

A Service of

ZBW

Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre for Economics

Krantz, Sebastian

Working Paper Patterns of Global and Regional Integration in the East African Community

Kiel Working Paper, No. 2245

Provided in Cooperation with:

Kiel Institute for the World Economy – Leibniz Center for Research on Global Economic Challenges

Suggested Citation: Krantz, Sebastian (2024) : Patterns of Global and Regional Integration in the East African Community, Kiel Working Paper, No. 2245, Kiel Institute for the World Economy (IfW Kiel), Kiel

This Version is available at: https://hdl.handle.net/10419/283884

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

WWW.ECONSTOR.EU

KIEL Working Paper

Patterns of Global and Regional Integration in the East African Community

No. 2245 Update February 2024

Sebastian Krantz

Kiel Institute for the World Economy ISSN 1862–1155 KIEL WORKING PAPER NO. 2245 | UPDATE

First Draft: March, 27, 2023 This Draft: February, 8, 2024

PATTERNS OF GLOBAL AND REGIONAL INTEGRATION IN THE EAST AFRICAN COMMUNITY

Sebastian Krantz

Using detailed global trade and novel Multi-Region Input-Output (MRIO) data, this paper examines the East African Community's (EAC) global and regional integration through trade, global, and regional value chains (GVCs and RVCs). With surgical attention to detail, the first part of the paper dissects key patterns and trends of EAC members' participation in global and regional trade and production networks at the aggregate, bilateral, sectoral, and bilateral-sectoral levels. The second part then provides causal reduced-form evidence for the economic benefits of EAC integration through trade, GVCs, and RVCs at the sector level. Findings imply that the region is moderately integrated into GVCs and RCVs but shows no overall trend towards greater integration. Regional integration is advancing in agriculture and food processing, and Kenya is becoming a more dominant regional supplier of manufactures. Integration through trade and GVC linkages in manufacturing. Deepening regional trade and forward linkages yields additional economic benefits vis-a-vis global linkages.

Keywords: GVCs, RVCs, EAC, trade, regional integration, economic development

JEL classification: F14; F15; O11

Sebastian Krantz

Kiel Institute for the World Economy Kiellinie 66 D-24105 Kiel, Germany *Email:* sebastian.krantz@ifw-kiel.de www.ifw-kiel.de

The responsibility for the contents of this publication rests with the authors, not the Institute. Since working papers are of a preliminary nature, it may be useful to contact the author of a particular issue about results or caveats before referring to, or quoting, a paper. Any comments should be sent directly to the authors.

Patterns of Global and Regional Integration in the East African Community

Sebastian Krantz*

February 8, 2024

Abstract

Using detailed global trade and novel Multi-Region Input-Output (MRIO) data, this paper examines the East African Community's (EAC) global and regional integration through trade, global, and regional value chains (GVCs and RVCs). With surgical attention to detail, the first part of the paper dissects key patterns and trends of EAC members' participation in global and regional trade and production networks at the aggregate, bilateral, sectoral, and bilateral-sectoral levels. The second part then provides causal reduced-form evidence for the economic benefits of EAC integration through trade, GVCs, and RVCs at the sector level. Findings imply that the region is moderately integrated into GVCs and RCVs but shows no overall trend towards greater integration. Regional integration is advancing in agriculture and food processing, and Kenya is becoming a more dominant regional supplier of manufactures. Integration through trade and GVCs positively affects economic development in the region, particularly deeper forward GVC linkages in manufacturing. Deepening regional trade and forward linkages yields additional economic benefits vis-a-vis global linkages.

Keywords: GVCs, RVCs, EAC, trade, regional integration, economic development JEL classification: F14; F15; O11

1 Introduction

Global Value Chains (GVCs), referring to the internationalization of production networks, have become a central topic in trade and development policy. With the entry into force of AfCFTA in May 2019 and some progress towards its full enactment, the potential of a large common market in Africa for increased GVC-related trade, both within Africa and between Africa and the world, is of great interest to economic researchers and policymakers. To gauge the potential implications and distributional side-effects of AfCFTA for trade and GVCs, it is, at least to some degree, instructive to study smaller efforts of regional integration and creation of common markets in Africa, as has been the case in East Africa with the East African Community (EAC).

(Re-)founded in 2000 by Uganda, Kenya, and Tanzania as a body to facilitate regional cooperation, the EAC quickly became a vehicle for economic integration. A customs union became operational in January 2005, with Kenya, the region's largest exporter, continuing to pay duties on some goods entering other countries on a declining scale until 2010 (EAC Customs Union Protocol, Article 11 and Aloo (2017)). Rwanda and Burundi acceded in 2007, joining the customs union in 2009. The customs union expanded to a common market for goods, labor, and capital effective in 2010. In 2013, the Protocol for the Establishment of the EAC Monetary Union was signed, aiming for a monetary union within 10 years, subject to macro-fiscal convergence criteria. In 2016, the newly founded Republic of South Sudan joined the EAC, and the Democratic Republic of Congo joined in July 2022. Thus, the EAC, particularly the years following the customs union in 2005 and the common market in 2010, provides a small case study in light of AfCFTA's broader aims.

There is, by now, extensive academic and policy literature on the state, determinants, and consequences of integration into GVCs, including for countries at different income levels. As an early example, Kummritz & Quast (2016) examine patterns of GVC integration in low- and middle-income countries using the OECD TiVA database. They find that Low- and middle-income

^{*}Kiel Institute for the World Economy

Address: Haus Welt-Club, Duesternbrooker Weg 148, D-24105 Kiel *E-mail:* sebastian.krantz@ifw-kiel.de

countries have become an integral part of GVCs and are driving their expansion, with a rising share in both the foreign content of global value added (VA) exports (9% in 1995 to 24% in 2011) and reexported exports (9% to 23%). High-income economies use GVCs to outsource low VA downstream production stages. However, many developing economies move up the value chain over time, and the general trend points to a more even distribution of VA across countries.

The 2020 World Development Report (WDR), focusing on GVCs, classifies Africa as primarily a supplier of raw materials, with only a handful of countries (Morocco, Tunisia, Namibia, South Africa, Ethiopia, Kenya, and Tanzania) engaging in limited manufacturing (World Bank, 2020). At the same time, GDP per capita grows most rapidly when countries enter limited manufacturing GVCs. The report estimates the average benefits from a 1 percent increase in GVC participation to boost per capita income by more than 1 percent, much more than the 0.2 percent income gain from standard trade. To enter GVCs, the report stipulates attracting FDI, improving access to finance, keeping labor costs low, trade liberalization, investments in ICT and transport infrastructure, and political stability. The report states that African economies score low in all of these dimensions. In particular, overvalued exchange rates and restrictive labor regulations raise the cost of labor: "Manufacturing labor costs in Bangladesh are in line with its per capita income, but in many African countries, labor costs are more than twice as high." (World Bank, 2020).

These policy conclusions are broadly echoed in much early and recent academic work. E.g., Fernandes et al. (2022), using a panel with more than 100 countries and a novel identification strategy, show that factor endowments, geography, political stability, liberal trade policies, FDI inflows, and domestic industrial capacity are key determinants of GVC participation, whereas traditional exports are less important. The findings are commensurate with Antràs & De Gortari (2020), which develop a general-equilibrium framework where trade costs imply a concentration of downstream production stages in central locations/countries (close to final demand).

Foster-McGregor et al. (2015) provide one of the first comprehensive analyses of GVCs in Africa, using the EORA 25 sector database over 2000-2011. They find that Africa is more involved in GVCs than many other developing regions but mainly supplies primary goods. Downstream involvement is relatively small and shows little improvement in 1995-2011. GVC involvement is also very heterogeneous across African countries, with some relatively successful countries (Tunisia, South Africa) heavily involved in (downstream) GVCs. Inner-African GVCs are also small in most African countries, with several exceptions in southern Africa. The EU is Africa's biggest GVC partner, with increasing shares of (South-)East Asia and other transition countries.

Kowalski et al. $(2015)^1$ study GVC participation in Africa, the Middle East, and Asia, and find that structural factors, such as geographic proximity to manufacturing hubs in Europe, North America, and East Asia, domestic market size, and the level of development, are key determinants of GVC participation ² Developing countries reap important benefits from GVC participation through both forward and backward linkages, including enhanced productivity, export diversification, and sophistication. Analyzing export competitiveness in different regions, they find that Asia dominates more advanced products such as electronic equipment or motor vehicles. In contrast, African and Middle Eastern regions are competitive in agriculture, food processing, and less advanced manufacturing. While all regions have become more competitive, they find little signs of a trend towards industrialization and GVC-related trade in Africa.

Balié et al. (2019) present a careful analysis of bilateral-sectoral GVC linkages in SSA with an emphasis on food processing GVCs and show that the trade of SSA in these chains is substantial. This is driven by a handful of countries, including Kenya and Uganda, where the share of agriculture to total GVC participation is at 30%, and in Kenya, the food processing sector is at 15%. They further show that bilateral trade policy is a key determinant in shaping SSA's GVC integration (both forward and backward) in the food sector, with high tariffs having a detrimental effect on GVC participation. They also confirm the results of Foster-McGregor et al. (2015) that SSA GVC

¹The authors conduct extensive econometric analysis using GVC indicators computed from OECD TiVA ICIOs for 57 countries in the years 1995, 2000, 2005, 2008, and 2008, WIOD ICIOs for 40 countries from 1995-2011, and EORA ICIOs for 186 countries from 1990-2011, as well as country-specific structural and policy indicators.

 $^{^{2}}$ Kowalski et al. (2015) also note that in addition, trade and investment policy reforms (in particular low import tariffs and FDI openness), improvements in logistics and customs, intellectual property protection, infrastructure, and institutions can play a large role in promoting further engagement.

participation is high - at 40%, comparable to China and India. Africa is also the continent with the highest forward integration - around 25% of domestic VA (DVA) produced in SSA are inputs for other countries' exports and over 35% in North Africa.

There has also been some GVC and RVC-related work on African regional economic communities (RECs). Notably, Obasaju et al. (2021) examine the impact of regional integration on upgrading through GVCs (proxied by DVA in exports per capita) in the EAC, Southern African Customs Union (SACU) and Economic Community of West African States (ECOWAS) in 2000-2015. They show that regional integration and FDI are not significant drivers of upgrading but lagged backward GVC participation is. They also find weak positive effects of regional integration on labor productivity in the EAC and SACU (the communities with stronger trade integration). Regional hegemons (Kenya, South Africa, and Nigeria) have weak backward linkages with other members.

Tinta (2017) studies determinants of GVC participation in ECOWAS and finds that intraregional trade is not a significant predictor of trade openness, but backward GVC participation is. Further, trade diversification is a key predictor of backward GVC participation. Engel et al. (2016) provide a detailed analysis of GVC integration, position, and performance of SACU members (Botwana, Lesotho, Namibia, South Africa and Eswatini). They show that the SACU region is moderately integrated into GVCs in relatively upstream tasks, but the scale and nature of integration vary by country, with South Africa and Namibia being the most integrated. South Africa remains a moderately important player in global trade networks and an important regional hub. Lesotho shows a rapid increase in GVC integration, Namibia a moderate increase, whereas Botswana and Eswatini appear stagnant or in decline. Overall growth in GVC participation in services is stronger than in manufacturing. South Africa is the only country with strong forward GVC integration. Lesotho, South Africa, and, to a lesser extent, Namibia are well integrated into Backward GVCs. South Africa is an important source of foreign content for the other members, which are more integrated into RVCs than global ones. China has grown significantly as a source of foreign content, but the EU remains the predominant partner for forward GVC participation.

Lwesya (2022) studies GVC integration in the EAC with respect to economic upgrading using UNCTAD-Eora GVC Panel data from 2005 to 2018. This analysis is largely complementary to the one carried out in this paper. The author computes measures of backward and forward integration and finds that Kenya, Tanzania, and Uganda are relatively better integrated into GVCs, with Kenya having the deepest level of integration, especially in terms of indirect VA and forward integration. Overall, the EAC's participation in GVCs is in upstream low- and middle-VA production activities. Then, using a cross-country panel regression framework predicting DVA in exports, which includes GVC indicators and other macroeconomic indicators, he finds that domestic credit, foreign direct investment, the quality of institutions, and foreign VA (FVA) have significant positive effects, but observes no such effects for measures of human capital, infrastructure quality, and GDP per capita. The analysis is focused on the aspect of economic upgrading and does not provide a detailed bilateral and sector-level exposition of the region's integration into GVCs and RVCs. He also does not provide a detailed examination of how different forms of trade and GVC participation affect economic growth, and his analysis does not establish economic causality between any of the studied factors and DVA in exports.

This paper adds to our understanding of GVCs and regional integration in the EAC in the following significant respects: (1) it uses better data, including gross trade flows data and the EMERGING MRIO tables, which include IO/SUT/SAM tables for 4 EAC countries; (2) it conducts a detailed examination of EAC members global and regional integration using both gross trade flows and VA content shares, paying close attention to specific bilateral linkages and sector-level patterns; (3) it constructs metrics to track regional integration in VA terms and uses them to measure progress in recent years; (4) It examines the positioning of EAC members and sectors in GVCs and (5) revealed comparative advantage in gross and VA terms; (6) It analyzes the effect of conventional trade, GVC, and RCV integration on GDP using a bilateral-sector-level regression framework with triple fixed effects and instrumental variables for GVC participation following Kummritz (2016) (weighting third-party trade costs by industry distance in the value chain). Thus, it presents a rigorous and detailed study of the region's global and regional integration through trade and value chains using the best available data and attempts to establish economic causality between different forms of trade and economic growth.

2 Data

Most GVC analysis uses Inter-Country Input-Output tables (ICIOs), such as those published by the OECD (TiVA) or the World Input-Output Database (WIOD) (Timmer et al., 2012). These tables state supply and demand relationships in gross terms between industries within and across countries (Kummritz & Quast, 2014). The WIOD and TiVA databases, however, focus on OECD countries, with very limited coverage of Sub-Saharan Africa (SSA). This paper, therefore, uses two Multi-Region Input-Output (MRIO) databases that are global in scope.

The first is the EORA 26 Global MRIO (Lenzen et al., 2012, 2013), which has extensive coverage of 189 countries and 26 sectors from 1990-2015 and uses 74 country IOT/SUTs and detailed international macroeconomic and trade data as input. EORA relies on sophisticated methods to impute, harmonize, and interpolate data across countries and time and is thus less accurate than the OECD or WIOD tables. Particularly for small countries like EAC members, data can be highly distorted. The Kenya 2010 IOT is the only source of EAC national data used in EORA (Lenzen et al., 2013). In 2021, an update of EORA was released, adding administrative data through 2018 and WEO-based forecasts through 2021. This release introduced a large structural break in the time series in 2016, resulting in different macroeconomic totals and GVC indicators for EAC members. Due to the structural break, the analysis emphasizes the initial EORA release through 2015. Since the EAC customs union only became operational in 2005, I consider the EORA 26 tables from 2000 onwards. Data from 1990 shows no interesting trends in GVC engagement and is also devoid of IO input data for EAC countries. EORA is denominated in thousands of current USD at basic prices³. Appendix Figure A1 shows the official EORA data quality reports for 6 EAC countries⁴. Despite its shortcomings, EORA has been used in much research on GVCs in Africa, including the WDR.

Due to the shortcomings of EORA in terms of accuracy and usage of national data for developing countries, I also employ the more recently introduced EMERGING (EM) MRIO tables (Huo et al., 2022). This impressive effort has created a global MRIO database covering 245 countries and territories in 135 sectors for the years 2015-2019. A recent update (v2) also provides a table for 2010. EM uses 111 national IO/SUT/SAM tables alongside detailed trade and macroeconomic data. In particular, the UN Comtrade database is utilized to the fullest extent to provide greater sectoral detail than EORA. Macroeconomic data from national statistical offices is used where available and reconciled (scaled) using World Bank data. The purpose of the MRIO is to provide greater detail and accuracy for emerging economies than EORA, and the construction process reflects this. From EAC countries, EM uses a SAM and sectoral GDP from Uganda up to 2016 and the same information up to 2019 for Rwanda and Kenya. For Tanzania, EM uses a SAM and an IO table up to 2017. For Burundi, Congo (DR), and South Sudan, only international data (Comtrade and macro data) is available. Thus, EM incorporates, to the greatest extent possible, national data from these EAC countries in a harmonized global MRIO framework. EM is denominated in millions of current USD at basic prices.

The WDR also provides GVC indicators using EORA 2015, and Mancini et al. (2023) provide corresponding GVC positioning indicators following Fally (2012), Antràs et al. (2012) and Antràs & Chor (2013, 2018). These pre-computed indicators are used to verify manually computed indicators. This is important because I aggregate the non-EAC World and/or sectoral resolution for different indicators to lift computational constraints⁵ and enable comparisons across databases. In particular, to enhance the interpretation of results while preserving some level of detail, the non-EAC World is aggregated into 11 geographic and trade regions summarised in Table 1, and, in more detail, in Appendix Table A1. This considerably reduces the size of transaction tables.

 $^{^{3}}$ The basic price is the amount receivable by the producer from the purchaser for a unit of a good or service produced, as output minus any tax payable, and plus any subsidy receivable. It excludes any transport charges invoiced separately by the producer.

⁴While global GDP is broadly consistent with representative estimates, the GDP of EAC countries is highly distorted. Most notably, Tanzania's GDP is decreasing in the data. The situation is better for exports, whose level and sectoral composition are roughly consistent with estimates from other sources. Thus, detailed analysis and results from EORA should be treated with great caution, particularly for Tanzania.

⁵EMERGING has 245 countries/territories and 134 sectors, implying 32,830 rows and columns or 1 billion records in the transaction matrix. It is computationally infeasible for me to compute GVC indicators directly on these tables, and also the full EORA database (186 x 26 = 4836 rows and columns observed over 21 years) strains my computing resources for non-trivial GVC indicators.

Region	Description	Countries EORA	ピ <i>Territories</i> EMERGING
EAC	East African Community	7	7
SSA	Sub-Saharan Africa (Excluding EAC)	38	41
EUU	European Union + UK	28	29
ECA	Europe and Central Asia (Non-EU)	26	29
MEA	Middle East and North Africa	20	21
NAC	North America and Canada	3	13
LAC	Latin America and Carribean	32	44
ASE	ASEAN	10	10
SAS	South Asia	8	9
CHN	China	3	3
ROA	Rest of Asia	7	14
OCE	Oceania	6	22
SUM:	7 EAC Members $+$ 11 World Regions	188	245

Table 1: REGIONAL AGGREGATION

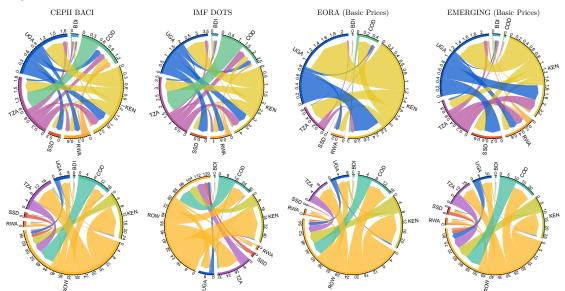
To verify EM, (Huo et al., 2022) develop a broad sector classification of 17 sectors and mappings from the sectors of major global ICIOs (EXIOBASE3rx, OECD-TiVA, EORA, GTAP, and EM) to these broad sectors. I use these mappings to report results at the sector level. Most GVC indicators are computed at the full sector resolution using STATA's ICIO package (Belotti et al., 2020) and the default source-based exporter perspective (Borin & Mancini, 2019) also used in the WDR, which permits aggregation of GVC indicators across sectors. Table 2 shows the 26 EORA sectors⁶ and their mapping to broad sectors. Appendix Table A2 shows the mapping for EM.

