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Portfolio adjustment and panic behavior under
true uncertainty⇤

Se Ho Kwak
†

August 29, 2022

Abstract

G.L.S. Shackle was one of the representative critics against probability-
based economic theory, and influenced some Post-Keynesians and Austri-
ans. During the 1980s and 1990s, his alternative framework was math-
ematically reconstructed by Katzner. In this paper, we will reformalize
the Shackle-Katzner framework to explain the financial decision-making
of the individual. For this, the portfolio diversification between two non-
monetary assets will be explained by the reformalized model introduced
here, and then moved to the analysis about a case of money and a non-
monetary asset. Based on these findings, a few possible scenarios of panic
behavior in the portfolio adjustment will be examined.

JEL Classification Code: B21, B50, D81, G11.
Keywords: Shackle; uncertainty; portfolio; panic; money

1 Introduction

Consider the following a pair of behaviors: In choosing an asset or a ratio for
investment between two given assets, one having higher potential gain and loss
than the other, the individual selects the former when she is optimistic about
the market. Alternatively, when the dominant market expectation for the future
is reversed from optimism to pessimism, the individual abruptly changes her
mind so that she abandons the former and switches to the latter rather than
just partially adjusting the ratio between two assets in the portfolio. When the
change of sentiment regarding the future outcome from optimism to pessimism
is not only abrupt but “even” gradual, such panic behavior can happen, as
instanced by black Monday in the U.S. stock market in 1987. Such drastic
adjustment of a portfolio from the high potential yield with high uncertainty to
low yield in low uncertainty or even zero yield with certainty will be referred to
hereafter as panic behavior. Panic behaviors have been observed frequently in

⇤I am specially thankful to Donald Katzner and Naoki Yoshihara
†Corresponding author. Department of Economics, University of Massachusetts Amherst,

Crotty Hall, Amherst, MA, 01002, USA, E-mail: skwak@econs.umass.edu.
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history of financial crises. Many prominent economists including Friedman and
Schwarz (1963) and Kindleberger (1978) insisted that there must be an element
of panic in financial crises.

There is influential theoretical research on financial crises1asserting that
panic behavior is the result of self-fulfilling interactions of market participants
and the resultant multiple equilibria. This is, for example, exhibited by the
Diamond and Dybvid (1983) model of banking crises, as well as models of self-
fulfilling currency collapse by Obstfeld (1996) and Krugman (1999). Rosser
(1997) and Gallegati et al. (2011) constructs heterogenous agent models which,
respectively, focus on the speculative bubble and herding behavior. In applied
mathematics, local martingale models (Jarrow, Protter, and Shimbo, 2010; Jar-
row, Kohia, and Protter, 2011; Protter, 2016), the disorder detection models
(Shiryaev 2007) and the earthquake model (Gresnigt et al., 2015) have exam-
ined the mechanism of bubble and the ensuing crash. These models explain
panic phenomena in the stock market in terms of the detection of a stock bubble
and the optimal moment of exit before the realization of the crash. Recently,
Gennaioli and Shleifer (2018) introduced the notion of diagnostic beliefs and
neglected risk to explain financial fragility.

Strictly speaking, in the approaches mentioned so far, panic behaviors are
not captured by the explanations of pure individual decision-making. The focus
in the approach of self-fulfillment and multiple equilibria is mainly on the in-
teraction of market participants rather than on the idiosyncrasies of individual
decision-making. Basically, self-fulfilling behavior, mutual interaction of specu-
lators and financial fragility indicate ‘herding’ not ‘panic’. Herding is the result
of group behavior and panic is the response by individuals. Although herding
can reinforce panic, some individuals start panic behavior before herding. .

However, it is hard to describe the switching mechanism from one decision
to another by the logic of pure individual decision theory without relying on
the narratives of market participants corresponding to each situational and in-
stitutional context (Goetzman et al. 2016). For example, as a representative
theoretical tool of microfoundation, in expected utility theory, the summation or
integration of expected utilities shows only continuous changes rather than any
discontinuity implying panic response unless an abrupt switch in the probability
distribution or payo↵ values is supposed. But surely panic behavior does not
happen only after a sudden, unexpected update in the information prescribing
the probability distribution or payo↵ schedules but also after enduring long and
gradual changes in anticipated future outcomes. At the right moment, panic
happens suddenly, without notice in advance.

Expected utility theory is not the only theoretical tool employed in explain-
ing individual decision-making. Recent developments in the applied mathemat-
ics of the theory of financial fragility also heavily rely on the notion of probability
or a set of probabilities as the indicators of the likelihood of payo↵s in valuing
potential outcomes. But the availability of probability information in concrete

1For the survey of financial crisis literature including panic-based and fundamental-based
approaches, see Goldstein (2013).
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individual decision-makers has been persistently doubted (Keynes 1921; Knight,
1921; Mises, 1949; Lachmann, 1976; O’Driscoll and Rizzo, 1985; Davidson, 1983;
1991; Lawson, 1995; Katzner, 1998). In normative and descriptive contexts, the
use of both objective and subjective probabilities is not credible for skeptics of
probability calculus and expected utility theory in constructing ‘realistic’ expla-
nation of individual behavior.

Specifically, G.L.S. Shackle is a major critic of probability and expected
utility theory. If the probability is construed in terms of frequency, then the
probability calculus cannot be utilized when the choice is a single, unique ac-
tivity because the probability value has meaning only when an experiment is to
be repeated a large number of times. But almost all economic decisions occur
under unique and irreversible circumstances. Even when probability is thought
of as subjective, Shackle has eloquently argued that most economic decisions
are made under conditions of true uncertainty in which there is not enough
information available to the decision-maker to be able to construct the stable
exhaustive list of possible future outcomes. The reality in time requiring a de-
cision must be unstable, and any change in the number of alternative outcomes
must alter the probability distribution assigned to previously known outcomes.
It is not possible, while preserving the axiom of probability, to represent n > 2
independent events whose realization and nonrealization are assessed as equally
plausible with the identical probability value than 1/2. Otherwise, the summa-
tion of probability would be bigger than unity.

Furthermore, representing the possibility of an event having no supporting
evidence with zero probability is not a suitable way to reflect ignorance on the
part of the decision-maker. The assignment of zero probability is relevant to the
“knowledge” that the relative frequency or possibility of occurrence of a specific
event is zero, and this is di↵erent from disbeliefs due to the lack of supporting
information. Hence, instead of the problematic use of probability as a basis
for expected utility theory, Shackle constructed his own alternative theoretical
framework explaining human decisions on the premise of historical time, igno-
rance of future events, and a non-probabilistic measure of uncertainty (Shackle,
1954; 1969; 1972). Shackle proposed alternative notion of subjective response
toward an uncertain future by what he called potential surprise. Potential sur-
prise was defined by Shackle as the surprise the individual imagines today that
he would feel in the future if a particular payo↵ were to come to pass.2

Shackle’s criticism of probability was accepted by several Austrians and Post
Keynesians (Lachmann 1976; Davidson 1983) and his theoretical framework was
formalized with the language of modern theory of portfolio selection and of firm
behavior by Ford (1983; 1994) and Vickers (1978; 1987; 1994). Katzner con-
structed a totally reformalized version of Shackean decision theory (Katzner
1986-7, 1987-88, 1989-90) and extended the range of its application to simul-
taneous behavior (Katzner 1995), the demand for money (Katzner 2001), firm
behavior (Katzner 1990-91), and macroeconomic phenomena (Katzner 1998).3

2See Shackle (1972).
3This series of studies was combined and expanded in a single book (Katzner 1998).
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In the Shacklean approach that we will construct here, panic behavior is
explainable as the result of the existence of money in the choice option and the
specific decision criteria of an individual focusing on only the stronger aspect out
of coexisting optimism and pessimism on the potential payo↵s from the asset
portfolio. Optimism is observable in a bull market and pessimism is observable
in bear market. As the terminating stage of a booming market arrives, the
expectation of potential payo↵ is gradually eroded and finally goes through a
turning point. At that point, the object of decision-making is totally reversed,
away from high uncertainty and high yield towards maintaining the principal
of one’s investment. In order to elaborate this mechanism in the dimension of
individual decision-making, the next section sets out Shacklean decision model
along the line of reformalized model of Katzner’ formalization (1986-7; 1987-88;
1989-90; 1998) by the author. In section 3, we will develop a model of portfolio
selection for the case of two non-money assets. In section 4, we will illustrate
the panic response in portfolio adjustment on the basis of the model established
in section 3. In section 5, we will extend our analysis to the special case of
decision-making between money and an arbitrary non-money portfolio.

