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1 Introduction

In this technical report the symbolic execution engine ’Mulib’ will be outlined in its architecture,
main algorithms, and design decisions. Mulib employs a rather new approach of program trans-
formation (see Section 2) and thus, technical details on the implementation of such a system
are thought to be insightful. Mulib first and foremost implements the runtime semantics of the
Constraint-Logic Object-Oriented Programming (CLOOP) language Muli [18]. Muli employs sym-
bolic execution [11] as a technique to, e.g., solve constraint-satisfaction problems and generate
test cases [19, 55].

1.1 An Exemplary Program

Consider the following code for an example of how Muli can be utilized to solve a decision variant
of the well-known knapsack problem. The goal here is to load the knapsack with items so that
the capacity of the knapsack is fully utilized. Since Muli employs concepts of logic programming,
it strives to return all such knapsacks, i.e., the call to the displayed method can potentially output
multiple (or no) results.

1 static ArrayList <Item > fillKnapsack (){

2 final int capacity = 42;

3 List <Item > items = getPossibleItems ();

4 int weight = 0;

5 ArrayList <Item > result = new ArrayList <>();

6 for (Item item : items) {

7 if (weight == capacity) break;

8 boolean take free;

9 if (weight + item.weight <= capacity && take) {

10 result.add(item);

11 weight += item.weight;

12 }

13 }

14 assume(weight == capacity);

15 return result;

16 }

In a first step, the capacity is set to some (arbitrary) value and a list of Items is retrieved (lines 2
and 3). Then, the weight of the knapsack is initialized to 0, meaning that currently, no Items have
been loaded. Thereafter, the list in which the loaded Items are stored is initialized and each of
the Items is iterated over (lines 5–13). It is checked whether the initialized weight already equals
the capacity (line 7). Only if this is not the case, a new item is tried to be loaded. A new boolean

is initialized in a special way (line 8). Muli modifies the Java syntax and introduces the free

keyword [18]. A variable that is initialized using the free keyword contains a symbolic value, i.e.,
a value which is not yet restricted to one fixed value. Here, take is either true or false. Next, it
is evaluated whether the currently regarded item shall be loaded into the result list (lines 9–12).
This is done using an if statement. Only if the sum of the item’s weight and the currently loaded
weight does not exceed the capacity, the item is loaded. Furthermore, it is also desirable to
evaluate the case where item is not loaded. To model this, the if statement also depends on the
variable take that contains a symbolic value. If a symbolic value becomes part of the evaluation
of an if statement, the execution creates two forks. These forks represent nondeterminism in the
execution of the program: Depending on the label of the symbolic value, i.e., a concrete value for
it, the program executes different paths. In the first fork, it is checked whether the condition can
hold, i.e., take is true. In the second fork, the negation of this condition is checked. If a constraint
solver determines that the new condition, conjoined with previous conditions, is satisfiable, the
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then-branch is executed.1 In the given example, item is added to the result list of Items and item’s
weight is added to the total weight (lines 10 and 11). At some point determined by a search
strategy, the runtime restores the program’s state to the state when aforementioned forks was first
encountered. The remainder of the program is then executed using the negation of the condition.
In the given example, due to the loop, the execution will evaluate the next Item (line 6). After
considering all items (or potentially breaking prematurely due to line 7), it is checked whether the
weight equals the capacity (line 14). If this is not the case, a special exception is thrown that
discards the current fork of execution. In consequence, only if weight == capacity, a result is
returned. If there is a solution to this problem, a list of Items is returned.

1.2 Scope of This Technical Report

Mulib [52, 53] replaces the old runtime environment of Muli that is based on a custom Java Virtual
Machine (JVM) and a custom compiler [36, 17]. In the following, when referring to ’Muli’, the
programming language is meant. In contrast Mulisjvm denotes the first implementation of Muli
using a custom JVM and a custom compiler [17]. Mulib denotes the new runtime environment for
Muli.

In the following elaborations, it is assumed that the reader has some familiarity with the stack-
based Java bytecode [33], CLOOP, and symbolic execution in general. This document will focus
on the Java programming language and tools and concepts related to it. It is suggested that
readers that are not familiar with symbolic execution first read appropriate fundamental literature
(such as Cadar and Sen [11] and Khurshid, Păsăreanu, and Visser [29]).

Moreover, there are several publications on Muli available [18, 21, 17, 19, 55, 51, 22, 52, 53]. In
contrast to the publications on Mulib [52, 53], this technical report is meant as an extension to
convey technical details and the software engineering design decisions. Even though the various
concepts are introduced to some degree, at least the core of CLOOP and Muli should be known
(see, e.g., Dageförde and Kuchen [19] for applications of CLOOP, or Majchrzak and Kuchen [36],
Dageförde and Kuchen [18], and Dageförde and Kuchen [17]).

This document is structured as follows: First, in Section 2, we mention related work and ap-
proaches for enabling the symbolic execution of (Java) programs. Mulib’s design is contrasted
from these already existing tools and we outline the advantages of the new design. Section 3
gives an overview of how users can interact with Mulib and what the workflow and general ar-
chitecture looks like. Thereafter, in Section 4 the type system of Mulib is outlined that is used to
enable symbolic execution. In turn, Section 5 provides a description of several core algorithms
used to transform programs to programs using the type system of Mulib so that the program can
be executed symbolically. In Section 6, we outline the framework by means of which search is
conducted in a transformed program. During search, Mulib uses a constraint solver. Thus, Sec-
tion 7 shows how constraint solvers can be integrated into Mulib. Section 8 describes some other
noteworthy features of Mulib. In turn, Section 9 describes possibilities for future work on Mulib
while Section 10 draws a conclusion.

Mulib, alongside a comprehensive documentation, is open source.2.

1This is the behavior of symbolic execution [11].
2https://github.com/NoItAll/mulib

https://github.com/NoItAll/mulib
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2 Related Work

Broadly speaking, most tools for symbolic execution can be subdivided into three types of ap-
proaches. Since each approach can potentially be used to implement Muli, their advantages and
disadvantages should be regarded. In this section these approaches are summarized and the
best fit for creating the execution engine Mulib is identified.

First, symbolic execution tools can use an interpreter or a custom virtual machine for symbolic
instructions. As this technical report focusses on Java, in the following, both, interpreters as well
as custom symbolic virtual machines, will be subsumed using the term Symbolic Java Virtual
Machine (SJVM).

In these SJVMs, certain bitcode or bytecode instructions are extended to account for the seman-
tics of symbolic execution. For instance, the operation of adding two integer values might not have
concrete integer values as its operands. Instead, symbolic expressions might be the operands.
As another example, conditional jumps potentially yield a choice point with two choice options,
i.e., two forks of executon, if the condition involves symbolic values. Exemplary tools comprise
Muggl [36] as the underlying structure of Mulisjvm, Symbolic PathFinder [29], and KLEE [10] (for
LLVM bitcode).

A downside of this approach is its inefficiency [38]: Every single bytecode instruction is interpreted
and thus can hardly benefit from either static compilation or just-in-time compilation [15]. Further-
more, the runtime is quite complex and developers of new features oftentimes must deal with
internals such as stack frames, a program counter, low-level representations of object references
and hard-to-debug side-effects.

The second, more light-weight, approach is the instrumentation of the program. Instead of exe-
cuting the program using an SJVM, an extended program is executed using the original runtime,
e.g., C code is executed in a binary format and Java code is executed on a standard JVM. This
extended program still has the semantics of the original program but has additional listening op-
erations, the instrumentation, tracking the state of the program. The program is executed con-
cretely, just as it would be executed without instrumentation. Additionally, the program’s execution
is listened to using the instrumentation operations, and the concrete values of the program are
mapped to a symbolic representation. For instance, in COASTAL [48], a concolic executor for
Java, instructions such as VM.methodInsn(int instr, int opcode, String owner, ...) [49] are in-
serted after bytecode instructions (such as, in the given example, the invocation of a method) and
trigger side-effects to map concrete operations and values to potentially symbolic counterparts.
Exemplary tools comprise COASTAL [48], GDart [37] and its predecessor JDart [35].3

The upside of this approach is that the performance of the native runtime is largely preserved.
The overhead is reduced to calls to the constraint solver and maintaining a symbolic program
representation to and from which the concrete program representation is mapped. In other words:
Two sets of values are maintained, namely concrete values and symbolic values. The concrete
values are labels of the symbolic values, i.e., they satisfy all constraints associated with their
respective symbolic value. Such tools employ concolic execution [11]. The concrete execution
drives the symbolic one, i.e., whatever path condition is satisfied by the concrete program state is
the path the concolic execution tool follows. Since the values of the concrete program state thus
are always valid with regards to the chosen path, several satisfiability checks are obsolete; - the
constraint solver does not have to be invoked to verify whether the taken path is valid. As long as
constraints are added to the program using choice points, the labels are always valid with regards
to one of the two choice options. However, a downside becomes apparent if choice points are not
the only source of constraints. To understand this important difference, consider the following two
pseudocode snippets:

3GDart uses built-in runtime tooling to achieve an instrumentation.
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int i0 free;

int i1 free;

if (i0+i1 > 3) {

...

} else {

...

}

int i0 free;

int i1 free;

assume(i0+i1 > 3);

In both listings, two symbolic variables i0 and i1 are created. Concolic execution will assign a
seed label value to them, for instance, 0. Thus, when first encountering the case distinction in the
code snippet on the left-hand side, it might be determined that the else-branch is traversed first.
Thereafter, it is checked whether inputs for accessing the then-branch can be generated. In this
instance, concolic execution works as intended: Since i0 and i1 are seeded with valid values,
either the then or the else branch is satisfiable.

On the other hand, the code on the right-hand side treats the case where we assume, i.e., add a
constraint, that the sum of i0 and i1 is larger than 3. i0 and i1 again are seeded with some value,
e.g., 0. However, in this case, the pushed constraint is not satisfied by the concrete state. In the
best case, the concolic executor notices that the current labels are stale and must generate new
inputs. The underlying problem is that the labels were formed prematurely. Only a pure symbolic
execution can account for assume-type operations, or constraints that are added without creat-
ing a choice point in general, as the labels are only generated at the very end of the execution.
The generation of new inputs, in turn, is a costly operation and hence, the execution becomes
inefficient. While such assume-operations are not expected to occur often in typical symbolic/-
concolic execution for test case generation, they should be accounted for in CLOOP: For solving
constraint satisfaction problems, the programmer might decide to restrict the domains of symbolic
values without wanting to create a choice point. Additionally, assume also has benefits in pruning
the search space in symbolic execution (see, for instance, Subsubsection 8.2.4 Enumeration Item
2 where a constraint is pushed assuming that an index is in the range of an array) and should
thus be accounted for. Another downside of the approach is that still, the overall system is vastly
dependent on side-effects. The concrete execution must always be mapped to the symbolic state,
creating a layer of indirection and increasing debugging-efforts.

The third type of approach has found very little recognition in literature and is employed by LART
[31] that evolved from a symbolic execution extension of the model checker DIVINE [32]. In a
first step, a program transformation is applied to the program. The new program directly contains
instructions for symbolic execution. Thereafter, this code can be interpreted or executed. This is
the approach that Mulib chooses to implement.

Instead of executing a program with a virtual machine or instrumenting the original program, the
program is transformed into a format that directly accounts for symbolic execution. For instance,
since the primitive types of Java do not account for symbolic expressions, int fields and vari-
ables, potentially holding a symbolic value, are transformed to the type Sint [52]. Sint is a pre-
implemented library class that has subclasses accounting for concrete values and for symbolic
values. Its subclasses, e.g., ConcSint and SymSint either have a concrete int value or a Directed
Acyclic Graph (DAG), representing a (mathematical) expression. Many of such classes, including
Sdouble, Slong, Sbyte, Sbool, Schar, SintSarray (for int[]), etc., have been implemented. The un-
derlying execution framework can compute, e.g., the addition of a concrete and a symbolic value
on objects of these classes yielding an internal representation of the (unevaluated) sum.

This representation solves the aforementioned problems custom virtual machines and instrumen-
tation face: The program is not executed in a nested virtual machine. Thus, it can be executed
comparatively fast. In contrast to a concolic execution, we do not need to map the concrete state
of a running program to a symbolic state and hence eliminate the corresponding indirection.

First, this is beneficial for programmers developing new features for Mulib: They can test and



■

9

debug new functionalities by directly writing code using Mulib-library classes. Then, if they are
content with the implementation of library classes, they can write a program transformation. In
this program transformation the original program is transformed to a program in which the newly
developed features are used. Thus, the technical overhead of dealing with and debugging byte-
code is mitigated. Moreover, the overall backend can be very flexible, as will be demonstrated
in the following. We allow for not only concolic execution, but also performing a pure symbolic
execution using incremental constraint solvers in an efficient manner. Hence, contrary to concolic
execution, we are not necessarily bound to concrete values during symbolic execution and avoid
the need for relabeling.
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3 Overview of Mulib

In Muli, symbolic execution is restricted to code in a search region. It is desired that operations
outside of this search region operate with the usual performance of the JVM. This is challeng-
ing since within the search region the runtime must account for complex behavior such as the
enforcement of constraints as well as backtracking operations [17]. Mulib approaches this issue
by providing a separate search region program that is evaluated instead. An overview of Mulib is
provided in the following. First, in Subsection 3.1 it is illustrated how Mulib can be used as a run-
time for Muli. Then, in Subsection 3.2, a high-level description of how to formulate search regions
in Mulib is provided. It is explained how solutions can be extracted from such a search region in
Subsection 3.3. Thereafter, the overall workflow for extracting solutions from a search region is
described in Subsection 3.4, the concrete elements of which are detailed in the subsequent sec-
tions. Subsection 3.5 then summarizes the architecture while in Subsection 3.6 the differences
between Mulisjvm and Mulib are discussed.

3.1 Using Mulib as an Implementation of Muli

Muli initially was implemented via Mulisjvm using a custom compiler and a custom SJVM. Mulib
strives to make custom tooling optional and relies on usual Java bytecode. Figure 1 illustrates
how Mulib can be used as an implementation of Muli.

Figure 1: The use of a transpiler for using Muli with Mulib.

Developers can code in Muli and make use of its extended syntax to allow for, e.g., the free

keyword and the easy creation of search regions using lambdas [18]. This code can then be
transpiled to make use of the more low-level Mulib library. Developers that do not wish to make
use of the transpiler or Muli syntax can also directly use the Mulib library to formulate and call
search regions (see Subsection 3.2). In both cases, the Java source code using Mulib as a library
is compiled to usual Java bytecode. Then, a special program transformation is applied that takes
the Java bytecode with references to the Mulib framework as input and outputs additional classfiles
in Java bytecode. These additional classfiles account for all features of symbolic execution, such
as constraints, nondeterminism, and symbolic values.

The following subsections abstract from the transpiler and instead demonstrate the direct use of
Mulib, i.e., writing pure Java code using Mulib as a library.
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3.2 Search Regions in Mulib

For users of Mulib, it is sufficient to use the functionality provided by the Mulib class to initialize
symbolic values, assume that constraints hold, or stop the evaluation of certain program branches.
In Mulib, a search region is a static method that can contain multiple parameters. Consider the fol-
lowing dummy search region, in which many of Mulib’s (and thus Muli’s) features are represented:

1 public static int dummyMethod () {

2 int i = Mulib.freeInt (1,9);

3 A a = Mulib.freeObject(A.class);

4 A[] as = Mulib.freeObject(A[]. class);

5 // Alternative: rememberedFreeObject ("as", A[]. class);

6 Mulib.remember(as , "as");

7 Mulib.assume(i == as.length);

8 A a = as[i-1];

9 as[i-1] = null;

10 int otherInteger = Mulib.freeInt ();

11 if (otherInteger == i) throw Mulib.fail();

12 return i;

13 }

Listing 1: A method demonstrating how to create symbolic values and add constraints in Mulib.

In line 2 we initialize a free int value. We use a static indicator method, Mulib.freeInt(int, int)

that also sets the variable’s lower bound to 1 and its upper bound to 9. It is shown how we can
initialize an object of type A for which all fields have symbolic values and which is lazily initialized
[29] in line 3. In turn, in line 4 we initialize a free array of type A[] [51, 53]. Line 6 creates a
snapshot of the array of elements as, i.e., the array at this current state will be remembered under
the name "as". In line 7, the constraint that the free int i is equal to the length of the array is
pushed onto the constraint stack. This means that in the subsequent execution, i must be equal
to as.length, otherwise this path of the execution is invalid and will be discarded. Thereafter, we
get the last element from the array as (line 8) and set the respective position in as to null (line
9). Note that this change will not be reflected in the snapshot of as that is called "as" that was
created in line 6. In line 10 we create a new free int and compare it to i spawning a choice point
with two choice options in line 11. A choice point is created because a symbolic value is used
in the condition-part of an if statement. Either the first int i is equal to the second one, as is
represented by one choice option, or not, as represented by the second choice option. If the
values are equal, the choice option is discarded using Mulib.fail(). When throwing this special
exception, the current evaluated choice option is declared to be invalid and the next choice option
is retrieved. Otherwise, i is returned (line 12).

3.3 Executing Search Regions and Extracting Solutions in Mulib

Since Java itself is not capable of symbolic execution, the search region must be called in a special
way so that the Mulib runtime performs symbolic execution. In fact, most indicator methods, called
from Java code outside of a search region, will simply throw an error. This design decision has
been made so that attempts to initialize symbolic values do not leak into normal Java code, leading
to unexpected errors. Instead, we must make use of another set of methods from the Mulib class,
an excerpt of which is given in the following:

public final class Mulib {

public static List <PathSolution > getPathSolutions(

Class <?> methodOwnerClass ,
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String methodName ,

MulibConfigBuilder mb ,

Class[] argTypes ,

Object [] args) { ... }

public static String generateTestCases(

Class <?> methodOwnerClass ,

String methodName ,

MulibConfigBuilder mb ,

Class[] argTypes ,

Object [] args ,

Method methodUnderTest ,

TcgConfigBuilder tcgb) { ... }

public static List <Solution > getUpToNSolutions(

Class <?> methodOwnerClass ,

String methodName ,

MulibConfigBuilder mb ,

int N,

Class[] argTypes ,

Object [] args) { ... }

public static Stream <Solution > getSolutionStream(

Class <?> methodOwnerClass ,

String methodName ,

MulibConfigBuilder mb,

Class[] argTypes ,

Object [] args) { ... }

public static SolutionIterator getSolutionIterator(

Class <?> methodOwnerClass ,

String methodName ,

MulibConfigBuilder mb,

Class[] argTypes ,

Object [] args) { ... }

public static MulibContext getMulibContext(

Class <?> methodOwnerClass ,

String methodName ,

MulibConfigBuilder mb,

Class <? >... argTypes) { ... }

...

}

All methods require that the user specifies the class containing the search region as well as the
method name of the search region. The search region should be a static method and optionally
can have multiple parameters. A MulibConfigBuilder is passed to provide a configuration of how
Mulib should behave.4

Mulib.getPathSolutions(...) returns a list of PathSolutions. The content of the path solution
is depicted in Figure 2. A path solution contains data for an execution path through the search
region for which the constraint stack is satisfiable. It might also be a ThrowablePathSolution, which
indicates that the search region has been left by throwing a Throwable [28]. Each PathSolution

comes with a Solution object carrying the return value of the search region. Moreover, each
Solution object comes with a Labels object from which remembered variables can be retrieved.
For instance, Listing 1 stores an array using the name "as". This can be retrieved from the Labels

object using Labels.getLabelForId("as"). Extracting PathSolutions is sufficient for checking the
assertions in a search region. In fact, Mulib.generateTestCases(...) reuses the method extracting
path solutions to generate a String representation of executable test cases. However, if the aim
of the search region is not checking the assertions of the code at hand or generating test cases,
path solutions are not always adequate. Consider, for instance, this search region to solve the

4See Subsection 8.2 for an overview of the configuration options.
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1..1

solution

1..1labels

PathSolution

- pathConstraints: Constraint[]
...

+ getSolution(): Solution
+ getPathConstraints(): Constraint[]
...

ThrowablePathSolution

Solution

+ returnValue: Object

≪interface≫
Labels

+ getLabelForId(id: String): Object
...

Figure 2: The structure of PathSolution and Solution.

well-known 8-Queens problem [22]:

1 public static Queen [] solve () {

2 final int n = 8;

3 Board board = new Board(n);

4 Queen [] qs = new Queen[n];

5 for (int i = 0; i < n; i++) {

6 Queen q = new Queen();

7 q.x = i;

8 q.y = Mulib.freeInt ();

9 qs[i] = q;

10 }

11 for (int i = 0; i < n; i++) {

12 Mulib.assume(board.isOnBoard(qs[i]));

13 for (int j = i+1; j < n; j++) {

14 Mulib.assume (! board.threatens(qs[i], qs[j]));

15 }

16 }

17 return qs;

18 }

In this program, we create a board with the dimensions 8×8 and 8 queens (lines 2–4). Thereafter,
we initialize the coordinates for all queens, where the x-coordinate is fixed and the y-coordinate
is free (lines 5–10). Free values are initialized using indicator methods, such as Mulib.freeInt().
Thereafter, we assure that each queen has a valid y-coordinate (line 12) and that each queen
does not threaten another queen (lines 13–15).5 Noteably, there only is one valid path through
the entire program. This is because there is no case distinction involving a symbolic value which
would cause nondeterminism. Muli and Mulib will thus return exactly one path solution for this
problem. However there are 92 distinct solutions for the 8-queens problem. In other words:
The labeling given for the path solution is not the only valid labeling of this path. In conse-
quence, there are multiple possible solutions. In Mulib, we can extract all 92 solutions by using
Mulib.getUpToNSolutions(...) as shown here:

1 MulibConfigBuilder mb =

2 MulibConfig.builder ()

3 .setSOLVER_GLOBAL_TYPE(Z3_INCREMENTAL)

4 .setSEARCH_MAIN_STRATEGY(DFS)

5 .setSEARCH_ADDITIONAL_PARALLEL_STRATEGIES(BFS);

6 List <Solution > result =

7 Mulib.getUpToNSolutions(

5Here, we abstract from the implementation of the methods of Board.
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8 NQueens.class , "solve", mb , 93);

We first create a MulibConfigBuilder for which we specify how the search region should be ex-
plored (lines 1–5). In the given example, we use Z3 [24] as an incremental constraint solver (line
3), choose Depth-First Search (DFS) as a search strategy (line 4) and additionally start a second
thread in which we additionally evaluate the search region using Breadth-First Search (BFS) (line
5).6 Even though we specify that we want 93 solutions, only 92 will be returned for this problem.

