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Formal Covariate Benchmarking to Bound Omitted Variable Bias

Deepankar Basu∗

June 17, 2023

Abstract

Covariate benchmarking is an important part of sensitivity analysis about omitted variable bias and
can be used to bound the strength of the unobserved confounder using information and judgments about
observed covariates. It is common to carry out formal covariate benchmarking after residualizing the
unobserved confounder on the set of observed covariates. In this paper, I explain the rationale and details
of this procedure. I clarify some important details of the process of formal covariate benchmarking and
highlight some of the difficulties of interpretation that researchers face in reasoning about the residualized
part of unobserved confounders. I explain all the points with several empirical examples.
JEL Codes: C01.
Keywords: confounding; omitted variable bias; sensitivity analysis.

1 Introduction

In many disciplines, like economics, epidemiology, political science, public health, sociology, etc., it is of

utmost importance to estimate causal effects from observational data, e.g. the causal effect of years of

schooling on wages (Card, 2001), the causal effect of class size on student scores (Angrist and Lavy, 1999),

the causal effect of exposure to violence on attitudes towards peace (Cinelli and Hazlett, 2020), or the

causal effect of breastfeeding on child outcomes (VanderWeele and Ding, 2017). In each of these cases, and

in observational studies more generally, researchers need to take account of unmeasured confounders, i.e.

unobserved variables that are correlated both with treatment assignment and the outcome under study, if

they wish to distinguish between correlation and causation. When plausible instrumental variables are not

available for treatment assignment, as is often the case in observational studies, researchers can turn to

sensitivity analysis to investigate the robustness of their results.

Sensitivity analysis in the context of unobserved confounders, and to deal with omitted variable bias

(De Luca et al., 2018; Basu, 2020) resulting therefrom, involves at least two different steps. In the fist

step, the researcher tries to quantify the strength of association between the unmeasured confounder and

the treatment (and outcome) that could overturn the conclusions of her research. If this magnitude of

∗Department of Economics, University of Massachusetts Amherst. Email: dbasu@econs.umass.edu. I would like to thank
Michael Ash and Carols Cinelli for very helpful comments on an earlier version of the paper. All remaining errors are mine.
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association is ‘large’, researchers can be relatively confident about the robustness of their results to the

presence of unmeasured confounders. While this first step is better than conducting no sensitivity analysis,

the following question still needs to be answered: how ‘large’ is too large? Covariate benchmarking, the

second step of sensitivity analysis, can help answer this question.

In the second step of covariate benchmarking, the researcher uses strengths of association between ob-

served covariates and the treatment (and outcome) to reason about the possible magnitudes of association

of the unobserved confounder with the treatment and outcome. If, using covariate benchmarking, the re-

searcher can rule out magnitudes of association that was found problematic in the first step, then her case

for robustness is significantly strengthened.

There is a large literature on sensitivity analysis that goes back to at least Cornfield et al. (1959), and

has been continued in Rosenbaum and Rubin (1983); Rosenbaum (2002); Imbens (2003); Imai et al. (2010),

and others. Among more recent proposal for sensitivity analysis (Frank, 2000; Krauth, 2016; Ding and

VanderWeele, 2016; VanderWeele and Ding, 2017; Oster, 2019), a most innovative and promising approach

has been presented by Cinelli and Hazlett (2020). The key novelty in this proposal involved re-parametrizing

the traditional omitted variable bias expression using partial R2 measures.1 This re-parametrization has

opened up a fruitful way to conduct sensitivity analysis about omitted variable bias, a stripped-down version

of which involves the following three-step process.

In the first step, the researcher computes robustness values of two parameters, which are understood as

the magnitude of the minimum strength of association (measured with the partial R2) that an unobserved

confounder would need to have, both with the treatment and with the outcome, to change the research

conclusions. By themselves, the robustness values are of limited use because the confounder is not observed.

Hence, it is difficult for a researcher to judge whether the robustness values are too high or too low for her

specific study. In the second step, the researcher addresses this difficulty using formal covariate benchmark-

ing—arguable the most difficult and crucial part of the whole analysis.2 In this step, the researcher uses

information about an observed covariate (or set of covariates) to compute upper bounds for the strength of

association, measured once again using the partial R2, between the unobserved confounder and treatment

(and outcome). In the final and third step, the researcher compares the magnitudes of the robustness values

computed in the first step with the upper bounds computed in the second step. If the upper bounds are

1For a definition of the partial R2, see equation 1 below.
2Formal covariate benchmarking should be distinguished from informal covariate benchmarking. In the former, formal,

quantitative arguments are used; in the latter, informal, non-quantitative arguments are used. Cinelli and Hazlett (2020,
section 4.4) argue persuasively that informal covariate benchmarking can often be misleading because it does not solve the
correct identification problem.
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lower than the robustness values, then the researcher is able to conclude that her conclusions are robust to

omitted variable bias.

In this elegant methodology, the crucial, second step of formal covariate benchmarking relies on an

orthogonality assumption that comes in either of two forms. Either it is assumed that the unobserved

confounder is orthogonal to the observed covariates, or it is assumed that researchers can work with the

residualized part of the unobserved confounder, i.e. the part of the unobserved confounder that is orthogonal

to the set of observed covariates. The main contribution of this paper is to extend or expand the methodology

proposed in Cinelli and Hazlett (2020) in several ways.

First, I explain why orthogonality assumptions are necessary for formal covariate benchmarking. In

particular, in section 4, I present a general discussion of sensitivity analysis along the lines of Cinelli and

Hazlett (2020) and then, in section 5, I explain the role of both forms of orthogonality for formal covariate

benchmarking.

The second contribution of this paper is to clarify an important step of the formal covariate benchmarking

methodology: computing the absolute value of the partial correlation of the outcome and the unobserved

confounder controlling for the treatment and observed covariates, |RY∼Z|D,X |. Extending the analysis in

Cinelli and Hazlett (2020, appendix B), I show in section 6 how to determine |RY∼Z|D,X | in all cases, not

only in the case when “the confounder acts towards reducing the magnitude of the estimate towards zero”

Cinelli and Hazlett (2020, appendix B, p. 34, emphasis in original).

The third contribution of the paper is to highlight that the conclusions of sensitivity analysis differs

according to whether researchers use a total or a partial R2-based comparison for covariate benchmarking.

This is not surprising because these are two different ways of defining ‘relative importance’ of the unobserved

confounder and the observed covariates, and it has been previously pointed out that different concepts of

relative importance often affect conclusions of research (Kruskal and Majors, 1989, p. 2). But this implies

that researchers need to think carefully about which they want to use: total R2-based comparisons, partial

R2-based comparison or both. In the examples that I discuss, total R2-based comparisons provide a more

conservative approach and this might be used if researchers wish to be cautious about the conclusions of

their studies.

The final contribution of this paper is to highlight some of the difficulties of interpretation that researchers

face when using the methodology proposed in Cinelli and Hazlett (2020). The difficulties arise from the need

to reason about the residualized part of the unobserved confounder. Compounding the difficulty that the

confounder is itself unobserved, is the further problem that one has to form reasoned arguments about
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only a part of this unobserved variable—the part that is not explained linearly by the set of observed

covariates. Hence, it is not immediately obvious how one might form reasonable and reliable judgments

about the explanatory power of the residualized part of the unobserved confounder. Perhaps this difficulty

is unavoidable, but researchers must, at the least, be aware of it.

Other recent work on sensitivity analysis that have used the orthogonality assumption are Krauth (2016,

equation 7, page 121) and Oster (2019, page 192).3 I do not discuss these papers because both suffer from

problems. In Krauth (2016), the key sensitivity parameter, λ, does not have natural bounds. This is because

λ is the ratio of two correlation coefficients, and it is difficult to restrict this ratio to a finite interval on the

real line, as Krauth (2016, assumption 2) does, without additional assumptions. On the other hand, Oster

(2019) suffers from the problem that one of the key sensitivity parameters, δ, cannot be interpreted in a way

that is useful for sensitivity analysis.4

A recent work on sensitivity analysis that does not use the orthogonality assumption is Ding and Van-

derWeele (2016) and VanderWeele and Ding (2017). Much like the analysis in Cinelli and Hazlett (2020),

these papers propose sensitivity analysis without assuming orthogonality between the unobserved confounder

and the observed covariates. But I do not discuss these papers because they do not use formal covariate

benchmarking to understand whether the strengths of association that would nullify the estimated effect is

reasonable in the context of a specific study. Since the primary goal of my paper is to analyze covariate

benchmarking, I do not discuss Ding and VanderWeele (2016) and VanderWeele and Ding (2017).

The rest of the paper is organized as follows: in section 2, I present the basic set up and the key expression

for bias, and discuss the three-step procedure for sensitivity analysis proposed in Cinelli and Hazlett (2020);

in section 3, I present some novel results about the total and partial R2 that will be useful later in the paper;

in section 4, I provide a general discussion of covariate benchmarking; in section 5, I discuss the first step of

covariate benchmarking when either form of the orthogonality assumption is used; in section 6, I discuss the

second step; in section 7, I discuss several examples of observational studies; I conclude in section 8. Proofs

are collected in the appendix. Throughout this paper, I will follow the notation used in Cinelli and Hazlett

(2020) to facilitate easy comparison.

3Also see the exposition of Oster’s analysis in De Luca et al. (2019) and note the importance of assumption B (orthogonality)
for theorem 1 (De Luca et al., 2019, page 219).