2 A summary of Shacklean decision process

Potential surprise and payo↵ function 4

In Shacklean framework, decisions are made in three steps. In step 1, en-
countering a problem of choice facing an uncertain future, the decision-maker
recognizes a set X of all available actions and a set ⌦ of all currently imaginable
future states of the world. In Shacklean framework, the incompleteness of ⌦ is
premised.5 To construct a measure of uncertainty over the hypotheses from that
collection of imaginable future states, let F ⇤ be a nonempty �-field over ⌦ and
call an element of F ⇤ a hypothesis. For any hypothesis A 2 F ⇤, a hypothesis
B 2 F ⇤ is called rival to A \B 6= ;. 6

Definition 2.1: A collection of rival hypotheses is defined as a collection of
hypotheses Ai such that

i) A1 = ;,
ii) Ai is nonempty hypothesis for each i 6= 1,
iii) For all i 6= j, Ai and Aj are rival hypotheses,
iv)

S
i
Ai = ⌦.

4For the details on definitions introduced here, see Katzner (1998, pp.86-94).
5Savage (1954) also acknowledged that the axiomatic system of the subjective expected

utility theory is related not to the ‘grand world’ which is the complete list of future states, but
only to the ‘small world’ derived from the grand world. On the contrary, in Shacklean frame-
work, because that ‘small world’ confines the decision-maker, Shackle negates the additivity
and distributivity of probability calculus.

6A nonempty collection F ⇤ of subsets of ⌦ is called �-field over ⌦ if for any A 2 F ⇤ and
countable collection {Ai|Ai 2 F ⇤}, it satisfies Ac 2 F ⇤.
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In Katzner’s reformalization of Shaklean decision theory, the null hypothesis
A1 = ; is not just an inevitable element of logics for the set-theoretic construc-
tion, but concretely reinterpreted as the residual hypothesis, i.e., the currently
unspecifiable but potentially possible hypothesis beyond the range of ⌦.

Based on the recognition of available actions in X and hypotheses in F ⇤

over ⌦, the decision-maker imagines (1) the degree of surprise he/she would
feel now upon the future realization of an element of a hypothesis in F ⇤ and
(2) the future payo↵ summoned by the realization of a state of the world to-
gether with his/her chosen action from X.

Definition 2.2: The potential surprise is a function s : F ⇤ ! [0, 1] satisfying
these three conditions:
i) for all A 2 F ⇤, 0  A  1,
ii) for any collection Ai of nonempty subsets in F ⇤, s(

S
i
Ai) = inf

i
s(Ai) 7,

iii) if Ai is an exhaustive set of rival hypotheses, then s(Ai) = 0 for least one i.

The condition ii) of definition 2.2 is the counterpart to the additivity of
probability measure. As a hypothesis includes the wider range of possible fu-
ture states by combining multiple hypotheses, that hypothesis is regarded more
plausible to be realized. But in Shacklean framework the implication of poten-
tial surprise is distinctive and even contrasting to probability. Thus, adding the
potential surprise values of multiple hypotheses is not justifiable as the sense of
probability.

In condition iii), if a hypothesis A in F ⇤ has zero potential surprise value,
then the hypothesis A is said to be perfectly possible. If s(A) = 1, then the hy-
pothesis A is said to be perfectly impossible. The condition iii) establishes the
standardized cap to the degrees of belief in Shacklean framework. In Shacklean
framework, the perfect possibility is represented by, unlike the unitary probabil-
ity, zero. The zero potential surprise does not mean that the decision-maker has
the strongest assurance about the realization of that event, but the decision-
maker cannot confirm any evidence or scenarios, which block the progress of
the situation toward that direction. In other words, in decision-maker’s mind,
future is definitely open to that direction, but the exact plausibility is unknown.
Like this, the measure of uncertainty in Shacklean context, i.e., the potential
surprise is totally insulated from the premises of probability.

Another function defined on ⌦ in conjunction with the space of acts X is the
payo↵ function defined as u : X⇥⌦ ! R, where R is the space of real numbers.
For a fixed act xo 2 X, its possible payo↵ values for all ! 2 ⌦ are specified as
u(xo,!) or uxo(!). Then, for an act x 2 x, we can obtain a locus describing the

7Although the domain of potential surprise is the family F ⇤ of ⌦ equipped with the
completeness of set-operations, \, c, ultimately, it is no problem to suppose that the potential
surprise values of arbitrary hypotheses are reduced to corresponding ones of singleton sets of
F ⇤, i.e., ⌦.Unlike continuous probability distribution, Shacklean framework can allow that the
singleton set may have non-zero value of potential surprise. How to construct the functional
representation of potential surprise ‘order’ is beyond the range of this study, and it will be
explained in another paper by the author.
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relation between possible gain/loss and potential surprise as in figure 2.1. For a
given level of surprise value, we can pinpoint the maximum potential gain and
loss, and they can be defined as a functional form as u = gx(s) and u = lx(s).
We will call the graph of u = gx(s) and u = lx(s) the potential surprise locus.

As the size of gains or losses becomes larger, the degree of potential surprise
increases because it can be regarded as more unrealistic. In other words, an
extremely high gain or loss is treated highly implausible. Meanwhile, there is
a range of ‘perfectly possible’ gains or losses around some “standard” level of
payo↵ to be determined by the decision-maker.

[Figure 2.1]

To formalize this idea, let uo in R be the standard payo↵ relating to an act
x. For example, uo may be the zero payo↵ in gambling or the real interest rate
in the case of a financial investment. Without loss of generality, we can simply
put uo = 0 because we can restate any gains and losses as the distance from
the standard payo↵ uo. Then we can split the whole space [0, 1] ⇥ R of the
potential surprise and payo↵ into the gain space, [0, 1] ⇥ U+

x and and the loss
space, [0, 1] ⇥ U�

x , where U+
x = {u 2 R : u � 0} and U�

x = {| u |2 R : u  0}.
Simply, U+

x = U�
x = R+ is the non-negative real space and U+

x \U�
x = 0, which

indicate the magnitude of all imaginable gains and losses respectively. We will
denote the element of U+

x and U�
x as u+

x , u
�
x � 0 or simply, u+, u� � 0.

Attractiveness function, attractive index

Potential surprise indicates the degree of emotional disbelief without any
premise of certain knowledge regarding frequency or possibility of such a state.
Now, step 2 functionalizes two variables - potential surprise and payo↵ - to
specify in a well-defined way the importance of each outcome to the decision-
maker.

For an arbitrary act x, each point (s, u) = (s(!), ux(!)) in [0, 1]⇥U may have
di↵erent importance to the decision-maker. For example, at points in [0, 1]⇥U+

x

it is sensible to think that that bigger payo↵s with lower potential surprise have

6



more importance to the decision-maker because that implies a more certain and
successful outcome of the decision. In the geometric representation as figure
2.2, this is equivalent to the higher value of 1 minus potential surprise implying
the higher belief. In [0, 1] ⇥ U�

x , bigger losses with higher confirmation have
more importance to the decision-maker because that imply a more threatening
outcome in the future.

