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Abstract 

We provide a toolkit for efficient online estimation of heterogeneous agent (HA) New Keynesian (NK) 

models based on Sequential Monte Carlo methods. We use this toolkit to compare the out-of-sample 

forecasting accuracy of a prominent HANK model, Bayer et al. (2022), to that of the representative agent 

(RA) NK model of Smets and Wouters (2007, SW). We find that HANK’s accuracy for real activity 

variables is notably inferior to that of SW. The results for consumption in particular are disappointing 

since the main difference between RANK and HANK is the replacement of the RA Euler equation with 

the aggregation of individual households’ consumption policy functions, which reflects inequality. 
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1 Introduction

Central banks are very interested in investigating questions surrounding inequality and its relationship with

monetary policy, arguably for very good reasons. First of all, inequality has become a central issue in many

countries. It is therefore important to ask how central bank policies affect inequality. Second, even if central

bankers were not concerned with the answer to the above question, they ought to be concerned with the fact

that inequality changes the transmission mechanism of monetary policy, as forcefully argued in Kaplan et

al. (2018) and Ahn et al. (2018). Several central banks have indeed shown interest in these topics (in fact,

the title of the conference on which this volume is based is “Heterogeneity in Macroeconomics: Implications

for Monetary Policy”) and a few have begun to develop models that speak to the interaction of monetary

policy and inequality, such as heterogeneous agent New Keynesian (HANK) models that follow the seminal

work by Kaplan et al. (2018).

Models serve many purposes, and for some of these purposes a model’s ability to fit the data—that

is, to adequately describe the data from a quantitative point of view—is important, especially for central

banks. After all, the popularity of representative agent DSGE models such as Smets and Wouters (2007,

henceforth, SW) since the beginning of the century is largely due to these models’ ability to forecast with an

accuracy that is at least comparable to that of other models previously used in central banks, such as vector

autoregressions. Even if forecasting is not the main purpose of a model—and arguably it is not the main

purpose of DSGE models—it is a way to test its reliability in providing answers to quantitative questions:

forecasting accuracy lends quantitative credibility.

These considerations prompt us to ask: What is the forecasting accuracy of HANK models? To the

extent that these models have a more realistic transmission mechanism than representative agent models, one

would hope that this translates into a better forecasting performance. This is particularly true for aggregate

consumption, since the main difference between SW-type DSGEs and HANK models is the replacement

of the representative agent Euler equation, which determines consumption in standard DSGEs, with the

aggregation of individual households’ consumption policy functions. These consumption policy functions

depend, among other things, on the wealth distribution in the economy—that is, on inequality. This is the

first paper to our knowledge that provides an assessment of the out-of-sample forecasting accuracy of HANK

models.

From a computational point of view, the task of performing an out-of-sample forecasting accuracy

exercise is not trivial, as it involves estimating a HANK model over and over, for each of the several vintages

of data for which we want to compute forecasts. Concretely, our forecasting exercise begins in the first

quarter of 2000 and ends in the last quarter of 2019, for a total of 80 periods. For each period we estimate

the model using Bayesian methods—the same approach used by SW and much of the HANK literature.
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Each estimation is very costly in computational terms for HANK if one calculates the likelihood using the

Kalman filter, since these models have a very large state space that includes the distribution of wealth (both

liquid and illiquid, in a two-asset HANK model) across households.1

All of the growing literature estimating HANK models using Bayesian methods (see Winberry, 2018;

Auclert et al., 2021; Bayer et al., 2022; and Lee, 2021, among others) use the standard Markov Chain

Monte Carlo approach followed in the representative DSGE model literature to obtain draws from the

posterior distribution (e.g., An and Schorfheide, 2007) and featured in popular packages such as Dynare.

This approach has two drawbacks. First, it cannot be naturally parallelized, being a Markov Chain-based

algorithm. Second, one has to start from scratch every new estimation. For example, if one just estimated

the model up to 2000Q1 and then added only one more quarter of data, with Markov Chain methods one

has to start the Markov Chain anew even though the posterior distribution may not be all that different.

This paper deviates from this trend and uses a Monte Carlo method that can be readily parallelized:

Sequential Monte Carlo. This parallelization makes it feasible to estimate models even when each likelihood

computation takes a substantial amount of time. This method has another crucial advantage—namely, that

models can be estimated “online.” What online estimation means is that the swarm of particles describing

the posterior distribution computed for the estimation up to 2000Q1 can be used to jump-start the estimation

with one or more quarters of data, thereby making it considerably faster. This online feature is what makes

repeated estimation, and therefore our forecasting accuracy exercise, possible.2 While these methods are not

new (see Cai et al., 2021), one contribution of this paper is to explain how and why they work to an audience

with little or no background in Monte Carlo methods. Accordingly, this paper may serve as a blueprint for

central bank researchers planning to estimate HANK models and use them in routine policy analysis and

forecasting exercises. We also plan to share the code used in our forecasting exercise on GitHub.

As anticipated above, the other contribution of this paper is to provide a forecasting accuracy assessment

of a HANK model. While several HANK models have been developed, we use that of Bayer et al. (2022,

henceforth, BBL) in this paper. We do this because in their frontier contribution the authors put particular

care in the empirical fit of their model, making sure that they include all the shocks and frictions that make

SW-type models empirically successful. In other words, the BBL model is the closest thing to a HANK

version of SW. We then ask: Does this model forecast macro time series better than the original SW?

Unfortunately, the answer from our preliminary investigation is no. For some series such as inflation, the

forecasting performance is similar. For other series, notably for consumption growth, the accuracy for the

1The advantage of the so-called sequence-space Jacobian approach to solving and estimating HANK models championed by

Auclert et al. (2021) is that it circumvents the issue of the large state space associated with carrying around a set of distributions.
2The methods described in this paper can be used in the context of limited information approaches such as those used by

Hagedorn et al. (2018), who estimate a HANK model using impulse-response matching as in Christiano et al. (2005).
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HANK model is much worse than for the representative agent model, which is particularly disappointing for

the reasons discussed above.

What are the reasons for, and the implications of, the relatively worse forecasting performance of this

HANK model compared to SW? We suspect that one key reason is that many parameters in HANK—namely

those affecting the model’s steady state—are still calibrated. This is not necessarily a philosophical choice on

the part of the HANK modelers; rather, it is done because recomputing the steady state is extremely costly.

If this suspicion is correct, these findings pose a computational challenge to HANK researchers interested

in estimation. Certainly the findings should be interpreted as a motivation to do more research on HANK

models, as opposed to sticking with representative agent models. Inequality is one of the critical issues of our

time—no matter the forecasting performance of HANK models. The fact that the latter can be improved

is a stimulus for further efforts, especially from central bank researchers who want to use these models for

quantitative purposes.

In the remainder of the paper, section 2 presents BBL’s model and solution approach so to make the

paper self-contained, section 3 describes the Sequential Monte Carlo algorithm and the online estimation

approach used to perform the forecasting exercise, section 4 discusses the results, and section 5 concludes.

2 Model

This paper employs the HANK model developed by BBL, which augments standard New Keynesian DSGE

models, such as those presented in SW or Christiano et al. (2005), with heterogeneous agents and incomplete

markets. The model incorporates standard shocks and frictions utilized in DSGE models. Moreover, it

is also capable of reproducing notable characteristics of household heterogeneity deemed important in the

literature, such as heterogeneous wealth and income composition and the presence of wealthy hand-to-mouth

households. BBL show that when the model is estimated on aggregate data, it can reproduce the business

cycle dynamics of aggregate data as well as of observed U.S. inequality. As the model is taken entirely from

BBL, we will provide only a brief description of the model environment below in order to make the paper

self-contained.3

3We use the version of the model available at https://github.com/BASEforHANK/HANK_BusinessCycleAndInequality as of

June 2022, when we began this project. The latest version of the model, as described in Bayer et al. (2022), has two minor

differences from the model adopted in this paper. First, the latest version of the model has a different formulation for the liquid

asset return. Specifically, BBL assume that entrepreneurs sell claims to a fraction of profits as liquid shares, and the liquid

asset return is the weighted average of the interest on government bonds and the return on these shares, which consists of profit

payouts and the realized capital gain. In addition, BBL assume that time-varying income risks respond to output growth, which

makes income risks either procyclical or countercyclical. These modifications allow BBL to better explain inequality series and

their income risk estimates with their model.
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2.1 Households

There exists a unit mass of infinitely-lived households, indexed by i, that maxmize their lifetime utility

E0

∞∑
t=0

βtu(cit, nit|hit), (1)

where β denotes the discount factor, cit denotes consumption, and nit denotes hours worked. The instanta-

neous utility function u(·) follows Greenwood et al. (1988)

u(cit, nit|hit) =
x1−ξ
it − 1

1− ξ
, xit = cit − h1−τ̄P

it

n1+γ
it

1 + γ
, (2)

where τ̄P is the steady-state level of tax progressivity, ζ is the coefficient of relative risk aversion, γ is the

inverse of the Frisch elasticity, and hit is idiosyncratic labor productivity. There are two types of households:

workers (hit ̸= 0) and entrepreneurs (hit = 0). Idiosyncratic productivity hit =
h̃it∫
h̃itdi

evolves as follows:

h̃it =


exp

(
ρh log h̃it−1 + ϵhit

)
with probability 1− ζ if hit−1 ̸= 0,

1 with probability ι if hit−1 = 0,

0 else.

(3)

The above equation implies that workers become entrepreneurs with the probability ζ or continue to

be workers with the probability 1 − ζ. While being workers, labor productivity hit evolves according to an

AR(1) process in logs with an autocorrelation coefficient ρh. The shocks ϵhit are normally distributed with

variance σ2
h,t. This variance changes over time according to the process

σ2
h,t = σ̄2

h exp(ŝt), (4)

ŝt+1 = ρsŝt + ϵσt , (5)

where the shocks ϵσt follow a normal distribution with zero mean and the standard deviation σs.
4

Workers earn wage income wthitnit, where wt is the real wage paid to households by labor unions.