4See Cinelli and Hazlett (2020, section 6.3) for more details.
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2 The Setup

2.1 What is partial R2?

The concept of partial R2 is not very widely used in econometrics.5 Since this concept is central to the

analysis in this paper, I begin by discussing it briefly. The partial R2 of the random variables Y and Z,

conditional on a set of covariates, X, can be computed as follows (Greene, 2012, section 3.4): (a) collect the

vector of residuals from a regression of Y on X; (b) collect the vector of residuals from a regression of Z on

X; (b) take the square of the correlation coefficient between the two vectors of residuals. This is the partial

R2 of the random variables Y and Z, conditional on a set of covariates, X. While this computation clarifies

the partialling out involved in defining the partial R2, there are two different, more useful, ways to define

it.6

The partial R2 between the random variables Y and Z, conditional on a set of covariates, X, denoted

by R2
Y∼Z|X , can also be defined in terms of the more familiar total R2 (the coefficient of determination in a

regression), as follows:

R2
Y∼Z|X =

R2
Y∼Z+X −R2

Y∼X

1−R2
Y∼X

, (1)

where R2
Y∼Z+X denote the total R2 in the regression of Y on Z and X, and R2

Y∼X denotes the total R2 in

a regression of Y on X. From this definition in (1) we get some more intuition about what the partial R2

measures: it is the ratio of (a) the increment in the total R2 when Z is added as a covariate to the regression

of Y on X, and (b) the difference of the total R2 of the regression of Y on X from 1. Since the total R2 can

be at most 1 and since the total R2 always increases weakly with the addition of a regressor, the numerator

can at most be as large as the denominator, with both the numerator and denominators being positive.

Hence, it is immediately clear that the partial R2, like the total R2, must lie between 0 and 1.

There is yet another definition of the partial R2 that is motivated by another consideration: to re-express

the partial R2 of two random variable by removing one random variable, or several random variables, from the

conditioning set. Suppose, for concreteness, that we wish to express the partial R2 of Y and Z, conditional

on X and D, in terms of partial R2 measures conditional only on X, i.e. we remove D from the conditioning

5I could not find this concept being discussed in any one of the popular graduate-level textbooks on econometrics. The
closest one comes is the discussion of the partial correlation coefficient in Greene (2012, section 3.4). The classic treatment of
partial R2 can be found in Yule (1911, chapter 12), or in later editions of the book, e.g. Yule and Kendall (1948, chapter 14).

6These definitions are given in Cinelli and Hazlett (2020, page 12).
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set. This can be accomplished with the recursive definition of partial R2:

RY∼Z|D,X =
RY∼Z|X −RY∼D|XRD∼Z|X√
1−R2

Y∼D|X

√
1−R2

D∼Z|X

. (2)

I will use (1) and (2) extensively in this paper.

2.2 Expression of relative omitted variable bias

Consider the linear regression of an outcome on a treatment, controlling for a set of covariates given by X

and Z,

Y = τ̂D +Xβ̂ + γ̂Z + ε̂full (3)

where Y is the n×1 vector of the outcome (dependent variable), X is the n×k matrix of observed covariates,

including a constant, Z is the n× 1 (unobserved) confounder vector, and all hat-quantities denote estimated

(sample, and not population) quantities. Since Z is unobserved, the researcher cannot estimate (3) but is

forced to estimate the following restricted regression

Y = τ̂resD +Xβ̂res + ε̂res (4)

Letting

b̂ias = τ̂res − τ̂ (5)

denote the bias of the treatment effect arising from the restricted model, Cinelli and Hazlett (2020, page 48)

show, by combining the Frisch-Waugh-Lovell theorem and definitions of partial R2, that

∣∣∣b̂ias∣∣∣ = se (τ̂)

√√√√df×R2
Y∼D,X ×R2

D∼Z|X

1−R2
D∼Z|X

(6)

where ‘se’ denotes standard error, ‘df’ denotes the degrees of freedom of the restricted regression in (4),

R2
Y∼D,X denotes the total R2 from a regression of Y on D and X, R2

D∼Z|X refers to the partial R2 from

a regression of D on Z conditioning on X and we assume that 0 ≤ R2
D∼Z|X < 1 (to make sure we do not

attempt to divide by zero). The expression for bias can be further manipulated to derive the expression for
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‘relative bias’ (Cinelli and Hazlett, 2020, page 49)

∣∣∣∣∣ b̂iasτ̂res

∣∣∣∣∣ =
∣∣RY∼Z|D,X

∣∣× ∣∣RD∼Z|X
∣∣∣∣RY∼D|X

∣∣
√√√√1−R2

Y∼D|X

1−R2
D∼Z|X

, (7)

which will be of use in sensitivity analysis. 7

2.3 Importance of relative bias for sensitivity analysis

What is the importance of relative bias for sensitivity analysis? Relative bias is crucial because it helps a

researcher address the question whether taking account of omitted variable bias can overturn the conclusions

of an observational study. For, if relative bias is equal to or larger than 1, then the magnitude of the bias

can large enough to nullify any nonzero treatment effect that might have been estimated by a researcher, i.e.

she would not be able to rule out the possibility that taking account of omitted variable bias would make

the estimated treatment effect zero. Sensitivity analysis will, therefore, boil down to seeing if relative bias

is larger or smaller than unity. Hence, to investigate how sensitive an estimate of a treatment effect is to

omitted variable bias, a researcher should analyze the conditions under which relative bias might equal or

exceed unity. Drawing on Cinelli and Hazlett (2020), we might propose a three-step sensitivity analysis for

this purpose.

2.4 Sensitivity analysis

2.4.1 Step 1: Compute robustness values

The first step of the sensitivity analysis is to compute two ‘robustness values’. The first robustness value is

RVq, which asks us to answer the following question: If the partial R2 of the confounder with the treatment,

R2
D∼Z|X and of the confounder with the outcome R2

Y∼Z|D,X were equal in magnitude, how strong would

this partial R2 need to be to reduce the estimated treatment effect by 100× q%. If q = 1, this open up the

possibility that the treatment effect is zero, the case most commonly of interest to researchers. In the rest

of this paper, I will focus on this case and use RV to denote RV1.

The second robustness value is RVq,α, which answers the following question: If the partial R2 of the

confounder with the treatment, R2
D∼Z|X and of the confounder with the outcome R2

Y∼Z|D,X were equal in

7In this paper, I will only deal with the case of a single confounder. The case of multiple confounders does not need a
separate treatment because the bias with a single confounder is an upper bound for the bias with multiple confounders (Cinelli
and Hazlett, 2020, section 4.5).
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magnitude, how strong would this partial R2 need to be to make the adjusted t-test not reject the null

hypothesis that the true treatment effect is (1 − q)|τ̂ | at the α level? Thus, RVq,α allows a researcher to

see whether the estimated treatment effect is zero, after taking account of the uncertainty associated with

estimation. My focus will be on the case with q = 1, where RVq,α will refer to the null hypothesis that the

true treatment effect is zero. For notational simplicity, RV1,α is denoted simply as RVα.

2.4.2 Step 2: Compute bounds using covariate benchmarking

The second step of the sensitivity analysis is the difficult and crucial step.

Arguably, the most difficult part of a sensitivity analysis is taking the description of a confounder

that would be problematic from the formal results [e.g., the robustness values], and reasoning

about whether a confounder with such strength plausibly exists in one’s study, given its design

and the investigator’s contextual knowledge. (Cinelli and Hazlett, 2020, page 13).

In this step, the researcher needs to investigate the question whether she can reasonably rule out the possi-

bility that R2
D∼Z|X and R2

Y∼Z|D,X are higher than the robustness values. Since these two partial R2 values

cannot be computed—because Z is unobserved—she must use information about observed covariates to find

exact expressions or upper bounds for them. This is where formal covariate benchmarking comes in.

At this point, Cinelli and Hazlett (2020) introduce two parameters, kD and kY , to assist in the process.

The first parameter, kD, captures the relative strength of the confounder in explaining variation in the

treatment as compared to a chosen, observed covariate (or set of covariates); the second parameter, kY ,

captures the corresponding relative strength of the unobserved confounder for explaining variation in the

outcome. Both parameters can be defined with and without conditioning on observed covariates and the

treatment. These parameters capture the judgment of the researcher based on her knowledge of the context

of the research. Once the values of kD and kY have been chosen, Cinelli and Hazlett (2020) show that we

can generate exact expressions for R2
D∼Z|X and R2

Y∼Z|D,X as functions of known quantities and kD (or kY ).

2.4.3 Step 3: Compare robustness values with bounds

In the third and final step, the researcher needs to compare the magnitudes of R2
D∼Z|X and R2

Y∼Z|D,X ,

computed in the second step, with the magnitudes of the robustness values computed in the first step. This

comparison can then allow the researcher to assess the robustness of the results to omitted variable bias. In

particular:
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1. If

max
{
R2

D∼Z|X , R2
Y∼Z|D,X

}
< RV

then the researcher can conclude that the point estimate of the treatment effect is robust to omitted

variable bias;

2. If

max
{
R2

D∼Z|X , R2
Y∼Z|D,X

}
< RVα

then the researcher can conclude that the bias-adjusted t-test of the null hypothesis that the treatment

effect is zero can be rejected at the α% level of significance;

3. If

R2
D∼Z|X < R2

Y∼D|X

then the researcher can conclude that the “worst case confounder” (a confounder that explains all the

residual variance in the outcome, i.e. R2
Y∼Z|D,X = 1) would not eliminate the the estimated treatment

effect.

3 A result about total and partial R2

For any n× k matrix, W , let

PW = W (W ′W )
−1

W ′,

denote the projection matrix that projects onto the column space of W ; let M0 denote the n × n matrix

that generates deviations from means when pre-multiplied to a n vector (Greene, 2012, page 978–79), i.e.,

M0 =

[
I − 1

n
ii′
]
,

where I is the identity matrix of dimension n and i denotes a column vector of 1s. Note that PW and M0

are symmetric and idempotent matrices (Greene, 2012, page 32, 979).