At this point, we need to introduce another measure of uncertainty defined
on F ⇤ called potential confirmation. The potential confirmation function was
originally introduced by Katzner (1986-7, 1998) in his reformalization of Shack-
lean theory, and it is the analogue of probability in the Shackle-Katzner context.
The potential confirmation of a hypothesis A in F ⇤ is the degree of confidence or
the absence of surprise that the individual imagines today that he would feel in
the future if a payo↵ were to actually arise.8 Although the potential confirma-
tion function also has its own definition and independent meaning as potential
surprise,9 we will interpret it in the narrowest sense, i.e., c = 1� s : A 2 F ⇤ !
c(A) 2 [0, 1], because it is a geometrically hereditary result as we can see in fig-
ure 2.2. Thus the potential confirmation locus of an action x 2 X can be defined
as follows: for any co 2 [0, 1], u+ = gx(co) = sup{u+

x (!) : c({!}) = co,! 2 ⌦}
and u� = lx(co) = sup{|u�

x (!)| : c({!}) = co,! 2 ⌦}.

[Figure 2.2]

Hence at step 2 for each decision option x inX, the decision-maker is thought
to focus on the most important two pairs of each consisting of a potential con-
firmation and payo↵ values. The more important a (c, u) is, the greater ability
it has to grab the decision-maker’s attention. On the basis of this reasoning,
we can introduce a pair of real valued functions a = (a�, a+) assigning a non-
negative numerical value to each (c, u+) 2 [0, 1] ⇥ U+

x or (c, u�) 2 [0, 1] ⇥ U�
x .

This combined function a is called the attractiveness function.10 The determi-
nation of those pairs of gain and loss emerges from maximizing an attractiveness

8See Katzner (1986-7; 1987-88; 1989-90; 1998).
9The potential confirmation value c(A) may have its own distinctive functional form than

1� s(A) if it is necessary. For detailed explanation, see Katzner (1998) p.62.
10In expected utility theory or other variant types of modern decision theories, the future

value or importance of an act determined by both the payo↵ and its corresponding degree
of uncertainty (probability), which is assumed to have the multiplicative form of those two
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function subject to u+ = gx(c) and u� = lx(c). In each case, the higher the
function value, the greater the attention-grabbing power. The properties of

attractiveness a+ and a� can be assumed as @a+(c,u+))
@u+ , @a�(c,u�))

@u� > 0 and
@a+(c,u+))

@c , @a�(c,u�))
@c > 0, u+ 2 U+

x , u� 2 U�
x and c 2 [0, 1] where the partial

derivative at a boundary point is defined as the right derivative.
For a given attractiveness function a�, a+ on [0, 1] ⇥ U�

x and [0, 1] ⇥ U+
x

respectively, we can obtain a series of curves along which attractiveness values
are constant. We will call those curves iso-attractiveness contours as described
in figure 2.2 and 2.3. For any act x in X and the associated potential confir-
mation locus and attractiveness functions, the decision-maker can find the most
attention-grabbing points (c+x , u

+
x ) 2 [0, 1] ⇥ U+

x and (c�x , u
�
x ) 2 [0, 1] ⇥ U�

x by
solving the two constrained optimization problems below.

8
<

:

max
(c,u)

a+(c, u) such that u = gx(c) where (c, u) 2 [0, 1]⇥ U+
x ,

max
(c,u)

a�(c, u) such that u = lx(c) where (c, u) 2 [0, 1]⇥ U�
x .

(1)

The maximizing solutions occur at tangencies between the potential confir-
mation locus and iso-attractiveness contours of the attractiveness function as
shown in figure 2.3.

[Figure 2.3: maximizing attractiveness s.t the potential confirmation locus]

Definition 2.3: The point (c+x , u
+
x ) and (c�x , u

�
x ) satisfying (1) are called the

focus-gain of x and the focus-loss of x, respectively. The set of pairs for focus-
gain and focus-loss for all x in X is called the attractiveness path.

By maximizing the attractiveness function, the less important pairs of payo↵
and potential confirmation values is excluded, and the decision-maker’s focus
is restricted to only the most attractive pairs of payo↵ and potential surprise

numeric, e.g., expectation = probability ⇥ payoff . Rather than adopting the multiplicative
function, Shackle defined attractiveness (in Shackle’s original terminology, ascendancy) func-
tion in the abstract form. Meanwhile, when we apply Shacklean framework to the portfolio
selection in next section, we will adopt the multiplicative attractiveness function.

8



values for each action, focus-gain and focus-loss. Then [�a(c�x , u
�
x ), a(c

+
x , u

+
x )] is

the range of the importance (attractiveness) values for each x, and the focus-loss
and gain are the arguments of two end points, i.e., the minimum and maximum
importance of each x.

Now we can redefine the domain of the attractiveness function to the en-
tire set X of available actions by â+, â� : X ! R, â+(x) = a+(c+x , u

+
x ) and

â�(x) = a�(c�x , u
�
x ) for all x 2 X. The collection of all pairs of focus-gain and

focus-loss for all x in X generates the attractiveness path as the figure 2.4.

Definition 2.4: Let R+ be the set of non-negative real numbers. The at-
tractiveness index of an act x 2 X is defined by â : X ! R+ ! R+ where
â(x) = (â�(x), â+(x)). The function values of â on X are assumed to form a
connected path in R+ ! R+ called the decision path.

[Figure 2.4: the attractiveness path and the decision path]

The attractiveness path and the decision path are illustrated in figure 2.4 for
the cases in which the graphs of three potential confirmation locus are nested
within each other. In figure 2.4, we can see the decision path along points A,
B, and C derived from the attractiveness path points A, B, and C respectively.
Given set of attractiveness foci for all selectable acts, the decision process re-
duces to evaluating and comparing foci pairs. For this process, we need to
introduce another functional tool called the decision index.

Decision function, decision index

Now it is step 3. From the previous step involving the attractiveness function
and the attractiveness index, we specified an attractiveness path and its corre-
sponding decision path. The decision path in the plane of (a�, a+) 11 summa-
rizes the information regarding the possible values of maximum and minimum
attractiveness/importance from the given choice situation. For all possible pairs

11The plane on which the decision path is drawn in figure 2.4 and 2.5 can be represented
by either (â�, â+) or (a�, a+).
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of a�(c�x , u
�
x ), a

+(c+x , u
+
x ) for each x 2 X, define a function d : R+ ⇥ R+ ! R

that assigns the rank of ‘final value’ for the decision-making. This function is
said to be the decision function. Decision function reflects the preference of
decision-maker regarding the optimistic and pessimistic aspect of each action.
Then we can obtain a series of curves indicating each level of ‘final’ values. For
an arbitrary k 2 R, the set{(a�, a+) 2 R+ ⇥ R+ : d(a�, a+) = k} is called
an iso-decision contour.12 As we introduced the attractiveness index from the
attractiveness function, we can extend the domain of the decision function to
the entire set X.

[Figure 2.5: Iso-decision contours and decision path]

Definition 2.5: The decision index on X is a function d̂ : X ! R for which
d̂(x) = d(â�(x), â+(x))) = d(a�(c�x , u

�
x ), a

+(c+x , u
+
x )).

The final choice xo in X is determined by solving the following maximization
problem:

max
x2X

d̂(x).

In figure 2.5, the act x has the highest value in decision index. Hence the
decision-maker finally chooses x.

Summary of the decision process in Shacklean framework

The entire process of decision-making described in the Shacklean framework
can be summarized as follows. For each act x, potential confirmation values and
corresponding payo↵s of possible future states are determined. Specifically, the
decision-maker is imputed a standard value uo determining each payo↵ as either
gain or loss. These two series of information for each act x generate its poten-
tial confirmation locus. The importance of all imaginable scenarios for each

12Shackle called this gambler-preference map.
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x are evaluated by attractiveness functions. By maximizing the attractiveness
function subject to the mental constraint of the potential confirmation locus
for each x, the decision-maker finds the pairs of potential confirmation values
and corresponding gain and loss which give the highest degree of importance
respectively. Defined on these pairs over all possible acts, the decision index
assigns a final rank to each x in X. The highest ranked act in X will then be
chosen.

