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Dimensional Analysis and Logarithmic
Transformations in Applied Econometrics

Deepankar Basu∗

November 25, 2022

Abstract

In economics, it is common to use dimensioned variables, e.g. earn-

ings (measured in dollars per year), as arguments in the logarithmic

function. This is conceptually problematic because a logarithmic func-

tion can only take dimensionless quantities as its argument. One way

to avoid this conceptual error is to rewrite commonly used logarithmic

regressions using an arbitrarily chosen reference unit so that ratios of

dimensioned quantities are used in logarithmic functions. With the

addition of a zero conditional mean assumption about the reference

unit to the standard list of assumptions about asymptotic properties

of ordinary least squares estimators, such a reformulated model can

ensure consistent estimation of elasticities and semi-elasticities with-

out relying on conceptually problematic mathematical operations.

JEL Codes: C01.

Keywords: logarithm, regression, dimensional analysis.

1 Introduction

The use of logarithmic transformations is widespread in applied econometric

analysis. Thousands of papers and book chapters, including previous work by

∗
Department of Economics, University of Massachusetts Amherst. Email:

dbasu@econs.umass.edu. I have benefited from comments by Chris Boone on a previous

version of the paper. All remaining errors are of course mine.
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this author, have estimated regression functions where a logarithmic trans-

formation of some economic variable was used as a dependent or independent

variable. For instance, the vast literature in applied microeconoimics that

study earnings functions (Mincerian wage regressions) regress logarithm of

earning (often measured by the wage rate) on measures of schooling and

other covariates (Card, 2001, equation 5, p. 1132; see also the references in

this paper). The equally vast literature in applied macroeconomics that in-

vestigates the variation of economic growth across countries typically regress

the growth rate of per capita gross domestic product (GDP) on the loga-

rithm of the initial level of per capita GDP, the policy variable of interest

and other covariates (Rodrik, 2012, p. 138; see also the references in this pa-

per). A large literature in applied microeconomics is devoted to estimating

parameters of production functions. In this literature, the typical regres-

sion function uses the logarithm of output as the dependent variable and

logarithms of the labor and capital inputs as key regressors (Levinsohn and

Petrin, 2003, p. 320, 322.; see also the references to the previous literature).

The use of logarithmic transformations is now so common that it is featured

in all econometrics textbooks, both at the undergraduate and graduate lev-

els, where it is typically discussed in the section on functional forms of the

regression function or to introduce concepts of elasticities; for instance, see

Greene (1982, p.160–61), Wooldridge (2002, p. 15–18) and Wooldridge (2016,

p.171).

The widespread use of logarithmic transformations of economic variables
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raises a serious conceptual problem that seem to have escaped the attention

of economists. On the one hand, most economic variables, e.g. earning or

per capita GDP, are dimensioned quantities. They are measured in terms of

relevant units, e.g. dollar per year. On the other hand, logarithmic transfor-

mations can only act on and deliver dimensionless quantities. Thus, it is not

meaningful to put dimensioned quantities like earnings or per capita GDP

or output or labor input, as arguments of logarithmic functions. Nor is it

meaningful to use expressions involving the logarithm of units, like log-hours

or log-dollars, as is used widely in the applied econometrics literature.

The fact that logarithmic transformations only act on and deliver dimen-

sionless quantities is widely known and emphasized in the physical sciences

because of the centrality of dimensional analysis (Matta et al., 2011). It has

also been occasionally highlighted by economists like Mayumi and Giampi-

etro (2010) and Shaikh (2016, p. 316), but with little impact on the practice

of the mainstream of the discipline. Therefore, this paper revisits this issue.

The first contribution of this paper is to explain, using elementary ideas

from mathematical analysis, why it is not meaningful to use dimensioned

quantities as arguments in logarithmic functions or why the output of log-

arithmic transformations are themselves dimensionless. In doing so, I also

point out that the argument used to derive this conclusion – that dimen-

sioned quantities cannot be used as arguments of logarithmic or exponential

functions – in Mayumi and Giampietro (2010) is faulty.