For a n×1 vector, Z, let Z⊥X = Z−PXZ = (I − PX)Z denote the n×1 vector of ordinary least squares

(OLS) residuals obtained from a regression of Z on X, and consider the following four regressions estimated
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by OLS:

Y on X,Z (8)

Y on X (9)

Y on Z (10)

Y on Z⊥X (11)

Let R2
Y∼X+Z , R

2
Y∼X , R2

Y∼Z , and R2
Y∼Z⊥X , denote the total R-squared (coefficient of determination) for the

regressions in (8), (9), (10), and (11), respectively; and let W = (X : Z) denote the n× (k + 1) augmented

matrix obtained by appending Z as an additional column to the matrix X. Using the definition of the

R-squared (Greene, 2012, page 41), we have

R2
Y∼X+Z =

(PWY )
′
M0 (PWY )

Y ′M0Y
=

Y ′PWM0PWY

Y ′M0Y
(12)

R2
Y∼X =

(PXY )
′
M0 (PXY )

Y ′M0Y
=

Y ′PXM0PXY

Y ′M0Y
(13)

R2
Y∼Z =

(PZY )
′
M0 (PZY )

Y ′M0Y
=

Y ′PZM
0PZY

Y ′M0Y
(14)

R2
Y∼Z⊥X =

(
P⊥X
Z Y

)′
M0

(
P⊥X
Z Y

)
Y ′M0Y

=
Y ′P⊥X

Z M0P⊥X
Z Y

Y ′M0Y
(15)

where PW , PX , PZ , and PZ⊥X denote n × n projection matrices onto the column spaces of W,X,Z, and

Z⊥X respectively. I will need a result on the decomposition of projection matrices that is given in Rao et al.

(2008, page 323).

Lemma 1. The projection matrix of W can be decomposed into two projection matrices as:

PW = PX + PZ⊥X . (16)

Using lemma 1, we can prove the following result about the decomposition of the total R2.

Theorem 1. For the regressions in (8), (9), (10), and (11), we have:

R2
Y∼X+Z = R2

Y∼X +R2
Y∼Z⊥X = R2

Y∼X+Z⊥X , (17)
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and

R2
Y∼X+Z −R2

Y∼X −R2
Y∼Z = ηY,Z,X , (18)

where

ηY,Z,X = R2
Y∼Z⊥X −R2

Y∼Z . (19)

Theorem 1 shows that the total R2 from a regression of Y on X and Z can be decomposed in two ways.

In (17), it is decomposed into the total R2 from a regression of Y on X, and the total R2 from a regression

of Y on Z⊥X (the part of Z that is orthogonal to X). In (18), it is decomposed into three terms: the total

R2 from a regression of Y on X, the total R2 from a regression of Y and Z, and a remainder, ηY,Z,X .

Corollary 1. If Z ⊥ X, then R2
Y∼X+Z = R2

Y∼X +R2
Y∼Z .

Proof. If Z ⊥ X, then Z = Z⊥X . Using this in (17), we get the desired result.

Corollary 2. For the regressions in (8), (9), and (11), we have

R2
Y∼Z|X =

R2
Y∼X+Z −R2

Y∼X

1−R2
Y∼X

=
R2

Y∼X+Z⊥X −R2
Y∼X

1−R2
Y∼X

= R2
Y∼Z⊥X |X (20)

Proof. From (17), we have R2
Y∼X+Z = R2

Y∼X +R2
Y∼Z⊥X . The right hand side is equal to the total R2 from

a regression of Y on X and Z⊥X because Z⊥X is orthogonal to X by construction. Hence, R2
Y∼X+Z =

R2
Y∼X+Z⊥X . Using the definition of partial R2 of Y and Z conditional on X, we have

R2
Y∼Z|X =

R2
Y∼X+Z −R2

Y∼X

1−R2
Y∼X

Now replacing R2
Y∼X+Z with R2

Y∼X+Z⊥X , we have the desired result.

The two corollaries will be useful for the subsequent analysis. Corollary 1 will be useful for sensitivity

analysis under the assumption that Z ⊥ X. Corollary 2 will be useful for sensitivity analysis when we use

the residualization of Z on X.

4 Covariate benchmarking: A general treatment

The decision rules laid out in section 2.4.3 that will allow us to assess the robustness of results to omitted

variable bias involves two partial R2 that depend on the unobserved confounder, Z: R2
D∼Z|X and R2

Y∼Z|D,X .

While covariate benchmarking will allow us to determine R2
D∼Z|X and R2

Y∼Z|X in terms of kD, kY and other
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known quantities, a further step will be needed to find R2
Y∼Z|D,X . Using the recursive definition of partial

R2 in (2), we have ∣∣RY∼Z|D,X

∣∣ = ∣∣RY∼Z|X −RY∼D|XRD∼Z|X
∣∣√

1−R2
Y∼D|X

√
1−R2

D∼Z|X

. (21)

While RY∼D|X is known, and covariate benchmarking will allow us to determine |RD∼Z|X | and |RY∼Z|X |,

we will still have to determine |RY∼Z|X − RY∼D|XRD∼Z|X |. Our strategy will be to express |RY∼Z|X −

RY∼D|XRD∼Z|X | in terms of |RY∼D|X |, |RD∼Z|X | and |RY∼Z|X |. This is a crucial step of the argument

that we will return to below in section 6 in greater detail. But first let us see how we might go about finding

exact expressions or upper bounds for R2
D∼Z|X and R2

Y∼Z|X .

4.1 Total R2-based covariate benchmarking

Suppose there are j observed covariates, {X1, X2, . . . , Xj}, and the researcher wishes to use the j-th one,

Xj , for benchmarking. Following Cinelli and Hazlett (2020, equation 50, appendix B.1), let us define two

parameters that are based on comparisons of total R2 measures:

kD :=
R2

D∼Z

R2
D∼Xj

; kY :=
R2

Y∼Z

R2
Y∼Xj

(22)

Here, kD is the ratio of the total R2 in a regression of D on Z and the the total R2 in a regression of D

on Xj . Thus, kD captures the relative importance of the unobserved confounder in explaining variation in

treatment assignment (the numerator), compared to the observed covariate, Xj (the denominator), where

relative importance is judged in terms of the total R2, and we assume that R2
D∼Xj

> 0. Thee second

parameter, kY , is defined in a similar manner, and captures the relative importance of the unobserved

confounder, compared to the observed covariate, Xj , in explaining variation in the outcome.

Can we find an exact expression, or an upper bound, for R2
D∼Z|X? Using the definition of partial R2

(Cinelli and Hazlett, 2020, equation 17, page 51), the result in (17), and the definition of kD in (22), we get,

R2
D∼Z|X =

R2
D∼Z+X −R2

D∼X

1−R2
D∼X

=
R2

D∼Z + ηD,Z,X

1−R2
D∼X

=
kDR2

D∼Xj

1−R2
D∼X

+
ηD,Z,X

1−R2
D∼X

(23)

Since ηD,Z,X = R2
Y∼Z⊥X − R2

Y∼Z , it is the difference of two positive quantities. Hence, in general, the sign

of ηD,Z,X is indeterminate. This implies that the exact magnitude of R2
D∼Z|X in (23) is indeterminate too.

Thus, we cannot find a useful upper bound for R2
D∼Z|X , without more information. A similar argument

shows that we cannot find a useful upper bound for R2
Y∼Z|X , without more information.
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4.2 Partial R2-based covariate benchmarking

The partial R2-based formal covariate benchmarking comes in two versions. In the first version, bounding

of RY∼Z|D,X use comparisons that do not condition on D (the treatment variable); in the second version,

bounding of RY∼Z|D,X use comparisons that condition onD (the treatment variable). I will limit my analysis

to the first version and note that it can be easily expanded to cover the second version too.

4.2.1 Single covariate used for benchmarking

We would like, as in the total R2 case, to generate upper bounds for R2
D∼Z|X and R2

Y∼Z|X . Suppose, like

before, there are j covariates, {X1, X2, . . . , Xj}, and the researcher wishes to use the j-th observed covariate,

Xj , for benchmarking. Let X−j refer to the set of observed covariates that is not used for benchmarking,

and following Cinelli and Hazlett (2020, equation 59, appendix B.2), let us define two parameters based on

comparisons of partial R2 measures:

kD :=
R2

D∼Z|X−j

R2
D∼Xj |X−j

; kY :=
R2

Y∼Z|X−j

R2
Y∼Xj |X−j

(24)

Here, kD captures the relative importance of the unobserved confounder in explaining variation in treatment

assignment, compared to the observed covariate, Xj , conditional on X−j , where, relative importance is now

judged using the partial R2 measures, and we assume that R2
D∼Xj |X−j

> 0; kY can be interpreted similarly

to capture the relative importance of the unobserved confounder, compared to the observed covariate, Xj ,

to explain variation in the outcome, conditional on X−j .

Theorem 2. Suppose kD and kY are defined in (24), 0 ≤ R2
Z∼Xj |X−j

< 1, 0 ≤ R2
D∼Xj |X−j

< 1 and

0 ≤ R2
Y∼Xj |X−j

< 1. Then, we have the following lower bounds for R2
D∼Z|X and R2

Y∼Z|X , respectively:

R2
D∼Z|X ≥ αDf2

D∼Xj |X−j
, R2

Y∼Z|X ≥ αY f
2
D∼Xj |X−j

, (25)

where

αD =

(√
kD −

∣∣RZ∼Xj |X−j

∣∣)2
1−R2

Z∼Xj |X−j

≥ 0; αY =

(√
kY −

∣∣RZ∼Xj |X−j

∣∣)2
1−R2

Z∼Xj |X−j

≥ 0.

The implication of theorem 2 is particularly damaging for sensitivity analysis because here we have lower

bounds for R2
D∼Z|X and R2

Y∼Z|X . For the sensitivity analysis we instead need upper bounds. Theorem 2

shows that we cannot generate an upper bound for R2
D∼Z|X and R2

Y∼Z|X , without more information.
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4.2.2 Multiple covariates used for benchmarking

If a researcher wishes to use multiple observed covariates for benchmarking, then she will have to face, in

addition to the problem of not being able to generate an upper bound, an infeasible bounding exercise. This

is because repeated use of the recursive definition of partial R2 will become increasingly complicated and

unwieldy. I will demonstrate the argument for R2
D∼Z|X and note that it will equally well apply to R2

Y∼Z|X .

