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1 Introduction

Panel unit root tests (PURTs) have become a standard tool in macroeconometric

applications. Making use of the cross sectional dimension allows to overcome power

deficiencies of univariate unit root tests and helps to avoid the multiple testing prob-

lem. Moreover, a number of macroeconomic models postulate stationarity of some

key variables. For instance, the purchasing power parity hypothesis implies station-

arity of real exchange rates (see Taylor and Taylor, 2004 for a survey) or the Fisher

hypothesis, which predicts real interest rates to be stationary (e.g. Herwartz and

Reimers, 2006, 2009). First generation PURTs (e.g. Levin et al., 2002 or Im et al.,

2003) rely on the assumption of cross sectionally independent error terms. Since the

work of O’Connell (1998), however, it is widely recognized that a violation of this

assumption leads to severe size distortions of first generation tests and, therefore,

second generation tests relying on less restrictive assumptions have been suggested

(see Hurlin and Mignon, 2007 and Breitung and Pesaran, 2008 for recent surveys).

Two general directions of coping with the nuisance parameters invoked by the cross

sectional dependence can be identified. On the one hand, approaches presuming a

common factor structure for the error terms and, on the other hand, tests building

on robust covariance estimators.

Second order invariance of model disturbances is an additional implicit assump-

tion of PURTs. However, this assumption is quite restrictive, as many macroe-

conomic and financial variables are characterized by structural shifts in their un-

conditional volatility. In fact, what has become known as the ’Great Moderation’

is a substantial decline in numerous macroeconomic key variables’ volatility across

the G7 economies since the mid 1980s (see, for instance, Kim and Nelson, 1999,

McConnell and Perez-Quiroz, 2000 and Stock and Watson, 2003). The adverse ef-

fects of variance shifts on unit root tests for single time series have been studied

by, among others, Hamori and Tokihisa (1997), Kim et al. (2002), Cavaliere (2004),

and Cavaliere and Taylor (2007a,b, 2008). The main findings are that the (aug-

mented) Dickey-Fuller (Dickey and Fuller, 1979, (A)DF henceforth) and other unit
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root tests asymptotically depend on nuisance parameters in the presence of per-

manent variance shifts. Hence, seriously distorted empirical type one errors and

deceptive inference are the consequences of a violation of the implicit assumption

of time invariant volatility. The magnitude of size distortions is shown to depend

on specific break patterns. Generally, largest (positive) size distortions are observed

for early negative and late positive shifts in the level of the process’ unconditional

variance. So far, only Hanck (2009b) attempts to generalize these results to the

field of panel unit root testing. However, while he considers intersection tests for

heterogenous panels which are constructed by combining the p-values obtained from

volatility break robust univariate tests, this paper concentrates on the class of class

of homogenous PURTs based on a pooled DF regression. We show that the sec-

ond generation ’White-type’ corrected PURT proposed in Herwartz and Siedenburg

(2008) retains a Gaussian limiting distribution under discrete shifts of the innova-

tion variance. In contrast, the first generation test of Levin et al. (2002) and the

second generation test of Breitung and Das (2005) do not converge to a nuisance free

limiting distribution in this case. Moreover, the local asymptotic power function of

the test statistic is derived. It turns out that in absence of volatility breaks, its local

asymptotic power equals those of the statistic proposed by Breitung and Das (2005),

while in the presence of a volatility break, the power of depends on the timing and

direction of the break. Deterministic terms and residual serial correlation are ac-

counted for by detrending and prewhitening schemes proposed in Breitung (2000)

and Breitung and Das (2005), respectively. While the prewhitening scheme works

well even under second order moment instability, the detrending scheme invokes

serious deviations of empirical type one errors from the nominal significance level if

there is a break in the innovation variance.

As an illustrative example, we reconsider PURT based evidence on the Fisher

hypothesis in Crowder (2003). Postulating a one-to-one comovement of nominal

interest rates and expected rates of inflation, the Fisher hypothesis implies stationary

real interest rates. The considered cross section of 9 developed economies over the

period 1961Q2-2007Q2 mirrors core issues discussed in this paper, such as shifts in
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unconditional volatility and cross sectional dependence.

The remainder of the paper is organized as follows. A brief review of the effects

of nonstationary volatility on univariate unit root tests is given in the next section.

The panel model is introduced and asymptotic results for the considered PURTs

are derived in Section 3. Section 4 provides the results of a Monte Carlo simulation

study. The empirical illustration is presented in Section 5 and Section 6 concludes.

Formal proofs are contained in the Appendix.

2 Effects of nonstationary volatility on univariate

unit root tests

The effects of nonstationary volatility on unit root tests in the univariate case have

been investigated by Hamori and Tokihisa (1997), Kim et al. (2002), Cavaliere (2004)

and Cavaliere and Taylor (2007a,b, 2008). For illustrative purposes, we review the

results of Hamori and Tokihisa (1997) who consider the most basic example of a

single upward shift in the innovation variance of an autoregressive process of order

one (AR(1)) without any deterministic terms. In particular, consider the following

data generating process (DGP)

yt = ρyt−1 + et, t = 1, ..., T. (1)

In (1), the variance shift is modeled by means of the composite error term et, i.e.

et = εt + ηtDUt, εt ∼ iid(0, σ2
1), ηt ∼ iid(0, σ2

2)

and DUt =





1, if t > TB, (1 < TB < T )

0, otherwise.

Let λ = TB/T denote the ratio of pre-break to total sample period and W (r) is a

standard Brownian motion defined on r ∈ [0, 1], then, as T → ∞, the asymptotic
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distribution of the DF t-ratio of ρ̂− 1 is given by

tDF
d→

1
2
[{W (1)}2 − 1]√∫ 1

0
W (r)dr2 − Ξ

[
(1− λ)

∫ λ

0
W (r)dr + λ

∫ 1

λ

(
1−r

r

)
W (r)dr

] , (2)

where Ξ =
(σ2/σ1)

2

1 + (σ2/σ1)
2 (1− λ)

.

It is easy to verify that the nuisance parameters in the limiting distribution depend

on the strength and the timing of the variance break. The standard DF case is

covered by σ2 = 0 and λ = 0 or λ = 1. Hamori and Tokihisa (1997) provide

simulation evidence suggesting that a late positive variance shift leads to the largest

(upward) bias of empirical type one errors. Kim et al. (2002) generalize the previous

result to models with deterministic terms and propose a pivotal test for the unit

root null hypothesis based on prior break date estimation. In a series of papers,

Cavaliere (2004) and Cavaliere and Taylor (2007a,b, 2008) extend these results in

three directions. First, they allow for a wider class of volatility processes, including

multiple breaks and trending volatility. Second, they extend the analysis to the class

of M -type of unit root tests proposed by Perron and Ng (1996), Stock (1999) and

Ng and Perron (2001). Finally, they propose alternative volatility-break robust test

procedures, such as a test based on the estimated variance profile, as well as tests

based on simulation or resampling methods.

3 PURTs under nonstationary volatility

3.1 The autoregressive, heteroskedastic panel model

In the following, we study the effects of nonstationary volatility on homogenous

PURTs. More specifically, the limiting distributions of alternative t-statistics ob-

tained from pooled DF regressions are derived for a panel AR(1) model allowing for

multiple and possibly heterogeneous breaks in the innovation variance as well as for

weak cross sectional dependence. Weak cross sectional dependence as defined by

Breitung and Pesaran (2008) is characterized by bounded eigenvalues of the covari-

ance matrix as N →∞. This type of dependence includes, for instance, covariance
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matrices implied by all types of spatial panel models (Elhorst, 2003) but excludes

dependence invoked through common factor models. The empirically relevant treat-

ment of deterministic terms and serially correlated disturbances is discussed later.

The heteroskedastic panel model is given by

yt = ρyt−1 + et, t = 1, ..., T, (3)

where yt = (y1t, ..., yNt)
′, yt−1 = (y1,t−1, ..., yN,t−1)

′ and et = (e1t, ..., eNt)
′ are N × 1

vectors and the index i = 1, ..., N indicates the cross sectional units. The autore-

gressive coefficient ρ satisfies either ρ = 1 under the unit root null hypothesis or

|ρ| < 1 under the stationary alternative hypothesis. The assumption of a homoge-

nous AR coefficient under the alternative hypothesis could be relaxed to the case of

different stationary coefficients for all cross sectional units i without loss of general-

ity. In fact, Breitung and Pesaran (2008) point out that the power of both pooled

and averaged (as for example the test proposed by Im et al., 2003) PURTs only

depends on the average of the individual specific autoregressive coefficients. Hence,

pooled PURTs are also powerful against the heterogeneous alternative where mean

reverting behavior holds only for some nonzero fraction of the cross sectional units.

