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Covariate Benchmarking for Sensitivity Analysis when the

Confounder is Correlated with Observed Covariates

Deepankar Basu∗

May 20, 2023

Abstract

Covariate benchmarking is an important part of sensitivity analysis about omitted variable bias and
can be used to bound the strength of the unobserved confounder using information and judgments about
observed covariates. It is common to carry out formal covariate benchmarking under the assumption that
the unobserved confounder is orthogonal to the observed covariates. This assumption is restrictive and
will be difficult to defended in most empirical analyses. In this paper I show that relaxing the orthogo-
nality assumption leads to a breakdown of a recently proposed innovative formal covariate benchmarking
methodology.
JEL Codes: C01.
Keywords: confounding; omitted variable bias; sensitivity analysis.

1 Introduction

Omitted variable bias is a serious problem in observational studies (De Luca et al., 2018; Oster, 2019; De Luca

et al., 2019; Basu, 2020; Cinelli and Hazlett, 2020). Developing methodologies to conduct sensitivity analysis

related to omitted variable bias is an important area of research in statistics and econometrics. Among recent

proposal for sensitivity analysis, a most innovative and promising approach has been presented by Cinelli and

Hazlett (2020). The key novelty in the proposal of Cinelli and Hazlett (2020) was to rewrite the traditional

omitted variable bias expression using partial R2.1 This opened up a fruitful way to conduct sensitivity

analysis about omitted variable bias using a three-step procedure.

In the first step, the researcher computes ‘robustness values’ of two parameters, which are understood as

the magnitude of the minimum strength of association (measured with the partial R2) that an unobserved

confounder would need to have, both with the treatment and with the outcome, to change the research

∗Department of Economics, University of Massachusetts Amherst. Email: dbasu@econs.umass.edu.
1Partial R2 measures the strength of association between two random variables conditional on a set of other random variables.

For instance, the partial R2 of Z and Y conditional on the set of random variables X is defined as follows (Cinelli and Hazlett,
2020, equation 17, page 51): R2

Y ∼Z|X = (R2
Y ∼Z+X − R2

Y ∼X)/(1 − R2
Y ∼X), with the implicit assumption that R2

Y ∼X < 1.

Therefore, the partial R2 is the increment in the total R2 when Z is added as a covariate to the regression of Y on X, normalized
by the distance of the total R2 of the regression of Y on X from 1. This immediately shows that the partial R2 must lie between
0 and 1.
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conclusions. The robustness values are of limited use because the confounder is not observed. Hence, it is

difficult for a researcher to judge whether the robustness values are relevant for her specific study.

This is where formal covariate benchmarking can prove useful, and that is precisely the second step of

the sensitivity analysis proposed by Cinelli and Hazlett (2020)—the most difficult and crucial part. In this

step, the researcher uses information about an observed covariate (or set of covariates) to compute upper

bounds for the strength of association, measured once again using the partial R2, between the unobserved

confounder and treatment (and outcome).2

In the final and third step, the researcher compares the magnitudes of the robustness values computed

in the first step with the upper bounds computed in the second step. If the upper bounds are lower than the

robustness values, then the researcher is able to conclude that her conclusions are robust to omitted variable

bias.

In this elegant methodology, the crucial step of covariate benchmarking relies on a rather restrictive

assumption: the unobserved confounder is assumed to be orthogonal to the observed covariates. This as-

sumption is difficult to defend in most observational studies, where all covariates (observed and unobserved)

are likely to be correlated with each other. Hence, it is necessary to investigate the implications of relaxing

this orthogonality assumption.

The first contribution of this paper is to show that once we relax this orthogonality assumption, the

benchmarking analysis in Cinelli and Hazlett (2020, section 4.4, and appendix B) breaks down. This is

because upper bounds for the relevant measures of association between the unobserved confounder and

treatment (and outcome) cannot be generated without additional information. Hence, the second step of the

sensitivity analysis is undermined. In deriving my results, I develop a result about the decomposition of the

R2 in a linear regression (theorem 1). To the best of my knowledge, this is a novel result—and constitutes

the second contribution of this paper.