Let X(1,2,...,j) denote the set of covariates that will be used for benchmarking; and let X−(1,2,...,j) denote

the complement of that set. Following Cinelli and Hazlett (2020, equation 66, appendix B.2), we can define

kD :=
R2

D∼Z|X−(1,2,...,j)

R2
D∼X(1,2...,j)|X−(1,2,...,j)

; kY :=
R2

Y∼Z|X−(1,2,...,j)

R2
Y∼X(1,2...,j)|X−(1,2,...,j)

(26)

as the parameters to capture the relative strength of the unobserved confounder compared to the set of

covariates, X(1,2,...,j), for the bounding exercise. To generate the required bound, we need to apply the

recursive definition of partial R2 to RD∼Z|X , RD∼Z|X−(1)
, RD∼Z|X−(1,2)

, up to RD∼Z|X−(1,2,...,j)
.

The first step of the recursion is

RD∼Z|X =
RD∼Z|X−(1)

−RD∼X(1)|X−(1)
RZ∼X(1)|X−(1)√

1−R2
D∼X(1)|X−(1)

√
1−R2

Z∼X(1)|X−(1)

(27)

We can now move to the next step of the recursive process by applying the recursive formula for partial

R2 to the numerator of (27):

RD∼Z|X−(1)
=

RD∼Z|X−(1,2)
−RD∼X(2)|X−(1,2)

RZ∼X(2)|X−(1,2)√
1−R2

D∼X(2)|X−(1,2)

√
1−R2

Z∼X(2)|X−(1,2)

(28)

Plugging (30) into (27), we get

RD∼Z|X =
RD∼Z|X−(1,2)√

1−R2
D∼X(2)|X−(1)

√
1−R2

Z∼X(2)|X−(1,2)

√
1−R2

D∼X(1)|X−(1)

√
1−R2

Z∼X(1)|X−(1)

−
RD∼X(2)|X−(1,2)

RZ∼X(2)|X−(1,2)√
1−R2

D∼X(2)|X−(1)

√
1−R2

Z∼X(2)|X−(1,2)

√
1−R2

D∼X(1)|X−(1)

√
1−R2

Z∼X(1)|X−(1)

−
RD∼X(1)|X−(1)

RZ∼X(1)|X−(1)√
1−R2

D∼X(1)|X−(1)

√
1−R2

Z∼X(1)|X−(1)

If one wished to use covariate benchmarking to replace the terms involving Z in the above expression, one

would run into the problem of a proliferation of parameters. Moreover, carrying out the analysis to the next
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step of the recursion quickly becomes unwieldy. Thus, without more information, the benchmarking exercise

using multiple covariates becomes infeasible.

4.3 Summary

In this section, we have seen that covariate benchmarking cannot generate exact expressions or upper bounds

for RD∼Z|X and RY∼Z|X unless more information is used about the relationship between X and Z. Without

these expressions, we cannot also get an exact expression or generate an bound for RY∼Z|D,X , and sensitivity

analysis cannot be conducted. To proceed, we must impose some assumption about the relationship between

X and Z.

One specific form of this relationship that has proved useful is orthogonality, and I explore it in the next

two sections in the two forms that has been used in Cinelli and Hazlett (2020, page 14): either assume that the

unobserved confounder is orthogonal to the set of observed covariates, Z ⊥ X, or work with the residualized

part of the unobserved confounder, Z⊥X . The assumption that the unobserved confounder is orthogonal

to the set of observed covariates is, of course, unrealistic. It is only used because it facilitates derivation of

results that can then be used for analyzing the more realistic and useful case where researchers reason about

the residualized part of the unobserved confounder. The latter case imposes no formal restrictions because

we an always residualize the unobserved confounder with respect to the set of observed covariates.

In terms of the argument to generate relevant bounds, I will, in a first step, derive exact expressions for

R2
D∼Z|X and R2

Y∼Z|X ; in the second step, I will derive an exact expression for R2
D∼Z|D,X .

5 Covariate benchmarking with orthogonality: First step

5.1 Z is orthogonal to X

5.1.1 Total R2 benchmarking

If Z is orthogonal to X, then Z⊥X = Z. Hence, from (19) we see that ηD,X,Z = R2
D∼Z⊥X − R2

D∼Z = 0.

Hence, from (23), we see that

R2
D∼Z|X = kD

(
R2

D∼Xj

1−R2
D∼X

)
,
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which gives us an expression for R2
D∼Z|X , with kD defined in (22). A similar argument generates an analogous

expression for R2
y∼Z|X in terms of kY ,

R2
Y∼Z|X = kY

(
R2

Y∼Xj

1−R2
Y∼X

)
,

with kY also defined in (22).8

5.1.2 Partial R2 benchmarking using one covariate

If Z is orthogonal to X, then RZ∼Xj |X−j
= 0, and we no longer have an inequality in the proof of theorem 2.

Instead, working through the steps, we get

R2
D∼Z|X = kD

(
R2

D∼Xj |X−j

1−R2
D∼Xj |X−j

)
,

which gives us the required upper bound for R2
D∼Z|X , with kD defined in (24). A similar argument gives us

an analogous expression for R2
Y∼Z|X in terms of kY ,

R2
Y∼Z|X = kY

(
R2

Y∼Xj |X−j

1−R2
Y∼Xj |X−j

)
,

with kY defined in (24).9

5.1.3 Partial R2 benchmarking using multiple covariates

If Z is orthogonal to X, then R2
Z∼X(1)|X−(1)

= 0. Hence, the second term on the numerator and denominator

of (27) are zero, and we get

RD∼Z|X =
RD∼Z|X−(1)√

1−R2
D∼X(1)|X−(1)

(29)

We can now move to the next step of the recursive process by applying the recursive formula for partial R2

to the numerator of (29):

RD∼Z|X−(1)
=

RD∼Z|X−(1,2)
−RD∼X(2)|X−(1,2)

RZ∼X(2)|X−(1,2)√
1−R2

D∼X(2)|X−(1,2)

√
1−R2

Z∼X(2)|X−(1,2)

(30)

8This case has been analyzed in Cinelli and Hazlett (2020, appendix B.1, page 33-34).
9I have omitted the details because this case has been analyzed in Cinelli and Hazlett (2020, appendix B.1, page 34-35).
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If Z ⊥ X, then R2
Z∼X(2)|X−(1,2)

= 0. Hence, the second term on the numerator and denominator is zero,

once again, and we get

RD∼Z|X−(1)
=

RD∼Z|X−(1,2)√
1−R2

D∼X(2)|X−(1,2)

(31)

Plugging (31) into (29), we get

RD∼Z|X =
RD∼Z|X−(1,2)√

1−R2
D∼X(1)|X−(1)

√
1−R2

D∼X(2)|X−(1,2)

(32)

Repeating this process j times, we get

RD∼Z|X =
RD∼Z|X−(1,2,...,j)√

1−R2
D∼X(1)|X−(1)

√
1−R2

D∼X(2)|X−(1,2)
· · ·
√

1−R2
D∼X(j)|X−(1,2,...,j)

(33)

which is equation (67) in Cinelli and Hazlett (2020, appendix). Noting that the denominator can be simplified

to
√
1−R2

D∼X(1,2,...j)|X−(1,2,...,j)
, we get the required upper bound for RD∼Z|X as

R2
D∼Z|X = kD

(
R2

D∼X(1,2,...j)|X−(1,2,...,j)

1−R2
D∼X(1,2,...j)|X−(1,2,...,j)

)

with kD defined in (26).

A similar argument gives us a similar expression for R2
Y∼Z|X involving kY ,

R2
Y∼Z|X = kY

(
R2

Y∼X(1,2,...j)|X−(1,2,...,j)

1−R2
Y∼X(1,2,...j)|X−(1,2,...,j)

)
,

with kY defines in (26).10

5.2 Z is residualized with respect to X

When the unobserved confounder, Z, is residualized with respect to the set of observed covariates, X,

researchers work with Z⊥X , instead of Z. Recall that Z⊥X = Z − PXZ is the vector of residuals from a

regression of Z on X estimated by ordinary least squares. Hence, researchers only reason about the part of

the unobserved confounder that is orthogonal to X, i.e. Z⊥X , and not about the unobserved confounder, Z,

as such. In formal terms, Z⊥X is orthogonal to X by construction. Hence, all the results that were derived

10This case was analyzed in Cinelli and Hazlett (2020, appendix B.1, page 36).
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under the assumption of orthogonality between Z and X hold once the parameters kD and kY are suitably

redefined and reinterpreted.

5.2.1 Total R2 benchmarking

Note, first of all, that the definition of kD and kY now uses Z⊥X , instead of Z:

kD :=
R2

D∼Z⊥X

R2
D∼Xj

, kY :=
R2

Y∼Z⊥X

R2
D∼Xj

. (34)

The interpretation of kD and kY are now different from the one that applies to (22). In (34), kD (kY )

measures the relative explanatory power in explaining variation in treatment (outcome) of the residualized

part of the unobserved confounder, Z⊥X , in comparison to the covariate, Xj , chosen for benchmarking.

Whether a comparison of the explanatory powers of Z⊥X and Xj is feasible and meaningful will have to be

decided by the researcher from the specific context of the study.

To derive the exact expression for R2
D∼Z|X , we first note, using corollary 2, that R2

D∼Z|X = R2
D∼Z⊥X |X .