We make the following set of assumptions regarding the vector of errors et:

Assumption 1 (A1)

(i) The error vector et ∼ iid (0, Ωt).

(ii) Ωt is a positive definite matrix with eigenvalues λ1 ≥ ... ≥ λN and λ1 < c < ∞
for all t.

(iii) Finally, it is assumed that E[eitejtektelt] < ∞ for all i, j, k, l.

The assumptions A1(i)-A1(iii) are basically the same as in Breitung and Das (2005)

except that we allow for a time varying covariance matrix, Ωt. A1(i) rules out higher

order serial correlation which will be considered later. A1(ii) restricts the pattern of

cross sectional dependence to the weak type dependence while the assumed existence

of finite fourth order moments of eit inA1(iii) is a standard assumption in the (panel)

unit root literature. Additionally, we make the following assumptions on Ωt which

further define the types of volatility breaks considered in this paper.
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Assumption 2 (A2)

(i) Ωt = Ω1 for t = 1, ...T1 and Ωt = Ω2 for t = T + 1, ...T .

(ii) Moreover, T1, T2 →∞ as T →∞ with T2 = T − T1 and T1

T
→ δ > 0,

T2

T
→ 1− δ > 0.

(iii) Finally, Ωt = Φ
1/2
t ΨΦ

1/2
t for all t, with Φt = diag(σ2

1t, ..., σ
2
Nt).

Assumption A2(i) restricts the number of variance break points to one. This as-

sumption is made to simplify the analytical derivations. From the proofs in the

Appendix, however, it will become clear that it is straightforward to modify the

analytical derivations to account for multiple breaks. A2(ii) requires that the pre-

and post-break sample increase as T → ∞, with the subsamples being some con-

stant fractions δ and (1 − δ) of the total sample, respectively. This assumption is

important in the derivation of the limiting distribution as it ensures convergence of

partial sum processes to functionals of Brownian motions in each subsample. As-

sumption A2(iii) defines the type of variance break considered. The decomposition

Ωt = Φ
1/2
t ΨΦ

1/2
t , where Ψ is the (time invariant) correlation matrix implied by Ωt

and Φ
1/2
t is a diagonal matrix of the idiosyncratic standard deviations, allows to

separate the issues of cross sectional dependence and variance breaks. It further

incorporates heterogeneity along the cross sectional dimension as idiosyncratic vari-

ances σ2
it and the strength of the variance breaks may differ. Obviously, A2(iii) also

covers the case where only a fraction of the cross sectional units feature a shift in

the innovation variance.

3.2 Asymptotic size distortions of homogenous PURTs

Consider the AR(1) panel model defined in (3). The unit root null hypothesis,

H0 : ρ = 1, can be tested by means of the OLS t-ratio of φ̂ from the pooled DF

regression

∆yt = φyt−1 + et,
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with ∆yt = (y1t − y1,t−1, ..., yNt − yN,t−1)
′. The test statistic is

tOLS =

∑T
t=1 y′t−1∆yt√

σ2
e

∑T
t=1 y′t−1yt−1

, (4)

where σ2
e is replaced by σ̂2

e = (NT )−1
∑T

t=1(∆yt− φ̂yt−1)
′(∆yt− φ̂yt−1). The results

in Levin et al. (2002) imply that under H0 in (3) with cross sectionally independent

and homoskedastic error terms with constant variance (Ωt = Ω = INσ2
e), tOLS is

asymptotically Gaussian as T, N → ∞. Violations of the assumption of cross sec-

tional independence can be overcome along the lines of Breitung and Das (2005) or

Herwartz and Siedenburg (2008), either by means of robust covariance estimation

or resampling methods. The effects of a break in the innovation variance on ho-

mogenous PURTs have not yet been studied. In the following, it is shown that in

analogy to the univariate case, tOLS does not converge to a nuisance free limiting

distribution and, hence, loses control over the asymptotic size of the test.

Proposition 1 Assume the panel DGP is given by (3) and assumptions (A1) and

(A2) with Ψ = IN and σ2
i• = σ2

e• ∀ i and • = 1, 2. Then, under H0 : ρ = 1 and for

T →∞ followed by N →∞, tOLS
d→ N(0, νOLS), νOLS 6= 1 if σ2

e1 6= σ2
e2.

The proof of Proposition 1 is deferred to Section A.1 in the Appendix. The result

directly shows that discrete shifts in the innovation variance induce nuisance param-

eters in the asymptotic distribution of the tOLS PURT statistic. Moreover, given

the specific form of νOLS derived in the Appendix, it is clear that the direction and

strength of the implied size distortion depend on the specification of the break. In

particular, we have

νOLS =
0.5δ2λ2

1 + δ(1− δ)λ1λ2 + 0.5(1− δ)2λ2
2(

δλ1 + (1− δ)λ2

) [
0.5δ2λ1 + δ(1− δ)λ1 + 0.5(1− δ)2λ2

] ,

with λ• = N−1
∑N

i=1 λi•, λ2• = N−1
∑N

i=1 λ2
i•, where • = 1, 2 refers to the pre- and

post-break period, respectively and λ1λ2 = N−1
∑N

i=1 λi1λi2. To illustrate the size

distortion invoked by variance breaks, Figure 1 depicts the asymptotic variance νOLS

for a continuity of breakpoints δ ∈ [0, 1] with

λ1 = 1 and λ2 ∈ {0.2, 0.33, 0.5, 0.66, 0.9, 1.1, 1.33, 1.5, 1.66, 1.8}.
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Figure 1 reveals that largest deviations of νOlS from unity are characteristic for

late positive and early negative variance breaks. This result is in line with findings

for the time series case, where early negative and late positive variance shifts have

been found to induce largest size distortions. However, in the time series case, both

scenarios induce an upward size distortion, while the simulated values of νOLS imply

a downward size distortion in the case of a negative variance break. This is easily

seen by noting that νOLS < 1 corresponds to less probability mass in the tails of the

asymptotic distribution of tOLS compared with the Gaussian distribution.

So far, results are derived under cross sectional independence and homoskedas-

ticity. However, asymptotic size distortions carry over to the cross sectional depen-

dence robust statistic tRob suggested by Breitung and Das (2005). Under weak form

cross sectional dependence with a covariance structure characterized by bounded

eigenvalues as N →∞ and time invariant innovation variance, the statistic retains

a Gaussian limiting distribution by applying panel corrected standard errors (Beck

and Katz, 1995). It is given as

tRob =

∑T
t=1 y′t−1∆yt√∑T
t=1 y′t−1Ω̂yt−1

, with Ω̂ =
1

T

T∑
t=1

êtê
′
t. (5)

Proposition 2 Assume the panel DGP is given by (3) and assumptions (A1) and

(A2). Then, under H0 : ρ = 1 and for T → ∞ followed by N → ∞, tRob
d→

N(0, νRob), νRob 6= 1 if σ2
e1 6= σ2

e2.

The proof of Proposition 2 is given in Section A.2 of the Appendix. It turns out

that

νRob =
0.5δ2λ2

1 + δ(1− δ)λ1λ2 + 0.5(1− δ)2λ2
2

(δ2 − 0.5δ3) λ2
1 + (1.5δ + 0.5δ2 − 2δ3) λ1λ2 + 0.5(1− δ)3λ2

2

.

It is easy to verify that in absence of volatility breaks the results in Breitung and

Das (2005) obtain as a special case with δ = 0 or δ = 1.

3.3 A volatility-break robust test

Herwartz and Siedenburg (2008) propose a test statistic, which is based on a ’White-

type’ covariance estimator, making use of residuals obtained under H0. The test
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statistic and its asymptotic distribution are

tHS =

∑T
t=1 y′t−1∆yt√∑T

t=1 y′t−1ětě′tyt−1

d→ N(0, 1), ět = ∆yt = et. (6)

The statistic was originally proposed as an alternative to tRob in finite samples

where the number of cross sectional units is relatively large compared to the time

dimension. However, given the construction of the employed covariance estimator,

Herwartz and Siedenburg (2008) conjecture that tHS might be robust with respect

to unknown patterns of (nonstationary) heteroskedasticity. Similarly, Hamori and

Tokihisa (1997) suggest the White correction (with unrestricted residuals, however)

as a potential means to appropriately cope with the nuisance invoked by a variance

shift. The following Proposition states asymptotic Gaussianity of the statistic tHS

under a volatility break as defined by (A2).

Proposition 3 Assume the DGP is given by (3) and Assumptions A1 and A2 hold

and σ2
e1 6= σ2

e2. Then under H0 : ρ = 1 and for T → ∞ followed by N → ∞,

tHS
d→ N(0, 1).