This approach is generalized by providing the methods Mulib.getSolutionStream(...) and Mulib-

.getSolutionIterator(...). Both methods can be used to incrementally explore the search re-
gion, i.e., reinvoke the search region method. In consequence, an undetermined number of solu-
tions can be extracted in an on-demand fashion (see Dageförde and Kuchen [20] for an analogous
explanation for Mulisjvm). In other words: The user can perform stream operations defined on
java.util.Stream on the Solution objects or iterate solutions using java.util.Iterator. In both
cases Solution objects are calculated from the search region lazily. The respective algorithm to
extract multiple solutions from a single path, accounting for the continuation of the search upon
user request, is explained in Subsection 7.3.

3.4 Overall Workflow

This subsection will describe the overall workflow when executing Mulib. Details to the various
components are given in the subsequent sections. The overall workflow can be divided into two
stages: First, a preparatory stage in which the search region is set up to allow for symbolic
execution. Second, the symbolic execution itself.

Mulib MulibContext MulibTransformer TaintAnalyzer

create
create

transform classes
analyze taint

taint information
transform instructions

get search region entry class

transformed class
get search region entry method

Figure 3: Abstract view on the workflow for setting up an instance of MulibContext.

The preparatory workflow is depicted in Figure 3. When calling, e.g., Mulib.getPathSolutions(...)
a temporary instance of MulibContext is created. A MulibContext holds a transformed version
of the method that shall be symbolically executed and can be used to extract PathSolutions or

6An overview of configuration options is given in Subsection 8.2. MulibConfig.builder() returns a default config-
uration.



■

15

Solutions by starting the workflow depicted in Figure 4. This MulibContext creates an instance
of MulibTransformer to perform a program transformation on the class carrying the method that
is the access point to the search region (in the following denoted search region method) and
the (implicitly) used classes. The transformed classes are used in the search region but not
outside of the search region. In other words: the transformed classes are the search region
representations of the original classes, also called partner classes [52]. More details on the
program transformation are given in Section 5. For now it suffices to say that the search region
representation allows us to (1) represent symbolic values where Java would only allow concrete
values and (2) account for the creation of choice points and the decision on which choice options
are satisfiable and shall be explored next. To achieve this, an intra-procedural taint analysis is
used to determine which instructions and values potentially are symbolic.

We retrieve the partner class containing the search region method from the MulibTransformer

that transformed the search region. Using reflection, we then extract the search region method
from the transformed class. After executing these steps, the MulibContext is now completely set
up and accepts different arguments for invoking the search region (if the search region has any
parameters).

If the MulibContext was not created using Mulib.getMulibContext(...), it was created using a
method such as Mulib.getPathSolutions(...). In this case, MulibContext.getPathSolution(...) is
called next, starting the second stage of the workflow. This is depicted in Figure 4. In a first step,
the arguments are transformed to their search region representation. The transformed program
then contains types (see Section 4) and operations for which the Mulib search framework can
conduct symbolic execution. Furthermore, the MulibTransformer retrieves the static variables of
the transformed classes. They will be wrapped in an instance of StaticVariables so that they can
be accessed and changed by multiple executors simultaneously (see Subsection 5.7 for more
details).

Thereafter, a set of factories, namely ValueFactory, CalculationFactory, and ChoicePointFactory

are created. Implementations of these factories define the way values are generated, calculations
are performed, and choice points are created. For instance, SymbolicValueFactory generates
purely symbolic values while ConcolicValueFactory additionally generates a label for the symbolic
values. More details on concolic execution in Mulib are given in Subsection 8.1. More details on
the ValueFactory and CalculationFactory are given in Subsection 6.5 while the ChoicePointFactory

is described in Subsection 6.4. Then, a MulibExecutorManager is created which is responsible for
managing MulibExecutors. A search tree and a choice option deque are initialized to hold unevalu-
ated choice options [52]. MulibExecutors, in turn, extract PathSolutions from the search region in a
loop and represent search strategies. They first copy the transformed arguments that are passed
to it and thereafter invoke the method handle holding the search region with these arguments.
Thereafter, a SolverManager (not depicted) is used to label the solution, i.e., assign concrete la-
bels to the search region values. The loop terminates if there are no unvisited choice options in
the search tree/deque or if a global budget has been exceeded (see Subsubsection 8.2.3). The
returned path solutions then are the result to the initial call of Mulib.getPathSolutions(args).
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Mulib MulibContext MulibExecutorManager MulibExecutor

getPathSolutions(args)
transformArguments(args)

transformedArgs
transform and set up static variables

prototype of StaticVariables
create factories

create
intialize search tree and deque

initialize global budget manager

create

getPathSolutions(transformedArgs)

getPathSolution()
prepare execution

invoke

return value
label solution

labeled solution
labeled path solution

looploop

path solutions
path solutions

Figure 4: Abstract view on the workflow for deriving path solutions using one MulibExecutor.

3.5 Architecture of Mulib

Overall, the architecture of Mulib is summarized in Figure 5. The access point for any program
using Mulib is the Mulib class. A configuration can be specified and a context can be spawned. In
the context, a program transformation is conducted that reads the (byte-)code of the classes that
are used in the search region and transforms them (see Section 5) to use types (see Section 4)
specific to the Mulib search framework. The result (byte-)code can then be used to start the search
framework using the search region method. The search framework (see Section 6) consists of
an executor manager that holds references to the search tree, a deque of choice options, and
aforementioned factories. The executor manager furthermore spawns one or many executors,
each of which represents a search strategy. Each executor has access to the aforementioned
factories (see Subsections 6.5 and 6.4), the search tree (see Subsection 6.1), the choice option
deque (see Subsection 6.6) and contains its own instance of an adapter used to connect to an
external constraint solver (see Section 7). Finally, each executor also has its own container for
static variables.
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Figure 5: A conceptual view on the core components of Mulib.

3.6 Differences to Mulisjvm

Mulisjvm relies on a custom compiler which generates bytecode that can be executed by a cus-
tom SJVM. This approach has several downsides: First, the custom compiler and the SJVM are
additional tooling. Developers and organizations strive not to depend on too many technologies.
In consequence, the adoption of CLOOP is hindered if it depends on such custom tooling. Adding
to this point, Muli, as a superset of Java 8, also needs custom IDE support. The free keyword,
although convenient, causes a syntax error for Java IDEs. To still utilize an IDE with Muli, cus-
tomizations must be applied. Moreover, the performance of the custom SJVM is lacking both in
terms of memory consumption and speed [52].

In contrast, Mulib decouples the CLOOP-specific language from the execution engine. When
paired with a transpiler transforming Muli code to the approach using indicator methods (recall
Figure 1), Mulib is an implementation of Muli. However, Mulib does not need to rely on the ad-
ditional free-keyword. This keyword is represented by indicator methods that do not trigger any
errors in Java IDEs. Mulisjvm and Mulib both offer several methods for exploring the search re-
gion. In Muli, a parameterless lambda-expression is specified that shall be symbolically executed.
In Mulib, the user must specify the class declaring the search region method, the name, as well as
the arguments to the search region method. Admittedly, this is more error-prone. This issue can
be dealt with by creating the aforementioned transpiler from Muli code to Java code using Mulib.
The reason why the Mulib-API is defined in the current way is that, to the best of our knowledge,
there is no future-proof way of retrieving the (byte-)code of a lambda stored in an object at run-
time. However, the respective transpiler is relatively straight-forward: One must replace the free

keyword with appropriate indicator methods, such as freeInt();.

With Mulib, new language structures can be experimented with in a simplified way. Solely a new
indicator method must be created. In contrast, in Mulisjvm, the grammar of Muli as well as the
custom compiler must be adapted. For instance, the straight-forward definition of an upper and
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lower bound as well as the assume(boolean)-method were added. In Mulisjvm, one had to choose
the more verbose structure of if (!constraint)throw Muli.fail(). This construct will create a
choice with two choice options: Either the constraint holds or not. The branch where the constraint
does not hold is immediately marked as unsatisfiable using Muli.fail(). While this option still is
possible in Mulib, simply assuming a constraint holds is more intuitive in many scenarios.7

Moreover, as a conceptual extension, Mulib introduces the differentiation between PathSolutions
and Solutions. Mulisjvm’s Solution object now is called PathSolution. A PathSolution is relevant
for checking assertions and generating test cases. There might be multiple other valid labels on a
PathSolution but for the aforementioned use cases any valid solution to a path through the search
region usually is sufficient. For the use case of solving constraint problems, retrieving Solutions
is a more suitable approach, since, generally, the path through the program is not the primary
concern, but rather, valid labels are interesting.

Finally, Mulisjvm allowed for defining variables and even object and class fields to be potentially
free. This can lead to symbolic values leaking into the Java code outside of the search region.
Since the deterministic runtime cannot work with symbolic values, a crash is imminent. This
does not happen when initializing the free value, but rather, when operating on it outside of a
search region. In contrast, Mulib enforces that symbolic values are solely created and used within
a search region. This is done by introducing a separate search region representation that can
initialize symbolic values. Trying to initialize symbolic values outside of a search region will throw
an immediate and clear error. Furthermore, the labeled values and objects will always have usual
Java types which means that outside of a search region, all code will work exactly as it would
without using Muli(b). The benefit of having a separate representation for classes in the search
region becomes especially apparent when regarding static variables. A further discussion on this
can be found in Subsection 5.7.

7However, this is currently still done creating a choice point (see Subsubsection 4.1.2 for an explanation).
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4 Search Region Representations

In Muli, values can be symbolic, i.e., the concrete value is not known during execution. However,
the primitive types of Java [33], such as int, double, and boolean, can only carry concrete values.
This also extends to, e.g., free arrays in Muli, having a free length [51], which is not representable
using Java arrays. In consequence, to symbolically execute Java code, a new representation is
desirable that can differentiate between symbolic and concrete values. Operations on concrete
values should be performed so that a concrete value is the output while operations involving
symbolic values should create an appropriate symbolic description of the operation. Furthermore,
outside of said search regions, normal Java types, such as primitives and arrays, should again be
used to avoid causing any overhead.

Figure 6 gives an overview on the most important library types. Subclasses of Sarray and
PartnerClassObject are generated for individual search regions. As shown in Subsection 3.4,
Mulib first transforms the code used in a search region to code using special types. These types
are able to express symbolic values and have symbolic operations attached to them, such as the
addition of two, potentially symbolic, values. This section explains the types in more detail. In
contrast, Section 5 describes how we inject the respective types and calculations into the search
region. First, in Subsection 4.1, the representation of primitives is explained. Thereafter, the
approach to represent objects is summarized in Subsection 4.2. Last, the differences between
Mulisjvm and Mulib are explained in Subsection 4.3.

≪interface≫
Substituted

≪interface≫
Sprimitive

≪interface≫
PartnerClass PartnerClassObject Sarray

PartnerClassThrowable

≪interface≫
Snumber

≪interface≫
SymSnumber

≪interface≫
ConcSnumber

≪interface≫
Expression Sint

SymSint

SymSintLeaf

ConcSint

≪interface≫
SymSprimitiveLeaf

Sbyte

Schar

Sshort

Sbool ≪interface≫
Constraint

Sdouble

Sfloat

Slong

Figure 6: An excerpt of the most important types in Mulib.
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4.1 Primitives

For each of the primitive types in Mulib, there is a special class in Mulib. For instance, the counter-
part of int is Sint.8 Sint is the abstract superclass of ConcSint and SymSint. ConcSint represents
concrete int values in the search region while SymSint wraps an Expression in the form of a DAG.
The other Snumbers, such as Sdouble, are not dedicatedly illustrated in Figure 6, but the subtypes
are structured analogously to Sint.

On the other hand, Sbool represents the special case of boolean expressions in the search re-
gion. ConcSbool is either ConcSbool.TRUE or ConcSbool.FALSE, while SymSbool wraps a DAG of type
Constraint.

Note that multiple types, such as Schar and Sbool are also subclasses of Sint. The reason for
this is that in Java, bytecode instructions do not differentiate them for the most part. For instance,
two chars can be added in Java via the iadd bytecode instruction. In theory, also booleans can be
added to other int values via iadd, even though the Java syntax disallows this.

4.1.1 Expressions

The leaves of aforementioned DAGs are either ConcSnumbers or SymSprimitiveLeafs that are Snum-

bers. An overview of possible non-leaf nodes in this tree are given in Table 1. The table displays
the class name representing the respective non-leaf node of the DAG as well as a brief description
of it. A bytecode instruction also is given. These expressions are created by Mulib if a symbolic
value would become part of an execution of a respective bytecode instruction [52]. Consider, for
instance, the execution of the following bytecode snippet:

iload 0

iload 1

imul

Two integer values are loaded from variables via the iload instruction. Thereafter, they are multi-
plied. Mulib transforms the program (see Section 5) in a way that, if at least one of the variables
contains a symbolic value, the expression Mul is created instead. This expression then is wrapped
by an instance of SymSint.

All of the expressions can be mapped to a Java bytecode instruction that is transformed to be rep-
resented by a method call (see Section 5). This method call then can return wrapped Expressions
if the argument list contains any symbolic values.

4.1.2 Constraints

The leaves of the DAG representing constraints are either ConcSbool or SymSboolLeafs. In sym-
bolic execution, constraints are generated for choice options. Choice options are mostly created
when we make conditional jumps, e.g., via if statements. In Java, there are several bytecode
instructions for such conditional jumps. Table 2 covers the various non-leaf nodes for constraints
in Mulib, gives a brief description of the respective constraints, and, if possible, enumerates the
bytecode instructions creating said constraint.

However, note that Java does not have any immediate bytecode instructions for, e.g., con- or

8Sint has been chosen as a name as the int-type has been substituted for as long as the search region is explored,
as such it is a substitute for the int type.
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Name Description Bytecode Instruction
Div Division of two expressions (/) ddiv, fdiv, idiv, ldiv

LogicalShiftRight Shift a number to the right logically (>>>) iushr, lushr

Mod Calculating the modulo (%) drem, frem, irem, lrem

Mul Multiplication of two expressions (∗) dmul, fmul, imul, lmul

BitwiseAnd Bitwise ”and” operation (&) iand, land

BitwiseOr Bitwise ”or” operation (|) ior, lor

BitwiseXor Bitwise ”xor” operation (ˆ) ixor, lxor

ShiftLeft Shift a number to the left arithmetically (<<) ishl, lshl

ShiftRight Shift a number to the right arithmetically (>>) ishr, lshr

Sub Subtraction of two expressions (−) dsub, fsub, isub, lsub

Sum Addition of two expressions (+) dadd, fadd, iadd, ladd

Neg Negation of an expression (−) dneg, fneg, ineg, lneg

Table 1: The non-leaf expressions in Mulib.

Name Description Bytecode Instruction
And ”and” operation (&&) –

BoolIte Represents one of two values based on a
constraint the label of which is not yet known –

Eq ”equality” operation (==) ifeq, if icmpeq, if acmpeq,
tableswitch, lookupswitch

Equivalence ”equality” operation with two booleans (==) if icmpeq

Implication ”implication” operation –
In ”element of” operation –
Lt ”less-than” operation (<) iflt, ifgt, if icmplt, if icmpgt

Lte ”less-than-equals” operation (<=) ifle, ifge, if icmple, if icmpge

Not Negates a constraint (!constraint) ifne, if icmpne, if acmpne

Or ”or” operation (||) –
Xor ”xor” operation (ˆ) –

Table 2: The non-leaf constraints in Mulib. Expands Dageförde and Kuchen [18].

disjoining booleans. Instead, Java will create several jumps to initialize new booleans as is shown
in the following example:

boolean and(boolean b0 , boolean

b1) {

return b0 && b1;

}

boolean or(boolean b0 , boolean

b1) {

return b0 || b1;

}

When compiling these two methods, the following (simplified) bytecode is generated:
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1 L0

2 ILOAD 0

3 IFEQ L1

4 ILOAD 1

5 IFEQ L1

6 ICONST_1

7 GOTO L2

8 L1

9 ICONST_0

10 L2

11 IRETURN

1 L0

2 ILOAD 0

3 IFNE L1

4 ILOAD 1

5 IFEQ L2

6 L1

7 ICONST_1

8 GOTO L3

9 L2

10 ICONST_0

11 L3

12 IRETURN

In both cases, rather than executing some specific Java bytecode instructions for calculating b0

|| b1 or b0 && b1 (which do not exist), conditional jumps are performed pushing either a 0 or a 1,
signaling that the result is either false or true. For instance, in the case of and(boolean, boolean),
the first boolean is loaded (line 2), it is checked if it equals to 0 and thus false (line 3). If this is the
case, we jump to L1 (line 8) to push 0 and return this result (line 11). Only if the boolean is not 0,
we continue with checking whether the second boolean is 0 (lines 4 and 5). If this is not the case,
we push 1 (line 6) and return (lines 7 and 11).

Hence, constraints such as And or Or are currently solely used internally in Mulib. Future research
might work on folding such conditional jumps so that we instead of creating a choice point, a new
symbolic value of type SymSbool is created. This can potentially speed up the execution vastly (see
Subsection 9.4).

4.2 Search Region Representation for Objects

While the built-in primitive types can be dedicatedly modeled via special classes, user-defined
classes and arrays must also be considered. For both, information from the search region is
required.

4.2.1 User-Defined Classes and Interfaces

In Java, all objects have the common supertype Object, even without explicitly declaring it [33].
Object defines some crucial methods that are used throughout Java. The Java compiler even
allows calling Object-methods for interface types, that, by definition, usually cannot extend a class
[28].

Similarly, the search region representation of classes has to account for complex behavior, such
as symbolically representing the object for/in a constraint solver [53]. Another example is that it is
desirable to have custom methods, e.g., for transforming a class from outside the search region
into its partner class and copying a PartnerClass. Those steps are executed if the search region
has any parameters (see Figure 4). It thus is convenient to have a set of methods that can be
invoked on all partner class objects.

The search region representation of user-defined classes, aside from classes extending java-

.lang.Throwable, all have the common superclass PartnerClassObject. To assure that methods
for PartnerClassObject can also be called for interfaces, an interface PartnerClass was added.
User-defined interfaces will not extend PartnerClassObject but PartnerClass. PartnerClass thus
is the search region-equivalent of Object. In turn, the role of PartnerClassObject is to imple-
ment the various methods of PartnerClass that are, e.g., related to the state of an object, e.g.,
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whether or not the object is currently represented for/in the constraint solver [53] or whether it is
to-be lazily initialized [29]. PartnerClassThrowable is a special case for those classes that extend
Throwable. In Java, instances of Throwable represent some Error or Exception and can be thrown
as an alternative to leaving a method using a return statement [33]. Instances of Throwable also
can be caught, if they have been thrown. However, in Java Throwable is a class. Since the JVM
does not allow for multiple inheritance [33], partner classes of subclasses of Throwable must not
extend PartnerClassObject. Instead, PartnerClassThrowable is extended, which, in turn, extends
Throwable. Thus, PartnerClassThrowable is implemented like PartnerClassObject, with the excep-
tion that former class extends Throwable.

In Mulib, partner classes are generated using the transformation indicator __mulib__. For instance,
the partner class of a class A with the superclass Object, if used in a search region, will receive
the name __mulib__A and the superclass of this partner class will be PartnerClassObject. Instead
of A, in the search region, __mulib__A is used. In consequence, if a search region method has a
parameter of type A, it will be transformed into a type __mulib__A before invoking the search region
(see Figure 3). There are several things to consider when transforming the bytecode of such a
class A to its search region counterpart. These considerations are further explained in Section 5.

On the other hand, arrays are transformed to subclasses of the special class Sarray. The issue
with Java’s arrays is that for accessing them, only concrete integer numbers can be used. This is
because in Java there is no such concept as a symbolic value. Furthermore, it must be possible
to create arrays with a symbolic length. The Sarray class is implemented in a way allowing for
both symbolic accesses as well as a symbolic length. For the primitive array types, such as int[]

and boolean[], respective subclasses have already been provided in the form of SintSarray and
SboolSarray (not depicted). On the other hand, for arrays with reference-typed elements, such as
A[] or A[][], subclasses of the types PartnerClassSarray and SarraySarray, are created respec-
tively. In consequence, if, in the search region, arrays of the aforementioned types are used, the
MulibTransformer (see Figure 3) also synthesizes the classes __mulib__A__mulib__PartnerClass-

Sarray and __mulib__A__mulib__2__mulib__SarraySarray. Note that, again, the transformation in-
dicator string is used in a manner to assure that ambiguous names are avoided. Inputs to the
search region of array types consequentially also are transformed to synthesized (or predefined)
Sarrays.