Before concluding this introductory section, I need to highlight one technical issue. The second step of

the sensitivity analysis, briefly discussed above, needs to generate upper bounds for two parameters: R2
D∼Z|X

(partial R2 of the confounder, Z, with the treatment, D, conditional on the observed covariates, X) and

R2
Y∼Z|D,X (partial R2 of the confounder, Z, with the outcome, Y , conditional on the observed covariates,

X, and the treatment, D). For my argument, it suffices to show that upper bounds cannot be generated for

at least one of these two unknown parameters, R2
D∼Z|X and R2

Y∼Z|D,X . For the sake of brevity, I will focus

on R2
D∼Z|X , but the argument could equally well be applied to R2

Y∼Z|D,X .

2Cinelli and Hazlett (2020, section 4.4) argue persuasively that informal covariate benchmarking can often be misleading
because it does not solve the correct identification problem.
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The rest of the paper is organized as follows: in section 2, I present the basic set up and the key

expression for bias; in section 3, I discuss the implications of relaxing the orthogonality assumption for

covariate benchmarking with the total R2; in section 4, I discuss the implications of relaxing the orthogonality

assumption for covariate benchmarking with the partial R2; I conclude in section 5. Proofs are collected

in the appendix. Throughout this paper, I will follow the notation used in Cinelli and Hazlett (2020) to

facilitate easy comparison.

2 The Setup

2.1 Expression of relative bias

Consider the linear regression of an outcome on a treatment, controlling for a set of covariates given by X

and Z,

Y = τ̂D +Xβ̂ + γ̂Z + ε̂full (1)

where Y is the n×1 vector of the outcome (dependent variable), X is the n×k matrix of observed covariates,

including a constant, Z is the n× 1 (unobserved) confounder vector, and all hat-quantities denote estimated

(sample, and not population) quantities. Since Z is unobserved, the researcher cannot estimate (1) but is

forced to estimate the following restricted regression

Y = τ̂resD +Xβ̂res + ε̂res (2)

Letting b̂ias = τ̂res − τ̂ denote the bias of the treatment effect arising from the restricted model, Cinelli and

Hazlett (2020, page 48) show, by combining the Frisch-Waugh-Lovell theorem and definitions of partial R2,

that ∣∣∣b̂ias∣∣∣ = se (τ̂)

√√√√df×R2
Y∼D,X ×R2

D∼Z|X

1−R2
D∼Z|X

(3)

where ‘se’ denotes standard error, ‘df’ denotes the degrees of freedom of the restricted regression in (2),

R2
Y∼D,X denotes the total R2 from a regression of Y on D and X, R2

D∼Z|X refers to the partial R2 from

a regression of D on Z conditioning on X and we assume that 0 ≤ R2
D∼Z|X < 1 (to make sure we do not

attempt to divide by zero). The expression for bias can be further manipulated to derive the expression for
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‘relative bias’ (Cinelli and Hazlett, 2020, page 49)

∣∣∣∣∣ b̂iasτ̂res

∣∣∣∣∣ =
∣∣RY∼Z|D,X × fD∼Z|X

∣∣∣∣fY∼D|X
∣∣ (4)

where f2
Y∼D|X = R2

Y∼D|X/(1−R2
Y∼D|X) is Cohen’s f-statistic, and fD∼Z|X is defined accordingly.3

2.2 Importance of relative bias for sensitivity analysis

What is the importance of relative bias for sensitivity analysis? Relative bias is crucial because it helps a

researcher address the question whether taking account of omitted variable bias can overturn the conclusions

of an observational study. For, if relative bias is equal to or larger than 1, then the magnitude of the bias

can large enough to nullify any nonzero treatment effect that might have been estimated by a researcher,

i.e. she would not be able to rule out the possibility that taking account of omitted variable bias would

make the estimated treatment effect zero. Sensitivity analysis will, therefore, boil down to seeing if relative

bias is larger or smaller than unity. Hence, to investigate how sensitive an estimate of a treatment effect is

to omitted variable bias, a researcher should analyze the conditions under which relative bias might equal

or exceed unity. Cinelli and Hazlett (2020) propose a three-step sensitivity analysis for this purpose that I

explain next.

