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Abstract 

Insurance companies can be exposed to climate-related physical risk through their operations and to 

transition risk through their $12 trillion of financial asset holdings. We assess the climate risk exposure of 

property and casualty (P&C) and life insurance companies in the U.S. We construct a novel physical risk 

factor by forming a portfolio of P&C insurers’ stocks, with each insurer’s weight reflecting their 

operational exposure to states associated with high physical climate risk. We then estimate the dynamic 

physical climate beta, representing the stock return sensitivity of each insurer to the physical risk factor. 

In addition, using the climate beta estimates introduced by Jung et al. (2021), we calculate the expected 

capital shortfall of insurers under various climate stress scenarios. We validate our approach by utilizing 

granular data on insurers’ asset holdings and state-level operational exposure. Our findings indicate a 

positive association between larger exposures to risky states and higher holdings of brown assets with 

higher sensitivity to physical and transition risk, respectively. 
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1 Introduction

As climate change worsens, many natural disasters are becoming more frequent and severe.

Households and businesses hedge natural disaster risk with insurance companies. To shed

light on the ability of the insurance sector to withstand climate change, it is crucial to

understand insurers’ exposure to climate risk. Moreover, how climate change affects financial

stability is an important topic for financial institutions, regulators, and academics. As

important financial institutions, insurers’ exposure to climate risk is a key channel through

which climate change risk can threaten broader financial stability.

Climate change risks, commonly categorized into physical risk and transition risk, can

significantly impact insurance companies. Physical risk relates to the potential damage

caused by extreme events and climate pattern shifts, while transition risk arises from policy,

technology, and preference changes towards less carbon-intensive economies. On the physical

risk side, insurance companies may face unexpected claim payouts exceeding projections

due to the increasing frequency and intensity of natural disasters.1 Moreover, insurers’

asset side can also be affected as physical climate events could cause losses to the value

of financial assets. For example, sea level rise or hurricanes can cause damage to coastal

properties, thereby decreasing the value of mortgage bonds. On the transition risk side,

insurers can also be exposed through their $12 trillion of asset holdings. Those that invest

heavily in fossil fuel companies may suffer adverse effects as these assets become “stranded”

amid the shift away from fossil fuels. These outcomes can magnify the impact on insurers’

current and future profits, ultimately leading to systemic undercapitalization of the insurance

sector. The global financial crisis has demonstrated the negative externalities that arise

from undercapitalized financial institutions including insurance companies, emphasizing the

importance of addressing potential climate change risks.

1Holzheu et al. (2021) forecasts that global property insurance premiums will rise by 5.3% annually to
2040, with climate change as the main driver. If natural hazard events increase in frequency, scope, and
severity, the existing catastrophe models and rate-setting practices used by insurers may become less effective
(International Association of Insurance Supervisors, 2018).
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Despite its significance, our understanding of climate change risk, including both physical

and transition risks, in the insurance sector remains limited. The omission of the insurance

sector in many regulatory climate stress tests is a notable concern, as highlighted by Financial

Stability Board and Network of Central Banks and Supervisors for Greening the Financial

System (2022). Out of the 35 stress testing exercises conducted by 23 jurisdictions at both

country and EU levels, only one-third of the exercises incorporated the insurance sector (e.g.,

Bank of England, 2021; Autorité de Contrôle Prudentiel et de Résolution, 2020). A recent

review conducted by Acharya et al. (2023) calls for research on the effects of climate change

on insurance companies.

One major challenge comes from the measurement of risk and insurers’ exposure to such

risk, especially physical climate risks. First, adequate and reliable data on climate risks is

crucial for assessing insurers’ exposure. Data on future climate scenarios and projections are

inherently uncertain and subject to various modeling assumptions, further complicating risk

measurement. One solution is to use historical data to proxy for such future risks. However,

historical data on climate-related disasters may be limited, especially for long-tail events

with low frequency but high severity. Second, climate risks are dynamic and can evolve over

time. Insurers’ exposure to climate risks may change as new hazards emerge or existing risks

intensify. This time-varying nature of climate risks and insurers’ exposure adds complexity

to their measurement.

In this paper, we use a novel approach to quantify the climate risk exposure of insurance

companies. We use a market-based approach, relying solely on publicly available data in-

cluding those from the stock market, which effectively tackles the first challenge stemming

from the lack of adequate and reliable data. Specifically, we construct several portfolios

that are designed to fall in value as physical risk rises. For instance, we exploit data on

US property and casualty (P&C) insurers’ premiums across states, combined with data on

state-level natural disaster events. We form a portfolio of the P&C insurers in the U.S.

where the weight is each insurer’s premium exposure to the states with high past damages
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due to natural disasters, and we refer to the return on this portfolio as an insurer premium

physical risk factor.2

To test the validity of the constructed physical risk factors, we conduct event study

analyses and show that the factors decline after natural disaster events with large economic

damages. This empirically validates the factors, as it indicates that insurers with significant

exposure to states associated with high physical risk on average experience a decline in stock

returns following severe natural disasters.

Using the constructed physical risk factors, we estimate insurers’ stock return sensitivity,

physical climate risk beta. To capture the time-varying nature of this beta, we employ the

dynamic conditional beta model proposed by Engle (2002, 2016), addressing the challenge of

the inherent uncertainties and modeling assumptions associated with future climate scenarios

and projections. Then, we compute insurers’ expected capital shortfall in a climate stress

scenario, which we call CRISK, using the climate beta estimates within the framework

proposed by Jung et al. (2021). By incorporating transition risk factors, developed by Jung

et al. (2021), in addition to our physical risk factors, we quantitatively analyze insurance

companies’ exposure to climate risk in both dimensions.

We apply the methodology to large life insurers and P&C insurers in the U.S. to under-

stand their climate change risk exposure. We focus on life insurers’ transition risk exposure

and P&C insurers’ physical risk, since life insurers have a much larger portfolio of financial

assets ($9.4 trillion) than P&C insurers ($3 trillion) and P&C insurers are more naturally

exposed to physical risk than life insurers.

On the life insurer’s transition risk side, we observe a notable increase in their transition

climate beta during the 2019-2020 collapse of fossil fuel prices. Furthermore, our findings re-

veal a significant increase in the aggregate transition CRISK, which represents the expected

capital shortfall in a severe transition risk scenario. Specifically, from 2019 to 2020, the ag-

2We additionally propose a few portfolios capturing various types of risk. For example, we proxy insurers’
physical risk exposure based on their premiums and losses. We assign portfolio weights to each insurer based
on losses relative to its market capitalization.
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gregate CRISK of all life insurers in the U.S. increased by more than $150 billion, equivalent

to approximately 28% of their market cap. Our analysis reveals that the expected capital

shortfall solely attributed to climate stress, known as marginal CRISK (mCRISK), expe-

rienced an increase of more than $85 billion during the same period. Compared to banks

which experienced an increase of more than $500 billion in CRISK and around $100 billion

in mCRISK over the same time period, the magnitude of transition climate beta is similar,

while the CRISK and mCRISK in dollars are smaller, partly because banks’ balance sheets

are larger than insurers’.

On the P&C insurers’ physical risk side, we find that their climate beta went up sharply

during 2008-2010; however, we do not find any secular trend in the climate beta. The top ten

P&C insurers’ CRISKs have mostly been negative, suggesting no sign of potential systemic

undercapitalization. As of the end of 2020, their aggregate mCRISK stood at $20 billion,

representing 8% of their market capitalization.

We next assess the validity of our methodology. On the liability side, we investigate the

relationship between the estimated physical climate beta of P&C insurers and their exposure

to physical risk through operations. We utilize P&C insurers’ premium data based on their

annual regulatory filings, which provide information on the premiums collected by insurers

in each state. We use the occurrence of weather disasters at the state level to proxy for each

state’s climate risk. We characterize insurers’ level of physical risk exposure by measuring

their exposure to each state using the premium data and our measure of state-level climate

risk.

We observe a significant positive correlation between insurers’ market-based physical

climate beta and the proportion of their premiums in high-risk states, indicating that insurers

who have a larger share of their policies in states that face greater natural disaster risks have

higher exposure to physical climate risk based on our measure. This evidence corroborates

the economic validity of our physical climate risk measure.

On the asset side, we undertake an empirical comparison by investigating the relationship
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between the estimated transition climate beta of life insurers and their corresponding asset

holdings. We obtain insurers’ asset holdings from insurers’ statutory reports, which provide

detailed information on insurers’ investments in equities, corporate bonds, municipal bonds,

and other assets annually. We focus on life insurers’ corporate bond holdings, which make

up on average 34% of their invested assets, their largest category of investment (Ge and

Weisbach 2021). By linking corporate bonds to their respective industries using CUSIP and

NAICS, we characterize insurers’ assets by industry.3

We document that insurers’ market-based transition climate beta aligns with their hold-

ings of corporate bonds that are exposed to transition risk. In other words, insurers who

have a larger share of their corporate bond investments in industries that face greater risks

related to climate transition, have higher exposure to transition climate risk based on our

measure. This correlation is significantly positive after controlling insurers’ characteristics

and after adding the insurer fixed effects.

Contribution to Literature This paper contributes to the growing body of literature

studying the effect of physical climate risk in various asset markets, including equities

(Acharya et al., 2022; Alekseev et al., 2022), fixed-income (Acharya et al., 2022; Goldsmith-

Pinkham et al., 2022; Painter, 2020; Auh et al., 2022; Liu et al., 2021), and real estate (Giglio

et al., 2021b; Bernstein et al., 2019; Ge et al., 2022).4 We propose a novel approach to mea-

sure forward-looking physical climate risk, which is new to the literature. Specifically, we

develop a novel approach to construct a physical risk factor that is designed to decrease in

value as physical risk escalates. Additionally, through event study analyses, we empirically

demonstrate the decline of the proposed physical risk factor subsequent to natural disaster

events with significant damages. Our factor can potentially be used to measure physical

3To ensure robustness, we use multiple approaches to identify brown corporate bonds. We classify
corporate bonds as brown if they are issued by coal mining, gas mining, gas utilities, and electric utilities.
Additionally, we characterize corporate bonds based on the issuer industry’s stock return sensitivity to
transition climate risk, measured by transition climate beta.