Table 2: EORA 26 Sectors and Mapping to Broad Sectors

Code	EORA 26 Sector Definition	Code	Broad Sector Definition of Huo et al. (2022)
AGR	Agriculture	AFF	Agriculture, Hunting, Forestry & Fishing
FIS	Fishing	AFF	Agriculture, Hunting, Forestry & Fishing
MIN	Mining and Quarrying	MIN	Mining & Quarrying
FBE	Foods & Beverages	FBE	Food Production, Beverages & Tobacco
TEX	Textiles and Wearing Apparel	TEX	Textiles, Leather & Wearing Apparel
WAP	Wood and Paper	WAP	Wood, Paper & Publishing
PCM	Petroleum, Chemical and Non-Metallic Mineral Products	PCM	Petroleum, Chemicals & Non-Metallic Mineral Products
MPR	Metal Products	MPR	Metal & Metal Products
ELM	Electrical and Machinery	ELM	Electrical & Machinery
TEQ	Transport Equipment	TEQ	Transport Equipment
MAN	Other Manufacturing	MAN	Manufacturing & Recycling
REC	Recycling	MAN	Manufacturing & Recycling
EGW	Electricity, Gas and Water	EGW	Electricity, Gas & Water
CON	Construction	CON	Construction
MRE	Maintenance and Repair	SMH	Sale, Maintenance & Repair of Vehicles; Fuel; Trade; Hotels & Restaurants
WTR	Wholesale Trade	SMH	Sale, Maintenance & Repair of Vehicles; Fuel; Trade; Hotels & Restaurants
RTR	Retail Trade	SMH	Sale, Maintenance & Repair of Vehicles; Fuel; Trade; Hotels & Restaurants
AFS	Hotels and Restraurants	SMH	Sale, Maintenance & Repair of Vehicles; Fuel; Trade; Hotels & Restaurants
TRA	Transport	TRA	Transport
PTE	Post and Telecommunications	PTE	Post & Telecommunications
FIB	Finacial Intermediation and Business Activities	FIB	Financial Intermediation & Business Activity
PAD	Public Administration	PAO	Public Administration; Education; Health; Recreation; Other Services
EHO	Education, Health and Other Services	PAO	Public Administration; Education; Health; Recreation; Other Services
PHH	Private Households	PAO	Public Administration; Education; Health; Recreation; Other Services
OTH	Others	PAO	Public Administration; Education; Health; Recreation; Other Services
REI	Re-Export & Re-Import	PAO	Public Administration; Education; Health; Recreation; Other Services

To complement and verify MRIO table results, this study also analyzes gross trade flow data from CEPII's BACI (Gaulier & Zignago, 2010) (HS 1996 version) and the IMF's Direction of Trade Statistics (DOTS) (IMF General Statistics Division, 1993) databases. EM's goods-producing sectors are identical to the 2-digit HS codes so that BACI can be aggregated to match the MRIO databases using the mapping in Table A2. The DOTS database only records aggregate bilateral trade, with imports denominated in Cost Insurance Freight (CIF) terms, i.e., including transport and insurance costs.

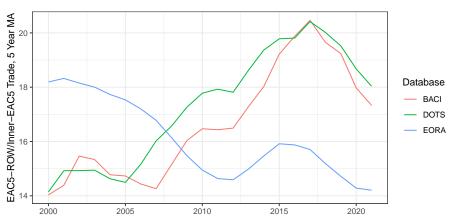
 $^{^{6}}$ Sector codes are assigned and used throughout the paper based on the authors discretion, but not provided in the raw data. These codes are purely descriptive and do not follow any standard classification.


3 Trade

In light of the known macroeconomic inconsistencies in EORA for EAC countries and that VA flows are estimated from gross flows, this section examines EAC integration through trade using BACI, DOTS, and gross total and intermediate flows from the EORA and EM MRIO tables.

3.1**Gross Trade Flows**

Figure 1 shows diagrams of EAC trade flows averaged over 2010-2019. All databases emphasize Kenya as regional trading hegemon, followed by Uganda and Tanzania, but EORA gives disproportional weight to Kenya and shrinks the other countries, whereas EM overemphasizes Rwanda and Uganda a bit and also shrinks Congo. Notably, the large exports from Congo to Tanzania are not reflected in either EORA or EM. An examination of BACI reveals that 88% of this 550 million USD flow is copper and 7.4% precious metals. Congo does not trade with other EAC members to a similar extent. The bottom half of Figure 1 includes the rest of the world (ROW) as a trading partner.


Figure 1: Average Gross Trade Flows from 2010-2019: 4 Databases: USD Billions

Notes: Figure shows the mean of bilateral gross trade flows over years 2010-19 recorded in billions of current USD. The top panel shows inner-EAC flows; the bottom panel includes ROW as a trading partner. The circular axis records the total flows (exports + imports) for each partner. Produced using the migest R package (Abel, 2023).

In all databases, trade with ROW dwarfs inner-EAC trade. To quantify these diagrams: according to BACI, inner EAC trade is 15 times smaller than EAC trade with ROW, in DOTS 14.9 times, EORA 17.5 times, and EM 22.9 times smaller. When excluding South Sudan and Congo, which only joined recently (2016 and 2022), the ratios increase to 18.6 (BACI), 19.5 (DOTS), 14.9 (EORA (decrease)), and 19.7 (EM). Figure 2 shows the evolution of this ratio for the five early EAC members (EAC5), smoothed using a backward-looking 5-year moving average (MA).

Notes: Figure shows the ratio of EAC5 \Leftrightarrow ROW to inner-EAC5 trade (exports + imports), smoothed using a backward-looking 5-year MA. The EAC5 includes Tanzania, Kenya, Uganda, Rwanda and Burundi.

Figure 2 indicates that up to 2017, there has been a relative disintegration of the EAC5 in terms of gross trade. However, in 2018 and 2019, trade with ROW slowed a bit, and in 2020, the COVID-19 shock strengthened regional trading again. This can be disaggregated further by exports and imports, also considering individual members' EAC5 trade shares.

Figure 3 shows the EAC5 share in members and total EAC5 exports and imports. Uganda substantially increased the share of its exports destined to EAC5 partners, reaching 28% in 2016 and falling again in recent years. Tanzania also increased its EAC5 export share from about 7% in 2000 to 15% in 2021. Kenya, on the other hand, decreased its EAC export share from 25% in 2000 to 20% in 2021. Rwanda shows a declining trend in both export and import share since 2012. In Burundi, the EAC5 share is constant since 2005. The total EAC5 (black line) shows a slight decline from 2010 (18%) to 2020 (16%). On the import side, there is a clear decline in the EAC5 share from 10% in 2000 to 7.5% in 2020. This is also mainly driven by Uganda and Tanzania. Kenya therewhile increased its EAC5 import share from 1% in 2000 to 4% in 2020. This pattern is in line with Obasaju et al. (2021)'s observation that the regional hegemon (Kenya) has weak backward linkages (imports) with other REC members. Also, in line with Engel et al. (2016), the hegemon has strong regional forward linkages (exports), whereas smaller economies (Rwanda, Burundi) are more regionally focused, particularly through high import shares. Over time in the EAC5, this pattern has weakened slightly, but integration in gross trade has not improved in overall terms.

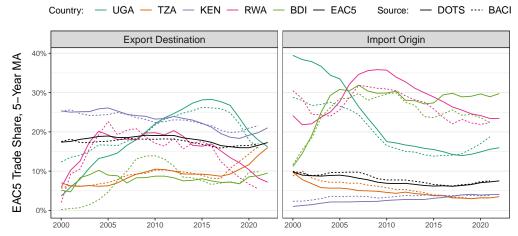


Figure 3: EAC5 Share in Members Gross Trade Flows

Notes: Figure shows the EAC5 share in members total exports and imports, smoothed using a backward-looking 5-year MA. The black line also shows the EAC5's total share of exports and imports with itself.

When dividing trade flows broadly into agricultural products (AFF), processed foods and beverages (FBE), and manufactured goods⁷, some further heterogeneity emerges. Figure 4 shows these flows using BACI, Appendix Figures B1 and B2 using EORA and EM, respectively.

According to all databases, Uganda and Tanzania are large regional suppliers of agricultural produce. All countries have some stakes in FBE, with Uganda supplying the most, followed by Kenya. In manufacturing, Kenya has a distinct lead, followed by Tanzania and Uganda. With ROW, all EAC countries are large agricultural exporters and importers of manufactured products. Kenya is the largest EAC supplier of both agriculture and processed foods to ROW, whereas it only plays a minor supplier role in the EAC. Tanzania supplies large amounts of gold, and Congo large amounts of minerals to ROW, which are subsumed under MPR and PCM in Table 2, making Kenya also the largest EAC exporter of manufactures. The data thus expound differences in the nature of trade both within the EAC and with ROW. Shared capacities exist for FBE, which has also been the focus of policymakers and regional studies, such as Daly et al. (2017) which show that while Uganda exports diary and maize produce to Kenya for processing, it has also received FDI and begun to upgrade its own food processing sector. The Ugandan Ministry of Finance and Planning (MoFPED, 2021), IGC Uganda (Fowler & Rauschendorfer, 2019) and IFPRI (Van Campenhout et al., 2020) have identified agro-industrialization as an important pillar of growth for the country.

⁷Services trade is available in the MRIO tables but not in BACI.

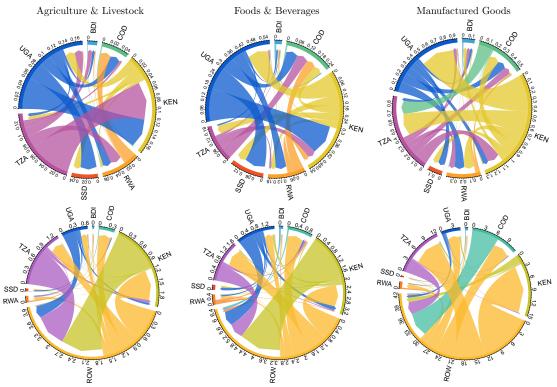
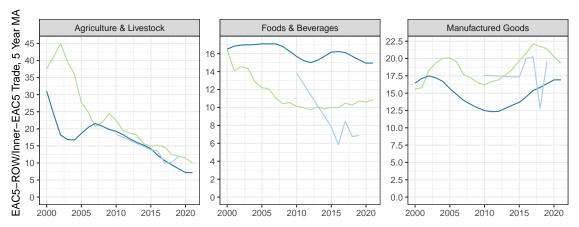



Figure 4: Average 2010-2019 BACI Trade Flows by Broad Sector: USD Billions

Notes: Figure shows the mean of bilateral gross trade flows over the years 2010-19 recorded in billions of current USD according to CEPII BACI. The top panel shows inner-EAC flows; the bottom panel includes ROW as a trading partner. The circular axis records the total flows (exports + imports) for each partner. The broad sectors shown are AFF (left), FBE (middle), and TEX-MAN (right) in Table 2. Produced using the *migest* R package (Abel, 2023).

Figure 5 shows corresponding ratios of EAC5-ROW to inner-EAC5 trade, indicating that regional trade in agriculture and, to a lesser extent, FBE, assumes increasing shares of overall EAC trade in these sectors. According to BACI, in 2020, the inner-EAC5 trade in agricultural products was 10 times smaller than EAC5-ROW trade, down from almost 40 times smaller in 2000. Similarly, FBE inner-EAC5 trade was 11 times smaller in 2020, compared to 16 times smaller in 2000. In contrast, the ratio in manufacturing shows an oscillating increase from 15 in 2000 to 20 in 2020. These developments are also reflected in the MRIO databases.

Database: — BACI — EORA — EMERGING

Notes: Figure shows the ratio of EAC5 \Leftrightarrow ROW to inner-EAC5 trade (exports + imports), smoothed using a backward-looking 5-year MA. The EAC5 includes Tanzania, Kenya, Uganda, Rwanda and Burundi. The broad sectors shown are AFF (left), FBE (middle), and TEX-MAN (right) in Table 2.

Figure 6 offers a detailed breakdown of the sector-level EAC5 trade share for different members and the EAC5 as a whole. In agriculture, export and import shares both increased: in 2015-20, the EAC5 exported 12.6% of agricultural exports to itself, up from 4.6% in 1995-2000, and imported 19.3%, up from 9.3% in 1995-2000. The FBE export shares also rose from 7.8% to 13.7%, whereas the import share remained constant around 20%. In manufacturing, the opposite is the case, with the EAC5 exports share declining from 32% to 18.6% and the import share remaining roughly constant at around 7%. At the country level, Uganda significantly increased its EAC5 share as an exporter and importer of both agricultural produce and FBE. This development is mirrored, to a lesser extent, by Kenya, which additionally maintains a very high EAC5 share in manufactured exports of around 40%, down from nearly 50% in 2000. This stands in stark contrast to a very small EAC5 import share of less than 1%. Tanzania increased its export share to the EAC5 in all 3 broad sectors while further decreasing its already low import shares in foods and manufactures to around 5%. Rwanda and Burundi both have high export and import shares with the EAC5 in all sectors apart from manufacturing exports, but Rwanda strongly decreased its EAC5 agriculture and foods export shares since 2007, approaching the levels of Kenya in 2020, whereas Burundi strongly increased its agricultural export share from almost 0% in 2005 to 60% in 2020, while decreasing its import share from 70% to 30%.

Considering the different levels of development of these countries, this suggests that countries first become regional agricultural exporters and later suppliers of manufactured goods. However these manufactured goods do not appear to cater well to other members' demands, as evidenced by the declining EAC5 shares in both exports and imports, and thus fail to become a driver of regional integration. Another problem appears to be the hegemonic position of Kenya as a supplier of manufactures, which may crowd out other countries' attempts to increase their regional supply. Thus, at the bilateral-sector level, gross trade data also suggests that EAC regional integration through trade is asymmetric, has progressed mainly via agricultural produce and FBE, and is stronger in terms of exports than in terms of imports. Particularly, the larger economies of Tanzania and Kenya import much more from ROW. Among these five countries, Tanzania shows the overall lowest level of regional integration.

Figure 6: EAC5 Share in Members Gross Trade by Sector Using BACI Data

Country: - UGA - TZA - KEN - RWA - BDI - EAC5

Notes: Figure shows the EAC5 share in members' total exports and imports, smoothed using a backward-looking 5-year MA. The broad sectors shown are AFF (left), FBE (middle), and TEX-MAN (right) in Table 2.

3.2 Intermediate Flows

An advantage of MRIO databases is that they record gross trade in both intermediates and final goods. Due to its greater accuracy, I only examine such flows using the EM database, averaged

across 2015-2019 to smooth temporal variation. Figure 7 shows an aggregate intermediate flows table. The columns indicate intermediate inputs required by each country or region from each row country or region. Conversely, the rows indicate intermediate quantities supplied.

Among the EAC countries, the table shows a significant supplier role of Kenya, supplying $10^{2.72} = 524$ million USD to Uganda, $10^{2.22} = 168$ million USD to Tanzania and $10^{1.96} = 91$ million USD to Rwanda. Uganda/Tanzania also supplies 258/228 million to Kenya and 90/70 million to Rwanda. Tanzania supplies 56 million to Uganda, Rwanda 54 million to Kenya, and all other inner-EAC intermediate trade is below 35 million.⁸ EM estimates intermediate trade with ROW to be 27.3 times greater than inner-EAC trade, composed of intermediate inputs from ROW summing to 15.6 times EAC intermediates trade and EAC inputs to ROW summing to 11.8 times EAC intermediates trade. The largest supplier of intermediates is China, supplying 831m to Uganda, 1937m to Tanzania, and 2704m to Kenya, followed by South Asia supplying 601/1066/1562, respectively, and the EU supplying 620/844/1462. Compared with these, the rest of SSA is relatively insignificant at 184/325/514. In terms of demand for EAC intermediates, the EU is the largest importer, importing 552/828/1402, followed by the Middle East and North Africa (769/352/503), South Asia (101/683/618), the rest of SSA (105/716/462) and China (148/631/340). China, notably, supplies 4.9 times more intermediates than it demands from these three economies. The supply and demand of intermediates with the EU, NAC, and SSA are quite balanced. Overall, Uganda, Tanzania, and Kenya combined demand 1.7 times more inputs from ROW than they supply. It should be noted that Congo, while not really integrated with other EAC members in terms of intermediates, has large and surprisingly balanced intermediate flows with ROW, demanding/supplying 2598/2636 with the EU and 1199/1375 with China.

Figure 7: AGGREGATED EMERGING MRIO TABLE: 2015-2019 AVERAGE Log10 Millions of Current USD at Basic Prices

4.15	1.49	2.41	1.96	1.38	0.50	2.02	2.89	2.74	1.92	2.14	2.00	2.09	2.17	1.72	1.13	1.04	UGA	7
1.75	4.49	2.36	1.85	1.41	0.88	2.85	2.55	2.92	2.66	2.30	2.83	2.55	2.80	2.45	1.42	1.57	TZA	6
2.72	2.22	4.68	1.96	1.52	0.80	2.66	2.70	3.15	2.54	2.69	2.79	2.19	2.53	2.27	1.70	1.82	KEN	5
1.31	0.96	1.73	3.42	0.80	-0.20	1.24	2.15	2.20	2.08	1.85	1.86	1.96	2.10	1.33	0.83	1.05	RWA	4
0.87	0.02	0.73	0.30	3.18	-0.97	1.00	1.61	1.43	0.96	0.59	1.18	0.95	0.76	-0.08	-0.28	-0.22	BDI	3
0.40	0.61	0.80	-0.35	-0.69	4.42	2.09	2.50	3.42	2.72	3.06	2.34	2.80	3.14	2.80	2.69	1.96	COD	2
2.27	2.51	2.71	1.62	1.13	2.07	5.99	4.07	4.70	4.14	4.19	4.11	4.02	4.59	4.02	3.57	3.19	SSA	0
2.54	2.88	3.08	1.84	1.66	2.46	4.12	6.22	5.08	4.48	4.73	4.71	4.73		5.01	3.93	3.74	MEA	Ŭ
2.79	2.93	3.16	2.20	1.87	3.41	4.76		7.23		5.63	4.67	5.12				4.52	EUU	
2.07	2.44	2.52	1.77	1.01	2.66	3.90	4.76		6.64	4.83	4.38	4.51		4.62	4.23	3.56	ECA	
2.15	2.48	2.68	1.77	1.18	2.96	4.22	4.73		4.80	7.18	4.50	4.98				4.36	NAC	
2.78	3.03	3.19	1.83	1.51	2.31	4.10	4.59	4.88	4.21	4.79	6.41	4.55	4.56	4.18	4.08	3.70	SAS	
2.02	2.54	2.64	1.59	0.96	2.75	4.03	4.39		4.43	4.98	4.62	6.39	5.44	5.16	4.36	4.53	ASE	
2.92	3.29	3.43	1.76	1.66	3.08	4.62	4.89		4.96		4.88		7.37	5.36	5.04	4.52	CHN	
2.38	2.42	2.69	1.35	0.94	2.74	3.83	4.49	5.04	4.49		4.29			6.77	4.63	4.26	ROA	
1.57	1.67	2.05	1.07	0.40	2.59	3.70	4.22	4.95	4.37	5.44	4.15	4.31		4.54	6.62	3.46	LAC	
1.09	1.61	1.74	0.63	-0.12	2.10	3.29	3.57	4.24	3.46	4.15	3.72	4.39	5.00	4.64	3.45	6.15	OCE	
UGA	TZA	KEN	RWA	BDI	COD	SSA	MEA	EUU	ECA	NAC	SAS	ASE	CHN	ROA	LAC	OCE		

Notes: Figure shows gross intermediate input flows in log10 USD millions. Rows indicate the sources, and columns the destinations of intermediates. The diagonal sums the domestic IO/regional ICIO table.

Despite its high use of foreign inputs, domestic intermediate inputs corresponding to the diagonal entries are, on average, 4.1 times greater than foreign inputs in EAC countries and 6.3 times greater than EAC inputs to other countries. For the region as a whole, these figures are 4.6

 $^{^{8}\}mathrm{Exempting}$ South Sudan, subsumed in SSA because of data quality concerns, which receives 385 million in intermediates from Uganda and 223 million from Kenya.

and 6.13, respectively. This is low compared to other major regions, which produce and trade a lot more within themselves. For example, in the EU and North America, inputs from the region are around 10 times greater than foreign inputs. For China, it is 14 times.

To provide some sector-level detail, Appendix Table B1 records the 50 largest sector-level intermediate flows (excl. Congo). Both with ROW and inside the EAC, the largest intermediate flows are in manufacturing and, in particular, in petrochemicals (PCM), FBE, and, to a lesser extent, textiles (TEX). Kenya is a significant EAC supplier of manufacturing inputs, particularly for PCM, FBE, and metal product (MPR) industries. Kenya also supplies large transport (TRA) (including travel and tourism) intermediates to EU TRA services and agricultural inputs to EU FBE industries. It also supplies large inputs for FBE industries in South Asia. These flows are, on average, 3-4 times larger than its regional intermediate supplies. Uganda supplies PCM to ROW, and FBE and agriculture to Kenyan FBE and TRA industries.