2.3 Sensitivity analysis

2.3.1 Step 1: Compute robustness values

The first step of the sensitivity analysis is to compute two ‘robustness values’. The first robustness value is

RVq, which asks us to answer the following question: If the partial R2 of the confounder with the treatment,

R2
D∼Z|X and of the confounder with the outcome R2

Y∼Z|D,X were equal in magnitude, how strong would

this partial R2 need to be to reduce the estimated treatment effect by 100 × q% and thereby open up the

possibility that the treatment effect is zero when q = 1? Since q = 1 is the most commonly used and relevant,

I will focus on this case. Note that RV1 is denoted simply as RV .

The second robustness value is RVq,α, which asks us to answer the following question: If the partial R2

of the confounder with the treatment, R2
D∼Z|X and of the confounder with the outcome R2

Y∼Z|D,X were

equal in magnitude, how strong would this partial R2 need to be to make the adjusted t-test not reject the

3In this paper, I will only deal with the case of a single confounder. The case of multiple confounders does not need a
separate treatment because the bias with a single confounder is an upper bound for the bias with multiple confounders (Cinelli
and Hazlett, 2020, section 4.5).
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null hypothesis that the true treatment effect is (1− q)|τ̂ | at the α level? Thus, RVq,α allows a researcher to

see whether the estimated treatment effect is zero, after taking account of the uncertainty associated with

estimation. Hence, it is superior to RVq. My focus will be on the case with q = 1, where RVq,α will refer to

the null hypothesis that the true treatment effect is zero. For notational simplicity, RV1,α is denoted simply

as RVα.

2.3.2 Step 2: Compute bounds using covariate benchmarking

The second step of the sensitivity analysis is the difficult and crucial step of formal covariate benchmarking.

Arguably, the most difficult part of a sensitivity analysis is taking the description of a confounder

that would be problematic from the formal results [e.g., the robustness values], and reasoning

about whether a confounder with such strength plausibly exists in one’s study, given its design

and the investigator’s contextual knowledge. (Cinelli and Hazlett, 2020, page 13).

In this step, the researcher needs to investigate the question whether she can reasonably rule out the possi-

bility that R2
D∼Z|X and R2

Y∼Z|D,X are higher than the robustness values. Since these two partial R2 values

cannot be computed—because Z is unobserved—she must use information about observed covariates to find

upper bounds for them.

At this point, Cinelli and Hazlett (2020) introduce two parameters, kD and kY , to assist in the process.

The first parameter, kD, captures the relative strength of the confounder in explaining variation in the

treatment as compared to a chosen, observed covariate (or set of covariates); the second parameter, kY ,

captures the corresponding relative strength of the unobserved confounder for explaining variation in the

outcome. Both parameters can be defined with and without conditioning on observed covariates and the

treatment.

These parameters capture the judgment of the researcher based on her knowledge of the context of the

research. Once the values of kD and kY have been chosen, Cinelli and Hazlett (2020) show that we can

generate upper bounds for R2
D∼Z|X and R2

Y∼Z|D,X as functions of known quantities and kD (or kY ).

2.3.3 Step 3: Compare robustness values with bounds

In the third and final step, the researcher needs to compare the magnitudes of R2
D∼Z|X and R2

Y∼Z|D,X , or

their upper bounds, computed in the second step with the magnitudes of the robustness values computed

in the first step. This comparison can then allow the researcher to assess the robustness of the results to

omitted variable bias. In particular:
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1. If

max
{
R2

D∼Z|X , R2
Y∼Z|D,X

}
< RV

then the researcher can conclude that the estimate of the treatment effect is robust to omitted variable

bias;

2. If

max
{
R2

D∼Z|X , R2
Y∼Z|D,X

}
< RVα

then the researcher can conclude that the bias-adjusted t-test of the null hypothesis that the treatment

effect is zero can be rejected at the α% level of significance;

3. If

R2
D∼Z|X < R2

D∼X

then the researcher can conclude that the “worst case confounder” (a confounder that explains all the

residual variance in the outcome, i.e. R2
Y∼Z|D,X = 1) would not eliminate the the estimated treatment

effect.