4Acharya et al. (2023); Giglio et al. (2021a); Hong et al. (2020); Krueger et al. (2020) provide compre-
hensive reviews of the literature on climate risk and financial system.
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risks of firms beyond the insurance sector.

This paper is closely related to Jung et al. (2021), who propose a market-based approach

called CRISK to measure climate transition risk exposure of financial institutions. We con-

tribute beyond the existing CRISK framework in two important ways. First, we construct

a physical risk factor and propose a way of measuring physical risk exposure, which can

be generalized to other firms beyond the insurance section. Second, we focus on insurers,

recognizing the critical importance of analyzing their liability side to comprehensively as-

sess their climate risk exposure. Unlike banks, P&C insurers’ liabilities predominantly stem

from policyholder claims and obligations which can be directly exposed to physical climate

risk.This distinction underscores the unique nature of insurers’ risk profiles and necessitates

a distinct approach to evaluating their climate risk.

Additionally, this paper contributes to the literature studying the impact of climate

change on the insurance sector. We are the first paper, to our knowledge, to come up with

measures of forward-looking physical risks faced by insurers. Previous studies (Hagendorff

et al., 2015; Howerton and Bacon, 2017; Schuh and Jaeckle, 2023) have examined the rela-

tionship between disasters and insurers’ stock prices. Some studies suggest that increased

physical climate risk leads to an increase in demand for insurance. If insurers are able to ad-

just premia appropriately, physical climate risk might not impact expected profits (Holzheu

et al., 2021; Alekseev et al., 2022; Grimaldi et al., 2020). However, other studies suggest that

the above mechanism is limited due to financial and regulatory frictions. Ge (2022) doc-

ument that following P&C divisions’ losses due to unusual weather damages, life divisions

change prices in order to generate more immediate financial resources. Ge and Weisbach

(2021) suggest that when P&C insurers become more constrained due to operating losses

(damage caused by weather shocks), they shift towards safer bonds on the asset side. Oh

et al. (2022) find that insurers may be less prepared to deal with large losses and may re-

spond by exiting markets or dropping important product features, though this kind of action

is limited due to the rate-setting frictions. Massa and Zhang (2021) document that prop-
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erty and reinsurance companies react to Hurricane Katrina by shifting from bond financing

to bank-based borrowing. While these papers suggest that insurers are implementing risk

management strategies, it is not clear to what extent insurers could manage their risk of

undercapitalization in the face of abrupt physical or transition risk realizations.

Outline of the Paper The remainder of the paper proceeds as follows: Section 2 describes

the data. Section 3 develops various climate stress scenarios by constructing physical climate

risk factors. Section 4 analyzes P&C insurers’ exposure to physical climate risk, and section

5 studies life insurers’ exposure to transition climate risk. Section 6 examines the systemic

climate risk exposure of insurers. Section 7 validates the measures. Section 8 concludes.

2 Data

Drawing from the insurance literature and recognizing that different types of insurers may

face distinct climate risks, we classify insurers into two categories: P&C insurers and life

insurers.5 Our sample period covers 2000 to 2023.

Our analysis relies on three primary sources of data: (i) natural disaster event data to

capture climate-related physical risk; (ii) stock and corporate bond data to construct market-

based climate risk factors; and (iii) insurers’ asset holdings and operational exposure data

to investigate the relationship between climate risk and insurers’ assets and liabilities.

Natural Disaster Event Data We utilize monthly data from National Oceanic and

Atmospheric Administration (NOAA) National Center for Environmental Information to

construct physical risk factors. This data is sourced from the Spatial Hazard Events and

Losses Database for the United States (SHELDUS) database, which provides information on

5We identify P&C insurers using the NAICS (North American Industry Classification System) code
524126. Then we manually look up each firm’s main focus and delete insurers who are not property (and
casualty) insurance, multi-line insurance, specialty insurance, or reinsurance firms. We identify life insurers
using SIC (Standard Industrial Classification) code 6311. Then we combine our data with Koijen and Yogo
(2022) life insurer list to create our final list of life insurers.
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natural hazard events and their economic losses across the country from 1980 to 2019. SHEL-

DUS includes data on hurricanes, tornadoes, floods, wildfires, earthquakes, and more. Our

focus is on assessing property damage resulting from coastal, drought, flooding, heatwaves,

hurricanes, wind, wildfire, and winter weather disasters. In Figure 1, the map displays the

average county-level property damage caused by all hazards from 2000 to 2019, with Califor-

nia, Texas, and Florida being particularly affected. Panel A of Figure 1 presents summary

statistics of property damage for different hazard types, highlighting hurricanes and floods

as the most destructive disasters.

To validate our physical risk factors, we employ the Billion-Dollar Weather and Climate

Disasters Database maintained by NOAA, which tracks daily weather and climate events

causing at least one billion dollars in damage from 1980 to 2023. This database provides

additional details, including start and end dates, event summaries, CPI-adjusted estimated

costs, and fatalities. It covers a range of disasters, such as droughts, floods, winter events,

hurricanes, and wildfires. Panel B of Figure 1 presents the summary statistics of Billion

Dollar disaster events, highlighting hurricanes, droughts, and wildfires as the most destruc-

tive shocks. While hurricanes, winter disasters, and winds typically last less than a week,

flooding, wildfires, and droughts can persist for months.

Stock and Corporate Bond Data In the construction of physical risk factors, we use the

U.S. P&C insurance companies’ stock returns from CRSP-Compustat merged data set. We

use a risk-free rate from Kenneth R. French Data Library. Additionally, we gather corporate

bond information from Mergent Fixed Income Securities Database (FISD), municipal bond

characteristics from Mergent Municipal Bond Database, and municipal bond transaction

data from MSRB’s Municipal Securities Transaction Data.6

6We utilize the crosswalk developed by Acharya et al. (2022) to link municipal bond issuers with their
corresponding county locations. We thank Viral Acharya, Tuomas Tomunen, and their coauthors for sharing
the data.
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Insurers’ Asset Holdings and Operational Exposure Data In order to measure in-

surers’ liability-side exposures to physical risk, we utilize individual insurers’ direct premiums

earned (DPE) at the state-year level in homeowners’ multiple peril line and commercial mul-

tiple peril line from the National Association of Insurance Commissioners (NAIC) and SNL

Financial.7 To study the relationship between insurers’ climate risk and their asset holding,

we obtain insurers’ holding data from Schedule D Part 1 of the Annual statement.

Sample Characterization

We first focus on large insurance companies to understand their climate risk exposure, and

then analyze the systemic risk of all insurers in the U.S. in section 6. Table 1 presents the

summary statistics of the top ten P&C insurers and life insurers based on their average

market capitalization from 2000 to 2021.8

P&C Insurers To understand P&C insurers’ operational exposure to risky states, we

construct risky state exposure, defined as the share of premium earned from risky states:

Risky State Exposureit =
Premium Earned from Risky Statesit

Total Premium Earnedit

We identify risky states as Texas, Florida, and California, the top three states in terms of

the average annual property damage caused by all hazards based on historical data from

SHELDUS. These states have recorded average annual property damage caused by all haz-

ards of $ 4.07 billion, $ 2.94 billion, and $ 2.36 billion, respectively, from 1980 to 2019 (all

in adjusted U.S. dollars with the base year of 2019).

If an insurer’s operation is well diversified across a number of states, even if it collects

a large amount of premiums in a risky state, its diversification will dampen the effect of

7The NAIC also offers insurers’ direct losses incurred at the state-year level. Both DPE and LSS reflect
insurers’ liability exposure to each state and are strongly correlated. In this paper, we utilize DPE as a
measure of insurers’ exposure.

8Note that we analyze American International Group separately given its specialty.
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its total exposure to the risky states. To measure the degree of each insurer’s operational

portfolio diversification, we compute Concentration of each insurer’s portfolio similar to the

Herfindahl-Hirschman Index (HHI):

Concentrationi,t =
∑
j∈J

(DPE Exposurei,j,t)
2 (1)

where DPE Exposurei,j,t is insurer i’s share of premium earned in state j in year t. A

higher Concentration value indicates a lower level of diversification, implying that the insurer

predominantly sells policies in a small number of states. Concentration equals 1 indicates

that the insurer sold 100% of its policies in a single state.

The last two columns in Panel A of Table 1 display P&C insurer operational exposure

to states in the U.S. On average, the top ten P&C insurers collect approximately 18.6% of

their premiums in risky states. However, there is significant variation among insurers, with

percentages ranging from 3.6% to 29.2%. For example, Allstate earns approximately 16% of

its premiums in California, and 7% each in Texas and Florida. The average Concentration of

the top ten P&C insurers is 0.07, indicating that, an average insurer’s operational exposure

is well diversified across states.

Life Insurers To understand life insurers’ corporate bond portfolio exposure to brown

industries, we construct two measures. We define brown share as the fair value of brown

corporate bonds divided by the fair value of all corporate bonds held by the insurer. To

identify brown industries, we build on the general equilibrium model estimates of Jorgenson

et al. (2018). We define brown industries as the top four industries: coal mining, gas mining,

gas utilities, and electric utilities. We merge CUSIP-year-level holding data with Mergent

and Compustat databases using 6-digit CUSIP to get the NAICS industry for each corporate

bond.

