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Abstract:

Multi-step-ahead forecasts of forecast uncertainty in practice are often based on the

horizon-specific sample means of recent squared forecast errors, where the number

of available past forecast errors decreases one-to-one with the forecast horizon. In

this paper, the e ciency gains from the joint estimation of forecast uncertainty

for all horizons in such samples are investigated. Considering optimal forecasts,

the e ciency gains can be substantial if the sample is not too large. If forecast

uncertainty is estimated by seemingly unrelated regressions, the covariance matrix

of the squared forecast errors does not have to be estimated, but simply needs to

have a certain structure. In Monte Carlo studies it is found that seemingly unre-

lated regressions mostly yield estimates which are more e cient than the sample

means even if the forecasts are not optimal. Seemingly unrelated regressions are

used to address questions concerning the inflation forecast uncertainty of the Bank

of England.

Keywords: multi-step-ahead forecasts, forecast error variance, GLS, SUR

JEL-Classification: C13, C32, C53



Non-technical summary

In recent years, it has become more and more common to publish not only

point forecasts for major economic variables, but also uncertainty forecasts. Ex-

amples are the fan charts of the Bank of England, the prediction intervals of the

Eurosystem sta macroeconomic projections, or the uncertainty margins of the

projections of the Deutsche Bundesbank. In all cases, the width of the published

intervals conveys information about the probability that the future value of the

forecast variable will lie within a certain range. The forecasts are often made for

several periods ahead, and the forecast uncertainty typically increases with the

forecast horizon. A reliable assessment concerning the precision of a forecast mat-

ters for example if decision makers like central banks want to avoid passing certain

thresholds for inflation. One also needs to have knowledge about the forecast un-

certainty of inflation to be able to determine, for example, risk premia of nominal

bonds.

The future forecast uncertainty is often estimated based on past forecast errors.

For this purpose, the squared (or absolute) values of the past errors are calculated,

and for every forecast horizon the sample mean of these values is determined. These

estimated values for the past forecast uncertainty can then be used to assess the

future forecast uncertainty.

In this work, it is investigated whether it is possible to estimate the expected

values of the past squared forecast errors more precisely than by their sample

means. The idea that this might be possible is based on the fact that the forecast

errors for di erent horizons are correlated with each other. If, for example, the

inflation rate in a certain period attains an exceptionally high value, then generally

the short- and the long-run forecasts will underestimate this value. Therefore, if

the expected values of the past squared forecast errors are not estimated separately

for each horizon, but jointly for all horizons, these correlations can be exploited to

achieve a more precise estimation.

Typically, a prerequisite for such an improvement is a su ciently exact esti-

mation of the correlations mentioned. In this work, it is found that the estimation

method based on seemingly unrelated regressions (SUR) often leads to improve-

ments in the precision of the estimation, above all if the forecast horizon is large,



and if the available time series are relatively short. This result, however, is not due

to the exact estimation of the correlations, but due to the surprising result that

with SUR estimation, optimal forecasts, and the typical data structure of past

forecast errors, the correlations can be determined arbitrarily. Also if the forecasts

are not optimal, SUR estimation leads to improvements in most cases.

Using the inflation forecast errors of the Bank of England it is shown that SUR

estimation can lead to markedly lower and more plausible values for the forecast

uncertainty than the calculation of the horizon-specific sample means.



Nicht-technische Zusammenfassung

In zunehmendemMaße werden heute für zentrale gesamtwirtschaftliche Größen

zusätzlich zu Punktprognosen auch Prognosen für deren Unsicherheit verö entlicht.

Beispiele dafür sind die sogenannten Fan Charts der Bank von England, die Prog-

noseintervalle der Stabsprognosen des Europäischen Systems der Zentralbanken

oder die Unsicherheitsmargen der Prognosen der Deutschen Bundesbank. In allen

Fällen vermittelt die Breite des verö entlichten Intervalls eine Einschätzung dar-

über, mit welcher Wahrscheinlichkeit der zukünftige Wert der prognostizierten

Variable innerhalb bestimmter Grenzen liegen wird. Dabei werden Prognosen oft

für mehrere Perioden im Voraus erstellt, wobei die Unsicherheit üblicherweise mit

demPrognosehorizont ansteigt. Eine möglichst zuverlässige Einschätzung darüber,

wie präzise eine Voraussage ist, ist zum Beispiel dann wichtig, wenn Entschei-

dungsträger wie Zentralbanken mit einiger Sicherheit ausschließen wollen, dass

ein bestimmter Schwellenwert der Inflationsrate über- oder unterschritten wird.

Außerdem ist eine Vorstellung über die Prognoseunsicherheit für die Inflation auch

notwendig, um Risikoprämien zum Beispiel von nominalen Anleihen bestimmen zu

können.

Die zukünftige Prognoseunsicherheit wird oft auf der Basis vergangener Prog-

nosefehler geschätzt. Dazu werden die quadrierten (oder absoluten) Werte der

vergangenen Fehler gebildet, und für jeden Prognosehorizont wird der Mittel-

wert aus diesen Werten errechnet. Auf der Grundlage dieser Schätzwerte für die

Prognoseunsicherheit in der Vergangenheit kann dann die künftige Unsicherheit

geschätzt werden.

In dieser Arbeit wird der Frage nachgegangen, ob es möglich ist, die Er-

wartungswerte der quadrierten vergangenen Prognosefehler präziser als durch die

Mittelwerte zu schätzen. Ausgangspunkt dieser Überlegung ist dabei die Beobach-

tung, dass die Prognosefehler für verschiedene Prognosehorizonte miteinander kor-

reliert sind. Wenn zum Beispiel die Inflationsrate in einer Periode einen ungewöhn-

lich hohen Wert annimmt, so werden üblicherweise sowohl die kurzfristigen, als

auch die langfristigen Prognosen diesen Wert unterschätzen. Wenn man dement-

sprechend die Erwartungswerte der quadrierten Prognosefehler nicht - wie üblich -

für jeden Prognosehorizont einzeln, sondern für alle Horizonte gemeinsam schätzt,



so kann man diese Korrelation ausnutzen, um zu einer präziseren Schätzung zu

gelangen.

Bedingung für eine solche Verbesserung ist allerdings gewöhnlich eine hin-

reichend genaue Schätzung der erwähnten Korrelationen. Diese Arbeit kommt zu

dem Ergebnis, dass das Schätzverfahren der sogenannten scheinbar unverbunde-

nen Regressionen (SUR) in vielen Fällen zu Verbesserungen der Schätzgenauigkeit

führt, vor allem wenn der Prognosehorizont groß und die Zeitreihen, auf die man

sich stützen kann, vergleichsweise kurz sind. Dies liegt allerdings nicht an der

genauen Schätzung der Korrelationen, sondern an der überraschenden Tatsache,

dass die Korrelationen für die SUR-Schätzung bei optimalen Prognosen und der

üblicherweise gegebenen Datenstruktur vergangener Prognosefehler arbiträr be-

stimmt werden dürfen. Auch bei nicht optimalen Prognosen ergibt sich vielfach

eine Überlegenheit der SUR-Schätzung.

An einem Beispiel der Inflationsprognosefehler der Bank von England wird

gezeigt, dass die SUR-Schätzung zu deutlich geringeren und plausibleren Werten

für die Prognoseunsicherheit führen kann als die einfache Berechnung der Mittel-

werte für die einzelnen Prognosehorizonte.
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E cient Estimation of Forecast Uncertainty
Based on Recent Forecast Errors1

1 Introduction

In recent years, many forecasting institutions have supplemented their point fore-

casts with measures of forecast uncertainty. That is, they have not only forecast

the central tendency but also some measure of dispersion of the forecast density

which is communicated, for example, by the width of fan charts. Examples of

such institutions include the Bank of England (BoE), the Bank of Canada, the In-

ternational Monetary Fund, the Sveriges Riksbank, the Norges Bank, the United

States Congressional Budget O ce and the Deutsche Bundesbank. The European

Central Bank only reports a forecast range, so that actually only the exact fore-

cast uncertainty, but not the exact central tendency is presented. All institutions

mentioned publish forecasts for several periods ahead.

As stated by Wallis (1989, p 56), “Estimating the future margin of error is

itself a forecasting problem”. When investigating uncertainty forecasts, researchers

typically start by considering a general forecasting model. Within this model, they

identify di erent sources of forecast uncertainty like estimation uncertainty and

the accumulation of future errors. Then the uncertainty of the forecasts can be

determined as the aggregate impact of these sources. Examples of this approach

for assessing forecast uncertainty can be found e.g in Clements and Hendry (1998,

ch. 7) and Ericsson (2002).

However, as noted by Wallis (1989, pp. 55-56),“This approach is of little help

to the practitioner. It neglects the contribution of the forecaster’s subjective ad-

justments [...]. More fundamentally, the model’s specification is uncertain. At any

point in time competing models coexist, over time model specifications evolve, and

there is no way of assessing this uncertainty. Thus, the only practical indication of

1The views expressed in this paper are those of the author and do not necessarily repre-
sent those of the Deutsche Bundesbank. The paper has benefited from valuable comments
by Jörg Breitung, Karl-Heinz Tödter, Katrin-Assenmacher-Wesche and participants of the
conference on “Forecasting and Monetary Policy” in Berlin, 2009. Corresponding author:
malte.knueppel@bundesbank.de
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the likely margin of future error is provided by the past forecast errors” [emphasis

added]. Interestingly, all the forecasting institutions mentioned above indeed base

their assessment of forecast uncertainty on past forecast errors.2 However, sur-

prisingly, the estimation of forecast uncertainty based on past forecast errors has

hardly been investigated in the literature yet. A notable exception can be found

in Williams and Goodman (1971).