The proof of Proposition 3 is derived in Section A.3 in the Appendix.

Even though the proof is laid out for a single break date, it is straightforward to

extend it to scenarios of multiple break dates. A caveat of the asymptotic results is

that they are obtained under sequential asymptotics. As it is shown in Phillips and

Moon (1999), sequential asymptotics do not necessarily imply convergence if N and

T approach infinity jointly. However, results in Breitung and Westerlund (2009)

conjecture that the previous results might also apply if
√

N/T → 0 as T,N → ∞
jointly.

3.4 Local asymptotic power of tHS

To verify that the test based on tHS has asymptotic power in local-to-unity neighbor-

hoods, the following Proposition states its asymptotic distribution under a sequence

of local alternatives given by

Hl : ρ = 1− c

T
√

N
. (7)
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Proposition 4 Under the sequence of local alternatives defined in (7), for T →∞
followed by N →∞, tHS is asymptotically distributed as N(−cµl, 1), where

µl =
0.5δ2λ1 + δ(1− δ)λ1 + 0.5(1− δ)2λ2√
0.5δ2λ2

1 + δ(1− δ)λ1λ2 + 0.5(1− δ)2λ2
2

.

The proof of Proposition 4 is deferred to Section A.4 in the Appendix. The result

directly implies asymptotic power of the test in local-to-unity neighborhoods of order

O
(
T−1N−1/2

)
for models without individual time trends. Moreover, it is easy to see

that in the case of time invariant volatility with δ = 1, µl =
√

0.5 λ1/

√
λ2

1, implying

the same local asymptotic power as obtained by Breitung and Das (2005) for the

tRob statistic. Finally, a more detailed investigation of µl reveals that a downward

(upward) shift of the innovation variance leads to asymptotically higher (lower) local

power compared with the benchmark case of constant volatility.

3.5 Deterministic terms and serial correlation

In the following, we discuss data transformations suggested in Breitung and Meyer

(1994), Breitung (2000) and Breitung and Das (2005) to cope with deterministic

terms and residual serial correlation. In contrast to OLS-detrending and lag aug-

mentation, these approaches allow to construct asymptotically pivotal test statistics

without the necessity of applying bias correction terms.

3.5.1 Deterministic terms

If the DGP contains (cross section specific) deterministic intercepts or trends, the

pooled regression in (3) is inappropriate. However, in contrast to the time series

case, inclusion of deterministic components in the test regression invokes the so-

called Nickell-bias (Nickell, 1981), present in dynamic panels with individual specific

intercepts or trends. While the Nickell-bias can be accounted for by bias adjustment

terms (as e.g. in Levin et al., 2002), it can be shown that elimination of individual

intercepts by means of least square projections substantially reduces the power of

the tests.
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Consider the case of distinguishing a driftless random walk from a stationary

process with individual specific intercept terms. The DGP can then be written as

yt = (1− ρ)µ + ρyt−1 + et, (8)

where µ = (µ1, ..., µN)′ collects individual specific intercepts. Breitung and Meyer

(1994) were the first to point out that the intercept terms can be efficiently removed

by subtracting the first observation from the data as y0 is the best estimator of µ

under H0. Hence, the pooled test regression is based on the transformed data

∆yt = φy∗t−1 + et, with y∗t−1 = yt−1 − y0.

Breitung and Meyer (1994) illustrate that the power of tests based on a regression

with the transformed data does not depend on the individual effects and is hence

superior to the power of tests based on least square demeaned data.

If the test is performed to discriminate a random walk with drift from a trend

stationary process, the underlying DGP may be written as

yt = µ + (1− ρ)βt + ρyt−1 + et, (9)

where β = (β1, ..., βN)′ is the vector of individual trend parameters. Moon et al.

(2007) show that in this case of incidental trends, pooled t-ratio type tests only

have asymptotic power in local neighborhoods shrinking at the rate of O
(

1
N1/4T

)
.

To obtain a test statistic which does not require bias correction terms, Breitung

(2000) suggests the Helmert transformation to center the first differences of the

data in a forward looking manner, i.e.

∆y∗t = st

[
∆yt − 1

T − t
(∆yt+1 + ... + ∆yT )

]
, and (10)

s2
t = (T − t)/(T − t + 1).

Detrending of the test regression’s right hand side variable proceeds as

y∗t = yt − y0 − β̂t = yt − y0 − yT − y0

T
t. (11)

Breitung (2000) demonstrates that the detrending in (10) and (11) is sufficient to

remove the Nickell-bias and, hence, asymptotically pivotal test statistics can be
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obtained by running a pooled regression on the transformed data. This result,

however, relies on ∆y∗t being white noise with constant variance. As this assumption

is violated in our setting, it is unclear if the proposed detrending scheme still yields

pivotal PURT statistics. We address this issue by means of the Monte Carlo study

in Section 4.

3.5.2 Short run dynamics

For the case of serially correlated error terms, Breitung and Das (2005) prove that

the pooled statistic in (5) remains asymptotically Gaussian if it is computed from

prewhitened data. In contrast, ADF-type lag augmentation is shown to be insuf-

ficient to remove the effects of the short run dynamics if deterministic terms are

present in the model. Prewhitening proceeds by running individual specific, ADF

regressions under H0, i.e.

∆yit =

pi∑
j=1

cij∆yi,t−j + eit. (12)

The estimates ĉi = (ĉi1, ..., ĉip) are then used to obtain prewhitened data as

y∗it = yit − ĉi1yi,t−1 − ...− ĉipi
yi,t−pi

(13)

and

∆y∗it = ∆yit − ĉi1∆yi,t−1 − ...− ĉipi
∆yi,t−pi

. (14)

The choice of lag lengths pi can be based on any consistent lag-length selection

criterion. Since the estimates ĉip are
√

T consistent, one would expect a somewhat

larger time dimension for obtaining correctly sized tests than in the case of seri-

ally uncorrelated increments. If the DGP features both, short run dynamics and

deterministic patterns, the data is first prewhitened and subsequently detrended as

discussed in Section 3.5.1. Since the prewhitening regression is performed under H0,

an intercept term has to be included only if the model includes linear time trends

under the alternative hypothesis.
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4 Monte Carlo study

4.1 The simulation design

To illustrate the finite sample effects of volatility breaks on the considered homoge-

nous PURTs, we consider three stylized scenarios:

DGP1: yt = (1− ρ)µ + ρyt−1 + et, t = −50, ..., T,

DGP2: yt = µ + (1− ρ)βt + ρyt−1 + et,

DGP3: yt = (1− ρ)µ + ρyt−1 + ut, ut = c ◦ ut−1 + et,

where bold entries indicate vectors of dimension N×1 and ◦ denotes the Hadamard

product. The first two DGPs formalize AR(1) models with serially uncorrelated er-

rors, whereas the last one introduces AR(1) disturbances. DGPs 1 and 3 formalize

the panel unit root against a panel stationary process with individual effects, while

DGP 2 models a panel random walk with drift under H0 or a panel of trend station-

ary processes with individual effects under the alternative. Rejection frequencies

under H0 are computed with ρ = 1 whereas empirical (size adjusted) power is cal-

culated against the homogeneous alternatives ρ = 1 − 5
T
√

N
or ρ = 1 − 5

TN1/4 for

the cases featuring individual intercepts or trends, respectively. As mentioned in

Section 3.1 that homogenous PURTs have power against heterogenous alternatives,

it is important to note that the choice of a homogenous alternative is without loss

of generality. Following Pesaran (2007), the deterministic terms are parameterized

such that the processes display the same average trend properties under H0 and the

alternative hypothesis. In particular, µ ∼ iidU(0, 0.02), and β ∼ iidU(0, 0.02). The

parametrization of the short run dynamics in DGP 3 is also taken from Pesaran

(2007), i.e. c ∼ iidU(0.2, 0.4).

Six distinct scenarios for the covariance matrix Ωt are simulated for each DGP.