In addition, rents from unions ΠU
t are equally distributed among workers. Entrepreneurs become workers

with the probability ι or maintain their entrepreneur status with the probability 1− ι. When entrepreneurs

become workers, their productivity becomes one. Entrepreneurs do not supply labor and, instead, receive

profits ΠF
t generated in the firm sector, except for rents of unions.

Markets are incomplete, and households self-insure against income risks by saving in two types of assets:

illiquid capital and liquid bonds. Capital as an asset is illiquid in the sense that only a fraction λ of households

4The latest version of BBL assumes that the level of income risks is affected by the output growth, i.e., ŝt+1 = ρsŝt +

ΣY
Yt+1

Yt
+ ϵσt . Depending on the sign of the coefficient ΣY , idiosyncratic income risks are either pro- or countercyclical in the

model. This setup allows BBL to better capture the dynamics of income risks with their model.



5

are allowed to adjust their capital holdings in each period. In contrast, households can freely adjust their

liquid bond holdings.

The household’s budget constraint can be written as

cit + bit+1 + qtkit+1 = bit
Rit

πt
+ (qt + rt)kit + (1− τLt )(wthitnit)

1−τ̄P
t

+ 1hit ̸=0(1− τt)Π
U
t + 1hit=0(1− τLt )(Π

E
t )

1−τ̄P

, kit+1 ≥ 0 , bit+1 ≥ b , (6)

where bit is real liquid bonds, kit is capital stock, qt is the price of capital, rt is the dividend on capital

holdings, πt =
Pt

Pt−1
is the gross inflation rate, and b < 0 is an exogenous borrowing limit. Workers’ labor

income and entrepreneurs’ profit income are taxed progressively. The two tax rates, τLt and τPt , determine

the degree of tax progressivity. The union profit is taxed uniformly at the average tax rate τt. Finally, the

return on the liquid assets Rit depends on whether households are borrowers:

Rit =

 AtR
b
t if bit ≥ 0

AtR
b
t + R̄ if bit < 0.

(7)

The coefficient At is the so-called “risk-premium shock” (see SW), which reflects intermediation efficiency,

and R̄ is the borrowing premium. Rb
t is the nominal interest rate on government bonds, which is determined

by the monetary authority.5

Since households may or may not be able to adjust their illiquid asset holdings, the household’s problem

is characterized by three functions: the value function V a
t when households are allowed to adjust their capital

holdings, the function V n
t when households are not allowed to adjust, and the expected value in the next

periodWt+1:

V a
t (b, k, h) = max

b′a,k
′
u[(x(b, b′a, k, k

′, h))] + βEtWt+1(b
′
a, k

′, h′), (8)

V n
t (b, k, h) = max

b′n
u[(x(b, b′n, k, k, h))] + βEtWt+1(b

′
n, k

′, h′), (9)

Wt+1(b
′, k′, h′) = λV a

t+1(b
′, k′, h′) + (1− λ)V n

t+1(b
′, k′, h′), (10)

where x(b, b′, k, k′, h) = c(b, b′, k, k′, h)− h1−τ̄P n(w)1+γ

1 + γ
is the household’s composite demand for goods and

leisure.6 Maximization is subject to the budget constraint described above.

5In their model, Bayer et al. (2022) assume that entrepreneurs sell claims to a fraction ωΠ of profits at the price of qΠt as

liquid shares and these shares become a part of the household’s liquid asset portfolio as well. Thus, the liquid asset return is the

weighted average of the return on government bonds and the return on profit shares. Consequently, dynamics of profit shares

also affect the liquid asset return in the model.
6Because of the specific form of GHH preference used in the model, all workers supply the same amount of labor, depending

on the level of the real wage only.
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2.2 Firms

The firm sector comprises four types of firms: 1) final goods producers, 2) intermediate goods producers,

3) capital producers, and 4) labor packers. Final goods producers transform intermediate goods into final

consumption goods. Intermediate goods producers produce differentiated goods using capital and labor

service as inputs. Capital producers transform final goods into new capital stock, subject to adjustment

frictions, and rent out capital to intermediate goods producers. Labor packers combine differentiated labor

supplied by unions and rent out homogeneous labor services to intermediate goods producers. Intermediate

goods producers and unions operate under a monopolistically competitive environment and set prices subject

to nominal rigidity á la Calvo (1983).

2.2.1 Final goods producers

Final goods producers combine differentiated intermediate goods and make final consumption goods accord-

ing to a CES aggregation techonology

Yt =

(∫
y

ηt−1
ηt

jt dj

) ηt
ηt−1

, (11)

where yjt is intermediate good j and ηt is the time-varying elasticity of substitution. Profit maximization

yields the following individual good demand and the aggregate price index:

yjt =

(
pjt
Pt

)−ηt

Yt (12)

Pt =

∫
p1−ηt

jt dj, (13)

where pjt is individual good j’s price.

2.3 Intermediate goods producers

There is a continuum of intermediate good firms, indexed by j, that produce differentiated goods using

capital and labor services, according to a constant return-to-scale production function

yj,t = ZtN
α
jt(ujtKjt)

1−α, (14)

where α is the labor share in production, Zt is total factor productivity that follows a AR(1) process in

logs, Njt is labor input, and ujtKjt is capital input with the utilization rate ujt. The capital depreciation
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rate depends on the degree of utilization according to δ(ujt) = δ0 + δ1(ujt − 1) +
δ2
2
(ujt − 1)2. First-order

conditions associated with the cost minimization are as follows:

wF
t = αmcjtZt

(
ujtKjt

Njt

)1−α

(15)

rt + qtδ(ujt) = ujt(1− α)mcjtZt

(
Njt

ujtKjt

)α

(16)

qt[δ1 + δ2(ujt − 1)] = (1− α)mcjtZt

(
Njt

ujtKjt

)α

, (17)

where mcjt is the marginal cost of production of firm j. Since the production function exhibits constant

return-to-scale, the above optimality conditions imply that marginal costs are identical across producers,

i.e., mcjt = mct.

Firms operate under monopolistically competitive environments and set prices for their goods subject

to price adjustment frictions á la Calvo (1983): only a fraction 1− λY of firms can adjust their prices, while

the rest index their prices to the steady-state inflation rate π̄. Firms maximize the present value of real

profits

E0

∞∑
t=0

βtλt
Y (1− τLt )Y

1−τP
t

t

{(
pjtπ̄

t

Pt
−mct

)(
pjtπ̄

t

Pt

)−ηt
}1−τP

t

. (18)

The corresponding optimality condition, with a first-order approximation, implies the following Phillips

curve:

log

(
πt

π̄

)
= β log

(
πt+1

π̄

)
+ κY

(
mct −

1

µY
t

)
, (19)

where κ =
(1− λY )(1− λY β)

λY
is the slope of the Phillips curve and µY

t =
ηt

ηt − 1
is the target markup. The

target markup follows an AR(1) process with shock ϵµ
Y

t .

2.3.1 Capital producers

Capital producers transform final goods into new capital stock, subject to adjustment frictions, while taking

the price of capital qt as given. They maximize

E0

∞∑
t=0

βtIt

{
qtΨt

[
1− ϕ

2

(
log

It
It−1

)2]
− 1

}
, (20)

where ϕ governs the degree of investment adjustment frictions and Ψt represents marginal efficiency of

investment á la Justiniano et al. (2011), which follows an AR(1) process in logs with innovation ϵΨt . Up to

first order, the optimality condition for the maximization problem is

qtΨt

[
1− ϕ log

It
It−1

]
= 1− βEt

[
qt+1Ψt+1ϕ log

(
It+1

It

)]
. (21)
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Finally, the law of motion for aggregate capital is given by

Kt − (1− δ(ut))Kt−1 = Ψt

[
1− ϕ

2

(
log

It
It−1

)2
]
. (22)

2.3.2 Unions and labor packers

There exists a unit mass of unions, indexed by l, who purchase labor services from workers and sell a different

variety of labor to labor packers. Labor packers combine a different variety of labor into homogeneous labor

input according to the following CES aggregation technology:

Nt =

(∫
n̂

ζt−1
ζt

lt dj

) ζt
ζt−1

, (23)

where n̂lt is a variety l of labor service and ζt is the elasticity of substitution. Labor packers’ cost minimization

implies the following demand for each variety l of labor service:

n̂lt =

(
Wlt

WF
t

)−ζt

Nt, (24)

where Wlt is the nominal wage set by union l, and WF
t is the nominal wage at which labor packers sell labor

input to intermediate goods producers.