The calculation of forecast uncertainty from past forecast errors can be per-

formed in an extremely simple way. First, one collects all forecast errors for each

forecast horizon. Then one performs a suitable transformation on these errors,

reflecting the measure of dispersion to be reported. Typically, this means either

taking absolute values or squared values of the forecast errors. In this work, I will

focus on squared errors. For each horizon, the sample mean of the squared errors is

calculated, i.e an ordinary least squares (OLS) regression of the squared errors on

a constant is performed. Although the estimation procedure consists simply of the

calculation of horizon-specific sample means, I will refer to it as OLS estimation

in order to contrast it with GLS and SUR estimation later on. OLS estimation

yields consistent estimates of forecast uncertainty. It is apparently used by all the

institutions mentioned above.3 Yet, since the forecast errors are correlated across

horizons, this procedure is not e cient.

This ine ciency is particularly pronounced for larger forecast horizons in small

samples for two reasons. Firstly, the autocorrelation of forecast errors typically

increases with the forecast horizon, so that estimates for large horizons tend to be

rather imprecise. Secondly, the number of available forecast errors often decreases

with the horizon. This is due to the fact that for the most recent forecasts, only

the forecast errors for small horizons can be calculated, because only for these

horizons realizations are available. If the frequency of forecasts publications equals

2The European Central Bank in its Monthly Bulletins as of September 2008 calculates forecast
uncertainty based on a Bayesian VAR. However, this uncertainty is conditional on future paths
for several exogenous variables like oil prices and exchange rates. Hence, in contrast to earlier
publications and to all other institutions mentioned, the reported uncertainty is not a measure
of unconditional forecast uncertainty. The Bank of Canada uses uncertainty estimated based on
past forecast errors for smaller horizons and based on a model for larger horizons.

3Based on the estimated forecast uncertainty, in many cases prediction intervals covering a
certain probability of the forecast density are calculated. These prediction intervals of course
require distributional assumptions for the forecast errors.
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the frequency of the forecast variables, the number of forecast errors decreases one-

to-one with the forecast horizon. I will refer to such samples of forecast errors as

samples of recent forecast errors.

Samples of recent forecast errors are frequently used in practice to estimate

forecast uncertainty. These samples are present if a forecasting institution uses all

forecast errors from the introduction of a new forecasting regime to the present.

For example, since February 1998, the BoE has published quarterly forecasts based

on market interest rates instead of constant interest rates. Suppose you want to use

past forecast errors to assess the future forecast uncertainty for these forecasts, and

that the last available realization comes from the fourth quarter of 2008 (henceforth

2008q4). If the forecasts contain a nowcast for the current quarter, then one can

calculate 44 forecast errors for the nowcast (based on the forecasts from 1998q1 to

2008q4), 43 forecast errors for the 1-quarter-ahead forecast (based on the forecasts

from 1998q1 to 2008q3), 42 forecast errors for the 2-quarter-ahead forecast (based

on the forecasts from 1998q1 to 2008q2) etc. Thus, using all available forecast

errors since February 1998 for an assessment of forecast uncertainty would mean

using a sample with recent forecast errors.

In this work, I derive the covariance matrix of squared multi-step-ahead forecast

errors under the assumption of optimal forecasts. In addition to the e cient esti-

mator, i.e the generalized least squares (GLS) estimator of forecast uncertainty,

I also consider the estimator based on seemingly unrelated regressions (SUR esti-

mator).4

The small-sample gains in forecast e ciency of these estimators are investigated

for samples of recent forecast errors. It turns out that they have two important

and at least partly surprising properties:

• The projection matrix of the GLS estimator does not depend on the distri-
bution of the error terms of the data-generating process (DGP).

• The projection matrix of the SUR estimator does not depend on the DGP at
all. The covariance matrix for the SUR estimator therefore does not need to

4The literature on GLS and SUR estimation with unequal number of observations is scarce.
Concerning SUR estimation, this case is studied by Schmidt (1977) and Im (1994).
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be estimated, but simply requires a certain structure. This is an intriguing

property in small samples.

In practice, most forecasts are probably non-optimal. Therefore, the perfor-

mance of the GLS and the SUR estimator is studied for such forecasts as well.

Since the GLS estimator does not work well, I use a shrinkage estimator (hence-

forth SGLS estimator) instead, which shrinks the GLS estimates towards the OLS

estimates. Monte Carlo studies show that only if the forecasting model is severely

misspecified, the OLS estimator can sometimes be more e cient than the SUR

and the SGLS estimator. However, in most cases studied, the SUR and the SGLS

estimator yield better results, often even in cases of severe misspecification. The

e ciency gains of the SUR estimator are typically larger than those of the SGLS

estimator, so that the SUR estimator seems preferable.

Finally I apply the SUR estimator to the BoE’s inflation forecasts for the

consumer price index. The SUR estimator indicates that forecast uncertainty

for the largest forecast horizons is likely to be strongly overestimated by OLS.

Moreover, the claim of Clements (2004), Wallis (2004) and others that the BoE’s

fan charts fan out too quickly is investigated. It is found that this result is probably

not related to an ine cient estimation of forecast uncertainty.

2 Optimal Forecasts

Every stationary DGP has a Wold-representation given by

= +
X
=0

(1)

with [ ] = 0, [ 2] = 2 and 0 = 1 Here it is assumed that the fourth moment

of exists, so that the kurtosis

=
£
4
¤

4

is finite.
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The optimal -step-ahead forecast is

+ = +
X
=0

+

Hence, the -step-ahead forecast error equals

+ := + =
1X

=0

+ (2)

Thus, + is the error of the forecast made in period for period + , and has

a moving-average representation of order 1 (henceforth MA( 1)-process).5

The variance of the -step-ahead forecast error is given by

¡
2
+

¢
= 2 = 2

1X
=0

2

The variances for all forecast horizons are collected in the vector 2, so that

2 =
¡

2
1

2
2

2
¢0

where denotes the largest forecast horizon. The estimates of forecast uncertainty

will be denoted as

ˆ2 =
¡
ˆ2 1 ˆ

2
2 ˆ2

¢0
where will refer to the estimation method used.

2.1 The Covariances of Squared Forecast Errors

From (2) it is obvious that the forecast errors 2 1 and 4 3 can be correlated,

and the same holds for the squared forecast errors. In order to determine the

covariance of two forecast errors
£¡

2
2 1

¡
2
2 1

¢¢ ¡
2
4 3

¡
2
4 3

¢¢¤
with

5In case of optimal forecasts, stationarity of is most likely unnecessary to obtain the expres-
sion for + given above. However, the derivations of this expressions found in the literature as
e.g Patton and Timmermann (2007) and Diebold (1998, p 341) always start from a stationary
process for .
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2 1, 4 3, define

= 3 1 (3)

= 2 1

= 4 3

= max (1 + 1)

= min ( + )

Then the covariance can be expressed as

£¡
2
2 1

¡
2
2 1

¢¢ ¡
2
4 3

¡
2
4 3

¢¢¤
(4)

=
0 if

4 ( 1)
P
=0

2 2
+ + 2

4
P
=0

P
=0 6=

+ + if

with = max ( + )

Here I use the convention
P0

=0

P0
=0 6= = 0 The derivation of equation (4) is

shown in Appendix A.1.

If the kurtosis equals = 3 (e.g in case of a normal distribution)6, expression

(4) simplifies to

£¡
2
2 1

¡
2
2 1

¢¢ ¡
2
4 3

¡
2
4 3

¢¢¤
(5)

=
0 if

2 4
P
=0

P
=0

+ + if

If, in addition, the true data-generating process is a first-order autoregressive

process (henceforth AR(1)-process)

= 1 +

6Note that no distribution with 1 appears to be known. The smallest possible kurtosis
seems to be = 1 for the discrete uniform distribution with 2 possible values. So the first term
of the covariance of squared foreacst errors can apparently not be negative. Most distributions
with infinite support have 3. However, the covariance can of course be negative if the second
term is negative.
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like in many of the following examples, so that = , (5) simplifies to

£¡
2
2 1

¡
2
2 1

¢¢ ¡
2
4 3

¡
2
4 3

¢¢¤

=

0 if

2 4 2( )

( 2 1)2

¡
2( +1) 1

¢2
if and { 1 1}

2 4 ( + 1)2 if and { 1 1}

2.2 The Data Structure of Recent Forecast Errors

Suppose that the first forecast was made in period 1 1, and that the last available

realization comes from period 2. Defining := 2 1 + 1 the sample of all

foreacst errors then contains 1-step ahead forecast errors, 1 2-step-ahead

forecast errors etc. Obviously, it is required that , so that there is at least

one -step-ahead forecast error.

Let the vector of squared 1-step-ahead forecast errors be

e21 =
¡
2
1 1 1

2
1+1 1

2
2 2 1

¢
the vector of squared 2-step-ahead forecast errors be

e22 =
¡
2
1+1 1 1

2
1+2 1

2
2 2 2

¢
etc. Then define the column vector with all squared forecast errors as

e2 =
¡
e21 e

2
2 e2

¢0
(6)

This vector has 1
2
(2 + 1) elements.