3.3 Aggregate Structure of Production and Trade

Figure 8 compactly summarizes the structure of production and trade in the EAC. VA is around 60% of output in all EAC members, apart from Rwanda, where it is 73%. The other components of output are domestic and imported intermediates, of which, as the second plot shows, between 17 and 24% are imported by different EAC members. Gross output is then either consumed or exported for either intermediate or final use. The RHS of Figure 8 shows that between 5 and 16% of gross output is exported by EAC members.

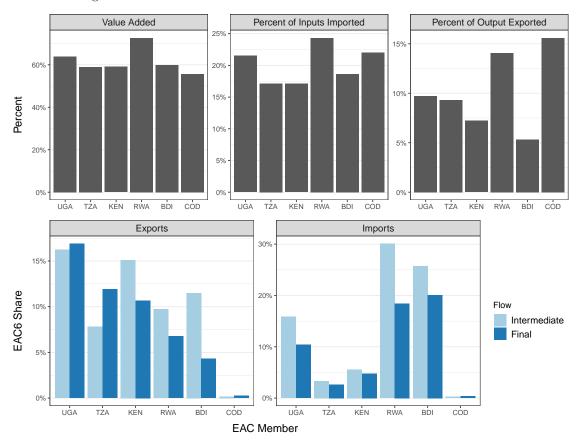


Figure 8: Gross Decomposition of EAC Production and Trade

Notes: Based on EMERGING and computed using an 2015-2019 average MRIO table.

The bottom panel of Figure 8 decomposes exports and imports by type of flow. It shows that Uganda, Rwanda, and Burundi have significant export and import shares with the EAC for both intermediate and final products. Kenya and Tanzania, on the other hand, export significant amounts to the EAC but only import small shares. With the exception of Tanzanian and Ugandan exports, inner-EAC trade in intermediates is slightly larger than trade in final goods.

4 Value Chains

While gross intermediate flows provide useful information about direct productive relationships, they do not reveal how much of the value was added in the supplying country-industry and previous production stages performed by other country-industries. The Leontief decomposition solves this problem by reallocating the value of intermediate inputs to the original producers (Kummritz & Quast, 2014). To guide the further discussion of VA trade flows, I begin with some formal derivations and introduce a consistent notation used throughout this paper.

Let **A** be a normalized ICIO table where each element $a_{oi,uj}$ gives the units of origin country o and sector i's (row) output required for the production of one unit of using country u and sector j's (column) output, **x** the vector of outputs of each country-sector, and **d** a vector of final demand (FD) such that the following productive relationship holds

$$\mathbf{x} = \mathbf{A}\mathbf{x} + \mathbf{d}.\tag{1}$$

The classical Leontief (1936) insight was that one could solve this equation for \mathbf{x} to get the amount of output each country-sector should produce given a certain amount of FD

$$\mathbf{x} = (\mathbf{I} - \mathbf{A})^{-1} \mathbf{d} = \mathbf{B} \mathbf{d},\tag{2}$$

where the Leontief Inverse in denoted $\mathbf{B} = (\mathbf{I} - \mathbf{A})^{-1}$. This matrix is also often called the total requirement matrix since it gives the total productive input requirement from each sector to produce one unit of final output⁹. The direct VA share of each country-sector is given by

$$\mathbf{v} = \mathbf{1} - \mathbf{A}' \mathbf{1},\tag{3}$$

where $\mathbf{1} = (1, 1, 1, ..., 1)'$ is a column-vector of 1's¹⁰. Let \mathbf{V} be the matrix with \mathbf{v} along the diagonal and 0's in the off-diagonal elements. Multiplying Eq. 2 with \mathbf{V} then gives VA in each country-sector

$$\mathbf{V}\mathbf{x} = \mathbf{V}(\mathbf{I} - \mathbf{A})^{-1}\mathbf{d} = \mathbf{V}\mathbf{B}\mathbf{d}.$$
(4)

The term $\mathbf{VB} = \mathbf{V}(\mathbf{I} - \mathbf{A})^{-1}$ is known as the matrix of VA multipliers or VA shares, which can be used to obtain the amount of VA generated in each sector (\mathbf{Vx}) when producing to satisfy FD (d). More specifically, the matrix \mathbf{VB} contains the amount of VA by each country-sector (row) to the production of one unit of each country-sector's (column's) output.

4.1 Backward GVC Participation

The FVA share in domestic production and exports, termed 'Vertical Specialization' (VS) by Hummels et al. (2001), is the most widely used measure of backward GVC integration. Consider **VB** with elements $vb_{oi,uj}$, then VS for a particular country-sector may be expressed as¹¹

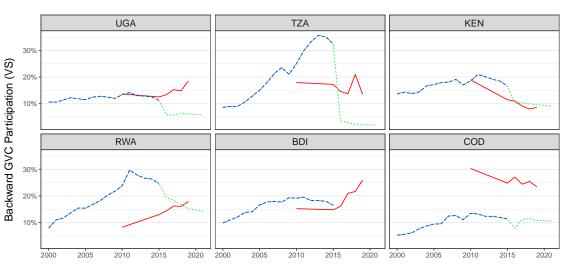

$$VS_{uj} = \sum_{oi, \ o \neq u} vb_{oi, uj} \ \forall uj.$$
(5)

Figure 9 shows a time series of VS according to different data sources. The calculated VS measure using EORA21 is identical to the WDR one. The extension of EORA through 2021, as mentioned, introduces a large structural break in 2016, which, in some cases such as Tanzania where VS drops to zero or Burundi where VS rises to above 50% (truncated in Figure 9) is highly unrealistic. EM is the more reliable database for these countries and indicates that for all EAC members, between 8% and 30% of production/exports is foreign content. Furthermore, EM suggests that the smaller economies Burundi, Rwanda, and Uganda have increased their VS, especially in 2015-2019, whereas Kenya and Congo have seen a decline in VS. In Tanzania, VS appears stagnant at ~16%.

⁹Specifically each element in $b_{oi,uj}$ in **B** gives the output required from country-sector oi for the production of one unit of the final good in uj. Thus, the first column of **B** gives all the productive input required from all sectors for the production of one unit of the final good in sector 1, and the first row of **B** gives all the input required from sector 1 to produce one unit of the final good in each sector.

¹⁰Thus the expression amounts to summing up the entries in each column of \mathbf{A} (representing the intermediate input shares for 1 unit of output) and subtracting them from 1.

¹¹In words: sum the elements of **VB** in each column, excluding domestic country-sectors.

Figure 9: EAC BACKWARD GVC PARTICIPATION

Source:

EMERGING ····· EORA --· WDR EORA

Notes: Hummels et al. (2001)'s index of Vertical Specialization (VS) is the FVA share in gross output and exports.

Apart from its overall size, the composition of the foreign content at the country and sector levels is of interest. Figure 10 shows a breakdown of foreign content by source country/region, averaged, for EORA between 2010 and 2015 and for EM between 2015 and 2019. Congruent to the EAC import share shown in the bottom right panel of Figure 8, only Rwanda, Burundi, and Uganda source a significant fraction of foreign inputs from EAC partners. According to EM, Kenya supplies 11.5% of the foreign content in Ugandan exports, 9.8% in Rwanda, and 8% in Burundi. Uganda also supplies 9.3% of the foreign content in Rwandan exports and 5.5% in Burundi. In absolute values, Uganda supplies slightly more to Kenyan export production (around 23 million USD according to EM, vs. 20.7 million to Rwanda). This is dwarfed by the 115 million that Kenya supplies for Ugandan export production.

Overall, the EU and China are the greatest suppliers of foreign content in EAC exports, supplying, in the case of the EU, 33% of the foreign content of Congolese exports, 23% in Burundi, 21% in Rwanda, 17%, 16%, 15% in Uganda, Kenya, and Tanzania, respectively. China supplies 27% of the foreign content of Kenyan and Tanzanian exports (approx. 300 million USD in both cases), 21% in Uganda, and 16% in Congo. Thus, overall, EAC exports have modest amounts of foreign content, and most of this foreign content, particularly for major exporters Congo, Kenya, and Tanzania, originates in the EU or China.

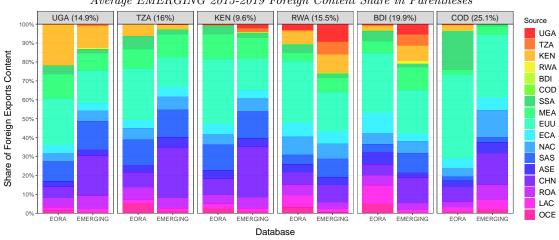


Figure 10: EAC BACKWARD GVC PARTICIPATION: SOURCES OF FOREIGN CONTENT Average EMERGING 2015-2019 Foreign Content Share in Parentheses

Notes: Figure shows a breakdown of VS by source country according to EORA (2010-2015) and EM (2015-2019) averages.

Sectors exhibit great heterogeneity, both in terms of overall foreign content and its composition. Table 3 shows overall sectoral foreign content shares according to EM. In general, manufacturing sectors have higher foreign content, a pattern emphasized in the WDR, which also notes that a handful of sectors, including electrical machinery (ELM) and transport equipment (TEQ), have driven GVC expansion since 1995. In the average EAC country, these manufacturing sectors have more than 20% foreign content, but there is marked heterogeneity across countries. Notably, in Rwanda, manufacturing sectors have less than 15% foreign content. The highest foreign content sectors by country are ELM in Tanzania (42%), wood and paper (WAP) in Kenya (40%), mining (MIN) and textiles (TEX) in Uganda (29%), sales and repairs (SMH) in Rwanda (25%), petrochemicals (PCM) in Burundi (47%) and TEQ in Congo (36%). Since Burundi and Congo have no IO table, these figures need to be taken with caution. The final columns of Table 3 give FVA in overall sectoral exports by EAC members, including value addition by other members, with and without Congo. These resemble a classical VS distribution, centering around ELM and TEQ at $\sim 35\%$.

Table 3: EAC BACKWARD GVC PARTICIPATION: SECTORAL HETEROGENEITY Average EMERGING 2015-2019 Foreign Content Shares

sector	UGA	TZA	KEN	RWA	BDI	COD	Mean	Median	EAC6	EAC5
AFF	5.9	4.1	3.7	5.8	15.2	3.3	6.3	5.0	4.2	4.4
MIN	29.2	5.5	0.0	2.0	17.0	4.7	9.7	5.1	4.6	6.8
FBE	22.7	7.6	3.1	20.6	19.3	13.6	14.5	16.4	11.1	10.7
TEX	29.6	17.1	25.2	8.3	8.5	28.6	19.6	21.2	26.1	24.1
WAP	13.7	22.7	39.5	1.4	5.9	20.1	17.2	16.9	24.8	29.2
PCM	23.9	19.8	19.5	10.2	47.1	20.6	23.5	20.2	20.0	19.7
MPR	27.0	26.9	16.2	10.2	39.7	25.0	24.2	26.0	24.3	23.6
ELM	18.7	41.9	30.7	5.2	27.4	34.9	26.5	29.1	34.9	35.2
TEQ	22.7	17.1	19.7	0.0	32.8	36.4	21.4	21.2	34.6	23.9
MAN	23.3	21.8	27.3	0.8	0.4	24.5	16.3	22.6	25.3	25.6
EGW	28.2	3.1	26.2	0.0		2.1	11.9	3.1	16.9	27.1
CON	15.6	13.1	16.2	7.4	5.3	30.6	14.7	14.3	12.9	12.9
SMH	5.6	11.7	9.4	25.2	14.1	15.3	13.5	12.9	10.9	10.9
TRA	7.6	18.5	6.6	4.7	0.1	4.3	7.0	5.7	11.0	11.0
PTE	11.0	21.7	5.4	0.0	0.0	2.5	6.8	4.0	11.9	12.0
FIB	0.4	8.2	0.3	1.9	0.0	4.5	2.5	1.1	1.1	0.9
PAO	5.0	2.2	8.0	0.0	0.0	4.5	3.3	3.4	6.8	7.0

Notes: Table reports total foreign content shares (VS) according to the EM 2015-2019 average in percentage terms. These shares are reported for each EAC6 country and for the EAC6 and EAC5 as a whole, which also counts VA by members among each other as FVA, i.e., these are export-weighted averages of individual members VS. The 'Mean' and 'Median' give unweighted EAC6 averages.

Figure 11 breaks down the origin of the EAC5 FVA and thus provides a sector-level perspective of EAC regional integration. According to Figure 11, the sectors with the highest EAC5 FVA

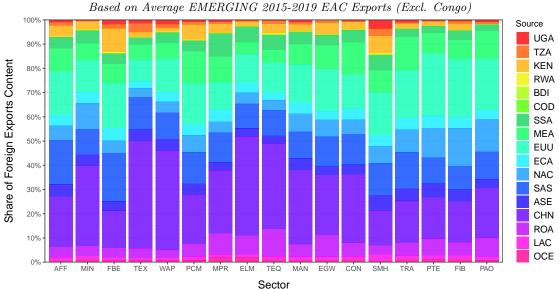
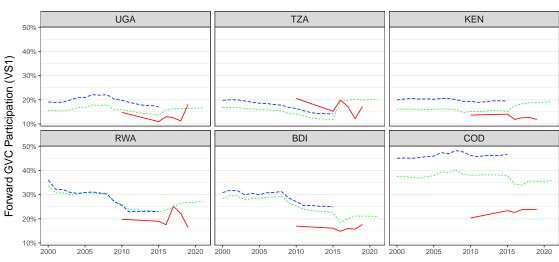


Figure 11: EAC5 BACKWARD GVC PARTICIPATION: SOURCES OF VS BY SECTOR Based on Average EMERGING 2015-2019 EAC Exports (Excl. Congo)

Notes: Figure shows a sector-level breakdown of total EAC5 VS by source country, according to EM (2015-2019) averages.

share are SMH at 14.5% and FBE at 14%. Other sectors with sizeable shares are PCM at 8.6%, TEX at 7.4%, AFF at 7.2%, electricity (EGW) at 6.3% and TEQ at 6.2%. This quantitatively highlights the potential of the FBE sector for regional integration but also indicates a failure of regional integration in many core manufacturing sectors. For example, ELM, which has a FVA content of around 35% according to Table 3, only has a 2.8% regional FVA share. Multiplying these percentages yields that only 1% of the gross output (and exports) in EAC ELM is regional FVA, compared to 1.5% for FBE. ¹² Figure 11 thus indicates great potential and challenges in developing regional manufacturing value chains.


4.2 Forward GVC Participation

Apart from VS, which measures backward GVC integration, Hummels et al. (2001), and more formally Daudin et al. (2011), introduced the share of domestic exports that enter foreign countries' exports, termed VS1, as a measure of forward GVC Integration. It is defined as¹³

$$VS1_{oi} = \frac{1}{E_{oi}} \sum_{uj, u \neq o} vbe_{oi, uj} \quad \forall \ oi,$$
(6)

where E_{oi} are the gross exports of country-sector oi used to normalize the sum along the rows of **VBE** (excluding domestic sectors) which capture the use of VA from a domestic sector oi in the exports of all foreign sectors uj. Borin & Mancini (2019) show that this measure is biased because it contains double-counted components. They propose (DVA - DAVAX)/E, which is the ratio of DVA (excl. double-counted items) minus directly absorbed DVA in exports (DAVAX) to gross exports as a refined measure of forward GVC participation.

Accurate computation of forward GVC participation requires a full country-level ICIO database. Due to computational constraints, I reduce the number of sectors to 5: AFF, FIB, MIN, MAN (combining 7 manufacturing sectors), and SRV (all other sectors) while preserving the full number of countries and territories (187 for EORA and 245 for EM). Figure 12 shows the corrected measure of forward GVC participation following Borin & Mancini (2019). Evidently, a reduction of the sectoral dimension attenuates aggregate VS1 indicators a bit, but the trends are broadly preserved. All indicators show that commodity exporters such as Congo and Burundi have higher levels of forward GVC integration. The EM measures suggest that VS1 has increased slightly in Congo and decreased slightly in Kenya, Rwanda, and Tanzania since 2010, indicating a slight shift away from commodities in these economies.

Figure 12: EAC FORWARD GVC PARTICIPATION

Source: - EMERGING ···· EORA --· WDR_EORA

Notes: Borin & Mancini (2019)'s index of forward GVC integration (VS1) is the (non-double counted) DVA in exports that is not directly absorbed by the direct importer, divided by gross exports: (DVA - DAVAX)/E.

¹³For completeness I note that VS can be defined in an analogous way as $VS_{uj} = \frac{1}{E_{uj}} \sum_{oi, o \neq u} vbe_{oi, uj} \quad \forall uj$, however, since $\sum_{oi} vb_{oi, uj} = 1 \quad \forall uj$, the exports cancel out and the equation reduces to Eq. 5.

 $^{^{12}\}mathrm{Given}$ the lower FVA share of 11% in the FBE sector.

Since even with the 5-sector ICIO tables, bilateral GVC indicators with Belotti et al. (2020)'s ICIO package are extremely time-consuming, I compute the classical VS1 measure (also called exports to re-exports (E2R) by Baldwin & Lopez-Gonzalez (2015)) following Eq. 6 to examine bilateral relationships. Figure 13 shows a breakdown of VS1 by GVC partner. The headers indicate that E2R (Eq. 6) is indeed upward biased vis-a-vis the corrected measure of Borin & Mancini (2019) (BM). Figure 13 reveals that, according to EM, 4.4% of Kenya's VS1 was re-exported by Uganda, and 3.2% of Ugandan VS1 is re-exported by Kenya. Other EAC countries also re-export a small share of their VS1 through Kenya: Burundi (1.25%), Rwanda (1.5%), and Tanzania (1.5%). Burundi and Rwanda have 2.4% and 0.8% of their VS1 through Uganda, respectively. Forward GVC linkages in the EAC are almost an order of magnitude smaller than backward linkages. The major GVC partner for EAC countries is the EU, accounting for 43% of Kenyan and Congolese VS1 and close to 30% of VS1 in the other EAC members. The early literature (e.g., Foster-McGregor et al. (2015), Kummritz (2016)) associates increased VS1 with productive upgrading, which, according to Figure 13, is still in its infancy in RVCs.

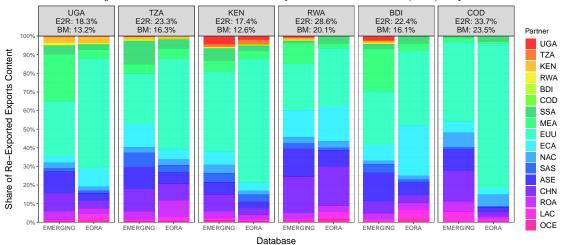


Figure 13: EAC FORWARD GVC PARTICIPATION: RE-EXPORTING GVC PARTNERS Average EMERGING 2015-2019 Re-Exported Content Shares (VS1) Reported

Notes: Figure shows a breakdown of forward GVC integration by GVC partner according to EM 2015-2019 averages. The classical VS1 measure of Daudin et al. (2011) (Eq. 6, also termed E2R) is used to determine each partner's share in total VS1. The headers provide overall VS1 using both E2R and the corrected measure by Borin & Mancini (2019).

Table 4 shows the overall sector-level forward GVC participation, similar to Table 3 for backward GVC participation, and highlights considerable heterogeneity across EAC countries and sectors. In the EAC5 (excl. Congo), around 21% of gross exports in agriculture and manufactured products are re-exported VA as part of GVCs.

Table 4: EAC FORWARD GVC PARTICIPATION: SECTORAL HETEROGENEITY Average EMERGING 2015-2019 Re-Exported Content Share (VS1 following BM)

sector	UGA	TZA	KEN	RWA	BDI	COD	Mean	Median	EAC6	EAC5
AFF	16.1	17.0	27.8	13.5	21.0	21.8	19.5	19.0	21.3	21.2
MIN	28.1	14.3	15.7	3.4	6.8	31.1	16.6	15.0	30.7	14.7
FBE	11.3	19.3	11.4	13.2	19.2	15.6	15.0	14.4	13.3	12.9
MAN	22.0	23.4	11.9	42.8	21.6	23.7	24.2	22.7	22.5	21.0
SRV	7.8	10.2	10.0	7.6	8.3	12.1	9.3	9.2	9.6	9.5

Notes: Table reports total forward GVC participation (VS1) following Borin & Mancini (2019) using the EM 2015-2019 average in percentage terms. These shares are reported for each EAC6 country and for the EAC6 and EAC5 as a whole, which includes re-exported VA by EAC members among each other. They are thus export-weighted averages. The 'Mean' and 'Median' columns give unweighted EAC6 averages.