Brown exposure is estimated based on a more general approach of Jung et al. (2023).

Specifically, we compute the proportion of insurer i’s corporate bond portfolio value that
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would be lost if policy P gets implemented.

Brown ExposurePi,t =
∑
j∈J

wi,j,t MarkdownP
j (2)

where wijt is proportion of insurer i’s corporate bond invested in industry j at time t,

MarkdownP
j is the drop in the output of industry j under policy P . We consider a policy

with a carbon tax of $50 with a growth rate of 5%.9 The key assumptions behind this

approach are that (1) insurers lose the value of bonds proportionally to the drop in the

output of the borrower’s industry and (2) each insurer maintains its allocation of corporate

bonds across industries as of time t.

The final two columns in Panel B of Table 1 present the two measures, brown share and

brown exposure of the top ten P&C insurers. Based on the brown share measure, we find

that 14.7% of their corporate bond portfolio is exposed to industries that are expected to

be most adversely affected by carbon taxes. Based on the brown exposure measure, we find

that, on average, they are expected to lose 4.6% of their corporate bond portfolio under a

severe carbon tax scenario.10 The brown exposure estimates are similar to that of large US

banks, 3–4%, when computed in the same manner as in Jung et al. (2023).

3 Design of Climate Stress Scenarios

We start with designing climate risk scenarios using a market-based approach to estimate the

potential undercapitalization of insurance companies. Specifically, we construct portfolios

that are designed to decrease in value as climate risk heightens, which we use as our construct

physical climate factors. In this section, we describe how we construct these factors, discuss

their advantages over potential alternative methods, and then empirically test their validity.

9Appendix Table A.4 reports the drop in industry output and we use the worst scenario (the last column)
for the calculation of brown share and brown exposure.

10While not directly comparable, a study by New York Department of Financial Services (2021) reveals
that in New York State, 11% of insurers’ investments in equities and fixed income are allocated to carbon-
intensive sectors.
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We also briefly describe transition climate factors by Jung et al. (2021).

Physical Climate Factors We consider several physical risk factors, constructed based on

P&C insurers’ stock returns. The first physical climate factor, insurer premium factor, uses

information on P&C insurers’ operational exposure across states. We focus on P&C insurers’

operations because it is natural to hypothesize that P&C insurers are particularly affected

by natural disasters due to their role in providing coverage for properties against natural

disasters. The projected escalation of physical risk, including the increased occurrence of

floods and wildfires, has the potential to create underinsurance or even a lack of insurance

coverage. Consequently, significant market disruptions may occur, such as premium losses,

higher rates of self-insurance, or increased demand for public sector disaster relief. This can

lead to significant financial losses for insurers and contribute to a decline in P&C insurers’

stock prices.

We construct the insurer premium factor in the following steps. We first merge P&C

insurers’ DPE with property damage from SHELDUS at the state-year level. Then, for each

year, we compute each insurer i’s physical risk exposure, denoted RISK, as:

RISKt,i =
N∑
j

[(
DPEi,j,t−1∑N
j DPEi,j,t−1

)
× Property Damagej,t−1

]
× 1

MEi,t−1

(3)

whereDPEi,j denotes the direct premium earned by insurer i in state j, Property Damagej,t−1

denotes the total property damage in state j in the previous year, and MEi,t−1 denotes the

market cap of insurer i in the previous year. We form a portfolio of all U.S. P&C insurers

where the weight is RISK. Finally, we subtract the risk-free rate from the portfolio return

to obtain the insurer premium factor. Intuitively, insurance companies with a substantial

premium (policy) exposure to states characterized by high physical risk would be associated

with elevated RISK. Consequently, the insurer premium factor gives greater weight to in-

surers with high RISK, while assigning lower weights to those with low RISK. In light

of this, we anticipate a decline in this factor subsequent to an unanticipated escalation in
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physical risks, such as a sharp increase in the frequency or severity of natural disasters.

The second physical climate factor, insurer loss-to-equity factor, is constructed based on

P&C insurers’ ratios of losses incurred relative to its market capitalization. Specifically, we

compute the ratio by:

Loss-to-Equityi,t =

∑
j ρ̄i,j,t−1DPEi,j,t−1

MEi,t−1

(4)

where ρi,j,t can be considered “risk weights” of insurer i in state j and year t:

ρi,j,t =
Lossi,j,t
DPEi,j,t

and ρ̄ is exponentially smoothed risk weights.11

The form of loss-to-equity measure resembles the inverse of the risk-based capital (RBC)

ratio. The RBC ratio is a measure of an insurer’s capital adequacy by dividing its total

adjusted capital by its required capital:

RBCi,t =
Equityi,t

Required Equityi,t
(5)

A higher RBC ratio indicates that the insurer has a larger buffer of capital to absorb potential

losses and meet its obligations to policyholders. Our proxy measure loss-to-equity resembles

the inverse of RBC ratio, and therefore a higher value indicates a higher risk.

Similar to the first physical factor, we form a portfolio of all P&C insurers in the U.S.

where the weight is Loss-to-Equity. The loss-to-equity factor is computed as the portfolio

return minus the risk-free rate. Naturally, insurance companies that experience substantial

losses are often associated with high risk. Therefore, the loss-to-equity factor assigns greater

weight to insurers with a higher Loss-to-Equity ratio, and we anticipate a decline in this

factor following an unanticipated escalation in physical risks.

11We use the optimal bandwidth.
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Figure 2 shows the 6-month cumulative returns of the market portfolio (SPY), transition

risk factor (stranded asset factor), and physical risk factor (insurer premium factor and

insurer loss-to-equity factor). There is a strong temporal correlation (0.90) between the

two physical climate factors. Hence, we primarily utilize the insurer premium factor as the

physical climate factor in the following sections.

Unlike conventional climate shocks measured by temperatures or certain specific types

of natural disasters, our approach offers distinct advantages. First, they are market-based,

allowing us to incorporate the expectations of investors and reduce the reliance on uncertain

geophysical climate models. Second, they assess the impact of physical climate risks on

national financial markets as a whole, rather than being limited to specific regions. Focusing

on specific disasters or geographical areas may not fully capture the systemic implications of

climate risk. Finally, our market-based approach provides higher-frequency data compared

to traditional approaches that rely on sparse event series. Climate events such as extreme

temperatures or natural disasters occur relatively infrequently, making it challenging to

capture their effects accurately using event-based data alone.

Physical Climate Factor Responses around Natural Disasters To test whether the

insurer premium factor captures physical climate risk, we conduct event study analyses using

natural disaster events that caused more than $1 Billion of damages. We use the following

specification to test the physical risk factor’s responses to the disaster events:

PCFt = α +
20∑
n=0

γn shockt−n +MKTt + εt (6)

where PCF denotes the insurer premium factor, shockt takes the value of 1 if it was the start

date of a natural disaster event, and a value of 0 if there was no disaster on day t. To control

for overall market movements, we utilize the SPDR S&P 500 ETF as the market return,

denoted as MKT . The coefficient γ is expected to be negative since the occurrence of a

natural disaster is associated with a positive shock and a decrease in the value of PCF. The
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standard errors are adjusted using the Newey-West method to account for serial correlation.

Panel A of Figure 3 shows the cumulative γ coefficient along with a 95% confidence

interval and suggests a negative response to the occurrence of natural disasters, consistent

with the hypothesis.12 Interestingly, the insurer premium factor takes more than 5 days to

respond.We find supporting evidence that the slow response is associated with the fact that

the impact (e.g., severity and duration) of the event is not obvious within the first few days

of the event. In the case of one of the most damaging disasters, hurricane Katrina, on the

first day of the event, August 26, 2005, an NYT article says “A Blast of Rain but Little

Damage as Hurricane Hits South Florida.”13 On the fifth day, an article suggested the size

of the damage.14 Only after six days, on August 31, an article mentioned its impact on

the financial market: “Markets Assess Hurricane Damage, and Shares Fall.”15 In Appendix

Table A.3, we document the series of New York Times articles related to Hurricane Katrina.

In addition, we find that attention to natural disaster events typically peaks between 10

and 15 days after the first date of the disaster. To measure the attention to natural disaster

events, we analyze the frequency of event mentions in New York Times (NYT) articles. We

focus on the most significant hurricanes (in the 95th percentile of total losses) to capture

their greater market impact and heightened public attention. Panel B of Figure 3 illustrates

the pattern of these mentions following a hurricane event, with t = 0 indicating the event’s

start date. The figure reveals a consistent and relatively low number of mentions in the first

five days, gradually increasing thereafter. The peak is observed on the 14th day, followed by

a gradual decline in the number of mentions.

Transition Climate Factor Following Jung et al. (2021), we use the stranded asset

factor as a proxy of transition risk. This factor is derived from the stranded asset portfolio

12Appendix Figure A.1 shows event study findings using the Insurer Loss-to-Equity Factor. Both physical
climate factors exhibit similar responses.

13New York Times article, “A Blast of Rain but Little Damage as Hurricane Hits South Florida” mentions
that “but there were no reports of heavy damage as the hurricane made landfall between North Miami Beach
and Hallandale Beach shortly before 7 p.m.”

14New York Times article, “Insurers Estimate Damage at $9 Billion”
15New York Times article, “Markets Assess Hurricane Damage, and Shares Fall”
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developed by Litterman et al. (2021) and the World Wildlife Fund. The composition of

the factor includes a 70% long position in VanEck Vectors Coal ETF (KOL), a 30% long

position in Energy Select Sector SPDR ETF (XLE), and a short position in SPDR S&P 500

ETF Trust (SPY). The rationale behind this factor is that, during the transition towards

a low-carbon economy, assets in the fossil fuel industries face the risk of devaluation and

stranding. Consequently, the return on a stranded asset portfolio serves as a proxy measure

that reflects market expectations regarding future transition climate risk. Jung et al. (2021)

document that this factor tends to fall following climate policy-related events.