4.2.2 Partner Class Object Constraints

PartnerClassObjectConstraints are constraints that restrict data of an object, such as the ele-
ments of an array or the values of an object’s fields. Figure 7 gives an overview of the imple-
mented constraints of this type. PartnerClassObjectConstraint is not a subtype of Constraint

since it cannot be arbitrarily combined with other constraints. Such a combination, e.g., a disjunc-
tion of a Constraint and a PartnerClassObjectConstraint, would be meaningless, as is explained
in the following. PartnerClassObjectConstraints are created when dealing with selecting from or
storing in an array using a symbolic index or in the case of symbolic aliasing. Symbolic aliasing
denotes the concept that, in Mulib, it can occur that two objects have the same identity. Objects
are endowed with an identifier represented by a number. This identifier can also be a symbolic
value and it can potentially equal one of the existing identifiers. If this is the case, these two
objects are equal in identity. Consequently, if, e.g., the fields of two objects are accessed which
have the same identifier, it must be assured that the returned values equal. Additionally, if one
of these objects is mutated by assigning a new value to its field, this side-effect must also be
propagated to the other object. In Mulib, this is done using constraint which are subtypes of
PartnerClassObjectConstraint. The interested reader is referred to Winkelmann and Kuchen [53]
for more precise explanations of the underlying concepts.

A PartnerClassObjectInitializationConstraint is posed when representing a non-array object
for the constraint solver. An object can be represented for the solver for various reasons. For
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≪interface≫
PartnerClassObjectConstraint

+ getPartnerClassObjectId()

PartnerClassObjectRememberConstraint

...

+ getName(): String
+ getRememberedValue(): PartnerClass

PartnerClassObjectInitializationConstraint

...

+ getType(): PartnerClassObject-
InitializationConstraint.Type

+ getReservedId(): Sint
+ getIndex(): Sint
+ getFieldName(): String
...

PartnerClassObjectFieldConstraint

...

+ getFieldName(): String
+ getValue(): Sprimitive
+ getType(): PartnerClassObject-

FieldConstraint.Type
...

≪interface≫
ArrayConstraint

ArrayInitializationConstraint

...

+ getReservedId(): Sint
+ getIndex(): Sint
+ getFieldName(): String
+ getType(): ArrayInitialization-

Constraint.Type
...

ArrayAccessConstraint

...

+ getIndex(): Sint
+ getValue(): Sprimitive
+ getType(): ArrayAccess-

Constraint.Type
...

Figure 7: The constraints that restrict the metadata of partner classes.

instance, if it is contained in an array of objects and this array is selected from using a sym-
bolic index, the content of this array must be represented for the solver. This allows for del-
egating the decision on the identity of the retrieved object to the constraint solver [53]. If an
array of objects is represented for the constraint solver due to an access with a symbolic index,
the result of invoking getType() for the elements of the array that is being represented would be
SIMPLE_PARTNER_CLASS_OBJECT. If now, using a symbolic index, an element is selected from the
array of objects, a new object is created. The returned object of this array also is represented for
the constraint solver. It’s type would be PARTNER_CLASS_OBJECT_IN_SARRAY. This is because it was
created to refer to one of the elements of the array. The SolverManager will then restrict its symbolic
identifier to equal one of the identifiers that is already represented in the array. In other words: The
newly created object is a symbolic alias of the objects in the array which, in turn, are called aliasing
targets [53]. The solver backend ensures that, if two objects have the same identifer, their fields’
contents must be the same [53]. In the given instance, getIndex() returns the index for which the
new object is created in the array. Analogously, PARTNER_CLASS_OBJECT_IN_PARTNER_CLASS_OBJECT
describes the case of PartnerClassObjectInitializationConstraint where the object is not taken
from an instance of Sarray, but from a field of a PartnerClass that was represented for the con-
straint solver. In this case, getFieldName() returns the name of the field for which the new object
has been created. If the array that is selected from has a concrete length, its content is known.
In this case, the selected object is a symbolic alias of one of the elements present in the array
when it was initialized. On the other hand, if the array has a symbolic length, it might be that
the selected object is a new, previously unknown, object. In this case getReservedId() returns a
distinct identifier.
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Analogously, ArrayInitializationConstraint describes the same concept applied to arrays. If an
array is represented for the solver, all its elements also are represented for the solver beforehand.
Importantly, the fields or array indexes that contain an object as their value are represented using
the identifier of this object [53].

After representing a non-array object for the constraint solver, instead of accessing its fields di-
rectly, a PartnerClassObjectFieldConstraint is pushed to the constraint solver. If a value should
be retrieved for a given field, a new symbolic leaf value (see Subsection 4.1) is spawned. This
value is included in an instance of the PartnerClassObjectFieldConstraint and the type is set to
GETFIELD. When pushing this constraint to the constraint solver, all aliasing targets are checked for
their values in this field. A disjunction is created so that the selected value must equal to one of the
values. If instead, a value is stored in a field, the type of PartnerClassObjectFieldConstraint is set
to PUTFIELD. In this case, the result of getValue() is the value that is stored in the representation
of the partner class object.

Analogously, an array that was represented for the constraint solver will not access its elements.
Instead, ArrayAccessConstraints are generated that represent selecting or storing in the array.

Finally, the PartnerClassObjectRememberConstraint is a constraint that is sent to the constraint
solver for creating a snapshot of an object at a certain stage [45]. For this, the indicator method
Mulib.remember(...) can be called. The respective object can then be retrieved from a Solution

object (recall the Labels interface in Figure 2). This is useful, for instance, to memorize the
original inputs of a method under test (compare with Winkelmann, Troost, and Kuchen [55]).
If the object is not subject to symbolic aliasing [53] or lazy initialization [29, 55] a deep-copy of
it is created. If the object is subject to symbolic aliasing or lazy initialization, it is represented
for the solver using an appropriate initialization constraint. Then, during labeling, only those
PartnerClassObjectFieldConstraints and ArrayAccesConstraints are regarded that occur before
overwriting the content of a field.

4.3 Differences to Mulisjvm

Mulisjvm used the same data structures for both the search region and the deterministic pro-
gram parts. Yet, since Mulisjvm uses a custom compiler and an SJVM written in Java [17], the
representation of individual objects is a rather abstract one: Each and every object is repre-
sented by an instance of Objectref or Arrayref. For example, the former maintains a map of
java.lang.reflect.Field to java.lang.Object representing the field values of the represented ob-
ject [26]. In contrast, in Mulib, for as long as no symbolic aliasing is involved (see Winkelmann
and Kuchen [53]), actual Java objects are the chosen representation.

Furthermore, primitives in Mulisjvm are represented either via wrappers such as IntConstant, or,
if they are symbolic, NumericVariable. This is similar to Mulib, although Mulib also offers specific
types for different number types. However, importantly, outside of the search region, regular Java
code is executed and primitive data types are used. These are more efficient than using objects
for various operations since they can reside on the stack instead of having a reference to the
heap [33]. Mulisjvm introduced a separate concrete mode, opposed to the search mode that is
employed in a search region, where non-symbolic values are expected [17]. Since the primitive
types of Mulisjvm can be either symbolic or concrete, it is not straight-forwardly possible to have
the same performance as outside of the search region, particularly, because free values can also
be defined outside of a search region (recall Subsection 3.6).

Mulisjvm already implements some functionality for representing arrays of primitive-typed ele-
ments [51]. Mulib extends this support to arrays of reference-typed elements. In consequence, it
needs to allow for representing arrays and non-array objects for/in the constraint solver [53].
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Finally, Mulisjvm also offered an option to capture the original inputs of a method [55]. However,
since Mulisjvm did not offer the possibility of symbolic aliasing, the used approach did not account
for it. In contrast, Mulib also offers support for symbolic aliasing during the labeling procedure.
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5 Program Transformation

One of Mulib’s core components is a program transformer, i.e., an implementation of the interface
MulibTransformer (recall Figure 5). The task of a MulibTransformer is to generate partner classes
of the original classes that can be loaded using a class loader. In the following, original class
denotes a class that is specified by the user and that is transformed using the program trans-
formation. Since the Mulib search framework is an own component, the transformer does not
generate complex methods by itself and rather just substitutes bytecode instructions with method
calls to the Mulib execution framework.

The remainder of this section is organized as follows: First, in Subsection 5.1, an example is
provided to illustrate the functionality of the program transformation. Thereafter, in Subsection
5.2, the entry point to the program transformation is described. This is followed by a description of
the transformation of classes in Subsection 5.3 and elaborations on how methods are transformed
(Subsection 5.4). Subsections 5.5 to 5.7 provide some more details on special cases in the
program transformation. Finally, Subsection 5.8 compares the program transformation of Mulib to
the compiler and SJVM of Mulisjvm.

5.1 An Exemplary Transformation

As an example for a program transformation, consider the following program using Mulib to solve
a constraint satisfaction problem:

1 public static int[] assign(Machine [] machines , int[] wkloads) {

2 int[] assignments = new int[wkloads.length ];

3 for (int i = 0; i < wkloads.length; i++) {

4 int wkload = wkloads[i];

5 int machineIndex = Mulib.freeInt ();

6 Machine machine = machines[machineIndex ];

7 int capacity = machine.cap;

8 if (capacity < wkloads[i]) {

9 throw Mulib.fail();

10 }

11 machine.load(wkloads[i]);

12 assignments[i] = machineIndex;

13 }

14 return assignments;

15 }

More details for this type of assignment problem can be found in Winkelmann and Kuchen [53]. A
respective transformed program can look as follows:9

1 public static SintSarray assign(

2 __mulib__Machine__mulib__PartnerClassSarray machines ,

3 SintSarray wkloads) {

4 SymbolicExecution se = SymbolicExecution.get();

5 SintSarray assignments =

6 se.sintSarray(wkloads.length (), false);

7 for (int i = 0;Sint.concSint(i).gteChoice(wkloads.length (),se); i++) {

8 Sint wkload = wkloads.select(Sint.concSint(i), se);

9 Sint machineIndex = se.symSint ();

10 __mulib__Machine machine = machines.select(machineIndex , se);

11 Sint capacity = machine.get__mulib__cap ();

9Note that the program transformation is allowed to change the program into any semantically equivalent program that
allows for symbolic execution of the search region method.
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12 if (! capacity.gteChoice(wkload , se)) {

13 throw Mulib.fail();

14 }

15 machine.load(wkload , se);

16 assignments.store(Sint.concSint(i), machineIndex , se);

17 }

18 return assignments;

19 }

Instead of int[], SintSarray is used (lines 1, 3 and 5) and instead of Machine, its partner class
__mulib__Machine is used (lines 10, 11, and 15). Instead of Machine[], __mulib__Machine__-
mulib__PartnerClassSarray is used (lines 2 and 10), a subclass of PartnerClassSarray. An in-
stance of SymbolicExecution is retrieved that serves as the facade to the Mulib execution frame-
work (see Subsection 6.3) (line 4). Aside from that, many operations have been substituted
with framework operations. For instance, selecting a value from an array has been replaced
by Sarray.select(Sint, SymbolicExecution). Furthermore, the indicator method Mulib.freeInt()

has been replaced to return a symbolic Sint (line 9). Note that, in some instances, variable types,
such as int i (line 7), do not need to be transformed. Instead, i is wrapped (lines 7, 8, and 16).

A brief description of the program transformation can be found in Winkelmann and Kuchen [52].
In contrast, in the following, technical details are supplied and additions, such as free arrays, are
included. Initially, the program transformation has been implemented using ASM [9], relying on a
low-level representation of Java class files and the stack machine to perform the transformation
on the level of bytecode [52]. This implementation has since been replaced by a higher-level
representation in the form of a register machine using the Jimple format of Soot [47]. In fact,
the program transformer can be implemented in any way that enables the generation of partner
classes and could also consist of parsing text instead of processing bytecode. However, the trans-
formations of instructions within a method (see Subsubsection 5.4.2) have been implemented and
are explained in terms of Java bytecode since it is the most fundamental format. In consequence,
aforementioned code is a decompiled version since the program transformation works on Java
bytecode.

To abstract from the concrete framework used for the transformation, in the following the symbol
T denotes the framework’s representation of a class or interface. F represents fields while M repre-
sents a method. I is the framework-specific representation of an instruction. This instruction can
either be a bytecode instruction or a more complex statement, such as Soot’s Jimple statements
[47]. L represents local variables while V represents any value. In consequence, L is a subtype of
V, the latter of which can also represent values that are not first stored in a variable, i.e., values
that are on the stack. In the following, a list of instructions is assumed for the transformation.
Inspired by Soot’s Jimple format, it is assumed that objects representing, e.g., method calls have
a direct reference to values used within them. If the framework, for instance, transforms program
code based on an Abstract Syntax Tree (AST) and does not offer a concrete representation for,
e.g., values on the stack, adapters must be written for collecting and carrying this information,
serving as the V for the framework.

5.2 Transformation Loop

As the main access point of MulibTransformer, to transform a class to its partner class, the proce-
dure depicted in Algorithm 1 is called. This algorithm is implemented in the AbstractMulibTransfor-

mer, which implements the template pattern [27]. The algorithm combines several considerations
during transformation that are elaborated in the following.

Multiple classes are passed to it which then are added to a queue (lines 1 and 2). Thereafter,
classes are polled from this queue until the queue is empty (lines 3–5). The transformClass(...)
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method is called for each of them (see Subsection 5.3).

After transforming each class, additionally some instructions are replaced and methods are en-
hanced. For this, we take the framework-specific representation of transformed classes and in-
terfaces and replace each field access within a method with a specialized method (line 7, see
Subsection 5.5 for an explanation of this method). This is done to account for lazy initialization or
for symbolic aliasing where the fields must not be accessed directly any longer. Additionally, all
methods receive a call to PartnerClass.__mulib__nullCheck() (line 8), again to account for sym-
bolic aliasing and ensure that the current object is not a symbolic alias of null. This includes the
special methods for accessing a field.

Algorithm 1: Abstract procedure for transforming the classes in a search region.
1 transformAndLoadClasses(Class... toTransform) : void
2 this.toTransform.addAll(toTransform);
3 while !this.toTransform.isEmpty() do
4 Class next = this.toTransform.poll();
5 transformClass(next);

6 for ( , T classNode) ∈ this.transformedClassNodes.entrySet() do
7 replaceFieldInsnsInMethods(classNode);
8 generateNullChecksForMethods(classNode);

9 Map<String, T> specialArrayTypes = getSpecialArrayTypes();
10 this.transformedClassNodes.putAll(specialArrayTypes);
11 for (String name, T classNode) ∈ this.transformedClassNodes do
12 // Writing the class to a file is abstracted from
13 Class c = loadClassForName(classNode.name());
14 this.transformedClasses.put(name, c);

After this, the array types used in the search region must be accounted for. While calling transform-

Class(...) (line 5), the set of array types that are used in the search region must be collected as
well. It is a requirement that, when transforming the types of array values, specialized array part-
ner classes are generated. This is discussed in more detail in Subsections 5.4 and 5.6. This set
of array types is retrieved and stored in a map of pairs of the original name of the type and the
framework representation of the transformed type (lines 9 and 10).

Finally, the pairs are loaded using a class loader (line 13). For this, the framework representation
must be transformed to a Java class. Frameworks such as ASM and Soot offer methods for trans-
lating a type T into a byte array that can be used to define a class using Class.defineClass(String,

byte[], int, int) [33] or to write the class to the file system so that a class loader can load it.
The resulting partner class is stored in a map of pairs of the original name of the type to the
partner class (line 14). Thereafter, a partner class can be retrieved from the MulibTransformer by
using the name of the class for which we want to access the partner class.

5.3 Class Transformations

An implementation of MulibTransformer must transform a class or interface, alongside its (in-
stance) fields, methods, and type hierarchy. Algorithm 2 summarizes the most important steps.

First, it is checked whether the class has already been transformed, is being transformed, or
should not be transformed at all (line 2). The last of the three cases is determined by a configu-
ration setting (see Subsubsection 8.2.6). Thereafter, the framework representation of the original
class, i.e., the class that shall be transformed, is retrieved (line 4). A new representation of the
transformed class is constructed (line 5). The name of this partner class is the original name
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enhanced with the transformation indicator __mulib__. Inner classes also receive this prefix. If the
package is protected and new classes must not be loaded into it10, the package also must receive
the indicator __mulib__ as a prefix. The modifiers of the partner class, e.g., whether the class is
public, private, etc., are set to equal the modifiers of the original class (line 6).

Algorithm 2: Abstract procedure for transforming a single class.
1 transformClass(Class toTransform) : T
2 if isIgnoredTransformedOrBeingTransformed(toTransform) then
3 ... // Handling abstracted from

4 T original = getClassNodeForName(toTransform.getName());
5 T result = new T(addTransformationIndicator(toTransform.getName()));
6 result.setModifiers(original.getModifiers());
7 T originalSuperClass = toTransform.getSuper();
8 if isInterface(toTransform) then
9 result.addInterface(getClassNodeForName(PartnerClass.class.getName()));

10 else if originalSuperClass == Object.class then
11 result.setSuper(getClassNodeForName(PartnerClassObject.class.getName()));

12 else if originalSuperClass == Throwable.class then
13 result.setSuper(getClassNodeForName(PartnerClassThrowable.class.getName()));

14 else
15 result.setSuper(transformClass(superClass));

16 for T interface ∈ toTransform.getInterfaces() do
17 result.addInterface(transformClass(toTransform));

18 // Treatment of inner and outer classes abstracted from
19 for F f ∈ original.fields() do
20 F transformedField = transformField(f );
21 result.addField(f );

22 for M m ∈ original.methods() do
23 // Native method handling abstracted from
24 M transformedMethod = transformMethod(result, m);
25 result.addMethod(transformedMethod);

26 if !isInterface(result) then
27 generateAdditionalConstructorsAndMethods(result);
28 enhanceInits(result);
29 generateOrReplaceClinit(result);

30 this.transformedClassNodes.put(toTransform.getName(), result);
31 return result;

Thereafter, we check the super class of the transformed class (lines 7–15). If the type we trans-
form actually is an interface, we add the PartnerClass interface (lines 8 and 9). If the original
supertype instead is java.lang.Object, PartnerClassObject is chosen as the supertype (lines 10
and 11). If instead the supertype is java.lang.Throwable, PartnerClassThrowable is chosen (lines
12 and 13). Finally, if none of the previous cases apply, we transform the super class and then
set it as the super class of the transformed class (lines 14 and 15). Moreover, each implemented
interface is transformed (lines 16 and 17).

After this, each of the fields is transformed (lines 19–21), i.e., each time the type of the field is
replaced by a library type. For reference types, this also includes a call to transformClass(...),
or adding the respective object into the queue toTransform (see Algorithm 1, lines 3 and 4). For
example, a field private int i; is transformed to a field private Sint i;. A field protected A a;

10Such is the case for the java.lang package.
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is transformed to a field protected __mulib__A a;. A field final int[] is; is transformed to a field
SintSarray is;. It is important to note that, to account for lazy initialization, the final keyword is
discarded from the partner classes’ field definition.

Then, each method is transformed (lines 22-25, further described in Subsection 5.4). For native
methods, configuration options can be set to describe how they should be replaced (also see
Subsubsection 8.2.6).

Finally, additional framework methods are added to each non-interface partner class (line 27), and
the (class-)constructors are enhanced (lines 28 and 29). The methods that must be generated
are described in more detail in Subsection 5.5. Constructors are enhanced with additional safety
checks (line 28): In Java, there are default values for fields [33]. If, for instance, an int field is
never initialized explicitly, it carries the value 0. If a reference-typed field is not initialized, the
default value null is assumed. Since each primitive field is replaced by a reference-typed field,
unexpected NullPointerExceptions might occur. Thus, enhanceInits(...) inserts checks ensuring
that all fields are initialized before they are used. For instance, for aforementioned field private

Sint i; the following code is added:

if (i == null) {

i = Sint.concSint (0);

}

Thus, the semantics for default values for Sint fields are preserved. Existing class initializers are
deleted and replaced by similar checks for static variables (line 29). More details on the reasons
for deleting class initializers in partner classes are given in Subsection 5.7.

5.4 Method Transformations

The abstract procedure to transform a method is summarized in Algorithm 3. To transform a
method, first, a new framework representation of the method is constructed with the same name
as the original method (line 2). The modifiers of the original method, describing, for instance,
whether the method is public [33], too are set to equal those of the original method (line 3). The
class declaring this new method is set to the partner class constructed in Algorithm 2 (line 4).
Thereafter, the method signature is transformed: The types of the parameters, the return type, as
well as the declared thrown exceptions are transformed and set for the new method (lines 5–10).
As has been done for transforming fields (see Algorithm 2), primitive types are transformed to
Sprimitives while for reference-types new partner classes are generated (if the reference type
does not correspond to a predefined type such as SintSarray).

If the method is abstract, no more transformation must be performed and the method representa-
tion is returned (lines 11 and 12).

Otherwise, a taint analysis is performed (line 13, see Subsubsection 5.4.1). The result of the
taint analysis determines which variable types and operations are substituted using the program
transformation. For all local variables of the method, it is checked whether this local variable is
tainted. If it is tainted, its type is replaced analogously to how fields are transformed (lines 14–
17, see Subsection 5.3). Non-array reference-typed local variables are transformed regardless of
their taint value. Whether they are tainted or not is dependent on whether their type should be
transformed or not, which is subject to a configuration setting (lines 18 and 19, see Subsubsection
8.2.6). Note that arrays that are not tainted can remain usual Java objects, i.e., an array A[][]

does not need to be a subtype of SarraySarray but can be transformed to a __mulib__A[][]. If the
local is neither tainted nor a reference value, it can simply be reused (lines 20 and 21).
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Algorithm 3: Abstract procedure for transforming a single method.
1 transformMethod(T declaringClass, M m) : M
2 M result = new M(m.name());
3 result.setModifiers(m.modifiers());
4 result.setDeclaringClass(declaringClass);
5 List<T> transformedParameterTypes = transformTypes(m.parameterTypes());
6 T transformedReturnType = transformType(m.returnType());
7 List<T> transformedExceptionTypes = transformTypes(m.thrownExceptionTypes());
8 result.setParameterTypes(transformedParameterTypes);
9 result.setReturnType(transformedReturnType);

10 result.setThrownExceptions(transformedExceptionTypes);
11 if m.isAbstract() then
12 return result;

13 TaintAnalysis ta = analyzeTaint(m);
14 for L local ∈ m.locals() do
15 L transformedLocal;
16 if ta.isTainted(local) then
17 transformedLocal = transformLocal(local);

18 else if hasReferenceType(local) then
19 transformedLocal = transformToPartnerClassType(local);

20 else
21 transformedLocal = local;

22 result.addLocal(transformedLocal);

23 L seLocal = new L(SymbolicExecution.class);
24 result.addLocal(seLocal);
25 result.addInstructions(getSymbolicExecutionInsns(seLocal));
26 for I insn ∈ m.instructions() do
27 if ta.isTaintedInsn(insn) then
28 List<I> transformedInsn = transform(ta, insn);
29 result.addInstructions(transformedInsn);

30 // Treatment of try-catch blocks abstracted from
31 return result;

Each transformed method will begin with a statement SymbolicExecution se = SymbolicExecution-

.get(). Since SymbolicExecution is the facade to Mulib’s search framework (see Subsection 6.3),
each method must be capable to use it to contact said search framework. In consequence, a new
local variable is introduced, the type of which is SymbolicExecuction (lines 23 and 24). The static
method call is inserted as the first instruction of the new method (line 25).