Unions have monoplistic power and maximize their stream of profits by setting prices wlt for their labor

variety, subject to nominal rigidity á la Calvo (1983). Specifically, only 1− λw fraction of unions can adjust

wages, while the rest of unions index wages to the steady-state wage inflation rate. Thus, they maximize

E0

∞∑
t=0

λt
w

WF
t

Pt
Nt

{(
W

π̄t
W

lt

WF
t

− Wt

WF
t

)(
W

π̄t
W

lt

WF
t

)−ζt
}
. (25)

From the optimality condition for the maximization problem, we obtain under a first-order approxima-

tion the wage Phillips curve

log

(
πW
t

π̄W

)
= βEt log

(
πW
t+1

π̄W

)
+ κω

(
mcωt − 1

µω
t

)
, (26)

where κω =
(1− λw)(1− λwβ)

λW
is the slope of the Phillips curve, and πW

t ≡ WF
t

WF
t−1

=
wF

t

wF
t−1

πY
t is the gross

wage inflation rate with wt and wF
t being the real wages for households and firms, respectively. mcωt =

wt

wF
t

is the actual and
1

µω
t

=
ζt − 1

ζt
is the target markdown of wages that unions pay to households relative to

wages they charge to intermediate goods producers. The target markdown follows an AR(1) process in logs

that is subject to the wage markup shock ϵwt .
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2.4 Government

The government sector consists of a fiscal and a monetary authority. The fiscal authority issues government

bonds, levies taxes, and makes government purchases. The issuance of government bonds is governed by the

following rule:

Bt+1

Bt
=

(
Bt

B̄

)−γB
(
πt

π̄

)γπ
(

Yt

Yt−1

)γY

Dt , Dt = DρD

t−1ϵ
D
t , (27)

whereDt represents the government structural deficit, which evolves exogenously as an AR(1) process subject

to the shock ϵDt . The parameters γB , γπ, and γY represent how sensitively the deficit responds to the existing

debt, the evolution of the inflation rate, and the output growth, respectively. The government also sets the

average tax rate according to the rule

τt
τ̄

=

(
τt−1

τ̄

)ρτ
(

Bt

Bt−1

)(1−ρτ )γ
τ
B
(

Yt

Yt−1

)(1−ρτ )γ
τ
Y

. (28)

The fiscal authority ensures that the average tax rate equals the target tax rate τt by adjusting the level

parameter τL:

τt =
Et

(
wtnithit + 1hit=0Π

E
t )− τLEt

(
wtnithit + 1hit=0Π

E
t )

τ̄P

Et

(
wtnithit + 1hit=0ΠE

t )
. (29)

The total tax revenue is Tt = τt
(
wtnithit+1hit=1Π

U
t +1hit=0Π

E
t ) and government purchases are determined

by the balanced budget constraint, i.e., Gt. = Bt+1 + Tt −Rb
t/πtBt.

The monetary authority determines the nominal interest rate on government bonds according to the

following Taylor rule with interest rate smoothing:

Rb
t+1

Rb
t

=

(
Rb

t

R̄b

)ρR
(
πt

π̄

)(1−ρR)θπ( Yt

Yt−1

)(1−ρR)θY

ϵRt , (30)

where R̄b is the steady-state nominal interest rate. The coefficients ϕπ and ϕY represents the sensitivity

of the policy rate to the evolution of price and output gap, respectively. The parameter ρR represents the

degree of interest rate smoothing.

2.5 Market-clearing conditions

The model has four markets; goods, labor, liquid assets, and illiquid assets. The only liquid asset in the

model is government bonds.7 Thus, the liquid asset market clearing condition is given by

Bt+1 = Bd
t+1 ≡

∫
{λb∗a(b, k, h) + (1− λ)b∗n(b, k, h)}dϕt(b, k, h), (31)

where b∗a and b∗n are the optimal liquid asset choice of adjusting and non-adjusting households with liquid

asset holding b, illiquid asset holding k, and productivity level h, respectively, and ϕt is the distribution of

7In contrast, the most recent version of BBL has two kinds of liquid assets: government bonds and profit shares.
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households over the idiosyncratic state space. The left- and right-hand sides of the above equation represent

the aggregate liquid asset supply and demand, respectively. Similarly, the illiquid asset, i.e., capital, market-

clearing condition is given by

Kt+1 = Kd
t+1 ≡

∫
{λk∗a(b, k, h) + (1− λ)k∗n(b, k, h)}dϕt(b, k, h), (32)

with k∗a and k∗n being the optimal capital holding choice of adjusting and non-adjusting households with

liquid asset holding b, illiquid asset holding k, and productivity level h.

The labor market clears when the following equation holds:∫
n̂ltdl = Dw

t Nt =

∫
hitnitdϕt(b, k, h), (33)

where Dw
t =

∫ (Wlt

WF
t

)−ζt
dl is the dispersion of wages set by unions and Nt is the aggregate labor input. The

first two items of the above equation represent the demand of intermediate goods producers for a variety

of labor, while the last item is the aggregate labor variety supplied by households. Once assets and labor

markets clear, the goods market also clears because of Walras’s law.

2.6 Numerical method

Following Reiter (2009), BBL solve the model using a linearized solution technique. The first step is to write

the equilibrium as a system of nonlinear difference equations as follows:

EtF (X∗
t , X

∗
t+1) = 0, (34)

where X∗
t is a vector of state and control variables in period t. Then, BBL linearize the above system

around the non-stochastic steady-state and apply a standard perturbation method, such as those proposed

by Klein (2000). However, without any further treatments, applying a standard perturbation method is

infeasible since the size of the above system is very large due to many idiosyncratic state variables such as

asset holdings, productivity levels, and working statuses. Thus, BBL follow Bayer and Luetticke (2020) and

reduce the size of the two largest components of the system: value functions and the household distributions.

For the value functions, BBL use a discrete cosine transformation (DCT), as proposed by Bayer and

Luetticke (2020). All the value functions are written as linear interpolants based on a set of nodal values,

and these nodal values are represented by DCT coefficients of Chebyshev polynomials as follows:

Ŵb/k,t(bi, kj , hl) =
∑
p,q,r

θp,q,r
Wb/k,t

Tp(i)Tq(j)Tr(l), (35)

where Ŵb/k is the partial derivative of the continuation value W with respect to bond b, (capital k) hold-

ings, Tp/q/r(·) are Chebyshev polynomials, and θp,q,r
W

are the corresponding DCT coefficients. In the above
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expression, BBL force very small coefficients to zero in order to achieve size reduction. That is, they only

keep enough of these coefficients to approximate the original value functions with a certain threshold level of

precision. In perturbing the system, they perturb these coefficients instead of the function values themselves.

BBL reduce the size of the distribution in a similar way. For the distribution, they keep only marginal

distributions F b
t , F k

t , and Fh
t in the system and use a copula Ct(·), a functional relationship between

marginals and the joint distribution, to recover the joint distribution from marginals. Then, the copula Ct(·)

at time t is approximated using Chebyshev polynomials

Ĉt(F
b
i , F

k
j , F

h
l ) =

∑
p,q,r

θp,q,rC,t Tp(i)Tq(j)Tr(l), (36)

where Ĉ(·) is the deviation of the copula at time t from its steady-state counterpart. Again, BBL reduce

the size of the system by keeping only a small number of DCT coefficients θp,q,rC .

After the state-space reduction, the dimension of the system decreases substantially and one can find a

linearized solution rather quickly. However, for the purpose of estimation, further acceleration of the solution

method is required since one needs to efficiently evaluate the model’s likelihood. To this end, BBL follow

Bayer and Luetticke (2020) and estimate only a subset of parameters that do not affect the households’

problem. BBL first partition X∗ into the part related to household choices f and the aggregate part X:

EtF (X∗
t , X

∗
t+1) = EtF (ft, Xt, ft+1, Xt+1). (37)

Then, they obtain the following linearized system: Aff AfX

AXf AXX

 ft

Xt

 = −Et

 Bff BfX

BXf BXX

 ft+1

Xt+1

 . (38)

If only the parameters that do not affect the household problem are estimated, one only needs to update

AXX and BXX during the estimation. Since the size of aggregate blocks AXX and BXX is relatively small,

one can update the Jacobian rather quickly.

Finally, BBL perform a further model reduction, which relies on a factor representation of the idiosyn-

cratic model part, i.e., the part related to household choices. Once they define objects in a way such that

BfX = BXf = 0, they reduce the size of the system by applying a singular value decomposition (SVD) on

the idiosyncratic model part. Specifically, they rewrite the linearized system asB−1
ff Aff B−1

ff AfX

AXf AXX

 ft

Xt

 =

 Ãff ÃfX

ÃXf ÃXX

 ft

Xt

 = −Et

 ft+1

BXXXt+1

 . (39)

Then, by applying a SVD on Ãff , i.e., Ãff = UΣV ′, and the Eckart-Young-Mirsky theorem, they obtainV ′
1UΣ1 V ′

1ÃfX

ÃXfV1 ÃXX

Yt

Xt

 ≈ −Et

 Yt+1

BXXXt+1

 , (40)
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where V1 refers to the rows in V that correspond to the largest singular values and Yt = V ′ft. Since

Ãff is independent of the estimated parameters, the SVD needs to be performed only infrequently. With

this second-stage model reduction, the size of the model decreases drastically once again and the QZ-

decomposition needed to solve the system can take place within a relatively short amount of time, which

makes the estimation feasible.

3 Online estimation of HANK models

This section describes a Monte Carlo approach that makes possible what we call “online” estimation of

HANK models. By online estimation, we mean estimation that can be conducted without starting from

scratch as the dataset changes because, say, a new quarter of data becomes available. If estimating a model

from scratch is nowadays a relatively trivial computational task for (linear) medium-scale DSGE models of

the size of Smets and Wouters (2007)’s, it becomes much more time consuming and computer intensive when

the size of the state space becomes very large, as is the case for HANK models.

Online estimation can be useful to central bank researchers who would like to use HANK models

for forecasting. It can also be useful for academics who intend to run pseudo out-of-sample forecasting

comparisons to assess the forecasting ability of HANK models, as we do in this paper, since these comparisons

involve re-estimating the model(s) for each vintage of data.8 Finally, online estimation can also be used to

quickly re-estimate a model after small changes, such as modifications of the prior or any other relatively

minor (or perhaps even major) alterations to the model.