Since forward EAC GVC integration focuses on Uganda and Kenya, I also examine this link at the sector level. Based on EM 2015-19 averages, Kenya exports 81 million USD through Uganda, which amounted to 4.4% of Kenya's VS1 and 0.76% of its gross exports. 54% of these 81 million are manufactured goods, 20% are services, and 17% agricultural products. Uganda, on the other hand, exports 30 million USD through Kenya, which amounts to 3.2% of Ugandan VS1 and 0.58% of Ugandan gross exports. Of these 30 million, 45% are agricultural products, 22% services,

and 18% manufacturing, and 16% FBE. The links between these two countries account for the bulk of EAC forward GVC integration, summarized compactly by Table 5. Of particular interest in this table is the EAC share in sectoral VS1, which is high at 20.7% for Kenyan manufactures, indicating that about 1/5th of re-exported VA in Kenyan manufacturing is accounted for by its EAC partners. Other notable figures are the 41%/29% EAC shares in re-exported Rwandan/Kenyan mining exports, which are, however, very small in value.

Table 5: EAC FORWARD GVC INTEGRATION AT THE SECTOR LEVEL Average EMERGING 2015-2019 Traditional VS1 Estimates (Daudin et al., 2011)

	VS1 (I	Re-Expo	orted By	EAC Pa	artners)	Total +	EAC	Shares	EAC Share in Sectoral VS1					
Country	AFF	FBE	MAN	MIN	SRV	TOT	VS1	\mathbf{EXP}	AFF	FBE	MAN	MIN	SRV	
UGA	18.23	6.05	13.52	0.00	11.98	49.78	5.60	0.95	6.36	9.05	6.37	6.79	4.12	
TZA	11.06	9.20	12.40	1.15	17.64	51.45	2.80	0.61	3.44	5.89	3.03	8.91	1.91	
KEN	19.58	9.24	65.88	0.98	28.33	124.01	6.83	1.17	3.22	6.50	20.74	28.73	3.86	
RWA	3.63	3.08	3.39	0.00	3.59	13.69	2.86	0.80	13.98	12.99	1.21	41.04	2.27	
BDI	0.37	1.27	0.38	0.01	0.33	2.37	4.37	0.97	5.49	7.49	2.98	3.01	2.24	
COD	0.22	0.10	1.33	0.46	0.34	2.45	0.06	0.02	0.07	0.08	0.06	0.05	0.07	

Notes: VS1 is recorded in million USD, shares in percentage terms. Column 'TOTAL' gives total VS1 through EAC partners, and columns 'VS1' and 'EXP' give the share of this in the country's total VS1 and gross exports, respectively.

To complete the picture, Figure 14 shows the sector-level shares in forward GVC partners for the EAC5 (Excl. Congo). The EAC share is highest in mining at 13%, but, Congo being excluded, mining VS1 comprises only 13 million USD, compared to 2.8/3 billion in AFF/FBE, 7.8 billion in manufacturing, and 5.6 billion in services re-exports. Among these, the EAC has a share of 4% in AFF and 6.7% in both FBE and MAN, indicating that manufacturing accounts for the bulk of GVC forward regional integration. The biggest forward GVC partner in all sectors remains the EU, at shares between 47% for AFF and 16% for MIN and MAN.

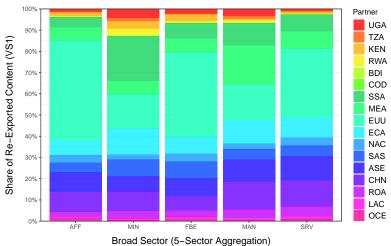


Figure 14: EAC FORWARD GVC PARTICIPATION: GVC PARTNERS BY SECTOR Based on Average EMERGING 2015-2019 EAC Exports (Excl. Congo)

Notes: Figure shows a sector-level breakdown of total EAC5 VS1 (E2R) by GVC partner using EM (2015-2019) averages.

4.3 Trends in EAC Regional Integration in Value Added Terms

Whereas overall EAC GVC integration appears relatively stable, exempting an increase in VS in the smaller economies and a gradual decline in VS1, there may be stronger trends in regional integration relative to overall trade and GVC integration - as evident in gross trade flows. In this section, I thus introduce four metrics to track EAC regional integration through VA in supply chains relative to the overall GVC integration of member countries. The first metric is the share of FVA in a member's production/exports accounted for by its EAC partner states. It is defined as

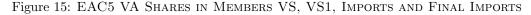
$$VS_{uj}^{EAC} = \frac{1}{VS_{uj}} \sum_{oi \in EAC, \ o \neq u} vb_{oi,uj} \ \forall \ uj \in EAC,$$
(7)

where VS_{uj} is defined as in Eq. 5. VS^{EAC} is thus a relative measure tracking the EAC share in VS, as shown also in Figure 10, such that the overall EAC VA share in domestic production can be computed as $VS_{uj}^{EAC} \times VS_{uj} \forall uj$. I define an analogous measure for VS1 as the proportion of DVA in re-exported exports exported by EAC partner states, as in Figure 13

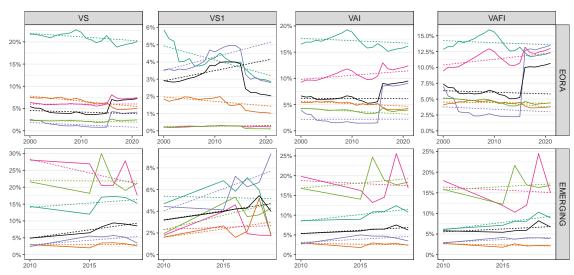
$$VS1_{oi}^{EAC} = \sum_{uj \in EAC, u \neq o} vbe_{oi, uj} / \sum_{uj, u \neq o} vbe_{oi, uj} \quad \forall \ oi \in EAC.$$
(8)

These two metrics effectively track the role of the EAC in forming the interaction of each member country with ROW in terms of backward and forward production and export linkages. They do, however, not account for the import side, i.e., the role of the EAC in providing goods and services to each member country relative to ROW. I thus compute two additional metrics to capture this aspect of regional integration. The first is the share of EAC VA in members imports, which I denote by VAI^{EAC}. Consider E_u the vector of gross exports to EAC using country $u \in EAC$ from each country-sector. I then compute the VA origins of these exports to country u as

$$E_u^{VA} = \mathbf{VB}E_u,\tag{9}$$


where E_u^{VA} denotes the vector, with elements $e_{oi,u}^{VA}$, of VA supplied by each country-sector (oi) in these imports of country u. From E_u^{VA} , the share of EAC VA is easily computed as

$$\operatorname{VAI}_{u}^{EAC} = \sum_{oi \in EAC, o \neq u} \left. e_{oi,u}^{VA} \right/ \sum_{oi, o \neq u} e_{oi,u}^{VA}.$$
(10)


 $\operatorname{VAI}_{u}^{EAC}$ is thus a country-level measure of the VA by its EAC partners in its import mix, excluding any DVA in imports. This VA may include intermediates of exported goods. To single out the EAC share in imported consumption goods, I also consider only exports for final consumption. Let FE_{u} be the final exports to country u from each country-sector. Then $FE_{u}^{VA} = \mathbf{VB}FE_{u}$ denotes these exports in VA terms, and I define

$$VAFI_{u}^{EAC} = \sum_{oi \in EAC, o \neq u} fe_{oi,u}^{VA} / \sum_{oi, o \neq u} fe_{oi,u}^{VA}$$
(11)

as the EAC VA share in final goods exported to a particular member u. I compute these metrics using the MRIO tables with reduced country dimension, except for $VS1_{oi}^{EAC}$ where I use the tables with reduced sectoral dimension. Figure 15 plots all metrics, including a weighted linear trend.¹⁴

Country: - UGA - TZA - KEN - RWA - BDI - EAC5 Measure: - Value ---- Linear Trend

Notes: Figure shows regional EAC regional integration metrics following Eqns. 7-11, including a (weighted) linear trend.

 $^{^{14}}$ All observations receive a weight of 1, except for EM 2010 obs. which receive a weight of 2 because no further data is observed until 2015, and EORA 2016-21 obs. receive a weight of 0.1 due to the stark structural break with the earlier series.

Both databases agree that EAC shares in members VS1 are substantially lower than in VS, VAI, and VAFI but increased over the period, mainly driven by Kenya. They also agree that the larger economies drive EAC forward linkages, and smaller economies (Rwanda and Burundi) are more important in backward linkages (VS) and as importers of final goods (VAFI). Otherwise, there is not much agreement regarding the direction of the trend. To make Figure 15 more intelligible, Figure 16 plots the slope coefficients. The more reliable EM database suggests that, with few exceptions, EAC regional integration in VA terms is increasing in most countries. Considering the EAC5 as a whole, the coefficients suggest that VS^{EAC} is increasing by 0.5 percentage points (pp.) per year, and the EAC shares in EAC VS1, VAI, and VAFI are increasing at a slower rate of around 0.15 pp. per year. These trends mildly contrast those from gross trade (Figure 3).

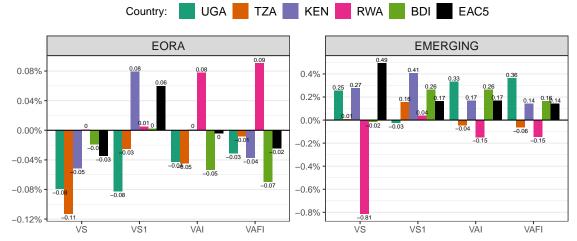


Figure 16: Weighted Slope Estimates Measuring the Speed of Regional Integration

Notes: Figure shows (weighted) linear slopes (dotted lines in Figure 15). In the estimation, all obs. received a weight of w = 1, except for EM 2010 (w = 2) and EORA > 2015 (w = 0.1). These weights reflect data availability and quality.

As with gross trade, the weak aggregate signal indicates that there may be more substantial sectoral developments. I thus recompute all 4 indicators at the sector level using the EM database with full country dimension but only 5 broad sectors. Figure 17 shows weighted linear slope estimates at the sector level (excluding mining), using again a weight of 2 for 2010 estimates.

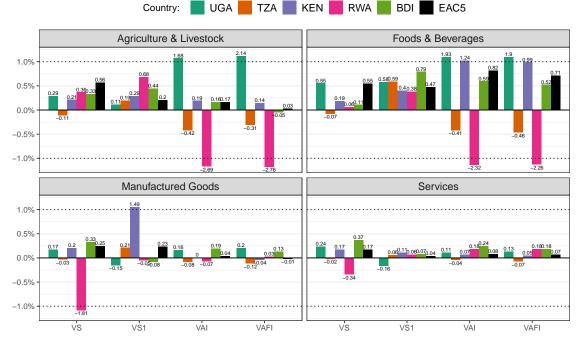
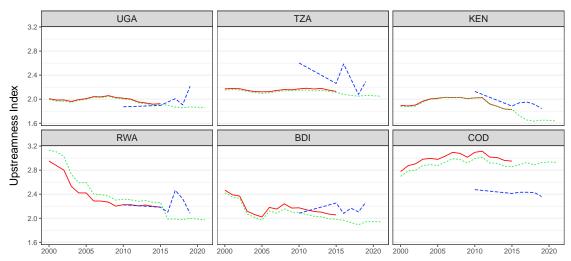


Figure 17: Weighted Slope Estimates of Members Sectoral Integration Speed

Notes: Figure shows (weighted) linear slopes estimating the speed of regional integration (pp. per year) at the 5-sector level (excl. mining) based on EM (2010-2019). All obs. received a weight of w = 1, except for EM 2010 (w = 2).

Regional integration in goods-producing sectors proceeds substantially faster than in services. The aggregate pattern from Figure 16, with faster integration through VS^{EAC} , is reflected in agriculture, manufacturing, and services. The FBE sector, on the other hand, experienced stronger integration through forward linkages ($VS1^{EAC}$) and imports (VAI^{EAC} , $VAFI^{EAC}$) at greater integration speeds (≥ 0.5 pp. per year on all metrics). Uganda and Kenya are driving these developments. The regional integration in FBE through $VS1^{EAC}$ is also carried to almost equal shares by all 5 members, whereas the manufacturing expansion through $VS1^{EAC}$, proceeding at about half the speed as FBE, is driven almost completely by Kenya, with Tanzania contributing a little bit, and other members experiencing declining $VS1^{EAC}$. Overall, the analysis of regional integration in VA terms complements Figures 5 and 6, indicating that there is some momentum on regional integration in agriculture and FBE, but equitable integration in manufacturing is difficult, and Kenya has strengthened its already favorable trading position through forward GVC linkages.

4.4 EAC Positioning in GVCs


Following Antràs et al. (2012); Antràs & Chor (2022), a common measure of upstreamness $U_{oi} \in$ **u** is obtained by iterating forward the IO model in Eq. 1, multiplying terms by the number of production stages needed to obtain them, and normalizing by gross output. In matrix notation:

$$\mathbf{u}\mathbf{x} = \mathbf{d} + 2\mathbf{A}\mathbf{d} + 3\mathbf{A}\mathbf{A}\mathbf{d} + 4\mathbf{A}\mathbf{A}\mathbf{A}\mathbf{d} + \dots = (\mathbf{I} - \mathbf{A})^{-2}\mathbf{d}.$$
 (12)

The index is, by definition, greater than 1, and Antràs et al. (2012) state that it can be interpreted as the dollar amount by which the output of all country-sectors combined increases following a one-dollar increase in the VA of sector *i* in country *o*. Intuitively, it measures the distance of the production stage performed by sector *i* in country *o* to the finally demanded product (d).¹⁵ Antràs et al. (2012) further find that *U* is positively correlated with physical capital intensity and negatively correlated with skill intensity across US industries, and negatively correlated with rule of law, private credit to GDP, and education across a sample of OECD countries. Figure 18 shows aggregate upstreamness for the EAC, calculated using the regional MRIO tables with the full sector dimension, where sector-level U_{oi} estimates were averaged using gross export weights.

Figure 18: Upstreamness Index for EAC Countries

Notes: Figure shows upstreamness index following Antràs et al. (2012), computed at the sector level and averaged across sectors using sectoral gross exports as weights. The EORA and EM MRIOs have EAC + 11 regions and all sectors.

Figure 18 shows that the computed U index closely tracks the version computed by Mancini et al. (2023) using the full EORA 26 database, which also perform an inventories adjustment

¹⁵ An equivalent measure of downstreamness (d) can be computed measuring the distance to VA instead of FD (Antràs & Chor, 2022; Miller & Temurshoev, 2017; Mancini et al., 2023), but, for the sake of brevity, this is omitted. The simplest way of computing this index is as $\mathbf{d} = \mathbf{1'B}$, i.e., it is the column-sum of the Leontief inverse matrix (Miller & Temurshoev, 2017; Antràs & Chor, 2022). It can be interpreted as the total increase in gross output in the world economy that a unit increase in FD in the respective country-sector would generate. At the world level \mathbf{u} and \mathbf{d} are identical and measure the length of GVCs (Mancini et al., 2023).

following Antràs & Chor (2018). The data suggest that Congo, as a large commodity exporter, is very upstream and that all EAC members apart from Uganda and Burundi, where the EM estimates suggest a slight increase, have moved more downstream since 2010. The most impressive development seems to have taken place in Rwanda during 2000-2010, but since EORA does not have a Rwandan IO table, this trend must be interpreted with skepticism.

To investigate developments at the sector level, I aggregate U to broad sectors using export weights, combining all manufacturing sectors apart from FBE and all service sectors into broad categories. I also aggregate the time dimension over two intervals, 2010-2014 and 2015-2019, using the median to obtain a robust estimate. Table 6 reports the results, including an estimate of the growth rate of U between the two intervals and an export-weighted EAC5 average.

The most upstream sector, according to both databases, is MIN, with U > 3 signifying more than 3 production stages on average before final use. This is followed by MAN with 2 < U < 3in most countries, FBE and primary AFF with 1.5 < U < 2.5 and SRV with 1 < U < 2. Except for SRV, this is broadly in line with the world average sectoral upstreamness pattern of, according to EM 2015-19, 3.32 (MIN), 2.86 (MAN), 2.62 (AFF), 2.25 (SRV) and 2.18 (FBE). The U values of around 2/2.5 for EAC FBE/MAN indicate that these sectors are located at least one step before final use. For FBE, where more than 90% of VS1 is through non-EAC GVC partners (Figure 14), this implies that more processing steps could still be undertaken regionally to export products closer to FD. The change between the two intervals yields a downstream shift in almost all country-sectors. This is particularly pronounced in AFF, MAN, and FBE, but also in SRV. The shift suggests that all production processes are moving closer to FD. The world average growth rate in U between these intervals, according to EM, was 3.3% for AFF, 2.1% for MIN, 0.85/0.82% for FBE/MAN, and -0.5% for SRV, revealing that, except for SRV, EAC developments run against a global trend towards longer manufacturing GVCs (Antràs & Chor, 2018).

		W	VDR Es	timates	using E	015	EMERGING Estimates						
Sector	Year	UGA	TZA	KEN	RWA	BDI	EAC5	UGA	TZA	KEN	RWA	BDI	EAC5
AFF	2010-2014	2.17	2.38	1.56	2.36	3.49	1.81	1.86	1.88	2.30	1.80	1.98	2.09
AFF	2015-2019	2.13	2.36	1.49	2.35	3.33	1.76	1.91	1.84	1.83	1.28	1.77	1.84
AFF	Growth Rate	-1.72	-0.94	-4.11	-0.49	-4.75	-2.68	2.85	-2.08	-20.64	-29.25	-10.73	-12.06
MIN	2010-2014	3.07	3.53	3.49	3.39	2.89	3.48	2.13	3.23	3.28	3.29		3.25
MIN	2015-2019	3.02	3.37	3.45	3.32	2.81	3.41	3.22	3.28	3.12	1.54	1.63	3.17
MIN	Growth Rate	-1.62	-4.46	-1.40	-2.23	-2.81	-2.08	51.20	1.56	-5.02	-53.27		-2.44
FBE	2010-2014	1.47	1.58	1.41	1.39	1.50	1.45	2.23	2.04	2.34	2.57	2.32	2.26
FBE	2015-2019	1.44	1.57	1.34	1.36	1.45	1.38	2.15	2.12	2.18	2.35	2.41	2.13
FBE	Growth Rate	-2.26	-0.88	-5.32	-1.87	-2.81	-4.37	-3.21	3.81	-6.57	-8.54	4.25	-5.59
MAN	2010-2014	2.20	2.09	2.30	2.19	2.03	2.25	2.38	3.28	2.41	3.84	3.17	2.89
MAN	2015-2019	2.14	2.06	2.18	2.15	1.97	2.15	2.47	2.89	2.24	3.16	2.73	2.63
MAN	Growth Rate	-2.62	-1.57	-5.34	-1.68	-3.15	-4.42	3.81	-11.79	-7.11	-17.74	-13.96	-9.02
SRV	2010-2014	1.73	1.89	1.77	1.70	1.79	1.78	1.35	2.19	1.83	1.40	1.47	1.82
SRV	2015-2019	1.70	1.85	1.64	1.67	1.74	1.69	1.52	2.09	1.65	1.61	1.41	1.77
SRV	Growth Rate	-1.40	-1.89	-7.02	-1.78	-2.85	-4.82	12.27	-4.84	-9.75	15.11	-4.01	-2.66

 Table 6:
 EAC5 Trends in Upstreamness by Broad Sector (Aggregated)

Notes: Table shows median upstreamness (U) following Antràs et al. (2012) across 2010-14 and 2015-19, and the growth rate in percentage terms between these medians. MAN and SRV are broad categories combining sectors TEX-MAN and EGW-PAO in Table 2, respectively, via an export-weighted average. The EAC5 is an export-weighted average across the 5 countries (excl. COD) computed annually before taking the median.

This appears to be good news for all sectors apart from MAN and SRV, indicating that exports are closer to FD and more local value is added. For MAN, it suggests a shift towards processing trade, which is generally not associated with industrial upgrading. The effect of SRV moving more downstream is ambiguous and depends very much on the type of service. For transport/tourism (TRA), a downstream shift posits more local value addition, whereas for telecommunications (PTE) and financial intermediation (FIB), downstream shifts might signify the insufficient quality of these services to be used as intermediates in more complicated production processes. EAC data on these sectors are likely of questionable quality, yet a brief disaggregated appraisal using EM yields, notably, a 28% upstream/downstream shift in PTE in Kenya/Rwanda (EAC5 average is 5.3% downstream), a 9.5/5.9% downstream shift in TRA in Kenya/Burundi, whereas other EAC members saw a slight upstream shift (EAC5 average is 1.4% downstream).