Thereafter, all instructions of the original method are iterated (lines 26–29). An object of the
framework-specific TaintAnalysis is used to determine if an instruction is tainted and how it should
be substituted, alongside its values. The criteria that, in addition to the taint analysis, determine
whether a bytecode instruction should be substituted and what it should be substituted with are
enlisted in the Subsubsections 5.4.2 and 5.4.3.

Finally, the transformed method is returned (line 31).

5.4.1 Taint Analysis

Mulib’s program transformation uses an intra-procedural taint analysis to determine which vari-
ables can have symbolic values and which operations consume such values so that those opera-
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tions and value types are substituted [52].

In Mulib’s terminology, if a value can be symbolic it is tainted. It is tainted if it belongs to initially
tainted values (such as values retrieved from fields or values created using indicator methods
or is the result of a tainted instruction. An instruction is tainted if it uses any tainted values. A
primitive value that is not tainted itself but is used in a tainted instruction must be wrapped to, e.g.,
an instance of ConcSint (see Section 4.1). Moreover, a local variable is tainted if it can contain a
symbolic value, i.e., if a tainted value is stored within it. Consider the following scenario:

int i = 42;

int isym = Mulib.freeInt ();

int iresult = i + isym;

In this scenario, isym is tainted, as it is created using an indicator method. iresult is tainted,
because it is calculated using a tainted value. i is not tainted since it is concrete. Instead, i

must be wrapped via Sint.concSint(i) so that it can be added to isym using Sint.add(Sint,

SymbolicExecution). Adding an assignment such as i = isym + 1; would taint the variable i as
well. In this case, i would not be wrapped and instead receive the type Sint.

It is sufficient for the taint analysis to determine which values are tainted. Then, this information
can be used in conjunction with the substitution criteria specified in Subsubsections 5.4.2 and
5.4.3 to determine whether an instruction is tainted (see line 27 in Algorithm 3) and thus should
be substituted. Analogously, it also is not needed to determine which values must be wrapped
as this can be calculated from the fact that an untainted value is used in a tainted instruction:
Before executing the tainted instruction, the untainted value must be wrapped. While the current
implementation of a taint analyzer using Soot also holds information on whether a value should
be wrapped or not explicitly, for the sake of conciseness, this is not depicted in the following.

Algorithm 4 summarizes the procedure for the intra-procedural taint analysis. In a first step we
gather all those values that are seeds of potential symbolic values (lines 3–23). In Mulib, for sim-
plicity, it is assumed that all arguments to methods potentially are symbolic. Thus, the method
addToTainted(...) adds all those parameter locals to a set of tainted values, for which their type
is either primitive or a an array type (lines 3 and 4). Non-array reference-typed values never
need to be tainted. Instead, their type can be transformed to their respective partner class type.
Whether or not a reference-type should be transformed is subject to a configuration option (see
Subsubsection 8.2.6). In a search region, there never are both the original class and the frame-
work class. Similarly, all values that are retrieved from fields (lines 6–8) are tainted. Thereafter,
values stored into fields are treated (lines 9–11): Primitive values that are stored in fields do not
have to be tainted, but are wrapped. In contrast to primitive values, arrays cannot be wrapped.
Instead, arrays must be tainted. The reason for this is that arrays can be mutated and might be
represented for the constraint solver (recall Subsubsection 4.2.2). Analogously, values returned
from this method are not tainted if they are not array-typed values (lines 13–15). Finally, since it is
assumed that all methods accept Sprimitives and PartnerClasses, the arguments to a method call
must either be wrapped, or, in the case of an array, tainted. To do this, all method call instructions,
accounting for invokevirtual, invokespecial, invokestatic, invokeinterface, and invokedynamic,
are iterated over (lines 16–23). If, due to a configuration setting, the declaring class of a method
should not be transformed, the method call does not affect the taint information (line 17). Again,
the parameter values are tainted if they are array types (lines 18 and 19). Additionally, if there is
a return value, this return value is tainted (lines 20–22), since each value returned by a partner
classes’ method is of the type of either Sprimitive or PartnerClass.
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Algorithm 4: Abstract procedure for a taint analysis for determining potentially symbolic
values in a single method.
1 analyzeTaint(M m) : TaintAnalysis
2 // Initial taint: locals
3 List<L> parameterLocals = m.parameterLocals();
4 addToTainted(parameterLocals);
5 // Initial taint: fields
6 List<I> getF ieldInsns = getFieldInsns(m);
7 List<V> fieldV alues = getValuesUsedByInsns(getF ieldInsns);
8 addToTainted(fieldV alues);
9 List<I> putF ieldInsns = putFieldInsns(m);

10 List<V> putF ieldV alues = getValuesUsedByInsns(putF ieldInsns);
11 addArrayTypedValuesToTainted(putF ieldV alues);
12 // Initial taint: returned values
13 List<I> returns = getReturnInsns(m);
14 List<V> returnedV alues = getValuesUsedByInsns(returns);
15 addArrayTypedValuesToTainted(returnedV alues);
16 for I methodCall ∈ getMethodInsns(m) do
17 if !isOfIgnoredClass(methodCall) then
18 List<V> parameterV alues = getParametersOfMethodCall(methodCall);
19 addArrayTypedValuesToTainted(parameterV alues);
20 V returnV alue = getReturnValueOfMethodCall(methodCall);
21 if returnV alue != null then
22 addToTained(returnV alue);

23 // Concretization and generalization abstracted from

24 // Propagate initial taint
25 boolean changed = true;
26 while changed do
27 changed = false;
28 for I insn ∈ getInsns(m) do
29 if !isMethodInsn(insn) && usesTaintedValues(insn) then
30 List<V> vals = getValuesUsedByInsns(insn);
31 changed = addArrayTypedValuesToTainted(vals) || changed;
32 V produced = getValueProducedByInsn(insn);
33 changed = addToTainted(produced) || changed;

34 return new TaintAnalysis(this.getTaintedValues());

There also is the option to treat inputs to methods that are not transformed. For instance, the
inputs to this method can be labeled prematurely so that they have a valid type. This option is not
discussed in the following (line 23).

After establishing the set of initial tainted values, the taint is propagated within the method. For
this, all non-method call instructions are iterated over repeatedly (lines 25–33).11 All those values
used by a certain instruction are collected and, if they are arrays, added to the set of tainted
values (lines 30 and 31). All values produced by tainted instructions are added to the set of
tainted values (lines 32 and 33). If a new value is added to the set of tainted instructions, both
addArrayTypedValuesToTainted(...) and addToTainted(...) return true. Thus, it is possible to
determine if any new values were added and the outer loop should be run again (line 26).

The output of Algorithm 4 is an object that contains a collection of all tainted values and that
can use this information to also determine whether an instruction is tainted. This can then be

11In practice, the outer loop is executed few times. Mostly, three iterations are performed.



■

35

used to determine tainted instructions in Algorithm 3 and decide on how the transformation of the
instruction should be performed, based on the criteria in Subsubsections 5.4.2 and 5.4.3.

5.4.2 Replacement of Bytecode Instructions

The replacement of bytecode instructions is based on the result of the taint analysis described
in Subsubsection 5.4.1. In all instances the bytecode instructions that should be checked to be
transformed are enlisted. A small explanation of what the bytecode instructions do is given and the
criteria for whether the transformation must be applied is stated. Thereafter, the transformation is
described. In the following, array references are denoted tainted if

1. they are part of the parameter list

2. they are loaded from or stored in a field,

3. a tainted index value is used to store a value in them or load a value from them,

4. if they are the return value of a transformed method,

5. or if one of their variables, potentially storing the array reference, is tainted.

This corresponds to the outcome of the procedure of Algorithm 4 that is used in Algorithm 3. For
a list of all bytecode instructions, Lindholm et al. [33] should be consulted.

1. {aaload, baload, caload, daload, faload, iaload, laload, saload}: Loads a value from an array us-
ing an index. There is a bytecode instruction for each array type with primitive typed-elements.
This transformation must be applied if the array reference is tainted. The program transfor-
mation must either replace this bytecode instruction with invokevirtual Sarray.select(Sint,

SymbolicExecution) or with the concrete subclasses’ method, such as SintSarray.select(Sint,

SymbolicExecution). If the former option is chosen, the returned value must be casted to the
correct element-type of the Sarray. If the index is not tainted, it must be wrapped.

2. {dload, fload, iload, lload}: Loads a local variable or a method parameter. This transformation
must be applied if the loaded variable is tainted or wrapped. The program transformation must
replace it with aload, since we load a Sprimitive.

3. {aastore, bastore, castore, dastore, fastore, iastore, lastore, sastore}: Stores a value in an ar-
ray using an index. There is a bytecode instruction for each array type with primitive-typed ele-
ments. This transformation must be applied if the array reference is tainted. The program trans-
formation must either replace this bytecode instruction with invokevirtual Sarray.store(Sint,
Substituted, SymbolicExecution) or with the concrete subclasses’ method, such as SintSarray-

.store(Sint, Sint, SymbolicExecution). If the index is not tainted, it must be wrapped. If the
value is not tainted and is primitive, it must be wrapped.

4. {dstore, fstore, istore, lstore}: Stores a value in a local variable or a method parameter. This
transformation must be applied if the stored variable is tainted. The program transformation must
replace it with astore, since we store a Sprimitive. If the value that is stored is not tainted, it must
be wrapped.

5. iinc: Increments an int variable by some constant. This transformation must be applied if
the variable is tainted. It must be tainted if the increment is tainted. The program transformation
must replace this bytecode instruction with a sequence of bytecode instructions; - an abstract
procedure is given by these three steps: (1) aload < index > (2) invokevirtual Sint.add(Sint,
SymbolicExecution), (3) astore < index >. The argument to the Sint parameter is the increment.
If the increment is not tainted, it must be wrapped.



■

36

6. getfield: Returns the value stored in the field of an object. This transformation must be applied
if the class of the object containing this field is transformed and the field’s type is not an ignored
reference-type or an array type with an ignored reference-type. Note that the transformation is
applied in Algorithm 1, and not in Algorithm 3. The program transformation must replace this
instruction using a specific getter-method (see Subsection 5.5). This step is performed automat-
ically, if the implementing transformer is a subclass of AbstractMulibTransformer. Subclasses of
AbstractMulibTransformer still must implement the respective generation process of the specific
getter-methods.

7. putfield: Stores the value into the field of an object. This transformation must be applied if
the class of the object containing this field is transformed and the field’s type is not an ignored
reference-type or an array type with an ignored reference-type. Note that the transformation
is applied in Algorithm 1, and not in Algorithm 3. If the value put into the field is not tainted,
it must be wrapped. The program transformation must replace this instruction using a specific
setter-method (see Subsection 5.5). This step is performed automatically, if the implementing
transformer is a subclass of AbstractMulibTransformer. Subclasses of AbstractMulibTransformer
still must implement the respective generation process of the specific setter-methods.

8. getstatic: Returns the value stored in a static field of a class. This transformation must be
applied if the class of the object containing this field is transformed and the field’s type is not an
ignored reference-type or an array type with an ignored reference-type. The program transforma-
tion must replace this instruction by invokvirtual SymbolicExecution.getStaticField(String). The
String parameter must be the concatenation of the fully-qualified class name and the field name.
For instance, when accessing field f of a class A from package a.b.c, the String "a.b.c.A.f" must
be passed as an argument. Thereafter, a cast must be added, casting the retrieved value to the
search region type of the static field.

9. putstatic: Stores the value into a static field of a class. This transformation must be applied
if the class of the object containing this field is transformed and the field’s type is not an ignored
reference-type or an array type with an ignored reference-type. If the value put into the field
is not tainted, it must be wrapped. The program transformation must replace this instruction
by invokvirtual SymbolicExecution.setStaticField(String, Object). The String parameter must
be the concatenation of the fully-qualified class name and the field name. For instance, when
accessing field f of a class A from package a.b.c, the String "a.b.c.A.f" must be passed as an
argument. The argument to the Object is the value that shall be stored.

10. {d2f, d2i, d2l, f2d, f2i, f2l, i2b, i2c, i2d, i2f, i2l, i2s, l2d, l2f, l2i}: Cast a primitive-typed value
to another type, e.g., cast a double to a float. This transformation must be applied if the value
that is casted is tainted. The program transformation must replace this instruction by
invokevirtual {Sdouble.d2f(SymbolicExecution), Sdouble.d2i(SymbolicExecution),
Sdouble.d2l(SymbolicExecution), Sfloat.f2d(SymbolicExecution),
Sfloat.f2i(SymbolicExecution), Sfloat.f2l(SymbolicExecution),
Sint.i2b(SymbolicExecution), Sint.i2c(SymbolicExecution),
Sint.i2d(SymbolicExecution), Sint.i2f(SymbolicExecution),
Sint.i2l(SymbolicExecution), Sint.i2s(SymbolicExecution),
Slong.l2d(SymbolicExecution), Slong.l2f(SymbolicExecution),
Slong.l2i(SymbolicExecution)}, respectively.

11. {dadd, fadd, iadd, ladd}: Adds two numbers that are either doubles, floats, ints, or longs.
This transformation must be applied if either of the two values is tainted. The program transfor-
mation must replace this instruction by
invokevirtual {Sdouble.add(Sdouble, SymbolicExecution), Sfloat.add(Sfloat, SymbolicExecution),
Sint.add(Sint, SymbolicExecution), Slong.add(Slong, SymbolicExecution)} respectively. If either
one of the two values is not tainted, it must be wrapped.

12. {dsub, fsub, isub, lsub}: Subtracts one number from the other number. Both are either doubles,
floats, ints, or longs. This transformation must be applied if either of the two values is tainted.
The program transformation must replace this instruction by
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invokevirtual {Sdouble.sub(Sdouble, SymbolicExecution), Sfloat.sub(Sfloat, SymbolicExecution),
Sint.sub(Sint, SymbolicExecution), Slong.sub(Slong, SymbolicExecution)} respectively. If either
one of the two values is not tainted, it must be wrapped.

13. {ddiv, fdiv, idiv, ldiv}: Divides one number with the other number. Both are either doubles,
floats, ints, or longs. This transformation must be applied if either of the two values is tainted.
The program transformation must replace this instruction by
invokevirtual {Sdouble.div(Sdouble, SymbolicExecution), Sfloat.div(Sfloat, SymbolicExecution),
Sint.div(Sint, SymbolicExecution), Slong.div(Slong, SymbolicExecution)} respectively. If either
one of the two values is not tainted, it must be wrapped.

14. {dmul, fmul, imul, lmul}: Multiplies two numbers. Both are either doubles, floats, ints, or
longs. This transformation must be applied if either of the two values is tainted. The program
transformation must replace this instruction by
invokevirtual {Sdouble.mul(Sdouble, SymbolicExecution), Sfloat.mul(Sfloat, SymbolicExecution),
Sint.mul(Sint, SymbolicExecution), Slong.mul(Slong, SymbolicExecution)} respectively. If either
one of the two values is not tainted, it must be wrapped.

15. {dneg, fneg, ineg, lneg}: Negates one number. This transformation must be applied if the
value is tainted. The program transformation must replace this instruction by
invokevirtual {Sdouble.neg(SymbolicExecution), Sfloat.neg(SymbolicExecution),
Sint.neg(SymbolicExecution), Slong.neg(SymbolicExecution)} respectively.

16. {drem, frem, irem, lrem}: Computes the modulo of two numbers. This transformation must
be applied if either of the two values is tainted. The program transformation must replace this
instruction by
invokevirtual {Sdouble.mod(Sdouble, SymbolicExecution), Sfloat.mod(Sfloat, SymbolicExecution),
Sint.mod(Sint, SymbolicExecution), Slong.mod(Slong, SymbolicExecution)} respectively. If either
one of the two values is not tainted, it must be wrapped.

17. {dcmp, fcmp, lcmp}: Compares two numbers. If the first value is larger, 1 is pushed onto the
stack, if the second value is larger, −1 is pushed onto the stack, else 0 is pushed onto the stack.
The case where NaN is involved is not currently handled by Mulib. This bytecode instruction is
used to reuse all of the bytecode instructions for conditional jumps using int values (see 27) for
double, float, and long values. This transformation must be applied if either of the two values is
tainted. The program transformation must replace this instruction by
invokevirtual {Sdouble.cmp(Sdouble, SymbolicExecution), Sfloat.cmp(Sfloat, SymbolicExecution),
Slong.cmp(-

Slong, SymbolicExecution)} respectively. If either one of the two values is not tainted, it must be
wrapped. For an optional optimization, see 27.

18. {iand, land}: Computes the bit-wise and of two numbers. This transformation must be applied
if either of the two values is tainted. The program transformation must replace this instruction
by invokevirtual {Sint.iand(Sint, SymbolicExecution), Slong.land(Slong, SymbolicExecution)}
respectively. If either one of the two values is not tainted, it must be wrapped.

19. {ior, lor}: Computes the bit-wise or of two numbers. This transformation must be applied
if either of the two values is tainted. The program transformation must replace this instruction
by invokevirtual {Sint.ior(Sint, SymbolicExecution), Slong.lor(Slong, SymbolicExecution)} re-
spectively. If either one of the two values is not tainted, it must be wrapped.

20. {ishl, lshl}: Shifts a number to the left by a number of bits specified by another number.
This transformation must be applied if either of the two values is tainted. The program trans-
formation must replace this instruction by invokevirtual {Sint.ishl(Sint, SymbolicExecution),
Slong.lshl(Sint, SymbolicExecution)} respectively. If either one of the two values is not tainted,
it must be wrapped.

21. {ishr, lshr}: Shifts a number to the right by a number of bits specified by another number.
This transformation must be applied if either of the two values is tainted. The program trans-
formation must replace this instruction by invokevirtual {Sint.ishr(Sint, SymbolicExecution),
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Slong.lshr(Sint, SymbolicExecution)} respectively. If either one of the two values is not tainted,
it must be wrapped.

22. {iushr, lushr}: Shifts a number to the right logically by a number of bits specified by another
number. This transformation must be applied if either of the two values is tainted. The program
transformation must replace this instruction by invokevirtual {Sint.iushr(Sint, SymbolicExecution),
Slong.lushr(Sint, SymbolicExecution)} respectively. If either one of the two values is not tainted,
it must be wrapped.

23. {ixor, lxor}: Computes the bit-wise xor of two numbers. This transformation must be applied
if either of the two values is tainted. The program transformation must replace this instruction
by invokevirtual {Sint.ixor(Sint, SymbolicExecution), Slong.lxor(Slong, SymbolicExecution)}
respectively. If either one of the two values is not tainted, it must be wrapped.

24. {dreturn, freturn, ireturn, lreturn}: Returns a primitive value from a method. This transfor-
mation must always be applied since Mulib currently assumes that each return value potentially
is symbolic. The program transformation must replace this instruction by areturn.

25. {goto, goto w}: Jumps to a specified instruction in the program code. The transformation must
assure that the jump now is performed to the first substituting instruction, if any. This includes calls
to wrap a number.

26. {if acmp, ifnonnull, ifnull}: Checks whether two references equal, if a reference is not null,
or if a reference is null. Jumps to a specified instruction in the program code if a condition is sat-
isfied. In any case, the transformation must assure that the jump now is performed to the first
substituting instruction, if any. This includes calls to wrap a number. This transformation must be
applied if the class of (one of) the checked value(s) is transformed. The program transformation
must replace these instructions by invokevirtual SymbolicExecution.evalReferencesEq(Object,
Object) where the Object parameters are the two values that are compared. One of the val-
ues is a null constant in the cases of ifnonnull or ifnull. In the case of ifnonnull, the re-
sult must additionally be negated. The resulting value should be used to invoke invokevirtual
Sbool.boolChoice(SymbolicExecution).