2.4 The role of the orthogonality assumption

The crucial part of the whole sensitivity analysis is the formal benchmarking that generates upper bounds for

both R2
D∼Z|X and R2

Y∼Z|D,X . In Cinelli and Hazlett (2020, section 4.4), these bounds have been generated

under the assumption that the confounder is uncorrelated with the observed covariates, i.e. Z ⊥ X. This

seems to be a restrictive assumption. In most, if not all, observational studies, the unobserved confounder is

likely to be correlated with included regressors. Hence, we need to ask: what are the implications of relaxing

the orthogonality assumption? In the rest of the paper, I will show that the orthogonality assumption is not

innocuous. Once we relax that assumption, the covariate benchmarking methodology breaks down.

3 Total R2-based covariate benchmarking

I will first investigate the implications of relaxing the assumption about the orthogonality of the confounder,

X, and the included covariates, X, for the total R2 approach (Cinelli and Hazlett, 2020, appendix B.1).

6



3.1 A result about the decomposition of R2

Consider the following three regressions estimated by ordinary least squares (OLS),

Y on X,Z (5)

Y on X (6)

Y on Z (7)

Let R2
Y∼X+Z , R

2
Y∼X , and R2

Y∼Z , denote the total R-squared (coefficient of determination) for the regressions

in (5), (6), and (7), respectively; and let W = (X : Z) denote the n× (k + 1) augmented matrix.

Using the definition of the R-squared (Greene, 2012, page 41), we have

R2
Y∼X+Z =

(PWY )
′
M0 (PWY )

Y ′M0Y
=

Y ′PWM0PWY

Y ′M0Y
(8)

R2
Y∼X =

(PXY )
′
M0 (PXY )

Y ′M0Y
=

Y ′PXM0PXY

Y ′M0Y
(9)

R2
Y∼Z =

(PZY )
′
M0 (PZY )

Y ′M0Y
=

Y ′PZM
0PZY

Y ′M0Y
(10)

where PW , PX , PZ denote n×n projection matrices onto the column spaces of W,X,Z, respectively, so that,

for instance,

PW = W (W ′W )
−1

W ′,

and M0 is the n×n matrix that generates deviations from means when pre-multiplied to a n vector (Greene,

2012, page 978–79), i.e.,

M0 =

[
I − 1

n
ii′
]
,

where I is the identity matrix of dimension n and i denotes a column vector of 1s. Note that projection

matrices are symmetric and idempotent. The first property allowed me to write the second equality in (8),

(9), and (10), respectively. Note that M0 is also symmetric and idempotent (Greene, 2012, page 978–79).

Theorem 1. (Decomposition of R2). Let Z⊥X = Z −PXZ = (I − PX)Z denote the OLS residual obtained

from a regression of Z on X. Consider the regression of

Y on Z⊥X , (11)
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and denote by

ηX,Y,Z = R2
Y∼Z⊥X −R2

Y∼Z , (12)

the relative magnitudes of the powers (in the sense of R2) of Z⊥X and Z in explaining variations in Y .

Then,

R2
Y∼X+Z −R2

Y∼X −R2
Y∼Z = ηX,Y,Z . (13)

The main implication of theorem 1 is to show that the sign of R2
Y∼X+Z−R2

Y∼X−R2
Y∼Z is indeterminate.

This is because ηX,Y,Z , which is the difference of the R2 from two separate regressions, the first a regression

of Y on Z⊥X , and the second a regression of Y on Z, cannot be signed. Without more information about the

relationship between X and Z, it is not possible to assert which of these two R2 are greater in magnitude.

One such special, and rather restrictive, case has been used to derive the first equalities in equations (51)

and (52) in Cinelli and Hazlett (2020), and is given in the next result.

Corollary 1. If Z ⊥ X, then R2
Y∼X+Z −R2

Y∼X −R2
Y∼Z = 0.

With the results of theorem 1 and corollary 1 in place, I am now ready to revisit the benchmarking

exercise using total R2 that was presented in Cinelli and Hazlett (2020, appendix B.1).

3.2 Breakdown of bounding exercise

Our primary task is to generate an upper bound for R2
D∼Z|X . Following Cinelli and Hazlett (2020, ap-

pendix B.1), let us define

kD :=
R2

D∼Z

R2
D∼Xj

(14)

to capture the relative importance of the unobserved confounder in explaining variation in treatment assign-

ment, compared to the chosen, observed covariate, Xj , where relative importance is judged in terms of the

total R2, and we assume that R2
D∼Xj

> 0.