3 Portfolio adjustment under uncertainty

To illustrate the application of the decision model developed here, now we an-
alyze the selection of a simple portfolio containing two non-monetary assets A,
B whose nominal value is subject to change under uncertainty. In next sec-
tion, we will analyze the selection of a portfolio containing money and a single
non-monetary asset.13

Money has a stable nominal value while the nominal value of non-monetary
assets is uncertain and subject to change. In this section, all the available
money is invested to two non-monetary assets and the payo↵ (gain or loss) of
the portfolio depends on the unknown future price of the non-monetary assets.

Suppose that fractions of available funds invested to non-monetary assets A
and B are represented by the vector (1 � �,�) where 0  �  1. � = 0 means
that all available funds are invested in the asset A and � = 1 means investing all
into B. Then the set of all investment acts represented by the mixture ratio �
is X = {� : 0  �  1}. As � increases from 0 to 1, the potential confirmation
locus continuously shifts from gA(c), lA(c) to gB(c), lB(c). The payo↵ of the
portfolio depends on the future value of two assets and the mixture ratio �.

Potential confirmation locus and the mixture asset

To simplify the situation, we assume the following property of the potential
confirmation locus.

Assumption 1 The potential confirmation loci u+ = gA(c), u� = lA(c) and
u+ = gB(c), u� = lB(c) are at least twice continuously di↵erentiable.

13Discussions of portfolio selection in the Shacklean framework have appeared in Vickers
(1978), Ford (1983; 1994) and Katzner (1998; 2001).
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[Figure 2.6:potential confirmation locus of the mixture asset]

The potential confirmation locus for a mixture of two assets A, B can be
written by

u+ = (1� �)gA(c) + �gB(c), u� = (1� �)lA(c) + �lB(c). (2)

As � moves from 0 to 1, the potential confirmation locus continuously moves
from u+ = gA(c), u� = lA(c) to u+ = gB(c), u� = lB(c) as figure 2.6.

It is worth noting that, being di↵erent to the random variable in probability
theory, here a future event or a hypothesis are represented by each potential
confirmation value c 2 [0, 1] so that the portfolio return for an arbitrary mix-
ture ratio � is calculated by the weighted average of two payo↵s of the asset A
and B for each c. 14

Portfolio attractiveness function

The next step is to describe the graphical pattern of the attractiveness path
as the mixture ratio � varies from 0 to 1. Recall that the attractiveness function
evaluates pairs containing gains or losses with their associated potential confir-
mation value with respect to importance or attention-grabbing power. Following
the custom of multiplicative functional form in the expected utility theory and
other mainstream decision theories, we will specify a form of attractiveness func-
tion as following:

14In Katzner’s formalization (Katzner 1986-87; 1998), he introduced a similar concept of
random variable and defined the potential surprise/confirmation density function. But here
we do not follow his methodology. Actually, a decision-maker does not care about the concrete
name or contents of an event, but only its (speculated) degree of certainty and its correspond-
ing payo↵s. So each event of the future can be represented by either a payo↵ value as a random
variable or a degree of certainty. Probability theory takes the former and here we choose the
latter. Hence in this study, the event (or events) determining a payo↵ is represented by each
c 2 [0, 1]. This stance determines the formula (2).

12



Definition 3.1: The multiplicative attractiveness function15 a+ on [0, 1]⇥ U+
x

and a� on [0, 1]⇥ U�
x is defined by a+(c, u+) = c · u+, a�(c, u�) = c · u�.

Note in definition 3.1 that u+, u� are positive because Ux
+, Ux

� are the set
of degree of gain and loss. Later when we reflect the attractiveness values in
decision function and index, the sign of loss value will be included.

We can understand the multiplicative attractiveness function from a di↵er-
ent viewpoint. Since the multiplicative attractiveness is the product, like the
subjective expected utility, between the degree of subjective confidence of con-
firmation and the possible gain or loss, the attractiveness at the focus-gain and
focus-loss can be interpreted in each act x as the maximum potential gain and
loss out of all possible hypotheses about the future. 16

The shape of attractiveness path for two non-monetary assets is hard to
assess beforehand. The properties of two gain loci gA(c), gB(c) and two loss
loci lA(c), lB(c) determine the pattern of the linear combination (2) and the
trace of the attractiveness path as the figure 3.2. As the ratio � combining
two assets A and B changes from 0 to 1, the attractiveness path is drawn by
tracing the points of tangency between the potential confirmation locus and the
iso-attractiveness contour. We have called the tangency point for each � the
focus-loss and the focus-gain of � and denoted them by (c�� , u��), (c+� , u

+
� ). Then

the attractiveness index for an act � is represented as â(�) = (â�(�), â+(�)) =
(a�(c�� , u

�
� ), a

+(c+� , u
+
� )).

[Figure 3.2: the attractiveness path of two non-money asset A and B]

The decision path is obtained by transferring the attractiveness path into

15The multiplicative functional form of uncertainty and payo↵ values, often called ‘expec-
tation’ and derived from the notion of average, has been the universal way of evaluation since
17th century (See Hacking 1975). Expected utility (V.Neumann and Mogensern 1944; Savage
1954) is constructed as p ·u, where u is the payo↵ and p is its probability of realization. Many
types of non-expected utility theories (Kahneman-Tversky 1979; Quiggin 1982; Yaari 1987,
Hey 1984; Loomes-Sugden 1982) and generalized expected utility theory (Machina 1982) also
use the multiplicative form with an adjusted probability function and an appropriate payo↵
or value function.

16 Of course, if the attractiveness function does not take the multiplicative form, such iden-
tification between attractiveness and potential gain is not trivially justifiable.
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R+ ⇥R+. The shape of the decision path will have a crucial role later in deter-
mining the optimal portfolio between two non-monetary assets, and it is deter-
mined by varying patterns of â+(�) relative to â�(�). For this task, we should
analyze the attractiveness function through arbitrary mixture ratio �. For a
given confirmation loci (gA(c), lA(c)), (gB(c), lB(c)) of the assets A and B, the
portfolio attractiveness functions of A and B is A+, A� : [0, 1]⇥ [0, 1]⇥R where
for(�, c) 2 [0, 1] ⇥ [0, 1], A+(�, c) = (1 � �)[cgA(c)] + �[cgB(c)] and A�(�, c) =
(1 � �)[clA(c)] + �[clB(c)]. Trivially, A+(0, c) = cgA(c), A�(0, c) = clA(c),
A+(1, c) = cgB(c) and A�(1, c) = clB(c). Then we can obtain the following two
properties regarding the attractiveness path.

Proposition 3.2

i) There exists a connected path R+(�, c) in [0, 1] ⇥ [0, 1] such that for every
(�⇤, c⇤) 2 R+(�, c), if the mixture ratio �⇤ 2 [0, 1] is given, then A+(c) |�=�⇤ is
maximized at c⇤ 2 [0, 1]. For the loss side, R�(�, c) ⇢ [0, 1] ⇥ [0, 1] also exists
in a similar manner.

ii) For any c⇤ there exists the unique pair �⇤
1, �

⇤
2 such that (�⇤

1, c
⇤) is contained

in R+(�, c) and (�⇤
2, c

⇤) is in R�(�, c). In other words, for a potential confir-
mation c⇤, the unique pair of mixture ratios �⇤

g and �⇤
l maximizes A+ and A�,

respectively.

It is trivial to verify the above propositions. For i), since the di↵erentiability
of two confirmation loci implies that the portfolio attractiveness function is
di↵erentiable on [0, 1]⇥ [0, 1]. Then it implies that the partial derivatives with
respect to �, c and the directional derivative exist at every point in [0, 1]⇥ [0, 1],
so it is possible to take the direction having the maximum directional derivatives
at the maximum point of A+(c) |� and A�(c) |� for each 0 < � < 1. Starting
from � = 0 and going toward � = 1, we can obtain the paths R+(�, c) and
R�(�, c).