27. {if icmpeq, if icmpne, if icmple, if icmplt, if icmpge, if icmpgt, ifeq, ifne, ifle, if lt,
ifge, ifgt}: Checks whether two ints (don’t) equal, etc. Jumps to a specified instruction in the
program code if a condition is satisfied. In any case, the program transformation must assure that
the jump now is performed to the first substituting instruction, if any. This includes calls to wrap
a number. The transformation must be applied if the class of (one of) the checked value(s) is
transformed. The program transformation must substitute these bytecode instructions with
invokevirtual {eqChoice(Sint, SymbolicExecution), notEqChoice(Sint, SymbolicExecution),

lteChoice(Sint, SymbolicExecution), ltChoice(Sint, SymbolicExecution),

gteChoice(Sint, SymbolicExecution), gtChoice(Sint, SymbolicExecution),

eqChoice(SymbolicExecution), notEqChoice(SymbolicExecution),

lteChoice(SymbolicExecution), ltChoice(SymbolicExecution),

gteChoice(SymbolicExecution), gtChoice(SymbolicExecution)} respectively. Thereafter, the pro-
gram transformation must add a call to ifne [33] where the input value is the return value of the
method call inserted beforehand. This is done to jump in the Java bytecode accordingly. If, for
instance, Sint.ltChoice(...) returns true, if lt succeeds. In consequence, ifne will jump iff if lt
would jump. It is also possible to replace the unary methods with calls to the binary methods
where the Sint parameter is fixed to ConcSint.ZERO. Implementations of MulibTransformer might
also directly call Slong, Sfloat, and Sdouble choice methods such as Sdouble.ltChoice(Sdouble,

SymbolicExecution) etc. In Java bytecode, comparing doubles, floats, and longs typically is done
by comparing them via their respective cmp (see 17) bytecode instruction which pushes an int

on the stack. Thereafter, the conditional jumps described in this enumeration item are applied.
Directly comparing two values, e.g., doubles, might increase the performance. Implementation
of MulibTransformer are also strongly encouraged to directly call the respective methods of Sbool
instead. Since, in Java bytecode, booleans are represented via ints, without further treatment,
Sbools would be treated as usual Sints. However, it is more efficient to push a pure constraint
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instead of a proxy constraint such as b == 1. Instead, the following substitution pairs might be
used:

■ if icmpeq: invokevirtual Sbool.boolChoice(Sbool, SymbolicExecution)

■ if icmpne: invokevirtual Sbool.negatedBoolChoice(Sbool, SymbolicExecution)

■ ifeq: invokevirtual Sbool.negatedBoolChoice(SymbolicExecution)

■ ifne: invokevirtual Sbool.boolChoice(SymbolicExecution)

To treat Sbools as Sints, the configuration option MulibConfig.VALS_TREAT_BOOLEANS_AS_INTS (see
Subsection 8.2) must be set to true.

28. newarray: Constructs a new array of primitive-typed elements. This transformation must
be applied if the reference of the constructed array is tainted. The program transformation must
replace this instruction with a call to SymbolicExecution’s
invokevirtual {sintSarray(Sint, boolean), slongSarray(Sint, boolean),

sdoubleSarray(Sint, boolean), sfloatSarray(Sint, boolean),

sshortSarray(Sint, boolean), scharSarray(Sint, boolean),

sbyteSarray(Sint, boolean), sboolSarray(Sint, boolean)}, depending on the type specified in
the newarray instruction. If the argument to the Sint parameter, describing the length of the
array, is not tainted, it must be wrapped. The argument to the boolean parameter should be false.

29. anewarray: Constructs a new array of reference-typed elements. This transformation must
be applied if the variable that will hold the constructed array is tainted. The program transforma-
tion must replace this instruction with a call to invokevirtual {partnerClassSarray(Sint, Class,

boolean) sarraySarray(Sint, Class, boolean)} of the class SymbolicExecution. If the argument
to the Sint parameter is not tainted, it must be wrapped. The argument to the Class parameter
should be the element type as an array type. The base type should be the transformed type.
For instance, for a int[][], Sint[].class should be passed. The argument to the boolean param-
eter should be false. The result should be casted to the specifically generated array type (see
Subsection 5.6).

30. multianewarray: Constructs a multi-dimensional array. This transformation must be applied
if the variable that will hold the constructed array is tainted. The program transformation must
substitute this instruction with a call to invokevirtual SymbolicExecution.sarraySarray(Sint[],
Class). The argument for the Sint[] parameter is an array containing the dimensionalities of the
initialized array. If the counts for the dimensionalities are not yet tainted, they must be wrapped
and added into a new intermediate array. The result must be casted to the specific array of arrays-
type.

31. arraylength: Returns the length of an array. This transformation must be applied if the ar-
ray is tainted. The transformation must substitute this instruction with a call to invokevirtual
Sarray.length().

32. checkcast: Casts the type of a reference-typed value to a specified type. This transformation
must be applied for any checkcast bytecode instruction in preparation for including free objects
(see Dageförde, Winkelmann, and Kuchen [22]). The transformation must substitute this instruc-
tion with a call to invokevirtual SymbolicExecution.castTo(Object, Class). The Object parameter
represents the value that should be casted. The Class parameter is the class to which to cast.
The returned value of this method ust be casted to the appropriate type using checkcast.

33. instanceof : Returns true if the given value has the specified type. This transformation must
be applied for any instanceof bytecode instruction in preparation for including free objects (see
Dageförde, Winkelmann, and Kuchen [22]). The Object parameter represents the value that
should be evaluated. The Class parameter is the class for which it is checked whether the value
is an instance of it. The transformation must substitute this instruction with a call to invokevirtual
SymbolicExecution.evalInstanceof(Object, Class).
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34. {invokedynamic, invokeinterface, invokespecial, invokestatic, invokevirtual}: Invokes a me-
thod. This transformation only applies if the invoked method is not an indicator method (see Sub-
subsection 5.4.3). If the invoked method is an indicator method, a specialized transformation is
conducted. Otherwise, this transformation must be applied if the class containing the invoked
method is transformed. The new method of the partner class should be invoked instead. All
parameters that are not tainted must be wrapped.

35. {lookupswitch, tableswitch}: Evaluates a switch statement and jumps to the respective pro-
gram portion. This instruction must be transformed if the evaluation criterion is based on tainted
values. The program transformation must treat a switch bytecode instruction as a sequence of if
statements (see 27).

5.4.3 Indicator Methods

There are also several indicator methods that must be treated as special cases during transforma-
tion. They are enlisted and explained in the following. All methods are static methods in the class
Mulib. If they are not transformed, most of them will throw an error indicating that they should
have been substituted using a program transformation.

1. fail(): Discards the currently explored ChoiceOption (see Subsection 6.1). The search tree
is pruned so that no descendants of this choice option are explored. This method should not be
transformed and kept as-is.

2. {freeDouble(), freeFloat(), freeInt(), freeLong(), freeShort(), freeChar(), freeByte(),

freeBool()}: These methods should generate a new symbolic value of the specified type. They
should be substituted by
invokevirtual {symSdouble(), symSfloat(),

symSint(), symSlong(),

symSshort(), symSchar(),

symSbyte(), symSbool()} of SymbolicExecution.

3. {freeDouble(double, double), freeFloat(float, float), freeInt(int, int), freeLong(long,

long), freeShort(short, short), freeChar(char, char), freeByte(byte, byte)}: These methods
should generate a new symbolic value of the specified type within a specified lower and upper
bound. They should be substituted by
invokevirtual {symSdouble(Sdouble, Sdouble), symSfloat(Sfloat, Sfloat),

symSint(Sint, Sint), symSlong(Slong, Slong),

symSshort(Sshort, Sshort), symSchar(Schar, Schar),

symSbyte(Sbyte, Sbyte)} of SymbolicExecution. If the arguments to the parameters are not tainted,
they must be wrapped.

4. freeObject(Class): This method generates a new symbolic object of a class of the spec-
ified type. To generate an instance of A, A a = freeObject(A.class); should be specified. If
the original Class parameter is not an array, this method should be substituted by invokevirtual
symObject(Class) where the Class parameter is the transformed class that should be initialized.
This method is also used to initialize free/symbolic arrays, i.e., arrays with free elements and a
free length. Thus, if the Class parameter is an array, the method call should be substituted by one
of the following method calls defined by SymbolicExecution:
invokevirtual {sintSarray(Sint, boolean), slongSarray(Sint, boolean),

sdoubleSarray(Sint, boolean), sfloatSarray(Sint, boolean),

sshortSarray(Sint, boolean), scharSarray(Sint, boolean),

sbyteSarray(Sint, boolean), sboolSarray(Sint, boolean),

partnerClassSarray(Sint, Class, boolean), sarraySarray(Sint, Class, boolean)}.
In consequence, freeObject(int[].class) should be substituted with sintSarray(Sint, boolean).
The Sint parameter should be initialized with a new call to
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invokevirtual SymbolicExecution.symSint(). This parameter controls the length of the array. The
boolean parameter should be fixed to true. For partnerClassSarray(Sint, Class, boolean) and
sarraySarray(Sint, Class, boolean), the Class parameter should be set to the array’s component
type as a typical Java type. For instance, for a new symbolic array of the original type A[][],
__mulib__A[] is passed.

5. freeArray(int, Class): Proceed analogously to the array-case of 4. However, the length is not
set to a symbolic value but to the int parameter. If the argument to the parameter is not tainted,
it must be wrapped.

6. {remember(double, String), remember(float, String), remember(int, String), remember(long,

String), remember(short, String), remember(char, String), remember(byte, String),

remember(boolean, String), remember(Object, String)}: Creates a snapshot of the value and
remembers it for labeling using a name specified as a String. All method calls to these in-
dicator methods should be replaced by invokevirtual SymbolicExecution.nameSubstitutedVar(-
Substituted, String). If primitive values are remembered and are not tainted, they must be
wrapped. Note that the indicator methods specified in 2, 4, and 3 also have a shortcut for
initializing and immediately remembering the values. The respective indicator method’s name
have a remembered prefix and an additional String parameter representing the name, e.g.,
Mulib.rememberedFreeInt(String). The respective substitution methods’ names have a named
prefix and an additional String parameter representing the name, e.g.,
SymbolicExecution.namedSymSint(String).

7. assume(boolean): Pushes a new constraint onto the constraint stack without adding a choice
point. Currently, the choice point is created before accessing assume(...), for reasons explained
in Subsubsection 4.1.2. The constraint is the passed boolean argument. The method should be
substituted by a call to invokevirtual SymbolicExecution.assume(Sbool). If the argument to the
method is not tainted, it should be wrapped.

8. check(boolean): Checks the current constraint stack with a new constraint. The new con-
straint is not pushed onto the constraint stack and no choice point is generated. The constraint
is the passed boolean argument. The method should be substituted by a call to invokevirtual
SymbolicExecution.check(Sbool). If the argument to the method is not tainted, it should be wrapped.

9. checkAssume(boolean): Checks the current constraint stack with a new constraint. The new
constraint is only pushed onto the constraint stack if the constraint stack and the new constraint
are satisfiable. The constraint is the passed boolean argument. The method should be substituted
by a call to invokevirtual SymbolicExecution.checkAssume(Sbool). If the argument to the method
is not tainted, it should be wrapped.

10. isInSearch(): Returns true, if search is currently conducted. This is useful when building
model classes that might generate new values during search, e.g., symbolic databases. The
method should be substituted by a call to invokevirtual SymbolicExecution.isInSearch().

11. {pickFrom(double[]), pickFrom(float[]), pickFrom(int[]), pickFrom(long[]),

pickFrom(short[]), pickFrom(char[]), pickFrom(byte[]), pickFrom(boolean[]),

pickFrom(Object[])}: Returns a new value which is a symbolic alias (see Winkelmann and Kuchen
[53]) of one of the values in the respective array. The transformation should replace the call with
a call to either
invokevirtual {aliasOf(Sdouble[]), aliasOf(Sfloat[]),

aliasOf(Sint[]), aliasOf(Slong[]),

aliasOf(Sshort[]), aliasOf(Schar[]),

aliasOf(Sbyte[]), aliasOf(Sbool[]),

aliasOf(PartnerClass[])}, if the input array is not tainted, or otherwise
invokevirtual {aliasOf(SdoubleSarray), aliasOf(SfloatSarray),

aliasOf(SintSarray), aliasOf(SlongSarray),

aliasOf(SshortSarray), aliasOf(ScharSarray),

aliasOf(SbyteSarray), aliasOf(SboolSarray),

aliasOf(PartnerClassSarray)} of SymbolicExecution.
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5.5 Additions to Partner Classes

By extending either PartnerClassObject or PartnerClassThrowable, the search region classes in-
herit a set of methods that embed them in the routines of Mulib. Still, some methods must be
generated as they are specific to the content of the object and would become inefficient using
reflection. Thus, each non-interface class receives a set of additional methods that must be
generated by the implementation of MulibTransformer. These methods are enumerated in the
following for a transformed class A:

1. A must implement a public constructor A(SymbolicExecution). This constructor prepares the
lazy initialization of the object. In this constructor, the super constructor with the same param-
eter signature is called. If the super class is PartnerClassObject or PartnerClassThrowable, the
empty constructor is called instead. If the passed argument for SymbolicExecution is not null,
invokeinterface PartnerClass.__mulib__setDefaultIsSymbolic() is called.

2. A must receive a public constructor A(Object, MulibValueTransformer). This constructor is used
for transforming the original object (the first parameter) into its search region representation. The
various fields should be transformed using MulibValueTransformer. If both the original class and
the search region class are in the same module and package, protected fields can be accessed
immediately. Otherwise, reflection must be used to access the fields. Potentially, if the original
class is not visible from the search region class, reflection must be used to retrieve the class
and the fields of the class as well. The transformation constructor of the super class should
also be called. For those classes that have PartnerClassObject or PartnerClassThrowable as their
supertypes, the empty constructor should be called.

3. A must receive a public constructor A(A, MulibValueCopier). This constructor is used for copy-
ing a PartnerClass value (the first parameter) using MulibValueCopier. The copy constructor of the
super class should also be called.

4. A must receive a public method PartnerClass.copy(MulibValueCopier). This method creates a
new object and initializes it using the constructor from 3.

5. A must receive a public method PartnerClass.__mulib__getOriginalClass(). This method re-
turns the original class of the search region class. If the original class is not visible, reflection must
be used.

6. A must receive a public method PartnerClass.__mulib__blockCacheInPartnerClassFields(). This
method calls invokeinterface PartnerClass.__mulib__blockCache() for all fields with partner class-
typed elements. The method should also be called for the super class.

7. A must receive a public method PartnerClass.__mulib__initializeLazyFields(SymbolicExecution).
The method calls the respective method initializing a field with a symbolic value. For primi-
tive types the methods invokevirtual symSint() etc. should be called. For reference types,
invokevirtual symObject(...) or one of the SymbolicExecution.XYZSarray(...) methods should
be called.

8. A must receive a public method PartnerClass.__mulib__getFieldNameToSubstituted(). The
method returns a Map<String, Substituted> which is a flat map representation of the content of
this object. The result should be enriched by also adding the result of calling the super class’
implementation.

Moreover, two methods are added for each field: Assume that a transformed class A in the pack-
age "a.b.c" has a field of the form private Sint A.xyz. The following methods must be generated:

1 private Sint get__mulib__xyz () {

2 if (__mulib__isToBeLazilyInitialized ()) {

3 SymbolicExecution.get().initializeLazyFields(this);

4 }
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5 __mulib__nullCheck ();

6 if (__mulib__cacheIsBlocked ()) {

7 return SymbolicExecution.get().getField(this , "a.b.c.A.xyz", Sint.class);

8 } else {

9 return this.xyz;

10 }

11 }

12
13 private set__mulib__xyz(Sint var) {

14 if (__mulib__isToBeLazilyInitialized ()) {

15 SymbolicExecution.get().initializeLazyFields(this);

16 }

17 __mulib__nullCheck ();

18 if (__mulib__cacheIsBlocked ()) {

19 SymbolicExecution.get().putField(this , "a.b.c.A.xyz", var);

20 } else {

21 this.xyz = var;

22 }

23 }

The purpose of this method is to check whether we need to lazily initialize the values of an object
(see Khurshid, Păsăreanu, and Visser [29] and Winkelmann, Troost, and Kuchen [55]) (lines 2–
3 and 14–16). We additionally perform a null-check (line 5 and line 17) since, in the case of
symbolic aliases, an initialized object might represent null (see Winkelmann and Kuchen [53]).
Finally, if the object is already represented in the solver, i.e., it’s fields should not be accessed
anymore directly, we either pose a respective PartnerClassObjectConstraint (see Subsubsection
4.2.2) (lines 6 and 7 and lines 18 and 19) and otherwise perform the operation directly on the field
(lines 9 and 21).

5.6 Special Considerations for Arrays

While transforming the search regions, an implementation of MulibTransformer must collect the
various array types that are encountered. The reason for this is that we for each array type a
new class should be generated that (implicitly) extends either PartnerClassArray, for arrays with a
non-array component type, or SarraySarray otherwise. In Java, arrays can have a dimensionality
of up to 255 [33]. It would be an immense overhead to create partner classes for all these arrays.
For this reason, information on this should be collected and new search region representation for
array types should be generated.

5.7 Special Considerations for Class Initializers and Static Fields

Mulib currently discards class initializers. Instead, when invoking a search region, the current
values of static fields in the original program are transformed and used for the search region. In
fact, Mulib does not use the static fields of search region classes at all. Instead, the values are
collected in a separate structure, StaticVariables. There are multiple reasons for this. First and
foremost, class initializers are only executed once, when the class is loaded [33]. If there would
be symbolic values and choice points in class initializers, the process of loading a class would
have to be undone during backtracking. This is a rather complex undertaking Java does not offer
an API for [28]. Additionally, using complex logic in class initializers is a discouraged practice. As
such, the effort does not seem worth the cost. In fact, to our knowledge, no other tool for symbolic
execution supports this feature comprehensively. Moreover, having symbolic values set in class
initializers would immediately imply leaking symbolic values outside of the search region. After all,
any method that can access a static variable, even outside of a search region, might then retrieve
a symbolic value. However, for the use-case of program verification, treating static initializers
should be considered in the future. Mulib might offer a configuration option by means of which
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class initializers are considered. To achieve this, static initializers can be renamed so that they
are not considered to be static initializers by the JVM. Consequently, they are not executed when
the class is first loaded. Instead, the moment of applying the class initializer can then be decided
upon either manually, or using marker methods introduced by the program transformation.

While beforehand class initializers have been discussed, accessing static fields in Mulib works by
means of an auxiliary structure, namely StaticVariables. The reason not to directly access static
fields in the search region is that this would be detrimental for exploring the search region using
multiple threads: Each thread might write to the static variable. Thus, executing the search region
with multiple executors would become impossible, as each execution might overwrite the symbolic
value that is assumed to be contained in a certain field. Mulib still allows to set static values to
a symbolic value within the search region. This, however, is not reflected in the original class
or by other executors. Instead, an executor-specific instance of StaticVariables is updated (see
Enumeration Items 8 and 9 in Subsubsection 5.4.2). For this, during the program transformation,
MulibTransformer must collect the potentially accessed static fields.

5.8 Differences to Mulisjvm

The program transformation replaces the compiler [17] of Mulisjvm. In contrast to the custom
compiler, at no point bytecode is generated that is not compatible to the bytecode consumed by
a standard JVM. After all, the Mulib search framework (see Section 6) is implemented entirely in
Java. The task of the program transformer is solely to inject the search framework’s functionality
into the original class, generating partner classes. The program transformer completely relies
on tooling that is delivered with a typical JDK (and third-party Java libraries). By eliminating the
need for additional tooling, Mulib can be deemed more approachable by users. Moreover, since
the program transformation in its current form is based on Java bytecode, it does not lose the
advantages offered by Mulisjvm: Still, symbolic execution is offered for all languages that compile
to Java bytecode. This also means that existing libraries can be reused. Still, it is also possible to
use alternative program transformers such as transformers based on source code. Mulib’s search
framework is orthogonal to the chosen program transformer.

The input as well as the output of the program transformation again is valid Java bytecode. Hence,
the custom SJVM also is not needed any longer and an off-the-shelf high-performance JVM such
as HotSpot can be used directly to execute the search region, proving to be more performant [52].
As an added benefit, since the current Mulib program transformation is defined on bytecode, it
also opens the door for extending several JVM languages with CLOOP. The indicator methods
might as well be used to formulate search regions in, e.g., Scala, Groovy, Clojure, or Kotlin code
where Mulib is used as a library. Due to this and the extensive DSL capabilties of, e.g., Scala,
Mulib facilitates the employment of CLOOP even outside the scope of Muli.

The program transformation can be used in an ad-hoc manner, or alike a compiler: Either, the
class files of partner classes are created during run time and then are loaded, or they can be
written to disk and are loaded using the system class loader.

The fact that Mulib maintains a separate representation for code outside of a search region and
inside of a search region intuitively caters well to the concept of just-in-time compilation [15] that
is employed within modern JVMs. In the search region, multiple bytecode instructions, such as
iadd, must account for more complex operations where it must be checked whether a symbolic
value is involved. Outside of a search region, however, the bytecode instructions perform rather
simple operations that can be compiled more efficiently than more complex operations within a
search region. Performing one just-in-time-compilation that caters to both scenarios appears to
be a rather hard task. Hence, having two separate representations means that the code can be
just-in-time compiled for each scenario in separate. Consequently, outside of a search region,
just-in-time compilation performance is not hindered by the fact that code might also be executed
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symbolically. In turn, the search region code can also be just-in-time compiled.

Another upside of using a program transformation is that it is particularly easy to create model
classes. Model classes, also sometimes referred to as a category of mock classes, must be
created if some native method is used or some calculations are infeasible when executed sym-
bolically. In this case, classes and methods are manually created that model the original behavior
in a manner so that symbolic execution can proceed. For instance, to symbolically execute an
application using a database, a model must be created mimicking the database’s behavior (see,
e.g., Winkelmann and Kuchen [54]). If the database is written in, e.g., C and native methods are
used to contact it, these native methods cannot be symbolically executed. On the other hand,
the functionality of a database might be connected with too much overhead that is not needed for
symbolic execution. For instance, for verifying assertions in a program, it does not matter whether
a database uses an index. This, in fact, might even slow down execution since more complex
constraints are formulated. During the program transformation, such classes and methods can
be replaced so that in the search region a model class is used instead. Mulib offers configu-
ration options for this (see Subsubsection 8.2.6). In the model class, Mulib’s indicator methods
can be used to spawn new symbolic values, such as new entries in a modelled database (see,
e.g., Winkelmann and Kuchen [54] where values are spawned via the interpretation of custom
bytecode instructions instead of such indicator methods). Other symbolic execution tools, such
as Symbolic PathFinder [29], also offer a model interface by means of which spawning symbolic
values is possible. The major difference is that in Mulib, this feature is not an extension, but rather
part of the core components: The program transformation transforms classes with indicator meth-
ods in any case. In Symbolic PathFinder, this feature is implemented by altering the state of an
SJVM which, in turn, is the true core component for symbolic execution. The execution core of a
symbolic execution engine can be expected to be better-maintained than extensions.
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6 Search

The the first large component of Mulib, the program transformation (see Section 5), transforms a
Java bytecode program into a new program that utilizes partner classes and search framework
methods. The other large component of Mulib thus is its search mechanism. Search in Mulib
denotes the exploration of a search tree. The search tree represents the choices encountered
in a search region while running the respective program [21]. In this section, first, the structure
of a search tree in Mulib is explained in Subsection 6.1. Thereafter, in Subsection 6.2, the steps
for preparing to execute the search region to explore the representing search tree are described.
Then, the access point by means of which the transformed method, i.e., the search region, can
use the Mulib framework is detailed (Subsection 6.3). Subsequently, it is illustrated how new
choices points are created, how symbolic values are initialized, and how calculations are per-
formed (Subsection 6.4). Subsection 6.6 then illuminates how search strategies are implemented
in Mulib. Again, this section closes with 6.7 providing a comparison of Mulisjvm and Mulib.