Then, using the definition of partial R2 (Cinelli and Hazlett, 2020, equation 17, page 51), the result in

Theorem 1, and the definition of kD, we get,

R2
D∼Z|X =

R2
D∼Z+X −R2

D∼X

1−R2
D∼X

=
kDR2

D∼Xj

1−R2
D∼X

+
ηX,Y,Z

1−R2
D∼X

(15)

According to the result in Theorem 1, the sign of ηX,Y,Z is indeterminate. This implies that the exact
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magnitude of R2
D∼Z|X in (15) is indeterminate too. Hence, equation (22) in Cinelli and Hazlett (2020,

appendix B.1) does not hold—there is an extra term, the second term in (15), whose sign is indeterminate.

Thus, the bounding exercise in terms of total R2 discussed in appendix B.1 in Cinelli and Hazlett (2020)

fails, unless more information is used. We need to consider three cases.

Case 1. Suppose Z ⊥ X. In this case, ηX,Y,Z = 0, as shown in corollary 1, and we can pin down the

magnitude of R2
D∼Z|X and R2

Y∼Z|X exactly. This is the setting in which the proposal of Cinelli and Hazlett

(2020, appendix B.1) is located. Since the orthogonality assumption might be difficult to defend in actual

observational studies, this limits the relevance of this setting.

Case 2. Suppose the unobserved confounder, Z, has strictly more power (in the sense of R2) in explaining

the variations in the outcome variable, Y , than the part of Z that is orthogonal to the set of included

covariates, X. In this case, using (12) we can see that ηX,Y,Z < 0, and so using (15) we have an upper bound

for R2
D∼Z|X :

R2
D∼Z|X <

kDR2
D∼Xj

1−R2
D∼X

(16)

The bounding exercise proposed in Cinelli and Hazlett (2020, appendix B.1) works, though the bound is

not sharp. Moreover, it is difficult to see how researchers can argue plausibly about the relative explanatory

powers of Z and Z⊥X in explaining variation in Y .

Case 3. Suppose the unobserved confounder, Z, has strictly less power (in the sense of R2) in explaining

variations in the outcome variable, Y , than the part of Z that is orthogonal to the set of included covariates,

X. In this case, using (12) we can see that ηX,Y,Z > 0, and so we have a lower, and not an upper, bound for

R2
D∼Z|X :

R2
D∼Z|X >

kDR2
D∼Xj

1−R2
D∼X

(17)

Hence, in this case, the bounding exercise proposed in Cinelli and Hazlett (2020, appendix B.1) does not

work.

Let me summarize my findings about the efficacy of the bounding exercise using comparisons of total

R2: if a researcher can plausibly argue either that Z ⊥ X or that Z⊥X has more power—in the sense of

R2—than Z in explaining the variation in Y , then the bounding exercise using the total R2 proposed in

Cinelli and Hazlett (2020, appendix B.1) can be used; if not, then the bounding exercise is not feasible.
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4 Partial R2-based covariate benchmarking

I will now investigate the implications of relaxing the assumption about the orthogonality of the confounder,

X, and the included covariates, X, for the partial R2 approach to covariate benchmarking proposed in Cinelli

and Hazlett (2020, appendix B.2). I will limit my analysis to the case where the treatment variable, D, is

not used for conditioning. The analysis could equally well apply to the case where D is included in the

conditioning set.

4.1 Single covariate used for benchmarking

We would like, as in the total R2 case, to generate an upper bound for R2
D∼Z|X . Suppose there are j covari-

ates, {X1, X2, . . . , Xj}, and the researcher wishes to use the j-th observed covariate, Xj , for benchmarking.

Let X−j refer to the set of observed covariates that is not used for benchmarking, and define

kD :=
R2

D∼Z|X−j

R2
D∼Xj |X−j

(18)

to capture the relative importance of the unobserved confounder in explaining variation in treatment assign-

ment, compared to the observed covariate, Xj , conditional on X−j , where, as before, relative importance is

judged using the total R2, and we assume that R2
D∼Xj |X−j

> 0.