With regard to contemporaneous correlation, cases of cross sectionally independent,

as well as of (weakly) contemporaneously correlated panels are considered. Three

different scenarios are simulated with respect to volatility breaks: constant volatil-

ity as well as a late positive and an early negative variance shift. Cross sectionally
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uncorrelated data is generated by setting Ψ = IN and Φt = diag(σ2
et). As demon-

strated in Sections 3.2 and 3.3, the choice of cross sectionally homogenous variances

is without loss of generality for the tRob and tHS statistics but necessary to obtain

asymptotic Gaussianity of tOLS in the benchmark case of constant volatility. For

the case of a contemporaneously correlated panel, a spatial autoregressive (SAR)

error structure is presumed. The latter is specified as

et = (IN −ΘW )−1εt, with Θ = 0.8 and εt ∼ iidN(0, diag(σ2
et)),

where the so-called spatial weights matrix W is a row normalized symmetric con-

tiguity matrix of the one-behind-one-ahead type (for more details on spatial panel

models see e.g. Elhorst, 2003). In the following, we refer to this specification as an

SAR(1) model. The resulting covariance matrix of et is given by Ωt = σ2
et(B

′B)−1

with B = (IN − ΘW ). As mentioned above, three distinct variance patterns are

simulated. Let σebsT c = σe1I(s ≤ sB) + σe2I(s > sB), where sB ∈ [0, 1] indicates

the timing of the variance break, bsT c denotes the integer part of sT and I is the

indicator function. In the homoskedastic case, we set σet = σe1, with σe1 = 1. The

break scenarios are taken from Cavaliere and Taylor (2007b) and are parameterized

as sB = 0.2 and σe2 = 1/3 for the early negative break, while the late positive break

is given by sB = 0.8 and σe2 = 3.

Data is generated for all combinations of N ∈ [10, 50] and T ∈ [10, 50, 100, 250].

To ensure convergence of the process to its unconditional mean under the alternative

hypothesis, 50 presample values are generated and discarded throughout. To com-

pute empirical rejection probabilities under H0, we calculate each PURT statistic

for the appropriately transformed data and compare the resulting statistics with the

5% critical value of the Gaussian distribution. Reported estimates for local power

are adjusted such that empirical type one errors equal 5%. Throughout, we use 5000

replications.
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4.2 Results

Table 1 documents empirical rejection frequencies obtained for DGP1. The left hand

side of Table 1 documents results obtained under cross sectional independence while

entries on the right hand side refer to results obtained under a SAR(1) error model.

Rejection frequencies under H0 are reported to the left of size adjusted local power

estimates in both cases.

The first block in the upper left panel corresponds to the benchmark case of cross

sectional independence and time invariant innovation variances. In this setting, all

employed statistics have a Gaussian limiting distribution and, hence, should display

empirical rejection frequencies close to 5% as T and N become large. However, the

documented results reflect some evidence of small sample size distortions. Empirical

rejection frequencies obtained by tOLS range around 7% for panels with N = 10,

whereas application of tRob leads to undersizing for small values of T . Results ob-

tained for the ’White-type’ statistic tHS display comparatively small deviations from

the nominal level, especially if N = 50. Size adjusted local power estimates indicate

that under full homogeneity, all three statistics are asymptotically equally powerful

and that the chosen sample sizes are too small for local power estimates to fully

converge. The right hand side of the first block presents results for the SAR(1)

error model with constant volatility. While the OLS test is severely oversized in

this instance, both robust tests remain asymptotically Gaussian. However, finite

sample distortions observed for tHS are slightly larger while the undersizing of tRob

is less pronounced than in the case of cross sectional independence. Local power

results show that all considered tests are less powerful if the data is cross sectionally

correlated. This finding might be explained by noting that cross sectional correla-

tion reduces the amount of independent information contained in the data (Hanck,

2009a).

In line with the theoretical results in Section 3.2, results obtained under an

early negative variance break and cross sectional independence indicate a tendency

of undersizing for tOLS and tRob, where the downward bias of empirical rejection

frequencies positively depends on the size of N . As mentioned before, this is in
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contrast to results for univariate unit root tests, where positive size distortions are

reported (e.g. Kim et al., 2002, Cavaliere and Taylor, 2007b). Rejection frequen-

cies obtained by the ’White-type’ statistic tHS display only minor deviations from

the nominal significance level. Documented results under spatially correlated errors

indicate that size distortions reported for tOLS are less pronounced than under con-

stant volatility since the upward distortion invoked by cross sectional dependence

is somewhat dampened by the negative shift in the innovation variance. Empirical

rejection frequencies of tRob reflect moderate oversizing for panels with N = 10 and

T ≥ 50 and tend to be undersized if N = 50. Empirical results for tHS are only

indicative of a moderate finite sample size distortions but are otherwise very similar

to those results obtained under constant volatility. With regard to local power, the

scenario of an early downward shift in the innovation variance is characterized by

a steeper gradient of rejection frequencies with respect to the sample size. While

local power estimates are significantly smaller than in the constant variance case

for small panel dimensions, up to six percentage points (respectively four percent-

age points in the SAR(1) case) higher rejection frequencies are documented for the

largest simulated panel. The finding of superior power in large samples is supported

by the analytically derived location parameter µl. Increased asymptotic local power

is implied by the absolute value of the location parameter, which becomes larger

compared with the benchmark scenario under a downward break in the innovation

variance.

If the innovation variance features an upward shift towards the end of the sample,

empirical rejection frequencies for tOLS are in the range of 11.4-14.5% for all com-

binations of N and T and cross sectional independence. Rejection frequencies for

tRob depend on the relative magnitude of the time dimension: for T large relative to

N , the unit root null hypothesis is rejected significantly too often while for N larger

than T , the undersizing observed in the previous experiments persists. Observed

upward distortions are in accordance with the theoretical results in Proposition 2

and quantitatively in line with results obtained in a similar setting for the univari-

ate DF test (Hamori and Tokihisa, 1997). In contrast, most accurate size control
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is obtained by tHS, with empirical errors in rejection frequencies ranging between

0.2 and 2.1 percentage points. If the data is cross sectionally correlated, positive

size distortions observed for tOLS and, to a lesser extent, tRob, are even more pro-

nounced whilst tHS retains comparatively accurate size control. Results obtained

under the alternative hypothesis show that local power estimates are less sensitive

to the sample size compared with the case of an early downward shift of innovation

variances. However, in line with the asymptotic results in Proposition 4, an upward

break in the innovation variance induces decreased local power estimates for the

largest considered panel dimension.

Table 2 reports results for DGP2, with all test statistics computed on detrended

data. For the benchmark scenario of constant variances and either cross sectional

independence or a SAR(1) error structure, results under H0 are similar to those

obtained for DGP1. As before, a large T relative to N is required in order to obtain

rejection probabilities close to 5% for tRob and tOLS yields substantial size distortions

under spatial correlation while tHS provides reliable size control in most instances.

Noting that local power is computed in a neighborhood of order O(T−1N−1/4), the

results imply that local power of all three tests is substantially reduced compared

with the intercepts only case of DGP1. For both scenarios of variance shifts, all tests

based on detrended data lose size control. If there is a reduction in the innovation

variance, the tests are characterized by empirical rejection frequencies which increase

with the sample size. In contrast, empirical rejection frequencies of all tests tend

to zero in the case of a late positive variance shift. As mentioned in Section 3.5.1,

the employed detrending scheme is based on the assumption of constant innovation

variances. Obviously, the violation of this assumption invokes substantial adverse

effects on the performance of the considered PURTs. We do not comment local

power results for the latter two scenarios featuring variance shifts, as corresponding

size estimates of the tests appear prohibitive for applied research.

Table 3 document results for data featuring serially correlated disturbances.

These results indicate a general tendency of the tests to overreject H0 if T is small,

with most severe size distortions observed in the case of N = 50 and T = 10. The
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latter observation, however, does not apply to tRob, which remains undersized for

this panel dimension. Imprecise size estimates for panels with small T are also

not surprising from a theoretical point of view. As mentioned in Section 3.5.2, the

estimates ĉi in the prewhitening regression (12) are
√

T consistent and, hence, a

relatively large time dimension is required in order to fully remove the effects of

serial correlation from the data. Conditional on this finding, results obtained under

H0 are qualitatively similar to those obtained for DGP1. In particular, an early neg-

ative variance shift diminishes rejection probabilities under H0, while a late positive

shift leads to increased rejections of H0. Moreover, tHS remains robust against time

varying volatility and, as before, application of tOLS leads to markedly oversized

rejection rates if the data is cross sectionally correlated. Local power estimates are

similar to those obtained for serially uncorrelated error terms (DGP1) with some

loss of local power for small values of T .

