 2023: Industry Measures — Insights for Midsize Enterprises, and Computer
Economics’s 2019 IT Spending & Staffing Benchmarks – Executive Summary. For the Flexera
survey, we use the “industrial products" industry estimate as the manufacturing estimate,
and for the Gartner survey, we take the “professional services" industry estimate as our
estimate for non-software service firms. While the samples and industry definitions vary
widely across these surveys, the numbers cited are generally consistent with the ranges
suggested by Aberdeen.

Estimates of the Elasticity of Substitution between IT and Non-IT Inputs

We use point estimates of the elasticity of substitution between IT and non-IT inputs from
Lashkari et al. (2023) to proxy for the elasticity of substitution between information and
non-information inputs. We focus on the micro-elasticities provided in the text rather than
the macro-elasticities, which reflect general equilibrium forces and reallocation between
firms. We use their industry-level elasticities from a non-homothetic CES specification.
Estimates for the manufacturing industry are provided directly. We map the “information
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and communication technology" industry to software, and we construct an estimate for
the elasticity in the non-software services industries by taking a weighted average of the
relevant industries for which estimates were provided in the online appendix.

Estimates of the Contribution to the GDP by Industry and GDP in the EU Area

To measure each industry’s contribution to the GDP, we use the information provided
by OECD (2020) for the Euro Area using the output approach (topmost part of p. 189).
We measure the manufacturing contribution to the GDP as the manufacturing output at
basic prices (line 4), divided by the total gross value added at basic prices (line 1), and
get 16.88%. To measure software and non-services, we use a two-step approach. We first
compute the service contribution to the GDP by summing all of the service industries in
the OECD table (lines 6 to 12) and dividing it by the total gross value added (line 1) and
get 73.39%. We then separate into "software" and "non-software" by computing the share
of the software industry as a proportion of the service industry (which we explain below).

We use data from the US census to compute the software industry share of the service
sector as we could not find any reliable estimates for the EU. To compute this, we use the
2019 SUSB Annual Data Tables by Establishment Industry provided by the US Census
Office. We compute the software industry share by dividing employment in the software
industry by the total employment in the service industry and get 7.53%.61 We use this
number to proxy the EU size of the software industry.

Finally, we return to the OECD (2020) to measure the total GDP in the EU area and use
their estimate for the EU GDP in 2018 (line 64 of p. 189), which is €11.5 trillion.

61To do this, we map from SIC to NAICS codes using Orbis data and assign each service industry code as
“software” or “non-software” to match the definitions used in the paper.
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