Theorem 2. Suppose 0 ≤ R2
Z∼Xj |X−j

< 1 and 0 ≤ R2
D∼Xj |X−j

< 1. Then, we have the following lower

bound for R2
D∼Z|X :

R2
D∼Z|X ≥ αkDf2

D∼Xj |X−j
, (19)

where

α =

(
1− |RZ∼Xj |X−j

|
)2

1−R2
Z∼Xj |X−j

and we have 0 ≤ α ≤ 1.

The implication of theorem 2 is particularly damaging for sensitivity analysis because here we have a

lower bound for R2
D∼Z|X . For the sensitivity analysis we instead need an upper bound. Theorem 2 shows

that once we give up the assumption about the orthogonality of Z and X, we are no longer able to generate

an upper bound for R2
D∼Z|X . We end up with a lower bound. Hence, the sensitivity analysis proposed in

Cinelli and Hazlett (2020, section 4.4, and appendix B.2) using comparisons of partial R2 will not work

unless we can use additional information to generate an upper bound for R2
D∼Z|X .
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4.2 Multiple covariates used for benchmarking

If a researcher wishes to use multiple observed covariates for benchmarking, then she will have to face, in

addition to the problem of not being able to generate an upper bound, an infeasible bounding exercise. To

see this, one only needs to note that the expression on the RHS of equation (67) in Cinelli and Hazlett

(2020, appendix B.2) cannot arise without the assumption that Z is orthogonal to X. Each step of a j-step

recursive process that leads to equation (67) will have additional terms, first and foremost on the numerator,

that conveniently become zero when Z ⊥ X, as I now show.

Let X(1,2,...,j) denote the set of covariates; and let X−(1,2,...,j) denote the complement of that set. The

first step of the recursion starts by using the recursive definition for partial correlations (Cinelli and Hazlett,

2020, equation 16, page 50) to get

RD∼Z|X =
RD∼Z|X−(1)

−RD∼X(1)|X−(1)
RZ∼X(1)|X−(1)√

1−R2
D∼X(1)|X−(1)

√
1−R2

Z∼X(1)|X−(1)

(20)

If Z ⊥ X, then R2
Z∼X(1)|X−(1)

= 0. Hence, the second term on the numerator becomes zero and we get

RD∼Z|X =
RD∼Z|X−(1)√

1−R2
D∼X(1)|X−(1)

(21)

We can now move to the next step of the recursive process by applying the recursive formula for partial R2

to the numerator of (21):

RD∼Z|X−(1)
=

RD∼Z|X−(1,2)
−RD∼X(2)|X−(1,2)

RZ∼X(2)|X−(1,2)√
1−R2

D∼X(2)|X−(1,2)

√
1−R2

Z∼X(2)|X−(1,2)

(22)

If Z ⊥ X, then R2
Z∼X(2)|X−(1,2)

= 0. Hence, the second term on the numerator is zero, once again, and we

get

RD∼Z|X−(1)
=

RD∼Z|X−(1,2)√
1−R2

D∼X(2)|X−(1,2)

(23)

Plugging (23) into (21), we get

RD∼Z|X =
RD∼Z|X−(1,2)√

1−R2
D∼X(1)|X−(1)

√
1−R2

D∼X(2)|X−(1,2)

(24)
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Repeating this process j times, we get

RD∼Z|X =
RD∼Z|X−(1,2,...,j)√

1−R2
D∼X(1)|X−(1)

√
1−R2

D∼X(2)|X−(1,2)
· · ·

√
1−R2

D∼X(j)|X−(1,2,...,j)

(25)

which is equation (67) in Cinelli and Hazlett (2020, appendix). Defining

kD :=
R2

D∼Z|X−(1,2,...,j)

R2
D∼X(1,2...,j)|X−(1,2,...,j)

(26)

as the parameter to capture the relative strength of the unobserved confounder, Cinelli and Hazlett (2020)

then proceeds with the bounding exercise.