Once we accept that dimensioned quantities cannot be used in logarithmic
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functions, we are forced to conclude that a vast literature in applied econo-

metrics has used conceptually meaningless quantities in its analysis. For

instance, Mincerian wage regressions, estimation of production functions, es-

timation of cross country growth regressions, and all previous work, including

this author’s, which have used logarithmic transformations on dimensioned

quantities have used mathematically invalid operations (that involved using

logarithms of dimensioned variables).

Logarithmic regressions are, of course, useful in many contexts, especially

when the researcher is interested in estimating elasticities or semi-elasticities.

Hence, it is desirable to come up with a method to allow the use of logarith-

mic transformations in applied econometric work that, at the same time,

avoids using conceptually meaningless quantities. That motivates the sec-

ond, constructive, contribution of this paper. I o↵er a way to address this

problem, i.e. to rewrite the model and generate an estimable logarithmic

regression function that does not use dimensioned quantities as arguments

of logarithmic or exponential functions.

The basic idea behind my proposal is simple. I ask researchers to choose a

reference unit and use this unit to rewrite the model in such a way that ratios

of dimensioned quantities enter the logarithmic function. The use of ratios of

dimensioned quantities as arguments in logarithmic functions is a mathemat-

ically valid operation because the ratios are dimensionless. In my proposed

framework, the coe�cients of interest, e.g. elasticities or semi-elasticities,

can still be interpreted in the standard manner. Thus, while we avoid math-
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ematically invalid operations like putting in a dimensioned quantity inside

a logarithmic function, we retain the ability to estimate elasticities. Consis-

tent estimation of the parameters in the reformulated model requires a zero

conditional mean assumption about the reference unit. Once we add this

to the list of standard orthogonality assumptions for asymptotic analysis of

ordinary least squares estimators, we are ensured consistency.

The rest of this paper is organized as follows: in section 2, I explain why

logarithmic functions only take and give dimensionless quantities; in sec-

tion 3, I o↵er a simple way to rewrite common logarithmic regressions that

avoid the problem of using dimensioned quantities in logarithmic functions;

I discuss interpretation of the coe�cients and assumptions necessary for con-

sistent estimation; in section 4, I conclude the paper with a broader plea to

use dimensional analysis in economics.

2 Logarithm and Dimensions

There are various ways to understand why logarithms, and all other tran-

scendental functions, only act on and deliver dimensionless quantities. All

of these approaches rely on noting that transcendental functions are defined

in pairs, one being the inverse function of the other (Thomas and Finney,

1996, chapter 6). For instance, the exponential and logarithm function, the

main ones of interest in this paper, are inverse functions of each other, over

the correct domains of definition of each.
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2.1 Definition of Logarithm

Let us start out by recalling that the definite integral of a continuous function,

f , over a closed interval [a, b],

Z b

a

f(t)dt, (1)

is the limit of Riemann sums of the form
Pn

i=1 f(ci)�ti, where the closed

interval [a, b] is partitioned into n subintervals [ti�1, ti], with a = x0 < x1 <

· · · < xn�1 < xn = b, �ti = ti � ti�1 and ci is any number in the interval

[ti�1, ti] (Thomas and Finney, 1996, p. 313).1

Using this understanding of definite integrals, we now recall the definition

of the natural logarithm (Binmore, 1982, chapter 13) as,

ln x =

Z x

1

1

t
dt, x > 0, (2)

and note that in this case the Riemann sums are of the form
P

i(1/ci)�ti

because the function we are integrating in (2) is f(t) = 1/t. Since the unit of

measurement of ci and �ti are the same, each term in the Riemann sum is

dimensionless. Hence, the integral, being the limit of Riemann sums, is also

dimensionless. This establishes the fact that when the logarithmic function

operates on a quantity, the result is a dimensionless quantity. To see why

1
The limit that defines the integral can be more precisely stated as follows: let S(P )

denote the Riemann sum for some partition P of the closed interval [a, b]; then, the integral

is supremum of the Riemann sums over all partitions of [a, b], i.e.
R b
a f(t)dt = supP S(P )

(Binmore, 1982, p. 122).

6



the logarithmic function only takes dimensionless quantities as its argument,

we need to think about its inverse.

2.2 Logarithm and Exponential as Inverse Functions

The inverse of the logarithmic function exists and is known as the exponential

function. Thus, we have,

ln x = y if and only if exp y ⌘ ey = x, (3)

where y is a real number and x > 0 is a a positive real number (Binmore,

1982, chapter 14.4).