For the proposition ii), suppose that for an arbitrary co there are �g1 6= �g2 2
[0, 1] such that (�g1, co), (�g2, co) 2 R+(�, c). By the first order condition for the

maximization of A+ with respect to c, we have �g1
d(c(gB(c)�gA(c))

dc + d(cgA(C))
dc =

�g2
d(c(gB(c)�gA(c))

dc + d(cgA(C))
dc at c = co. To preserve the premise �g1 6= �g2,

d{cgA(c)}
dc = d{cgB(c)}

dc must hold. This is equivalent to h(c) = ch0(c) where
h(c) = gB(c) � gA(c). By solving the simple di↵erential equation, we can see
that this holds only when gB(c)� gA(c) = K/c for some constant K. But there
is no economic reason to justify that the payo↵ of an asset is exactly higher or
lower as K/c for each possible event than the other. In othwer words, unless
the financial asset B is artificially and deliberately manufactured with respect
to the payo↵ of the asset A in this way, e.g., some purpose of financial engineer-
ing, such case is extremely exceptional and need not to be considered. Thus,
by excluding this, we can assure that �g1 = �g2 , i.e., �g is unique. The similar
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reasoning can be applied to A�.

By proposition 3.2.i), the attractiveness path previously defined by the pay-
o↵ and the potential confirmation is now recharacterized in terms of the mixture
ratio and the potential confirmation. Proposition 3.3.ii) means that as the mix-
ture ratio � varies from 0 to 1, R+(�, c) and R�(�, c) gives strictly monotone
attractiveness paths with respect to c, as in the first two graphs in figure 3.3
unless two confirmation loci intersect.

[Figure 3.3:the shape of the attractiveness path]

Slope of the decision path

On the basis of proposition 3.2.ii), visualized in the first two diagrams
of figure 3.3, we can introduce the portfolio confirmation function m+,m� :
[0, 1] ! [0, 1], m+(�) = c+ and m�(�) = c� satisfying (�, c+) 2 R+(�, c)
and (�, c�) 2 R�(�, c). The portfolio confirmation function m+,m� is 1-1
and assigns the value of confirmations for gains and losses, which maximizes the
attractiveness, to each mixture ratio 0  �  1. Basically, the graph of the func-
tions m+,m� from the mixture ratio to the confirmation is R+(�, c), R�(�, c),
which is the attractiveness path embedded in [0, 1]⇥ [0, 1].

Previously, the potential confirmation function c expressed the relation be-
tween possible hypotheses for the future, which is defined over ⌦, and their
corresponding degree of subjective confirmation. Meanwhile, here the portfolio
confirmation function m+(�) and m�(�) has been interpreted as the degree of
subjective confidence of confirmation for the occurrence of the maximum po-
tential gain (attractiveness at the focus-gain) and loss (attractiveness at the
focus-loss) when a mixture ratio � of the portfolio is given. These two functions
m+, m� will be used when we describe the shape of the decision path in terms
of the decision index â+ and â�.

For each �, the portfolio payo↵s on the attractiveness path can be specified
with m+, m� as follows:

(
G(�) = (1� �)gA(m+(�)) + �gB(m+(�)),

L(�) = (1� �)lA(m�(�)) + �lB(m�(�)).
(3)

Since we assumed the multiplicative attractiveness function, the portfolio
attractiveness for each 0  �  1 is as follows:
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(
Â+(�) = A+(m+(�), G(�)) = m+(�)G(�),

Â�(�) = A�(m�(�), G(�)) = m�(�)G(�)
(4)

where A+(c+, u+) = c+u+ and A�(c�, u�) = c�u� and (c+, u+) and (c�, u�)
are on the attractiveness path.

Note that the values of lA, lB and L are non-negative because in calculating
the attractiveness, we deal with only the magnitude of loss. Also, since we
are dealing with attractiveness maximizing points on each �, the confirmation
values here have the superscript +,�.

The derivative of the attractive index in gain side with respect to the mixture
ratio � is as follows:17

Â+(�)

d�
= G(c+)(1 + ⌘u

+

c+ )m0
+(�) (5)

Here, ⌘u
+

c+ = d(G(c+)/G+
c

dc+/c+ . Note that the one-to-oneness of m+ implies that each
level of mixture ratio can be identified with the corresponding level of confir-
mation. In other words, the selection of a certain portfolio - represented by � -
corresponds to the acceptance of that perceived degree of confidence. When an
investor speculates about adjusting the portfolio slightly towards a greater de-
gree of certainty, e.g., substituting a portion of stock for MMF, this involves the
sacrifice of potential gain and the alleviation of the potential loss in correspon-
dence to that adjustment. In (5), ⌘u

+

c+ indicates the expected responsiveness
of payo↵s relative to changes of mixture ratio � so its corresponding degree of
confidence.

Similarly, we can obtain L(c�) = dâ�

d� = (1 + ⌘u
�

c� ) for the loss side. Then
the slope of the decision path is calculated as the following:

dâ+

dâ�
=

dâ+/d�

dâ�/d�
=

G(C+(�))(1 + ⌘u
+

c+ )m
0

+(�)

L(C�(�))(1 + ⌘u
�

c� )m
0
�(�)

(6)

From now, we will narrow down the range of our analysis only to the upward
sloping decision path. In the plan of (â�, â+), the location of asset A is the lower
left endpoint of the positive sloped decision path connecting A to B while the
asset B lies at the upper right endpoint. This is a reasonable simplification in
the consideration of the portfolio choice. If the decision path is negative-sloped
or flat, it implies that the asset A has a lower maximum potential loss and
a higher or equal maximum potential gain than the asset B. Since we assume
the multiplicative attractiveness function, â�, â+ can be identified as maximum
potential loss and gain. Thus, the negative or flat decision path implies that
there is no need of trade-o↵.

17 dÂ+

d� = m0
+(�)G(�) + m+(�)G0(�) = G(�)[1 +

m+(�)

m0
+(�)

G0(�)
G(�) ]m

0
+(�) = G(�)[1 +

g0(�)/G(�)
m0

+(�)/m+(�)
]m0

+(�)
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[Figure 3.4: Iso-decision contours and decision path]

Assumption 2 â(0) = (â�(0), â+(0)) < â(1) = (â�(1), â+(1)).

To illustrate factors determining the slope of the decision path, we now in-
terpret terms of (6) one by one. First, G(c+(�))/L(c�(�)) is the ratio of gain
and loss for each mixture ratio. It must be positive because L indicates only the
magnitude of loss. Second, as we have seen in (5), m+(�) and m�(�) specify
the degrees of confirmation regarding the occurrence of the maximum potential
gain and the maximum potential loss for an arbitrarily chosen mixture ratio
�. Since the sign of m

0

+(�) and m
0

�(�) do not change by proposition 3.2. ii),

the sign of
m

0
+(�)

m
0
�(�)

must be same for all 0  �  1. Furthermore, m
0

+(�) and

m
0

�(�) should have the identical sign if the situation of trade-o↵ is in e↵ect. For

instance, if m
0

+ > 0 but m
0

� < 0, it implies that, for example, as the portion
of asset B increases, the degree of confirmation for the maximum potential gain
becomes stronger but the confirmation for the maximum potential loss becomes
weaker. This means that the necessity for the portfolio diversification does not
exist and switching all the fund to the asset B is the rational choice. So the
choice situation no longer exists. Thus, we can assume the following.