5 (New) Revealed Comparative Advantage

In international trade, including GVC-related trade, competitiveness is related to the concept of comparative advantage¹⁶. A popular way to empirically measure Ricardo's concept of comparative advantage is Balassa (1965)'s measure of revealed comparative advantage, defined as the share of a sector in gross country exports divided by the share of that sector in gross world exports

$$RCA_{oi} = \frac{E_{oi}}{\sum_{i} E_{oi}} \bigg/ \frac{\sum_{j} E_{ji}}{\sum_{ji} E_{ji}}.$$
(13)

RCA_{oi} > 1 signifies a revealed comparative advantage of country o in sector i. The traditional index based on gross exports, however, does not account for GVCs and double counting in exports. Koopman et al. (2014), therefore, propose a new index based on the DVA in gross exports. Borin & Mancini (2019) show that the decomposition of Koopman et al. (2014) is inexact in allocating DVA and foreign double-counted items. Appendix Figure B3 shows the refined breakdown following Borin & Mancini (2019), and Appendix Figure B4 plots the decomposition of gross exports for each of the EAC members.¹⁷ DVA is the sum of DAVAX, NDAVAX, and REF. According to EM 2015-19, in the average EAC member, DAVAX accounts for 71% of gross exports, NDAVAX for 12%, FVA for 14%, and FDC for 3%. REF and DDC are close to 0 in all EAC countries, implying that the GVCs these countries engage in are relatively short. Thus, in the EAC, DVA $\approx E - VS$, yielding an average 17% downward adjustment of gross exports. This may appear small, but, as Table 3 shows, manufacturing sectors have higher VS of up to 50%.

For comparison, I compute both classical RCA using gross exports (GX) and NRCA using DVA in exports (VAX) based on all available databases, including BACI (only available for goods-producing sectors) and the WDR GVC indicators based on EORA 2015. Figure 19 shows median (N)RCA estimates across years 2010-19 for the EAC5.

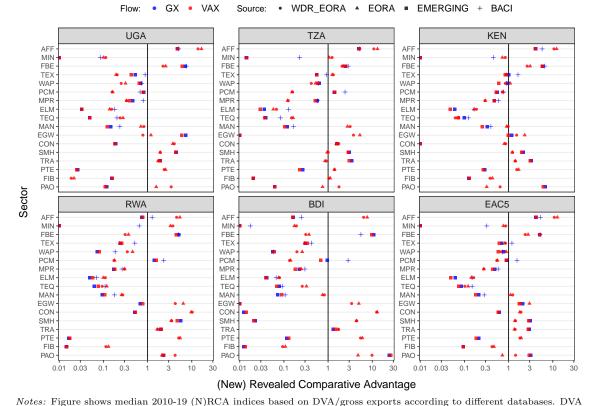
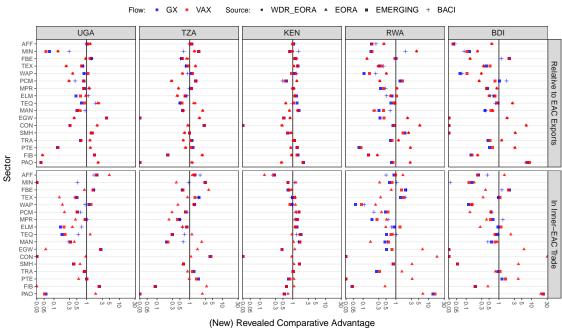


Figure 19: (New) Revealed Comparative Advantage: 2010-19 Median

is computed following Borin & Mancini (2019). Appendix Table B2 contains the values and Table B3 their correlations. To not overcrowd the figure, GX-based estimates using (WDR_)EORA are not shown.

 $^{^{16}}$ A widely accepted theory of international trade developed by David Ricardo in 1817 stipulating that countries specialize in sectors where their productivity relative to the international average is greatest.


¹⁷To connect this to the aggregate measures of GVC integration VS and VS1 discussed so far: VS, the share of FVA in gross exports, is the sum of FVA and FDC, whereas VS1 is the sum of NDAVAX, REF and DDC.

Appendix Tables B2 and B3 contain the corresponding values and correlations among different estimates, reassuringly indicating that all RCA measures are correlated. Whereas EORA-based estimates correlate around 0.57 with the BACI estimates, EM estimates have a strong correlation of 0.93, confirming that these IO tables are very close to official trade data. In all IO tables, RCA and NRCA estimates are also highly correlated (r > 0.96), suggesting that the foreign content shares in exported goods within a sector are quite similar across different countries.

All estimates show that the EAC5 as a whole, and, according to EM/BACI, also all the 5 countries individually, have a succinct (N)RCA in agriculture and food processing of, according to the EM NCRA estimates 4.17 (AFF) and 5.01 (FBE). Similarly, all countries have a sizeable disadvantage in all core manufacturing sectors except for textiles and petrochemicals. Especially electrical machinery (EML: 0.05) and transport equipment (TEQ: 0.08), core drivers of GVC expansion according to the WDR, have a strong revealed disadvantage. On the services side, all members have a (N)RCA in transport (and travel) services (TRA: 2.77), which is particularly strong in Kenya (3.12) and Tanzania (3.02), and all members apart from Burundi have a (N)RCA in sales, maintenance, and hotels (SMH: 2.84), particularly Uganda (4.36) and Rwanda (4.64). Furthermore, with its powerful dams, Uganda has a large (N)RCA in electricity exports (EGW: 5.87). EAC members thus exhibit similar patterns of revealed comparative advantage in agriculture, food processing, and tourism, and a disadvantage in core manufacturing sectors. This is constitutive to forming a common trade block, supported by a monetary union as planned, and deepening regional tourism and food processing value chains to maximize regional VA. Yet, comparing the EAC with ROW masks rivalries and differences in (N)RCA between member countries.

5.1 NRCA Relative to the EAC and in Inner-EAC Trade

To uncover these differences, I also compute (N)RCA relative to the EAC5, as the share of a sector in country exports to the share of the sector in EAC5 exports. Furthermore, regional trading reveals comparative advantages that can foster or block deeper RVCs. Thus, I also compute (N)RCA of each member relative to the regional trade mix. Figure 20 presents both estimates and Appendix Table B4 the corresponding values.

Figure 20: NRCA RELATIVE TO EAC5

Notes: Figure shows median 2010-19 (N)RCA indices based on DVA/gross exports according to different databases, calculated w.r.t. EAC5 exports (top panel) and w.r.t. total inner EAC5 trade (bottom panel). DVA is computed following Borin & Mancini (2019). Appendix Table B4 contains the corresponding values. To not overcrowd the figure, GX-based estimates using (WDR_)EORA are not shown.

The estimates unveil that relative to other EAC5 members, Uganda, Tanzania, and Kenya have a slight (1-1.2) (N)RCA in agriculture, and Uganda, Kenya, and Burundi have a (N)RCA in FBE of (1.2-1.5). In inner-EAC trade, Kenya's (N)RCA drops to 0.26/0.78 in AFF/FBE in VAX

terms, whereas Uganda's rises to 2/1.5, reflecting its stronger regional supplier role. Rwanda has a (N)RCA in mining, but this is not reflected in inner-EAC5 trade. Kenya has a slight comparative advantage in manufacturing sectors, including TEX, MPR, ELM, TEQ, and other manufactures (MAN). Exempting TEX, including PCM, these estimates are even higher in inner-EAC5 trade, but all are in the range between 1 and 2 and thus significantly lower than with ROW. Tanzania also has a (N)RCA in PCM according to both denominations. As mentioned earlier, Kenya and, to a lesser extent, Tanzania also have a slight (N)RCA in TRA (1-1.2), both relative to the EAC and revealed in inner-EAC trade, and Uganda has a large (N)RCA in EGW (4-5).

The trading patterns of different members in both gross and VA terms thus reveal differences in comparative advantage, but these are, with few exceptions, such as Ugandan EGW, between 0.5 and 2, and thus moderate in size. It may, however, still require policy action to overcome these differences and foster more horizontal RVCs in critical sectors such as FBE and tourism (TRA).

5.2 Trends in (N)RCA

A final question regards the direction and speed of shifts in RCA, both overall and inside the EAC. To measure this, I only use gross trade from BACI and DVA from EM to compute (N)RCA medians over two periods: 2006-2010 and 2015-2019. I then compute the growth rate and report it in Figure 21. Appendix Figure B5 shows estimates for both periods and Table B5 holds all values.

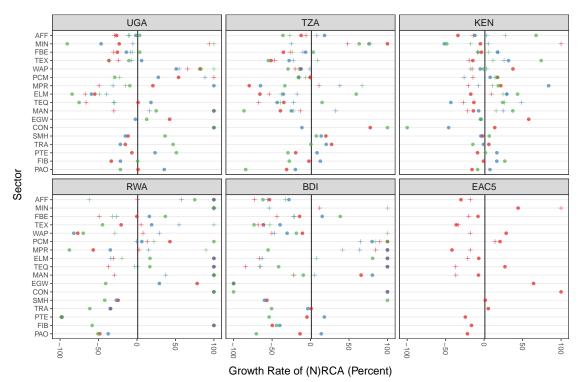


Figure 21: Growth of (N)RCA Between 2006-2010 and 2015-2019 (Medians) $% \left({\left({n + 1} \right)} \right)$

Source: • EMERGING + BACI Measure: • Overall • Relative to EAC • In Inner-EAC Trade

Notes: Figure shows the growth rate in percentage terms between the 2006-10 and 2015-19 (N)RCA medians. EM estimates are based on DVA in exports, BACI on gross exports. Appendix Figure B5 and Table B5 show the values.

The bottom right panel of Figure 21 shows that the EAC5 has lost some comparative advantage in AFF, FBE, and, in GX terms, in all manufacturing sectors apart from PCM. On the services side, there are overall gains in construction (CON), EGW, transport/travel (TRA), and losses in telecommunications (PTE) and financial and business (FIB) services. Kenya gained a bit in FBE, TEX, MPR, and ELM relative to the EAC. For core manufacturing sectors, this is even more reflected in inner-EAC5 trade, i.e., Kenya's share of EAC5 manufacturing trade increased, as noted in section 4.3. These patterns highlight that policy efforts might be needed to strengthen the region's comparative advantage in food processing and tourism and to reverse the trend towards regional manufacturing trade and value chains that further strengthen Kenya's role as a supplier of intermediates and regional hegemon.

6 Trade, Value Chains, and Economic Development

Having extensively documented the patterns of EAC global and regional integration through both traditional trade (Section 3) and value chains (Section 4) while highlighting salient trends, imbalances, and possible policy priorities, a critical remaining policy questing regards the impact of different forms of integration on economic development in the region. This section attempts to provide causal reduced-form evidence on this matter, following Kummritz (2016).

6.1 Review of the Empirical Literature

The WDR Chapter 3 presents extensive correlational evidence that GVC participation is associated with gains in GDP per capita growth and labor productivity, poverty reduction, skill transfer, and employment creation, often benefiting gender equality, but also with challenges in taxation and higher inequality (World Bank, 2020; Antràs & Chor, 2022). The report highlights that long-term firm-to-firm links and specialization in GVC-related tasks promote efficient production, technology diffusion, and access to capital. A cross-country dynamic growth regression estimated with System-GMM yields an 11-14% improvement in per-capita GDP following a 10% increase in overall GVC participation, which is contrasted with a 2% gain from increased trade in products fully produced in one country. Developing countries experience the biggest growth spurt upon transitioning from commodities to limited manufacturing, typically reaping 20% income gains within 3 years.

These findings are broadly echoed in much macroeconomic work on GVCs and economic development. As one of the first, Kummritz (2016) assesses the effect of GVC participation in labor productivity and DVA using OECD ICIOs for 61 countries and 34 industries from 1995-2011. He achieves identification using a novel IV strategy where a VA trade resistance index combining third-country trade costs with industry-specific technological variables induces exogenous variation in GVC participation, and shows that increased GVC participation leads to higher DVA and productivity for all countries: a 1 percent increase in backward GVC participation (VS) leads to 0.11% higher DVA in the average industry, and a 1 percent increase in forward GVC participation (VS1) leads to 0.60% higher DVA and 0.33% higher labor productivity. The effects of forward integration are greater for high-income countries, whereas low/middle-income countries show stronger returns from backward integration. Altomonte et al. (2018), using an instrumental variable combining the growing size of container ships since 1997 with the ex-ante availability of deep sea ports, also present causal evidence of a positive effect of GVC-related trade (DVA in exports) on growth, which is larger than the effect of traditional trade. Both are three-step instrumentation strategies in the spirit of Romer et al. (1999) and Feyrer (2009, 2019).

Constantinescu et al. (2019), using WIOD with 40 countries and 13 sectors over 1995-2009, find that (backward) GVC participation boosts labor productivity. An increase of 10% yields an average productivity increase of 1.7%. Examining a sample of 24 emerging economies, Jangam & Rath (2021) show that both forward and backward participation significantly improve DVA in exports from 1995–2011. Altun et al. (2023) examine the role of GVC participation in hightechnology exports for 120 countries during 1995–2019 and find that GVC participation correlates strongly with high-tech exports. Kummritz et al. (2017) find that GVC participation increases VA, especially in upstream stages. Pahl & Timmer (2020) study the effects of GVC participation on VA in 58 countries (of which 38 developing) between 1970 and 2008 and find a robust positive effect on manufacturing productivity growth, especially for less productive countries where the distance to the global frontier is large. However, they find no positive effects on employment and some negative effects for middle-income countries. Thus, they conclude that GVC participation is a mixed blessing, and it induces skill-biased technological change, in line with Rodrik (2018). Kummritz (2016) notes that GVCs do not necessarily need to benefit developing countries as there could be adverse terms of trade effects or decreases in productive endowments from heavy engagement in them, which is also shown in some theoretical models such as Baldwin & Robert-Nicoud (2014). An argument by Kummritz (2015) is also that GVCs might substitute foreign for domestic suppliers. However, his empirical research suggests that FVA works as a complement rather than a substitute to DVA.

Beverelli et al. (2019) provide further empirical evidence on the relationship between domestic value chains and GVCs. They find that across countries at different stages of development, higher domestic integration by 1 standard deviation raises subsequent GVC integration through backward

linkages (VS) by 0.4%. They also find that domestic value chain integration explains up to 30% of overall GVC integration. They explain these results with fixed costs of fragmentation and switching suppliers: "High fragmentation costs allow, due to their sunk nature, DVCs to act as stepping stones to GVCs" (Beverelli et al., 2019).

Shen et al. (2021) construct a simple dynamic model to illustrate the micro-mechanism of industrial upgrading along the GVC. Using the WIOD, they find that more upstream industries correlate with higher profitability and VA, capital intensity, and R&D investment. Their dynamic model explains this through three effects: endogenous sunk costs, decreasing intermediate input price elasticity, and sequential pricing effect uncertainty. They show that the empirical patterns revealed in China are consistent with the model's predictions. Tian et al. (2022) also study the relationship between GVC participation and industrial upgrading (process, product, and skill upgrading) using the WIOD. They find that GVC integration increases industrial upgrading for developing and developed countries. Developing countries benefit more from backward GVC participation through importing more sophisticated inputs and learning through embodied knowledge, whereas developed countries upgrade more through forward GVC participation. Overall, they interpret their findings as evidence against more critical voices and models questioning the benefits of developing country participation in GVCs, such as Baldwin & Robert-Nicoud (2014) or Dalle et al. (2013).

The macroeconomic study of Lwesya (2022) on GVCs and economic upgrading in the EAC, discussed in the introduction, also finds a significant positive effect of lagged FVA on DVA in EAC5 exports, with coefficients implying an elasticity of 0.49.

Many more microeconomic studies also find positive effects of GVC participation for industrial development. Piermartini & Rubínová (2014) for example, use industry-level R&D and patent data for a sample of 29 countries during the period 2000-2008 and show that knowledge spillovers increase with the intensity of supply chains linkages between countries and that these spillovers are larger than spillovers from traditional trade flows. Similar evidence is presented by Benz et al. (2015), who use firm-level data to show that offshoring leads to knowledge spillovers and forward spillovers (from producers to users if intermediate inputs) are stronger than backward spillovers.

Microeconomic studies involving EAC members include Barrientos et al. (2016)'s case study of supermarket expansion within Southern and Eastern Africa, showing that higher quality and sourcing requirements by global and regional supermarket chains induced improved processes in Kenyan and Ugandan horticulture, allowing diversification and higher fruits and vegetable exports (World Bank, 2020). A study of Kenyan horticulture by Krishnan (2018) shows that incomes increased after contract farmers adopted quality standards by their international buyers and also that opportunistic RVCs emerged when suppliers found their produce rejected due to lack of standards compliance, which gradually led to more organized RVCs with own standards and procurement strategies. Dihel et al. (2018) study the effects of value chain participation on African farmers via a survey of 3,935 farmers, 60 aggregators, and 56 buyers in the maize, cassava, and sorghum value chains in Ghana, Kenya, and Zambia, and show that contracted farmers saw greater structural transformation, higher output, and better access to seeds, fertilizers, pesticides, technology, and extension services than non-contracted farmers. These findings are commensurate with Daly et al. (2016)'s study of Maize value chains in East Africa, which identifies Kenyan processors as the lead firms demanding Ugandan suppliers to provide high-quality maize, and document investments into Ugandan production facilities by South African and German companies. They also document challenges in access to finance for farmers, commercial scale, and lack of communication of market signals and standards along the value chain.

While these microeconomic studies point towards positive growth effects and upgrading prospects from EAC engagement in agricultural and food processing GVCs, a study on mining value chains in Latin America by Pietrobelli et al. (2018) suggests that a hierarchical value chain, dominated by few large firms, and poor linkages (e.g., large mining firms rarely forge long-term links with local suppliers or collaborate with them on innovative projects) is blocking the diffusion of innovations and hindering suppliers' development (Pietrobelli et al., 2018; World Bank, 2020).

6.2 Empirical Strategy

VCI

A natural idea to assess the impact of GVC integration on economic development is to investigate if higher imported or re-exported export content is associated with higher DVA produced, i.e., higher GDP. Many authors do this in one form or another, including Lwesya (2022) who use DVA in exports. Following Kummritz (2016) and Rodriguez & Rodrik (2000), I argue that running regressions at the country level is subject to omitted variable bias from many factors affecting GVC integration and economic development. Thus, a sector-level regression framework with country-sector, country-year, and sector-year fixed effects is highly advantageous to capture many confounding factors affecting economic development (such as infrastructure, geography, institutions, and economic policies) and trade (such as multilateral resistance). A caveat is that the measured effects are within-industry effects and, therefore, likely a lower bound on the overall economic effects of GVC integration. The baseline specification is

$$\log(\text{VA}_{cst}) = \beta \log(\text{GVC}_{cst}) + \alpha_{cs} + \beta_{ct} + \gamma_{st} + \epsilon_{cst}, \tag{14}$$

where GVC_{cst} is a GVC indicator (such as VS or VS1), and α_{cs} , β_{ct} , and γ_{st} are country-sector, country-year, and sector-year fixed effects, respectively. The estimate β could still be biased by sector-level confounders, measurement error in GVC_{cst} , simultaneity, and reverse causality.

To address these issues, Kummritz (2016) develops an instrument for GVC participation combining third-party trade costs and industry distance in the value chain to induce exogenous variation in FVA in exports, which forms the basis for simple GVC indicators. The basic idea is to predict the elements of the **VBE** (VA exports) matrix using exogenous trade costs and industry structure and then compute VS and VS1 indicators following Equations 5 and 6 using this predicted matrix **VBE**. These exogenous components \hat{VS}_{uj} and $\hat{VS1}_{oi}$ can then be used to instrument VS and VS1 in Eq. 14. Specifically, for each GVC instrument a different **VBE**_t matrix is constructed, whose (time-varying) elements vbe_{oiujt} are predicted using equations

$$v\hat{b}e_{oiujt}^{VS} = \exp(\beta^{VS}\log(\tau_{out} \times \delta_{oiuj}) + \alpha_{uj} + \beta_{ut} + \gamma_{jt} + \epsilon_{oiujt}) \quad \forall \ u \neq o$$
(15)

$$\hat{vbe}_{oiujt}^{VS1} = \exp(\beta^{VS1}\log(\tau_{out} \times \delta_{oiuj}) + \alpha_{oi} + \beta_{ot} + \gamma_{it} + \epsilon_{oiujt}) \quad \forall \ o \neq u \tag{16}$$

to construct \hat{VS}_{uj} and $\hat{VS1}_{oi}$, respectively.¹⁸ Thus all variation in the foreign sources of VA (*oit*) in Eq. 15 and in the usage (*ujt*) in Eq. 16, is due to the exogenous trade cost term: $\log(\tau_{out} \times \delta_{oiuj})$.