The relationship in (3) is not restricted to defining the logarithm with

base ‘e’, but can be defined for any other meaningful base. Thus, for a real

number y, a positive real number x, and a positive number, b > 0 that is not

equal to 1, we have,

logb x = y if and only if by = x. (4)

When b = e, (4) gives (3). Since natural logarithms, i.e. logarithms with

base e, are most commonly used in econometrics, instead of logarithms with

other bases, I will restrict my comments to the former.

Equation (3) can show why the argument of the logarithmic function

must be dimensionless. It tells us that the number e, a pure number without
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dimensions, must be raised to the power y to give us x.2 We have already seen

above, using the argument about Riemann sums, that y is a dimensionless

quantity. Since e is a pure number, ey is therefore dimensionless. Since

ey is equal to x, the latter must be dimensionless too. This establishes,

with reference to (3), that the argument of a logarithmic function must be a

dimensionless quantity.

2.3 A Faulty Argument

Before I turn to drawing out the implications of the argument about loga-

rithms, let me point out that there are some incorrect arguments that deliver

the correct conclusion. Such arguments are common in online physics forms,

on Wikipedia and, unfortunately, has also percolated into Mayumi and Gi-

ampietro (2010). The argument runs as follows: write the infinite series

expansion of, for instance, exponential function,

ex = 1 +
x

1
+

x2

2!
+

x3

3!
+ · · ·+ xn

n!
+ · · · ,

and note that for this equation to make sense, each term on the right must

have the same dimension or be dimensionless. Since terms involving powers

of x cannot have the same dimension as x, it follows that x must be dimen-

sionless (Mayumi and Giampietro, 2010, p. 1605). We can write the infinite

series expansion for ln(1 + x) to derive the same conclusion.

2
The number e = limn!1 1 + (1/1!) + (1/2!) + · · ·+ (1/n!) · · · = 2.7182818284500 . . .
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This argument delivers the correct conclusion, but is based on an incorrect

argument (Matta et al., 2011, p. 69). To understand the problem, recall that

the infinite series expansion written above is just the Taylor series expansion.

For any continuously di↵erentiable function, f(x), the Taylor series expansion

around x0, if it exists, is given by

f (x0 + h) = f (x0) + h
df (x0)

dx
+ h2d

2f (x0)

dx2
+ h3d

3f (x0)

dx3
+ · · ·

Considering the dimension of the general term on the right hand side,

hnd
nf (x0)

dxn

we can note that the dimension of hn is exactly equal to the dimension

of dxn, both being small changes in x raised to the n-th power. Hence,

dimensionally, hn cancel 1/dxn, and we are left with dnf (x0). This is the

change in the change in ... (n times) of f(x) at x0. Hence, its dimension,

as of every other term on the right hand side, is the same as the dimension

of f(x). “Therefore, the addition (or subtraction) of the terms in a Taylor

expansion is numerically and dimensionally permissible and the equation

satisfies dimensional homogeneity ... The reason for the necessity of including

only dimensionless real numbers in the arguments of transcendental function

is not due to the dimensional nonhomogeneity of the Taylor expansion, but

rather to the lack of physical meaning of including dimensions and units in

the arguments of these function.” (Matta et al., 2011, p. 69–70).
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2.4 Log Takes and Gives Dimensionless Quantities

Let me now return to the main argument of this paper and remind the reader

of the conclusion that it is only meaningful to use dimensionless quantities

as arguments of logarithmic (or exponential) transformations, and that the

result of using a logarithmic (or exponential) transformation is itself a dimen-

sionless quantity. This has important implications for applied econometric

practice.

First, this implies, for instance, that it would not be meaningful to use

the logarithm of earning because this variable is a dimensioned quantity

measured in, e.g., dollars per year or dollars per hour. This means that the

specification of earnings functions used in applied microeconometrics, where

log of earnings is used as the dependent variable is problematic. It uses the

logarithmic transformation of a dimensioned quantity - which is conceptually

meaningless. Thus, equation (5) in Card (2001, p. 1132)

log y = a0 + b̄Si �
1

2
kiS

2
i + ai +

�
bi � b̄

�
Si,

is problematic because the dependent variable, log y, is conceptually mean-

ingless. Similarly, equation (6) in Levinsohn and Petrin (2003)

yt = �0 + �llt + �kkt + �iit + !t + ⌘t

is flawed because it involves many terms, e.g. yt = log Yt, lt = logLt, that
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are mathematically inadmissible.