Assumption 3
m

0
+(�)

m
0
�(�)

> 0, 0 < � < 1

The purpose of assumptions 2 and 3 is to focus on the analysis of trade-o↵
situation between A and B. Then the remaining factor influencing the slope of

the decision path is
1+⌘u+

c+

1+⌘u�
c�

, which implies the relative volatility between the

maximum gain and the maximum loss in the decision-maker’s mind. The as-

sumption 2 implies that
1+⌘u+

c+

1+⌘u�
c�

< 0 cannot be maintained through all � 2 [0, 1],

but the negative slope of it can be only partly possible. Under the assumption 2
and 3, the result (6) implies that the slope of decision path at each mixture ra-
tio, the main factor determining the motivation of portfolio adjustment at each
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decision moment, is influenced by the volatility of gain and loss in response to
the level of confidence as anticipated by the decision-maker’s mind.

The feasibility of portfolio diversification

We have obtained the decision path on which each point is constituted by
the maximum potential gain and the maximum potential loss for each �. Now
in order to obtain the final decision out of this locus of points, let us further
specify the decision index.

Definition 3.3: The additive decision index d̂ : X ! R is defined by d̂ =
↵â+(x)� �â�(x) for x in X.

Here, ↵,� > 0 indicate the relative weights to the maximum potential gain
â+ and the maximum potential loss â� respectively by the decision-maker. Al-
though minus sign is included in the above definition, it means just simple
summation of the maximum potential gain and the maximum potential loss,
�â�(x) < 0. The additive decision index indicates how much the subjectively
rejudged value of the maximum potential gain dominates the one of the loss-side
in choosing a specific ratio between two assets.

[Figure 3.5: The iso-decision contours of the additive decision index]

Iso-decision contours of the additive decision index are represented by z =
↵â+ � �â� for various constants z in the plane of â+ and a â�+ in figure 3.5.
Each iso-decision contour is linear, and the slope is ↵

� . If there is no subjective
distortion in e↵ect, then ↵ = �, and the iso-decision contours are 45o sloped as
figure 3.5. Movement up and to the left increases the value of z. The following
proposition shows an example of portfolio composition between A and B under
restricted condition as seen in the diagram (a) of figure 3.6.
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Proposition 3.4 Let d̂A = ↵â+(�) � �â�(�) be the additive decision index
on the space of the mixture ratio X = [0, 1]. Suppose a decision path from A

to B satisfies dâ+

dâ� (�) > 0 and d2â+

d(â�)2  0. If ↵
� 2 { dâ+

dâ� (�) : � 2 (0, 1)}, then
there exists �⇤ 2 (0, 1) such that d̂(�⇤) = max{d̂(�) : � 2 [0, 1]}.

[Figure 3.6: the portfolio selection under the additive decision function]

It is easy to verify Proposition 3.4. Under the strict concavity of the decision
path, the tangency between the decision path and an iso-decision contour of the
additive decision index is unique. But, as in figure 3.6 (b) and (c), the tangency
may exist at the corner of the decision path or the non-optimal positions. Thus,
to guarantee ‘actual’ diversification, the mixture ratio of two assets at the tan-
gency point ought to be between 0 and 1. Intuitively, the situation described in
proposition 3.4 means that when the trade-o↵ is in e↵ect ( dâ

+

dâ� (�) > 0), yet the

merit of increasing portion of the asset B is gradually decreasing ( d2â+

d(â�)2  0),
the buying asset B will stop at the moment which the potential maximum gain
and loss o↵set each other in his subjective speculation (↵,�). Beyond that
portion �⇤ of asset B, the maximum potential loss dominates the maximum
potential gain.

As figure 3.7, even when the decision index has strictly quasi concave iso-
decision contours, the optimal portfolio may not be diversified. 18 To guarantee

18The decision index generating strictly quasi-concave iso-decision contours can be defined
as follows. Let d̂c(�) be a decision index from X = [0, 1] to R. If for any distinct �1,�2 2 X

with their corresponding â+(�1), â+(�2) and any µ where 0 < µ < 1, if d̂c(�1) = d̂c(�2)

implies d̂c((1 � µ)a(�1) + µa(�2)) > d̂c(�1), then d̂c is said to be the strictly quasi-concave

decision index on X. Then we can derive a similar proposition to proposition 4.11 for d̂c.
Let d̂c(�) be a smooth strictly quasi-concave decision index on the set of mixture

ratio X = [0, 1] to R. Suppose a decision path from A to B satisfies dâ+

dâ� (�) > 0 and
d2â+

d(â�)2
 0. If the following condition holds, then there exists �⇤ 2 (0, 1) such that �⇤

satisfies max{d̂c(�)} = d̂c(�⇤), � 2 [0, 1].

{(�, dâ+

dâ� (�)) : � 2 (0, 1)}\{(�, @{d̂c(â�,â+)}
@â+ / @{d̂c(â�,â+)}

@â� ) |(â�(�),â+(�)): � 2 (0, 1)} 6= ;.

Here the former means the slope of the decision path and the latter is the slope of the
iso-decision contour.
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the portfolio diversification, similar premises as proposition 3.4 should be added.

The implication of the additive decision index is how much the maximal
potential gain (the attractiveness at the focus-gain) dominates the maximal
potential loss (the attractiveness at the focus-loss). Practically, the additive
decision index suggests that the decision-maker has the ability to evaluate and
compare the maximal potential gain and loss, and to calculate the exact dif-
ference between them. Not only that, the strictly quasi-concave decision index
presumes even more advanced knowledge and ability of the decision-maker to
assign varying degree of relative weights between gain and loss. On a specific
iso-decision contour, as the potential maximum loss is increasing, it requires the
premium of the higher maximum potential gain in order to compensate it, and
this is represented by the steeper slope of iso-decision contour as â� increases.

However, if the decision-maker can only naively guess the maximum poten-
tial gain and loss but cannot consider how the one dominates the other, then
this situation may cause drastic panic-shifting between the two assets. Such
characteristic of the naive decision-maker is reflected in a specific form of deci-
sion index. We will see this in the next section.

[Figure 3.7: the portfolio selection under the strictly quasi-concave
iso-decision contours]

4 Portfolio adjustment and individual panic be-
havior

Maximal decision index and two non-monetary assets

To reflect the characteristic of naive investors, who are the main source of
volatility in the stock market, we now introduce a new decision index as follows.

Definition 4.1: The maximal decision index ˆdM : X ! R is defined by
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ˆdM =

8
><

>:

max{â�(�), â+(�)} when â�(�) < â+(�),

�max{â�(�), â+(�)} when â�(�) > â+(�),

0 when â�(�) = â+(�).

In terms of the multiplicative attractiveness index, the maximal decision in-
dex can be specified by the following.

ˆdM =

8
><

>:

max{m�(�) · L(�),m+(�) ·G(�)}when m�(�) · L(�) < m+ ·G(�),

�max{m�(�) · L(�),m+(�) ·G(�)}when m�(�) · L(�) > m+ ·G(�),

0 when m�(�) · L(�) = m+ ·G(�),
where m+, m� are portfolio confirmation and G(�),L(�) are the portfolio pay-
o↵s on the attractiveness path.

Here, the purpose of the minus sign is to make the attractiveness value back
to the negative scale of loss in order to reflect in the functional value that the
lower attractiveness (lower maximum potential loss) is the better outcome to
the decision-maker.

[Figure 4.1: The iso-decision contours of the maximal decision index]

The intuition of definition 4.1 can be explained like this. When the naive
decision-maker compares the maximum potential gain and loss, if the former
outweighs the latter in the current market state, she will focus entirely on the
maximum potential gain, excluding any consideration of loss whatsoever. This
occurs due to their lack of any meaningful heuristic by which to compare the
two magnitudes.

In other words, the decision-maker refers to only the dominant sentiment
identified with the current optimistic market situation. The numbers arranged
across 45o line indicate the value of maximal decision index, i.e., a sort of utility
for the final decision, and the numbers through two axes are the attractiveness
values (the magnitude of the maximum potential gain or loss). The horizon-
tal iso-decision contours above the 45o line means that the potential maximum
gain dominates the potential maximal loss. In the area under the 45o line,
the loss exceeds the gain. Where the maximum potential gain and loss are
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equal, as on the 45o, the situation may be regarded as neutral, i.e., a zero value
in the decision index. Let’s divide the plane into three regions, call the set
O = {(â�, â+) : â� < â+} optimism, P = {(â�, â+) : â� > â+} pessimism, and
I = {(â�, â+) : â� = â+} indeterminate.