The whole argument hinges crucially on the orthogonality of Z and X. If Z ̸⊥ X, then the very first step

of the argument fails because we cannot get to (21) from (20). Instead, plugging (22) into (20), we get

RD∼Z|X =
RD∼Z|X−(1,2)√

1−R2
D∼X(2)|X−(1)

√
1−R2

Z∼X(2)|X−(1,2)

√
1−R2

D∼X(1)|X−(1)

√
1−R2

Z∼X(1)|X−(1)

−
RD∼X(2)|X−(1,2)

RZ∼X(2)|X−(1,2)√
1−R2

D∼X(2)|X−(1)

√
1−R2

Z∼X(2)|X−(1,2)

√
1−R2

D∼X(1)|X−(1)

√
1−R2

Z∼X(1)|X−(1)

−
RD∼X(1)|X−(1)

RZ∼X(1)|X−(1)√
1−R2

D∼X(1)|X−(1)

√
1−R2

Z∼X(1)|X−(1)

If one wished to use covariate benchmarking to replace the terms involving Z in the above expression, one

would run into the problem of a proliferation of parameters. Moreover, carrying out the analysis to the

next step of the recursion quickly becomes unwieldy. In essence, once we relax the assumption that Z is

orthogonal to X, the benchmarking exercise using multiple covariates becomes infeasible.

5 Conclusion

In an innovative and important contribution to the literature on omitted variable bias, Cinelli and Hazlett

(2020) have proposed a methodology for conducting sensitivity analysis using partial R2 measures. In their

proposed methodology, the key step of covariate benchmarking to generate upper bounds for measures of

association between the unobserved confounder and the treatment (and outcome) relies on the assumption

that the unobserved confounder is orthogonal to the set of observed covariates. This is a restrictive assump-

tion and will be difficult to defend in most observational studies. In this paper I have demonstrated that once
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we relax the orthogonality assumption, covariate benchmarking for sensitivity analysis to omitted variable

bias as proposed in Cinelli and Hazlett (2020) breaks down.

What is the implication of the theoretical findings of this paper? This paper is not trying to undermine

the overall methodology proposed in Cinelli and Hazlett (2020). Rather it tries to show a weakness in a key

step of the overall argument so that researchers can address it and strengthen the overall methodology. In

particular, it needs to be highlighted that the first step of the sensitivity analysis proposed in Cinelli and

Hazlett (2020), whereby omitted variable bias is related to measures of association between the unobserved

confounder and the treatment (and outcome) using partial R2, is extremely innovative and useful. It is

a superior approach not only in comparison with informal covariate benchmarking but also in comparison

to the proposal in Oster (2019) that relies on a parameter, δ, that is difficult to interpret. The partial

R2 formulation takes the long-standing discussion on omitted variable bias forward. But the second step of

covariate benchmarking is weak, as demonstrated by the theoretical results reported in this paper. Therefore,

it would seem that finding alternative methods of formal covariate benchmarking would be one of the fruitful

avenues for future research in sensitivity analysis of omitted variable bias.
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Appendix A Proofs

A.1 Proof of Theorem 1

I will need a result on the decomposition of projection matrices that is given in Rao et al. (2008, page 323).

Lemma 1. Let Z⊥X = Z −PXZ = (I − PX)Z denote the OLS residual obtained from a regression of Z on

X. Then,

PW = PX + PZ⊥X . (27)

Proof. Using results on the inverse of partitioned matrices, it can be shown (Rao et al., 2008, page 323) that

PW = PX +
(I − PX)ZZ ′ (I − PX)

Z ′ (I − PX)Z
. (28)

Using the definition of Z⊥X , we see that

(I − PX)ZZ ′ (I − PX)

Z ′ (I − PX) z
= PZ⊥X , (29)

where I use the fact that (I − PX) is also a projection matrix (onto the orthogonal complement of the column

space of X) and hence symmetric and idempotent.

The proof of theorem 1 now follows.

Proof. Using lemma 1, we have

PWM0PW = PWM0M0PW =
(
M0PX +M0PZ⊥X

)′ (
M0PX +M0PZ⊥X

)
.

This becomes

PWM0PW = PXM0PX + PZ⊥XM0PZ⊥X (30)
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because the cross product terms on the extreme right hand side is

PXM0M0PZ⊥X = PXM0PZ⊥X = PXPZ⊥X = 0.