Since it not meaningful to operate the logarithmic transformation on per

capita GDP because this variable is a dimensioned quantity measured in real

dollars per year, the specification of growth regressions in applied macroeco-

nomics, where log of the initial per capita GDP is used as an independent

variable is, once again, problematic because it uses the logarithmic transfor-

mation of a dimensioned quantity - which is conceptually meaningless. Thus,

equation (1) in Rodrik (2012, p. 138)

gt = ↵ ln yt0 + Z 0
t� + �st + "t

is inadmissible because one of the independent variables, ln yt0, is conceptu-

ally meaningless.

Second, it implies that it is not meaningful to use expressions like log-

hours or log-points of wage or log-dollars, because logarithm of units (or

of quantities measured in units) or expressions involving log(units), e.g.,

log(dollars), are conceptually meaningless (Matta et al., 2011, p. 68). For

instance, the unit of measurement on the vertical axis in Figure 1 in Ace-

moglu et al. (2019) is conceptually meaningless.3

Finally, it implies that recent attempts to use the inverse hyperbolic sine

function in place of the logarithm (Bellemare and Wichman, 2020) su↵ers

3
Regressions in this paper use log per capita GDP measured in year 2000 dollars as the

main outcome variable (Acemoglu et al., 2019, p. 55). By the analysis of this paper, that

is conceptually problematic.
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from the same problem of dimensionality as the logarithm. This is because

hyperbolic functions share the same property with logarithms in that they

cannot admit dimensioned quantities as arguments:

In addition to logarithms, it is equally meaningless to include

dimensioned quantities as the arguments of trigonometric or hy-

perbolic functions because these are defined as ratios (the sine

of an angle is the ratio of the length of the opposite side to the

length of the hypotenuse, the cosine is the ratio of the length

of the adjacent side to the length of the hypotenuse, etc.) The

hyperbolic functions, themselves defined in terms of either expo-

nential or trigonometric functions, cannot operate on quantities

to which physical dimensions are attached either. (Matta et al.,

2011, p. 68)

These observations about the logarithm (and transcendental functions

more generally) force us to confront another question: How can we reorient

applied econometric practice so that it avoids the above problem? I want

to argue that if reformulated with the use of a reference unit, logarithmic

regressions can be rigorously justified. The key in this task of reformulation

is to avoid using dimensioned quantities as arguments of logarithmic or ex-

ponential functions; and this can be achieved by using an arbitrary reference

unit, as I now show.
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3 Estimating Elasticity and Semi-Elasticity

3.1 The Reformulated Model

Suppose we have a random sample of size N for the following variables,

y, x1, x2, and we wish to estimate the elasticity and semi-elasticity of y with

respect to x1 and x2, respectively.4 We start by positing the following re-

lationship between the dependent variable yi (measured in any units), the

independent variables x1i and x2i (measured in whatever units are relevant),

and the error term ui (which is unit-less), for an arbitrary unit i,

yi = x�1
1i e

�2x2ieui , yi > 0, x1i > 0, i = 1, 2, . . . , n, (5)

where �1 is a dimensionless constant, �2 is a constant with a dimension that

is reciprocal of x2i, and ui is a dimensionless random variable. The positivity

restrictions in (5) are important as they will allow me to meaningfully use

logarithmic transformations and divisions.

It is important to note three important dimensional assumptions in (5).

First, the fact that �1 is dimensionless allows me to write x�
i as a meaningful

quantity. For, it does not make sense to raise a quantity to the power of

another quantity if the latter quantity is dimensioned (Matta et al., 2011).

For instance, while it is meaningful to raise the number 10 to the power of

4
I work with the simplest cross sectional setting where x1 and x2 are scalar random

variables. It is relatively easy to extend to the case where x1 and x2 are vectors of random

variables.
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2 (a pure number without dimensions), it is meaningless to raise it to the

power of 2 dollars or 2 meters! Second, the fact that �2 is a constant with a

dimension that is reciprocal of x2i means that �2x2i is a dimensionless num-

ber. Hence, it is meaningful to use this as an argument in the exponential

function, i.e. e�2x2i is well-defined. Third, the assumption to treat the error

term as unit-less is not restrictive. We have much leeway in choosing the

units of the unobserved stochastic factors that comprise the error term pre-

cisely because they are unobserved. One can think of ui as an index of a

collection of unobserved random variables, each multiplied with coe�cients

having suitable units to make them unit-less.