Now we are ready to explore the motivation of induvial panic behavior in
portfolio adjustment in response to the gradual and continuous, but not sud-
den market change. It can be anticipated that the market change will update
the potential confirmation and the corresponding payo↵ schedule. Then this
involves the movement of the decision path.

The following proposition explains the panic process of shifting between
optimism and pessimism as changing information influences market sentiment
and thus alters the decision path. The figure 4.2 exhibits each situation discussed
in proposition 4.2

Proposition 4.2 Let ˆdM be a maximal decision index on X = [0, 1]. Suppose

a decision path from A to B satisfies dâ+

dâ� (�) > 0. Then the followings hold.
i) Being engrossed in optimism:
If {(â�(�), â+(�)) : � 2 [0, 1]} ⇢ O, then d̂M (1) = max{d̂M (�) : � 2 [0, 1]}.
ii) Gradual but unrecognized change to pessimism:
If (â�(�o), â+(�o)) 2 I, {(â�(�), â+(�)) : � 2 [0,�o)}\P 6= ; and {(â�(�), â+(�)) :
� 2 (�o, 1]} \O 6= ;, then d̂M (1) = max{d̂M (�) : � 2 [0, 1]}.
iii) Panic adjustment:
If {(â�(�), â+(�)) : � 2 [0, 1]} ⇢ P, then d̂M (0) = max{d̂M (�) : � 2 [0, 1]}.
iv) Gradual adjustment:
If {(â�(�), â+(�)) : � 2 [0,�o)} ⇢ O and {(â�(�), â+(�)) : � 2 (�o, 1]} ⇢ P,
then d̂M (�o) = sup{d̂M (�) : � 2 [0, 1]/�o}. Furthermore, for any ✏ > 0,

�o < � < �+ ✏ =) dâ+

dâ� < 1.

Proof. Verifying above propositions is geometrically trivial. For i), regardless
of the value of â�, the value of decision index in O increases only when â+

increases. Since we know that dâ+

dâ� (�) > 0 , d̂M (1) = max{d̂M : � 2 [0, 1]}.
For ii), all points of decision path intersecting P [ I yield a lower value for the

decision index than those of {(â�(�), â+(�)) : � 2 (�o, 1]}\O. Since dâ+

dâ� (�) > 0,

d̂M (1) = max{d̂M : � 2 [0, 1]}.
For iii), Since {(â�(�), â+(�)) : � 2 [0, 1]} ⇢ P, and â+ < â� for all

(a�, a+) 2 P, the value of the decision index in the part of the decision path
intersected with P is evaluated by only â�. Thus dM (0) = max{d̂M : � 2 [0, 1]}.

iv). For {(â�(�), â+(�)) : � 2 [0,�o)} 2 O, we have â+(�) > â�(�). Due

to dâ+

dâ� (�) > 0,d̂M (�o) = sup{d̂M (�) : � 2 [0,�o)}. Verifying the other part for
(�o, 1] is similar. For the last statement, suppose that the conclusion does not

hold, i.e., dâ+

dâ� (�) � 1. Then {(â�(�), â+(�)) : � 2 (�o, 1]} \ (O [ I) 6= ;, which
is contradiction.
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[Figure 4.2]

As in proposition 4.2.i)(figure 4.2.(i)), as long as the decision-maker is op-
timistic, lacking any knowledge by which to compare the maximum potential
gains and losses, their optimal decision is betting all-in on asset B. This behavior
is frequently observed among naive investors following short-term bull market
trends and ignoring potential reversals. Even with the onset of negative news,
the decision-maker may stick to the current choice for a time. Once, however,
the decision path begins shifting into the range of pessimism - the region P in
in figure 4.8.(iii) - the investor entirely liquidates their holdings of B.

It is worth emphasizing that concentrating and switching to a specific asset
happens here, even though the incentive to trade-o↵ (positive sloping decision
path) is still e↵ective. Meanwhile, proposition 4.2.iv) describes a kind of interim
status between two extreme choices but distinguished from the case of (ii).
In the case of (iv), the momentum of potential gain is not strong enough to
dominate the potential loss, so the decision path has relatively flatter slope.
Thus, in spite of the higher potential gain of B than A, as the mixture ratio
� of B increases beyond �o, the anticipation of the investor is absorbed into
the range P of negative sentiment. As mixture ratios approach to �o on I from
both P and O, the situation becomes gradually better o↵. If the decision path
continuously moves through the diagonal line with intersecting I at a point, this
case can be regarded as smooth adjustment of portfolio without any behavioral
discontinuity.

In the portfolio selection between two non-monetary assets, we can explain
the panic behavior as a myopic reaction of the naive investor. This is frequently
observable in the reality so the behavioral implication of the maximal decision
index is sensible prima facie. Furthermore, if money is included in the compo-
sition of the asset portfolio, the panic adjustment can happen even when the
decision-maker is able to compare both aspects of potential gain and loss and
to guess how the one dominates the other. Details will be discussed in the next
section.

23



5 Money and panic

Now let’s extend our analysis to the portfolio adjustment between money and a
non-monetary asset. Here, the latter need not be restricted to only a single asset
but it can be a diversified portfolio, say P , made of arbitrary n assets. Properties
of that asset portfolio P can be represented by its potential confirmation locus
gP (c) and lP (c). In the appendix, the portfolio composed of n-assets is briefly
explained. In this section, we focus on the case of money and a non-monetary
assep portfolio P .

By virtue of liquidity and stable nominal value, money is eligible as the uni-
versal alternative to other assets accompanying potential gain or loss. Suppose
the quantity of money available to the decision-maker is 1 and any fraction � of
it may be invested in the non-monetary asset. The payo↵ (gain or loss) of the
portfolio depends on the unknown future price of the latter. The multiplicative
attractiveness function is intact here.

[Figure 5.1: the attractiveness path for money and a non-monetary asset]

Since the payo↵ of money (� = 0) is fixed as 0 regardless of future states,
the potential confirmation locus of money is the vertical line, g0(c) = l0(c) =
0. With respect to the non-monetary asset (� = 1), the focus-gain (c+1 , u

+
1 )

and the focus-loss (c�1 , u
�
1 ) are the attractiveness maximizing pair of potential

confirmation and payo↵ values obtained with the potential confirmation locus,
g1(c),l1(c) as figure 5.1. Then the focus-gain (c+� , u

+
� ) and the focus-loss (c�� , u

�
� )

for any � 2 (0, 1) are obtained by maximizing the multiplicative attractiveness
function subject to the potential confirmation locus, u+ = g�(c) = �g1(c),
u� = l�(c) = �l1(c). Thus the focus-gain and the focus-loss are given by

(c+� , u
+
� ) = (c+1 ,�u

+
1 ), (c

�
� , u

�
� ) = (c�1 ,�u

�
1 ),

19 so â+(�) = a+(c+� , u
+
� ) = c+1 ·

(�u+
1 ), â

�(�) = a�(c�� , u
�
� ) = c�1 · (�u�

1 ). The attractiveness path on the gain

19Let u+ = g1(c) be potential confirmation locus of the non-money asset and a+(c, u+) =
cu+ = cg1(c) be the attractiveness function on the gain side. Let c+1 be the attractiveness
maximizing confirmation. For an arbitrary � 2 (0, 1), a+(c, u+) = a+(c, g�(c)) = cg�(c) =
c(�g1(c)). Then, for 0 < � < 1, the maximization of the attractiveness function gives c+� = c+1
and its corresponding payo↵ is �u+

1 . A similar argument applies to the loss side.
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side is the straight line connecting (c+1 , 0) and (c+1 , u
+
1 ), while that on the loss

side is the straight line between (c�1 , 0) and (c�1 , u
�
1 ).