Hence, all we need to do is find an upper bound for R2
D∼Z⊥X |X . But

R2
D∼Z⊥X |X =

R2
D∼X+Z⊥X −R2

D∼X

1−R2
D∼X

=
R2

D∼Z⊥X

1−R2
D∼X

=
kDR2

D∼Xj

1−R2
D∼X

= kD

(
R2

D∼Xj

1−R2
D∼X

)

with kD defined in (34). Hence, we have an expression for R2
D∼Z⊥X |X , and hence for R2

D∼Z|X . A similar

argument gives us an expression for R2
Y∼Z|X ,

R2
Y∼Z|X = R2

Y∼Z⊥X |X = kY

(
R2

Y∼Xj

1−R2
Y∼X

)
,

with kY defined in (34).

5.2.2 Partial R2 benchmarking using one covariate

Note once again that the definition of kD and kY has to use Z⊥X , instead of Z. Thus, let

kD :=
R2

D∼Z⊥X |X−j

R2
D∼Xj |X−j

, kY :=
R2

Y∼Z⊥X |X−j

R2
D∼Xj |X−j

. (35)
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The interpretation of kD and kY are, once again, very different from (24) when Z was assumed to be

orthogonal to X. To interpret the definition of kD and kY in (35), let us use (1) to rewrite them:

kD :=
R2

D∼Z⊥X+X−j
−R2

D∼X−j

R2
D∼Xj+X−j

−R2
D∼X−j

, kY :=
R2

Y∼Z⊥X+X−j
−R2

Y∼X−j

R2
Y∼Xj+X−j

−R2
Y∼X−j

.

Now, we see that kD (kY ) in (35) measures the ratio of (a) the increment in total R2 when Z⊥X (residualized

unobserved confounder) is added to a regression of D (or Y ) on X−j (the set of covariates not used for

benchmarking), and (b) the increment in total R2 when Xj (the covariate used for benchmarking) is added

to a regression of D ( or Y ) on X−j .
11 This is the specific way in which kD (kY ) now capture the relative

explanatory power in explaining variation in treatment (outcome) of the residualized part of the unobserved

confounder, Z⊥X , in comparison to the covariate, Xj , chosen for benchmarking. Once again, whether a

comparison of the explanatory powers of Z⊥X and Xj in the particular way captured in (35) is feasible and

meaningful will have to be decided by the researcher from the specific context of the study.

If we insert Z⊥X in place of Z in the argument in Cinelli and Hazlett (2020, appendix B.2, page 35), and

use corollary 2, we get

R2
D∼Z|X = R2

D∼Z⊥X |X = kD

(
R2

D∼Xj |X−j

1−R2
D∼Xj |X−j

)
,

where kD is defined in (35). A similar argument gives us

R2
Y∼Z|X = R2

Y∼Z⊥X |X = kY

(
R2

Y∼Xj |X−j

1−R2
Y∼Xj |X−j

)
,

where kY is defined in (35).

5.2.3 Partial R2 benchmarking using multiple covariates

We now define

kD :=
R2

D∼Z⊥X |X−(1,2,...,j)

R2
D∼X(1,2...,j)|X−(1,2,...,j)

; kY :=
R2

Y∼Z⊥X |X−(1,2,...,j)

R2
Y∼X(1,2...,j)|X−(1,2,...,j)

(36)

and note the change in interpretation. Writing kD and kY using (1), we see that in (36), kD (or kY ) measures

the ratio of (a) the increment in total R2 when Z⊥X (residualized unobserved confounder) is added to a

regression of D (or Y ) on X−(1,2,...,j) (the set of covariates not used for benchmarking), and (b) the increment

in total R2 when X(1,2,...,j) (the set of covariates used for benchmarking) is added to a regression of D (

11Since Z⊥X ⊥ X−j , the numerator becomes R2
D∼Z⊥X (or R2

Y ∼Z⊥X ), the total R2 in a regression of D (or Y) on Z⊥X .
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orY ) on X−(1,2,...,j).
12 This is the specific way in which kD (kY ) now capture the relative explanatory power

in explaining variation in treatment (outcome) of the residualized part of the unobserved confounder, Z⊥X ,

in comparison to the covariate, Xj , chosen for benchmarking. Once again, whether a comparison of the

explanatory powers of Z⊥X and Xj in the particular way captured in (35) is feasible and meaningful will

have to be decided by the researcher from the specific context of the study.

If we insert Z⊥X in place of Z in the argument in Cinelli and Hazlett (2020, appendix B.2, page 36), and

use corollary 2, we get

R2
D∼Z|X = R2

D∼Z⊥X |X = kD

(
R2

D∼X(1,2,...j)|X−(1,2,...,j)

1−R2
D∼X(1,2,...j)|X−(1,2,...,j)

)
,

with kD defined in (36). A similar argument gives us

R2
Y∼Z|X = R2

Y∼Z⊥X |X = kY

(
R2

Y∼X(1,2,...j)|X−(1,2,...,j)

1−R2
Y∼X(1,2,...j)|X−(1,2,...,j)

)
,

with kY defined in (36).

6 Covariate benchmarking with orthogonality: Second step

The first step of covariate benchmarking gives us expressions for R2
D∼Z|X and R2

Y∼Z|X . In the second step,

we have to find an expression for R2
Y∼Z|D,X . As we have seen above in section 4, this will involve finding

the exact magnitude of
∣∣RY∼Z|X −RY∼D|XRD∼Z|X

∣∣, and for this purpose I need the next result.

Proposition 1. For any three non-zero real numbers, a, b, c, the following two statements are equivalent.

1. sign (a− bc) = sign (bc);

2. |a− bc| = |a| − |bc|.

We know that for any three real numbers, a, b, and c, we have |a− bc| ≥ |a| − |bc|. Using proposition 1,

now we get another result that I will use below:

sign (a− bc) ̸= sign (bc) ⇐⇒ |a− bc| > |a| − |bc|. (37)

12Since Z⊥X ⊥ X−(1,2,...,j), the numerator becomes R2
D∼Z⊥X (or R2

Y ∼Z⊥X ), the total R2 in a regression of D (or Y) on

Z⊥X .
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6.1 Confounder reduces magnitude of treatment effect

We first consider the case where the unobserved confounder reduces the magnitude of the true treatment

effect towards zero. We can capture this case with the condition that the absolute value of the treatment

effect from the restricted model is strictly less than the treatment effect from the full model: |τ̂res| < |τ̂ |. We

need to consider two sub-cases: (a) signs of the estimated and true treatment effect are same; (b) signs of

the estimated and true treatment effect are opposite.

6.1.1 Signs of the estimated and true treatment effect are same

In this case, we have

b̂ias

τ̂res
< 0. (38)

To see this consider two cases: τ̂ > 0 or τ̂ < 0. If τ̂ > 0, then τ̂res ∈ (−τ̂ , τ̂). Hence, using (5), we see that

b̂ias < 0. Since the signs of the estimated and true treatment effect are same, τ̂res > 0. Hence, b̂ias
τ̂res

< 0. On

the other hand, if τ̂ ≤ 0, then τ̂res ∈ (τ̂ ,−τ̂), so that b̂ias > 0. Since the signs of the estimated and true

treatment effect are same, τ̂res < 0. Hence, b̂ias
τ̂res

< 0. Now, I will use (7) and proposition 1 to investigate the

magnitude of
∣∣RY∼Z|X −RY∼D|XRD∼Z|X

∣∣. We need to consider two cases.

Case 1: RY∼D|X > 0. Since b̂ias
τ̂res

< 0, using (7), we see that the signs of RY∼Z|D,X and RD∼Z|X are

opposite. Suppose RY∼Z|D,X > 0 and RD∼Z|X < 0; then RY∼D|XRD∼Z|X < 0. Thus, we see that the signs

of RY∼Z|D,X and RY∼D|XRD∼Z|X are opposite. Letting a = RY∼Z|D,X , b = RY∼D|X and c = RD∼Z|X in

(37) shows that ∣∣RY∼Z|X −RY∼D|XRD∼Z|X
∣∣ > ∣∣RY∼Z|X

∣∣− ∣∣RY∼D|XRD∼Z|X
∣∣ .

Thus we do not have an exact expression or an upper bound for
∣∣RY∼Z|X −RY∼D|XRD∼Z|X

∣∣. A similar

argument shows that if RY∼Z|D,X < 0 and RD∼Z|X > 0, then also we do not have an upper bound or an

exact expression for
∣∣RY∼Z|X −RY∼D|XRD∼Z|X

∣∣.
Case 2: RY∼D|X < 0. Since b̂ias

τ̂res
< 0, using (7), we see that the signs of RY∼Z|D,X and RD∼Z|X are the

same. Suppose RY∼Z|D,X > 0 and RD∼Z|X > 0; then RY∼D|XRD∼Z|X < 0. Thus, we see that the signs

of RY∼Z|D,X and RY∼D|XRD∼Z|X are opposite. Hence, we do not have an exact expression or an upper

bound for
∣∣RY∼Z|X −RY∼D|XRD∼Z|X

∣∣. A similar argument gives the same result when RY∼Z|D,X < 0 and

RD∼Z|X < 0.
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6.1.2 Signs of the estimated and true treatment effect are different

In this case, we have

b̂ias

τ̂res
> 0. (39)

To see this consider, once again, two cases: τ̂ > 0 or τ̂ < 0. If τ̂ > 0, then τ̂res ∈ (−τ̂ , τ̂). Hence, using

(5), we see that b̂ias < 0. Since the signs of the estimated and true treatment effect are opposite, τ̂res < 0.

Hence, b̂ias
τ̂res

> 0. On the other hand, if τ̂ < 0, then τ̂res ∈ (τ̂ ,−τ̂), so that b̂ias > 0. Since the signs of the

estimated and true treatment effect are opposite, τ̂res > 0. Hence, b̂ias
τ̂res

> 0. We need to, once again, consider

two cases.