6.1 Search Tree

A search tree is explored while executing the search region symbolically [21]. Each time a choice
point is encountered, a node is added to the tree with the choice options being the edges to
subtrees. Each time a path solution is uncovered, a leaf node is added to the tree. In the following,
first, the structure of the search tree is described. Figure 8 shows the search tree in form of a
class diagram. It is constructed in a linked fashion: Each search tree has a root Choice with a
single ChoiceOption. Choice here is the class representing a choice point with its options. Each
intermediate node is a Choice. Each Choice has one or more ChoiceOptions. In other words: the
exploration of the search region forks at a choice and options for exploring the search tree are
uncovered in form of ChoiceOptions. Leaf nodes are either instances of PathSolution, representing
a returned or thrown (see Figure 2) result of the search region, Fails, indicating that a constraint
stack is unsatisfiable or that Mulib.fail() has been called explicitly to prune the search tree, or
ExceededBudgets, indicating that the search tree was pruned due to a budget (see Subsubsection
8.2.3). The root choice is the only node in the tree that does not have a TreeNode.pEdge, i.e., there
is no edge from a parent node to this node.

This structure of the search tree makes it particularly easy to determine the deepest shared
ancestor of two nodes12, determining an existing path between two choice options, and retrieving
the path from the root to a choice option. For this, it mostly suffices to get the TreeNode.pEdge of the
parent Choice, for which we can then invoke the same operation. For these three operations static
helper methods have been implemented in SearchTree that are used by the search framework.
These are subsequently described when needed.

6.2 Preparing an Execution

In Mulib, a search tree is explored using one or several executions. In each execution, the
java.lang.invoke.MethodHandle representing the search region is invoked anew. This is differ-
ent from the previous Muli implementation in which detailed trails for backtracking the program
to the state of a specific choice point are maintained [21]. Before the search region is invoked
for such an execution, some preparatory steps must be performed. First, the transformed argu-
ments to the search region must be copied (recall Figure 3). The reason for this is that, while
executing the search region, input objects might be mutated. While, in the future, as remarked in
work on Mulisjvm [16], a more elaborate copy-on-write-approach might be implemented, runtime

12At least the single choice option of the root choice is shared.
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Figure 8: The classes making up the search tree.

measurements suggested that, for the encountered workloads, the overhead of performing deep
copies is benign.13 This is done in MulibExecutor (recall Figure 4). Additionally, an object of the
class StaticVariables is reset. This class is used by MulibExecutor to manage any static fields
that might be read from or stored within in the search region. The static fields are collected by the
instance of MulibTransformer (see Subsection 5.7). As soon as a static variable is read from in
Mulib, a deep copy is generated.

Moreover, before executing the search region, the next choice option to explore in the search
tree must be decided upon. Initially, there only is one root choice option. However, after the
search region has been executed, potentially new choices with their choice options have been
encountered. Subsection 6.4 describes how new choice options are added to the search tree and
how we navigate to a choice option during execution. In contrast, in this subsection it is explained
what the necessary steps are for evaluating whether a new initial choice option is satisfiable before
starting a new execution in Mulib.

The fundamental classes for conducting search in Mulib are depicted in Figure 9 among their most
important methods and interdependencies. MulibExecutorManager is the instance that manages
one or many MulibExecutors, i.e., search strategies. When executing MulibExecutorManager.get-

PathSolutions(), a loop is started in which MulibExecutor.getPathSolution() is invoked repeatedly
(recall Figure 4). In each iteration of this loop the MulibExecutor must decide on an initial choice
option to which the execution should navigate. This choice is dependent on the concrete search
strategy that is applied. The search strategies will be discussed in more detail in Subsection 6.6.
For now, it is assumed that the search strategy has determined a choice option to navigate to.

13Typically, for inputs with a larger ”size” the complexity of constraints on these inputs far outweighs the cost of any deep
copy.
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Figure 9: The fundamental classes for starting a new execution of the search region in Mulib.

Mulib is efficient in that it does not execute the search region if the constraints added for reaching
the new choice option make the overall constraint system unsatisfiable. To ensure this, it must be
checked whether or not the constraint stack for reaching the new choice option is satisfiable. If the
constraint for this choice option makes path condition, i.e., the constraint stack, represented in the
instance of SolverManager14 unsatisfiable, we should not execute the search region up until this
point and only then find out. Consequently, it should be assured that all constraints encountered
when navigating to the choice option in the search region are on the stack of the SolverManager

and that the constraint solver evaluates this constraint stack to be satisfiable. Only then the search
region should be invoked.

Mulib was designed from the start with incremental constraint solvers in mind [52]. When evaluat-
ing a constraint stack, incremental constraint solvers learn lemmas so that if the constraint stack
is extended, the performance of checking the satisfiability is vastly increased [34, 52]. Incremen-
tal constraint solvers can push scopes in which constraints are added onto a stack of scopes.
They then can pop a scope and thus remove all constraints (and lemmas) that were added for
it. Another way to think about scopes in incremental constraint solvers is that we can create a
backtracking point for each choice option. In other words: For each encountered ChoiceOption

we can push a scope. We can then backtrack to the SolverManager’s representation for previ-
ous ChoiceOption by popping scopes. Thus, in the following, the terminology of creating new
backtracking points is used for pushing new scopes, and backtracking when these scopes are
popped.

To ensure that executions are only started for valid choice options, we first adapt the constraint
stack represented in the SolverManager. The instance of MulibExecutor additionally remembers the
last choice option it has evaluated. A helper method of SearchTree (see Figure 8, SearchTree.get-
DeepestSharedAncestor(...)) is used to calculate the deepest shared ancestor of the new choice
option selected for evaluation and the last evaluated choice option. In other words: The Choice-

14More details on the architecture of SolverManagers in Mulib can be found in Section 7.
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Option that is the deepest in the tree and from which we can navigate via a path of strictly in-
creasing depth to both the previously evaluated choice option and the newly selected choice
option is calculated. Then, the difference in depth between the last evaluated choice option
and this common ancestor is evaluated. We backtrack the SolverManager by this difference, i.e.,
we pop this number of scopes. Thereafter, the path between the newly selected choice option
and the common ancestor is determined using another one of the helper methods in SearchTree

(SearchTree.getPathBetween(...)). For each of the choice options on the path, SolverManager.add-
ConstraintAfterNewBacktrackingPoint(...) is executed, i.e., the delta of all constraints is pushed
to the constraint solver. We then evaluate SolverManager.isSatisfiable(). If this method invoca-
tion returns true, the choice option is satisfiable. If false is returned, the choice option is marked
as unsatisfiable and is not regarded further. Note that, since each MulibExecutor has an own
instance of SolverManager, this procedure is thread-safe if the selection of the next choice option
is thread-safe. Hence, it can also be employed by multiple MulibExecutors in parallel.

If the choice option turns out to be satisfiable, MulibExecutor now creates a new instance of
SymbolicExecution passing the ChoiceOption that should be navigated to and invokes the search
region. After executing the search region and extracting a return value, the SolverManager is used
to label the solution, i.e., assign concrete primitive values to all Sprimitives, and transform the
search region representation of reference-typed values to their original representation with labeled
fields.

6.3 Symbolic Execution

A new instance of SymbolicExecution is created for each new invocation of the search region.
SymbolicExecution implements the facade design pattern [27] and is used in the transformed
partner classes to contact the Mulib framework. When creating a new execution of the search
region, the respective instance of SymbolicExecution is set in a static field. This static field is
of type java.lang.ThreadLocal. ThreadLocal is a class that allows to access thread-specific in-
stances of objects. Since each MulibExecutor is run in a separate thread the current execu-
tion’s instance of SymbolicExecution can be retrieved in a thread-safe manner by calling the static
method SymbolicExecution.get() which accesses said ThreadLocal.

By means of the managing instance of MulibExecutor the SymbolicExecution object can, e.g., add
new constraints to the SolverManager. Furthermore, SymbolicExecution delegates all noteworthy
business logic, such as the initialization of new symbolic values, the calculation of expressions
and constraints (see Subsection 4.1), and evaluation of potential and creation of new choice
points to the ValueFactory, CalculationFactory (see Subsection 6.5), and ChoicePointFactory (see
Subsection 6.4) respectively.

An instance of SymbolicExecution furthermore has the task to keep track of execution-specific
data. For some budgets that can be specified (see Subsubsection 8.2.3), it holds an Execution-

BudgetManager. Furthermore, upon its creation, SymbolicExecution extracts and stores a predeter-
mined path of ChoiceOptions (recall Figure 9). For this, all ChoiceOptions that lead to the navigated-
to ChoiceOption that was passed by the MulibExecutor are extracted via SearchTree.getPathTo(...).
Each choice option in the search tree represents a portion of the search region that was reached
after following a certain path. This portion of the search region can only be navigated to by per-
forming a unique sequence of decisions on the choice points. In most cases, this decision is
the selection of a choice option. Such a choice option represents one of the two branches of
an if-condition. To reach subsequent choice options, the if-condition must be evaluated so that
the navigated-to choice option can be reached. The role of SymbolicExecution.predeterminedPath
thus is to fix the decision on choice options to reach the navigated-to choice option. This pre-
determined path is explained in more detail in Subsection 6.4. Additionally, for each of the Java
primitive types, instances of SymbolicExecution carry a counter. The role of this counter is further
elaborated in Subsection 6.5.
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6.4 Choice Points

The procedure of Mulib for dealing with choice points has already been sketched out in previous
work [52]. In the following, more technical details for this approach are given.

During the transformation described in Section 5, if a symbolic value can potentially be part of,
e.g., an if-condition, bytecode instructions such as if lt are substituted by method calls such as
Sint.ltChoice(...). There are several such choice methods. While SymbolicExecution is used to
call the method, the call is simply forwarded to a ChoicePointFactory, such as the SymbolicChoice-

PointFactory. The behavior of this SymbolicChoicePointFactory is summarized in Algorithm 5.15

Algorithm 5: Simplified procedure for evaluating binary choice points.
1 threeCaseDistinctionTemplate(SymbolicExecution se, Constraint c) : boolean
2 if c instanceof ConcSbool then
3 return ((ConcSbool) c).isTrue();

4 ChoiceOption currentCo = se.getCurrentChoiceOption();
5 if se.transitionToNextChoiceOption() then
6 currentCo = se.getCurrentChoiceOption();
7 return currentCo.NUMBER == 0;

8 Choice newChoice = new Choice(currentCo, c, Not.newInstance(c));
9 Optional<ChoiceOption> possibleNextCo =

se.decideOnNextChoiceDuringExecution(newChoice.getChoiceOptions());
10 if possibleNextCo.isEmpty() then
11 se.notifyNewChoice(newChoice.depth, newChoice.getChoiceOptions());
12 throw Backtrack.getInstance();

13 else
14 int coNumber = possibleNextCo.get().NUMBER;
15 int otherCoNumber = coNumber == 0 ? 1 : 0;
16 ChoiceOption notTakenCo =

newChoice.getChoiceOptions().get(otherCoNumber);
17 se.notifyNewChoice(newChoice.depth, List.of(notTakenCo));
18 return coNumber == 0;

Algorithm 5 is called by each of the choice methods. The sole difference between these methods
is the value of the Constraint parameter c that is passed to it. For instance, calling ltChoice(...)

will pass an instance of Lt (recall Subsubsection 4.1.2). This algorithm distinguishes three cases.
The first case (lines 2–3) is that the constraint, in fact, is concrete, i.e., no symbolic value is
involved in it. In this case, Mulib will never create a choice point and instead will return the
respective boolean value. If ltChoice(Sint.concSint(3), Sint.concSint(4)) is called, the result
of applying Lt.newInstance(Sint.concSint(3), Sint.concSint(4)) is a ConcSbool encoding true. If
the constraint involves a symbolic value, c contains a constraint expression. The second case
(lines 4–7) is checked. The instance of SymbolicExecution contains a stack of predetermined
ChoiceOptions (recall Subsection 6.3). If this path is not empty, Mulib must still force the execution
to take decisions to reach the targeted choice option in the search tree. Thus, it is evaluated
whether we still are on the predetermined path (line 5). If there is a next choice option on the path,
this choice option is retrieved (line 6). If the number of this choice option is 0, it is assumed that the
true case of this choice point should be traversed. true is returned accordingly. If the condition
in line 5 does not evaluate to true, there is no next choice option on the predetermined path.
The third case (lines 8–18) deals with this more complex case. A new choice is created (line 8).
The first choice option (for which ChoiceOption.NUMBER is 0) of this choice contains the constraint
c as the choice option’s constraint. The second choice option contains the negation of c. The

15It is also possible to create choice points with more than two alternatives. This, however, is currently not done for
simplicity.
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current execution’s instance of SymbolicExecution is asked to check which choice option of the
new choice should be evaluated (line 9). This decision is delegated to the MulibExecutor’s search
strategy (more details on this are given in Subsection 6.6). It is important to remark that only in
this third case a new constraint can be pushed to the SolverManager, namely the constraint of the
ChoiceOption that is selected this way. It can also occur that no choice is evaluated next (lines
10–12). In this case, we throw the specialized runtime exception Backtrack (line 12). Since we do
not restore the runtime’s state by means of a trail, but rather reinvoke the search region method,
the term backtracking here is used rather loosely to define that we stop exploring a certain choice
option in the search tree. Backtrack is a singleton that does not collect any information on the
stack trace. Hence, throwing this exception is a relatively performant and simple way to terminate
the search region at any position in the code. Different to Fail, Backtrack does not mark the
choice option as unsatisfiable. Instead, both choice options are added to the choice options that
must be evaluated (line 11). This might also trigger the start of parallel MulibExecutors managed
by the same MulibExecutorManager (not depicted in the Algorithm). The parallel MulibExecutors
will start their evaluation loop (recall Figure 4) by evaluating one of the returned choice options.
Otherwise, only the choice option that is not evaluated is added to the choice options that must
be evaluated later (lines 14–17). Then, it is checked whether the number of the chosen choice
option, coNumber is equal to 0 (line 18). If this is the case, the true-branch should be evaluated.
Otherwise, the false-branch is evaluated.

Note that, since every occurrence of Throwable in the search region is substituted by an instance
of PartnerClassThrowable (recall Subsection 4.2) neither Backtrack nor Fail are ever caught in the
transformed program’s code since they are not subclasses of PartnerClassThrowable and are not
transformed. If, in a program, Throwable is caught, in the transformed program, PartnerClassThrow-
able is caught instead.

As ChoicePointFactories are shared by all MulibExecutors for this execution, they must be thread-
safe.

Mulib also comes with another implementation of ChoicePointFactory, namely the ConcolicChoice-

PointFactory. This option is explained in more detail in Subsection 8.1.

6.5 Symbolic Values and Calculations

Similar to how (potential) choice points are treated during the program transformation, if indicator
methods such as Mulib.freeInt() are used in the search region, or if calculations involve a sym-
bolic value, bytecode instructions are substituted by appropriate method calls to the Mulib search
framework.

For instance, Mulib.freeInt() is substituted by a call to SymbolicExecution.symSint(). SymbolicEx-
ecution does not implement the business logic to initialize those values but delegates this task to
a ValueFactory. The default implementation is the SymbolicValueFactory. In this factory, if, e.g.,
a SymSintLeaf should be created, we first check whether we have already created and cached a
SymSintLeaf. We do so by checking the current value of SymbolicExecution.nextNumberSymSintLeaf.
In other words: SymbolicValueFactory caches created leaves and reuses them in every execution.
Non-leaf SymSints that wrap a DAG represented by an Expression (recall Subsection 4.1) are not
cached in this implementation. The standard implementation also optionally enforces global do-
main constraints for primitive data types (see Subsubsection 8.2.5) and is thread-safe. More com-
plex objects, such as instances of PartnerClassObject too are initialized by a ValueFactory. In this
factory more tasks, such as restricting the length of Sarrays and the identifier of any PartnerClass

are taken care of. For more details on this, the reader is referred to Winkelmann and Kuchen [53].

On the other hand, if a bytecode instruction, such as iadd [33], potentially involves a symbolic
value or if an indicator method call is used, the instruction is substituted by a method call such
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as Sint.add(Sint, SymbolicExecution) where SymbolicExecution is used to delegate the call to an
instance of CalculationFactory. In the CalculationFactory, it is checked whether such operations
can proceed concretely, or whether a DAG in the form of an Expression or Constraint (see Sub-
section 4.1) should be created. In any case, the output of any method call to a CalculationFactory

typically is created by a ValueFactory. The CalculationFactory also is used for representing ob-
jects for the constraint solver. For a discussion on this, the reader again is referred to [53].

The factory pattern has been chosen to allow for an easier comparison of various caching ap-
proaches and even employing different evaluation strategies. As an example for this: Another
implementation of ValueFactory is the ConcolicValueFactory and for the CalculationFactory the
ConcolicCalculationFactory is provided, both of which are explained in Subsection 8.1. All facto-
ries again are shared among all MulibExecutors.

6.6 Search Strategies and Budgets

As aforementioned, MulibExecutors are responsible for specifying search strategies. Search
strategies are the means to decide on which of the unevaluated choice options a new execu-
tion should be started with and whether or not a symbolic execution should backtrack or continue
the execution at a choice point. The important classes for this choice option-selection mecha-
nism are depicted in Figure 10. Since MulibExecutors are also responsible for some additional
coordination tasks such as synchronizing the SolverManager with the SymbolicExecution, copy-
ing input arguments and setting up static fields (see Subsection 6.2), AbstractMulibExecutor

is an implementation of the template design pattern [27] and pre-implements these additional
tasks. Subclasses of AbstractMulibExecutor must only implement two methods. The first one,
AbstractMulibExecutor.selectNextChoiceOption(ChoiceOptionDeque), decides on which choice op-
tion should be navigated to when starting a new execution of the search region (see Subsection
6.2). The second one, AbstractMulibExecutor.shouldContinueExecution() relates to the decision
on whether the execution should proceed with one of the choice options when encountering a
new choice. In the other case, Backtrack is thrown (recall Subsection 6.4).

Mulib comes with five pre-implemented search strategies: BFS, DFS, Iterative Deepening Depth-
First Search (IDDFS), Iterative Deepening Deepest Shared Ancestor Search (IDDSAS), and
Deepest Shared Ancestor Search (DSAS). To implement a search strategy, subclasses of Mulib-
Executor can either rely on directly accessing the ChoiceOptionDeque or by navigating the search
tree using ChoiceOptions (see Subsection 6.1). If a choice was encountered, those choice options
that are not chosen to continue the execution with (lines 11 and 17 in Algorithm 5) are added to a
double-ended queue. ChoiceOptionDeque is an ordered deque that orders ChoiceOptions according
to their depth in the search tree.

BFS is implemented by overriding selectNextChoiceOption(ChoiceOptionDeque) to simply invoke
ChoiceOptionDeque.pollFirst(). In turn, shouldContinueExecution() always returns false. DFS
is implemented by invoking ChoiceOptionDeque.pollLast() and always deciding to continue the
execution. IDDFS is implemented by invoking ChoiceOptionDeque.pollFirst() and using a runtime
budget (see Subsubsection 8.2.3) to determine whether the execution should continue: Each time
a new choice is uncovered, a counter is incremented. If the counter exceeds the specified budget,
Backtrack is thrown (recall Algorithm 5, lines 10–12). In consequence, setting this budget to 1

degenerates IDDFS to BFS in terms of its search behavior.

A more complex search algorithm is IDDSAS. To start an execution with IDDSAS, we take the last
evaluated choice option into account and try to find an unevaluated choice option that shares a
deepest ancestor choice option. For this, the choice options of the search tree are traversed (see
Subsection 8). This is equivalent to the DSAS procedure described in earlier work [52]. Since nei-
ther the head nor the tail of the deque is polled directly, ChoiceOptionDeque.request(ChoiceOption)
is used to remove the choice option from the deque. If the choice option has already been re-
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1..1

1..1

1..1 1..*

MulibExecutorManager

...

+ notifyNewChoice(depth: int,
cos: List<ChoiceOption>)

...

SearchTree

...

+ getChoiceOptionDeque(): ChoiceOptionDeque
...

≪interface≫
ChoiceOptionDeque

+ pollFirst(): Optional<ChoiceOption>
+ pollLast(): Optional<ChoiceOption>
+ insert(depth: int, cos: List<ChoiceOption>)
+ request(co: ChoiceOption): boolean
+ getMinMaxDepth(): int[]
...

≪interface≫
MulibExecutor

+ notifyNewChoice(depth: int,
cos: List<ChoiceOption>)

...

AbstractMulibExecutor

# currentChoiceOption: ChoiceOption
...

+ notifyNewChoice(depth: int,
cos: List<ChoiceOption>)

# shouldContinueExecution(): boolean
# selectNextChoiceOption(

deque: ChoiceOptionDeque):
Optional<ChoiceOption>

...