The trade cost term has two components: τ_{out} is an export-weighted estimate of the bilateral trade costs of the supplier of VA o with all other trading partners $k \neq u$ in period t. This is done to preserve the exogenity of the trade cost measure to factors affecting the specific bilateral ou link, which may be correlated with GVC-related trade along this link. Following Kummritz (2016), I use the World Bank ESCAP trade costs database (Arvis et al., 2016) based on Novy (2013), which provides a holistic, tariff-equivalent measure of total trade costs implied by an inverse gravity model.

The second term, δ_{oiuj} , is a time-invariant measure of the distance between industries oi and uj along the GVC. It is defined as $\delta_{ijt} = 1/(u_{oi} \times d_{uj})$, where $u_{oi} = \frac{1}{T} \sum_{t} u_{oit}$ is the average upstreamness of country-sector oi as defined in Eq. 12 and $d_{uj} = \frac{1}{T} \sum_{t} d_{ujt}$ a corresponding downstremness index, as described e.g. in Antràs & Chor (2022) and footnote 15. Kummritz (2016) notes that the indirect trade costs (τ_{out}) have a larger effect on VA for industries separated by more stages (δ_{oiuj}) . The index δ_{oiuj} is inverted since u_{oi} and d_{uj} have a positive relationship with the elements of **VBE**, to yield a trade cost index $\tau_{out} \times \delta_{oiuj}$ negatively related to vbe_{oiujt} .

Unlike Kummritz (2016), I employ an industry distance measure (δ_{oiuj}) at the country-sector level, whereas he uses a measure (δ_{ij}) of pure industry distance that is averaged across countries as well. While this common technology assumption may be appropriate for his sample of mostly OECD economies in the OECD TIVA ICIO tables, the instrument constructed using this formulation lacks some relevance for the EAC5. This suggests that industries in developing countries use different technologies and have different GVC positions than the same industries in advanced economies. While using a bilateral-sector-level industry distance measure may partly compromise

¹⁸E.g. \hat{VS}_{ujt} is obtained by summing column uj of a matrix \hat{VBE}_t^{VS} where domestic elements are set to zero and the non-domestic $(u \neq o)$ elements are estimated using Eq. 15, which includes fixed effects for the using country-sector (uj) and time (ut, jt) dimensions (as in the final stage model). Similarly, Eq. 16 estimates \hat{VBE}_t^{VS1} to obtain $\hat{VS1}_{oit}$.

the exogeneity of the instrument, this is unlikely because this distance is still time-invariant, and the 2SLS regressions include triple fixed effects. Thus, the identifying variation still comes from time-variation in the trade cost term (τ_{out}), and using a more accurate measure of industry distance merely helps increase the relevance of this term. Empirically, I find that computing two instruments using both δ_{oiuj} and δ_{ou} , and including them both in the first stage often yields a sizeable improvement in the fit, indicating that the difference of local industry structure to the world average interacted with trade costs has some predictive power for FVA in developing countries. In all cases, however, the instruments are very weak.

Another difference to Kummritz (2016) is that I smooth bilateral trade costs using a centered 3year MA and impute missing values at the end of the sample using the last MA observation carried forward. This is sensible because trade costs based on an inverted gravity model are endogenous to current trade flows and, therefore, more volatile than pure technological or regulatory changes would warrant. The smoothing step also does not compromise the instrument's relevance, confirming that the raw trade cost measure is noisy. Appendix Figure B6 shows the raw and smoothed bilateral trade costs among EAC5 members. Interestingly, the ESCAP estimates suggest that trading with Kenya is significantly less costly, i.e., only with Kenya, total trade costs are estimated below a 100% ad-valorem Tariff equivalent, and Kenya and Uganda also report trade costs below 100% on each other. These costs are endogenous to observed trade flows, and the strong trade links between Kenya and Uganda have already been highlighted several times. However, this perspective entertains the possibility that high and asymmetric trading costs may be another reason for sluggish and asymmetric EAC integration in supply chain trade. In the framework of Antràs & De Gortari (2020), high trade costs imply greater importance for regional GVC participation. Since the IV trade cost measure (τ_{out}) is a weighted average of origin's (o) trade costs with third parties, and EAC members trade much more with ROW than with each other, an accurate and timely representation of regional trade costs is irrelevant for the identification.

In addition to estimating returns to backward and forward GVC integration, I consider returns to gross trade and trade in final goods. To instrument these, I omit the industry distance component and instead construct a sector-level time-varying 3rd-party trade cost measure τ_{oiut} which is obtained as the exports-weighted average of sector *i* in country *o*'s exports to all destination counties $k \neq u$. This is then used to predict bilateral sector-level trade in gross and final goods using similar zero-stage equations to 15 and 16, and the predictions are summed across importers to yield appropriate instruments for gross and final goods exports, respectively.

At last, I also consider returns to regional integration in both gross and VA terms using an alternative final stage model of the form

$$\log(\mathrm{VA}_{cst}) = \beta_1 \log(\mathrm{GVC}_{cst}) + \beta_2 \mathrm{SH}_{cst}^{\mathrm{EAC}} \times \log(\mathrm{GVC}_{cst}) + \alpha_{cs} + \beta_{ct} + \gamma_{st} + \epsilon_{cst}, \qquad (17)$$

where $\text{SH}_{cst}^{\text{EAC}}$ is the EAC share in the GVC_{cst} flow. Following Section 4.3, this is VS^{EAC} and VS1^{EAC} for GVC indicators and the EAC share in gross/final exports for traditional trade. The coefficient β_2 gives the additional impact when $\text{SH}_{cst}^{\text{EAC}}$ is increased by one unit (100%), i.e., when the increase is through regional trade. This implies that a 1% increase in regional trade yields a $\beta_1 + \beta_2\%$ increase in VA, whereas a 1% increase in extra-regional trade has an impact of $\beta_1\%$. Since the regional share is a component of the flow in question, obtaining an instrument for it from the zero-stage predictions is straightforward. The RHS of the first stages thus has the same functional form as Eq. 17, with $\text{SH}_{cst}^{\text{EAC}}$ and GVC_{cst} replaced by their zero-stage predicted measures.

My default sample includes the full number of sectors (26 for EORA, 134 for EM) for 5 EAC countries: Uganda, Rwanda, Tanzania, Kenya, and Burundi.¹⁹ Estimations are run using indicators computed on EORA 2021, EORA 2015, and EM. With each database, I run one set of estimations using the full set of sectors and one using only manufacturing sectors (all sectors mapping to broad sectors FBE, TEX, WAP, PCM, MPR, ELM, TEQ, MAN, in Table 2). Unfortunately, with EM, all estimates are statistically insignificant and close to zero. This indicates that the high resolution of 134 sectors in these tables is not suitable for evaluating returns to trade and GVC participation in the EAC5. Aggregating to 17 broad sectors also yields insignificant results due to the short time dimension of 6 years. Thus, I do not report EM results.

¹⁹South Sudan is omitted because of data quality concerns, Congo because of lacking RVC integration with the EAC, and different trading patterns. The inclusion of Congo does not significantly alter the results.

6.3 **Results:** Gross Trade and Trade in Final Goods

Table 7 shows results for gross trade using the full sample of sectors, and Table 8 shows identical regressions for the subset of manufacturing sectors. In both tables, the instruments are weak, and with one exception, not significantly different from OLS.²⁰ The OLS results suggest an elasticity of VA to gross trade of 0.13-0.25, in line with the 0.2 reported by the WDR. The results are also congruent to Altomonte et al. (2018), who find larger effects around 0.3 using the WIOD, but also very similar OLS and IV coefficients, with IV being slightly larger than OLS. The effects of trade in final goods on VA are slightly lower at 0.1-0.2, and the effects of both gross and final goods trade in manufacturing sectors (Table 8) are even lower at ≤ 0.1 . This indicates that intermediate trade, i.e., GVC-related trade, is more critical for economic development in the EAC, particularly for manufacturing sectors where intermediates account for a larger fraction of total trade.

Dependent Variable:				log((VA)					
Exports Measure:		Gr	OSS		Final Goods					
Data:	EOR	A21	EOR	A15	EOR	A21	EORA15			
Model:	OLS	IV	OLS	IV	OLS	IV	OLS	IV		
Variables										
$\log(E)$	0.2454^{***}	0.1072	0.1305^{***}	0.1503^{*}	0.1892^{***}	0.1931^{**}	0.1036^{***}	0.1776^{**}		
	(0.0419)	(0.0770)	(0.0233)	(0.0777)	(0.0353)	(0.0818)	(0.0207)	(0.0719)		
Fixed-effects										
# country-sector	130	130	129	129	130	130	129	129		
# country-year	110	110	80	80	110	110	80	80		
# sector-year	572	572	416	416	572	572	416	416		
Fit statistics										
Observations	2,740	2,740	2,023	2,023	2,740	2,740	2,023	2,023		
\mathbb{R}^2	0.9859	0.9856	0.9928	0.9928	0.9855	0.9855	0.9927	0.9927		
Within \mathbb{R}^2	0.0485	0.0331	0.0238	0.0232	0.0269	0.0269	0.0143	0.0070		
Wu-Hausman, p-value		0.0101		0.5572		0.9703		0.0819		
Kleibergen-Paap (1st stage), F		23.99		28.82		3.086		20.28		
Wald (1st stage), p-value		< 0.001		< 0.001		0.0790		< 0.001		

Table 7: GROSS TRADE EAC5 REGRESSIONS

Driscoll-Kraay (L=2) standard-errors in parentheses. Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes: Table shows the elasticity of DVA to gross and final goods exports using EORA with full 26 sector resolution for 5 EAC countries: Uganda, Tanzania, Kenya, Rwanda, and Burundi. Estimations are done using both the first edition of EORA (EORA15: years 2000-2015) and the extended version (EORA21: years 2000-2021). The IV specification uses a sector-level exports weighted average of third-country trade costs as an instrument.

Dependent Variable:				log(VA)			
Exports Measure:		Gr	OSS			Final	l Goods	
Data:	EOR	A21	EOR	A15	EOF	RA21	EOR	A15
Model:	OLS	IV	OLS	IV	OLS	IV	OLS	IV
$\frac{Variables}{\log(E)}$	$\begin{array}{c} 0.1015^{***} \\ (0.0324) \end{array}$	$0.9659 \\ (0.6435)$	$\begin{array}{c} 0.1175^{***} \\ (0.0299) \end{array}$	0.2198 (0.1746)	-0.0566 (0.0920)	-0.1048 (0.5590)	0.1075^{***} (0.0303)	-0.0211 (0.0400)
Fixed-effects # country-sector # country-year # sector-year	40 110 176	40 110 176	40 80 128	40 80 128	40 110 176	40 110 176	$40 \\ 80 \\ 128$	40 80 128
Fit statistics Observations R ² Within R ² Wu-Hausman, p-value Kleibergen-Paap (1st stage), F Wald (1st stage), p-value	859 0.9883 0.0077	859 0.9817 -0.5515 0.1060 1.009 0.3152	640 0.9951 0.0216	640 0.9951 0.0052 0.7317 5.278 0.0218	859 0.9882 0.0022	$\begin{array}{c} 859\\ 0.9882\\ 0.0006\\ 0.9675\\ 0.4104\\ 0.5217\end{array}$	640 0.9951 0.0216	$\begin{array}{c} 640\\ 0.9950\\ -0.0093\\ 0.5074\\ 19.31\\ < 0.001 \end{array}$

Table 8:	GROSS TRADE	EAC5 R	REGRESSIONS:	MANUFACTURING	Sectors
----------	-------------	--------	--------------	---------------	---------

Driscoll-Kraay (L=2) standard-errors in parentheses. Signif. Codes: ***: 0.01, **: 0.05, *: 0.1 Notes: Table shows the elasticity of DVA to gross and final goods exports using EORA with a sample of 8 manufacturing sectors (FBE, TEX, WAP, PCM, MPR, ELM, TEQ, and MAN in Table 2), for 5 EAC countries: Uganda, Tanzania, Kenya, Rwanda, and Burundi. Estimations are done using both the first edition of EORA (EORA15: years 2000-2015) and the extended version (EORA21: years 2000-2021). The IV specification uses a sector-level exports weighted average of third-country trade costs as an instrument.

²⁰Appendix Table B7 shows the zero-stage regressions, with sizeable coefficients but weak within- R^2 .

Results: Backward and Forward GVC Participation 6.4

Appendix Table B7 shows the zero stage regressions predicting the elements vbe_{oiujt} . The trade cost measures correlate negatively with the elements of VBE. I then run both OLS and 2SLS fixedeffects regressions according to Eq. 14 using VS and VS1 measures in log-levels and instrumenting them with VS and VS1, also in log-levels. I estimate 4 specifications: (1) OLS, (2) IV with the time-invariant (δ_{ij}) industry-distance instrument, (2) IV with the bilateral (δ_{oiuj}) industry-distance instrument, and (4) IV with both instruments.

Table 9 shows the results on the full sample, and Table 10 for the manufacturing sample. Appendix Tables B8 and B9 report the corresponding first stages. The first stages are generally very weak, with many coefficients insignificant or of the wrong sign. Since the trade cost measure $\tau_{out} \times \delta_{oiui}$ is negatively correlated with **VBE**, these negative first-stage coefficients could indicate some overfitting at the zero stages (Table B7) which are also quite weak. In any case, this indicates that the IV/2SLS results in Tables 9 and 10 need to be treated with caution, even in cases where first-stage statistics at the bottom of these tables (such as a sizeable Kleinbergen & Paap F-statistic) suggest that the first stages are sufficiently strong. Another notable fact is that coefficients from the full EORA 200-2021 sample are generally smaller and more often insignificant than those of the WDR (EORA 2000-2015) sample. This appears to reflect a trend change in the data update from 2016 (the fixed effects absorb the structural break). Thus, I consider the results on the WDR sample more reliable, as the data here at least reflect a consistent methodology and temporal variation over the entire sample.

Dependent Variable:				log	g(VA)			
Data:		EORA21 (2000-2021)		W	VDR EORA	15 (2000-201	.5)
Model:	OLS	IV- δ_{ij}	$\text{IV-}\delta_{oiuj}$	2SLS	OLS	IV- δ_{ij}	IV- δ_{oiuj}	2SLS
Variables								
$\log(VS)$	-0.2193^{**} (0.0841)	0.5786 (0.3895)	0.6015 (0.4202)	0.2378^{***} (0.0827)	-0.0664 (0.0539)	0.2050^{***} (0.0418)	0.2096^{***} (0.0412)	0.1922^{***} (0.0435)
Fit statistics	(0.0641)	(0.3695)	(0.4202)	(0.0821)	(0.0559)	(0.0418)	(0.0412)	(0.0455)
Observations	2,740	2,740	2,740	2,740	2,023	2,023	2,023	2,023
\mathbb{R}^2	0.9858	0.9776	0.9771	0.9831	0.9927	0.9919	0.9918	0.9920
Within \mathbb{R}^2	0.0416	-0.5091	-0.5413	-0.1391	0.0066	-0.1037	-0.1075	-0.0935
Wu-Hausman, p-value		< 0.001	< 0.001	< 0.001		< 0.001	< 0.001	< 0.001
Kleibergen-Paap (1st stage), F		1.652	1.547	32.23		47.22	47.07	53.78
Wald (1st stage), p-value		0.1988	0.2136	< 0.001		< 0.001	< 0.001	< 0.001
Variables								
$\log(E2R)$	0.7351^{***}	0.1842	-0.1586	-0.6351	0.7432^{***}	0.5716^{***}	0.5359^{**}	0.7366^{***}
	(0.0396)	(1.129)	(2.588)	(2.591)	(0.0607)	(0.1831)	(0.1907)	(0.0597)
Fit statistics								
Observations	2,740	2,734	2,733	2,733	2,023	2,017	2,016	2,016
\mathbb{R}^2	0.9950	0.9894	0.9803	0.9608	0.9976	0.9973	0.9972	0.9976
Within \mathbb{R}^2	0.6633	0.2889	-0.3138	-1.618	0.6683	0.6329	0.6164	0.6724
Wu-Hausman, p-value		0.0678	0.0568	0.0016		0.0638	0.0460	0.8330
Kleibergen-Paap (1st stage), F		0.4409	0.1569	0.2861		3.421	3.989	4.301
Wald (1st stage), p-value		0.5067	0.6920	0.7512		0.0645	0.0459	0.0137
Fixed-effects								
# country-sector	130	130	130	130	129	129	129	129
# country-year	110	110	110	110	80	80	80	80
# sector-year	572	572	572	572	416	416	416	416

Table 9: GVC PARTICIPATION EAC5 REGRESSIONS

Driscoll-Kraay (L=2) standard-errors in parentheses. Signif. Codes: ***: 0.01, **: 0.05, *: 0.1 Notes: Table shows the elasticity of DVA to backward (VS) and forward (E2R) GVC participation using EORA with full 26 sector resolution for 5 EAC countries: Uganda, Tanzania, Kenya, Rwanda, and Burundi. Estimations are done using both the first edition of EORA (EORA15: years 2000-2015) and the extended version (EORA21: years 2000-2021) via OLS and IV/2SLS. The IV models use exogenous GVC participation predicted by an exports-weighted average of third country trade costs interacted with bilateral (δ_{ij}) or bilateral-sector level (δ_{oiuj}) industry distance along the value chain as instruments. Appendix Table B7 shows the zero stage, and Table B8 the first stage estimations, including the same set of triple fixed effects.

Overall, the results suggest that GVC participation positively affects VA, and that this effect is larger for forward integration (E2R) and manufacturing sectors. Drawing from the IV results in the WDR sample, a 1% increase in the foreign content of exports (VS) implies a 0.2% increase in VA in the full sample, and a 0.45-0.5% increase in manufacturing VA. On the other hand, a 1%increase in the re-exported content of exports (E2R) on the other hand implies a 0.5-0.7% increase in VA, and a 0.8-1% increase in manufacturing VA.

Dependent Variable:				log(VA)			
Data:		EORA21 (2000-2021)		W	DR EORA	15 (2000-201	5)
Model:	OLS	IV- δ_{ij}	$\text{IV-}\delta_{oiuj}$	2SLS	OLS	IV- δ_{ij}	IV- δ_{oiuj}	2SLS
Variables								
$\log(VS)$	0.1344^{***} (0.0227)	1.404 (1.945)	1.638 (2.768)	0.4800^{**} (0.1835)	0.0590^{*} (0.0291)	0.4394^{***} (0.1178)	0.4562^{***} (0.1247)	0.2089^{***} (0.0459)
Fit statistics	(010111)	()	()	(012000)	(0.0202)	(0.2210)	(0.0200)	(010 200)
Observations	859	859	859	859	640	640	640	640
\mathbb{R}^2	0.9884	0.9685	0.9605	0.9870	0.9951	0.9940	0.9939	0.9949
Within \mathbb{R}^2	0.0190	-1.674	-2.356	-0.1064	0.0054	-0.2179	-0.2381	-0.0293
Wu-Hausman, p-value		0.0974	0.1160	0.0010		0.0025	0.0028	0.0249
Kleibergen-Paap (1st stage), F		0.4762	0.3118	51.79		61.77	62.66	24.34
Wald (1st stage), p-value		0.4901	0.5765	< 0.001		< 0.001	< 0.001	< 0.001
Variables								
$\log(E2R)$	0.6724^{***}	0.8149^{***}	0.8204^{***}	0.8366^{***}	0.5275^{***}	1.094^{***}	1.214^{***}	0.7602^{**}
	(0.0775)	(0.0377)	(0.0390)	(0.0443)	(0.1523)	(0.3019)	(0.3362)	(0.2842)
Fit statistics								
Observations	859	859	859	859	640	640	640	640
\mathbb{R}^2	0.9966	0.9963	0.9962	0.9961	0.9978	0.9946	0.9932	0.9972
Within \mathbb{R}^2	0.7148	0.6827	0.6801	0.6721	0.5496	-0.0841	-0.3807	0.4427
Wu-Hausman, p-value		0.0002	< 0.001	< 0.001		0.1988	0.1378	0.5741
Kleibergen-Paap (1st stage), F		7.529	9.387	22.39		11.86	9.076	7.092
Wald (1st stage), p-value		0.0062	0.0022	< 0.001		0.0006	0.0027	0.0009
Fixed-effects								
# country-sector	40	40	40	40	40	40	40	40
# country-year	110	110	110	110	80	80	80	80
# sector-year	176	176	176	176	128	128	128	128

Table 10: GVC PARTICIPATION EAC5 REGRESSIONS: MANUFACTURING SECTORS

Driscoll-Kraay (L=2) standard-errors in parentheses. Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Linear triang (D-z) summara-critics in partituleses. Signif. Codes: """: 0.01, "": 0.05, ": 0.1Notes: Table shows the elasticity of DVA to backward (VS) and forward (E2R) GVC participation using EORA with a sample of 8 manufacturing sectors (FEE, TEX, WAP, PCM, MPR, ELM, TEQ, and MAN in Table 2), for 5 EAC countries: Uganda, Tanzania, Kenya, Rwanda, and Burundi. Estimations are done using both the first edition of EORA (EORA15: years 2000-2015) and the extended version (EORA21: years 2000-2021) via OLS and IV/2SLS. The IV models use exogenous GVC participation predicted by an exports-weighted average of third country trade costs interacted with bilateral (δ_{ij}) or bilateral-sector level (δ_{otuj}) industry distance along the value chain as instruments. Appendix Table B7 shows the zero stage, and Table B8 the first stage estimations, including the same set of triple fixed effects.