The physical and transition climate factor summary statistics (Appendix Table A.1), and

correlation table (Appendix Table A.2) are included in the appendix.

4 Insurers’ Physical Risk Exposure

4.1 Physical Climate Beta

Following the standard factor model approach, we specify the model for insurer i’s stock

return as follows:

ri,t = βMkt
i,t MKTt + βPhysical

i,t PCFt + εi,t (7)

where ri,t is the stock return on insurer i, MKTt is the market return measured as the return

of S&P 500 ETF, and PCFt denotes the insurer premium factor. Including the market factor

in the model helps to control for confounding factors, such as the COVID shock and aggregate

demand shock, that may influence both insurer stock returns and the physical risk factor.

βMkt
i,t and βPhysical

i,t measure the sensitivity of insure i to overall market risk and physical risk.

We call βPhysical
i,t physical climate beta.

Panel A of Figure 4 presents the climate beta of the top ten largest insurers in the U.S..

As anticipated, P&C insurers’ climate betas are all positive, ranging between 0 and 1.2.
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At the financial institutions level, we observe that all insurers exhibit similar movements

in response to climate risk. Regarding the impact of natural disasters, we find that the

physical climate betas for insurers increase when they are affected by such events. Notable

examples include Hurricane Katrina in 2005 and Hurricane Ike in 2008. These disasters

likely intensified insurers’ exposure to physical climate risk, leading to higher sensitivity

during those periods. Among the top ten insurers, Hartford Financial Services (Ticker: HIG)

stands out with the highest climate beta. This could be attributed to its significant exposure

to risky states and a relatively lower market capitalization compared to other insurers. On

the other hand, Progressive Corporation (Ticker: PGR), with a low DPE exposure, exhibits

a relatively lower climate beta. In the upcoming section, we formally test this relationship

between physical climate beta and the insurers’ premium (policy) exposure across states.

4.2 Physical CRISK and marginal CRISK

Following the CRISK methodology in Jung et al. (2021), we compute the expected capital

shortfall conditional on physical climate stress. We consider a scenario in which the physical

climate factor falls substantially, corresponding to a 1% quantile of the return distribution,

over six months. The CRISK is defined as below:

CRISKit = kDit − (1− k)Wit exp
(
βClimate
it log(1− θClimate)

)
(8)

whereWit is the market value of equity, Dit is the book value of debt, k is the prudential ratio

of equity to assets, and θ is the climate stress level. We set the prudential capital fraction k

to 8% and the climate stress level θ to 20% for physical risk, as 20% decline corresponds to

the 1% quantile of the six-month return distribution. CRISK is higher for insurers that are

larger, more leveraged, and with higher climate beta.

Panel A of Figure 5 shows the estimated physical CRISK of the top ten largest U.S.

P&C insurers. Notably, the magnitude of insurer physical CRISK (-50 to 20) is much lower
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than bank transition CRISK in Jung et al. (2021) ranging up to $ 100 billion. This is partly

coming from the fact that these insurers are much smaller than large banks. As we compare

them in terms of their market cap, the magnitude of P&C insurers’ physical CRISK (-100%

to 104% of their market cap) is somewhat lower than banks’ transition CRISK (-81% to

187% of their market cap).16

Marginal CRISK (mCRISK) captures the effect of climate stress in isolation from the

realized undercapitalization as well as the effect of market stress. It is defined as the difference

between CRISK and non-stressed CRISK:

mCRISKit = (1− k)WitLRMESit (9)

where LRMES is the long-run marginal expected shortfall, defined as the expected firm

equity multi-period arithmetic return conditional on a systemic climate change event:

LRMESit = −Et

[
Ri

t,t+h|RClimateFactor
t+1,t+h < C

′
]

(10)

Panel A of Figure 6 plots the marginal CRISKs of the top ten large U.S. P&C insurers.

Marginal CRISK isolates the effect of climate stress from the concurrent undercapitalization

coming from the leverage effect. They range between $ 0 and $ 4 billion, suggesting no sign

of substantial undercapitalization conditional on severe physical climate stress.

4.3 Physical CRISK Decomposition

To better understand what drives the decrease in physical CRISK in 2020, we decompose

CRISK into three components based on Equation 11:

16We compute the share of CRISK or mCRISK in terms of market cap by calculating the CRISK/market
cap for each individual financial institution first, and then take the average across the top 10 institutions.
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dCRISK = k ·∆DEBT︸ ︷︷ ︸
dDEBT

−(1− k)(1− LRMES) ·∆EQUITY︸ ︷︷ ︸
dEQUITY

+(1− k) · EQUITY ·∆LRMES︸ ︷︷ ︸
dRISK

(11)

The first component, dDEBT = k · ∆DEBT , is the contribution of the firm’s debt

to CRISK. CRISK increases as the firm takes on more debt. The second component,

dEQUITY = −(1 − k)(1 − LRMES) · ∆EQUITY , is the effect of the firm’s equity

on CRISK. Here, LRMES represents the average value of LRMESt and LRMESt+1.

CRISK increases as the firm’s market capitalization deteriorates. The third component,

dRISK = (1− k) ·EQUITY ·∆LRMES, is the contribution of an increase in climate beta

to CRISK. Here, EQUITY represents the average value of EQUITYt and EQUITYt+1.

Panel A of Table 2 decomposes the change in CRISK of the top 10 P&C insurers in the

U.S. during the year 2020 into three components. On average across the P&C insurers, the

risk component (due to the rise in climate beta) contributed most, 97%, of the rise in CRISK

during 2020.

5 Insurers’ Transition Risk Exposure

5.1 Transition Climate Beta

Similarly, we estimate the transition climate beta for life insurers using the following model:

ri,t = βMkt
i,t MKTt + βTransition

i,t TCFt + εi,t (12)

where ri,t is the stock return on life insurer i and TCFt is the stranded asset factor. Panel

B of Figure 4 exhibits the transition climate beta of large U.S. life insurers. At the financial

institutions level, all insurers move similarly. Climate betas for insurers, like banks, slightly

decreased during the global financial crisis (GFC) and dramatically increased during 2019-
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2020 when fossil fuel prices collapsed. The magnitude of the increase in insurers’ climate

beta during 2019-2020 is similar to banks in Jung et al. (2021).

5.2 Transition CRISK and marginal CRISK

Panel B of Figure 5 shows the transition CRISK of the large U.S. life insurers. In contrast

to banks in Jung et al. (2021), insurers’ CRISKs were stable during the GFC and 2019-2020

when fossil fuel energy prices collapsed.

Panel B of Figure 6 displays the transition marginal CRISK of life insurers in the U.S..

The marginal CRISK of insurers and banks are similar, close to zero for most of the time,

and went up during 2019-2020, reaching more than $10 billion in 2020. The range of insurer

marginal CRISK scaled by market capitalization ranges between -66% to +31%, and this

is comparable to those of banks (-41% to +33%). Due to the size effect, banks’ marginal

CRISK can reach $ 120 billion while the maximum of insurers is less than $ 15 billion.

5.3 Transition CRISK Decomposition

To gain insights into the factors contributing to the increase in transition CRISK in 2020,

we decompose CRISK into three components according to Equation 11. Panel B of Table 2

shows the contribution of three components. On average, the risk (i.e., increase in climate

beta) contributed 59% and the equity deterioration contributed 29% to the change in CRISK

during 2020.

6 Insurers’ Systemic Climate Risk Exposure

To analyze the systemic climate risk exposure of insurers, we compute the aggregate CRISK

and the aggregate marginal CRISK of the top ten life and P&C insurers in the U.S. For

CRISK, we truncate the insurers’ CRISK and keep only the positive values, assuming that it

is unlikely for an insurer with excess capital reserves would transfer (subsidize) its equity to
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an undercapitalized insurer. For marginal CRISK, we sum up the insurers’ marginal CRISK

without adjustment, to focus on the effect of climate stress, isolated from the leverage effect.

Figure 9 displays the aggregate physical and transition CRISK, respectively. We find

that the aggregate transition CRISK of insurers reached more than $ 180 billion at the end

of 2020, but declined to under $ 150 billion at the end of 2021. Although this amount

in dollars is smaller in comparison to banks, whose CRISK rose by approximately $ 500

billion, the proportionate impact of CRISK on individual institutions, when scaled by market

capitalization (28%), is similar to that of banks (38%).

Figure 10 displays the aggregate physical and transition marginal CRISK, respectively.

During the sample period, insurers’ aggregate physical marginal CRISK ranges from $ 4 bil-

lion to $ 19 billion, corresponding to 3% to 15% of their market cap. In terms of transition

risk, insurers’ aggregate marginal CRISK fluctuated from $ -40 billion to $ 80 billion, equiv-

alent to approximately -35% to +27% of their market capitalization. Overall, the impact of

transition risk on insurers appears to be more meaningful than the impact of physical risk.

Compared to the aggregate marginal CRISK of financial firms, including banks, broker-

dealers, and insurance companies computed by Jung et al. (2021), insurers accounted for

less than 20% of the aggregate marginal CRISK in the U.S. in 2020 but the proportion

reached more than 40% at the end of 2021, suggesting that insurance sector may be facing

higher levels of vulnerability in terms of transition CRISK compared to other segments of

the financial industry.