The first part of this section describes the estimation problem and why its current handling by popular

DSGE estimation packages such as Dynare may not be ideal for HANK models. The following subsection

provides an intuitive description of an alternative estimation method—Sequential Monte Carlo (henceforth,

SMC)—and explains why this approach is suitable for online estimation. While this section borrows much of

the material from Cai et al. (2021), it strives to be accessible to an audience with little or no prior knowledge

of Monte Carlo methods.9

8Edge and Gürkaynak (2010) and Del Negro and Schorfheide (2013) are examples of forecasting comparisons using medium-

scale DSGEs.
9A terrific introduction to such methods is provided in textbooks such as Gelman et al. (1995), Geweke (2005), and Herbst

and Schorfheide (2015), with the latter focusing specifically on DSGE model estimation. We refer the reader to these textbooks

for a more formal treatment of the ideas described below.
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3.1 Bayesian estimation of HANK models using state-space methods

The solution of the log-linearized version of the model described in section 2 produces the following transition

equation:

st = T (θ)st−1 +R(θ)εt, t = 1, .., T, (41)

where st is the vector of states, θ is the parameter vector, and the shocks εt are independently and identically

distributed according to εt ∼ N(0, Q(θ)). The measurement equation

yt = Z(θ)st +D(θ) + ut, t = 1, .., T (42)

connects the latent states st to the vector of observables yt, where the measurement error shocks are inde-

pendently and identically distributed according to ut ∼ N(0, H(θ)). The likelihood of this linear, Gaussian

state-space model p(y1:T |θ) can be readily computed via the Kalman filter, where we use the notation y1:T

to denote the sequence of observations {y1, ..., yT }. Using Bayes’ law, the posterior distribution of the

parameters p(θ|y1:T ) is obtained from

p(θ|y1:T ) =
p(y1:T |θ)p(θ)∫
p(y1:T |θ)p(θ)dθ

, (43)

where p(θ) represents our prior for the parameters (Del Negro and Schorfheide, 2009, discusses the choice of

priors for DSGE models and Müller, 2012, provides an easy way to assess their influence on the results). The

discussion so far applies to any log-linearized DSGE model and closely follows An and Schorfheide (2007),

Del Negro and Schorfheide (2010), and Herbst and Schorfheide (2015). The peculiarity of HANK models is

that the state-space vector st is extremely large, making the Kalman filter and hence the evaluation of the

likelihood p(y1:T |θ) very costly.10

Since the posterior p(θ|y1:T ) does not follow any known distribution, we need Monte Carlo methods in

order to obtain draws from it and describe the results of our inference on θ (that is, tabulate the posterior

mean, the 90 percent posterior coverage intervals, et cetera). The most standard Monte Carlo algorithm

used for this purpose when estimating DSGE models and used in Dynare, is the Random-Walk Metropolis

Hastings (RWMH). This algorithm is a so-called Markov Chain algorithm in that it produces a chain of draws

from the posterior distribution {θ(1), . . . , θ(j), . . . , θ(J)}. Loosely speaking, the algorithm works as follows:

in order to obtain the draw θ(j), one takes the previous draw θ(j−1), adds some randomness to generate a

proposal θ∗, and then either accepts (that is, set θ(j) = θ∗) or rejects (that is, set θ(j) = θ(j−1)) this proposal

according to a formula that guarantees convergence of the chain to the desired ergodic distribution, that is,

10Herbst (2015) shows how the “Chandrasekhar Recursions” formulas can substantially reduce the computational burden of

evaluating the likelihood. One issue with these formulas is that they are far less generous than standard formulas in terms of

accommodating missing data, which is why we do not use them in this paper.
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p(θ|y1:T ) (again, see An and Schorfheide, 2007; Del Negro and Schorfheide, 2010; or Herbst and Schorfheide,

2015).

This is the algorithm used by almost all papers doing Bayesian estimation of DSGE models, including

BBL, and for medium-sized models this algorithm has been shown to work reasonably well. It has a few

downsides, however: 1) it is well known that RWMH may get stuck and fail to explore the entirety of the

parameter space, especially in the presence of multi-modality (see, for instance, Herbst and Schorfheide,

2014); 2) it cannot be parallelized, since it is a Markov chain; and 3) one has to start from scratch for any

new estimation, even if the changes in the estimation settings are relatively minor so that one would not

expect a major change in the posterior distribution (e.g., adding one more quarter of data). These issues are

particularly serious for HANK models because their posterior distribution is harder to evaluate. For instance,

one approach to dealing with the first problem amounts to running very long chains, which increases the

chances of visiting the entirety of the parameter space. Of course this approach is less appealing when

computing p(θ(j)|y1:T ) is very costly. Similarly, the fact that the algorithm cannot be parallelized limits

the extent to which one can take advantage of computer power to speed up the algorithm. While recent

developments in Monte Carlo methods, such as Hamiltonian Monte Carlo (e.g., Duane et al., 1987; Neal

et al., 2011; Stan Development Team, 2015, henceforth, HMC), have made Markov Chain methods more

efficient and to some extent amenable to parallelization, the third problem—the fact that one has to start

each estimation from scratch—makes SMC methods appealing. We describe these methods in the next

section.

3.2 The Sequential Monte Carlo algorithm

To appreciate how and why Sequential Monte Carlo works, it may be useful to take a brief detour into the

early history of Monte Carlo methods and discuss an approach called Importance Sampling (see Hammersley

and Morton, 1954 for an early example and the textbooks mentioned in footnote 9 for a more modern treat-

ment). Let’s say we do not know how to draw from the posterior p(θ|y1:T ), but we can draw very efficiently

from a proposal distribution q(θ). For example, q(θ) could be a Gaussian with mean θ̂ = argmaxθ p(θ|y1:T ),

the peak of the posterior, and with variance proportional to the negative of the inverse of the numerical

second derivative of the posterior evaluated at θ̂. Then we can obtain {θ(1), . . . , θ(j), . . . , θ(J)} independent

draws from q(θ) and assign to each of these draws a weight W (j) = w(j)/(
1

J

J∑
j=1

w(j)), where

w(j) = p(y1:T |θ(j))p(θ(j))/q(θ(j)) ∝ p(θ(j)|y1:T |)/q(θ(j)).

In other words, the idea behind Importance Sampling is to draw from q(θ) and then do a change of measure

from q(·) to the so-called target distribution (the actual posterior) by reweighing these draws. Note that the
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denominator in (43) is irrelevant in the computation of w(j) since it does not depend on θ, and that the W (j)

are in any case renormalized to sum up to J (the choice of J as the normalization constant, as opposed to the

more conventional 1, is driven by numerical reasons). Given the swarm of particles {θ(j),W (j)}Jj=1 produced

by this approach, we can then approximate any object of interest h(θ) using the Monte Carlo average

h̄J =
1

J

J∑
j=1

W (j)
n h(θ(j)),

where, for instance, h(θ) = θ if we want to compute the mean.

This may sound like a very reasonable approach except that the accuracy of this approximation does

not just depend on J , which can be easily increased, but also on the effective particle sample size

ÊSS = J
/ 1

J

J∑
j=1

(W (j))2

 .

In other words, if q(θ) is a good proposal (in the example above, if the posterior is approximately Gaussian),

then for J reasonably large Importance Sampling delivers a good approximation of the object of interest: all

the weights W (j) will be similar in magnitude and the effective sample size ÊSS will not be much lower than

J . If it is not a good approximation, then most of the weights will be close to zero, and ÊSS will be much

lower than J . In this situation, Importance Sampling fails. When the posterior is irregular, as is the case

for many DSGEs, coming up with a good (global) approximation is nearly impossible, and this may partly

explain why in DSGE estimation these methods have been abandoned in favor of Markov Chain approaches

such as RWMH.11

SMC brings Importance Sampling and the use of swarms of particles back into play for DSGE estimation

thanks to two ideas. The first idea is that if we can pick the posterior we want to approximate, then the

problem of choosing a suitable proposal becomes much easier. For instance, if the posterior is

pn(θ|y1:T ) =
p(y1:T |θ)ϕnp(θ)∫
p(y1:T |θ)ϕnp(θ)dθ

, (44)

with ϕn being a very small number, then the prior p(θ) is likely to work pretty well as a proposal: by

construction, the target is almost the same as the proposal. Of course, pn(θ|y1:T ) constructed with ϕn close

to zero is not what we want to approximate in the end. So we can increase ϕn progressively toward 1, and

use the n − 1 swarm as a proposal for the stage n target, making sure that at each stage n the target and

the proposal remain reasonably close.

If the swarm of particles is still that generated by the prior, all this slicing into intermediate steps would

amount to nothing: the prior is a poor proposal for the eventual posterior, and the effective sample size

11Importance Sampling-inspired approaches have remained very popular for filtering problems, such as the particle filter. See

Fernández-Villaverde and Rubio-Ramı́rez, 2007.
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will likely still be very low. But the second idea, which borrows from Markov Chain methods, comes to

the rescue: from one stage to the other, particles can travel. Just like a single particle in RWMH travels

around the posterior, and naturally tends to visit regions of the parameter space where the posterior places

non-negligible mass, so can each of the particles in the swarm {θ(j)n ,W (j)
n }Jj=1. In other words, the particles

can adapt as ϕn increases toward 1, so that in the end we have a good approximation of the posterior

distribution.12

Formally, the SMC algorithm goes as follows:

Algorithm 1 (SMC Algorithm).

1. Initialization. (ϕ0 = 0). Draw the initial particles from the prior: θ
(j)
1

iid∼ p(θ) and W
(j)
1 = 1,

j = 1, . . . , J .

2. Recursion. For n = 1, . . . , Nϕ,

(a) Correction. Re-weight the particles from stage n− 1 by defining the incremental weights

w̃(j)
n = p(y1:T |θ(j)n−1)

ϕn−ϕn−1 (45)

and the normalized weights

W̃ (j)
n =

w̃
(j)
n W

(j)
n−1

1
J

∑J
j=1 w̃

(j)
n W

(j)
n−1

, j = 1, . . . , J. (46)

(b) Selection (Optional). Resample the swarm of particles {θ(j)n−1, W̃
(j)
n }Jj=1 and denote resampled

particles by {θ̂(j),W (j)
n }Jj=1, where W (j)

n = 1 for all j.