Larger productivity gains from forward integration are also prevalent in the literature. Kummritz (2016), using the 54 countries (among which 28 are low or middle income, but none in Africa) and 20 industries (of which 14 manufacturing) from OECD TIVA tables for 7 years between 1996 and 2011, finds robust benefits of GVC backward and forward integration on VA in both developing and developed countries, with a larger benefit of forward integration (E2R) at elasticities of 0.58 for low/middle-income countries and 0.68 for high-income countries and VS elasticities smaller around 0.09/0.21, respectively. He also estimates labor productivity elasticities to E2R of 0.29 for low/middle-income countries and 0.49 for high-income countries. In a similar exercise, Kummritz (2015) finds that high-income countries benefit relatively more from forward linkages, whereas middle-income countries also benefit from backward linkages (VS). The results presented here broadly align with these findings, suggesting that both backward and forward integration have sizeable returns in low-income countries. In manufacturing sectors, the estimates for these EAC countries are even greater than those of Kummritz (2016), with VA elasticities from forward integration close to 1, tentatively indicating that low-income African economies can benefit substantially from increasing their supply of high-quality manufacturing intermediates. I note that these estimates, while large, are still smaller than the 1.1-1.4 elasticities to overall GVC participation (VS + VS1)reported by the WDR.

6.5**Results:** Regional Integration

Tables 11 and 12 show regional integration estimations for gross and GVC-related trade using the full sample of sectors. Appendix Tables B10 and B11 provide equivalent results for manufacturing sectors. In the manufacturing sample, the interaction term is statistically insignificant. In this more complex specification, the instruments are even weaker, and I thus for GVC-related trade I only report 2SLS specifications employing both sets of instruments. With gross trade (Table 11), the Wu-Hausmann test fails to reject the exogeneity of the regressor in all but the first IV specification. With GVC-related trade (Table 12) this is also the case for forward integration, and with backward integration the IV specifications have a sizeable negative within- R^2 and a huge negative interaction effect. This signifies that the instruments are not very useful at all in this more complex case, and I thus only interpret the OLS estimates.

Table 11 reports positive interaction terms with significant coefficients between 0.066 and 0.079, suggesting that an increase in regional trade in both gross terms and final goods yields a 6-8 pp. higher return for VA than an increase in extra-regional trade, whose return to a doubling of exports is estimated between 10 and 24%. The empirical results thus suggest that regional integration through trade is beneficial for economic growth in the region.

Dependent Variable:	$\log(VA)$									
Exports Measure:	Gross				Final Goods					
Data:	EORA21		EORA15		EORA21		EORA15			
Model:	OLS	IV	OLS	IV	OLS	IV	OLS	IV		
Variables										
$\log(E)$	0.2361^{***}	0.0290	0.1034^{***}	0.1051	0.1718^{***}	-0.1314	0.0837^{***}	0.2198^{**}		
	(0.0463)	(0.0910)	(0.0202)	(0.0988)	(0.0378)	(0.3728)	(0.0195)	(0.1026)		
$\log(E) \times SH^{EAC5}$	0.0555	0.0661^{***}	0.0749^{**}	0.0468	0.0787^{***}	0.1437	0.0531	-0.0397		
	(0.0405)	(0.0174)	(0.0279)	(0.0309)	(0.0260)	(0.0898)	(0.0335)	(0.0352)		
Fixed-effects										
# country-sector	130	130	129	129	130	130	129	129		
# country-year	110	110	80	80	110	110	80	80		
# sector-year	572	572	416	416	572	572	416	416		
Fit statistics										
Observations	2,740	2,740	2,023	2,023	2,740	2,740	2,023	2,023		
\mathbb{R}^2	0.9859	0.9854	0.9929	0.9929	0.9856	0.9846	0.9928	0.9926		
Within \mathbb{R}^2	0.0507	0.0166	0.0307	0.0296	0.0325	-0.0340	0.0181	-0.0071		
Wu-Hausman, p-value		0.0001		0.4127		0.2302		0.2113		

Table 11: EAC5 REGIONAL INTEGRATION VIA GROSS TRADE REGRESSIONS

Driscoll-Kraay (L=2) standard-errors in parentheses. Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes: Table reports analogous estimations to Table 7, but now including an interaction term of the log of exports with the regional share in exports, which captures the additional returns from a regional expansion in trade.

Table 12 indicates a significant positive OLS interaction term for forward GVC integration of order 0.13-0.14, implying that a 100% increase in forward integration through regional trade yields a 13-14 pp. higher return than the already sizeable return of 73% to extra-regional forward linkages. For backward integration, the terms on the OLS regression are negative of order 0.14-0.19, but the main effects are also negative. Since backward integration is particularly prone to simultaneity, as evident from Tables 9 and 10, a strong instrument is needed for identification, so these OLS coefficients are likely not very meaningful. Further work is required to create stronger instruments for GVC participation in developing countries.

Dependent Variable:		$\log(VA)$								
GVC Indicator:	Ba	ackward Inte	gration (VS)		Forward Integration (E2R)					
Data:	EORA21		EORA15		EORA21		EORA15			
Model:	OLS	2SLS	OLS	2SLS	OLS	2SLS	OLS	2SLS		
Variables										
$\log(GVC)$	-0.1926^{**}	0.1478^{***}	-0.0605	0.0832^{**}	0.7335^{***}	0.7110^{***}	0.7315^{***}	0.7467^{***}		
	(0.0883)	(0.0481)	(0.0629)	(0.0373)	(0.0398)	(0.1008)	(0.0646)	(0.1925)		
$\log(GVC) \times SH^{EAC5}$	-0.1869^{*}	-1.116^{***}	-0.1397	-1.960^{*}	0.1332^{***}	0.6306	0.1383^{*}	0.0082		
	(0.1015)	(0.2550)	(0.2464)	(1.038)	(0.0280)	(0.6673)	(0.0754)	(0.5347)		
Fixed-effects										
# country-sector	130	130	129	129	130	130	129	129		
# country-year	110	110	80	80	110	110	80	80		
# sector-year	572	572	416	416	572	572	416	416		
Fit statistics										
Observations	2,740	2,740	2,023	2,023	2,740	2,733	2,023	2,016		
\mathbb{R}^2	0.9858	0.9837	0.9927	0.9917	0.9950	0.9948	0.9976	0.9976		
Within \mathbb{R}^2	0.0459	-0.0980	0.0074	-0.1300	0.6648	0.6502	0.6717	0.6731		
Wu-Hausman, p-value		< 0.001		< 0.001		0.4314		0.7855		

Table 12: EAC5 REGIONAL INTEGRATION VIA RVCs REGRESSIONS

 $\label{eq:constraint} \textit{Driscoll-Kraay} \ (L=2) \ \textit{standard-errors} \ in \ \textit{parentheses}. \ \textit{Signif. Codes:} \ \ ^{***:} \ 0.01, \ \ ^{*:} \ 0.05, \ \ ^{*:} \ 0.1$

Notes: Table reports analogous estimations to Table 9, but now including an interaction term of the log of GVC participation (VS or E2R) with its regional share, which captures the additional returns from a regional expansion in GVC participation. Due to the weakness of the instruments, only the 2SLS specification, including both instrumental variables and their respective interaction terms, is reported.

7 Summary and Conclusion

Using rich and novel data sources, this study rigorously examined the EAC region's global and regional integration through trade and value chains and its effects on economic development. The analysis has focussed on five countries: Uganda, Tanzania, Kenya, Rwanda, and Burundi.

Several salient patterns stand out. The first is that, exempting a small COVID-related rebound in the share of regional trade, the region is not moving towards deeper regional integration through gross trade. This is particularly the case for imports, where the EAC share with itself has declined from 10% in 2000 to 7.5% in 2020. The export share remained constant at around 17%. However, this decline is mainly driven by manufacturing and masks increasing regional shares in agriculture, forestry and fishing (AFF) and processed foods and beverages (FBE). Considering total trade (exports+imports), AFF trade with ROW was 10x greater than inner-EAC trade in 2020, down from 40x in 2000. In FBE, this ratio declined from 16x (2000) to 11x (2020). In manufacturing, it increased from 15x (2000) to 20x (2020). Manufacturing trade accounts for 64% of EAC5 goods trade, versus 8.1% (AFF), 15% (FBE), and 13% (mining), and thus drives aggregate patterns.

EAC members also assume different roles in regional trade. Kenya is a dominant regional exporter, particularly of manufactured products, where 40% of its exports are regional, but only a moderate importer: 18% of Kenyan agricultural imports and less than 1% of its manufacturing imports come from the region. Tanzania also imports little from the EAC: 5% (AFF and FBE) and 3% manufactures, and has regional export shares between 20% (AFF) and 11% (FBE). The smaller economies are much more economically integrated, with export and import shares generally above 20%. Particularly, Uganda is becoming a significant regional exporter in both AFF and FBE, with regional export shares between 35 and 40%. Burundi also recently became a strong agricultural exporter, with regional share rising from 5% in 2005 to 60% in 2020.

These patterns suggest that regional integration is asymmetric and follows a scheme where countries first become regional agricultural exporters and then exporters of limited manufactures. However, these manufactures do not cater to a large share of regional demand and thus do not become a driving force of regional integration as manufacturing economies become more exportoriented. The FBE sector is intermediate between these two and shows greater promise for regional integration.

In terms of value added (VA), all members have a foreign content share (VS) between 10% (Kenya) and 30% (Congo). The EU and China are the greatest suppliers of EAC foreign content. Only Uganda, Rwanda, and Burundi have a high regional share in VS of 15-30%. The largest regional supplier is Kenya, mostly in manufacturing inputs, followed by Uganda as a regional supplier of mostly primary agriculture. EAC sectors with the highest regional VS shares are FBE and sale and repair of vehicles, fuel trade and hotels (SMH) at 14% EAC shares each. Petrochemicals (PCM) and textiles (TEX) also have EAC VS shares of 7-9%. Core manufacturing sectors with overall high VS have small regional share in VS is only 2.8%. EAC regional integration in production thus concentrates on food processing and light manufacturing but at low regional VS shares. This highlights both great potential and challenges in deepening manufacturing RVCs.

Measures of forward GVC participation (re-exported exports or VS1) show that the EU is the major GVC partner for all EAC members. Regional forward integration is still in its infancy, at regional shares below 6% in all EAC members. The strongest forward linkages are between Kenya and Uganda, with Uganda accounting for 4.4% of Kenya's VS1 (approx. 80 million USD) and Kenya accounting for 3.2% of Ugandan VS1 (approx. 30 million USD). At the sector level, 21% of agriculture and manufacturing exports are re-exported, followed by 15% of mining exports and 13% FBE. Bilaterally, 54% of Kenyan VS1 through Uganda are manufacturing inputs, whereas 45% of Ugandan VS1 through Kenya are agricultural inputs, highlighting the different roles of these two countries in RVCs. 21% of Kenyan manufacturing inputs is quantitatively important for Kenya. Considering overall EAC VS1 by sector, the highest regional shares are in manufacturing and FBE at 6.7% each, followed by AFF at 4%. Regional forward linkages are thus significantly weaker than backward linkages, which, in FBE, are twice as large.

Overall, the region is not moving towards deeper GVC participation. Backward linkages (VS) show some improvements in the 3 smaller economies in recent years, countered by a slight decline in VS in the larger economies. Forward linkages (VS1) exhibit a very weak decline in the 5 early members. Unlike gross trade, the regional share in VA trade exhibits a slight increase: the regional VS share is growing at a slow pace of 0.5 pp. per year, and regional shares in VS1 and VA imports (both gross and final) are growing at 0.2 pp./year. Regional integration is also advancing in all sectors, but particularly fast in FBE, at rates above 0.5 pp./year on all metrics. Growth in regional VS1 shares in FBE is also particularly equitable, whereas, in core manufacturing, which is integrating in VS and VS1 at 0.25 pp./year, the growth in regional VS1 is entirely driven by Kenya, with other countries experiencing losses. The analysis thus highlights the potential of the FBE sector and the challenges of distributed manufacturing RVCs.

Examining the evolving position of EAC sectors in GVCs yields a downstream shift in all members and sectors, implying a move towards production stages closer to FD running against the global trend towards longer GVCs. For AFF and FBE, this appears to be good news, allowing more local value addition. For manufacturing sectors, on the other hand, it indicates a shift towards processing trade rather than high-quality intermediates. The transport and tourism (TRA) sector in Kenya also saw a downstream shift, suggesting some local upgrading.

Computing (New) Revealed Comparative Advantage indices signifies that all EAC members and the region as a whole have sizeable (N)RCA in AFF (4.2) and FBE (5) and a strong disadvantage in core manufacturing (below 0.1 in ELM and TEQ). The region also has (N)RCA in travel services (TRA) of 2.8, particularly Kenya (3.1) and Tanzania (3). Relative to the region, Kenya has slight (N)RCA in most manufacturing sectors apart from PCM, where Tanzania and Rwanda fare strongly. Uganda, Kenya, and Burundi have (N)RCA in FBE, Kenya and Tanzania in tourism (TRA), and Uganda in electricity supply (EGW). Except for the latter, these (N)RCAs are below 2 and thus moderate in size. They may nevertheless require policy attention, particularly in manufacturing where Kenya has gained relative to the rest of the region. The trends also signify a slight overall loss in (N)RCA in AFF and FBE in the region, which should prompt policy efforts to increase production and exports.

OLS and IV estimates imply that economic integration through trade and GVCs has beneficial effects on sector-level economic growth in the region, with elasticities of VA to gross exports of 0.13-0.25 and slightly lower elasticities of 0.1-0.2 to exports of final goods, suggesting that intermediates trade is more important for economic development. A subsample of manufacturing sectors shows even lower responses to gross trade and trade in final goods. These findings are corroborated by an analysis of the effect of forward and backward GVC participation, where IV specifications yield elasticities of 0.2 (all sectors) and 0.45 (manufacturing sectors) to backward GVC participation (VS), and 0.6 (all sectors) and 0.9 (manufacturing sectors) to forward GVC participation (VS1/E2R), respectively. These estimates are broadly commensurable with other academic papers and the 2020 World Development Report, highlighting that GVC participation, particularly forward linkages in manufacturing, has sizeable positive returns for economic development in the region. Apart from overall returns, the paper also investigated returns of deeper integration through regional linkages vis-a-vis extra-regional linkages. The results from OLS estimation suggest that deeper regional linkages yield additional returns: The elasticity to gross and final goods exports increases by 0.06-0.08 for regional trade, and the elasticity to forward GVC participation (VS1) increases by 0.13-0.14 for regional links. This is a hopeful finding in light of AfCFTA's ambitious aims towards fostering continental integration, although the EAC estimates are modest in size.

In conclusion, the paper highlights both prospects and challenges to regional integration in the EAC. The region demonstrates a modest level of integration through trade and RVCs, which are concentrated in certain sectors. In particular, the FBE sector demonstrates higher levels of regional integration and growth. At the same time, integration in manufacturing is concentrating on Kenya's role as a supplier of inputs, with a limited supplier role of other countries. There is no clear trend towards greater regional integration through gross trade, and the pace of integration in VA trade, while positive, is very slow. Shifts in comparative advantage suggest a loss of (N)RCA in manufacturing, including FBE, alongside a downstream shift. This should prompt policy action to at least increase output and deepen RVCs in the FBE sector. Broader industrial policy coordination may also be necessary to mitigate Kenya's increasing role as a regional manufacturing hub. Sector-level estimates suggest that integration through trade and GVCs benefits domestic activity, particularly within RVCs. Thus, any policy action should be considerate not to slow down or reverse the (already sluggish) trend towards increased EAC global and regional integration.

Concerning the implementation of AfCFTA, this study shows that distributional effects are important. In particular, establishing a common market among economies with different distributions of comparative advantage may result in vertical GVCs and RVCs, leading to a loss of competitiveness in certain sectors and countries, particularly in smaller manufacturing sectors. Thus coordination of industrial and GVC-related policies should be considered together with the planned protocols to establish and regulate a common market. On the other hand, the study shows that a small economic union like the EAC faces difficulties diverting much intermediates trade away from global suppliers through RVCs. AfCFTA is a much larger effort of regional integration and, if implemented successfully, could result in different dynamics involving larger generation and diversion of GVCrelated trade through continental RVCs.

References

- Abel, G. J. (2023). migest: Methods for the indirect estimation of bilateral migration [Computer software manual]. Retrieved from https://CRAN.R-project.org/package=migest (R package version 2.0.4)
- Aloo, L. O. (2017). Free movement of goods in the eac. In East african community law (pp. 303–325). Brill Nijhoff.
- Altomonte, C., Colantone, I., & Bonacorsi, L. (2018). Trade and growth in the age of global value chains. BAFFI CAREFIN Centre Research Paper (2018-97).
- Altun, A., Avsar, I. I., Turan, T., & Yanikkaya, H. (2023). Does global value chain participation boost high technology exports? *Journal of International Development*, 35(5), 820–837.
- Antràs, P., & Chor, D. (2013). Organizing the global value chain. *Econometrica*, 81(6), 2127–2204.
- Antràs, P., & Chor, D. (2018). On the measurement of upstreamness and downstreamness in global value chains. World Trade Evolution: Growth, Productivity and Employment, 5, 126–194.
- Antràs, P., & Chor, D. (2022). Global value chains. Handbook of international economics, 5, 297–376.
- Antràs, P., Chor, D., Fally, T., & Hillberry, R. (2012). Measuring the upstreamness of production and trade flows. *American Economic Review*, 102(3), 412–416.
- Antràs, P., & De Gortari, A. (2020). On the geography of global value chains. *Econometrica*, 88(4), 1553–1598.
- Arvis, J.-F., Duval, Y., Shepherd, B., Utoktham, C., & Raj, A. (2016). Trade costs in the developing world: 1996–2010. World Trade Review, 15(3), 451–474.
- Balassa, B. (1965). Trade liberalisation and "revealed" comparative advantage 1. The manchester school, 33(2), 99–123.
- Baldwin, R., & Lopez-Gonzalez, J. (2015). Supply-chain trade: A portrait of global patterns and several testable hypotheses. *The World Economy*, 38(11), 1682–1721.
- Baldwin, R., & Robert-Nicoud, F. (2014). Trade-in-goods and trade-in-tasks: An integrating framework. Journal of international Economics, 92(1), 51–62.
- Balié, J., Del Prete, D., Magrini, E., Montalbano, P., & Nenci, S. (2019). Does trade policy impact food and agriculture global value chain participation of sub-saharan african countries? *American Journal of Agricultural Economics*, 101(3), 773–789.
- Barrientos, S., Knorringa, P., Evers, B., Visser, M., & Opondo, M. (2016). Shifting regional dynamics of global value chains: Implications for economic and social upgrading in african horticulture. *Environment and Planning A: Economy and Space*, 48(7), 1266–1283.
- Belotti, F., Borin, A., & Mancini, M. (2020). icio: Economic analysis with inter-country inputoutput tables in stata. World Bank Policy Research Working Paper (9156).
- Benz, S., Larch, M., & Zimmer, M. (2015). Trade in ideas: Outsourcing and knowledge spillovers. International Economics and Economic Policy, 12(2), 221–237.
- Beverelli, C., Stolzenburg, V., Koopman, R. B., & Neumueller, S. (2019). Domestic value chains as stepping stones to global value chain integration. The World Economy, 42(5), 1467–1494.
- Borin, A., & Mancini, M. (2019). Measuring what matters in global value chains and value-added trade (Tech. Rep. No. 8804). World Bank Policy Research Working Paper.
- Constantinescu, C., Mattoo, A., & Ruta, M. (2019). Does vertical specialisation increase productivity? The World Economy, 42(8), 2385–2402.
- Dalle, D., Fossati, V., & Lavopa, F. (2013). Industrial policy and developmental space: The missing piece in the gvcs debate. *Revista Argentina de Economía Internacional*, 2, 3–14.