7 Validation

7.1 Insurers’ Physical Climate Beta and their Liability Exposure

In this section, we validate our methodology by comparing P&C insurers’ physical climate

beta, estimated from equation (7), with their policy portfolio climate beta, reflecting their

portfolio of insurance policies.
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To conduct this test, we first measure the physical climate risk of each county by employ-

ing municipal bond returns, as previous studies (Auh et al., 2022, e.g.) show that physical

climate risk is priced in the municipal bond market. To account for the infrequent trading

of municipal bonds, we focus on counties with a sufficient number of bond transactions (at

least 10 times per quarter)17, and we analyze returns on a monthly frequency. Then, we

compute the average of all municipal bond returns within the same county weighted by issue

amount and trading interval, following the approach of Auh et al. (2022). Once county-level

monthly returns on municipal bonds are obtained, we estimate the physical climate beta for

each county using equation 7 on a monthly frequency.

To aggregate county-level physical climate beta to state-level physical climate beta, we

focus on the positive climate betas and counties with high climate risk exposure to capture the

asymmetric payoff to insurers. Insurers are more likely to experience losses from unexpected

claims related to severe weather events in risky counties (associated with positive climate

betas), while they do not have a corresponding advantage or significant gains from policies

in areas with negative climate betas. Therefore, we retain counties with positive climate

beta and aggregate them at the state level by calculating the 99th percentile of the climate

beta of municipal bonds across all counties within the state.

After obtaining the state-level physical climate beta estimates, we construct a panel

of policy portfolio climate beta by computing the weighted average climate beta for each

insurer, where the weight is the DPE exposure of an insurer i to the corresponding state j:

Policy Portfolio Physical Climate Betai,t =
∑
j∈J

wj,t β
Physical
j,t (13)

where the weight wj is the DPE share in state j. βPhysical
j denotes the physical climate beta

of state j.

Figure 7 shows that the market-based physical climate beta and the policy portfolio

17This results in a sample of 295 counties.
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climate beta are aligned. We formally test this with the following OLS specification:

βPhysical
it = a+b Policy Portfolio Physical Climate Betait+Insurer Controls+δi++εit (14)

The dependent variable, βPhysical
it is insurer i’s time-averaged daily climate transition beta

for each year. Table 3 shows the result. Column (2) includes insurer control variables, size

and leverage. Size is the log of total assets. Leverage is defined as 1 plus its book value of

liabilities divided by its market value of equity. Standard errors are clustered at the insurer

level. We find that b is positive and significant in both specifications.

7.2 Insurers’ Transition Climate Beta and their Asset Holdings

In this section, we test whether insurers’ exposure to transition risk, proxied by transition

climate beta, aligns with insurers’ asset holdings. To test this, we focus on life insurers’

bond holdings because their equity holdings tend to be small, which can be partly explained

by the high capital requirements on equities (Koijen and Yogo, 2023). First, we construct

a panel of bond portfolio climate beta by computing the weighted average climate beta for

each insurer where the weight is the proportion of bond holding in the respective industry

and each investment is assigned the climate beta of the respective industry:

Bond Portfolio Transition Climate Betai =
∑
j∈J

wj β
Transition
j (15)

where the weight, wj is the proportion of investment made to the respective industry j.

βTransition
j denotes the transition climate beta of industry j, and it is computed as the value-

weighted average climate beta of firms in each 3-digit NAICS industry. The industry climate

betas are computed based on all listed firms in the U.S. following Jung et al. (2021). Figure 8

shows that the market-based transition climate beta and the bond portfolio climate beta are
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aligned. We formally test this with the following OLS specification:

βTransition
it = a+b Bond Portfolio Transition Climate Betait+Insurer Controls+δi+εit (16)

The dependent variable, βTransition
it is insurer i’s time-averaged daily climate transition

beta for each year. Insurer control variables include size and leverage, defined the same as

in the previous subsection. Table 4 shows the result. Column (2) includes insurer control

variables. Standard errors are clustered at the insurer level. We find that b is positive and

significant across both specifications, suggesting that insurers’ exposure to transition risk is

in line with their asset holdings.

8 Conclusion

We employ the CRISK framework proposed by Jung et al. (2021) to measure the climate risk

exposure of life and P&C insurance companies in the U.S. Our approach involves developing

physical risk factors based on portfolios of P&C insurers’ stocks, taking into account each

insurer’s policy exposure to states associated with high physical climate risk. Additionally,

we estimate the dynamic climate beta, which captures the stock return sensitivity of each

insurer to the physical risk factor. By computing the expected capital shortfall of insurers

under various climate stress scenarios, we further quantify the potential financial implications

of climate risk.

In terms of transition risk for life insurers, we observe a notable increase in their transition

climate beta during the 2019-2020 fossil fuel price collapse. The aggregate transition CRISK

for life insurers in the U.S. also significantly rose by more than $ 150 billion, equivalent to

around 28% of their market cap. Excluding concurrent undercapitalization, the marginal

CRISK attributed solely to climate stress increased by more than $ 85 billion during the

same period.

In terms of physical risk for P&C insurers, we find that the top ten P&C insurers mostly
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had negative CRISK values (excess reserves), indicating no sign of potential systemic under-

capitalization under physical climate stress. As of the end of 2020, their aggregate marginal

CRISK stood at $ 15 billion, equivalent to approximately 7% of their market cap.

Empirical validation of the transition climate risk factor and climate beta estimates

is conducted using granular data on insurers’ asset holdings and the industry exposure in

those holdings. We find that the market-based transition climate beta reflects insurers’ bond

portfolio composition. Insurers with a higher proportion of their corporate bond holdings in

industries that are more affected by transition climate risks are more exposed to transition

climate risk compared to those with a lower allocation in such industries.

On the physical climate risk side, We validate our method by examining insurers’ policy

exposure in each state and the corresponding state-level physical risk. Our findings indicate

that the market-based physical climate beta reflects insurers’ policy portfolio composition.

Insurers with a greater proportion of policies in states facing higher physical climate risks

exhibit higher exposure to physical climate risk, while those with a lower allocation in such

states have lower exposure.

In conclusion, this study enhances our understanding of the climate risk exposure of life

and property and casualty insurers in the U.S. We find that transition risk can have a signifi-

cant impact, while physical risk has a relatively lower impact on insurers’ capital shortfall and

risk sensitivities. Looking beyond this paper, fruitful directions for future research include

exploring insurers’ responses to physical and transition climate shocks, specifically focusing

on their adjustments in policy pricing and quantity. This line of research will provide further

insights into insurers’ risk management strategies and their efforts to address the financial

implications of climate change.
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The Review of Financial Studies, March 2020, 33 (3), 1011–1023.

Howerton, Alexis and Frank W Bacon, “HURRICANE KATRINA’S EFFECT ON

PROPERTY AND CASUALTY INSURANCE COMPANIES’STOCK PRICES,” in “Al-

lied Academies International Conference. Academy of Accounting and Financial Studies.

27



Proceedings,” Vol. 22 Jordan Whitney Enterprises, Inc 2017, pp. 12–16.

International Association of Insurance Supervisors, “Issues Paper on Climate Change

Risks to the Insurance Sector,” 2018.

Jorgenson, Dale W, Richard J Goettle, Mun S Ho, and Peter J Wilcoxen, “The

welfare consequences of taxing carbon,” Climate Change Economics, 2018, 9 (01), 1840013.

Jung, Hyeyoon, Joao A.C. Santos, and Lee Seltzer, “U.S. Banks’ Exposures to Cli-

mate Transition Risks,” New York Fed Staff Report, 2023.

, Robert F. Engle, and Richard Berner, “CRISK: Measuring the Climate Risk Ex-

posure of the Financial System,” FRB of New York Staff Report, 2021.

Koijen, Ralph SJ and Motohiro Yogo, “The fragility of market risk insurance,” The

Journal of Finance, 2022, 77 (2), 815–862.

and , “Understanding the ownership structure of corporate bonds,” American Eco-

nomic Review: Insights, 2023, 5 (1), 73–91.

Krueger, Philipp, Zacharias Sautner, and Laura T Starks, “The Importance of

Climate Risks for Institutional Investors,” The Review of Financial Studies, March 2020,

33 (3), 1067–1111.

Litterman, Bob, Leonardo Martinez-Diaz, Jesse M. Keenan, Stephen Moch,

David Gillers, and Rostin Behnam, “Managing Climate Risk in the U.S. Financial

System,” Technical Report, U.S. Commodity Futures Trading Commission July 2021.

Liu, Yubo, Stefano Rossi, and Hayong Yun, “Insurance Companies and the Propaga-

tion of Liquidity Shocks to the Real Economy,” 2021.

Massa, Massimo and Lei Zhang, “The spillover effects of Hurricane Katrina on corpo-

rate bonds and the choice between bank and bond financing,” Journal of Financial and

Quantitative Analysis, 2021, 56 (3), 885–913.

New York Department of Financial Services, “An Analysis of New York Domestic

Insurers’ Exposure to Transition Risks and Opportunities from Climate Change,” 2021.

Oh, Sangmin, Ishita Sen, and Ana-Maria Tenekedjieva, “Pricing of Climate Risk

28



Insurance: Regulation and Cross-Subsidies,” Available at SSRN 3762235, 2022.

Painter, Marcus, “An inconvenient cost: The effects of climate change on municipal

bonds,” Journal of Financial Economics, February 2020, 135 (2), 468–482.

Schuh, Frederick and Tanja Jaeckle, “Impact of hurricanes on US insurance stocks,”

Risk Management and Insurance Review, 2023, 26 (1), 5–34.