4.3 Summary of simulation results

The main result obtained by the simulation study is that an early negative (late pos-

itive) variance shift invokes a downward (upward) distortion of rejection frequencies

for PURTs derived under the assumption of invariant second order moments. If the

DGP formalizes a random walk without drift under H0, rejection rates obtained by

the ’White-type’ statistic tHS are not affected by variance breaks. Results under the

local alternative Hl and the largest considered sample size confirm the theoretical

finding that local power is asymptotically higher (lower) under a downward (upward)

shift in the innovation variance. However, local power estimates in smaller samples

are not necessarily in line with this asymptotic result. For the scenario of a random

walk with drift under H0, the applied detrending scheme (Breitung, 2000) leads to

deceptive inference if there is a break in the innovation variance. Prewhitening the

data to remove the effect of serially correlated error terms leaves the main findings

unaffected, however, a larger time dimension is required for the empirical type one

errors of the tests to come reasonably close to the nominal level.
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5 Testing the Fisher hypothesis by means of PURTs

5.1 Economic background

The Fisher hypothesis (Fisher, 1930) postulates a stable one-to-one relationship

between nominal interest rates and the expected rate of inflation. This hypothesis

has been investigated in numerous empirical studies (see e.g. Rose, 1988, Crowder,

2003, Cooray, 2003 or Herwartz and Reimers, 2006, 2009). In its simplest form, the

Fisher hypothesis states that the nominal interest rate in country i at time t, Rit,

comprises the ex-ante real interest rate, Et−1[rit], and the ex-ante expected inflation

rate, Et−1[πit], i.e.

Rit = Et−1[rit] + Et−1[πit] + υit,

where υit denotes an uninformative forecast error. Under rational expectations,

actual and expected values differ only by a white-noise error term, i.e. πit =

Et−1[πit] + ν
(1)
it and rit = Et−1[rit] + ν

(2)
it . Accordingly, the ex-post real interest

rate can be expressed as

rit = Rit − πit + νit, (15)

with νit = υit − ν
(1)
it − ν

(2)
it . The representation in (15) is a starting point for em-

pirical investigations of the Fisher hypothesis by means of unit root tests. If, for

instance, inflation and nominal interest rates are found to be I(1) variables, the

Fisher hypothesis would imply (1, -1) cointegration establishing a stationary real

interest rate. In contrast, a finding of nominal interest rates being I(1) and inflation

being I(0) would contradict the Fisher hypothesis.

Prevalence of the Fisher hypothesis is still a question open to empirical research.

Using univariate unit root tests on data for 18 economies, Rose (1988) concludes

that nominal interest rates follow a unit root process while inflation rates are sta-

tionary. On the other hand, Rapach and Weber (2004) report evidence in favor

of both variables being integrated of order one, albeit not forming a cointegration

relationship. Evidence favorable for a stable long run relationship between inflation

and nominal interest rates is reported in Crowder (2003) and Herwartz and Reimers
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(2006, 2009). However, assessments of the Fisher hypothesis based on first gen-

eration PURTs yield conflicting results. For instance, Crowder (2003) finds some

evidence of stationary nominal interest rates based on the PURT of Levin et al.

(2002) for a panel of 9 industrialized economies. In the latter case, it is argued

that these results must be interpreted carefully, as first generation PURTs are gen-

erally prone to distorted rejection frequencies through (neglected) cross sectional

correlation. However, as highlighted by Kaliva (2008), analyses of the Fisher hy-

pothesis must explicitly account for time-varying volatility as interest and inflation

data display marked discrete volatility shifts. In the following assessment of the

Fisher hypothesis, we document the presence of volatility breaks and cross sectional

dependence in inflation and interest rate panel data sets. Subsequently, the PURTs

discussed above are applied to the data to compare the marginal impacts of ac-

counting for both departures from the assumptions underlying first- (and second-)

generation PURTs.

5.2 Data and preliminary analyses

The empirical illustration is based upon the same sample of 9 developed economies

considered in Crowder (2003).1 Data is drawn from the International Financial

Statistics of the IMF at the quarterly frequency, ranging from 1961Q2 to 2007Q2.2

Inflation rates πi are annual changes of the CPIs. Nominal interest rates, Rit, are

selected depending on data availability and real interest rates, rit, are obtained as

rit = Rit−πit. Table 4 contains country specific definitions of interest rate data. The

sample data is depicted in Figure 2 and eyeball inspection reveals close accordance

with the figures provided in Crowder (2003). Figure 3 illustrates the prevalence of

cross sectional dependence and time varying volatility. The left hand side graph

documents a high degree of comovement of US and UK real interest rates over

1These countries are: Belgium, Canada, France, Germany, Italy, Japan, the Netherlands, the

United Kingdom and the United States.
2CPI data for the Netherlands is drawn from Dutch national statistics office as IFS data displays

discretionary jumps, leading to inflation rates ranging between +30% and -17%.
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the sample period. This is not surprising, given that both economies are highly

integrated in the world economy and face similar external shocks, as for instance,

abrupt oil price swings. The right hand side graph displays the first differences of

the two time series, confirming a substantial reduction of volatility around 1985,

ending roughly a decade of rather high fluctuations of real interest rates.

The estimated variance profiles ϑ̂i(s) of the three variables under investigation

are displayed in Figure 4 in order to get an impression of the volatility processes gov-

erning the sample data (see Cavaliere and Taylor (2007b) for details and alternative

estimators of variance profiles). Variance profiles ϑi(s) are calculated as

ϑ̂i(s) =

∑bsT c
t=1 ê2

it + (sT − bsT c)ê2
ibsT c+1∑T

t=1 ê2
it

, (16)

where the êit’s are residuals from the first order autoregression of the considered

process. While a (perfectly) homoskedastic variance profile would be represented by

the 45◦ line, time varying volatilities are characterized by marked deviations from

the diagonal.

Inspection of Figure 4 reveals that time-varying variances are rather the rule

more than an exception for most cross section members. Moreover, it is obvious

that estimated variance profiles differ across countries. However, focussing on the

overall picture, there is some evidence of an upward followed by a downward shift in

the first half of the sample period for all three variables and most of the economies.

In the following, we analyze to what extend previous evidence on the Fisher

hypothesis obtained via first generation PURTs might have been distorted by cross

sectional correlation or (unconditional) volatility shifts.

5.3 Panel unit root test results

The first step of the empirical analysis is to prewhiten the raw data. We use the SIC

to determine individual specific lag lengths and subsequently apply the prewhitening

procedure discussed in Section 3.5.2. In order to obtain a balanced panel, the

maximum of the individual lag lengths is applied to all cross sectional units, hence

prewhitening regressions for most cross sectional units are likely moderately over-
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fitted. We use 12, 5 and 8 lags of the first differenced series for prewhitening inflation,

nominal interest, and real interest rates, respectively. Assuming that inflation as

well as interest rates contain a non-zero mean under the stationary alternative,

prewhitened data is centered by subtracting the first observations. All PURTs are

then computed for the resulting balanced panels of prewhitened and centered data.

Table 5 lists the results of the empirical application. Test statistics for the pooled

PURTs are documented in columns 3-5. The numbers in parentheses are p−values

obtained from the Gaussian CDF. Results for the three variables are listed by rows.

Using the statistic tOLS to test the order of integration of the inflation rate yields

a t-ratio of -3.52 and, hence, a rejection of the unit root null hypothesis at any

conventional significance level. This result is in line with Crowder (2003), reporting

a t-ratio -5.32 obtained via the Levin et al. (2002) procedure. Given that based on

univariate tests, the unit root hypothesis is maintained for all sample economies,

Crowder (2003) argues that the rejection of H0 obtained by the PURT might be

due to size bias, invoked by cross sectional dependence. Accordingly, we apply the

robust tRob statistic proposed by Breitung and Das (2005). The resulting t-ratio of

-2.45 is substantially smaller in absolute value, however, it still leads to a rejection of

the null hypothesis. The relative impact of time varying volatility of the sample data

on pooled PURTs might be assessed by application of the volatility break robust

statistic tHS. The resulting t-ratio of -1.85 is larger than the t−ratios obtained by

tOLS and tRob and the corresponding marginal significance level is 3.2%.

Qualitatively similar results are obtained for the nominal interest rate. By means

of the first generation test statistic tOLS, a t-ratio of -4.22 is calculated, which is

substantially smaller in absolute value than -7.57 reported in Crowder (2003), but

nevertheless leads to a clear rejection of H0. Again, application of the robust tests

increase marginal significance levels. The cross sectional dependence robust test

statistic tRob still implies a rejection of H0 at the 1% level. In this instance, applica-

tion of tHS might lead to a different test decision as the respective p−values of 4.8%

is just below the widespread 5% threshold for a rejection of the PUR hypothesis.

Finally, we test for the panel unit root in the real interest rate. All tests yield
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results in support of panel stationarity of the real interest rate, and thus, of the

Fisher hypothesis. Note however, that at the 5% significance level, even the volatility

break robust test does not rule out the possibility of inflation and nominal interest

rates being likewise panel stationary variables. Accordingly, one should be careful in

interpreting stationarity of real interest rates as a cointegration relationship, linking

two nonstationary variables.