Let us choose an arbitrary reference unit and index it by r, and note that

the above relationship for this unit is represented by

yr = x�1
1re

�2x2reur .

Let us now divide the equation for unit i by the equation for the reference

unit and then apply the logarithmic transformation to get the reformulated

model,

ln

✓
yi
yr

◆
= �1 ln

✓
x1i

x1r

◆
+ �2 (x2i � x2r) + (ui � ur) . (6)

Note that the positivity restrictions in (5) allow us to divide by xr and yr in

the above equation. Moreover, since yi/yr and xi/xr are dimensionless quan-

tities (because the numerator and denominator have the same dimensions),
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it is meaningful to use these ratios as arguments in the logarithmic function.5

In deriving the reformulated model in (6), I have avoided using dimen-

sioned quantities as arguments in the logarithmic or exponential functions.

Note also that both sides of equation (6) are dimensionless, and we have

adhered to the basic requirements of dimensional homogeneity, i.e. oranges

must be added to or compared with oranges and not apples (Matta et al.,

2011, p. 67).

3.2 The Estimable Equation

Rearranging and redefining terms in (6), we get the estimable equation,

ln ỹi = ↵0 + ↵1 ln x̃1i + ↵2x2i + ũi, (7)

where ỹi = yi/yr, x̃i = xi/xr, ũi = ui � ur, and the coe�cients are

↵0 = ��2x2r,↵1 = �1,↵2 = �2. (8)

Equation (7) is the estimable regression equation that will deliver an

estimate of the elasticity and semi-elasticity we are interested in. To estimate

the elasticity and semi-elasticity in line with the reformulation proposed in

this paper, the researcher needs to choose a reference unit, indexed by r,

define new variables, ỹi = yi/yr, x̃1i = x1i/x1r and estimate (7) by OLS.

5
Sometimes, logarithmic models involves logarithms only on the right hand side. This

is just a special case of the model in (7) and requires no special discussion.
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3.3 Interpretation of Coe�cients

The interesting feature of the reformulated model in (6) is that �1 and �2

have the exact same interpretations that would arise in a standard regres-

sion of this form even though in deriving it, I have managed to avoid using

dimensioned quantities in logarithmic or exponential transformations.

3.3.1 Elasticity

Let us start with the elasticity, �1. Note that

�1 =
d ln (yi/yr)

d ln (x1i/x1r)
=

x1i

yi

dyi
dx1i

,

where the last equality follows from treating yr and x1r as constants while

using the chain rule for di↵erentiating the relevant functions.6 To see this,

note that

d ln (yi/yr)

dx1i
=

d ln (yi/yr)

d (yi/yr)

d (yi/yr)

dyi

dyi
dx1i

=
yr
yi

1

yr

dyi
dx1i

=
1

yi

dyi
dx1i

,

and
d ln (x1i/x1r)

dx1i
=

d ln (x1i/x1r)

d (x1i/x1r)

d (x1i/x1r)

dx1i
=

x1r

x1i

1

x1r
=

1

x1i
,

6
I have used a simplification while deriving the expression for �1. The elasticity, �1,

is the partial e↵ect of ln (xi/xr) on E ln (yi/yr), the conditional expectation of ln (yi/yr),
rather than ln (yi/yr). For the most part, little is lost by treating the two as the same

when the relevant logarithms are well-defined. (Wooldridge, 2002, p. 17).
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so that
d ln (yi/yr)

d ln (x1i/x1r)
=

x1i

yi

dyi
dx1i

.

The constancy of yr and x1r, in turn, is justified by the fact that we have a

random sample, so that observations on the reference unit (identified with

the index r) is independent of other units (indexed by i). Thus, the model

in (7) gives us the correct estimate of the elasticity that we are interested in,

�1, which is the percentage change in y for every percentage change in x1.

But, most importantly, to arrive at estimates of �1, we do not have to use

dimensioned quantities as arguments in logarithmic or exponential functions.