(c) Mutation. Propagate the particles {θ̂i,W (j)
n } via NMH steps of an MH algorithm with transition

density θ(j)n ∼ Kn(θn|θ̂(j)n ; ζn) and stationary distribution pn(θ|y1:T ).13
12A little bit of history: In the statistics literature, Chopin (2002) showed how to adapt particle-filtering techniques to

conduct posterior inference for a static parameter vector. John Geweke played an important role popularizing these techniques

in economics (e.g., Durham and Geweke, 2014), and Creal (2007) was the first paper that applied SMC techniques to posterior

inference in a DSGE model. Herbst and Schorfheide (2014) was a quite impactful paper, as it showed that a properly tailored

SMC algorithm delivers more reliable posterior inference for the Smets and Wouters (2007) DSGE model with loose priors and

a multimodal posterior distribution than the widely used RWMH algorithm. They also provide some convergence results for

an adaptive version of the algorithm building on Chopin (2004).
13The transition kernel Kn(θn|θ̂n; ζn) needs to have the following invariance property:

pn(θn|y1:T ) =

∫
Kn(θn|θ̂n; ζn)pn(θ̂n|y1:T )dθ̂n.

Thus, if θ̂
(j)
n is a draw from the stage n posterior pn(θn|y1:T ), then so is θ

(j)
n . The MH accept-reject probability ensures that

this property is satisfied. In our application we follow Herbst and Schorfheide (2014) and Cai et al. (2021) in our choice of

Kn(θn|θ̂n; ζn), but developments in MH algorithms, such as HMC, can be used to make this step, and hence the whole SMC

algorithm, more efficient. Farkas and Tatar (2020) is an example of a paper that combines SMC with HMC.
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3. For n = Nϕ (ϕNϕ
= 1) the final Importance Sampling approximation of Eπ[h(θ)] is given by

h̄Nϕ,N =

J∑
j=1

h(θ
(j)
Nϕ

)W
(j)
Nϕ

. (47)

Step 2a is the same as in Importance Sampling, where the proposal is the previous stage’s posterior

pn−1(θ|y1:T ) and the target is pn(θ|y1:T ). Step 2c is the Metropolis Hastings step, where each particle is

given a chance to adapt to the new posterior. Step 2b needs some discussion. Its purpose is to make sure

that if the weights of the particles in the swarm become very uneven, and effective particle sample size

ÊSSn = J
/ 1

J

J∑
j=1

(W̃ (j)
n )2


falls below a threshold J , a new swarm of particles is generated from the old swarm so that all the particles

have the same weight.14

One aspect of the algorithm we have not yet discussed is the number of stages Nϕ as well as the schedule

{ϕ1, . . . , ϕNϕ
}. In estimating the Smets and Wouters (2007) model, Herbst and Schorfheide (2014) find that

Nϕ = 500 and a schedule given by the function ϕn = (n/Nϕ)
2.1 works well. The convexity of the schedule

implies that ϕn increases very slowly at the beginning and faster at the end. Of course, it is far from obvious

that whatever schedule works well for the Smets and Wouters (2007) model also works well for a HANK or

any other DSGE model. In this respect, Cai et al. (2021) improve upon Herbst and Schorfheide (2014) by

making the schedule {ϕ1, . . . , ϕNϕ
} adaptive—that is, endogenous to the difficulty of the problem. Recall

that the ESS measures, loosely speaking, the deterioration of the quality of the swarm {θ(j)n ,W (j)
n }Jj=1: if

ESS is low, the swarm has essentially “lost” most of its particles as the weights have become very uneven.

Adaptation is then achieved by setting at each stage ϕn = ϕ, where ϕ solves

ÊSS(ϕ)− (1− α)ÊSSn−1 = 0,

where

w̃(j)(ϕ) = [p(y1:T |θ(j)n−1)]
ϕ−ϕn−1 , W̃ (j)(ϕ) =

w̃(j)(ϕ)W
(j)
n−1

1
J

J∑
j=1

w̃(j)(ϕ)W
(j)
n−1

, ÊSS(ϕ) = N
/ 1

J

J∑
j=1

(W̃ (j)
n (ϕ))2

 .

The above formulas can be understood as follows. Pick a desired deterioration α of the effective sample size

between stages n − 1 and n, and set ϕn so as to achieve exactly that deterioration (see Cai et al., 2021,

14Loosely speaking, particles with relatively large weight W̃
(j)
n —that is, that are in high posterior regions of the parameter

space—are given an opportunity ro “procreate” (generate a number of children that is in expected values proportional W̃
(j)
n ),

while particles with relatively small weight (W̃
(j)
n < 1)—that is, that are in regions of the parameter space with very little

mass—are “killed” with probability 1− W̃
(j)
n . There are many resampling schemes (see Liu, 2001, or Cappé et al., 2005). We

use systematic resampling in the applications below.
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for a more detailed description). The parameter α expresses the degree of “carefulness” of the researchers,

bearing in mind that lower α’s imply a longer estimation time (in light of the results in Cai et al., 2021,

we choose α = 5 percent in this application). Once α is chosen, the schedule becomes endogenous to the

difficulty of the problem as measured by the deterioration of the ESS.

This section concludes with a description of some virtues of SMC. First, for a suitably large choice of

the size of the swarm J , it is robust to irregular shapes of the posterior such as multi-modality, as shown

in Herbst and Schorfheide (2014) and Cai et al. (2021), among others. This is because the initial swarm

{θ(j)0 ,W
(j)
0 }Jj=1 is drawn from the prior, and hence covers for large enough J any region of the parameter

space where the prior places non-negligible mass. Hence, if the posterior has many modes, there ought to

be some initial particles in the neighborhood of such modes. Second, most of the SMC steps, such as the

computation of the incremental weights in Step 2a, and most important, the mutation step in Step 2c, can

be parallelized. Third, the algorithm produces an approximation of the marginal likelihood as a by-product.

In fact, using the definitions of w̃(j)
n and W̃

(j)
n−1 one can see that:

1

J

N∑
i=1

w̃(j)
n W̃

(j)
n−1 ≈

∫
p(y1:T |θ)ϕn

p(y1:T |θ)ϕn−1

[
p(y1:T |θ)ϕn−1∫

p(y1:T |θ)ϕn−1p(θ)dθ

]
dθ =

∫
p(y1:T |θ)ϕnp(θ)dθ∫
p(y1:T |θ)ϕn−1p(θ)dθ

. (48)

This implies that the product

Nϕ∏
n=1

 1

J

J∑
j=1

w̃(j)
n W

(j)
n−1

 approximates the marginal likelihood as long as the

prior is proper (

∫
p(θ)dθ = 1), since all the terms cancel out except for

∫
p(y1:T |θ)p(θ)dθ/

∫
p(θ)dθ. Fourth,

and perhaps most important for this application, the final swarm of particles {θ(j)Nϕ
,W

(j)
Nϕ

}Jj=1 can be reused,

making recursive estimation of the model very convenient. We turn to this feature next.

3.3 Online estimation

Imagine running the SMC algorithm 1 and having a swarm of particles {θ(j),W (j)}Jj=1 that approximates

well the posterior p(θ|y1:T ). Expression (45) in Step 2a of the algorithm can be generalized as

w̃(j)
n =

pn(Y |θ(j)n−1)

pn−1(Y |θ(j)n−1)
, (49)

where we now use the more generic notation Y for y1:T for reasons that will soon become apparent. Note

that in (45) we considered the special case where the stage-n likelihood pn(Y |θ) = p(Y |θ)ϕn .

Now imagine wanting to obtain the posterior for a different model p̃(·|θ) (but with the same parameter

vector θ) estimated on a different dataset Ỹ :

p̃(θ|Ỹ ) =
p̃(Ỹ |θ)p(θ)∫
p̃(Ỹ |θ)p(θ)dθ

. (50)
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The simplest possible case is the one in which the model is the same (p̃(·|θ) = p(·|θ)), and the dataset has

one more time-series observation (Ỹ = y1:T+1), but the algorithm can accommodate situations where the

data has been revised or the model changed. Draws for the posterior p̃(θ|Ỹ ) can be readily obtained from

algorithm 1 after replacing expression (45) with expression (49) and using the stage-n likelihood function

(see Cai et al., 2021):

p̃n(Ỹ |θ) = p̃(Ỹ |θ)ϕnp(Y |θ)1−ϕn . (51)

In other words, we use the posterior distribution p(θ|Y ) as a “bridge” to obtain the new posterior p̃(θ|Ỹ ),

as opposed to starting from the prior distribution. To the extent that the differences between p̃(Ỹ |θ) and

p(Y |θ) are not large, the swarm from p(θ|Y ) should offer a fairly good starting point for the SMC algorithm.15

This is the approach we use to estimate the BBL HANK model recursively. In particular, we start from

the end-of-sample estimation p(θ|y1:T ) and then proceed backward using formula (51) with Ỹ = y1:T−τ

and Y = y1:T−τ+1, for τ = 1, ..., τ̄ . We should stress that doing the online recursive estimation backward

or forward—that is, starting from p(θ|y1:T−τ̄ ) and using this as a bridge to obtain p(θ|y1:T−τ̄+1), and so

on—should make no difference, as both procedures recover p(θ|y1:T−τ ).
16

We conclude this section by highlighting some of the potentials of this approach besides the online

estimation of HANK models. Mlikota and Schorfheide (2022) introduce the notion of “model tempering.”

If a model is very costly to estimate from scratch, one can save a lot of time by first estimating a coarser

version of the model that is much cheaper to estimate (e.g., the linearized version of a nonlinear model) and

then use that as a bridge to estimate the full model. Mlikota and Schorfheide (2022) use this approach to

estimate a nonlinear model.