Case 1: RY∼D|X > 0. Since b̂ias
τ̂res

> 0, using (7), we see that the signs of RY∼Z|D,X and RD∼Z|X are the

same. Suppose RY∼Z|D,X > 0 and RD∼Z|X > 0; then RY∼D|XRD∼Z|X > 0. Thus, we see that the signs

of RY∼Z|D,X and RY∼D|XRD∼Z|X are the same. Letting a = RY∼Z|D,X , b = RY∼D|X and c = RD∼Z|X in

proposition 1 gives us

∣∣RY∼Z|X −RY∼D|XRD∼Z|X
∣∣ = ∣∣RY∼Z|X

∣∣− ∣∣RY∼D|XRD∼Z|X
∣∣ .

Thus we have an exact expression for
∣∣RY∼Z|X −RY∼D|XRD∼Z|X

∣∣. A similar argument shows that if

RY∼Z|D,X < 0 and RD∼Z|X < 0, then also we have the same expression for
∣∣RY∼Z|X −RY∼D|XRD∼Z|X

∣∣.
Case 2: RY∼D|X < 0. Since b̂ias

τ̂res
> 0, using (7), we see that the signs of RY∼Z|D,X and RD∼Z|X are

opposite. Suppose RY∼Z|D,X > 0 and RD∼Z|X < 0; then RY∼D|XRD∼Z|X > 0. Thus, we see that the signs

of RY∼Z|D,X and RY∼D|XRD∼Z|X are the same. Letting a = RY∼Z|D,X , b = RY∼D|X and c = RD∼Z|X in

proposition 1 gives us

∣∣RY∼Z|X −RY∼D|XRD∼Z|X
∣∣ = ∣∣RY∼Z|X

∣∣− ∣∣RY∼D|XRD∼Z|X
∣∣ .

Thus we have an exact expression for
∣∣RY∼Z|X −RY∼D|XRD∼Z|X

∣∣. A similar argument gives the same

result when RY∼Z|D,X < 0 and RD∼Z|X > 0.

6.2 Confounder increases magnitude of estimate

Now we consider the case where the unobserved confounder increases the magnitude of the true treatment

effect away from zero. We can capture this case with the condition that the absolute value of the treatment

effect from the restricted model is strictly greater than the treatment effect from the full model: |τ̂res| > |τ̂ |.
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Just as in the previous case, we need to consider two sub-cases: (a) signs of the estimated and true treatment

effect are same; (b) signs of the estimated and true treatment effect are opposite.13 Using similar arguments

as in the above case, we can see that, in both the sub-cases,

b̂ias

τ̂res
> 0. (40)

Once again, using similar arguments as in section 6.1.2, we have

∣∣RY∼Z|X −RY∼D|XRD∼Z|X
∣∣ = ∣∣RY∼Z|X

∣∣− ∣∣RY∼D|XRD∼Z|X
∣∣ .

6.3 Summary

In this section, I have investigated scenarios when we have

∣∣RY∼Z|X −RY∼D|XRD∼Z|X
∣∣ = ∣∣RY∼Z|X

∣∣− ∣∣RY∼D|XRD∼Z|X
∣∣ .

This is important because, in these cases, we can use (21) to determine |RY∼Z|D,X | as

∣∣RY∼Z|D,X

∣∣ = ∣∣RY∼Z|X
∣∣− ∣∣RY∼D|X

∣∣ ∣∣RD∼Z|X
∣∣√

1−R2
Y∼D|X

√
1−R2

D∼Z|X

,

with information generated in the first step about |RY∼Z|X | and |RD∼Z|X |. This will then allow us to

complete the second step of the sensitivity analysis. Let me summarize what I found.

If the confounder increases the magnitude of the treatment effect away from zero, i.e. the estimated

treatment effect is larger in absolute value than the true treatment effect, then we have an exact expression

for |RY∼Z|X −RY∼D|XRD∼Z|X | irrespective of the signs of the estimated and true treatment effect. Hence,

we can use (21) to determine |RY∼Z|D,X | unambiguously.

If the confounder reduces the magnitude of the treatment effect towards zero, i.e. the estimated treatment

effect is smaller in absolute value than the true treatment effect, then we need to consider the signs of the

true and the estimated treatment effects. If the true and estimated treatment effects have opposite signs,

then, once again, we have an exact expression for |RY∼Z|X − RY∼D|XRD∼Z|X |. If, on the other hand,

the true and estimated treatment effects have same signs, then we do not have an exact expression for

|RY∼Z|X −RY∼D|XRD∼Z|X |; instead we have a lower bound. Hence, we cannot find bounds for the omitted

13For details see appendix A.5.
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variable bias using the methodology in Cinelli and Hazlett (2020).

This last scenario is of course a special case where we can avoid an elaborate sensitivity analysis altogether.

Since the confounder reduces the magnitude of the treatment effect towards zero without changing sign, we

either have 0 < τ̂res < τ̂ or we have τ̂ < τ̂res < 0. If the researcher can argue plausibly, e.g. on the

basis of domain knowledge, that the true treatment effect is positive, then she can use the former case, i.e.

0 < τ̂res < τ̂ , to assert that the estimated treatment effect, τ̂res, is a lower bound for the true treatment effect.

If, on the other hand, the researcher can make a plausible case that the true treatment effect is negative,

then she can use the latter case, i.e. τ̂ < τ̂res < 0, to argue that the estimated treatment effect, τ̂res, is an

upper bound of the true treatment effect.

The upshot is that researchers can rest assured that the method for determining |RY∼Z|D,X | using (21)

covers all cases that matter. In the only case where (21) cannot be used to determine |RY∼Z|D,X |, i.e. the

case where the confounder reduces the magnitude of the treatment effect towards zero without changing sign,

the researcher can avoid conducting sensitivity analysis. Of course, in practice, it is never easy to know, for

a specific study, which case a researcher faces. Hence, having all relevant cases covered is reassuring.

7 Some examples

In Table 1, I report results of sensitivity analyses for some existing observational studies to highlight some

of the interpretational issues that need to be kept in mind. The first row of table 1 discusses the running

example used in Cinelli and Hazlett (2020, section 2). The substantive issue under investigation is whether,

in the context of the civil war in Darfur, exposure to violence (treatment) has a causal effect on the attitudes

towards peace (outcome). In rows 2 to 6, I discuss the observational studies reported in Oster (2019,

Section 4.2). The substantive issue under investigation in these studies is the impact of maternal behavior

on child outcomes, with a child’s standardized IQ score as the outcome variable in rows 2 through 4, and a

child’s birth weight as the outcome variable in rows 5 and 6.

7.1 Impact of exposure to violence on attitude towards peace

Political scientists are often interested in understanding the effect of exposure to violence on attitudes towards

peace.14 In the context of the civil war in Darfur, this question attained especial importance. To investigate

this question, a researcher estimates the following regression model with individual-level data: PeaceIndex

14For further details, see Cinelli and Hazlett (2020, section 2). I accessed the data set used for the analysis in the R package
sensemakr.
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is regressed on DirectHarm, along with control variables, where PeaceIndex is an index to measure attitudes

towards peace efforts, DirectHarm measures the exposure to violence. The control variables are: Female

(gender of the individual), age, whether the individual was a farmer, herder, merchant or trader, household

size, whether or not the individual voted in the past, and village-level fixed effects. Columns 1 and 2 of row 1

in table 1 show that the treatment effect is 0.097 and highly statistically significant.

It is suspected that there is at least one important unobserved confounder, Z, (e.g. wealth of the indi-

vidual) that is correlated both with exposure to violence (treatment) and attitude towards peace (outcome).

The researcher does not have data on wealth of individuals. Hence, the researcher wishes to conduct sensi-

tivity analysis regarding the possible effect of this omitted variable. Suppose, finally, the researcher knows,

on the bases of domain knowledge, that gender of the individual is one of the, if not the, most important

variables determining treatment (exposure to violence measured by DirectHarm). Hence, she chooses to use

this variable for formal covariate benchmarking.

The first question of interest in the sensitivity analysis reported in row 1, table 1, is whether taking

account of omitted variable bias can change the point estimate of the treatment effect to zero. Using a

total R2-based comparison, we see that R2
D∼Z|X = 0.268 (column 6), R2

Y∼Z|D,X = 25.907 (column 5),

and RV = 13.878 (column 3). Hence, max
{
R2

D∼Z|X , R2
Y∼Z|D,X%

}
> RV%. Thus, it is not possible to

rule out that taking account of omitted variable bias can change the treatment effect to zero. If, on the

other hand, the researcher uses a partial R2-based comparison, we see that R2
D∼Z|X = 0.916 (column 6),

and R2
Y∼Z|D,X = 12.464 (column 5). Hence, max

{
R2

D∼Z|X , R2
Y∼Z|D,X%

}
< RV%, and it is possible to

conclude that omitted variable bias cannot reduce the treatment effect to zero.

The second, related, question is whether we can conclude that the treatment effect is different from zero

even after we take account of the uncertainty of estimation, i.e. see whether zero is contained in the 95%

confidence interval around the estimated treatment effect. To answer this question we need to compare

max
{
R2

D∼Z|X , R2
Y∼Z|D,X%

}
and RVα (column 4). Both the total R2-based comparison and the partial

R2-based comparison lead to the conclusion that max
{
R2

D∼Z|X , R2
Y∼Z|D,X%

}
> RVα. Hence, it is not

possible to rule out a zero treatment effect once we take account of the uncertainty of estimation.