Figure 10: The fundamental classes for performing search in Mulib.

moved by another executor, i.e., another executor is already evaluating this choice option, the tree
is ascended to search for another unevaluated choice option. On the other hand, for determining
whether or not we should continue with the execution of the search region, the minimum and maxi-
mum depth of the choice options in the deque is computed via ChoiceOptionDeque.getMinMaxDepth().
The aim is that, for as long as the minimal depth is not equal to the maximal depth, the current
execution should only be able to explore choice options the depth of which is limited by the max-
imal depth. Thereafter, it is allowed to increase the maximal depth of a choice option via a fixed
increment (see Subsubsection 8.2.3).

Table 3 offers an overview of the various search strategies, whether they are complete, and, based
on the insights of earlier work [52], their expected efficiency to evaluate a finite search region
when combined with an incremental constraint solver. This expected efficiency is determined
qualitatively based on different degrees to which the search strategies make use of incremental
constraint solving (see Winkelmann and Kuchen [52]). In practice, the budgets, chosen constraint
solver, structure of the search tree and types of constraints are factors that must be regarded.

The term complete here refers to the ability of guaranteeing to return a solution if one exists.
However, a noteworthy exclusion of scope are loops and recursion calls that do not terminate
without involving a symbolic value. For instance, given a loop such as while(true){...}, if the
body does not include a reachable break statement, a complete search algorithm, as it is defined
here, still is not guaranteed to find all reachable solutions.

When using a single MulibExecutor, DFS is expected to perform best (with a minimal edge over
DSAS due to constant overhead). DSAS is preferable if multiple MulibExecutors are employed in
parallel [52]. If a complete search strategy is desirable, IDDSAS should be preferred over BFS and
IDDFS. However, it should be noted that there are solver implementations that often can mitigate
the loss of incremental performance due to non-locally chosen choice options (see Subsubsection
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Name Complete
Expected efficiency
w.r.t. incremental
constraint solvers

Expected efficiency-loss
w.r.t. incremental constraint
solvers in a parallel setting

DFS No +++ −−
DSAS No +++ 0
IDDSAS Yes ++ 0
IDDFS Yes + 0
BFS Yes 0/+ 0

Table 3: The completeness of the search strategies, as well as the expected efficiency (loss).

7.2.2). The interested reader is referred to earlier work [52] for a discussion of non-locally chosen
choice options and their effect on performance. Also, it should be remarked that in the cases
of both IDDFS and IDDSAS, their performance with incremental constraint solvers is dependent
on the budget determining the size of increment. In fact, if choosing a large enough incremental
budget for IDDSAS, it degenerates to DSAS.

6.7 Differences to Mulisjvm

The search tree representations of Mulisjvm and Mulib differ only in details. The most noteworthy
differences are the inclusion of an ExceededBudget node since Mulib can define several budgets
(see Subsection 8.2) and the addition of a deque, simplifying the retrieval of unevaluated choice
options using multiple search strategies in parallel.

Mulib’s approach to use various factories, namely ChoicePointFactory, ValueFactory, and Calcula-

tionFactory facilitates the experimentation with different settings and caching and even allowed
the implementation of concolic execution in Mulib.

The approaches to search of Mulisjvm and Mulib are fundamentally different. Mulisjvm utilizes
forward- and backward-trails for resetting the program state to the state when first encountering
a choice point. If a search algorithm determines that a certain choice option should be evalu-
ated next, Mulisjvm navigates the search tree like Mulib. Yet, during this navigation, forward- and
backward-trails are applied to restore the state of the program to the state when originally finding
the navigated-to choice option. In consequence, the search tree of the old Muli implementation
contains several trail elements for, e.g., reverting the mutation of an object’s field, changing the
frame because a new method was invoked, and changing the program counter of the logic vir-
tual machine [21]. In summary, search in Mulisjvm is rather fine-grained and low-level, requiring
knowledge on technical details of a JVM. Additionally, since Mulisjvm is implemented in Java,
there is considerable overhead for applying the trails. For each (inverse) application of a trail el-
ement, several Java bytecode instructions are executed. Moreover, it is hard to adapt Mulisjvm
to account for symbolic execution of the same search region using multiple threads: The trail
elements are changing the state of the virtual machine. For instance, when changing a frame
vm.setCurrentFrame(...) is called, changing the frame the SJVM should execute next [1]. This is
hard to combine with a parallel evaluation of the search space. As another example, trail elements
for setting static variables would change the static variable for all parallel executors.

In contrast, the search algorithms of Mulib are defined on a higher level of abstraction. The
search tree is navigated, yet, instead of applying trails, the search region is executed from the
start each time with a predetermined sequence of choice options to follow. Beforehand, Mulib
copies input arguments and, during the runtime, static variables. The first advantage is that
Mulib does not have a nested JVM and can use a high-performance JVM. Judging by previous



■

55

experiments [52], repeating the same calculations redundantly has lower overhead than applying
a fine-grained trail in many scenarios. The most relevant part from a perspective of performance,
the incremental constraint solvers, still can be used accounting for backtracking. Moreover, Mulib’s
approach of solely storing a predetermined path of search options through the search tree is more
memory efficient to the point where the performance of Mulisjvm can degrade over time or an
OutOfMemoryError is thrown, while Mulib produces consistent run time measurements [52]. The
higher level of abstraction also allows for rather concise implementations of search strategies:
The search strategy-specific implementation of all five search strategies takes less than 100 lines
of code in total.16

Finally, Mulib allows to specify various search strategies for which MulibExecutors are generated
that disjointly evaluate the search region in parallel. This includes the addition of two search
strategies that perform well with incremental constraint solvers even if there are multiple compet-
ing executors [52].

Importantly, while Mulib currently does not implement more involved procedures for copying in-
put arguments and static variables, such as copy-on-write data structures [20], this option is not
excluded in the future. The fact that little thought has been given to this aspect of execution is
mainly due to its, for the used set of benchmark examples, negligible effect on overall perfor-
mance. Similarly, in the future, Mulib might implement a program transformation for not executing
the search region from the start for every execution. Adaptations of the continuation-passing style,
known from functional programming [2], might be a noteworthy idea, where continuations could
be stored in the form of lambdas in ChoiceOption objects. However, due to the more complicated
runtime environment and the small expected performance gain (if any) for the current set of ex-
amples for Mulib, such a setting should be optional. After all, most complexity stems from solver
calls to evaluate the satisfiability of a constraint stack or for creating a model for labeling.

16They are implemented in the class de.wwu.mulib.search.executors.GenericExecutor and
de.wwu.mulib.search.executors.GlobalIddfsSynchronizer. The modification of using a control-flow
graph to dedicatedly search for choice options representing uncovered edges in the control-flow graph is not counted.
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7 Solving

It is a well-known fact that for most programs, symbolic execution will spent most time on per-
forming solver-calls and creating models from the solver for labeling symbolic values [11]. In
consequence, it is desirable to make it easy for developers to add new solvers to the symbolic
execution engine, thus allowing to compare results, and make solver calls as efficient as possible.
In Mulib, new solvers can be added by means of an adapter. Said adapter should implement the
SolverManager interface. In the following, first, the existing architecture of Mulib’s adapted solvers
is explained. Thereafter, the offered solvers are outlined in their characteristics. The abstract
strategy for calculating multiple Solutions, opposed to PathSolutions (recall Subsection 3.3) is
explained in Subsection 7.3. Finally, again, the differences between Mulisjvm and Mulib are dis-
cussed in Subsection 7.4.

7.1 Architecture

Similar to AbstractMulibExecutor (see Subsection 6.6), Mulib’s AbstractIncrementalEnabledSolver-

Manager implements the SolverManager interface and provides a template. Instead of implement-
ing all methods of SolverManager, smaller methods with an easier-to-grasp scope must be imple-
mented. Figure 11 depicts the main interface methods that are overridden by AbstractIncremental-

EnabledSolverManager, as well the methods required to be implemented by the latter.

AbstractIncrementalEnabledSolverManager uses three template parameters to unify the functional-
ity of various implementing subclasses: First, the parameter B represents the solver’s specific way
of representing constraints. For instance, in Z3, this is BoolExpr. Adding constraints to the con-
straint stack is performed by first transforming Mulib’s representation of constraints, Constraint,
into the format of the solver using transformConstraint(...). Thereafter, this format is pushed
onto the solver using addSolverConstraintRepresentation(...). If the constraint is added due
to reaching a choice option, before adding the constraint, solverSpecificBacktrackingPoint() is
called. M is the parameter representing a model. A model is what is used to derive labels. To
calculate a model, the constraint stack must be satisfiable, and thus, calculateIsSatisfiable() is
called beforehand. The parameter AR represents the solver’s specific representation of arrays, if
there is any.

In summary, AbstractIncrementalEnabledSolverManager coordinates the functionality of the ab-
stract methods in a manner so that:

1. The results of satisfiability calculations and calculated models are cached for as long as they
are valid, i.e., for as long as no new constraint is added or a backtracking operation has been
conducted.

2. The structure used to represent arrays is updated if necessary. Since, e.g., Z3’s representation
of arrays is immutable, the routines in AbstractIncrementalEnabledSolverManager make sure that
to store a new value in the array’s representation, a new array can be created which is used sub-
sequently. The new array is equal to the old array in all positions except for the position in which a
new value is stored [51]. This is done by overriding createNewArrayRepresentationForStore(...).

3. The labeling-procedure is implemented on a high level of abstraction so that only the method
labelSymSprimitive(...) must be overridden. The labeling-process takes symbolic aliasing, where
multiple symbolic objects might represent the same concrete object [53], and remembered values
[45] into account.

4. The procedure for retrieving multiple solutions from an initial solution is implemented on a high
level of abstraction. More details are given in Subsection 7.3. Adapted solvers offering more
efficient methods can override this method.
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≪interface≫
SolverManager

+ addConstraint(c: Constraint)
+ addConstraintAfterNewBacktrackingPoint(c: Constraint)
+ addPartnerClassObjectConstraint(pcoc: PartnerClassObjectConstraint)
+ addPartnerClassObjectConstraints(pcocs: List<PartnerClassObjectConstraint>)
+ isSatisfiable(): boolean
+ backtrack(number: int)
+ labelSolution(...): Solution
+ getUpToNSolutions(initialSolution: Solution, N: AtomicInteger): List<Solution>
...

AbstractIncrementalEnabledSolverManager

# transformConstraint(c: Constraint): B
# addSolverConstraintRepresentation(constraint: B)
# solverSpecificBacktrackingPoint()
# solverSpecificBacktrack(number: int)
# calculateIsSatisfiable(): boolean
# labelSymSprimitive(s: SymSprimitive): Object
# calculateCurrentModel(): M
# createCompletelyNewArrayRepresentation(aic: ArrayInitializationConstraint): AR
# createNewArrayRepresentationForStore(ac: ArrayAccessConstraint, oldRepresentation: AR): AR
...

B, AR, M

JavaSMTSolverManager

BooleanFormula, ArrayFormula, Model

AbstractZ3SolverManager

BoolExpr, ArrayExpr, Model

Z3IncrementalSolverManager

Z3GlobalLearningSolverManager

...

# addSolverConstraint-
Representation(b: BoolExpr)

# calculateIsSatisfiable(): boolean
# solverSpecificBacktrackingPoint()
# solverSpecificBacktrack(number: int)
...

Figure 11: Simplified view on the fundamental classes for integrating new solvers into Mulib.

7.2 Offered Solvers

Mostly, during its development, Mulib has been used in combination with SMT solvers [5]. Most
prominently, Z3 [24] has been used. Due to this reason, Mulib implements a dedicated Z3 adapter
with two separate approaches. JavaSMT [3] is a separate adapter library that can be used to adapt
several solvers using one common interface and that, in turn, is used by Mulib in an adapter.

7.2.1 Z3IncrementalSolverManager

The Z3IncrementalSolverManager is the standard solver manager for Mulib. In it, each backtracking
point is represented by a scope. Due to these scopes, learning of lemmas for efficient solving is
incremental [34]. In consequence, those search strategies that do not explore paths with a (large)
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shared prefix of choice options only gain a small performance improvement from this learning.
Examples for this are BFS and IDDFS, especially if the incremental budget is set to a low value.
Both search strategies poll the choice options that are the highest in the search tree. Thus, the
prefix of shared choice options is expected to be very small when compared to the last evaluated
choice option of the previous execution. DFS performs well if no parallel execution is utilized,
since otherwise, the different executors can ”steal” the choice options local to another executor
(see Winkelmann and Kuchen [52] for more details). DSAS and IDDSAS choose their choice
options from their respective neighborhood. The performance of IDDSAS is expected to improve
if a larger incremental budget is used.

7.2.2 Z3GlobalLearningSolverManager

As aforementioned, some search strategies, such as BFS and IDDFS do not always benefit from
incremental solving. However, in some instances, their particular procedure of search might
be beneficial. For this reason, the Z3GlobalLearningSolverManager has been included. It imple-
ments a variant of a technique that is used to make learning possible without any local scopes
[7]. This, however, is associated with an increased use of memory and some overhead. The
Z3GlobalLearningSolverManager does not use local scopes. In consequence, solverSpecificBack-
trackingPoint is a no-op. Instead, for each added constraint ci, an additional BoolExpr ai is con-
structed and a new constraint ai → ci is added. The antecedents ai are maintained on a stack
separate from the constraint solver and are added alike scopes/backtracking points, for each new
choice option. If the satisfiability is to be calculated, the current stack of ai is enforced to be true.
In consequence, the solver has one single global scope and still can account for backtracking op-
erations. All constraints ai → ci can be pushed on a single global scope of Z3. Those constraints
will not be discarded and thus, learning of lemmas can occur in this global scope. For search
algorithms that make good use of incremental solving, the incremental variant of Z3 usually still
is more performant, as there is no overhead for propagating the antecedents for the implications.
Furthermore, the incremental solver is more memory efficient, as there is no need to preserve all
added constraints and the incremental scopes can be garbage collected.

7.2.3 JavaSMTSolverManager

Mulib additionally uses the external adapter library JavaSMT [3]. JavaSMT is an open source
project for adapting, at the time of writing, nine SMT solvers, among which are:

1. Boolector [8],

2. CVC4 [6],

3. CVC5 [4],

4. MathSAT5 [13],

5. OptiMathSAT [40] (an extension of MathSAT5 for optimization),

6. Princess [39],

7. SMTInterpol [12],

8. Yices2 [25],

9. and Z3 [24].
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With the implementation of JavaSMTSolverManager all solvers can be used with a simple change in
Mulib’s configuration (see Subsubsection 8.2.1). Particularly SMTInterpol is noteworthy as it is,
like Mulib, written in Java and relatively performant. It should be noted that all SMT solvers have
varying capabilities and strengths.

7.3 Retrieving Multiple Solutions From a Single Path

AbstractIncrementalEnabledSolverManager implements an approach to retrieve multiple solutions
from a single path. This algorithm is called if the user, e.g., explores the search region using either
getUpToNSolutions(...), getSolutionStream(...), or getSolutionIterator(...) (recall Subsection
3.6). Such a wrapper method is needed to extract additional solutions from a single path since
SMT solvers typically do not implement a dedicated way to retrieve all solutions that are satisfiable
for a set of constraints.17 Note that the implemented way of AbstractIncrementalEnabledSolverMan-
ager can be overridden if the adapted solver offers a more efficient approach for enumerating solu-
tions. Algorithm 6 depicts the standard implementation of SolverManager.getUpToNSolutions(...).

The method is seeded with the Solution of a PathSolution (see Subsection 3.3) carrying the
symbolic values and their labels (line 1). It is desired to retrieve alternative labels for the path
represented by the PathSolution. It is important to note that the term ’labels’ here strictly refers to
labels of the return value and labels of remembered values. If the search region is called to return
a Stream or Iterator of Solution objects (recall Subsection 3.3), the algorithm must account for be-
ing recalled for the same path. To achieve this, some local state in the AbstractIncrementalEnabled-

SolverManager is utilized that is explained at the end of this subsection. For now it is assumed that
Algorithm 6 is called exactly once and this.latestSolution is null (line 2).

In a first step, the initial solution is stored in the field this.latestSolution (line 3). All MulibExecutors
and their respective SolverManagers are tasked with retrieving N solutions in total and so a shared
instance of AtomicInteger is used to evaluate how many more solutions must be generated (lines
5 and 6). Next, the labels of the solution object are regarded (line 7). For each of the labels, we
generate a not-equals-constraints (line 7). If, for instance, the label of a free int i is 42, the con-
straint i ̸= 42 is generated. For arrays, both symbolic indices and symbolic elements are regarded.
For non-array objects, the value of each field is regarded. Symbolic aliasing is treated by generat-
ing a not-equals-constraint for the identifier, retrieved via PartnerClass.__mulib__getId(), and the
identifier’s current label (see Winkelmann and Kuchen [53]). This list of not-equals-constraints is
then disjoined (line 8) and added as a new constraint (line 9). If the new constraint stack is satis-
fiable, this means that there is another labeling that satisfies the constraint stack before invoking
getUpToNSolutions(...). Thus, in this case, we label a new solution, add it, decrement N, and
regard this new solution in the next iteration (lines 10–14). Therefore, in the next iteration, not-
equals-constraints for this new solution are created and added to the constraint stack. If the new
constraint stack was not found to be satisfiable the loop breaks and the field this.latestSolution

is set to null (lines 15–17). Finally, the list of additional solutions for the existing path solution is
returned (line 18).

17Traditionally, SMT solvers rather are concerned with whether a constraint stack is satisfiable at all and retrieving
counter examples or examples [23].
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Algorithm 6: Simplified procedure for retrieving multiple solutions from a single path.
1 getUpToNSolutions(Solution initialSolution, AtomicInteger N): List<Solution>
2 if this.latestSolution == null then
3 this.latestSolution = initialSolution;

4 List<Solution> result = new ArrayList<>();
5 int currentN = N .decrementAndGet();
6 while currentN > 0 do
7 List<Constraint> neqConstraints = getNeqConstraints(this.latestSolution.labels);
8 Constraint disjunction = Or.newInstance(neqConstraints);
9 addConstraint(disjunction);

10 if isSatisfiable() then
11 Solution newSolution = labelSolution(...);
12 result.add(newSolution);
13 currentN = N .decrementAndGet();
14 this.latestSolution = newSolution;

15 else
16 this.latestSolution = null;
17 break;

18 return result;

To allow for the on-demand retrieval of additional Solutions, the AbstractIncrementalEnabeledSol-

verManager maintains the latest solution retrieved via aforementioned algorithm. Consider the
case where the user is not content with the initial solution and requests an additional solution. In
this case, Algorithm 6 is called for the first time with N set to 1. This case might occur if the user
employs the SolutionIterator (recall Subsection 3.3) and calls Iterator.next() a second time.18

In this case, the algorithm behaves as described before. Now, consider the case where Algorithm
6 is called for a second time for the same path. In this case, the field this.latestSolution is not
overwritten and does not match the parameter initialSolution (lines 2 and 3). Thus, the latest
solution from a previous invocation of Algorithm 6 is regarded instead and not-equals-constraints
are created for it, instead of the initial solution (lines 7–9). Finally, if there are no more solutions
on the path (lines 17–19), the solver manager resets the this.latestSolution field and awaits to
be fed another initial Solution from another PathSolution.

7.4 Differences to Mulisjvm

Due to the integration of JavaSMT and aforementioned implementation of Z3 that can speed up
solving even for BFS and IDDFS, Mulib implements several more constraint solvers than Mulisjvm.
Mulisjvm implemented support for JaCoP [30] and an incremental version of Z3. Mulib facilitates
the addition of new constraint solvers by making use of the template design pattern: Subclasses
of AbstractIncrementalEnabledSolverManager solely have to implement a small set of methods to
assure compliance with Mulib. Mulib furthermore extends the mentioned functionalities by provid-
ing support for a custom approach for dealing with symbolic arrays and objects (see Winkelmann
and Kuchen [53]). While in Mulisjvm only Z3’s custom array theory is supported for primitive-typed
values, Mulib additionally allows to use an oftentimes more performant approach for dealing with
array constraints that can also make use of symbolic aliasing to represent arrays of reference-
typed elements [53].

However, currently Mulib does not implement support for free objects with a free type [22]. A
discussion of this is provided in Subsection 9.3.

18Retrieving the first Solution does not require a call to Algorithm 6. Instead, the initial solution from the
PathSolution is used.
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8 Further Notes

Mulib can be configured extensively and even the type of execution can be adapted. In the
following, first Mulib’s concolic execution approach is described. Thereafter, several important
configuration settings are explained.

8.1 Concolic Execution

Mulib offers both a purely symbolic execution, where the input values are unknown for the entire
execution until finally labeling the values when extracting a PathSolution, and a concolic execution
mode. In concolic execution both a concrete and a symbolic value state are carried through the
program where the concrete value state is one possible labeling of the symbolic value state [11].
This can be beneficial because when encountering a new choice point, e.g., if (i >= 42) {...}.
The concrete value state can be used to determine a choice option that must be satisfiable without
needing to check the constraint solver. If the concrete value state for variable i states that i can
be labeled to 1337, it is known that the constraint i >= 42 must be satisfiable without having to
contact the constraint solver. In consequence, this path can be taken.

To implement this, the Mulib framework type system (see Figure 6) was extended by two further
types that are depicted in Figure 12.

≪interface≫
Constraint

≪interface≫
Expression

ConcolicConstraintContainer

...

+ getSym(): SymSbool
+ getConc(): ConcSbool

ConcolicMathematicalContainer

...

+ getSym(): SymSnumber
+ getConc(): ConcSnumber

Figure 12: The two types that carry both the symbolic and the concrete value states.