4 Results

This section presents the forecasting results and is divided into three parts. The first part describes the setup

of the exercise, including the data. The second part discusses the estimates of the parameters, focusing on

the differences between the original BBL results and those obtained using the SMC algorithm. The last part

covers the forecasting horse race between BBL and SW.

15The initialization step in algorithm 1 needs to be modified so that the swarm {θ(j),W (j)}Jj=1, possibly after a selection

step 2b so that all the W (j)’s equal 1, replaces the swarm drawn from the prior.
16In particular there is no sense in which the backward procedure introduces any hindsight bias: note that by the time that

ϕn in (51) reaches 1, the posterior draws no longer condition on Y = y1:T−τ+1.
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4.1 Setup

For our exercise we use the dataset made available by BBL online at https://github.com/BASEforHANK/

HANK_BusinessCycleAndInequality as of June 2022, when we began this project. This dataset comprises

the seven variables used by SW in the estimation of their model: the growth rates of per capita real output,

consumption, investment, and wages, the logarithm of hours worked per capita, GDP deflator inflation,

and the federal funds rate (during the zero-lower-bound period the authors use the shadow rate measure

created by Wu and Xia, 2016). In their database, these variables are available at the quarterly frequency

from 1954Q3 to 2019Q4. In addition, BBL estimate their model adding four variables that reflect various

aspects of inequality and are not used in standard representative agent DSGE estimation. These are the

wealth and income shares of the top 10 percent, estimates of tax progressivity constructed following Ferriere

and Navarro (2018), and estimates of idiosyncratic income risk from Bayer et al. (2019). The top 10 percent

shares are available annually from 1954 to 2019, the tax progressivity measure is available annually from 1954

to 2017, and the idiosyncratic income risk measure is available from 1983Q1 to 2013Q1.17 The likelihood

computation of the state-space model easily accommodates missing data.

BBL demean all the time series prior to estimation. While this is not standard practice in the DSGE

estimation and forecasting literature and in central banks’ practice (e.g., see Del Negro and Schorfheide,

2013; Cai et al., 2019), we follow BBL because adding a constant would imply introducing steady-state

growth and inflation, therefore altering their model. We chose not to do this in order to remain as close

as possible to BBL’s specification. This choice has two implications. First, we have to use their dataset

also for the forecasting exercise—that is, the demeaned data is what the model’s forecasts are evaluated

upon. Second, we estimate the competitor in the horse race—the SW model—also on demeaned data, which

implies that we drop the constant from SW’s measurement equations.18

The out-of-sample forecasting exercise begins in the first quarter of 2000 (in the notation of section

3, T − τ̄ = 2000Q1) and ends in the last quarter of 2019 (T = 2019Q4), for a total of 80 periods. In

order to avoid hindsight bias, for each period we re-estimate the model using only data available up to that

period.19 For each model Mm under consideration (BBL, SW), we then generate horizon-h mean forecasts

17See Bayer et al. (2022) for a more detailed description of the dataset.
18We should note that BBL have a representative agent version of their HANK model, which they show has a worse fit for

the seven macro variables than the heterogeneous agents version in terms of marginal likelihood. Given that the actual SW

model is available, we use it in the horse race as the alternative to the BBL HANK model. From the perspective of a central

bank choosing whether to use a representative agent or a HANK model for predictions, arguably the choice is between SW and

BBL.
19In the forecasting literature it is customary to perform so-called pseudo real time forecasting, where the data vintage

available at time T − τ is used for estimation, as opposed to the revised data (here, the T vintage). The demeaning of the data,

and the fact that there are no vintages for the inequality series, makes this pseudo real time exercise not possible.
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IE[yT−τ+h|y1:T−τ ,Mm] for the variables of interest using the state-space model consisting of equations (41)

and (42), then compare these forecasts with actual outcomes yT−τ+h.
20 As discussed above in section 3,

we estimate the model in period T − τ using the posterior distribution for T − τ + 1 as a bridge in the

SMC algorithm. For the sake of robustness we start this process from two different posterior distributions

p(θ|y1:T ). One distribution consists of the draws made available by BBL on GitHub (which is the reason we

do the online estimation backward, since these draws are only available for T = 2019Q4), and the other is

based on an SMC estimation starting from the prior. For all SMC estimations we use a swarm of J = 10k

particles (we obtain nearly identical results when using 1k particles, at least in terms of RMSEs). The next

section discusses these posterior estimates in some detail.

4.2 Estimation

This section presents the results from our estimation. Specifically, we discuss the prior distribution, which is

the same as BBL’s, and posteriors from the full sample SMC estimation using the eleven variables described

in the previous section. Also, we show the posteriors from SMC estimation when using only seven aggregate

variables and excluding data on inequality, tax progressivity estimates, and income risk estimates. For

comparison, we present BBL’s estimation results obtained from BBL’s GitHub page as of June 2022.21 As

mentioned above, in order to make the estimation feasible, BBL calibrate, as opposed to estimate, several

of the model’s parameters. Table 1 shows the values of these calibrated parameters.

Priors

For parameters related to monetary policy, BBL impose normal distribution with a mean of 1.7 and standard

deviation of 0.3 for θπ, while imposing normal distribution with a mean of 0.13 and standard deviation of

0.05 for θY . For the interest rate smoothing parameter ρR, they assume a beta distribution with parameters

(0.5, 0.2).

Regarding fiscal policy, the debt-feedback parameter γB in the bond issuance rule is assumed to follow a

gamma distribution with a mean of 0.10 and standard deviation of 0.08, which implies that the prior for the

autocorrelation of government debt is 0.9. For the responsiveness of government debt to inflation and output

growth, γπ and γY , they impose standard normal distributions. Similarly, they assume beta distributions

with a mean of 0.5 and standard deviation of 0.2 for the autoregressive parameters in the tax rules, ρP ,

and ρτ . The feedback parameters for average tax rates, γτ
Y , and γτ

B , are assumed to follow standard normal

distributions.

20In order to compute the expectation IE[yT−τ+h|y1:T−τ ,Mm] using (41) and (42), only the filtered states sT−τ |T−τ =

IE[sT−τ |y1:T−τ ,Mm] are needed, which are obtained from the Kalman filter.
21As mentioned, BBL made a few changes to their model and calibrated parameters since June 2022. Hence, these MH

estimates do not replicate the results presented in the most recent version of their paper.
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Table 1: Calibration

Par. Value Description

Households: Income process

ρh 0.980 Persistence of labor productivity

σh 0.120 Std. dev. of labor productivity

ι 0.063 Trans. prod. from entrepreneurs to workers

ζ 1/3750 Trans. prod. from workers to entrepreneurs

Households: Financial frictions

λ 0.095 Portfolio adj. prob.

R̄ 0.017 Borrowing premium

Households: Preferences

β 0.984 Discount factor

ξ 4.000 Relative risk aversion

γ 2.000 Inverse of Frisch elasticity

Firms

α 0.682 Share of labor

δ0 0.022 Depreciation rate

η̄ 11.000 Elasticity of substitution

ζ̄ 11.000 Elasticity of substitution

Government

τ̄L 0.175 Tax rate level

τ̄P 0.12 Tax progressivity

R̄b 1 Gross nominal rate

π̄ 1 Steady-state inflation rate
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For the structural shocks, BBL assume beta distributions with a mean of 0.5 and a standard deviation of

0.2 for the autocorrelation parameters and inverse-gamma distributions with a mean of 0.001 and a standard

deviation of 0.02 for standard deviations of shocks. Finally, for idiosyncratic income risks, BBL impose a

beta distribution with a mean of 0.7 and a standard deviation of 0.2 for autocorrelation parameters and a

gamma distribution with a mean of 0.65 and a standard deviation of 0.03.

Regarding variable capital utilization, BBL assume a gamma distribution with a mean of 5.0 and

standard deviation of 2.0 for δs = δ2/δ1. Similarly, they impose a gamma distribution with a mean of 4.0

and standard deviation of 2.0 for ϕ, the parameter that governs investment adjustment costs. For the slopes

of price and wage Phillips curves, κY and κw, they adopt gamma priors with a mean of 0.10 and standard

deviation of 0.03. The prior mean for these parameters implies that the average duration of price and wage

is four quarters.

Posteriors

The posterior distributions using the full sample (T=2019Q4) are displayed in Tables 2 and 3. Column 5 of

each table shows BBL’s original posteriors they obtained using the RWMH algorithm (referred to as the MH

estimation hereafter). Columns 6 and 7 show the posterior distributions we obtained via the SMC approach

using eleven and seven variables, respectively (referreed to as the 11 and 7 var SMC estimations hereafter).

In the 7 var SMC estimation we follow BBL and shut down income risk and tax progressivity shocks since

we do not use the related data in the estimation.

The posteriors from the 11 and 7 var SMC estimations exhibit only small differences, which is consistent

with the findings of BBL. Adding data on inequality to the estimation does not significantly affect the results

for the parameters that govern the aggregate dynamics of the model. The investment adjustment cost is

estimated to be higher in the 7 var SMC estimation, but otherwise the posterior distributions are close to

each other.