The elasticity, �1, can also, of course, be written as,

d ln (yi)

d ln (x1i)
,

but this is not admissible because in writing this expression we have to use

dimensioned quantities, yi and x1i, as arguments in the logarithmic function.

That is precisely why we cannot use the standard regression,

ln yi = a0 + a1 ln x1i + a2x2i + ui,

to estimate the elasticity of interest.7

7
It is interesting that while discussing log-log regressions, Greene (1982) refers to the

issue of dimensions: “This removes the units of measurement of the variables from con-

sideration in using the [log-log] regression model.” (Greene, 1982, p. 160). But there is no

discussion of whether it is at all meaningful to have variables with units of measurement

in the log terms.
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3.3.2 Semi-Elasticity

The coe�cient, �2, in (6) has the interpretation of semi-elasticity because

�2 =
d ln (yi/yr)

dx2i
=

d ln (yi/yr)

d (yi/yr)

d (yi/yr)

d (yi)

dyi
dx2i

=
1

yi

dyi
dx2i

,

where the same argument as above can be used to justify the di↵erent steps

of the di↵erentiation on the right hand side.

3.4 Asymptotic Properties of OLS

Can the parameters of the reformulated model be consistently estimated by

ordinary least squares (OLS)? The answer is in the a�rmative, if the re-

searcher is willing to add a zero conditional mean assumption about the ref-

erence unit to the list of standard orthogonality assumptions for consistency

of OLS estimators. I make this explicit below.

3.4.1 Assumption and Results

Assumption 1. The following assumptions hold.

(a) Random sample: We have a random sample (yi, x1i, x2i) of size N ,

i.e., observations on unit i and unit j are independent for all i, j =

1, 2, . . . , N .

(b) Standard orthogonality assumptions: For all i = 1, 2, . . . , N , Ex1iui =

Ex2iui = 0, Eui = 0, and the matrix of regressors has full rank.
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(c) Zero conditional mean for reference unit: For the reference unit indexed

by r, E (ur|x1r) = 0.

Proposition 1. If assumption 1 holds then the OLS estimators of the pa-

rameters in (7) converge in probability to the corresponding parameters in

(6).

Proof. The crucial condition for consistency of OLS estimators of the param-

eters in (6) requires

E (x̃1iũi) = 0, E (x2iũi) = 0. (9)

Let us start with the second condition,

E (x2iũi) = Ex2i (ui � ur) = Ex2iui � Ex2iur = Ex2iui � Ex2iEur.

Considering the two terms on the far right, we see that assumption 1(b) will

ensure the first term is zero and, since assumption 1(a) allows us to write the

expectation of the product, Ex2iur, as the product of expectations, Ex2iEur,

assumption 1(b) will then ensure that the second term is also zero.

Turning to the first condition, we have,

E (x̃1iũi) = E

x1i

x1r
(ui � ur)

�
= E (x1iui)E

✓
1

x1r

◆
� Ex1iE

✓
ur

x1r

◆
,

where I have used assumption 1(a) to write expectations of products as prod-

ucts of expectations. Assumption 1(b) shows that the first term on the far
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right hand side is zero, and writing the last term on the right hand side above

as

E
✓

ur

x1r

◆
= E

✓
1

x1r
E [ur|x1r]

◆
,

where the outer expectation on the right hand side is with respect to the

distribution of x1r, and using assumption 1(c) allows us to conclude that this

term is zero.8

The conclusion now follows from an application of Theorem 4.1 in Wooldridge

(2002, p. 53).

The implication of this theorem is that if we add the zero conditional

mean assumption (assumption 1(c)) to the standard orthogonality assump-

tions used for asymptotic analysis of OLS estimators, we are ensured consis-

tent estimates of the elasticity and semi-elasticity in the reformulated model

(7). Thus, we are able to avoid using conceptually meaningless mathematical

operations, e.g. using dimensioned quantities as arguments in the logarithmic

function, and also to derive consistent estimates of the elasticity and semi-

elasticity. An additional homoskedasticity assumption (Wooldridge, 2002,

p. 54) will deliver asymptotic normality of the OLS estimators. Moreover,

such assumptions can be significantly weakened, allowing for heteroskedas-

ticity, serial correlation (if the time dimension is present in the data set)

and clustering. These considerations are less important than consistency

8
This is precisely where we need the zero conditional mean assumption. Zero correlation

between x1r and ur will not su�ce because we have a nonlinear function of x1r in the

expectation.
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(Wooldridge, 2002, p. 56), and hence, in this paper, I focus on the latter.