The decision path â(�) = (â�(�), â+(�)), 0  �  1 is obtained by trans-
forming the attractiveness path in the plane of [0, 1]⇥ (U+

x [U�
x ) into R+⇥R+

where â�(�) and â+(�) are the attractiveness values of the focus-loss and focus-

gain for each x. The slope of the decision path is â+(x)
â�(x) = �c+1 u+

1

�c�1 u�
1

= c+1 u+
1

c�1 u�
1

for

any � 2 [0, 1].
Since u�

1 is the magnitude of the loss, the decision path is positively sloped
straight line segment connecting the origin to the point (c+1 u

+
1 , c

�
1 u

�
1 ) as we can

see in figure 5.2. Here, because money has only zero payo↵, the origin (0, 0) is
the pair of attractiveness values â(0) = (â�(0), â+(0)).

To analyze the final choice, let’s adopt the additive decision index, d̂A(�) =
↵â+(�)��â�(�). The optimizing point as figure 5.2, is determined by the slope
of the decision path in relation to those of the iso-decision contours. If the slope
of the decision path is steeper than 45o (↵ = �) as in the left graph in figure 5.2,
in other words, the maximum potential gain of the non-monetary asset exceeds
its maximum potential loss, so that keeping only the non-monetary asset is
optimal. If the slope of decision path is less than 45o as in the second graph in
figure 5.1, then holding only money is the best choice.

[Figure 5.2: the optimal decision between money and a non-money asset]

In the case of one non-monetary asset and money, panic behavior is now
easily explained. Assume the investor has all of her money invested in the non-
monetary asset as in the left diagram in figure 5.1. Interpret the e↵ect on the
investor from changing market conditions as decreasing the slope of the decision
path. Then as soon as that slope drops below 45o, the investor abruptly sells her
entire stock of the non-monetary asset. It is the switch from the left diagram
in figure 5.1 to the right diagram in figure that explains the investor’s panic.
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Note that the additive decision index presumes higher proficiency in calculat-
ing and comparing the potential gain and loss than the maximal decision index
as supposed in the previous section. Evaluating and comparing the potential
value of financial assets like stock and bond require the advanced knowledge and
practical skill, and it is unrealistic to assume that a naive investor can conduct
it. On the contrary, comparing directly the value of an asset with money is
a simpler task, so that the additive decision index is acceptable simplification
for considering the case of money and a non-monetary asset. Needless to say,
under the maximal decision index, the panic can also occur at that moment the
decision path enters the range of â� > â+. This means that when money is
eligible as an element in composing the asset portfolio, the panic behavior can
occur in both maximal and additive decision function. Money strengthens the
volatility of the individual behavior in the portfolio selection.

[Figure 5.3]

In the case of n assets including money as explained in the appendix, as
the market situation changes, the decision region can move and the optimized
portfolio can emerge in the range of â� > â+. Unless direct movement from
the previous optimizing point to the new one is institutionally allowed, the
adjustment can go through the shift from A to 0 and then B. In this adjusting
process, an abrupt market collapse can occur in the phase from A to 0, and
then the market may recover soon via moving from 0 to B. As a matter of fact,
this is frequently observable phenomenon in financial markets. Panic does not
indicate just massive movement of fund from a market to another, e.g., fund race
from the commodity market to the corporate saving account in the commercial
bank. Usually panic involves abrupt crash of an asset value due to the sudden
selling of the asset and preparing the cash to purchase another asset in the next
opportunity. Hence, here we can corroborate that the stability and liquidity
of money functions as the hub connecting various types of asset markets, and
may stimulate the panic adjustment during transferring process of fund through
diverse asset markets.
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[Figure 5.4: the decision path under strictly quasi concave decision function]

Then we can ask about this question: how about a more complicated form of
decision index, for example, strict quasi-concave decision index (as the footnote
17)? If the attitude of the decision-maker regarding potential gain and loss
varies smoothly, for example, giving more weight to gain than loss around the
zero-interest level (as the shape of the iso-decision contours in figure 5.4), the
optimal investment ratio continuously changes from some � in (0, 1] to 0. Then
panic does not occur. We can obtain a smooth decision path as the red curve
in figure 5.4.

6 Closing remarks

The Shacklean approach adopted here to explain the panic behavior in port-
folio adjustment has a novel characteristic in comparison to expected utility
theory. As it is mentioned in the introduction, the gradual and continuous
change of payo↵ and probability distribution in expected utility theory is un-
able to explain the abrupt behavioral disconnection due to its fixed functional
form of the valuation, the summation/integration of each probability⇥payo↵.
On the contrary, beyond the rigid summation/integration of expected payo↵s,
Shacklean portfolio theory can adopt various forms of decision index reflecting
diverse behavioral tendencies of decision-maker. By virtue of this, the motiva-
tion of seemingly irrational herding behavior in panic can be explained by the
individual decision-making, at least, under the context of given decision index,
in Shackle’s original terminology, gambler-preference map.

Then which decision index reflects the reality more exactly? If decision-
makers can change the decision index as influenced by the market situation,
then more various behavioral pattern can be explained. If we allow that the
multiple groups of decision-makers can choose not just a specific portfolio de-
termined by the mixture ratio � but also a decision index itself, then Shacklean
portfolio theory can be connected to evolutionary game theory, explaining panic
behavior as evolutionary stable strategy related to a chosen decision index. Then
it can explain how the individual panic behavior develops to the group herding
behavior. This can be the next research agenda.
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8 Appendix

Portfolio diversification among more than two assets under uncer-
tainty

Suppose that there is an arbitrary set of n-assets and define the set of mixture
ratios for portfolio diversification by X = {� = (�1,�2, . . . ,�n�1, 1� �1 � �2 �
...� �n�1) : 0  �1,�2, ...,�n�1  1}.

The set of potential confirmation loci for gains and losses of each asset i
is given by gi(c), li(c) where u+

i = gi(c), u
�
i = li(c) are all smooth on (0, 1).

Then a potential confirmation locus of a portfolio is defined by u+ = g�(c) =Pn�1
i=1 �igi(c) + (1 � �1 � �2... � �n�1)gn(c) and u� = l�(c) =

Pn�1
i=1 �ili(c) +

(1� �1 � �2...� �n�1)ln(c) where 0  �1,�2, ...,�n�1  1.
The multiplicative attractiveness function of the portfolio is defined by
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A+(�, c) = c{
Pn�1

i=1 �igi(c) + (1 � �1 � �2... � �n�1)gn(c)} and A�(�, c) =

c{
Pn�1

i=1 �ili(c) + (1� �1 � �2...� �n�1)ln(c)} where 0  �1,�2, ...,�n�1  1.

We can get the attractiveness range, which corresponds to attractiveness
path in two asset case, including all attractiveness maximizing points, i.e., the
focus-gain (c+� , g�(c

+
� )) and the focus-loss (c�� , l�(c

�
� ))) for each � in the n di-

mensional simplex X. As the analogue to the decision path in the situation of
two assets, we can obtain decision range by transferring attractiveness region to
R+ ⇥ R+.

[Figure A.1: the portfolio diversification on n assets]

Suppose every gi(c), li(c) for all i = 1, 2, . . . .n are assumed to be at least
twice continuously di↵erentiable, we can say that a+ : [0, 1] ⇥ U+

x ! R+,
a� : [0, 1] ⇥ U�

x ! R+ are continuous and preserve the compactness and the
connectedness of objects in [0, 1]⇥R+. Then we can get a connected boundary
of decision range, {(Â+, Â�) : � 2 X}. Then for a given decision index, the
optimal portfolio ratio is determined at the tangency between an iso-decision
contour of a given decision index and the boundary of decision range. It is triv-
ial that any point on the boundary of decision region can be represented by the
convex combination of two mixture assets, where they are again convex combi-
nations by n assets. Thus, the problem is ultimately reduced to the portfolio
diversification between two assets and money.
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