Posteriors from the MH and SMC estimations are also broadly similar for many parameters, but exhibit

differences for some others, which we discuss in the remainder of this section. Starting with the parameters

of the monetary policy rule, posteriors from the SMC estimations imply a slightly higher interest rate inertia

and lower sensitivities of the interest rate with respect to the inflation rate and output growth relative to

those from the MH estimation. The interest rate smoothing parameter is 0.82 and 0.84 at the mean in the

SMC estimations, while the posterior mean is 0.79 in the MH estimation. The Taylor rule coefficient on

inflation is relatively low in the SMC estimations, with the 10 to 90 percentile range being from 1.53 to 1.80

in the 11 var estimation and 1.36 to 1.77 in the 7 var estimation. In contrast, the corresponding range is
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Table 2: Prior and posterior distributions: policies and frictions

Prior Posterior

Par Dist Mean Std. Dev BBL (MH) BBL (SMC) BBL (7 Var)

Monetary policy

ρR Beta 0.50 0.20 0.785 0.818 0.841

(0.754, 0.814) (0.793, 0.842) (0.819, 0.864)

σR Inv-Gamma 0.10 2.00 0.243 0.206 0.210

(0.224, 0.269) (0.191, 0.220) (0.195, 0.226)

θπ Normal 1.70 0.30 2.237 1.670 1.570

(2.044, 2.424) (1.532, 1.804) (1.357, 1.773)

θY Normal 0.13 0.05 0.287 0.212 0.187

(0.223, 0.361) (0.158, 0.261) (0.117, 0.258)

Fiscal policy: deficit

ρD Beta 0.50 0.20 0.965 0.790 0.775

(0.950, 0.980) (0.760, 0.816) (0.738, 0.811)

σD Inv-Gamma 0.10 2.00 0.310 0.632 0.994

(0.277, 0.342) (0.548, 0.715) (0.842, 1.159)

γB Gamma 0.10 0.08 0.031 0.039 0.025

(0.008, 0.047) (0.021, 0.056) (0.005, 0.043)

γπ Normal 0.00 1.00 -1.601 -2.739 -3.969

(-1.778, -1.452) (-3.091, -2.379) (-4.529, -3.397)

γY Normal 0.00 1.00 -0.350 -0.736 -1.222

(-0.418, -0.309) (-0.826, -0.631) (-1.405, -1.029)

Fiscal policy: taxes

ρτ Beta 0.50 0.20 0.653 0.809 0.702

(0.440, 0.961) (0.731, 0.885) (0.508, 0.886)

γτB Normal 0.00 1.00 0.166 -1.765 -1.222

(0.110, 0.217) (-2.079, -1.387) (-1.483, -0.937)

γτY Normal 0.00 1.00 -0.148 -0.329 1.152

(-0.410, 0.038) (-1.736, 1.228) (-0.203, 2.507)

Income risk

ρs Beta 0.50 0.20 0.663 0.917 -

(0.606, 0.727) (0.627, 0.995) -

σs Gamma 65.00 30.00 64.08 57.67 -

(55.91, 71.06) (51.87, 64.59) -

Frictions

δs Gamma 5.00 2.00 0.456 1.800 2.345

(0.278, 0.631) (1.419, 2.227) (1.885, 2.796)

ϕ Gamma 4.00 2.00 0.787 3.532 6.928

(0.373, 1.244) (2.899, 4.164) (5.799, 8.066)

κY Gamma 0.10 0.03 0.111 0.116 0.114

(0.094, 0.125) (0.103, 0.128) (0.099, 0.128)

κw Gamma 0.10 0.03 0.112 0.126 0.113

(0.095, 0.128) (0.111, 0.142) (0.096, 0.128)

Notes: The table shows prior and posterior distributions of the estimated parameters (The 10 and 90 percentiles of

the distributions are in parentheses).



25

Table 3: Prior and posterior distributions: structural shocks

Prior Posterior

Par Dist Mean Std. Dev BBL (MH) BBL (SMC) BBL (7 Var)

Structural shocks

ρA Beta 0.50 0.20 0.954 0.976 0.984

(0.925, 0.976) (0.970, 0.982) (0.976, 0.993)

σA Inv-Gamma 0.10 2.00 0.162 0.078 0.062

(0.133, 0.194) (0.059, 0.094) (0.041, 0.081)

ρZ Beta 0.50 0.20 0.998 0.967 0.973

(0.996, 0.999) (0.958, 0.978) (0.963, 0.983)

σZ Inv-Gamma 0.10 2.00 0.569 0.616 0.612

(0.526, 0.624) (0.573, 0.662) (0.569, 0.659)

ρΨ Beta 0.50 0.20 0.848 0.486 0.416

(0.790, 0.904) (0.422, 0.568) (0.338, 0.495)

σΨ Inv-Gamma 0.10 2.00 3.814 12.25 24.29

(2.820, 4.982) (9.905, 14.77) (20.58, 28.13)

ρµp Beta 0.50 0.20 0.862 0.968 0.967

(0.824, 0.907) (0.955, 0.983) (0.953, 0.980)

σµp Inv-Gamma 0.10 2.00 1.563 1.410 1.452

(1.404, 1.714) (1.296, 1.520) (1.316, 1.597)

ρµw Beta 0.50 0.20 0.862 0.898 0.878

(0.826, 0.907) (0.867, 0.931) (0.845, 0.911)

σµw Inv-Gamma 0.10 2.00 6.142 4.732 5.079

(5.385, 6.916) (4.043, 5.292) (4.399, 5.753)

ρP Beta 0.50 0.20 0.961 0.975 -

(0.943, 0.981) (0.958, 0.990) -

σP Inv-Gamma 0.10 2.00 3.534 3.647 -

(2.938, 4.192) (3.011, 4.202) -

Notes: The table shows prior and posterior distributions of the estimated parameters (The 10 and 90 percentiles of

the distributions are in parentheses). Standard deviations are multiplied by 100 for readability.
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Table 4: Prior and posterior distributions: policies and frictions (2000Q1 estimation)

Prior Posterior

Par Dist Mean Std. Dev BBL (MH) Backward from MH Backward from SMC

Monetary policy

ρR Beta 0.50 0.20 0.785 0.763 0.796

(0.754, 0.814) (0.729, 0.797) (0.762, 0.831)

σR Inv-Gamma 0.10 2.00 0.243 0.272 0.243

(0.224, 0.269) (0.244, 0.302) (0.220, 0.264)

θπ Normal 1.70 0.30 2.237 1.941 1.566

(2.044, 2.424) (1.692, 2.169) (1.365, 1.746)

θY Normal 0.13 0.05 0.287 0.198 0.178

(0.223, 0.361) (0.129, 0.270) (0.105, 0.245)

Fiscal policy: deficit

ρD Beta 0.50 0.20 0.965 0.954 0.824

(0.950, 0.980) (0.918, 0.992) (0.783, 0.860)

σD Inv-Gamma 0.10 2.00 0.310 0.424 0.681

(0.277, 0.342) (0.332, 0.505) (0.546, 0.822)

γB Gamma 0.10 0.08 0.031 0.035 0.028

(0.008, 0.047) (0.008, 0.061) (0.006, 0.048)

γπ Normal 0.00 1.00 -1.601 -2.0330 -2.898

(-1.778, -1.452) (-2.358, -1.707) (-3.402, -2.417)

γY Normal 0.00 1.00 -0.350 -0.435 -0.756

(-0.418, -0.309) (-0.562, -0.297) (-0.891, -0.615)

Fiscal policy: taxes

ρτ Beta 0.50 0.20 0.653 0.544 0.718

(0.440, 0.961) (0.346, 0.743) (0.584, 0.853)

γτB Normal 0.00 1.00 0.166 0.0774 -1.386

(0.110, 0.217) (-0.083, 0.212) (-1.738, -1.018)

γτY Normal 0.00 1.00 -0.148 -2.170 -0.050

(-0.410, 0.038) (-3.555,-0.913) (-1.482,1.336)

Income risk

ρs Beta 0.50 0.20 0.663 0.633 0.615

(0.606, 0.727) (0.520, 0.746) (0.498, 0.729)

σs Gamma 65.00 30.00 64.08 52.93 49.69

(55.91, 71.06) (43.64, 61.43) (42.10, 56.87)

Frictions

δs Gamma 5.00 2.00 0.456 0.474 1.916

(0.278, 0.631) (0.268, 0.655) (1.335, 2.474)

ϕ Gamma 4.00 2.00 0.787 2.554 3.820

(0.373, 1.244) (1.774, 3.316) (2.955, 4.647)

κY Gamma 0.10 0.03 0.111 0.121 0.128

(0.094, 0.125) (0.104, 0.138) (0.110, 0.144)

κw Gamma 0.10 0.03 0.112 0.097 0.097

(0.095, 0.128) (0.083, 0.113) (0.083, 0.113)

Notes: The table shows prior and posterior distributions of the estimated parameters (The 10 and 90 percentiles of

the distributions are in parentheses).
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Table 5: Prior and posterior distributions: structural shocks (2000Q1 estimation)

Prior Posterior

Par Dist Mean Std. Dev BBL (MH) Backward from MH Backward from SMC

Structural shocks

ρA Beta 0.50 0.20 0.954 0.932 0.976

(0.925, 0.976) (0.886, 0.984) (0.964, 0.987)

σA Inv-Gamma 0.10 2.00 0.162 0.215 0.085

(0.133, 0.194) (0.146, 0.279) (0.056, 0.117)

ρZ Beta 0.50 0.20 0.998 0.993 0.962

(0.996, 0.999) (0.990, 0.996) (0.947, 0.977)

σZ Inv-Gamma 0.10 2.00 0.569 0.652 0.645

(0.526, 0.624) (0.580, 0.715) (0.589, 0.701)

ρΨ Beta 0.50 0.20 0.848 0.631 0.438

(0.790, 0.904) (0.543, 0.734) (0.348, 0.526)

σΨ Inv-Gamma 0.10 2.00 3.814 9.771 15.64

(2.820, 4.982) (6.856, 12.49) (12.08, 18.91)

ρµp Beta 0.50 0.20 0.862 0.862 0.849

(0.824, 0.907) (0.815, 0.913) (0.773, 0.937)

σµp Inv-Gamma 0.10 2.00 1.563 1.301 1.277

(1.404, 1.714) (1.121, 1.480) (1.077, 1.461)

ρµw Beta 0.50 0.20 0.862 0.895 0.917

(0.826, 0.907) (0.863, 0.930) (0.886, 0.950)

σµw Inv-Gamma 0.10 2.00 6.142 4.404 4.173

(5.385, 6.916) (3.840, 5.033) (3.628, 4.717)

ρP Beta 0.50 0.20 0.961 0.949 0.961

(0.943, 0.981) (0.928, 0.971) (0.940, 0.982)

σP Inv-Gamma 0.10 2.00 3.534 3.835 3.686

(2.938, 4.192) (3.093, 4.545) (3.015, 4.341)

Notes: The table shows prior and posterior distributions of the estimated parameters (The 10 and 90 percentiles of

the distributions are in parentheses). Standard deviations are multiplied by 100 for readability.
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from 2.04 to 2.42 in the MH estimation. The coefficient on output growth is around 0.2 at the mean in the

SMC estimations, while a bit higher at 0.29 in the MH estimation.