29



Tables

30



Table 1: Top 10 Insurer Summary Statistics

Panel A: P&C Insurers Summary Statistics

Ticker Insurer Mktcap Asset Equity RSE (%) Concentration

ALL Allstate 10.17 11.74 9.93 29.21 0.066
TRV Travelers 10.10 11.40 9.88 15.76 0.049
PGR Progressive 9.79 10.07 8.79 3.92 0.157
HIG Hartford 9.64 12.24 9.63 27.45 0.051
CNA CNA Financial 9.02 10.99 9.28 25.24 0.049

CINF Cincinnati Financial 8.97 9.76 8.75 3.61 0.082
MKL Markel 8.58 9.58 8.17 27.70 0.050
AIZ Assurant 8.52 10.30 8.43 26.02 0.053
WRB WR Berkley 8.51 9.67 8.10 8.77 0.045
ORI Old Republic 8.31 9.55 8.30 18.40 0.122

Panel B: Life Insurers Summary Statistics

Ticker Insurer Mktcap Asset Equity Brown Share(%) Brown Exposure(%)

MET MetLife 10.52 13.25 10.61 17.20 4.74
PRU Prudential 10.32 13.26 10.40 13.72 4.36
AFL Aflac 10.08 11.37 9.38 11.83 4.48
CI Cigna 9.86 11.11 9.09 13.99 4.34
HIG Hartford 9.64 12.24 9.63 11.86 4.20

AMP Ameriprise 9.62 11.78 8.96 18.34 5.21
LNC Lincoln National 9.19 12.14 9.30 15.59 4.66
VOYA Voya Financial 8.95 12.19 9.39 12.56 4.53
GL Globe 8.70 9.76 8.28 19.46 5.17
RGA Reinsurance 8.30 10.20 8.29 12.74 4.39

Note: Panel A shows the summary statistics of P&C insurers. RSE (Risky State Exposure) represents the
share of direct premiums earned in risky states (California, Florida, and Texas) for each insurer in each year
during the sample period of 2000-2021. Panel B shows the summary statistics of life/health insurers. The
Brown Share represents the ratio of the fair value of corporate bonds within brown industries to the total
fair value of corporate bonds held by each insurer in each year during the same sample period. We identified
brown industries as Coal Mining (NAICS Industry 2121), Gas Mining (NAICS Industry 211130), Gas utilities
(NAICS Industry 2212), and Electric utilities (NAICS Industry 2211). According to Jorgenson et al. (2018),
their estimated drop in industry output under a severe carbon tax scenario ($50 tax, 5% growth rate) are
33.8%, 15.7%, 15.4%, and 12.4%, respectively. Brown Exposure is the proportion of insurer i’s corporate
bond portfolio value that would be lost if a severe carbon tax policy ($50 growing at 5% annually) gets
implemented. Specifically, it is calculated as: Brown Exposurei,t =

∑
j∈J wi,j,t Markdownj where wijt is

the proportion of insurer i’s corporate bond invested in industry j at time t, Markdownj is the drop in the
output of industry j under the carbon tax. Market cap, Asset, and Equity are in log.
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Table 2: CRISK Decomposition

Panel A: P&C Insurers CRISK

Ticker CRISK(t-1) CRISK(t) dCRISK dDEBT dEQUITY dRISK

PGR -31.85 -51.55 -19.70 0.39 -13.86 -6.23
TRV -22.79 -22.05 0.75 0.31 -0.17 0.61
ALL -22.94 -21.25 1.69 0.04 2.56 -0.91
HIG -13.75 -9.43 4.32 0.03 3.51 0.79
MKL -11.30 -9.58 1.73 0.11 1.30 0.32
CINF -12.81 -10.16 2.65 0.10 2.55 -0.00
WRB -8.81 -7.95 0.86 0.16 0.70 0.00
CNA -5.89 -4.64 1.25 0.19 1.29 -0.24
AIZ -3.57 -3.74 -0.17 -0.03 -0.05 -0.09
ORI -4.08 -3.51 0.57 0.06 0.63 -0.12

Top 10 -6.05 1.37 -1.54 -5.88

Panel B: Life Insurers CRISK

Ticker CRISK(t-1) CRISK(t) dCRISK dDEBT dEQUITY dRISK

CI -59.99 -59.47 0.51 0.15 1.04 -0.68
MET 15.50 30.09 14.59 2.62 3.34 8.63
AFL -30.84 -9.40 21.44 0.30 6.38 14.75
PRU 37.01 49.98 12.97 2.03 4.49 6.46
AMP -5.66 -3.85 1.81 0.66 -1.38 2.52
HIG -14.66 -6.91 7.74 0.03 3.28 4.43
GL -8.36 -4.97 3.39 0.11 1.11 2.17
LNC 18.35 21.80 3.45 1.68 0.95 0.82
RGA:US -3.61 1.14 4.75 0.37 1.65 2.73
VOYA 5.99 7.90 1.92 0.41 0.58 0.92

Top 10 72.57 8.36 21.45 42.76

Note: CRISK(t) is the insurer’s physical or transition CRISK at the end of 2020, and CRISK(t-1) is CRISK
at the end of year 2019. dCRISK = CRISK(t)-CRISK(t-1) is the change in CRISK during 2020. dDEBT is
the contribution of the firm’s debt to CRISK. dEQUITY is the contribution of the firm’s equity on CRISK.
dRISK is the contribution of increase in volatility or correlation to CRISK. All amounts are in billion dollars.
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Table 3: P&C Insurer Climate Beta and Policy Portfolio Climate Beta

(1) (2)
Climate Beta Climate Beta

Policy Portfolio Climate Beta 0.152*** 0.106**
(0.043) (0.043)

Size -0.037***
(0.008)

Leverage 0.010***
(0.002)

N 279 279
R2 2.80 13.9

Note: This table shows results from regression 14. Standard errors in parentheses are clustered
at the insurer level. Annual data from 2005 to 2020 for all P&C insurers in the U.S.. Significance
levels: ∗∗∗ p < 0.01; ∗∗ p < 0.05; ∗ p < 0.1.

Table 4: Life Insurer Climate Beta and Bond Portfolio Climate Beta

(1) (2)
Climate Beta Climate Beta

Bond Portfolio Climate Beta 0.950*** 1.090***
(0.236) (0.225)

Size -0.012
(0.008)

Leverage 0.006***
(0.001)

N 292 292
R2 7.57 23.2

Note: This table shows results from regression 16. Standard errors in parentheses are clustered
at the insurer level. Annual data from 2000 to 2020 for all life insurers in the U.S.. Significance
levels: ∗∗∗ p < 0.01; ∗∗ p < 0.05; ∗ p < 0.1.
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Figure 1: Natural Disaster Data Descriptive Statistics

Panel A: SHELDUS Summary Statistics

Hazard Average(Billions $) Std Median(Billions $) Max(Billions $)

Hurricane 23,557 77,612 31 470,925
Flooding 9,456 51,986 714 565,212
Severe Storm 2,477 6,958 621 73,136
Winter 1,788 4,117 327 33,512
Wildfire 1,695 13,810 36 194,262
Drought 564 1,443 31 9,087
Coast 47 173 1 1,355
Heat 14 27 1 108

Panel B: Billion Dollar Summary Statistics

Harzard Duration (Days) Loss (Billions $) Average Loss(Billions $) Deaths

Hurricane 4 28,557 8,216 156
Drought 289 10,056 1,437 46
Wildfire 181 7,052 1,008 23
Winter 5 4,028 785 32
Flooding 21 3,729 780 13
Severe Storm 3 2,386 958 10

Note: The map shows the county distribution of SHELDUS average property damage. Panel A
shows the summary statistics of SHELDUS country-level property damage data. Panel B shows
the summary statistics of Billion Dollar Natural Disasters. Loss is the average total loss across
events. The average loss is the average loss per day. We keep only the first 7 days for hazards
that last for more than 7 days when calculating the average loss. The sample period of both the
map and the table is 2000-2022.
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Figure 2: 6-Month Cumulative Returns

Note: 6-month cumulative returns of the market portfolio (SPY), transition risk factor
(stranded asset factor), and physical risk factor (insurer premium factor and insurer
loss-to-equity factor).
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Figure 3: Responses around Natural Disaster Events

(a) Insurer Premium Factor Responses

(b) NYT News Responses

Note: Panel A shows the Cumulative coefficient γ on shockt in PCFt = α+
∑20

n=0 γnshockt−n+
MKTt + ϵt. shockt takes the value of 1 if it was the start date of a natural disaster event, and
a value of 0 if there was no disaster on day t. Each physical risk factor series is standardized by
its volatility. The standard errors are Newey-West adjusted and the band shows 95% confidence
interval. Panel B displays the frequency of mentions of “hurricane” in NYT articles following a
hurricane. The start date of the event is represented as t=0. The average number of mentions is
calculated across the most significant hurricanes (95th percentile of all hurricanes generated loss).
We focus on these large hurricanes due to their heightened public attention and assumed greater
impact on the market.
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Figure 4: Climate Beta

(a) Physical Climate Beta of P&C Insurers in the U.S.

(b) Transition Climate Beta of Life Insurers in the U.S.

Note: Panel A displays the climate beta of P&C insurers in the U.S.. The sample insurers are
the top large P&C insurers in the U.S. in Table 1. The sample period is from January 2002 to
December 2020. Panel B exhibits the climate beta of life insurers in the U.S.. The sample insurers
are the top large life insurers in Table 1. The sample period is from June 2000 to December 2021.

38



Figure 5: CRISK

(a) Physical CRISK of P&C Insurers in the U.S.

(b) Transition CRISK of Life Insures in the U.S.

Note: Panel A displays the physical CRISK of P&C insurers in the U.S.. The sample insurers
are the top large P&C insurers in Table 1. The sample period is from January 2002 to December
2020. Panel B exhibits the transition CRISK of life insurers in the U.S.. The sample insurers are
the top large life insurers in Table 1. The sample period is from June 2000 to December 2021.
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Figure 6: Marginal CRISK

(a) Physical Marginal CRISK of P&C Insurers in the U.S.

(b) Transition Marginal CRISK of Life Insures in the U.S.