As an example, suppose that the forecasts started to be made in period 0 (i.e

1 = 1), and that the largest forecast horizon is 2 ( = 2), i.e that 1- and 2-step

ahead forecasts were produced. Further, suppose that the last realization observed

is 3 (i.e 2 = 3). This gives three 1-step-ahead forecast errors and two 2-step-

ahead forecast errors. The available squared forecast errors are presented in Table

1.
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forecast horizon
1 2

forecast 0 2
1 0

2
2 0

from 1 2
2 1

2
3 1

period 2 2
3 2

Table 1: An example data set

The (5× 1) vector e2 is then given by

e2 =
¡
e21 e

2
2

¢0
=
¡¡

2
1 0

2
2 1

2
3 2

¢ ¡
2
2 0

2
3 1

¢¢0

3 E cient Estimation of Forecast Uncertainty

In order to estimate a model with correlated error terms e ciently, i.e by GLS, one

needs to know the covariance matrix of the error terms. Since the regressors are

constants, the covariance matrix of the error terms equals the covariance matrix

of the dependent variables which is given by

=
h¡
e2

£
e2
¤¢ ¡
e2

£
e2
¤¢0i

Consider the covariance matrix of the vector e2 defined in the example of the

previous Section, i.e with = 3 and = 2. For the sake of simplification,

assume = 3. Then using (5) yields the desired values and gives the matrix

= 2 4

1 0 0 2
1 0

0 1 0 1 2
1

0 0 1 0 1
2
1 1 0 (1 + 2

1)
2 2

1

0 2
1 1 2

1 (1 + 2
1)
2

(7)
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In order to estimate forecast uncertainty, define the regressor matrix

X =

1 0 0 0

0 1 1 1 0 1 0 1

0 2 0 2 1 2 0 2

...
...

...
. . .

...

0 +1 0 +1 0 +1 1 +1

where 1 denotes an ( × 1) vector of ones and 0 denotes an ( × 1) vector of
zeros. For the example given above, the (5× 2) regressor matrix is given by

X =

"
1 1 1 0 0

0 0 0 1 1

#0

Having defined these matrices, the model to be estimated and the properties

of its error terms can be defined as

e2 = X 2 + u

[uu0] =

The GLS estimator is given by

ˆ2 =
¡
X0 1X

¢ 1
X0 1e2 (8)

whereas the OLS estimator which yields the sample means equals

ˆ2 = (X0X) 1
X0e2

The covariance matrices of these estimators are

¡
ˆ2

¢
=
¡
X0 1X

¢ 1

and ¡
ˆ2

¢
= (X0X) 1

X0 X (X0X) 1
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The measure of e ciency gains of the GLS estimator used in this work is defined

by

= 100 ln

Ãs ¡ ¡
ˆ2

¢¢¡ ¡
ˆ2

¢¢!

where the fraction bar denotes elementwise division, • denotes the elementwise
square root, extracts the diagonal of a matrix, and is the ( × 1) vector

=
¡

1 2

¢0
So values larger than 0 indicate e ciency

gains. For example, a value of 3 = 20 means that the standard deviation of

the GLS estimator for 2
3 is 20% lower than that of the OLS estimator.

For the example given above, the e ciency gains only depend on 1. They are

displayed in Figure 1. E ciency gains can be obtained for = 2, but not for

= 1. A similar phenomenon is found by Im (1994) for the SUR estimator with

unequal numbers of observations and identical regressors. He shows that e ciency

gains can only be obtained for the variable with a smaller number of observations.

Note that the e ciency gains for = 2 are not monotonous with respect to | 1|,
attaining the lowest value at | 1| = 1, i.e at the point where the MA(1)-process of
the 2-step-ahead forecast errors switches from invertibility to non-invertibility.

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

5

10

15

20

b1

Figure 1: E ciency gains 1 (circles) and 2 (dashed line) as functions of
1 with = 3 = 2 and = 3

As Grenander and Rosenblatt (1957) show, OLS estimation is asymptotically
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as e cient as GLS estimation if the regressors consist exclusively of a constant.

So, in the case presented here GLS estimation is interesting in small samples only.

An important question is what a small sample means in this context. Since the

answer depends on the DGP of the forecast errors and the number of forecast

horizons, the question cannot be answered in general. However, an example might

yield some insights.

Consider the macroeconomic forecasts of the BoE. Since August 2004, these

are made for the current quarter and for the next 12 quarters, so = 13. One

of the variables to be forecast is real GDP growth in the UK. Estimating an

AR(1)-process with a constant for quarterly real GDP growth from 1993q1 to

2008q3 yields = 0 42 for the growth rate with respect to the previous quarter

and = 0 88 for the growth rate with respect to the previous year’s quarter.

Assuming that these are the true DGPs, the ’s of (1) are simply given by = .

Considering = 3, the vectors displayed in Figures 2 and 3 are obtained.

Obviously, the e ciency gains decrease with the number of available forecast er-

rors, and they increase with the forecast horizon. As mentioned above, the latter

has two reasons. Firstly, there are less forecast errors observed for larger horizons.

Secondly, the autocorrelation of forecast errors increases with the forecast horizon.

Both reasons lead to higher forecast uncertainty for larger horizons which can be

reduced by GLS estimation.

The e ciency gains here also increase with decreasing persistence of the DGP.

If the persistence is low ( = 0 42) and the sample is fairly small ( = 20, i.e

5 years of data) the e ciency gains reach more than 40% for the 13-step-ahead

forecast. Even if 28 13-step-ahead forecast errors are available (i.e if = 40),

the e ciency gains for this horizon are still larger than 15%. However, if the

sample exceeds 60 observations, the e ciency gains hardly exceed 10% even for the

largest horizon.7 So GLS estimation might be considered useful in situations where

quarterly forecasts are made for up to 3 years ahead and the current forecasting

regime has not been in place for more than 15 years.

7This result remains valid also if is set to values lower than 0 42.
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Figure 2: E ciency gains of GLS versus OLS with = 13, DGP is an AR(1)-
process with = 0 42.
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4 SUR Estimation of Forecast Uncertainty

If the DGP is stationary, the covariance between the squared forecast errors 2
1+ 1 1

and 2
1+ 2 1

becomes very small when | 2 1| becomes large. Actually, if all ’s

are smaller than 1 in absolute value, the largest possible covariance for two squared

forecast errors 2
1 1 1

and 2
2 2 2

for given forecast horizons 1 and 2 is obtained

when 1 = 2. Therefore, although some ’s can be larger than 1 in absolute value

if the DGP is stationary, a seemingly unrelated regression (SUR) estimation might

be a promising approach for the estimation of forecast uncertainty.

The calculation of the individual covariances and the construction of the co-

variance matrices are relatively easy in this case. Define and as in (3), i.e

= 2 1 and = 4 3. Assuming that the SUR formulation is a good

approximation, for the individual covariances one obtains

£¡
2
2 1

¡
2
2 1

¢¢ ¡
2
4 3

¡
2
4 3

¢¢¤
0 if 2 6= 4

4 ( 1)
1P

=0

4 + 2 4
1P

=0

1P
=0 6=

2 2 if 2 = 4

with = min ( ) .

If the kurtosis equals = 3, this expression simplifies to

£¡
2
2 1

¡
2
2 1

¢¢ ¡
2
4 3

¡
2
4 3

¢¢¤
0 if 2 6= 4

2 4
1P

=0

1P
=0

2 2 if 2 = 4

If, in addition, the true data-generating process is an AR(1)-process, this simplifies
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to

£¡
2
2 1

¡
2
2 1

¢¢ ¡
2
4 3

¡
2
4 3

¢¢¤
0 if 2 6= 4

2 4
2( +1) 1

2

( 2 1)2
if 2 = 4 and { 1 1}

2 4 ( + 1)2 if 2 = 4 and { 1 1}

For the construction of the covariance matrix, it is helpful to define

= 4 ( 1)
1X

=0

4 + 2 4
1X

=0

1X
=0 6=

2 2

and

G =
h
0 +1I

i
where 0 denotes an ( × ) matrix of zeros, I denotes the identity matrix of

size , and with the convention that G 0 = +1I .

The covariance matrix for the SUR estimator is given by

=

G0 0 G0
1 1 G

0
2 2 G0

1 1

G1 1 G1 0 G0
2 1 G0

1 2

G2 2 G2 1 G2 0 G0
1 3

...
...

...
. . .

...

G 1 1 G 1 2 G 1 3 G 1 0

Thus, for the example given above with = 3 = 2 and = 3, the matrix

equals

= 2 4

1 0 0 0 0

0 1 0 1 0

0 0 1 0 1

0 1 0 (1 + 2
1)
2

0

0 0 1 0 (1 + 2
1)
2

(9)
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0

= 1 = 2 = 3 = 4 = 5 = 6 = 7 = 8 = 9
0 5 20 0 0 1 2 3 0 5 3 8 0 11 0 14 3 17 8 21 7
1 0 20 0 0 0 4 0 8 1 3 1 9 2 4 2 8 3 2 3 4
1 5 20 0 0 0 1 0 2 0 3 0 3 0 3 0 2 0 1 0 1
2 0 20 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0

Table 2: E ciency gains of the SUR estimator, varying

The SUR estimator of forecast uncertainty is given by

ˆ2 =
³
X0 1

X
´ 1

X0 1 e2 (10)

The covariance matrix of the estimator ˆ2 equals

¡
ˆ2
¢
=
¡
X0 1 X

¢ 1
X0 1 1

SURX
¡
X0 1 X

¢ 1

I define the e ciency gains of the SUR estimator as

= 100 ln

Ãs ¡ ¡
ˆ2

¢¢¡ ¡
ˆ2

¢¢!

where is an ( × 1) vector. It is clear that, in contrast to , the elements

of do not have to be greater than or equal to zero. The signs of the elements

of depend on and . In the light of the considerations at the beginning

of this section, one would suppose that the OLS estimator could have a smaller

variance than the SUR estimator if the ’s are large in absolute value.

To investigate this possibility, I set = 3 and {0 5 1 0 1 5 2 0} with =

. The latter two of these values imply a strongly exploding forecast uncertainty.