In the case of the fiscal policy parameters, differences between MH and SMC estimation are more

pronounced. Regarding the bond issuance rule, the SMC estimations imply much less persistence of the

structural deficit with an autoregressive coefficient of around 0.81 at the posterior mean, while the mean

is 0.97 in the MH estimation. Also, posteriors from the SMC estimations imply a much stronger counter-

cyclical response of government debt to the inflation rate and output growth. The elasticities of the bond

issuance with respect to inflation and output growth are -2.74 and -0.74 at the posterior mean in the 11 var

SMC estimation and -3.97 and -1.22 in the 7 var SMC estimation, as opposed to -1.60 and -0.35 in the MH

estimation. Posteriors for parameters governing tax rules show even larger differences. While posteriors from

the SMC estimations imply countercyclical tax rate responses with respect to the growth rate of government

debt, the posterior from the MH estimation implies pro-cyclical responses. Also, tax rates are estimated to

be more persistent in the SMC estimations than in the MH estimation.

Among the parameters governing the model’s frictions, the posterior distributions of variable capital

depreciation and investment adjustment cost parameters show significant differences. In the MH estimation,

the capital depreciation parameter is 0.46 at the posterior mean. In contrast, the means for the same

parameter are 1.80 and 2.35 in the 11 and 7 var SMC estimations, respectively. The posterior mean for the

capital adjustment cost parameter is 3.53 and 6.93 in the two SMC estimations and only 0.79 in the MH

estimation.

The posterior distributions for the rest of the parameters, including the parameters describing income

risk, the slope of the price and wage Phillips curves, and the structural shocks, are broadly similar. The

autocorrelation of the MEI shock is the only exception. In the SMC estimations, MEI shocks are estimated

to be not very persistent with an autocorrelation of around 0.5 at the posterior mean, while in the MH

estimation the posterior mean for this parameter is 0.85.

The differences between the MH and the SMC estimation results obviously lead to the question of

which method is the most accurate. This is a nontrivial question to address, since doing so would involve

repeated (independent) estimations of the HANK model as done, for instance, in Cai et al. (2021). This

is computationally very costly. We therefore sidestep this issue entirely and use both the SMC and MH

estimations in our forecasting comparison exercise. By this we mean that we obtain two different sets of

backward bridge estimations using the approach described in section 3.3—one starting from the SMC and

one starting from the MH draws. It turns out that the accuracy of the BBL model estimated using SMC

is better than that using the MH draws. While this evidence is no proof that the SMC estimation is more

reliable, it seems to point in that direction.
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Finally, in Tables 4 and 5, we present the posterior distributions from the estimations using the data up

to 2000Q1, which we obtain using the approach described in section 3. Columns 6 and 7 show the posterior

distributions from the backward estimation starting from the 2019Q4 MH and SMC draws, respectively.

For comparison, we also show the posteriors from the original 2019Q4 BBL estimation in column 4. The

2000Q1 posterior is close to the MH BBL posterior when the original MH draws were used as a starting

point. Similarly, when using the full sample SMC estimation result as a starting point, the 2000Q1 results

are close to the estimates obtained for the 2019Q4 SMC estimation.

4.3 Assessing HANK’s out-of-sample forecasting accuracy

Figure 1 shows the results of the horse race between BBL and SW focusing on four variables of interest:

output, consumption, investment growth, and the GDP deflator inflation. For each of these variables the

figure displays the root mean square errors (RMSEs), expressed in percent, computed as

RMSEi,h,Mm
=

1

τ̄ − h+ 1

τ̄∑
τ=h

(yi,T−τ+h − IE[yi,T−τ+h|y1:T−τ ,Mm])
2

(52)

where i indicates the variable being forecast, h is the forecast horizon, which ranges from one to seven

quarters ahead, and Mm is the model. The model set is M = {BBL,SW}, with the BBL RMSEs shown by

the solid black line and the SW RMSEs by the solid red line. The BBL model is referred to as BBL (SMC)

because it uses the posterior computed from the online estimation starting from the SMC draws, as opposed

to the original MH draws from BBL (the SMC-based estimation performs better than the MH-based one, as

shown later).

For the variables measuring real activity, in particular output and consumption growth, the results of

the horse race are not very kind to the BBL model. This is especially true for consumption growth, where

the RMSEs are roughly between about two (for both short and longer horizons) and six (h = 4) times larger

for BBL. The differences in forecasting performance for consumption growth largely translate into similar

differences in RMSEs for GDP growth, given that consumption represents the largest component of GDP.

For investment growth, the forecasting accuracy of the two models is similar for shorter horizons, but is

again worse for BBL for medium horizons. One piece of good news for the BBL model is that the RMSEs

of GDP deflator inflation are comparable to those of SW for all forecast horizons.

The much worse forecasting performance for BBL compared to SW for consumption growth is partic-

ularly disappointing. The key difference between HANK and SW-type models is the following: in HANK

models, the representative agent Euler equation, which determines consumption in standard DSGEs, is re-

placed with the aggregation of individual households’ consumption policy functions. These consumption

policy functions reflect inequality in both income and wealth: poor agents are hand-to-mouth, or close to
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that the RMSEs obtained using the MH draws are uniformly worse than those obtained from the MH draws.

We also find that the RMSEs for the eleven and the seven-variable BBL are almost indistinguishable from one

another. This is somewhat disappointing from the perspective of the HANK literature, as it suggests that

measures of inequality matter little for the dynamics of macroeconomic aggregates, at least for this model.

The result is reminiscent of the findings in Chang et al. (2021), who use functional vector autoregressions to

argue that there is limited feedback between inequality and aggregate macro time-series.

What are the possible reasons for these somewhat negative results? First, while BBL is a priori an ideal

candidate for this forecasting comparison given that it incorporates SW’s shocks and frictions, perhaps other

HANK models may perform better than BBL from a forecasting point of view. Seen from this perspective,

the results in this paper are an invitation to HANK modelers to use the methodology (and the code) described

in this paper to see how well their model fares in terms of forecasting accuracy.

Second, the good (at least relative to VARs) forecasting performance of representative agent DSGEs à

la SW was not achieved overnight, but resulted from a decade of advancement in modeling, crystallized in

Christiano et al. (2005).22 It may be that HANK models need to go through a similar process. There is also

evidence (e.g., Del Negro et al., 2007) that some of the reasonable forecasting performance of representative

agent DSGEs is due to features like habit persistence that 1) according to some may not have particularly

strong micro-foundations, and 2) may be difficult to replicate in HANK models.

Finally, as mentioned in the introduction and discussed in section 4.2, the parameters in HANK affecting

the model’s steady state are calibrated, not estimated. This is for a computational reason: recomputing

the steady state is extremely costly. But the estimated DSGE literature has shown that not estimating

parameters, perhaps not too surprisingly, hurts the fit of DSGE models and their forecasting performance.

If this is the reason why BBL forecasts are worse than those of SW, these findings pose a computational

challenge to HANK researchers interested in estimation: finding ways of computing the steady state more

efficiently and/or using estimation algorithms that do not require recomputing the steady state too many

times.

5 Conclusion

This paper had two objectives. One was to provide a toolkit for efficient repeated estimation of HANKmodels

that can be used by researchers at central banks and in academia. We argued that online estimation using

22There is a perception among macroeconomists that the reasonable forecasting performance of DSGEs is the result of

hindsight: model features are chosen ex post so that these models produce reasonably good RMSEs. More than ten years of

actual (ex ante) forecasting with DSGE models at the New York Fed arguably shows that this perception is unfounded (Cai et

al., 2019).
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Sequential Monte Carlo provides such a toolkit, and we explained how it works. The second objective was

to “kick the tires” of HANK models by comparing the out-of-sample forecasting accuracy of a prominent

example of such models, Bayer et al. (2022), to that of the Smets and Wouters (2007) model. HANK

models did not fare too well: their forecasting performance for real activity variables, especially GDP

and consumption growth, is notably inferior to that of SW. The results for consumption are particularly

disappointing, given that the main difference between SW-type DSGEs and HANK models is the replacement

of the representative agent Euler equation with the aggregation of individual households’ consumption policy

functions, which reflects inequality.

These findings should provide a motivation for more research on HANK models. First, leaving aside

forecasting performance of HANK models, inequality is one of the critical issues of our times and features

prominently in the transmission of policies. There are questions, such those surrounding the effect on growth

and inflation of the government transfers during the COVID pandemic, that representative agent models

simply cannot answer adequately. Kaplan et al. (2020) and Auclert et al. (2023) are recent examples of

quantitative research based on HANK models that focuses on some of these salient policy issues. Second,

since all models are misspecified, model diversity should play an important role for policymakers who use

models to inform their decisions. Finally, the fact that the forecasting performance of HANK models can

be improved is a just stimulus for further efforts, in terms of both modeling and making computations more

efficient.
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