Note that the penultimate equality is true because

M0PZ⊥X = M0Z⊥X
[
(Z⊥X)′Z⊥X

]−1
(Z⊥X)′

= Z⊥X
[
(Z⊥X)′Z⊥X

]−1
(Z⊥X)′

= PZ⊥X

where, because Z⊥X is a regression residual vector, we have M0Z⊥X = Z⊥X (Greene, 2012, page 40). The

final equality is true because

PXPZ⊥X = X (X ′X)
−1

X ′Z⊥X
[
(Z⊥X)′Z⊥X

]−1
(Z⊥X)′ = 0,

where I have used X ′Z⊥X = 0 (i.e. residuals are orthogonal to the regressors).

I pre-multiply (30) by Y ′, then post-multiply the result by Y , and finally divide through by Y ′M0Y to

get

Y ′PWM0PWY

Y ′M0Y
=

Y ′PXM0PXY

Y ′M0Y
+

Y ′PZ⊥XM0PZ⊥XY

Y ′M0Y
.

Using (8) and (9), we get

R2
Y∼X+Z −R2

Y∼X =
Y ′PZ⊥XM0PZ⊥XY

Y ′M0Y
.

Subtracting R2
Y∼Z from both sides and using (10), we get

R2
Y∼X+Z −R2

Y∼X −R2
Y∼Z =

Y ′PZ⊥XM0PZ⊥XY − Y ′PZM
0PZY

Y ′M0Y
(31)

Now, using the definition of ηX,Y,Z in (12), we see that the RHS of (31) is ηX,Y,Z . Hence, we get

R2
Y∼X+Z −R2

Y∼X −R2
Y∼Z = ηX,Y,Z .
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A.2 Proof of Corollary 1

Proof. If Z ⊥ X, then Z⊥X = Z. Hence PZ⊥X = PZ . Hence, the RHS of (31) becomes

Y ′PZ⊥XM0PZ⊥XY − Y ′PZM
0PZY

Y ′M0Y
=

Y ′PZM
0PZY − Y ′PZM

0PZY

Y ′M0Y
= 0;

so, we have

R2
Y∼X+Z −R2

Y∼X −R2
Y∼Z = 0.

A.3 Proof of Theorem 2

Proof. We know
∣∣RD∼Z|X−j

∣∣ = √
kD

∣∣RD∼Xj |X−j

∣∣. Now using the recursive definition of partial correlations

(Cinelli and Hazlett, 2020, equation 16, page 50), we have

∣∣RD∼Z|X
∣∣ = ∣∣RD∼Z|X−j

−RD∼Xj |X−j
RZ∼Xj |X−j

∣∣√
1−R2

D∼Xj |X−j

√
1−R2

Z∼Xj |X−j

≥
∣∣RD∼Z|X−j

∣∣− ∣∣RD∼Xj |X−j
RZ∼Xj |X−j

∣∣√
1−R2

D∼Xj |X−j

√
1−R2

Z∼Xj |X−j

=

√
kD

∣∣RD∼Xj |X−j

∣∣− ∣∣RD∼Xj |X−j
RZ∼Xj |X−j

∣∣√
1−R2

D∼Xj |X−j

√
1−R2

Z∼Xj |X−j

=

√
kD

∣∣RD∼Xj |X−j

∣∣ (1− ∣∣RZ∼Xj |X−j

∣∣)√
1−R2

D∼Xj |X−j

√
1−R2

Z∼Xj |X−j

where the second step uses the well-known result for real numbers: |a − b| ≥ |a| − |b|. Hence, taking the

square of both sides of the above inequality, using the definition of kD in (18), and noting that

f2
D∼Xj |X−j

=
R2

D∼Xj |X−j

1−R2
D∼Xj |X−j

we get

R2
D∼Z|X ≥ αkDf2

D∼Xj |X−j
(32)

where

α =

(
1−

∣∣RZ∼Xj |X−j

∣∣)2
1−R2

Z∼Xj |X−j

.
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If 0 ≤ RZ∼Xj |X−j
< 1, then

α =

(
1−

∣∣RZ∼Xj |X−j

∣∣)2
1−R2

Z∼Xj |X−j

=
1−RZ∼Xj |X−j

1 +RZ∼Xj |X−j

≤ 1.

If −1 < RZ∼Xj |X−j
< 0, then

α =

(
1−

∣∣RZ∼Xj |X−j

∣∣)2
1−R2

Z∼Xj |X−j

=
1 +RZ∼Xj |X−j

1−RZ∼Xj |X−j

≤ 1.
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