Finally, we can consider the extreme scenario where the unobserved confounder would explain all the

residuals variation of the outcome. Would such a confounder manage to eliminate the treatment effect? To

answer this question, we need to compare R2
D∼Z|X (6 or 8) and R2

Y∼D|X (column 9). For both the total

R2-based comparison and the partial R2-based comparison, R2
D∼Z|X < R2

Y∼D|X . Hence, we can conclude

that such a confounder will not be able to completely wipe out the treatment effect.
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7.2 Impact of maternal behavior on child outcomes

In the studies of the effect of maternal behavior on child outcome for the U.S. using NLSY data (rows 2

through 6 in table 1), two child outcomes are studied: a child’s standardized IQ score (rows 2 through 4

in table 1) and a child’s birth weight (rows 5 and 6 in table 1). In the study of child IQ, three treatment

variables are used in turn: months of breastfeeding (row 2), any drinking of alcohol in pregnancy (row 3), and

an indicator for being low birth-weight and preterm (row 4). In studying child birth-weight, two treatment

variables are used, one by one: maternal smoking during pregnancy (row 5), and maternal drinking during

pregnancy (row 6). The following control variables are used for both studies: child race, maternal age,

maternal education, maternal income, maternal marital status. The question of interest is whether the

treatment variables, each on their own, have any causal impact on the outcome variables.15

In answering each of the questions about the impact of maternal behavior on child outcomes using

observational studies, researchers face the problem of omitted variables “largely associated with omitted

socioeconomic status and family background.” (Oster, 2019, p. 198). Since mother’s years of schooling is

one of the most important determinants of treatment, and can also be a good proxy for socioeconomic status,

we use this variable for formal covariate benchmarking in these studies. Sensitivity analysis presented in

rows 2 through 6 in table 1 show the following:

• Row 2, table 1: Maternal breastfeeding has a positive impact (0.017) on a child’s IQ score, and this

positive impact will not be reduced to zero even if we take account of omitted variable bias because

R2
D∼Z|X and R2

Y∼Z|D,X are both less than RV , irrespective of whether we use total or partial R2-

based comparison for covariate benchmarking. Once we take account of estimation uncertainty, the

conclusion changes. The adjusted confidence interval does not contain zero if we use a partial R2-based

comparison, but it does contain zero if we use a partial R2-based comparison: R2
Y∼Z|D,X (column 5) is

greater than RVα (column 4). Turning to the extreme or worst-case confounder scenario, we see that

R2
D∼Z|X is smaller than R2

Y∼D|X for both total and partial R2-based comparisons. This shows that

a worst-case confounder that explains all residual variance of the outcome would still not be able to

explain away the result.

• Row 3, table 1: Drinking by the mother during pregnancy has a positive impact (0.050) on a child’s

IQ score. But this counterintuitive positive estimate is completely wiped out once we take account of

omitted variable bias: R2
Y∼Z|D,X for total R2-based comparison (column 5) and for partial R2-based

15For further details, see Oster (2019, Section 4.2). I accessed the data sets used for the analysis from Professor Emily Oster’s
website: https://drive.google.com/file/d/0B1U4uS7GkkxbV0VkZmd0ZVlDVDA/view?usp=sharing
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comparison (column 7) are both larger than RV (column 3). Since this result holds for the point

estimate, we do not even need to look at the result about the confidence interval or conduct extreme

confounder analysis.

• Row 4, table 1: Being low birth-weight and preterm has a negative impact (-0.125) on a child’s IQ

score. As in the previous row’s result, the negative estimate of the treatment effect is completely

wiped out once we take account of omitted variable bias: R2
Y∼Z|D,X for total R2-based comparison

(column 5) and for partial R2-based comparison (column 7) are both larger than RV (column 3). Once

again, since this result holds for the point estimate, we do not need to look at the result about the

confidence interval or conduct extreme confounder analysis.

• Row 5, table 1: Smoking by the mother during pregnancy has a negative impact (-172.51) on a child’s

birth-weight. The negative estimate remains intact even after we take account of omitted variable bias,

irrespective of whether we use total or partial R2-based covariate benchmarking. To see this, note that

RVα (12.107, column 4) is greater than R2
D∼Z|X and R2

Y∼Z|D,X for both total and partial R2-based

comparisons. Hence, not only is the point estimate different from zero, the 95% confidence interval

does not contain zero. Thus, even after taking account of estimation uncertainty, we can assert that

omitted variable bias cannot overturn the results. What does the worst-case confounder analysis show?

Here we see mixed results. If we use a partial R2-based comparison, then R2
D∼Z|X (column 8) is less

than R2
Y∼D|X (column 9); if, on the other hand, we use a total R2-based comparison, then R2

D∼Z|X

(column 6) is larger than R2
Y∼D|X (column 9).

• Row 6, table 1: Drinking by the mother during pregnancy has a negative impact (-14.14) on a child’s

birth-weight. The negative estimate of the treatment effect remains intact even after we take account of

omitted variable bias, irrespective of whether we use total or partial R2-based covariate benchmarking.

To see this, note that RVα (0.972, column 4) is greater than R2
D∼Z|X and R2

Y∼Z|D,X for both total and

partial R2-based comparisons. Thus, not only is the point estimate different from zero, even the 95%

confidence interval does not contain zero. We can conclude that even after taking account of estimation

uncertainty, omitted variable bias cannot overturn the results. What does the worst-case confounder

analysis show? We see that R2
D∼Z|X is smaller than R2

Y∼D|X for both total and partial R2-based

comparisons. Thus, a worst-case confounder that explains all residual variance of the outcome would

still not be able to explain away the result.
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Table 1: Sensitivity Analysis of Several Observational Studies

Total R2 comparison Partial R2 comparison
Est. SE RVq RVq,α R2

Y∼Z|D,X R2
D∼Z|X R2

Y∼Z|D,X R2
D∼Z|X R2

Y∼D|X
(%) (%) (%) (%) (%) (%) (%)

(1) (2) (3) (4) (5) (6) (7) (8) (9)
PC:VL 0.097 0.023 13.878 7.626 25.907 0.268 12.464 0.916 2.187
IQ:BF 0.017 0.002 8.497 6.247 7.733 3.134 3.513 0.825 0.783
IQ:DR 0.050 0.023 2.676 0.284 7.085 0.243 3.341 0.195 0.074
IQ:LB -0.125 0.050 3.148 0.699 7.053 0.007 3.501 0.021 0.102
BW:SM -172.510 13.285 14.098 12.107 0.156 2.929 0.003 1.864 2.261
BW:DR -14.149 5.065 3.221 0.972 0.411 0.003 0.067 0.033 0.035

Notes: The first row of this table reports sensitivity analysis for the running example used in Cinelli and Hazlett
(2020); the last five rows report sensitivity analyses of the five models reported in Oster (2019, Table 3). Row 1:
effect of exposure to violence (VL) on attitudes towards peace (PC); Row 1: effect of exposure to violence (VL) on
attitudes towards peace (PC); Row 2: effect of maternal breastfeeding (BF) on child’s IQ score (IQ); Row 3: effect
of maternal drinking of alcohol during pregnancy (DR) on child’s IQ score (IQ); Row 4: effect of low birth weight
and preterm (LB) on child’s IQ score (IQ); Row 5: effect of maternal smoking during pregnancy (SM) on child’s
birth weight (BW); Row 6: effect of maternal drinking of alcohol during pregnancy (DR) on child’s birth weight
(BW). Est. = estimate; SE = standard error; RV and RVα are the robustness values discussed in section 2.4.1. For
a discussion of total R2-based comparison, see section 5.2.1; for a discussion of partial R2-based comparisons, see
section 5.2.2; for discussion of R2

Y ∼Z|D,X , see section 6. For row 1, the benchmark covariate is female (gender of the
individual); for rows 2–6, the benchmark covariate is years of schooling of mother. In all studies, kD = 1, kY = 1,
q = 1 (taking account of omitted variable bias can reduce treatment effect to zero) and α = 0.05 (where relevant,
95% confidence intervals are considered).

7.3 Two issues to keep in mind

The examples discussed above raise two issues that need to be noted. First, the overall conclusion of

sensitivity analysis about omitted variable bias depends on whether the researcher chooses to use a total

R2-based or a partial R2-based formal covariate benchmarking. We saw this issue come up in many cases,

e.g. row 1 (the impact of exposure to violence on the attitudes towards peace), row 2 (the impact of maternal

breastfeeding on child IQ score) and the extreme confounder analysis in row 5 (effect of smoking by mother

during pregnancy on child’s birth-weight) in table 1. Of course, this is not surprising. After all total R2-based

or a partial R2-based formal covariate benchmarking rely on different concepts of ‘relative importance’ of the

unobserved confounder and the observed covariates. In the former a ratio of total R2 is used; in the latter a

ratio of partial R2 is used. Kruskal and Majors (1989, p. 2) has pointed out, on the basis of a survey of many

studies, that different concepts of relative importance often affect conclusions of research, and that is what

we have found. The happy outcome is, of course, the one where both total R2-based or a partial R2-based

formal covariate benchmarking lead to the same conclusion. If the conclusions differ, then researchers will

need to justify using one or the other.
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Second, the researcher needs to be aware of the different interpretations or comparisons that are entailed

by the total R2-based versus the partial R2-based formal covariate benchmarking. As an example, let

us look at this issue of interpretation in the case of the study of the impact of exposure to violence on

the attitudes towards peace. If the researcher decided to use total R2-based covariate benchmarking, she

will interpret the parameters, kD and kY , as follows: kD (kY ) measures the relative explanatory power

in explaining variation in exposure to violence (or, attitude towards peace) of the residualized part of the

unobserved confounder, Z⊥X , in comparison to the covariate, ‘Female’. In this case, the residualized part

of the unobserved confounder is the part of Wealth that is not explained linearly by gender, age, whether

the individual was a farmer, herder, merchant or trader, the household size of the individual and whether or

not the individual voted in the past, and village fixed effects. Since the researcher has to reason about the

explanatory power of the residual, and not the unobserved covariate itself, she faces some difficulty. How

can we reason about the part of ‘Wealth’ that is not explained linearly by the observed covariates?

If, on the other hand, the researcher decides to use partial R2-based covariate benchmarking, she will

have to interpret kD and kY differently. In this case, kD (kY ) measures the ratio of two things: (a) the

increment in total R2 when the residualized unobserved confounder is added to a regression of exposure to

violence (or attitude towards peace) on all the observed covariates other than ‘Female,’ and (b) the increment

in total R2 when Female is added to a regression of exposure to violence (or attitude towards peace) on all

the observed covariates other than Female. The researcher faces the same difficulty as in the total R2-based

comparisons. She has to, once again, reason about the part of ‘Wealth’ that is not explained linearly by the

observed covariates. Is there a reliable and intuitive way to do this?