Moreover, = 9 and = 20. The results for are displayed in Table

2. Surprisingly, they show that even if forecast uncertainty explodes, the SUR

estimator yields mostly smaller variances than the OLS estimator. Actually, only

for = 2 and {8 9}, the OLS estimator has a marginally smaller variance.
In order to investigate this further, is varied in the following calculations.

is set to 2, all other parameters remain the same. The e ciency gains and
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0

= 1 = 2 = 3 = 4 = 5 = 6 = 7 = 8 = 9
2 0 12 0 0 0 0 0 0 0 1 0 2 0 3 0 5 0 9 1 4
2 0 15 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 2 0 4
2 0 30 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Table 3: E ciency gains of the SUR estimator, varying

losses displayed in Table 3 emerge. Apparently, the SUR estimator can have a

marginally larger variance than the OLS estimator if the sample is very short and

if the process of the forecast errors is strongly explosive, which is very unlikely to

be a relevant case in practice.

It is also interesting to study the di erences between the e ciency gains of the

SUR and the GLS estimator. These are displayed for several values of in Figure

4. For values of smaller than or equal to 0 5, the SUR estimator is practically

as e cient as the GLS estimator. For values of around 0 75, di erences become

noticeable, but remain small. Even for = 0 9, the e ciency gains of the SUR

estimator equal more than half of those of the GLS estimator for all horizons. If

= 1 0, the e ciency gains of the SUR estimator reduce to about 40% of those

of the GLS estimator. So, unless the DGP is very persistent, the SUR estimator

performs almost as well as the GLS estimator.

5 Properties of the GLS and SUR Estimator

The GLS and the SUR estimator have interesting properties, which have partly

become obvious in the preceding Section already. A striking feature from Figures 2,

3 and 4 is given by the equality of the variances of the OLS and the GLS estimator

for the smallest forecast horizon. For the following investigation of issues like these,

it is helpful to define the matrices

A =
¡
X0 1X

¢ 1
X0 1

and

A =
¡
X0 1 X

¢ 1
X0 1
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Figure 4: E ciency gains of GLS and SUR versus OLS with = 20 and = 9,
DGP is an AR(1)-process

These matrices are used for the calculations of the respective estimates in (8) and

(10). They are multiplied with the vector of squared forecast errors e2. So the GLS

projection matrix is given by X0A, and the SUR projection matrix by X0A .

Taking the example from above with = 3 = 2 and = 3, A equals

A =

"
1
3

1
3

1
3

0 0
1
6
(2 2

1)
1
6
( 21 + 1)

1
6
(2 2

1 1) 1
2

1
2

#
(11)

For A one finds

A =

"
1
3

1
3

1
3

0 0
1
3

1
6

1
6

1
2

1
2

#
(12)
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5.1 The Parameter-(In)dependence of the GLS and SUR

Estimator

Up to now, only the special case where = 3 was considered. If this restriction is

lifted, the covariance matrix of the GLS estimator with = 3 and = 2 becomes

= 4

1 0 0 ( 1) 2
1 0

0 1 0 1 ( 1) 2
1

0 0 1 0 1

( 1) 2
1 1 0 ( 1) (1 + 4

1) + 4
2
1 ( 1) 2

1

0 ( 1) 2
1 1 ( 1) 2

1 ( 1) (1 + 4
1) + 4

2
1

(13)

Note that the term 1 cannot be factored out. However, calculating A, sur-

prisingly, yields the same result as with = 3. That is, the matrix A is again

given by (11).

The covariance matrix of the SUR estimator with = 3 and = 2 and

unrestricted becomes

= 4

1 0 0 0 0

0 1 0 1 0

0 0 1 0 1

0 1 0 ( 1) (1 + 4
1) + 4

2
1 0

0 0 1 0 ( 1) (1 + 4
1) + 4

2
1

Again, the term 1 cannot be factored out. But again, calculating A

gives the same result as with = 3, so that the matrix A is equal to (12).

Surprisingly, in contrast to A, A does not depend on 1 either.

These results obtained for = 3 and = 2 might to be valid for other values

of these parameters as well. That is, it is possible that A does not depend on

, and that A neither depends on nor on b, where b = ( 1 2 1).

This possibility can be studied analytically by calculating the derivatives A ,

A and A with = 1 2 1 and checking whether they

equal zero.

Using the Symbolic Math Toolbox of MATLAB, I find that all the abovemen-
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tioned derivatives indeed equal zero for = 2 3 4 5 and 2 . For larger

horizons, analytical investigations turn out to be impossible due to computational

reasons. However, it is possible to increase if is small. If = 2 or = 3,

can be increased to 10, and the derivatives continue to equal zero. Yet, it could

of course be possible that this is due to the still rather small values of and

which can be studied in this manner.

Therefore, I also conduct a simulation study. In 1000 simulations, is drawn

from a discrete uniform distribution over the interval [2 60], is drawn from a

discrete uniform distribution over the interval [2 min( 15)], equals +1 where

is drawn from the 2
2 distribution (so that [ ] = 3), and each element of b

is drawn from a standard normal distribution. In these simulations, I find that

the di erence between a matrix A generated in the way described and a second

matrix Ā with the same and b but with = ¯ where ¯ is an arbitrary

value (I use = 3) always equals zero for every element of these matrices. Along

the same lines, the di erences between the elements of a matrix A generated

in the way described and the elements of a matrix Ā with the same and ,

but with = ¯ and b = b̄, where ¯ is an arbitrary value and b̄ is an arbitrary

(( 1)× 1) vector (I use = 3 and b = 10 1) are always zero. So also for large

values of and , apparentlyA does not depend on andA neither depends

on nor on b.8

So the GLS projection matrix X0A does not depend on the distribution of the

shocks, because is the only distribution parameter that could have appeared in

the projection matrix. The SUR projection matrix X0A does not depend on

the DGP at all. This means that the GLS estimator depends on the distribution

of the shocks only through e2, but not through A. Along the same lines, the

SUR estimator depends on the DGP only through e2, but not through A .

For the case of = 2 and arbitrary values of all other parameters, the parame-

8It should be noted that both results depend on the data structure investigated here, where the
number of available forecast errors decreases one-to-one with the forecast horizon. Simulations
show that, in other data structures, A and A typically depend on and b.
An exception is a balanced sample of forecast errors, where all forecast errors come from the

same time span. In this case, it is well known that OLS and SUR estimation yield the same
results if the regressors are constants. Thus, in this case A does not depend on and b
either, but in contrast to the data structure studied here, no e ciency gains can be achieved
with the SUR estimator.

19



ter independence of A can actually be proven analytically. As demonstrated

in Appendix A.2, in this case A equals

A =

"
1 1 10 1 00 1

1 1
( 1)

10 1
1
1
10 1

#

The consequences of these findings are very useful in practice, because the

covariance matrices and are usually unknown, and the samples under

study can be very small.9 The parameter independence of A implies that,

although is unknown, and although the sample might be very small, the

estimation uncertainty for does not matter. Only the known parameters

and matter for the construction of . For and b, arbitrary values can be

assumed. Thus, the SUR estimator does not require the estimation of a covariance

matrix. For the GLS estimator, an arbitrary value of can be assumed, but b has

to be estimated.

5.2 The Recursiveness of the GLS and SUR Estimator

Suppose that, as in the example above = 3 and = 3. However, assume that

= 3, i.e that the 3-step-ahead forecast error 3 0 is available, so that the vector

e2 becomes

e2 =
¡
e21 e

2
2 e

2
3

¢0
=
¡¡

2
1 0

2
2 1

2
3 2

¢ ¡
2
2 0

2
3 1

¢ ¡
2
3 0

¢¢0
Letting =3 =2 denote the covariance matrix (7) of the previous example with

= 3 = 2 (and = 3), the covariance matrix for = 3 is given by

=2 4
1
2 4 =3 =2

2
2

2
1

1

(1 + 2)
2 2
1

(1 + 2
1)
2

2
2

2
1 1 (1 + 2)

2 2
1 (1 + 2

1)
2 (1 + 2

1 +
2
2)
2

9Moreover, the forecasts are not exactly optimal. Otherwise, b could be precisely determined
based on the forecast errors.
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Along the same lines, let X =3 =2 denote the regressor matrix of the previous

example with = 3 = 2. Then the regressor matrix for = 3 equals

X =

"
X =3 =2 05

002 1

#
(14)

Using these matrices to find A yields

A =

1
3

1
3

1
3

0 0 0
1
6
(2 2

1)
1
6
( 21 + 1)

1
6
(2 2

1 1) 1
2

1
2

0

1 2 3
1
2
(1 2)

1
2
( 2 1) 1

(15)

with 1, 2 and 3 being polynomials in 1 and 2 which are not written out to

save space.

Comparing (11) to (15) shows that the estimates for = 1 and = 2, ˆ2 1

and ˆ2 2 are identical. So the information contained in
2
3 0 is only used for the

estimate for = 3, ˆ2 3, but not for the smaller horizons. Along the same lines,

the squared 2-step-ahead forecast errors 2
2 0 and

2
3 1 are used for the estimates

ˆ2 2 and ˆ
2

3, but not for the smaller horizon ˆ
2

1. Moreover, it is interesting

to see that ˆ2 1 = ˆ2 1 and that the estimates ˆ
2

2 and ˆ
2

3 equal the

sum of the OLS estimates ˆ2 2 and ˆ
2

3, respectively, and of a weighted sum

of the squared forecast errors from smaller horizons whose expectation must equal

zero.10

For the SUR estimator, the same can be observed. Letting =3 =2

denote the covariance matrix (9) of the previous example with = 3 = 2 (and

10This zero-expectation property follows from the fact that the GLS estimates and the OLS
estimates are consistent.
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= 3), the covariance matrix for = 3 is given by

=2 4
1
2 4 =3 =2

0

0

1

0

(1 + 2
1)
2

0 0 1 0 (1 + 2
1)
2 (1 + 2

1 +
2
2)
2

Using and the regressor matrix (14) to find A gives

A =

1
3

1
3

1
3

0 0 0
1
3

1
6

1
6

1
2

1
2

0
1
3

1
6

1
6

1
2

1
2
1

So also with the SUR estimator, the 3-step-ahead forecast errors are only used

for the estimate ˆ2 3, and the 2-step-ahead forecasts are only used for the es-

timates ˆ2 2 and ˆ
2

3. Also ˆ
2

1 = ˆ2 1, and the estimates ˆ
2

2 and

ˆ2 3 equal the sum of the OLS estimates ˆ
2

2 and ˆ
2

3, respectively, and of

a weighted sum of the squared forecast errors from smaller horizons whose expec-

tation equals zero.