3.4.2 The Trade O↵

The proposal of this paper would allow researchers to avoid using conceptu-

ally questionable mathematical operations while estimating useful quantities

like elasticities and semi-elasticities. Of course, the proposal is not costless.

The zero conditional mean assumption is the cost we have to bear to al-

low consistent parameter estimates in the reformulated model (7). The zero

conditional mean assumption is necessary because zero covariance does not

carry over to nonlinear functions, and a crucial component of the proposal

in this paper involves division by x1r, giving rise to a nonlinear function of

x1r.

The zero conditional mean assumption amounts to assuming that all func-

tions of the regressor which needs to be log-transformed is uncorrelated with

the error term for the reference unit. One can go a step further and make

this assumption for all units. This would be tantamount to assuming that

the model is correctly specified (Wooldridge, 2002, p. 18). This is of course

stronger than the standard orthogonality assumptions used in the asymptotic

analysis of OLS estimators. Therefore, researchers face a trade-o↵.

On the one hand, they can ignore the fact that using dimensioned quanti-

ties as arguments in logarithmic, or other transcendental, functions is concep-

tually problematic. If they do so, they can continue estimating logarithmic
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regressions in the standard way as, for example,

ln y = a0 + a1 ln x+ u,

where y and x are dimensioned quantities. This method will give them nu-

merically correct estimates of elasticity, but to do so, they will need to use

conceptually meaningless terms involving logarithms of dimensioned quanti-

ties, like ln(y dollar per hour).

On the other hand, they can decide to stop using dimensioned quantities

as arguments in logarithmic, or other transcendental functions, because such

operations are conceptually problematic. If they choose to take this route,

then they can use the reformulated model (7) suggested in this paper. With

the addition of a zero conditional mean assumption, they are guaranteed con-

sistent estimates. The zero conditional mean assumption (assumption 1(c))

is of course more stringent than the standard orthogonality assumptions used

to derive consistency of OLS estimators.

4 Conclusion

Logarithmic transformations are used widely in applied economics to esti-

mate elasticities and semi-elasticities. In most application, logarithmic trans-

formations are applied to economic variables that are measured in some units

(e.g. earnings, measured in dollars per year; per capita GDP, measured in
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real dollars per year). This is problematic because the logarithmic function,

like other transcendental functions, can only act on and deliver dimensionless

quantities. To avoid using dimensioned quantities in logarithmic (or expo-

nential) functions, in this paper I have o↵ered a simple and constructive way

to re-write logarithmic regressions by using an arbitrary reference unit and

using ratios of dimensioned quantities. If we add a zero conditional mean

assumption about the reference unit to the standard assumptions used in the

asymptotic analysis of OLS estimators, we can ensure that the reformulated

model will provide consistent estimates of elasticity and semi-elasticity. By

adopting this approach, economists can avoid using meaningless quantities

in their empirical analyses and yet derive meaningful estimates of important

magnitudes like elasticities and semi-elasticities.9

This paper makes the broader case that we, as economists, need to pay

more attention to the dimensions of variables we use in our theoretical and

empirical analyses (Mayumi and Giampietro, 2010). Dimensional analysis,

which is common in the physical sciences, should be adopted in economics.

The only economics book that I am aware of that seriously discussed dimen-

sions of variables and carried out some dimensional analysis is Foley et al.

(2019, section 2.3). While they are not su�cient, correct dimensions of equa-

tions and variables are necessary for economically meaningful work (Matta

9
An alternative methodology is suggested in Mayumi and Giampietro (2010) that allows

a regression without the use of logarithms to have a higher R-squared than a corresponding

regression where some or all variables are in logs. If the motivation for using logs is to

estimate elasticities and not to ensure higher R-squared, the algorithm in Mayumi and

Giampietro (2010, section 4) would have limited use.
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et al., 2011). Paying attention to dimensions of variables can often help in

identifying inadvertent errors in arguments or analyses.
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