6 Conclusions

In this paper we investigate the effects of discrete breaks in the innovation variance

on homogenous panel unit root tests. It is shown that size distortions documented

in the literature on univariate unit root tests under time varying variances carry

over to the panel case.

The limiting distribution of first and second generation pooled PURTs under a

discrete variance shift are derived and it is shown that only the ’White-type’ PURT

statistic proposed in Herwartz and Siedenburg (2008) remains asymptotically Gaus-

sian under the unit root null hypothesis. Under local-to-unity alternatives, it turns

out that local power depends on the particular pattern of breaks in the innovation

variance. By means of a Monte Carlo study we analyze a variety of possible model

settings, including deterministic trends, autocorrelated disturbances and cross sec-

tional correlation. The simulation study reveals that the ’White-type’ statistic offers

most reliable size control in finite samples and is asymptotically as powerful as the

statistic proposed by Breitung and Das (2005). Moreover, it turns out that the

employed detrending scheme to account for linear time trends leads to deceptive

inference for all analyzed statistics if there is a break in the innovation variance.

As an empirical illustration, recent evidence on the Fisher hypothesis in Crowder

(2003) is reconsidered. Based on data for a cross section of 9 developed economies,

sampled over the period 1961Q2 - 2007Q2, the order of integration of inflation rates

as well as of nominal and real interest rates is tested. The results illustrate the

importance of robust panel unit root tests, accounting for nonstationary innovation
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variances and cross sectional dependence.

The results in this paper raise a number of issues for future research. Firstly,

noting that the detrending scheme proposed in Breitung (2000) is apparently not

applicable under time varying innovation variances, it appears promising to study

alternative detrending schemes. Secondly, the assumed constancy of cross sectional

correlation might not generally hold in empirical applications. It seems sensible

to investigate how time varying patterns of cross sectional correlation affect the

performance of PURTs and if the proposed robust statistic is also able to cope

with this kind of nuisance appropriately. Finally, the focus of this paper was on

PURTs which are pivotal only under weak cross sectional dependence. Extending

the analysis to the case of strong form cross sectional dependence is a topic of

immediate interest for future research.
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A Appendix

A.1 Proof of Proposition 1

Basically, all subsequent proofs are extensions of the proofs in Breitung and Das

(2005) to the case of discrete variance breaks. To derive the limiting distribution of

tOLS define

tOLS =
N−0.5T−1

∑T
t=1 yt−1∆yt√

N−1T−2
∑T

t=1 σ̂2
ey

′
t−1yt−1

=
aNT√
bOLS

.

Consider the numerator first. Under H0, it follows that

aNT = N−0.5T−1

T∑
t=1

yt−1∆yt = N−0.5T−1

T∑
t=1

yt−1et.

Noting that we may decompose Ωt as

Ωt =





Ω1 = ΓΛ1Γ
′, if 0 < t ≤ T1

Ω2 = ΓΛ2Γ
′, if T1 < t ≤ T.

,

where Λ• = diag(λ1, ..., λN)′, • = 1, 2, is a diagonal matrix of eigenvalues and Γ is

the corresponding matrix of normalized eigenvectors, which remains unaffected by

the shift in idiosyncratic variance components due to the assumed time invariant

pattern of cross sectional correlation . Now that ut = Λ
1/2
• Γ′et is an N × 1 vector

of cross sectionally independent error terms with unit variance and zt = Λ
1/2
• Γ′yt,

is an N × 1 vector of mutually uncorrelated random walks, the numerator can be

expressed as

aNT = N−0.5T−1

[
T1∑
t=1

(
t−1∑
s=1

us

)′

ΓΛ1Γ
′ut

+
T∑

t=T1+1

(
T1∑

s=1

us

)′

ΓΛ
1/2
1 Λ

1/2
2 Γ′ut +

T∑
T1+1

(
t−1∑

s=T1+1

us

)′

ΓΛ2Γ
′ut


 , (17)

The terms in (17) are constructed such that summation always only comprises error

terms with homogenous variances as, for instance, T
−1/2
1

∑T1

s=1 us = zT1

d→ W (1) is

a multivariate Gaussian random vector. Defining zt−1 = zt−1 − zT1 , we have

aNT = N−0.5T−1

[
N∑

i=1

λ1i

T1∑
t=1

zi,t−1uit +
N∑

i=1

λ
1/2
1i λ

1/2
2i ziT1

T∑
t=T1+1

uit +
N∑

i=1

λ2i

T∑
t=T1+1

z′t−1uit

]
.
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To economize on space, in the following we throughout use the shorthand notations
∫

Wi and
∫

WidWi instead of
∫

Wi(r)dr and
∫

Wi(r)dWi(r). As T, T1 →∞, common

invariance principles for partial sum processes imply that

aNT
d→ N−0.5

[
δ

N∑
i=1

λ1i

∫ 1

0

WidWi +
√

δ(1− δ)
N∑

i=1

√
λ1iλ2iWi,T1(1)Wi,T2(1)

+ (1− δ)
N∑

i=1

λ2i

∫ 1

0

WidWi

]
. (18)

The subscripts in Wi,T1(1) and Wi,T2(1) in the medium term of the right hand side

of (18) are chosen in order to highlight that both terms are the values of two un-

correlated Brownian motions at r = 1 with T2 = T − T1. Since Wi,T1(1) and

Wi,T2(1) are independent Gaussian random variables and E
[∫ 1

0
WidWi

]
= 0 while

V ar
[∫ 1

0
WidWi

]
= 0.5, one obtains for from the central limit theorem for mean zero

iid random variables that the numerator of the three test statistics tOLS, tRob, and

tHS is given by

aNT
d→ N(0, σ2), σ2 = 0.5δ2λ2

1 + δ(1− δ)λ1λ2 + 0.5(1− δ)2λ2
2, (19)

where λ2• = N−1
∑N

i=1 λ2
•, with • = 1, 2, and λ1λ2 = N−1

∑N
i=1 λ1λ2 as N →∞.

Now consider the denominator of tOLS. We have

bOLS = N−1T−2σ̂2

T∑
t=1

y′t−1yt−1

= N−1T−2σ̂2

[
T1∑
t=1

z′t−1Λ1zt−1 + T1T2
zt−1√

T1

′
Λ1

zt−1√
T1

+
T∑

t=T1+1

z′t−1Λ2zt−1

]
.

As T →∞,

bOLS
d→ N−1

(
N−1δ

N∑
i=1

λ1i + N−1(1− δ)
N∑

i=1

λ2i

)

×
[
δ2

N∑
i=1

λ1i

∫ 1

0

W 2
i + δ(1− δ)

N∑
i=1

λ1iWi(1)2 + (1− δ)2

N∑
i=1

λ2i

∫ 1

0

W 2
i

]
.

Letting N →∞, we obtain convergence in probability

bOLS
p→ (

δλ1 + (1− δ)λ2

) [
0.5δ2λ1 + δ(1− δ)λ1 + 0.5(1− δ)2λ2

]
, (20)

26



since E[
∫ 1

0
W 2

i ] = 0.5 and E[Wi(1)2] = 1. It is immediate from (20) that bOLS 6= σ2,

implying that tOLS does not converge to a Gaussian limiting distribution if there

is a break in the innovation variance, even under cross sectional independence and

cross sectionally homogeneous variances.

¤

A.2 Proof of Proposition 2

Since the numerator is the same for tOLS, tRob, and tHS, it suffices to consider the

denominator to derive the asymptotic distribution of tRob. Specifically,

bRob =
T∑

t=1

y′t−1Ω̂yt−1, with Ω̂ = T−1

T∑
t=1

êtêt
′ = T−1

T∑
t=1

ete
′
t + op(1).

Making use of the same decomposition as in (17) and dropping lower order terms

yields

bRob = N−1T−2




T1∑

t=1

z′t−1Λ
1/2
1





T1

T
Λ1

(
T−1

1

T1∑

t=1

utu
′
t

)
+

T2

T
Λ2


T−1

2

T∑

t=T1+1

utu
′
t
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As T →∞ and by noting that T−1
∑T

t=1 utu
′
t, T−1

1

∑T1

t=1 utu
′
t and T−1

2

∑T
t=T1+1 utu

′
t

p→
E[utu

′
t] = IN , one obtains
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[
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i + δ2(1− δ)

N∑
i=1

λ1iλ2i
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For N →∞ this yields

bRob
p→ 0.5

{
δ3λ2

1 +
(
δ2(1− δ) + (1− δ)2δ

)
λ1λ2 + (1− δ)3λ2

2

}

+
{

δ2(1− δ)λ2
1 + δ(1− δ)2λ1λ2

}

=
(
δ2 − 0.5δ3

)
λ2

1 +
(
1.5δ + 0.5δ2 − 2δ3

)
λ1λ2 + 0.5(1− δ)3λ2

2,

establishing that

νRob =
0.5δ2λ2

1 + δ(1− δ)λ1λ2 + 0.5(1− δ)2λ2
2

(δ2 − 0.5δ3) λ2
1 + (1.5δ + 0.5δ2 − 2δ3) λ1λ2 + 0.5(1− δ)3λ2

2

6= 1.