8 Conclusion and limitations

In an innovative and important contribution to the literature on omitted variable bias, Cinelli and Hazlett

(2020) have proposed a methodology for conducting sensitivity analysis using partial R2 measures. In

their proposed methodology, the key step of formal covariate benchmarking—to generate upper bounds for

measures of association between the unobserved confounder and the treatment (and outcome)—relies on the

assumption that either the unobserved confounder is orthogonal to the set of observed covariates or that

the analysis is conducted with the residualized part of the unobserved confounder. In this paper I have

explained the need for these orthogonality assumptions and clarified a critical step in the computation of the

sensitivity parameter R2
Y∼Z|D,X (partial R2 of the outcome with the unobserved confounder, conditioning
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on the treatment and the set of observed covariates).

I would like to conclude with some observations about the limitations of sensitivity analysis and the

inherent difficulty of dealing with omitted variable bias in the context of observational studies.

Recall that operationalizing the standard expression of omitted variable bias involves knowing the signs

of partial correlations of the unobserved confounder with the outcome and with the treatment. In many

situations, e.g. when the unobserved confounder is not a single but an index of multiple variables, it is

not possible to know these signs with any degree of certainty. In other cases, only knowing the signs are

not enough, and researchers need to reason about their magnitudes too. This provides a justification for

sensitivity analysis, i.e. knowing how strong the magnitudes of the partial correlations (or other similar

measures of association) need to be to overturn the results of observational studies.

Sensitivity analysis quantifies measures of association between the unobserved confounder with the out-

come, and with the treatment, that can be deemed problematic (in the sense that they can overturn the

results of observational studies); let us call these measures of association as robustness values (the parameters

RVq and RVq,α used in Cinelli and Hazlett (2020) are examples). Notice that the difficulty has not been

completely addressed. This is because, in specific studies, researchers will then need to form judgments about

whether the robustness values are too large or too small. How will they do so? After all the confounder is

unobserved. Formal and informal covariate benchmarking steps in to help.

Using information about measures of association between an observed covariate (or a set of observed

covariates) with the treatment and with the outcome, researchers try to find bounds for the measures of

association between the unobserved confounder with the outcome and with the treatment. Notice that the

difficulty has still not been fully resolved. This is because researchers now need to reason about the explana-

tory power of the unobserved confounder and compare that to the explanatory power of the benchmark

covariate (the parameters kD and kY used in Cinelli and Hazlett (2020) are examples of parameters whose

construction requires researchers to make such comparisons). Difficult as this is, it turns out that even this

is not sufficient.

In fact, we need to make these comparisons of explanatory powers not with respect to the unobserved

confounder but rather with respect to the residualized part of the unobserved confounder, i.e. the part of

the unobserved confounder that is not linearly explained by the set of observed covariates. It seems far from

straightforward how one can reliably reason about the residualized part of the unobserved confounder and

assess its explanatory power in comparison to some other covariate (or set of covariates) because, first, the

confounder is unobserved, and second, it is not easy to pin down the part of the confounder that remains
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once we subtract a linear function of the set of observed covariates.
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Appendix A Proofs

A.1 Proof of Lemma 1

Proof. Using results on the inverse of partitioned matrices, it can be shown (Rao et al., 2008, page 323) that

PW = PX +
(I − PX)ZZ ′ (I − PX)

Z ′ (I − PX)Z
. (41)

32



Using the definition of Z⊥X , we see that

(I − PX)ZZ ′ (I − PX)

Z ′ (I − PX) z
= PZ⊥X , (42)

where I use the fact that (I − PX) is also a projection matrix (onto the orthogonal complement of the column

space of X) and hence symmetric and idempotent.

A.2 Proof of Theorem 1

Proof. Using lemma 1, we have

PWM0PW = PWM0M0PW =
(
M0PX +M0PZ⊥X

)′ (
M0PX +M0PZ⊥X

)
.

This becomes

PWM0PW = PXM0PX + PZ⊥XM0PZ⊥X (43)

because the cross product terms on the extreme right hand side is

PXM0M0PZ⊥X = PXM0PZ⊥X = PXPZ⊥X = 0.

Note that the penultimate equality is true because

M0PZ⊥X = M0Z⊥X
[
(Z⊥X)′Z⊥X

]−1
(Z⊥X)′

= Z⊥X
[
(Z⊥X)′Z⊥X

]−1
(Z⊥X)′

= PZ⊥X

where, because Z⊥X is a regression residual vector, we have M0Z⊥X = Z⊥X (Greene, 2012, page 40). The

final equality is true because

PXPZ⊥X = X (X ′X)
−1

X ′Z⊥X
[
(Z⊥X)′Z⊥X

]−1
(Z⊥X)′ = 0,

where I have used X ′Z⊥X = 0 (i.e. residuals are orthogonal to the regressors).

I pre-multiply (43) by Y ′, then post-multiply the result by Y , and finally divide through by Y ′M0Y to
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get

Y ′PWM0PWY

Y ′M0Y
=

Y ′PXM0PXY

Y ′M0Y
+

Y ′PZ⊥XM0PZ⊥XY

Y ′M0Y
.

Using (12) and (13), we get

R2
Y∼X+Z −R2

Y∼X =
Y ′PZ⊥XM0PZ⊥XY

Y ′M0Y
.

Since the right hand side is R2
Y∼Z⊥X , we get (17).

We proceed by subtracting R2
Y∼Z from both sides of the above equality. Using (14), we get:

R2
Y∼X+Z −R2

Y∼X −R2
Y∼Z =

Y ′PZ⊥XM0PZ⊥XY − Y ′PZM
0PZY

Y ′M0Y
(44)

Now, using the definition of ηX,Y,Z in (19), we see that the RHS of (44) is ηX,Y,Z . Hence, we get (18):

R2
Y∼X+Z −R2

Y∼X −R2
Y∼Z = ηX,Y,Z .

A.3 Proof of Theorem 2

Proof. We know
∣∣RD∼Z|X−j

∣∣ = √
kD
∣∣RD∼Xj |X−j

∣∣. Now using the recursive definition of partial correlations

(Cinelli and Hazlett, 2020, equation 16, page 50), we have

∣∣RD∼Z|X
∣∣ = ∣∣RD∼Z|X−j

−RD∼Xj |X−j
RZ∼Xj |X−j

∣∣√
1−R2

D∼Xj |X−j

√
1−R2

Z∼Xj |X−j

≥
∣∣RD∼Z|X−j

∣∣− ∣∣RD∼Xj |X−j
RZ∼Xj |X−j

∣∣√
1−R2

D∼Xj |X−j

√
1−R2

Z∼Xj |X−j

=

√
kD
∣∣RD∼Xj |X−j

∣∣− ∣∣RD∼Xj |X−j

∣∣ ∣∣RZ∼Xj |X−j

∣∣√
1−R2

D∼Xj |X−j

√
1−R2

Z∼Xj |X−j

=

∣∣RD∼Xj |X−j

∣∣ (√kD −
∣∣RZ∼Xj |X−j

∣∣)√
1−R2

D∼Xj |X−j

√
1−R2

Z∼Xj |X−j

where the second step uses the well-known result for real numbers: |a − b| ≥ |a| − |b|. Hence, taking the

square of both sides of the above inequality, using the definition of kD in (24), and noting that

f2
D∼Xj |X−j

=
R2

D∼Xj |X−j

1−R2
D∼Xj |X−j
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we get

R2
D∼Z|X ≥ αDf2

D∼Xj |X−j
(45)

where

αD =

(√
kD −

∣∣RZ∼Xj |X−j

∣∣)2
1−R2

Z∼Xj |X−j

≥ 0.

A similar argument shows that

R2
Y∼Z|X ≥ αY f

2
Y∼Xj |X−j

(46)

where

αY =

(√
kY −

∣∣RZ∼Xj |X−j

∣∣)2
1−R2

Z∼Xj |X−j

≥ 0.

A.4 Proof of Proposition 1

Proof. For any two real numbers, x, y, sign (x) = sign (y) is equivalent to |x + y| = |x| + |y|. To see

this, note (x+ y)
2 − (|x|+ |y|)2 = 2 (xy − |xy|). Thus, (x+ y)

2
= (|x|+ |y|)2 iff xy = |xy| iff xy > 0

iff sign (x) = sign (y). Now let x = a − bc and y = bc to get the result: sign (a− bc) = sign (bc) iff

|a− bc| = |a| − |bc|.

A.5 Proof of claims of section 6.2

Case 1: Sign of estimated and true treatment effect are same.

In this case, we have

b̂ias

τ̂res
< 0. (47)

To see this consider two possibilities: τ̂ > 0 or τ̂ < 0. If τ̂ > 0, then τ̂res > τ̂ > 0. Hence, using (5), we see

that b̂ias > 0. Since the signs of the estimated and true treatment effect are same, τ̂res > 0. Hence, b̂ias
τ̂res

> 0.

On the other hand, if τ̂ ≤ 0, then τ̂res < τ̂ < 0, so that b̂ias < 0. Since the signs of the estimated and true

treatment effect are same, τ̂res < 0. Hence, b̂ias
τ̂res

> 0.

Case 2: Sign of estimated and true treatment effect are opposite.
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In this case, we have

b̂ias

τ̂res
> 0. (48)

To see this consider, once again, two possibilities: τ̂ > 0 or τ̂ < 0. If τ̂ > 0, then τ̂res < −τ̂ < 0 < τ̂ . Hence,

b̂ias < 0, so that b̂ias
τ̂res

> 0. On the other hand, if τ̂ < 0, then τ̂res > −τ̂ > 0 > τ̂ , so that b̂ias > 0. Hence,

b̂ias
τ̂res

> 0.
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