To further investigate the hypotheses that the matrices A and A have the

recursiveness properties described above, that ˆ2 1 = ˆ
2

1 = ˆ
2

1, and that

the estimates ˆ2 ˜ and ˆ
2

˜ are sums containing the OLS estimate ˆ
2

˜ , I

use the same simulation design as described above. That is, I use random draws of

b and to calculate matrices A and A to check whether the hypotheses

are rejected.
I find that for the GLS estimator, the matrix A always has a structure which
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can indeed be written as

A =

1 10 00 1 00 2 00 +3 00 +2 00 +1

a1 1
1
11

0
1 00 2 00 +3 00 +2 00 +1

a2 1 a2 2
1
21

0
2 00 +3 00 +2 00 +1

a3 1 a3 2 a3 3 00 +3 00 +2 00 +1
...

...
...

. . .
...

...
...

a 4 1 a 4 2 a 4 3 00 +3 00 +2 00 +1

a 3 1 a 3 2 a 3 3
1
+31

0
+3 00 +2 00 +1

a 2 1 a 2 2 a 2 3 a 2 2
1
+21

0
+2 00 +1

a 1 1 a 1 2 a 1 3 a 1 2 a 1 1
1
+11

0
+1

(16)

where a is a row vector whose elements are polynomials in the elements of b.

The same structure is found for A , but, as discovered above, the row vector

a does not depend on b.

This structure of A and A indeed implies that the inclusion of forecast

errors of horizons larger than a certain ˜ do not a ect the estimates for the horizons
˜. Thus, the GLS and the SUR estimator have a recursive structure, where

for the estimation of forecast uncertainty for the horizon ˜, only forecast errors

for the horizons = 1 2 ˜ are employed. This means, for example, that the

results for = 1 2 ˜ presented in Figures 2, 3 and 4 would not change if the

forecast errors for the horizons ˜ ˜ + 1 9 were excluded from the estimation.

Of course, from (16) it also follows that ˆ2 1 = ˆ
2

1 = ˆ
2

1 and that ˆ
2

˜

and ˆ2 ˜ are sums containing the OLS estimate ˆ
2

˜ .

Stated formally, the structure of A implies that the GLS estimate of 2
˜ can be

written as

ˆ2 ˜ = a˜ 1 1e
2
1 + a

2
˜ 1 2

e22 + + a˜ 1 ˜ 1e
2
˜ 1

+ ˆ2 ˜ (17)

where the elements a˜ 1 have the interesting property

a˜ 1 1 +1 = 0 (18)

so that ˆ2 ˜ is the sum of the OLS estimate ˆ
2

˜ and ˜ 1 summation terms
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which each have an expectation of zero.11 The same holds for ˆ2 ˜ .

If the SUR estimator is employed, actually the matrix A might be con-

structed without a prior determination of . While the structure displayed in

(16) is common to A and A , the matrix A can be precisely determined

using the equations

a =
h

1
+1

c
i

(19)

c =
1

( + 1) ( )
10

Note that, as claimed in (18),

1

+ 1
+ c 1 = 0

So given and , the SUR estimates can be obtained simply by setting upA

as in (16) with a determined by (19). The product A e2 yields the SUR

estimates.

6 Problems in Practice

6.1 Unknown Covariance Matrix

In general, the covariance matrix of the squared forecast errors is unknown in

practice. This is irrelevant for the SUR estimator, because its covariance matrix

depends on the known parameters and only. However, GLS estimation

requires the estimation of the covariance matrix . If the forecasts were optimal,

b could be calculated directly from the forecast errors and could be set arbitrarily.

However, forecasts are typically not exactly optimal.

Thus, the estimator to be employed in this case is a feasible GLS (henceforth

FGLS) estimator. The covariance matrix here is estimated based on the em-

11That is, not only
h
a˜ 1 1e

2
1 + a

2
˜ 1 2

e22 + + a˜ 1 ˜ 1e
2
˜ 1

i
= 0 holds, but alsoh

a˜ 1 e
2
i
= 0 for = 1 2 ˜ 1

It might also be interesting to note that (17) corresponds to the result of Grenander and
Rosenblatt (1957) in that the GLS estimate asymptotically equals the OLS estimate.
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pirical covariances of the squared forecast errors as described in Appendix A.3.12

This estimated matrix ˆ is then used to obtain the FGLS estimates according to

ˆ2 =
³
X0ˆ 1X

´ 1

X0ˆ 1e2

However, this procedure sometimes leads to huge outliers where the FGLS esti-

mates di er enormously from the OLS estimates and from the true values. The

FGLS estimates can even become negative. Therefore, a very simple method of

shrinking is used, giving rise to the shrunk (feasible) GLS (henceforth SGLS) es-

timator

ˆ2 = w¯ ˆ2 + (1 w)¯ˆ2

with

w =

¡
ˆ2 ˆ2

¢2
1

¡
ˆ2 ˆ2

¢2
The fraction bar denotes elementwise division, raising a vector to the second power

here means raising each element of that vector to the second power, and ¯ denotes
Schur multiplication.

If the di erence between the OLS and the FGLS estimator is very large, w is

close to 1 . If the di erence is very small, w is close to 0 . Therefore, with this

approach, the larger the di erence between the OLS and the FGLS estimator is,

the stronger the estimator ˆ2 is shrunk towards the OLS estimator.13 Note

that ˆ2 is an unbiased estimator, because it is a weighted average of the two

unbiased estimators ˆ2 and ˆ2 .

In order to compare the e ciency gains of ˆ2 , ˆ2 and ˆ2 , I consider

the case of optimal forecasts and an AR(1)-process with = 0 5 and normally

distributed error terms. The results in Table 4 show that, even in case of optimal

forecasts, the FGLS estimator only works well in situations where e ciency gains

are very small anyway, i.e in relatively large samples. In the case of small samples,

i.e in case of a small given a certain value of , the FGLS estimator leads to

12If the forecasts were close to optimal, one could estimate b reasonably well from the forecast
errors and construct the covariance matrix based on this estimate. However, in practice most
forecasts are unlikely to be close to optimal, so that the estimation of b can be problematic.
13Another possibility would be to shrink the covariance matrix towards some target matrix.

However, this approach will not be pursued here.
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3 10 10 20
2 2 3 3

2 5 3 1 7 1 8 0 9

2 0 0 1 8 1 7 1 1

2 20 7 2 0 2 6 1 0

3 4 2 2 5

3 1 5 2 0

3 15 1 6 7

Table 4: E ciency gains for optimal forecasts with = 3 and 1 = 0 5. E ciency
gains are determined by 10000 simulations.

e ciency losses. For example, if = 3 and = 2, the FGLS estimator of the

3-step-ahead forecast uncertainty is much less e cient than the OLS estimator.

This is due to the fact that the estimation uncertainty for the covariance matrix is

quite large. Therefore, the FGLS estimator will not be considered in what follows.

It will only be used to determine the SGLS estimator. The SGLS estimator is in

general more e cient than the OLS estimator.

6.2 Non-Optimal Forecasts

Economic forecasts are often found to be non-optimal14, which indicates that many

forecasting models are probably more than just marginally misspecified. Actually,

this is one of the reasons why most institutions measure forecast uncertainty using

past forecast errors. If the forecasts were optimal, the forecast uncertainty could

be calculated employing the forecasting model. Therefore, the results found above

give only limited guidance to practitioners.

If the DGP is given by (1), and the forecasts are non-optimal, the forecast

errors have the representation

+ = +
X
=0

+

with 0 = 1 for all . Hence, all forecast errors can be correlated, the forecast

uncertainty can decrease with etc. However, as in the case of optimal forecasts,

14see, e.g. Brown and Maital (1981) or Zarnowitz (1985).
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the inequality

[ ] 2

with 1 continues to hold. That is, the forecast errors of forecasts for a certain

period are always strongly correlated due to the shock in that period. This strong

correlation does not depend on forecast optimality. Since the SUR estimator de-

rived for optimal forecasts is based on the covariances of 2 and 2 , it might

be the case that this estimator produces reasonable results even in the case of

non-optimal forecasts.

In addition to the SUR estimator, the SGLS estimator will be considered. For

the estimation of the required covariance matrix of the squared forecast errors, I

also use the restrictions derived for optimal forecasts.15

In the following, I investigate three important problems which can occur in the

forecasting process and lead to non-optimal forecasts: Bias, dynamic misspecifica-

tion, and structural breaks.

6.2.1 Bias

Suppose that the DGP is given by

= + 1 +

The forecasting model does not contain a constant but uses the correct autore-

gressive parameter, so that the forecasts are determined by

ˆ + =

Here and in the following, the error terms are identically, independently and

normally distributed. If 6= 0, the forecasting model is misspecified, the forecasts
are biased, and the elements of the covariance matrix of the squared forecast errors

cannot be determined by (4). Nevertheless, I will employ the covariance matrices

15In principle, the covariance matrix of the squared forecast errors could be determined without
restrictions. However, the fact that the samples under study can be very small favours their use.
Therefore, and in order to facilitate comparisons with the SUR estimator, I use the restrictions
derived for optimal forecasts.
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derived for optimal forecasts for the SUR and the SGLS estimator.

In addition to the SUR and SGLS estimator, here I will also consider the

determination of forecast uncertainty based on the forecasting model. The model-

based uncertainty is simply given by

2 = 2

Ã
0X
=0

2
1X
=0

2
1X

=0

2

!0

I abstract from estimation uncertainty, so that the parameters and are known.