The result in Breitung and Das (2005) with νRob = 1 holds as a special case if δ = 1

or δ = 0.

¤

A.3 Proof of Proposition 3

Finally, we show that bHS → σ2 for T → ∞ followed by N → ∞. With ět =

et + op(1) and dropping the lower order term in the expression we obtain

bHS = N−1T−2

T∑
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′
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]
.

By Assumption (A1), restricting E[u4
it] < ∞, we can define ξi = u2

it, which is an iid

random variable with E[ξi] = 1 and V ar[ξi] = σ2
ξi

< ∞. Hence, as T →∞,

bHS
d→ N−1

[
δ2

N∑
i=1

λ2
1i

∫ 1

0

W 2
i ξi + δ(1− δ)
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+ (1− δ)2

N∑
i=1

λ2
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0

W 2
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]
.

Because of the independence of the ξi and the partial sum processes, as N → ∞
this expression converges in probability

bHS
p→ 0.5δ2λ2

1 + δ(1− δ)λ1λ2 + 0.5(1− δ)2λ2
2 = σ2,
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verifying that tHS
d→ N(0, 1).

¤

A.4 Proof of Proposition 4

The derivation of the limiting distribution of tHS under the sequence of local alter-

natives Hl : ρ = 1 − c
T
√

N
is based on the respective proof for the statistic tRob in

Breitung and Das (2005). First note that in local-to-unity neighborhoods as defined

above, z[rT ]
d→ Wi(r) for all 0 ≤ c < ∞. It follows that the numerator of tHS is

given by

aHS = T−1N−1/2

T∑
t=1

yt−1∆yt = T−1N−1/2

T∑
t=1

u′tΛ∆zt − cT−2N−1

T∑
t=1

z′t−1Λzt−1.

From the proof of Proposition A.1 it follows directly that the first term on the right

hand side equals the numerator under the null hypothesis while the second term

converges in probability

cT−2N−1

T∑
t=1

z′t−1Λzt−1
p→ c

[
0.5δ2λ1 + δ(1− δ)λ1 + 0.5(1− δ)2λ2

]
,

as T → ∞, followed by N → ∞. From the proof of Proposition 3 it follows that

tHS
d→ N(−cµl, 1), with

µl =
0.5δ2λ1 + δ(1− δ)λ1 + 0.5(1− δ)2λ2√
0.5δ2λ2

1 + δ(1− δ)λ1λ2 + 0.5(1− δ)2λ2
2

.

Again, the result in Breitung and Das (2005) with µl,Rob =
√

0.5 λ1/

√
λ2

1 obtains as

a special case with δ = 0 or δ = 1.
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Figure 1: Asymptotic variance of tOLS, νOLS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.7

0.8

0.9

1

1.1

1.2

Break fraction δ

As
ym

pto
tic 

var
ian

ce 
ν Ω

λ
2
=0.9 

λ
2
=0.66 

λ
2
=0.5 

λ
2
=0.33 

λ
2
=0.2 

λ
2
=1.1 

λ
2
=1.33 

λ
2
=1.5 

λ
2
=1.66 

λ
2
=1.8 

34



F
ig

u
re

2:
N

om
in

al
In

te
re

st
R

at
es

an
d

In
fl
at

io
n

ra
te

s,
19

61
Q

2
-

20
07

Q
2

1
9

6
5

1
9

7
5

1
9

8
5

1
9

9
5

2
0

0
5

5

1
0

1
5

Y
e

a
r	

%
π

B
E

L
R

B
E

L

1
9

6
5

	 
1

9
7

5
1

9
8

5
1

9
9

5
2

0
0

5
05

1
0

1
5

2
0

Y
e

a
r	

%

π
C

A
N

R
C

A
N

1
9

6
5

	 
1

9
7

5
1

9
8

5
1

9
9

5
2

0
0

5

5

1
0

1
5

Y
e

a
r	

%

π
F

R
A

R
F

R
A

1
9

6
5

	 
1

9
7

5
1

9
8

5
1

9
9

5
2

0
0

5

05

1
0

Y
e

a
r	

%

π
G

E
R

R
G

E
R

1
9

6
5

	 
1

9
7

5
1

9
8

5
1

9
9

5
2

0
0

5

5

1
0

1
5

2
0

Y
e

a
r	

%

π
IT

A
R

IT
A

1
9

6
5

	 
1

9
7

5
1

9
8

5
1

9
9

5
2

0
0

5

05

1
0

1
5

2
0

Y
e

a
r	

%

π
J
A

P
R

J
A

P

1
9

6
5

	 
1

9
7

5
1

9
8

5
1

9
9

5
2

0
0

5

02468

1
0

1
2

Y
e

a
r	

%

π
N

E
D

R
N

E
D

1
9

6
5

	 
1

9
7

5
1

9
8

5
1

9
9

5
2

0
0

5

5

1
0

1
5

2
0

2
5

Y
e

a
r	

%

π
U

K
D

R
U

K
D

1
9

6
5

	 
1

9
7

5
1

9
8

5
1

9
9

5
2

0
0

5

5

1
0

1
5

Y
e

a
r	

%

π
U

S
A

R
U

S
A

35



Figure 3: Real interest rates, levels and 1st differences, US vs. UK
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Figure 4: Estimated variance profiles
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Table 1: DGP1

CS independence SAR(1) model
ρ=1 ρ = 1− 5

T
√

N
ρ=1 ρ = 1− 5

T
√

N

N T OLS Rob HS OLS Rob HS OLS Rob HS OLS Rob HS

Constant variance
10 10 6.9 2.0 5.8 36.1 35.1 30.0 23.8 4.7 5.8 19.9 18.1 14.9
10 50 6.8 5.0 6.5 39.1 38.6 37.4 25.2 8.2 8.5 20.3 17.0 16.7
10 100 6.9 6.1 6.7 43.8 43.7 44.3 24.4 7.1 7.1 25.0 20.2 20.5
10 250 7.2 6.8 7.2 57.0 56.5 55.8 25.1 8.3 8.5 28.3 21.1 20.9
50 10 5.2 0.0 5.3 47.0 46.9 38.1 20.1 0.5 5.3 21.4 20.5 18.2
50 50 5.8 1.3 5.7 59.0 57.9 57.2 20.8 4.3 7.0 26.8 24.8 23.0
50 100 5.2 2.3 5.3 74.8 74.5 73.3 20.1 4.5 5.9 36.9 33.9 33.5
50 250 5.5 3.9 5.6 84.8 84.4 84.2 21.1 5.7 6.4 44.3 39.4 38.5

Early negative variance shift
10 10 3.3 0.2 5.8 12.5 13.3 10.2 15.2 1.9 4.6 8.3 7.5 9.0
10 50 4.5 2.7 6.7 9.9 9.7 10.0 19.9 5.8 6.9 8.3 7.4 6.9
10 100 3.8 2.9 6.0 17.3 17.3 14.9 18.7 6.7 7.7 11.0 9.1 8.4
10 250 4.2 3.6 6.1 38.2 38.6 35.6 21.1 7.5 7.9 19.5 15.3 13.5
50 10 1.5 0.0 4.4 8.3 10.1 6.7 13.0 0.0 5.4 7.4 7.8 5.7
50 50 2.8 0.1 5.5 19.6 20.6 17.4 15.4 1.4 5.8 11.9 11.5 11.6
50 100 2.7 0.2 5.5 50.5 49.7 49.4 16.1 2.0 6.6 22.4 20.3 19.2
50 250 3.0 1.5 5.4 92.1 90.8 90.9 15.8 3.1 6.2 49.3 43.1 42.1

Late positive variance shift
10 10 12.7 4.6 3.5 20.3 20.5 22.3 29.2 8.5 3.9 14.4 13.7 13.5
10 50 13.5 10.8 6.0 24.9 24.1 23.6 31.9 12.0 6.2 19.1 15.3 14.6
10 100 12.7 11.5 6.3 28.6 28.0 26.2 32.7 13.1 6.7 19.8 16.8 14.6
10 250 14.5 13.8 7.1 30.7 30.5 27.0 34.8 14.4 8.2 19.3 14.9 13.5
50 10 11.4 0.1 3.4 22.5 22.7 25.5 26.8 1.9 3.5 12.7 13.3 14.5
50 50 13.0 4.0 5.2 31.6 30.0 31.2 30.2 9.1 5.8 17.8 17.0 16.6
50 100 12.8 8.2 6.3 34.4 32.5 33.0 29.3 11.3 6.3 20.6 19.3 17.8
50 250 12.7 10.1 6.0 40.8 39.6 39.4 30.2 12.5 6.6 21.6 20.4 18.8