Note: Panel A displays the physical marginal CRISK of P&C insurers in the U.S.. The sample
insurers are the top large P&C insurers in Table 1. The sample period is from January 2002 to
December 2020. Panel B exhibits the transition marginal CRISK of life insurers in the U.S.. The
sample insurers are the top large life insurers in Table 1. The sample period is from June 2000 to
December 2021.
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Figure 7: Correlation between Physical Climate Beta and Policy Portfolio Beta

Note: Binned scatter plot of insurer physical climate beta and policy portfolio climate beta
without controls and fixed effects, based on annual data from 2005 to 2019 for listed P&C Insurers
in the U.S.
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Figure 8: Correlation between Transition Climate Beta and Bond Portfolio Beta

Note: Binned scatter plot of insurer transition climate beta and bond portfolio climate beta
without controls and fixed effects, based on annual data from 2000 to 2020 for listed Life Insurers
in the U.S..
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Figure 9: Aggregate CRISK of US

(a) Physical CRISK

(b) Transition CRISK

Note: Panel A displays the aggregate physical CRISK of US. The sample insurers are the top
large P&C insurers in Table 1. The sample period is from January 2002 to December 2020.
Panel B exhibits the aggregate transition CRISK of US. The sample insurers are the top large life
insurers in Table 1. The sample period is from June 2000 to December 2021.
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Figure 10: Aggregate Marginal CRISK of US

(a) Physical Marginal CRISK

(b) Transition Marginal CRISK

Note: Panel A displays the aggregate physical marginal CRISK of US. The sample insurers are
the top large P&C insurers in Table 1. The sample period is from January 2002 to December
2020. Panel B exhibits the aggregate transition marginal CRISK of US. The sample insurers are
the top large life insurers in Table 1. The sample period is from June 2000 to December 2021.
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Appendix

A.1 Tables

Table A.1: Summary Statistics of Factors

Mean St.Dev. 25th percentile 75th percentile Count
Market (SPY) 0.0003 0.0123 -0.0041 0.0058 4784
PCF: Insurer Premium 0.0006 0.0170 -0.0072 0.0079 4784
PCF: Insurer Loss-to-Equity 0.0005 0.0163 -0.0063 0.0073 4784
TCF: Stranded Asset -0.0005 0.0134 -0.0070 0.0068 4784

Note: The sample period is 2002-2020 and all factors are daily.

Table A.2: Correlation of Factors

Market: SPY PCF: Premium PCF: Loss-to-Equity TCF: Stranded
Market: SPY 1.00
PCF: Insurer Premium 0.74 1.00
PCF: Insurer Loss-to-Equity 0.78 0.90 1.00
TCF: Stranded Factor 0.22 0.19 0.18 1.00

Note: The sample period is 2002-2020 and all factors are daily.

Table A.3: New York Times Articles on Hurricane Katrina

Date Article Title

8/26/2005 A Blast of Rain but Little Damage as Hurricane Hits South Florida

8/27/2005 Hurricane Drenches Florida And Leaves Seven Dead

8/29/2005 Approaching Storm Slows Oil Output in Gulf of Mexico

8/29/2005 POWERFUL STORM THREATENS HAVOC ALONG GULF COAST

8/29/2005 With Few Warning Signs, an Unpredictable Behemoth Grew

8/29/2005 In Slot Machines’ Silence, A Storm’s Economic Cost

8/30/2005 Nature’s Revenge

8/30/2005 Another Storm Casualty: Oil Prices

8/30/2005 Shares Rally as Oil Prices Pull Back From Early Surge

8/30/2005 Storms Vary With Cycles, Experts Say

8/30/2005 Escaping Feared Knockout Punch, Barely, New Orleans Is One Lucky Big Mess

8/30/2005 Guard Units’ New Mission: From Combat To Flood Duty
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8/30/2005 After Centuries of ’Controlling’ Land, Gulf Residents Learn Who’s Really the

Boss

8/30/2005 HURRICANE SLAMS INTO GULF COAST; DOZENS ARE DEAD

8/30/2005 In Coastal City, Ruin All Around

8/30/2005 Insurers Estimate Damage at $9 Billion, Among Costliest U.S. Storms on

Record

8/31/2005 Navy Ships and Maritime Rescue Teams Are Sent to Region

8/31/2005 NEW ORLEANS IS INUNDATED AS 2 LEVEES FAIL; MUCH OF GULF

COAST IS CRIPPLED; TOLL RISES

8/31/2005 New York City Looks South For Lessons a Storm Can Teach

8/31/2005 No Quick Fix for Gulf Oil Operations

8/31/2005 Payouts Hinge on the Cause of Damage

8/31/2005 The Misery Is Spread Equally

8/31/2005 Where Living at Nature’s Mercy Had Always Seemed Worth the Risk

8/31/2005 Casino Owners Look Toward Rebuilding

8/31/2005 Damage to Economy Is Deep and Wide

8/31/2005 Disease and Coordination Vie as Major Challenges

8/31/2005 Face to Face With Death and Destruction in Biloxi

8/31/2005 Flooding Stops Presses and Broadcasts, So Journalists Turn to the Web

8/31/2005 Geography Complicates Levee Repair

8/31/2005 In Search of a Place to Sleep, and News of Home

8/31/2005 Life-or-Death Words of the Day in a Battered City: ’I Had to Get Out’

8/31/2005 Markets Assess Hurricane Damage, and Shares Fall

9/1/2005 Millions Said to Be Lacking Phone Service of Any Kind

9/1/2005 A City in Ruins: Americans Open Their Hearts

9/1/2005 Oil and Construction IssuesLead Shares Broadly Higher

9/1/2005 Administration Steps Up Actions, Adding Troops and Dispatching Medical

Supplies

9/1/2005 Rows and Rows of Corpses, And Voices Choked With Sobs

9/1/2005 Searching for the Living, but Mostly Finding the Dead

9/1/2005 Television Finds Covering Area Hit by Storm Is Like Working in a War Zone

9/1/2005 Utility Workers Come From Afar to Help Their Brethren Start Restoring Ser-

vice

9/1/2005 Waiting for a Leader

9/1/2005 Wall of Water Set a Record

9/1/2005 At Stadium, a Haven Quickly Becomes an Ordeal
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9/1/2005 BUSH SEES LONG RECOVERY FOR NEW ORLEANS; 30,000 TROOPS

IN LARGEST U.S. RELIEF EFFORT

9/1/2005 Deal Is Put Off For Louisiana Bank

9/1/2005 Economy’s Pace Is Lowered a Bit

9/1/2005 Educators Offer Classrooms To Many Displaced Students

9/1/2005 GAS PRICES SURGE AS SUPPLY DROPS

9/1/2005 Hazards Contained in Waters Are Not as Toxic as Feared

9/1/2005 Intricate Flood Protection Long a Focus of Dispute

9/1/2005 Loved Ones Turn to Web For Searches In Flood Zone

9/2/2005 Mississippi’s Morning After

9/2/2005 New Orleans Is Awaiting Deliverance

9/2/2005 Rotting Food, Dirty Water And Heat Add to Problems

9/2/2005 Spanning the Gulf

9/2/2005 The Man-Made Disaster

9/2/2005 They Saw It Coming

9/2/2005 A Can’t-Do Government

9/2/2005 You Want How Much a Gallon?

9/2/2005 Anxious Liberal Groups Try to Rally Opposition Against Supreme Court Nom-

inee

9/2/2005 As One City Is Emptying, Another Finds Itself Full

9/2/2005 A Desperate Search for Relief, and for Answers

9/2/2005 By Air or Car, Travel Is Complex

9/2/2005 Cameras Captured a Disaster But Now Focus on Suffering

9/2/2005 Conservation? It’s Such A 70’s Idea

9/2/2005 Democrats and Others Criticize White House’s Response to Disaster

9/2/2005 DESPAIR AND LAWLESSNESS GRIP NEW ORLEANS AS THOUSANDS

REMAIN STRANDED IN SQUALOR

9/2/2005 From Margins of Society to Center of the Tragedy

9/2/2005 Gazing at Breached Levees, Critics See Years of Missed Opportunities

9/2/2005 Government Saw Flood Risk but Not Levee Failure

9/2/2005 In a Multitude of Forms, the Offers of Help Pour In

9/3/2005 Newcomer Is Struggling to Lead a City in Ruins

9/3/2005 On Ruined Coast, the Desperate Cry Out for Loved Ones Still Lost

9/3/2005 Promises by Bush Amid the Tears

9/3/2005 Spotlight on a Hurricane, and Off the Mayoral Race

9/3/2005 Spot Shortages Of Gas Reported Around Country
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9/3/2005 United States Of Shame

9/3/2005 Bus Full of Evacuees Crashes, Leaving 1 Dead and 17 Hurt

9/3/2005 Closed to Visitors

9/3/2005 First Estimate Puts Storm’s Economic Toll at $100 Billion

9/3/2005 Indictments and Statistics All Overwhelmed by Tragedy Down South

9/3/2005 In First Response to Crisis, Bush Strikes Off-Key Notes

9/3/2005 Job Growth Stepped Up Its Pace In August

9/3/2005 Katrina’s Assault on Washington

9/3/2005 Lawmakers Criticize U.S. Response

9/3/2005 Military Dealt With Combination of Obstacles Before Reaching Victims

9/3/2005 MORE TROOPS AND AID REACH NEW ORLEANS; BUSH VISITS

AREA; CHAOTIC EXODUS CONTINUES

9/4/2005 Falluja Floods the Superdome

9/4/2005 Homeland Security Chief Defends Federal Response

9/4/2005 Katrina’s Shock to the System

9/4/2005 Legislative Agenda Turned Upside Down by Hurricane

9/4/2005 Navy Turns to Halliburton For Help on Damaged Bases

9/4/2005 Police Quitting, Overwhelmed by Chaos

9/4/2005 Storm Is Devastating for Businesses in Gulf Area, but Its National Effect