Thus, the e ciency gains for the model-based uncertainty are determined by

= 100 ln

μq ¡ ¡
ˆ2

¢¢÷q( 2 2)
2

¶

Since there is no estimation uncertainty with respect to 2 , the only reason why
2 di ers from 2 is the bias of 2 due to neglecting in the forecasting

model.

Simulation results are reported in Table 5 for = 0 5, = 20 and = 9. The

biasedness of the forecasts leads only to minor reductions of the e ciency gains of

the SUR estimator. This holds even for extremely large biases like = 10. The

presence of bias can apparently not cause e ciency losses of the SUR estimator as

long as the dynamic specification of the forecasting model is correct. The SGLS

estimator also leads to e ciency gains for all values of considered, but the gains

are markedly smaller than those of the SUR estimator.

The e ciency gains obtained by using model-based uncertainty strongly de-

pend on the value of . For = 0 5, the model-based calculation of uncertainty is

more e cient than OLS estimation. For = 1 and = 10, i.e in case of strong

misspecification of the model, the OLS estimator is more e cient. It should be

noted that 2 is always biased downwards, i.e 2 always understates the true

forecast uncertainty if 6= 0

28



= 0 = 0 5 = 1 = 100

= 1 0 0 0 0 0 0 0 0 41 3 0 0 0 0 60 6 0 0 0 0 309 7
= 2 1 5 1 3 1 6 1 2 18 4 1 2 1 0 70 0 0 4 1 0 308 4
= 3 3 2 3 2 3 3 2 8 13 5 2 6 2 4 71 1 0 4 2 4 306 8
= 4 3 7 5 2 4 3 4 7 12 8 3 5 4 3 70 2 0 3 4 1 304 9
= 5 3 8 7 9 5 0 6 9 13 7 3 9 6 7 68 3 0 2 6 4 302 5
= 6 4 2 10 6 5 6 9 3 15 4 4 1 9 3 65 9 0 2 8 9 299 9
= 7 4 5 13 4 5 8 12 0 17 7 4 0 12 0 63 3 0 2 11 8 297 0
= 8 5 1 17 0 5 8 15 3 21 0 3 9 15 0 60 3 0 1 15 4 293 4
= 9 5 1 20 9 5 9 18 8 24 4 3 7 18 7 56 6 0 1 18 9 289 9

Table 5: E ciency gains of the GLS estimator, the SUR estimator, and the model-
based determination of forecast uncertainty with = 20 and = 9 if the true
DGP contains a constant while the forecasting model does not. = 0 5 in the
DGP and the forecasting model. Results are based on 10000 simulations.

6.2.2 AR(1)-Processes

Suppose that the DGP is given by

= 1 +

and the forecasts are made according to

ˆ + = ˆ

If ˆ 6= , the forecasting model’s dynamics are misspecified. Simulations with

under- and overestimations of are reported in Table 6 for = 20 and = 9.

The results in Table 6 indicate that e ciency losses are unlikely if is under-

estimated. The e ciency gains of the SUR estimator for = 1 0 are larger than

those of the SGLS estimator, but still very small. This, however, is unrelated to

the dynamic misspecification as e.g. Table 2 shows. Interestingly, the e ciency

gains of the SUR estimator increase when the misspecification becomes stronger.

If is overestimated, e ciency losses can occur with the SGLS and with the

SUR estimator. With the SUR estimator, losses are restricted to the case of strong

overestimation of . If equals 0 9 and the forecasting model uses ˆ = 1 0, the SUR

estimator yields small e ciency gains for all horizons (except = 1, of course),

whereas with the SGLS estimator, a slight e ciency loss occurs for = 2.
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= 1 0 = 1 0 = 0 6 = 0 9
ˆ = 0 6 ˆ = 0 9 ˆ = 1 0 ˆ = 1 0

= 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
= 2 0 0 0 2 0 1 0 2 0 6 0 4 0 4 0 3
= 3 0 0 0 5 0 2 0 4 1 0 0 6 0 0 0 8
= 4 0 0 0 9 0 1 0 6 1 2 0 0 0 2 1 2
= 5 0 0 1 3 0 0 0 8 1 5 0 9 0 0 1 6
= 6 0 0 1 8 0 0 0 9 1 4 2 7 0 0 1 7
= 7 0 0 2 3 0 0 1 1 1 4 5 0 0 0 1 5
= 8 0 0 2 8 0 0 1 4 1 2 8 1 0 0 1 2
= 9 0 0 3 3 0 0 1 7 1 3 12 3 0 0 0 6

Table 6: E ciency gains of the SGLS and the SUR estimators with = 20 and
= 9 if the autoregressive coe cient of the forecasting model is misspecified.

Results are based on 10000 simulations.

6.2.3 AR(2)-Processes

Assume that the DGP is given by

= 1 1 + 2 1 +

with the eigenvalues of this process denoted by 1 and 2. The forecasting model

is

= ˆ 1 +

with [ ] = 0. ˆ is the asymptotic result of a regression of on 1. Thus,

the misspecification arises from using a too small lag order. The least squares

estimator equals the Yule-Walker estimator asymptotically, so that

lim ˆ = 1

1 2

holds, where denotes the sample size.

Several values of 1 and 2 are considered. The results of the simulations

are displayed in Table 7. Obviously, the SGLS and SUR estimator are more

e cient than the OLS estimator in many cases. Only if the true DGP contains an

eigenvalue which is close to unity and closer to unity than the eigenvalue of the
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1 0 750 0 100 1 200 0 080 1 425 0 095 1 0945

2 0 500 0 800 0 500 0 900 0 500 0 900 0 100
| 1| 0 707 0 946 0 707 0 990 0 800 0 997 0 994
| 2| 0 707 0 846 0 707 0 910 0 625 0 902 0 101
ˆ 0 500 0 500 0 800 0 800 0 950 0 950 0 995

SGLS SUR SGLS SUR SGLS SUR SGLS SUR SGLS SUR SGLS SUR SGLS SUR
= 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
= 2 1 6 1 2 0 9 0 8 1 1 0 9 0 5 0 1 0 7 0 5 7 4 16 6 0 2 0 4
= 3 3 9 3 5 1 7 1 8 1 9 2 1 1 0 1 2 0 8 1 2 1 5 1 6 0 9 1 1
= 4 6 2 6 5 1 9 3 0 1 8 3 3 0 3 0 7 0 4 2 0 0 1 5 5 0 7 1 8
= 5 7 7 10 3 2 0 4 5 1 6 4 9 0 4 1 3 0 2 2 7 1 1 2 3 0 3 2 4
= 6 8 0 13 6 2 0 6 3 1 4 6 7 0 2 1 3 0 1 3 3 0 0 1 8 0 2 3 0
= 7 8 0 16 5 1 9 7 9 1 6 9 1 0 2 1 7 0 1 3 9 0 5 1 9 0 2 3 5
= 8 8 1 19 6 1 8 9 8 1 5 12 1 0 1 1 9 0 1 4 4 0 2 0 2 0 1 3 8
= 9 7 5 23 3 1 6 11 7 1 5 16 0 0 2 2 4 0 0 4 8 0 1 1 5 0 0 4 0

Table 7: E ciency gains of the GLS and the SUR estimators with = 20 and
= 9 if the true DGP is an AR(2)-process while the forecasting model is an

AR(1)-model. Results are based on 10000 simulations.

forecasting model, for some forecast horizons OLS is found to be preferable.

The most extreme case is observed for 1 = 0 095 and 2 = 0 9 resulting in

an eigenvalue with an absolute value of 0 997 and ˆ = 0 95. In this case, for

= 2, the e ciency losses of SGLS and SUR estimation reach 7% and 17%,

respectively. However, if at least one of the two conditions max (| 1| | 2|) 1

and max (| 1| | 2|) ˆ is not fulfilled, SGLS and SUR appear to be more e cient

than OLS. So the situations where OLS is preferable seem to be restricted to a

rather limited part of the parameter space. The e ciency gains achieved with

the SUR estimator are in general substantially larger than those with the SGLS

estimator.

6.2.4 Structural Breaks

Another problem that can occur in practice is a change of the DGP due to a

structural break, which usually leads to a change in the properties of the squared

forecast errors. Suppose that, as in the examples above, we have = 3 and

= 2, so that the vector of squared forecast errors is

e2 =
¡
e21 e

2
2

¢0
=
¡¡

2
1 0

2
2 1

2
3 2

¢ ¡
2
2 0

2
3 1

¢¢0
Now consider the case where a structural break of the DGP occurs in period 1+1.

Since the first forecast is made in 1 1, this implies that 2
1 0 is not a ected by the
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structural break, but all other elements of e2 are. When considering recent forecast

errors, the forecaster is usually interested in the current forecast uncertainty, so

this would be the uncertainty after the structural break.

The OLS and hence all other estimators yield biased results for = 1, because

they use a squared forecast error that occurred before the structural break ( 2
1 0)

in addition to the squared forecast errors that occurred after the structural break

( 2
2 1,

2
3 2). For = 2, the OLS estimator only uses squared forecast errors that

occurred after the structural break ( 2
2 0,

2
3 1), whereas the SGLS and the SUR

estimator use all elements of e2, including 2
1 0. Hence the OLS estimate for = 2

is unbiased, whereas the SGLS and the SUR estimate are biased. Therefore, in

the case of a structural break in the DGP, the OLS estimator in general should

be preferred. Yet, if the structural break only leads to small changes of forecast

uncertainty, it could be that the gains from the smaller variance of the SGLS and

the SUR estimator outweigh the loss due to the bias.