If any new symbolic leaf value is created, immediately, the SolverManager is asked to label it. Both
the symbolic value as well as its label then are wrapped in an instance of ConcolicConstraintCon-
tainer, if a SymSbool is created, or ConcolicMathematicalContainer, if any SymSnumber is created.
The respective container is then in turn wrapped in an instance of SymSbool or a SymSnumber. This
behavior is implemented using the ConcolicValueFactory. In turn, the ConcolicCalculationFactory

performs executions both on the symbolic, as well as on the concrete representation. If two sym-
bolic numbers are added, a Sum object is created for the symbolic values (retrieved via getSym())
while the labels (retrieved via getConc()) are added concretely. Finally, the ConcolicChoicePointFac-

tory extends Algorithm 5 by pre-selecting the choice option that is already satisfied by the con-
crete labels. In consequence, when a new choice option is discovered, the constraint solver does
not need to be called immediately since it is known that one of the choice options is satisfiable.

8.2 Configurability

Each execution of a search region, e.g. triggered via Mulib.getPathSolutions(...), can be config-
ured using a MulibConfigBuilder (see Section 3). In the following, the most important configuration
settings are outlined.
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8.2.1 Solver Configuration

1. SOLVER_GLOBAL_TYPE: Determines the solver manager an instance of which is used for each of
the MulibExecutors.

2. SOLVER_HIGH_LEVEL_SYMBOLIC_OBJECT_APPROACH: Determines whether a solver-independent way
of treating array constraints and symbolic aliasing should be used. This can be more efficient than
built-in array theories. More details are given in Winkelmann and Kuchen [53].

8.2.2 Search Configuration

1. SEARCH_MAIN_STRATEGY: Determines the search strategy used by the MulibExecutor of the main
thread.

2. SEARCH_ADDITIONAL_PARALLEL_STRATEGIES: Determines the number of other MulibExecutors that
should be started. For each search strategy an own thread is spawned.

3. SEARCH_CHOICE_OPTION_DEQUE_TYPE: Determines the implementation for the choice option deque
(see Subsection 6.6) that is used. There are two implementations: One, where a linked list is
used. This is useful for single-threaded BFS and DFS. The other implementation offers a deque
based on random-access so that also intermediate choice options, i.e., choice options that are
not at the head or tail of the deque, can be retrieved more quickly.

4. SEARCH_CONCOLIC: Determines whether a pure symbolic or a concolic execution should be per-
formed. Setting this to true will instantiate a concolic execution.

5. SEARCH_ALLOW_EXCEPTIONS: Determines whether, if an exception is found, the execution should
be terminated or not. For instance, if the purpose of the symbolic execution is to find violated
assertions, it can be sufficient to immediately indicate a failure and abort the execution.

8.2.3 Budgets Configuration

1. BUDGET_FIXED_ACTUAL_CP: Determines the maximum depth of the search tree. Choice options
with a higher depth are not considered.

2. BUDGET_INCR_ACTUAL_CP: Determines the incremental budget used by IDDFS and IDDSAS (see
Subsection 6.6).

3. BUDGET_GLOBAL_TIME_IN_NANOSECONDS: Determines after how much time the MulibExecutors should
be stopped.

4. BUDGET_MAX_FAILS: Determines how many fails, thrown by Mulib.fail(), can at most be thrown
before stopping the MulibExecutors.

5. BUDGET_MAX_PATH_SOLUTIONS: Determines how many path solutions can at most be extracted
before stopping the MulibExecutors.

6. BUDGET_MAX_EXCEEDED_BUDGET: Determines how many choice points can at most be pruned away
due to exceeding the maximum depth of the search tree (see 1) before stopping the MulibExecutors.
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8.2.4 Array Behavior Configuration

1. ARRAYS_USE_EAGER_INDEXES_FOR_FREE_ARRAY_OBJECT_ELEMENTS: Determines whether, when access-
ing a free array of reference-typed values, a sequence of choice points should be constructed so
that the index is immediately bound to one specific int value. If this is not true, the index remains
symbolic and a symbolic object is returned.

2. ARRAYS_THROW_EXCEPTION_ON_OOB: Determines whether, for an access to an array where the
length of the array or the index is symbolic, a choice point should be created. If the index can
be larger than the length or less than zero, an ArrayIndexOutOfBoundsException is thrown. If this
option is not set to true, no choice option is created and a new constraint is pushed to the con-
straint solver, assuming that the index is in a valid range.

8.2.5 Value Domain Configuration

1. VALS_SYMSINT_LB: Can be set to determine a lower bound for all SymSint values. This can be
overridden by using Mulib.freeInt(int, int).

2. VALS_SYMSINT_UB: Can be set to determine an upper bound for all SymSint values. This can be
overridden by using Mulib.freeInt(int, int).

3. Analogously, for each type of primitive number, there is a setting for a lower and upper bound.

4. VALS_TREAT_BOOLEANS_AS_INTS: Even though Java code does not allow the addition of booleans
and ints, this is possible on the bytecode level. However, it is more efficient to treat booleans as
atomic constraints, rather than as proxy expressions alike b == 1. Thus, this setting is false by
default. If set to true, booleans are treated as numbers.

8.2.6 Transformation Configuration

1. TRANSF_IGNORE_CLASSES and TRANSF_IGNORE_FROM_PACKAGES: Determines which classes to ignore
during the program transformation. Either concrete classes or a whole package can be given.
These classes will not receive a partner class. This setting should be used with extreme care
to not break up class hierarchies. It is useful for integrating Mulib with other tools following the
program instrumentation/transformation approach, such as Dacite [46].

2. TRANSF_REPLACE_METHOD_WITH_OTHER_METHOD: Users of Mulib can add a map of method-pairs.
The first method should be replaced by the second method. In consequence, during the program
transformation, if the first method is called, instead, the second method is called. This is useful
for substituting native methods.

3. TRANSF_REPLACE_TO_BE_TRANSFORMED_CLASS_WITH_SPECIFIED_CLASS: Users of Mulib can add a map
of class-pairs. The first class should be replaced by the second class. In consequence, during the
program transformation, if the first class should be used, instead, the second class is used. This
is useful for substituting native methods and providing model classes. For instance, a database
driver might be modeled via a Java class so that the database becomes part of the symbolic
execution (see, e.g., Winkelmann and Kuchen [54]).

4. TRANSF_GENERATE_CHOICE_POINTS_WITH_ID: Determines whether choice point methods, substi-
tuting conditional jumps (see Enumeration Items 27 and 26 in Subsubsection 5.4.2) should be
called with an additional constant long value. For instance, if Sint.eqChoice(SymbolicExecution) is
called, if this setting is activated, Sint.eqChoice(SymbolicExecution, long) is called instead. The
argument to the long parameter is a constant value that uniquely identifies this choice point in the
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control-flow graph. If this setting is activated, all if-instructions are tainted so that an identifier for
all branches of the control-flow graph can be generated.

5. CFG_USE_GUIDANCE_DURING_EXECUTION: When evaluating a choice, it is checked whether both
options of this choice, representing edges in the control-flow graph, have already been covered.
If one has not been covered, it is evaluated next. For this setting to work, configuration option
TRANSF_GENERATE_CHOICE_POINTS_WITH_ID must be set to true. This is because the identifier of this
choice point is used to identify the node in the control-flow graph.

6. CFG_TERMINATE_EARLY_ON_FULL_COVERAGE: Determines whether, if all edges of the control-flow
graph have been covered, search should terminate. For this setting to work, configuration option
TRANSF_GENERATE_CHOICE_POINTS_WITH_ID must be set to true. This is because the identifier of this
choice point is used to identify the node in the control-flow graph.
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9 Future Work

Since Java is a rather feature-rich language, integrating some features with Muli are an ongoing
effort; - Mulib in its current state can still be enhanced. Three particularly interesting features are
summarized in the following.

9.1 Free Enums

Since Mulib currently builds upon bytecode as the chosen representation, aside from native meth-
ods, additional effort has to be applied only for those types that are treated as special cases by
the JVM [33]. Consequently, the pool of classes that needs to be modelled specifically is rather
small. However, similar to java.lang.Throwable, there is another class that serves as an abstract
supertype of other Java classes and that is treated as a special case. java.lang.Enum represents
a class with a fixed number of instances [33, 28]. To treat it, a class PartnerClassEnum could be
introduced (see Figure 6) which is enriched by the (transformed) fields of Enum. Initializing a vari-
able of an enum E via Mulib.freeObject(E.class) must then initialize a symbolic alias of one of
the instances defined in E.

9.2 Free Strings

At the moment of writing, Mulib does not support treating Strings as symbolic values. Strings are
rather complex data types deserving custom treatment. Respective constraints are supported by
several SMT constraint solvers [5] and do not solely treat the equality of Strings, but also whether
a symbolic string contains a substring or even matches a regular expression [56].

Integrating free strings into Mulib implies creating a new subtype of constraints, namely StringCon-

straints for which the various subtypes, such as a constraint for regular expressions, should be
created. It also implies creating a new library class Sstring, extending PartnerClassObject and
providing the methods of java.lang.String. The static methods of java.util.regex.Pattern and
java.util.regex.Matcher also should be regarded.

9.3 Free Objects

Mulib currently does not implement support for free objects [22]. The reason for this is that the
new implementation should also offer an option to delegate the differentiation of which type the
object has to the constraint solver. As an example: In Mulisjvm, if an object o has a free type T ,
and some method o.m() is called, for which subtypes of T have other implementations, Mulisjvm
would create a new choice. The number of choice options would be the number of these imple-
mentations provided by at least one non-abstract class [22].

Yet, in the work on enabling the support for free arrays of reference-typed elements, a clever
delegation to the constraint solver was found to be vastly more efficient in many cases [53]. For
instance, consider the following method:

A getA(A[] as, int i) {

return as[i];

}
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Consider the scenario where getA(...) is called with an array as with a high length and a symbolic
index i. In this scenario, Mulib does not need to spawn different values for i and execute the
program with each one. Instead, a symbolic alias is spawned that refers to any object in as [53].
Determining which object is referred to is delegated to the constraint solver.

An analogous delegation cannot occur with Mulisjvm’s approach for free objects: In Mulisjvm’s im-
plementation, constraints involving the type of a object are treated completely in separation from
the main constraint solver. Instead of representing the object type as a value in the constraint
solver, Mulisjvm uses a separate structure [41] to compute the allowed types via set operations.
This is problematic when trying to account for symbolic aliasing: Rather than delegating the dis-
tinction to the constraint solver, it is required that a number of choice options is spawned to
account for typing. These choice options could be represented in a constraint instead. In the
future, Mulib should strive to integrate constraints involving types of free objects into a solver.
Note that this implies including constraints that are created while invoking a method on an object
with a free type. Instead of spawning a choice option for each possible implementation invoked
by this object [22], the method invocations should be summarized without creating a choice point.
This is a rather non-trivial problem. Furthermore, the efficiency of this summarization is context
dependent. Hence, a future implementation should offer a configuration option activating and de-
activating this behavior.
The second issue with free objects is that using Mulib’s indicator methods do not allow for speci-
fying type variables. Type variables, among class types, interface types and array types, make up
the four kinds of reference types in Java [28]. In contrast, the JVM specification only defines three
reference types [33]. Given a type variable T, it is not valid to access T.class. This is because the
Java compiler applies type erasure, where the left-most bound is utilized instead [28]. A left-most
bound of a type variable T which was restricted via <T extends U & V & ...> is U. Since U does
not capture all type information of T in general, T.class is not allowed. For a statement such as
T t free; Mulisjvm assumes that the left-most bound should be initialized as a free value, i.e.,
U t free; is assumed. The fact that the intersection with, e.g., V is required is not accounted
for. Earlier work on Muli thus left type variables to future work [22]. The most forward approach
to treat the semantics of type intersections in Mulib is to split the initialization into a two-step
procedure: Aforementioned free object declaration T t free; could be mapped to a sequence
of T t = Mulib.freeObject(U.class); followed by Mulib.assume(t instanceof V && t instanceof

...);. A transpiler, as mentioned in Subsection 3.1 could automatically generate the two steps
for a free declaration involving type variables.

9.4 Folding Instructions Initializing Potentially Symbolic Booleans

The example from Subsubsection 4.1.2 demonstrated how and (&&) and or (||) operations can be
calculated in Java:

boolean and(boolean b0 , boolean

b1) {

return b0 && b1;

}

boolean or(boolean b0 , boolean

b1) {

return b0 || b1;

}

Instead of implementing specific bytecode instruction for such operations, Java instead compiles
to and executes conditional jumps pushing either 0 (representing false) or 1 (representing true)
onto the stack:
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1 L0

2 ILOAD 0

3 IFEQ L1

4 ILOAD 1

5 IFEQ L1

6 ICONST_1

7 GOTO L2

8 L1

9 ICONST_0

10 L2

11 IRETURN

1 L0

2 ILOAD 0

3 IFNE L1

4 ILOAD 1

5 IFEQ L2

6 L1

7 ICONST_1

8 GOTO L3

9 L2

10 ICONST_0

11 L3

12 IRETURN

This is inefficient for symbolic execution since for each jump involving a symbolic Sbool, a new
choice point is created. In the given example, it is not even necessary to perform a single jump; -
instead, a single symbolic expression might be created. This becomes clear when regarding the
(decompiled) transformed program that, applying the transformation described in Section 5, looks
along the lines of:

1 Sbool and(Sbool b0 , Sbool b1) {

2 SymbolicExecution se =

3 SymbolicExecution.get();

4 Sbool r;

5 if(b0.negatedBoolChoice(se)

6 || b1.negatedBoolChoice(se)){

7 r = Sbool.concSbool(false);

8 } else {

9 r = Sbool.concSbool(true);

10 }

11 return r;

12 }

1 Sbool or(Sbool b0 , Sbool b1) {

2 SymbolicExecution se =

3 SymbolicExecution.get();

4 Sbool r;

5 if(b0.boolChoice(se)

6 && b1.boolChoice(se)){

7 r = Sbool.concSbool(true);

8 } else {

9 r = Sbool.concSbool(false);

10 }

11 return r;

12 }

In this transformed code the jumps (lines 4 and 5 respectively) are directly used to create a
wrapper for the pushed 0, i.e., false or 1, i.e., true.

A better program transformation might create the following (decompiled) code:

1 Sbool and(Sbool b0 , Sbool b1) {

2 SymbolicExecution se =

3 SymbolicExecution.get();

4 return b0.and(b1, se);

5 }

1 Sbool or(Sbool b0 , Sbool b1) {

2 SymbolicExecution se =

3 SymbolicExecution.get();

4 return b0.or(b1, se);

5 }

Here, a dedicated method call (Sbool.and(...) or Sbool.or(...)) is used respectively. The condi-
tional jumps and initialization of booleans are folded to a method call. These methods are already
implemented in the Mulib search framework.

While for the given example, transformation approaches might be relatively straight-forward, in
general, several things must be considered. For one, the boolean operations in Java are lazy. As
such, any boolean value that is retrieved while potentially causing side-effects must be accounted
for, i.e., the side-effect should still be caused in a lazy fashion. Furthermore, there are multiple
ways of representing and and or operations using conditional jumps. All of these patterns should
be accounted for. It might thus be easiest to, in a first step, exclude the boolean results of methods
that are potentially lazily evaluated from this merging approach. Merging approaches might use
existing functionalities for control-flow graphs, such as the ones offered by Soot.
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Alternatively, one might focus on the eager variants to calculate and and or:

boolean and(boolean b0 , boolean

b1) {

return b0 & b1;

}

boolean or(boolean b0 , boolean

b1) {

return b0 | b1;

}

This will compile to:

1 L0

2 ILOAD 1

3 ILOAD 2

4 IAND

5 IRETURN

1 L0

2 ILOAD 1

3 ILOAD 2

4 IOR

5 IRETURN

Here, no choice points are created. This approach, however, still has several downsides: First, it
is unintuitive to programmers that commonly use && and || for boolean values, opposed to & and |.
Second, extending the first point, when validating programs, more often than not, && and || will be
encountered. It would be beneficial if such a folding could be conducted for the use-case of verifi-
cation and test case generation as well. Third, when combining multiple constraints using and and
or, even when using & and |, choice points are still being generated. For instance, when checking
whether a value is less than another value, the bytecode instruction if lt is executed. This in-
struction again performs a conditional jump to initialize a boolean. Thus, in any case, some form
of folding should be implemented, here creating, e.g., a call to Sint.lt(Sint, SymbolicExecution).

Particularly in combination with the Mulib.assume(Sbool) method, such a folding is rather power-
ful. Consider the NQueens example from Subsection 3.3: If the bytecode is folded according to
aforementioned meaning, not a single choice point has to be created and only a single satisfiability
check must be conducted.

Even though this feature further complicates the transformation, it is worthwhile in terms of per-
formance. Consider Table 4 displaying two constraint solvers integrated with Mulib solving the
NQueens problem for 32 queens. Mulib was configured to employ either Z3, used as an in-
cremental constraint solver, or CP-SAT. All measurements are given in seconds. Additionally,
the minimum and maximum run time is specified. The measurements were taken after discard-
ing five initial iterations to warm up the JVM. NQueens-Incremental implements the scenario
where choice points are created for each added constraint. NQueens-Folded is Mulib framework-
code that was implemented by hand to evaluate the impact of bytecode folding. In other words:
NQueens-Incremental denotes a version where the runtime generates a choice point for each
constraint. NQueens-Folded denotes a version where no additional choice options are added and
only one constraint check is evaluated.

The chosen constraint solvers are Z3 and CP-SAT [14]19 Noticeably, CP-SAT and Z3 both per-
form better without creating any unnecessary choice options. Particularly, CP-SAT performs sig-
nificantly better. The reason for this is that mostly SMT solvers, such as Z3, are dedicatedly
designed for incremental constraint solving. In contrast, CP-SAT does not employ direct support
for this.

This performance improvement again stresses the redesign of the mechanism employed for free
objects so that no additional paths need to be spawned (see Subsection 9.3).

Additionally, aforementioned folding reduces the overhead of the Mulib runtime even more since

19CP-SAT has only been prototypically integrated with Mulib for now. The implementation of the respective adapter
can be found under https://github.com/NoItAll/mulib/blob/de661af81a4844e3c106a2d0037d96b317980d74/src/
main/java/de/wwu/mulib/solving/solvers/CpSatSolverManager.java.

https://github.com/NoItAll/mulib/blob/de661af81a4844e3c106a2d0037d96b317980d74/src/main/java/de/wwu/mulib/solving/solvers/CpSatSolverManager.java
https://github.com/NoItAll/mulib/blob/de661af81a4844e3c106a2d0037d96b317980d74/src/main/java/de/wwu/mulib/solving/solvers/CpSatSolverManager.java
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Solver NQueens
-Incremental

NQueens
-Folded

Z3 6.80
[6.72; 6.92]

5.51
[5.47; 5.54]

CP-SAT 64.44
[60.86; 75.70]

0.18
[0.14; 0.24]

Table 4: The mean run time of 15 iterations of solving the 32-Queens problem using Mulib.

Configuration NQueens
Leftmost, Up, Step

(default) Timed out

FF, Up, Step 0.02
[0.02; 0.03]

FFC, Up, Step 0.04
[0.02; 0.05]

Min, Up, Step Timed out
Max, Up, Step Timed out

Table 5: The mean run time of 15 iterations of solving the 32-Queens problem using CLP(FD).

less backtracking must be conducted, Muli can get rather close to established programming lan-
guages, such as SWI-Prolog [50]. The NQueens problem, when modelled in Prolog using the
CLP(FD) library [44], produces the measurements displayed in Table 5. All measurements are
given in seconds. The implementation was retrieved from the official list of examples [42]. The
configuration column describes the settings used for labeling [43].

Noticeably, the configuration for SWI-prolog, here given via the specification of the labeling strat-
egy, can have an immense impact on the overall performance. In some instances, not even a
single solution could be calculated after 5 minutes.

Note that the Mulib runtime has a benign impact on the overall execution duration, as is indicated
in Table 6. In the table, the percentages of run time for solving the 32-Queens problem using
either Z3 or CP-SAT are depicted for various aspects of the problem solving procedure. First,
the column Satisfiability & Model comprises the percentage of the overall run time for calculating
the satisfiability and for deriving suitable labels. The second column represents the percentages
for the transformation from constraints of the Mulib type system to the solver-specific represen-
tation of constraints. The column Initialization represents the time fraction needed to initialize
an instance of the respective solver. The used times result from solving one single instance of
the problem. In consequence, the program transformation has to occur one initial time. This is
depicted in the column Program Transformation.20 The overall percentage of the runtime due to
the constraint solver adds up to around 90% in the case of Z3 and 74% for CP-SAT. Additionally,
one might argue that this percentage is increased for subsequent iterations where the program
transformation does not need to be conducted.

Aside from bytecode folding, Mulib might research measures to tune solvers during execution.

20Note that this transformation has to occur only one single time for the first call to the search region.
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Solver Satisfiability &
Model

Constraint
Generation Initialization Program

Transformation
Z3 89.20% <1% <1% 8.18%

CP-SAT 58.40% 8.37% 7.28% 13.67%

Table 6: The percentages of the overall run time for the 32-Queens problem.

10 Conclusion

This technical report describes several details, such as the overall workflow, the algorithms used
for the program transformation, the procedure towards search, the integration of constraint solver,
configuration options, as well as future research.

Mulib is a symbolic execution engine that employs the rather novel approach of program transfor-
mation (compare [31]). Search regions can be compiled to ordinary Java bytecode. The program
transformation then generates partner classes that utilize the functionalities of the Mulib search
framework. The Mulib search framework allows for a purely symbolic, i.e., non-concolic, execu-
tion. In consequence, Mulib does not rely on a custom SJVM. The search framework furthermore
allows for different (parallely executed) search strategies and facilitates the integration of new con-
straint solvers. It was shown that, compared to Mulisjvm, Mulib performs better in terms of run
time and memory consumption [52]. Moreover, currently, Mulib can be executed using Java 17.
Competing pure symbolic execution engines are often restricted to Java 8.

Furthermore, by means of Mulib, new concepts such as free arrays of reference-typed elements
and ease-of-use features, such as assume(...) and freeInt(0, 9), allowing for the direct specifi-
cation of an upper and lower bound, could be introduced.
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