Remains Muted

9/4/2005 Storm Will Have a Long-Term Emotional Effect on Some, Experts Say

9/4/2005 As Anxiety Over Storm Increases, Bush Tries to Quell Political Crisis

9/4/2005 The View From Abroad

9/4/2005 With Mayor on Roll and Minds on Gulf, Democrats Hone Final Tactics

9/4/2005 A Delicate Balance Is Undone in a Flash, and a Battered City Waits

9/4/2005 Bush Pledges More Troops as the Evacuation Grows

9/4/2005 Career-Maker For Williams As the Anchor At NBC

9/5/2005 Not Even Web Retailers Will Be Exempt From the Aftereffects of Katrina

9/5/2005 On the Gulf Coast, a Chance to Inspire Is Slipping Away

9/5/2005 Reporting, and Living Out, a Calamity

9/5/2005 Amid Criticism of Federal Efforts, Charges of Racism Are Lodged

9/5/2005 Amid the Ruins, Worshipers Pause to Pray and Receive Messages of Hope

9/5/2005 The Hurricane and Accountability

9/5/2005 The Pendulum Of Reporting On Katrina

9/5/2005 White House Enacts a Plan To Ease Political Damage

9/5/2005 A ’Weather Nerd’ in Indiana Sent a Warning to the Mayor
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9/5/2005 BUSH PROMISES TO MOVE QUICKLY ON CHIEF JUSTICE

9/5/2005 Chaotic Week Leaves Bush Team on Defensive

9/5/2005 For Victims, News About Home Can Come From Strangers Online

9/5/2005 Fox Says U.S. Shares Blame For Problems Along Border

9/5/2005 Housing Boom May Continue After Storm, Experts Say

9/5/2005 Hurricane Response Becomes Issue in Mayor’s Race

9/5/2005 In Tale of Two Families, a Chasm Between Haves and Have-Nots

9/5/2005 After Failures, Officials Play Blame Game

9/5/2005 Medical Team From Georgia, Trying to Provide Help, Hits Roadblocks Along

the Way

9/5/2005 New Orleans Begins a Search for Its Dead

9/6/2005 Mayoral Race Seems Recharged at Parade

9/6/2005 A Hospital Takes In The Tiniest Of Survivors

9/6/2005 Practicing Medicine In the Dark, On the Edge

9/6/2005 PRESIDENT NAMES ROBERTS AS CHOICE FOR CHIEF JUSTICE

9/6/2005 ’Prison City’ Shows a Hospitable Face to Refugees From New Orleans

9/6/2005 Residents Of a Parish Encountering Lost Dreams

9/6/2005 Scouring the Neighborhoods in a Personal Appeal to Holdouts

9/6/2005 The Larger Shame

9/6/2005 Thrown Off Schedule

9/6/2005 Utility Crews Help Turn Lights Back On in Parts of the Gulf Region

9/6/2005 With Some Now at Breaking Point, City’s Officers Tell of Pain and Pressure

9/6/2005 Bush and the Lightning Nomination

9/6/2005 Bush Makes Return Visit; 2 Levees Secured

9/6/2005 Buying Time With Quick Action on the Court and a Second Trip to the South

9/6/2005 Carnival Forecasts Profit Cut From Katrina

9/6/2005 Clinton Is an Unexpected Partner in the Hurricane Effort

9/6/2005 Crawfish Etouffee Goes Into Exile

9/6/2005 Destruction on Mississippi River Delta Illustrates Danger of Life at Earth’s

Edge

9/6/2005 Filling a Desperate Need for Shelter Begins With Cruise Ships and Proposals

9/6/2005 From the Air, Scientists Comb a Ruined Coastline for Clues and Lessons

9/6/2005 Her Hometown Destroyed, A Traveler Turns to a Blog

9/6/2005 High-Tech Flood Control, With Nature’s Help

9/6/2005 Houston Finds Business Boon After Katrina

9/6/2005 In New Orleans, the Business Haves and Have-Nots

49



9/6/2005 Katrina and the Gas Pump

9/7/2005 Across Nation, Storm Victims Crowd Schools

9/7/2005 Osama and Katrina

9/7/2005 Pain Now, but Gain May Lie Ahead for Gulf Utility

9/7/2005 President of NBC News Announces His Resignation

9/7/2005 Putting Down New Roots on More Solid Ground

9/7/2005 School Routine Provides Welcome Change From Chaos

9/7/2005 Shares Up Sharply, Aided by Oil Price and Services Data

9/7/2005 Some Senators on Panel Ask Angry Questions About Gasoline Pricing and

Profits

9/7/2005 Ad-Libbing Many Routes, Ships Return To the River

9/7/2005 Urban Evacuees Find Themselves Among Rural Mountains

9/7/2005 Urgent Warning Proved Prescient

9/7/2005 Bush Promises to Seek Answers To Failures of Hurricane Relief

9/7/2005 FLOODING RECEDES IN NEW ORLEANS; U.S. INQUIRY IS SET

9/7/2005 Gas Prices At Pumps Show Signs Of Easing

9/7/2005 Gonzales Is Mentioned in Court Remarks

9/7/2005 Haunted By Hesitation

9/7/2005 Hurricane’s Toll Is Likely to Reshape Bush’s Economic Agenda

9/7/2005 In Asia, Low Fuel Prices And Subsidies Lose Ground

9/7/2005 It’s Not a ’Blame Game’

9/7/2005 A Sight or a Sound Can Bring 9/11 Flooding Back

9/7/2005 Miller Suffers a Setback Over Expenses

9/7/2005 Navy Pilots Who Rescued Victims Are Reprimanded

Note: The titles of New York Times articles that have at least two sentences contain the word “hurricane”
in the article from August 26, 2005 to September 7, 2005. Hurricane Katrina started on August 25, 2005
and ended on August 30, 2005.
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Table A.4: Drop in Industry Output for Carbon Tax and Growth Rate Scenarios in Jorgenson et al. (2018)

IGEM Industry $25 tax, 1% growth $25 tax, 5% growth $50 tax, 1% growth $50 tax, 5% growth

Agriculture 0.009 0.016 0.017 0.028
Oil mining 0.026 0.045 0.049 0.079
Gas mining 0.059 0.097 0.103 0.157
Coal mining 0.163 0.237 0.252 0.338
Nonenergy mining 0.016 0.028 0.028 0.046
Electric utilities 0.047 0.077 0.082 0.124
Gas utilities 0.049 0.087 0.092 0.154
Water and wastewater 0.016 0.026 0.028 0.046
Construction 0.010 0.018 0.018 0.030
Wood and paper 0.015 0.026 0.027 0.045
Nonmetal mineral products 0.022 0.039 0.040 0.068
Primary metals 0.022 0.038 0.040 0.066
Fabricated metal products 0.013 0.022 0.023 0.037
Machinery 0.014 0.024 0.025 0.040
Information technology equipment 0.008 0.013 0.013 0.022
Electrical equipment 0.009 0.015 0.015 0.025
Motor vehicles and parts 0.014 0.024 0.025 0.040
Other transportation equipment 0.006 0.011 0.012 0.019
Miscellaneous manufacturing 0.010 0.017 0.017 0.029
Food, beverage and tobacco 0.006 0.011 0.012 0.019
Textiles, apparel and leather 0.010 0.017 0.019 0.031
Printing and related activities 0.004 0.007 0.008 0.012
Petroleum and coal products 0.042 0.070 0.077 0.123
Chemicals, rubber and plastics 0.012 0.020 0.022 0.035
Wholesale trade 0.006 0.011 0.011 0.018
Retail trade 0.008 0.013 0.013 0.022
Transportation and warehousing 0.027 0.046 0.048 0.079
Publishing, broadcasting, telecommunications 0.005 0.009 0.010 0.015
Software & information technology services 0.008 0.014 0.014 0.023
Finance and insurance 0.006 0.010 0.011 0.017
Real estate and leasing 0.008 0.013 0.015 0.022
Business services 0.008 0.014 0.015 0.024
Educational services -0.002 -0.004 -0.004 -0.007
Health care and social assistance 0.003 0.006 0.006 0.010
Accommodation and other services 0.007 0.011 0.012 0.020
Other government 0.001 0.001 0.001 0.002

Note: Estimates of decreases in industry output from Table 8 in Jorgenson et al. (2018). All scenarios here assume that the income from the tax is recycled as a lum
dividend. Estimates are of decreases in industry output from 2015 until 2050.
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A.2 Figures

Figure A.1: Insurer Loss-to-Equity Factor Responses around Natural Disaster Events

Note: Cumulative coefficient γ on shockt in PCFt = α+
∑20

n=0 γnshockt−n+MKTt+ ϵt. shockt
takes the value of 1 if it was the start date of a natural disaster event, and a value of 0 if there
was no disaster on day t. Each physical risk factor series is standardized by its volatility. The
standard errors are Newey-West adjusted and the band shows 95% confidence interval.

52


	Introduction
	Data
	Design of Climate Stress Scenarios
	Insurers' Physical Risk Exposure
	Physical Climate Beta
	Physical CRISK and marginal CRISK
	Physical CRISK Decomposition
	Insurers' Transition Risk Exposure
	Transition Climate Beta
	Transition CRISK and marginal CRISK
	Transition CRISK Decomposition
	Insurers' Systemic Climate Risk Exposure
	Validation
	Insurers' Physical Climate Beta and their Liability Exposure
	Insurers' Transition Climate Beta and their Asset Holdings
	Conclusion
	Tables
	Figures
	Appendix A
	Tables
	Figures