7 Applications to the Bank of England’s Infla-

tion Forecasts

7.1 The Uncertainty About the 2- to 3-Year-Ahead Fore-

casts

In the BoE Inflation Reports as of August 2004, inflation forecasts, conditioned on

the interest rate path expected by market participants (henceforth forecasts based

on market rates), are published for up to 13 quarters ahead. Since the smallest

forecast horizon actually corresponds to a nowcast for the current quarter, the

largest forecast horizon corresponds to a 3-year-ahead forecast. Before August

2004, the largest forecast horizon was 9, corresponding to 2-year-ahead forecasts.

So if the forecast uncertainty concerning the forecast horizons 10 to 13 is to be

estimated, only very few forecast errors are available. With the last observation

coming from 2008q4, the number of forecast errors ranges from 6 (horizon 13) to 9

(horizon 10). For the nowcasts as of August 2004, i.e the current quarter forecasts,

we have 18 forecast errors, so that = 18.

32



If only the forecast horizons 1 to 9 are to be investigated, the sample of forecasts

based on market rates starts in 1998q1. In this case = 44. In 2004q1, the BoE

switched from targeting and forecasting the inflation of the all items retail prices

index excluding mortgage interest payments (henceforth RPIX inflation) to the

inflation of the consumer price index (henceforth CPI inflation). However, this

change does not seem to have caused a structural break in forecast uncertainty.16

Thus, the forecast uncertainty for horizons 1 to 9 can be estimated based on a

relatively large sample.

I use the OLS and the SUR estimator to estimate the forecast uncertainty of the

BoE. The SGLS estimator is not employed because, as found above, its e ciency

gains generally are only small. In Table 8, estimation results for both samples, the

shorter one with = 18 and the larger one with = 44 are presented. Instead of

the estimated expected values of the squared forecast errors, their square roots are

reported.17 It is found that in the larger sample, the di erences between the SUR

and the OLS estimator are small. The SUR estimator yields slightly smaller esti-

mates at longer horizons. In the shorter sample, however, the di erences between

both estimators are large at least for horizons greater than 7. For the 3-year-ahead

forecast, the OLS estimator gives a result that is almost 50% larger than the one

of the SUR estimator. For 10 13, the di erences always exceed 20%, and

the roots of the estimated expected squared forecast errors range from 1 30 to 1 37

with the OLS estimator but only from 0 85 to 1 05 with the SUR estimator.

Looking at the larger sample, it seems that forecast uncertainty hardly increases

with the forecast horizon if the forecast horizon exceeds = 5. The roots of the

estimated expected squared errors equal about 0 75 for 6 9. Moreover,

all the forecast values not reported here are usually quite close to the inflation

target for larger horizons. Thus, it appears unlikely that the forecast uncertainty

16In each projection, the BoE reports a parameter for the uncertainty of each forecast horizon.
These parameters can change from forecast to forecast, depending on the assessment of current
forecast uncertainty by the BoE. From 2003q4 to 2004q1, no major change in reported forecast
uncertainty took place. Looking at the squared forecast errors, there is no indication of a change
in uncertainty as of 2004q1 either.
17The BoE reports a parameter for uncertainty that is related to the standard deviation of

the forecast errors, so possible comparisons are easier when the square roots of the estimated
expected values of the squared forecast errors are presented here. For the exact relation between
the uncertainty parameter reported by the BoE and the standard deviation of the forecast errors,
see Wallis (2004, p 66).
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sample 2004q3 to 2008q4 sample 1998q1 to 2008q4

ˆ ˆ 100 ln
³
ˆ

ˆ

´
ˆ ˆ 100 ln

³
ˆ

ˆ

´
= 1 0 19 0 19 0 0 0 17 0 17 0 0
= 2 0 47 0 47 0 3 0 35 0 35 0 2
= 3 0 66 0 65 1 5 0 46 0 46 0 6
= 4 0 91 0 89 2 0 0 62 0 61 1 0
= 5 1 10 1 07 2 7 0 72 0 71 1 7
= 6 1 19 1 14 3 7 0 76 0 74 2 7
= 7 1 19 1 10 7 2 0 76 0 73 3 9
= 8 1 18 1 05 12 5 0 75 0 72 4 6
= 9 1 25 1 06 16 5 0 77 0 74 4 2
= 10 1 30 1 05 21 6
= 11 1 35 1 03 26 7
= 12 1 34 0 94 35 3
= 13 1 37 0 85 47 7

Table 8: Square roots of OLS and SUR estimates of the expected values of the
squared forecast errors of the BoE’s inflation forecasts in di erent samples. The
results for the nowcast as well as the 1-, 2- and 3-year-ahead forecasts are shown
in bold.

for the horizons 10 13 is much higher than the uncertainty for the horizons

6 9. Therefore, the values obtained with the SUR estimator for 10 13

in the smaller sample appear far more plausible than the values obtained with the

OLS estimator.

Of course, it would be interesting to investigate the significance of the di er-

ences between both estimators. However, this would require a reliable measure of

uncertainty about uncertainty for both estimators, which is not available yet.

7.2 The Width of the RPIX Inflation Fan Charts

Many empirical studies of the BoE’s forecast errors as Clements (2004), Dowd

(2007) and Wallis (2003, 2004) focus on the inflation forecasts starting in 1997q3,

because the BoE then started to publish density forecasts. These studies conclude

that the dispersion of these densities is too large except for short horizons. Wallis

(2004) and Clements (2004) reach their conclusions by looking at the 1-year-ahead

forecasts, so the e ects of correlations of forecast errors across horizons are not
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taken into account.

The BoE decides on the dispersion of the fan charts based on past forecast

errors. Thus, it could be possible that, due to a small sample problem, the true

dispersion was overestimated by the BoE. Moreover, it could be that the studies

cited rely on time spans where the true dispersion was underestimated by the

methods used.

Here I try to investigate both hypotheses. I start by looking at the BoE’s

inflation forecast errors prior to the publication of density forecasts. The BoE

became an inflation targeter at the end of 1992 and published its first Inflation

Report in 1993q1. It seems probable that the forecasting regime changed with

the announcement of an inflation target, so that it can be supposed that forecasts

made before 1993 have produced errors di erent from those of forecasts made

after that date, except maybe those for short horizons. However, according to

Britton, Fisher, and Whitley (1998), the BoE used the forecast errors from the

last ten years when it constructed the first fan charts. Yet, since the forecasts

prior to 1993 are not publicly available18, and for the reason mentioned above, I

use a shorter sample of forecast errors starting in 1993. With the first forecast

coming from 1993q1 and with 1997q2 as the last available realization before the

publication of inflation forecasts, equals 18. Since there are missing values for

= 8 and = 9, is set to 7.

The second hypothesis is investigated by studying the forecast uncertainty

based on data from the same time span as the one studied by Wallis (2004), so

that the last available realization comes from 2003q4. This implies that equals

26. The data sets used by Clements (2004) and Dowd (2007) are similar, ending

in 2003q1 and 2004q1, respectively.

Results obtained with the OLS and the SUR estimator are displayed in Table

9. Instead of the estimated expected values of the squared forecast errors, again

their square roots are reported.

It turns out that the estimated forecast uncertainty in the first sample is much

larger than in the second sample for all horizons. Moreover, the SUR and the OLS

estimator yield similar results. They di er most strongly for = 5 and = 6,

with the di erences attaining 4% to 5%. For these horizons, the SUR estimator

18They are not available from the website of the BoE, in contrast to the forecasts since 1993.
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= 1 = 2 = 3 = 4 = 5 = 6 = 7 = 8 = 9
sample 1993q1 to 1997q2

ˆ 0 25 0 48 0 59 0 68 0 73 0 68 0 67
ˆ 0 25 0 48 0 59 0 66 0 71 0 65 0 67

100 ln
³
ˆ

ˆ

´
0 0 0 7 0 7 1 9 3 7 4 8 0 3

sample 1997q3 to 2003q4
ˆ 0 16 0 25 0 29 0 38 0 39 0 39 0 43 0 49 0 52
ˆ 0 16 0 24 0 29 0 38 0 42 0 41 0 44 0 49 0 52

100 ln
³
ˆ

ˆ

´
0 0 0 5 2 1 1 1 5 3 4 4 1 9 0 4 0 2

di erences between samples, calculated as 100 ln
³
estimate of second sample
estimate of first sample

´
based on

ˆ 43 67 71 58 62 55 44
ˆ 43 67 70 55 53 46 42

Table 9: Square roots of OLS and SUR estimates of the expected values of the
squared forecast errors of the BoE’s inflation forecasts in di erent samples. The
results for the nowcast as well as the 1- and 2-year-ahead forecasts are shown in
bold.

yields lower values in the first sample and larger values in the second.

Based on the OLS estimator, one concludes that the standard deviation of

the forecast errors in the second sample for = 5 and = 6 is 62% and 55%

smaller, respectively, than in the first sample. Based on the SUR estimator, both

numbers would decrease by 9 percentage points. In Clements (2004), and Wallis

(2004) it is the 1-year-ahead forecasts, corresponding to = 5, for which the fan

charts are studied and considered as too wide. Looking at the numbers in Table

9, it appears very unlikely that this finding would have changed if the BoE and

the researchers had taken the correlation of forecast errors among horizons into

account. However, the significance levels at which the null hypothesis of correct

width of the fan charts were rejected by the researchers would most certainly have

increased.

8 Conclusion

In this paper, the joint estimation of forecast uncertainty for multi-step-ahead

forecasts in samples of recent forecast errors is investigated. In order to make
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such an estimation possible, the formula for the covariances of squared forecast

errors from optimal forecasts is derived. Using these covariances, GLS and SUR

estimators of forecast uncertainty based on recent forecast errors are constructed.

The e ciency gains due to GLS and SUR estimation vanish asymptotically.