Notes: OLS, Rob and HS refer to the PURT statistics defined in (4), (5),(6). Results
are based on 5000 replications and the nominal size equals 5%. Local power results
are size adjusted. Data is generated according to DGP1 and all tests are computed
on demeaned data.
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Table 2: Empirical rejection frequencies, DGP2

CS independence SAR(1) model
ρ=1 ρ = 1− 5

TN1/4 ρ=1 ρ = 1− 5
TN1/4

N T OLS Rob HS OLS Rob HS OLS Rob HS OLS Rob HS

Constant variance
10 10 7.4 1.8 5.4 16.2 16.3 14.5 23.7 5.1 5.4 10.6 10.4 8.9
10 50 6.9 4.9 6.3 17.5 17.3 15.7 22.7 7.0 7.0 11.3 10.1 8.9
10 100 6.1 5.2 5.7 18.7 18.6 19.1 21.0 6.6 6.7 12.0 11.3 11.1
10 250 5.8 5.5 5.7 19.7 19.2 19.3 22.1 6.9 6.9 12.8 11.7 11.8
50 10 6.6 0.0 5.2 22.6 23.3 19.3 21.6 0.7 5.2 12.8 13.2 11.2
50 50 5.6 1.1 5.2 23.6 24.1 22.9 20.9 3.9 6.1 13.8 13.0 12.7
50 100 5.8 2.6 5.6 24.7 24.8 24.3 20.8 4.9 6.5 12.7 12.6 11.6
50 250 5.2 3.5 5.2 28.1 28.3 27.6 21.4 5.4 6.1 15.0 13.7 13.7

Early negative variance shift
10 10 8.4 0.9 3.9 20.7 19.5 23.7 23.9 4.6 3.3 11.5 11.4 13.5
10 50 14.6 9.7 9.3 13.8 13.8 15.0 32.2 12.6 8.5 8.7 8.0 8.4
10 100 15.4 12.6 11.2 13.2 12.6 13.9 34.0 15.1 10.0 10.2 9.0 8.1
10 250 15.2 14.2 11.4 16.1 15.8 14.8 33.1 15.3 9.9 10.5 9.5 10.0
50 10 11.9 0.0 5.4 32.8 30.9 34.0 26.7 0.1 5.0 15.6 14.8 17.3
50 50 22.1 2.2 16.0 21.9 19.3 25.3 35.8 7.2 10.3 11.5 10.9 12.6
50 100 23.4 7.6 18.3 23.1 21.6 24.6 37.9 11.9 12.6 11.6 10.5 10.6
50 250 23.5 14.3 19.0 30.4 28.5 30.5 38.7 14.8 13.1 14.9 13.8 13.8

Late positive variance shift
10 10 0.1 0.0 0.0 17.4 15.9 14.5 1.8 0.2 0.1 13.6 13.6 13.2
10 50 0.0 0.0 0.0 18.4 18.7 17.9 2.1 0.4 0.2 12.3 12.0 12.0
10 100 0.0 0.0 0.0 20.1 19.9 20.0 1.9 0.5 0.2 13.2 12.9 13.4
10 250 0.1 0.1 0.1 17.4 17.4 17.2 2.2 0.8 0.5 11.9 11.6 11.4
50 10 0.0 0.0 0.0 25.1 15.2 10.4 0.0 0.0 0.0 14.4 12.7 10.4
50 50 0.0 0.0 0.0 31.2 27.5 18.8 0.0 0.0 0.0 19.2 19.3 18.2
50 100 0.0 0.0 0.0 35.6 31.8 27.6 0.0 0.0 0.0 18.9 19.1 19.2
50 250 0.0 0.0 0.0 35.2 33.4 32.6 0.0 0.0 0.0 18.8 19.3 18.9

Notes: Data is generated according to DGP2 and all tests are computed on detrended
data. For further notes see Table 1.
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Table 3: Empirical rejection frequencies, DGP3

CS independence SAR(1) model
ρ=1 ρ = 1− 5

T
√

N
ρ=1 ρ = 1− 5

T
√

N

N T OLS Rob HS OLS Rob HS OLS Rob HS OLS Rob HS

Constant variance
10 10 7.5 1.8 6.0 24.9 24.6 20.1 22.7 3.3 4.4 16.1 14.7 13.0
10 50 7.0 5.0 6.6 36.9 36.9 36.8 24.6 7.5 7.6 19.4 16.6 15.9
10 100 7.1 6.2 6.9 42.0 41.3 41.4 24.4 7.6 7.8 22.2 18.4 18.7
10 250 7.2 6.7 7.0 55.9 55.7 55.4 24.3 8.4 8.6 27.3 21.5 20.9
50 10 14.5 0.0 12.2 27.3 27.6 19.6 28.2 0.2 6.5 16.6 16.1 14.9
50 50 6.8 1.6 6.6 54.9 54.1 53.1 22.6 4.3 6.9 25.1 24.4 23.9
50 100 6.5 2.9 6.5 68.3 68.6 67.5 21.2 5.5 7.0 33.4 30.1 30.0
50 250 5.9 4.4 6.1 83.9 84.3 83.5 21.3 5.8 6.2 43.6 40.3 40.7

Early negative variance shift
10 10 5.5 0.5 7.9 8.0 8.3 6.2 17.5 2.0 6.4 7.6 7.1 6.2
10 50 4.3 2.7 6.2 10.5 10.6 9.1 18.6 5.5 6.4 8.2 7.2 6.5
10 100 4.4 3.3 7.0 15.6 16.0 14.1 19.2 6.5 7.1 9.5 8.5 9.0
10 250 4.9 4.4 6.9 35.0 34.4 31.7 19.8 7.5 8.1 17.4 12.6 12.5
50 10 9.4 0.0 12.4 4.1 5.6 1.9 22.6 0.0 8.3 5.4 6.0 3.8
50 50 5.0 0.1 9.4 13.9 15.1 12.4 19.0 1.5 7.0 9.6 9.2 9.4
50 100 4.0 0.4 6.9 45.0 45.4 43.1 17.5 2.8 6.7 22.4 19.5 19.0
50 250 3.1 1.3 5.6 91.1 89.6 90.0 16.9 3.4 7.2 45.8 39.7 38.3

Late positive variance shift
10 10 8.1 1.2 4.9 13.6 14.2 13.4 20.8 2.6 3.9 12.0 12.8 10.5
10 50 14.7 11.7 6.8 22.7 23.2 20.7 33.0 12.3 6.7 15.4 13.4 12.8
10 100 14.1 12.4 6.5 27.3 26.3 24.6 33.2 13.8 7.6 17.2 14.5 13.6
10 250 14.1 13.7 7.4 30.6 30.2 26.0 34.6 14.7 8.1 18.3 14.9 13.8
50 10 10.7 0.0 6.7 13.5 13.6 13.1 23.6 0.2 5.4 11.3 11.1 9.3
50 50 18.8 6.8 8.0 28.6 28.2 28.4 33.9 10.8 7.8 16.0 14.7 13.6
50 100 16.0 9.2 7.1 35.2 33.5 33.3 31.1 11.5 7.0 19.4 17.5 16.6
50 250 14.2 11.5 6.8 39.1 37.4 37.6 31.3 12.9 6.8 21.0 19.3 17.9

Notes: Data is generated according to DGP3 and all tests are computed on
prewhitened and centered data. For further notes see Table 1.
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Table 4: Interest rates, definitions

Country Label Interest rate
Belgium BEL Treasury paper
Canada CAN Treasury Bill rate
France FRA Government Bond yield
Germany GER Call money rate
Italy ITA Government Bond yield medium-term
Japan JAP Lending rate
Netherlands NED Government Bond yield
United Kingdom UKD Treasury Bill rate
United States USA Treasury Bill Rate

Table 5: Empirical results

Variable T OLS Rob HS
π 172 -3.52 -2.45 -1.85

(.000) (.007) (.032)
R 179 -4.22 -2.60 -1.67

(.000) (.005) (.048)
r 176 -4.69 -3.49 -2.83

(.000) (.000) (.002)

Notes: T denotes the number of included time series observation in the balanced
panels. OLS, Rob, and HS refer to the PURT statistics defined in (4), (5),(6).
Numbers in parentheses are p−values.
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