In small samples, however, the e ciency gains over the OLS estimator can be

large. They strongly depend on the persistence of the DGP and the number of

forecast horizons . If persistence is not too large, the GLS estimator and the

SUR estimator yield similar results.

Several interesting properties of the GLS and the SUR estimator are observed.

Although the covariance matrix of the squared forecast errors depends on the

distribution of the shocks to the DGP, the GLS projection matrix does not depend

on them. Moreover, the SUR projection matrix does not depend on the DGP at

all.

This important result implies that, if the covariances of the forecast errors

are unknown, the covariance matrix of the SUR estimator does not have to be

estimated. One simply needs to impose a certain structure. For both estimators,

the estimation of uncertainty for forecast horizon does not use forecast errors of

horizons larger than . So only information from the 1- to -step-ahead forecast

errors are employed for the estimation. This implies that e ciency gains do not

depend on the inclusion of errors from larger forecast horizons.

If the forecasts are non-optimal, the SUR estimator derived for optimal forecast

errors is mostly found to be more e cient than the OLS estimator in several Monte

Carlo studies. In general, it is also more e cient than the SGLS estimator defined

above. Bias does not seem to a ect the superiority of the SUR estimator. In the

case of severe dynamic misspecification, however, the OLS estimator can sometimes

be more e cient. If a structural break a ecting forecast uncertainty occurs within

the sample, the OLS estimator is in general more e cient than the SUR estimator

unless the break is small.

An application to the BoE’s inflation forecasts shows that the uncertainty for

2- to 3-year-ahead forecasts is likely to be overestimated by OLS. The SUR esti-

mator gives more plausible results. Another application finds that the BoE might

have slightly underestimated the true forecast uncertainty for medium horizons,

including the 1-year-ahead forecast, prior to the publication of fan charts, possibly
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leading to fan charts for these horizons which were marginally too wide. In the

sample where these fan charts were studied by several researchers as Clements

(2004) and Wallis (2004), an individual estimation of uncertainty for each fore-

cast horizon apparently leads to a small overestimation of forecast uncertainty for

medium horizons. However, independently of the estimation method used, the

di erences in estimated forecast uncertainties between the sample prior to the

publication of the fan charts and the sample used by researchers to evaluate the

fan charts are large. Therefore, it is unlikely that the conclusion of the researchers

that the fan charts are too wide for the 1-year-ahead forecast would have changed.

Yet, the significance levels at which this conclusion was reached might be higher

than claimed.
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A Appendix

A.1 Covariance of Squared Forecast Errors

In order to see how the covariance between the squared forecast errors 2
2 1

and
2
4 3
is determined, consider first an easy example with 3 1 4 2. Of course,

we also have 2 1 4 3. Define and as

= 3 1

= 2 1

= 4 3

Now, one has to identify those shocks of 2
2 1
and 2

4 3
which overlap.

=
£¡

2
2 1

¡
2
2 1

¢¢ ¡
2
4 3

¡
2
4 3

¢¢¤
=

Ã
1X

=0

2

!2 1X
=0

2 2

Ã
1X

=0

4

!2 1X
=0

2 2

First, identify the shocks contained in 2
2 1
not overlapping with those of 2

4 3
and

set the corresponding expectation term to 0.

=

Ã
1X

=0

2

!2 1X
=0

2 2

Ã
1X

=0

4

!2 1X
=0

2 2

+

Ã
1X

=

2

!2 1X
=

2 2

Ã
1X

=0

4

!2 1X
=0

2 2

| {z }
=0
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Next, identify the shocks of 2
4 3
not overlapping with those remaining of 2

2 1
and

set the corresponding expectation term to 0.

=

Ã
1X

=0

2

!2 1X
=0

2 2

Ã
+ 1X

=0

4

!2 + 1X
=0

2 2

| {z }
=0

+

Ã
1X

=0

2

!2 1X
=0

2 2

Ã
1X

= +

4

!2 1X
= +

2 2

=

Ã
1X

=0

2

!2 1X
=0

2 2

Ã
1X

= +

4

!2 1X
= +

2 2

Having obtained this expression for , the indices should now be rewritten such

that it becomes clear which error terms are identical. To this end, note that

4 2 = +

4 ( + ) = 2

and in order to simplify notation, set

:= 2

This gives

=

Ã
1X

=0

2

!2 1X
=0

2 2

Ã
1X

= +

4

!2 1X
= +

2 2

=

Ãμ
1P

=0
2

¶2 1P
=0

2 2

!

×
Ãμ

1P
=0

+ + 4 ( + )

¶2 1P
=0

2
+ +

2

!

=

Ã
1X

=0

!2 1X
=0

2 2

Ã
1X

=0

+ +

!2 1X
=0

2
+ +

2
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Now we drop the restrictions 3 1 and 4 2 Define

= max (1 + 1)

= min ( + )

Then it turns out that the covariance between the squared forecast errors 2
2 1

and 2
4 3

is given by

£¡
2
2 1

¡
2
2 1

¢¢ ¡
2
4 3

¡
2
4 3

¢¢¤
=

0 if"ÃμP
=0

¶2 P
=0

2 2

!ÃμP
=0

+

¶2 P
=0

2
+

2

!#
if

with = max ( + )

so that for the example with restrictions given above, = 1 and

= + .

In order to calculate the covariance, it is useful to write out the summations

as

ÃX
=0

!2 X
=0

2 2

ÃX
=0

+

!2 X
=0

2
+

2

= [ 1 2]

with

1 =

( 20
2 2

0
2) + 0 1 1 + 0 ( )

+ 1 1 0 +
¡
2
1
2
1

2
1
2
¢

+ 1 1 ( )

...
...

. . .
...

+ ( ) 0 + ( ) 1 1 +
³

2 2
( )

2 2
´

2 =

¡
2 2 2 2

¢
+ +1 1 + ( )

+ +1 1 +
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2
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2
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2
+1

2
¢
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...
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...
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1 and 2 each consist of ( + 1)2 summands. The expectation of the product

of these summands only di ers from zero if summand of 1 is multiplied by

summand of 2 with =
¡
1 2 ( + 1)2

¢
. If summand of 1 is multiplied

by summand of 2 with 6= , this product contains a term + 1 + 2 + 3 with

1 6= 0 2 6= 0 3 6= 0. Since the expectation of is zero, and is uncorrelated

with the shocks + 1 + 2 and + 3 the expectation of the product of these

summands equals zero. It follows that [ 1 2] simplifies to

[ 1 2] =

2
0
2

¡
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yields the final result
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where the first summation term collects all elements on the “main diagonal” of

[ 1 2], and the second term collects all “o -diagonal” elements.
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A.2 Parameter Independence of the SUR Estimator

Suppose that = 2. In this case, following the setup of Im (1994), the regressor

matrix can be written as

X =

"
1 0

0 1 1 1

#
=

1 0

1 1 0 1

0 1 1 1

and the SUR covariance matrix equals

=

"
G0 0 G0

1 1

G1 1 G1 0

#

=
1I

h
0 1 1I 1

i0h
0 1 1I 1

i
2I 1

=

1 00 1 00 1

0 1 1I 1 1I 1

0 1 1I 1 2I 1

Inverting the covariance matrix yields

1 =

1
1

00 1 00 1

0 1
2

1( 1 2)
I 1

1
1 2

I 1

0 1
1

1 2
I 1

1
1 2
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The expression X0 1 X can be transformed as follows

X0 1 X

=

"
1 10 1 00 1

0 00 1 10 1

# 1
1

00 1 00 1

0 1
2

1( 1 2)
I 1

1
1 2

I 1

0 1
1

1 2
I 1

1
1 2

I 1

1 0

1 1 0 1

0 1 1 1

=

"
1
1

2

1( 1 2)
10 1

1
1 2

10 1

0 1
1 2

10 1
1

1 2
10 1

# 1 0

1 1 0 1

0 1 1 1

=

"
1
1

2

1( 1 2)
10 11 1

1
1 2

10 11 1

1
1 2

10 11 1
1

1 2
10 11 1

#

=

"
1
1

³
1 2

1 2
( 1)

´
1

1 2
( 1)

1
1 2

( 1) 1
1 2

( 1)

#

Since the determinant of X0 1 X is given by
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When the inverse of X0 1 X is multiplied by X0 1 , we finally get
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A.3 FGLS Estimation

The estimation of the covariance matrix used for the FGLS estimation is imple-

mented as follows: First the OLS estimates of forecast uncertainty are used to cal-

culate the vector of demeaned squared forecast errors u =
³

1 2 1
2

(2 +1)

´
as

= 2
+ ˆ2

where the elements are ordered as in (6). Then, the matrix u0u is calculated.

The lower triangular elements of this matrix and the restrictions derived for the

case of optimal forecasts are used to estimate the covariance matrix of the squared

forecast errors. Using the example with = 3 and = 2, the lower triangular

elements of the matrix u0u are given by

2
1

1 2
2
2

1 3 2 3
2
3

1 4 2 4 3 4
2
4

1 5 2 5 3 5 4 5
2
5

Due to the restrictions implied by (13), the estimated covariance matrix ˆ used

for the GLS estimation is determined by

ˆ =

ˆ1 0 0 ˆ3 0

0 ˆ1 0 ˆ1 ˆ3

0 0 ˆ1 0 ˆ1

ˆ3 ˆ1 0 ˆ2 ˆ3

0 ˆ3 ˆ1 ˆ3 ˆ2
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5 1
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2
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2
5

¢
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1

3 1
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Based on ˆ , the GLS estimator ˆ2 can be obtained. In principle, one could

start an iterative process by calculating new ’s based on the GLS estimates

ˆ2 instead of ˆ2 and repeating this until ˆ2 converges. However, since

the first estimator ˆ2 can sometimes deviate strongly from ˆ2 and from the

true vector 2, this approach does not seem too promising and is therefore not

pursued here.
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