- Daly, J., Abdulsamad, A., & Gereffi, G. (2017). Regional value chains in east africa: Summary report (Project report). International Growth Center. Retrieved from https://www.theigc.org/ sites/default/files/2017/05/Daly-et-al-2017-summary-paper.pdf
- Daly, J., Hamrick, D., Gereffi, G., & Guinn, A. (2016). Maize value chains in east africa. Duke Center on Globalization, Governance, and Competitiveness.
- Daudin, G., Rifflart, C., & Schweisguth, D. (2011). Who produces for whom in the world economy? Canadian Journal of Economics/Revue canadienne d'économique, 44(4), 1403–1437.
- Dihel, N. C., Grover, A., Hollweg, C. H., & Slany, A. (2018). How does participation in value chains matter to african farmers? World Bank Policy Research Working Paper (8506).
- Engel, J., Winkler, D., & Farole, T. (2016). Sacu in global value chains: Measuring gvc integration, position, and performance of botswana, lesotho, namibia, south africa, and swaziland.
- Fally, T. (2012). Production staging: measurement and facts. Boulder, Colorado, University of Colorado Boulder, May, 155–168.
- Fernandes, A. M., Kee, H. L., & Winkler, D. (2022). Determinants of global value chain participation: cross-country evidence. The World Bank Economic Review, 36(2), 329–360.
- Feyrer, J. (2009). Distance, trade, and income-the 1967 to 1975 closing of the suez canal as a natural experiment (Tech. Rep.). National Bureau of Economic Research.
- Feyrer, J. (2019). Trade and income—exploiting time series in geography. American Economic Journal: Applied Economics, 11(4), 1–35.
- Foster-McGregor, N., Kaulich, F., & Stehrer, R. (2015). Global value chains in africa.
- Fowler, M., & Rauschendorfer, J. (2019). Agro-industrialisation in uganda.
- Gaulier, G., & Zignago, S. (2010). Baci: International trade database at the product-level. the 1994-2007 version (Working Papers No. 2010-23). CEPII. Retrieved from http://www.cepii.fr/ CEPII/fr/publications/wp/abstract.asp?NoDoc=2726
- Hummels, D., Ishii, J., & Yi, K.-M. (2001). The nature and growth of vertical specialization in world trade. *Journal of international Economics*, 54(1), 75–96.
- Huo, J., Chen, P., Hubacek, K., Zheng, H., Meng, J., & Guan, D. (2022). Full-scale, near realtime multi-regional input-output table for the global emerging economies (emerging). *Journal* of Industrial Ecology, 26(4), 1218–1232.
- IMF General Statistics Division. (1993). Direction of trade statistics. International Monetary Fund. Retrieved from https://data.imf.org/?sk=9d6028d4f14a464ca2f259b2cd424b85
- Jangam, B. P., & Rath, B. N. (2021). Does global value chain participation enhance domestic value-added in exports? evidence from emerging market economies. *International Journal of Finance & Economics*, 26(2), 1681–1694.
- Koopman, R., Wang, Z., & Wei, S.-J. (2014). Tracing value-added and double counting in gross exports. American Economic Review, 104(2), 459–94.
- Kowalski, P., Gonzalez, J. L., Ragoussis, A., & Ugarte, C. (2015). Participation of developing countries in global value chains: Implications for trade and trade-related policies.
- Krishnan, A. (2018). The origin and expansion of regional value chains: The case of kenyan horticulture. *Global Networks*, 18(2), 238–263.
- Kummritz, V. (2015). *Global value chains: benefiting the domestic economy?* (Tech. Rep.). Graduate Institute of International and Development Studies Working Paper.
- Kummritz, V. (2016). Do Global Value Chains Cause Industrial Development? CTEI Working Paper No 2016-01. Retrieved from http://repec.graduateinstitute.ch/pdfs/cteiwp/CTEI-2016 -01.pdf doi: 10.1002/pd
- Kummritz, V., & Quast, B. (2014). decompr: global value chain decomposition in R.

- Kummritz, V., & Quast, B. (2016). Global value chains in low and middle income countries. CTEI Working Papers (10). Retrieved from https://ideas.repec.org/p/gii/cteiwp/ctei-2016-10.html
- Kummritz, V., Taglioni, D., & Winkler, D. E. (2017). Economic upgrading through global value chain participation: Which policies increase the value added gains? (Tech. Rep. No. 8007). World Bank Policy Research Working Paper.
- Lenzen, M., Kanemoto, K., Moran, D., & Geschke, A. (2012). Mapping the structure of the world economy. *Environmental science & technology*, 46(15), 8374–8381.
- Lenzen, M., Moran, D., Kanemoto, K., & Geschke, A. (2013). Building eora: a global multi-region input-output database at high country and sector resolution. *Economic Systems Research*, 25(1), 20–49.
- Leontief, W. W. (1936). Quantitative input and output relations in the economic systems of the united states. *The review of economic statistics*, 105–125.
- Lwesya, F. (2022). Integration into regional or global value chains and economic upgrading prospects: an analysis of the east african community (eac) bloc. *Future Business Journal*, 8(1), 33.
- Mancini, M., Montalbano, P., Nenci, S., & Vurchio, D. (2023). Positioning in global value chains: World map and indicators. a new dataset available for gvc analyses (Working Paper). DiSSE Working Paper 03/23, Sapienza University of Rome.
- Miller, R. E., & Temurshoev, U. (2017). Output upstreamness and input downstreamness of industries/countries in world production. *International regional science review*, 40(5), 443–475.
- MoFPED. (2021). Beyond recovery: Policies towards resurgent growth in uganda (A. Musisi & R. Newfarmer, Eds.). Ministry of Finance, Planning and Economic Development of Uganda and International Growth Center. Retrieved from https://mepd.finance.go.ug/documents/EGF/EGF-Book.pdf
- Novy, D. (2013). Gravity redux: measuring international trade costs with panel data. *Economic inquiry*, 51(1), 101–121.
- Obasaju, B. O., Olayiwola, W. K., Okodua, H., Adediran, O. S., & Lawal, A. I. (2021). Regional economic integration and economic upgrading in global value chains: selected cases in africa. *Heliyon*, 7(2).
- Pahl, S., & Timmer, M. P. (2020). Do global value chains enhance economic upgrading? a long view. The journal of development studies, 56(9), 1683–1705.
- Piermartini, R., & Rubínová, S. (2014). Knowledge spillovers through international supply chains (Tech. Rep.). The Graduate Institute of International and Development Studies.
- Pietrobelli, C., Marin, A., & Olivari, J. (2018). Innovation in mining value chains: New evidence from latin america. *Resources Policy*, 58, 1–10.
- Rodriguez, F., & Rodrik, D. (2000). Trade policy and economic growth: a skeptic's guide to the cross-national evidence. *NBER macroeconomics annual*, 15, 261–325.
- Rodrik, D. (2018). New technologies, global value chains, and developing economies (Tech. Rep.). National Bureau of Economic Research.
- Romer, D. H., Frankel, J. A., et al. (1999). Does trade cause growth? *American Economic Review*, 89(3), 379–399.
- Shen, J. H., Zhang, L., Lee, C.-C., Zhang, J., & Shen, L. (2021). Towards a dynamic model of the industrial upgrading with global value chains. *The World Economy*, 44(9), 2683–2702.
- Tian, K., Dietzenbacher, E., & Jong-A-Pin, R. (2022). Global value chain participation and its impact on industrial upgrading. *The World Economy*, 45(5), 1362–1385.
- Timmer, M., Erumban, A. A., Gouma, R., Los, B., Temurshoev, U., de Vries, G. J., ... others (2012). *The world input-output database (wiod): Contents, sources and methods* (Tech. Rep.). Institute for International and Development Economics.

- Tinta, A. A. (2017). The determinants of participation in global value chains: The case of ecowas. Cogent Economics & Finance, 5(1), 1389252.
- Van Campenhout, B., Nabwire, L., Minten, B., & Ariong, R. M. (2020). Institutional and technological innovations to foster agro-industrialization in uganda: Insights from the dairy value chain. Intl Food Policy Res Inst.
- World Bank. (2020). Trading for development in the age of global value chains. The World Bank Washington, DC.

Appendix

The appendix has two parts: Part A provides additional concordances for countries and sectors to their corresponding aggregates and EORA data quality reports; Part B provides additional tables and figures, many of which are referred to from the main text.

A. Data Aggregation and EORA Quality Reports

Region	Description	Countries
EAC	East African Community	UGA, TZA, KEN, RWA, BDI, COD, SSD
SSA	Sub-Saharan Africa (Excluding EAC)	AGO, BEN, BFA, BWA, CAF, CIV, CMR, COG, COM, CPV, ERI, ETH, GAB, GHA, GIN, GMB, GNB, GNQ, LBR, LSO, MDG, MLI, MOZ, MRT, MUS, MWI, NAM, NER, NGA, SDN, SEN, SLE, SOM, STP, SWZ, SYC, TCD, TGO, ZAF, ZMB, ZWE
EUU	European Union + GBR	AUT, BEL, BGR, CYP, CZE, DEU, DNK, ESP, EST, FIN, FRA, GBR, GRC, HRV, HUN, IRL, ITA, LTU, LUX, LVA, NLD, POL, PRT, ROU, SVK, SVN, SWE, MLT
ECA	Europe and Central Asia (Non-EU)	ALB, AND, ARM, AZE, BIH, BLR, CHE, CHI, FRO, GEO, GIB, GRL, IMN, ISL, KAZ, KGZ, LIE, MCO, MDA, MKD, MNE, NOR, RUS, SMR, SRB, TJK, TKM, TUR, UKR, UZB, XKX
MEA	Middle East and North Africa	ARE, BHR, DJI, DZA, EGY, IRN, IRQ, ISR, JOR, KWT, LBN, LBY, MAR, OMN, PSE, QAT, SAU, SYR, TUN, YEM
NAC	North America and Canada	BMU, CAN, USA
LAC	Latin America and Carribean	ABW, ARG, ATG, BHS, BLZ, BOL, BRA, BRB, CHL, COL, CRI, CUB, CUW, CYM, DMA, DOM, ECU, GRD, GTM, GUY, HND, HTI, JAM, KNA, LCA, MAF, MEX, NIC, PAN, PER, PRI, PRY, SLV, SUR, SXM, TCA, TTO, URY, VCT, VEN, VGB, VIR
ASE	ASEAN	BRN, IDN, KHM, LAO, MMR, MYS, PHL, SGP, THA, VNM
SAS	South Asia	AFG, BGD, BTN, IND, LKA, MDV, NPL, PAK
CHN	China	CHN, HKG, TWN
ROA	Rest of Asia	ASM, GUM, JPN, KOR, MAC, MNG, MNP, NCL, PRK, PYF, TLS
OCE	Oceania	AUS, FJI, FSM, KIR, MHL, NRU, NZL, PLW, PNG, SLB, TON, TUV, VUT, WSM

Table A1: Countries A	ND REGIONS
-----------------------	------------

Table A2: EMERGING Sectors and Mapping to Broad Sectors	Table A2:	EMERGING	Sectors	and	Mapping	to	Broad	Sectors
---	-----------	----------	---------	-----	---------	---------------------	-------	---------

	EMERGING Sector Definition	BSC	Broad Sector Definition of Huo et al. (2022)
	Live Animals	AFF	Agriculture, Hunting, Forestry & Fishing
	Meat and Edible Meat Offal	FBE	Food Production, Beverages & Tobacco
	Fish, Crustaceans, Molluscs, Aquatic Invertebrates Ne	AFF	Agriculture, Hunting, Forestry & Fishing
	Dairy Products, Eggs, Honey, Edible Animal Product Ne	FBE	Food Production, Beverages & Tobacco
	Products of Animal Origin, Nes	AFF	Agriculture, Hunting, Forestry & Fishing
5	Live Trees, Plants, Bulbs, Roots, Cut Flowers Etc	AFF	Agriculture, Hunting, Forestry & Fishing
	Edible Vegetables and Certain Roots and Tubers	AFF	Agriculture, Hunting, Forestry & Fishing
3	Edible Fruit, Nuts, Peel of Citrus Fruit, Melons	AFF	Agriculture, Hunting, Forestry & Fishing
	Coffee, Tea, Mate and Spices	FBE	Food Production, Beverages & Tobacco
)	Cereals	AFF	Agriculture, Hunting, Forestry & Fishing
2	Milling Products, Malt, Starches, Inulin, Wheat Glute	FBE	Food Production, Beverages & Tobacco
	Oil Seed, Oleagic Fruits, Grain, Seed, Fruit, Etc, Ne	AFF	Agriculture, Hunting, Forestry & Fishing
3	Lac, Gums, Resins, Vegetable Saps and Extracts Nes	AFF	Agriculture, Hunting, Forestry & Fishing
	Vegetable Plaiting Materials, Vegetable Products Nes	FBE	Food Production, Beverages & Tobacco
5	Animal, vegetable Fats and Oils, Cleavage Products, et	FBE	Food Production, Beverages & Tobacco
5	Meat, Fish and Seafood Food Preparations Nes	FBE	Food Production, Beverages & Tobacco
	Sugars and Sugar Confectionery	FBE	Food Production, Beverages & Tobacco
5	Cocoa and Cocoa Preparations	FBE	Food Production, Beverages & Tobacco
	Cereal, Flour, Starch, Milk Preparations and Products	FBE	Food Production, Beverages & Tobacco
)	Vegetable, Fruit, Nut, Etc Food Preparations	FBE FBE	Food Production, Beverages & Tobacco
2	Miscellaneous Edible Preparations Beverages, Spirits and Vinegar	FBE	Food Production, Beverages & Tobacco Food Production, Beverages & Tobacco
	Residues, Wastes of Food Industry, Animal Fodder	FBE	Food Production, Beverages & Tobacco
	Tobacco and Manufactured Tobacco Substitutes	FBE	Food Production, Beverages & Tobacco
	Salt, Sulphur, Earth, Stone, Plaster, Lime and Cement	PCM PCM	Petroleum, Chemicals & Non-Metallic Mineral Products
	Ores, Slag and Ash Mineral Fuels, Oils, Distillation Products, Etc	MIN	Petroleum, Chemicals & Non-Metallic Mineral Products Mining & Quarrying
	Inorganic Chemicals, Precious Metal Compound, Isotope	PCM	Petroleum, Chemicals & Non-Metallic Mineral Products
	Organic Chemicals	PCM	Petroleum, Chemicals & Non-Metallic Mineral Products
	Pharmaceutical Products Fertilizers	PCM PCM	Petroleum, Chemicals & Non-Metallic Mineral Products
	Tanning, Dyeing Extracts, Tannins, Derivs, pigments et	PCM	Petroleum, Chemicals & Non-Metallic Mineral Products Petroleum, Chemicals & Non-Metallic Mineral Products
	Essential Oils, Perfumes, Cosmetics, Toileteries	PCM	Petroleum, Chemicals & Non-Metallic Mineral Products
	Soaps, Lubricants, Waxes, Candles, Modelling Pastes	PCM	Petroleum, Chemicals & Non-Metallic Mineral Products
	Albuminoids, Modified Starches, Glues, Enzymes	PCM	Petroleum, Chemicals & Non-Metallic Mineral Products
	Explosives, Pyrotechnics, Matches, Pyrophorics, Etc	PCM	Petroleum, Chemicals & Non-Metallic Mineral Products
	Photographic or Cinematographic Goods	PCM	Petroleum, Chemicals & Non-Metallic Mineral Products
	Miscellaneous Chemical Products	PCM	Petroleum, Chemicals & Non-Metallic Mineral Products
	Plastics and Articles Thereof	PCM	Petroleum, Chemicals & Non-Metallic Mineral Products
	Rubber and Articles Thereof	PCM	Petroleum, Chemicals & Non-Metallic Mineral Products
	Raw Hides and Skins (Other than Furskins) and Leather	TEX	Textiles, Leather & Wearing Apparel
	Articles of Leather, Animal Gut, Harness, Travel Good	TEX	Textiles, Leather & Wearing Apparel
	Furskins and Artificial Fur, Manufactures Thereof	TEX	Textiles, Leather & Wearing Apparel
	Wood and Articles of Wood, Wood Charcoal	WAP	Wood, Paper & Publishing
	Cork and Articles of Cork	WAP	Wood, Paper & Publishing
	Manufactures of Plaiting Material, Basketwork, Etc.	WAP	Wood, Paper & Publishing
	Pulp of Wood, Fibrous Cellulosic Material, Waste Etc	WAP	Wood, Paper & Publishing
	Paper & Paperboard, Articles of Pulp, Paper and Board	WAP	Wood, Paper & Publishing
	Printed Books, Newspapers, Pictures Etc	WAP	Wood, Paper & Publishing
	Silk	TEX	Textiles, Leather & Wearing Apparel
	Wool, Animal Hair, Horsehair Yarn and Fabric Thereof	TEX	Textiles, Leather & Wearing Apparel
	Cotton	TEX	Textiles, Leather & Wearing Apparel
	Vegetable Textile Fibres Nes, Paper Yarn, Woven Fabri	TEX	Textiles, Leather & Wearing Apparel
	Manmade Filaments	TEX	Textiles, Leather & Wearing Apparel
	Manmade Staple Fibres	TEX	Textiles, Leather & Wearing Apparel
	Wadding, Felt, Nonwovens, Yarns, Twine, Cordage, Etc	TEX	Textiles, Leather & Wearing Apparel
	Carpets and Other Textile Floor Coverings	TEX	Textiles, Leather & Wearing Apparel
	Special Woven or Tufted Fabric, Lace, Tapestry Etc	TEX	Textiles, Leather & Wearing Apparel
	Impregnated, Coated or Laminated Textile Fabric	TEX	Textiles, Leather & Wearing Apparel
	Knitted or Crocheted Fabric	TEX	Textiles, Leather & Wearing Apparel
	Articles of Apparel, Accessories, Knit or Crochet	TEX	Textiles, Leather & Wearing Apparel
	Articles of Apparel, Accessories, not Knit or Crochet	TEX	Textiles, Leather & Wearing Apparel
	Other Made Textile Articles, Sets, Worn Clothing Etc	TEX	Textiles, Leather & Wearing Apparel
	Footwear, Gaiters and the Like, Parts Thereof	TEX	Textiles, Leather & Wearing Apparel
	Headgear and Parts Thereof	TEX	Textiles, Leather & Wearing Apparel
	Umbrellas, Walking-Sticks, Seat-Sticks, Whips, Etc	TEX	Textiles, Leather & Wearing Apparel
	Bird Skin, Feathers, Artificial Flowers, Human Hair	TEX	Textiles, Leather & Wearing Apparel
	Stone, Plaster, Cement, Asbestos, Mica, Etc Articles	\mathbf{PCM}	Petroleum, Chemicals & Non-Metallic Mineral Products
	Ceramic Products Undata	PCM	Petroleum, Chemicals & Non-Metallic Mineral Products
	Glass and Glassware	PCM	Petroleum, Chemicals & Non-Metallic Mineral Products
	Pearls, Precious Stones, Metals, Coins, Etc	PCM	Petroleum, Chemicals & Non-Metallic Mineral Products
	Iron and Steel	MPR	Metal & Metal Products
	Articles of Iron or Steel	MPR	Metal & Metal Products
	Copper and Articles Thereof	MPR	Metal & Metal Products
	Nickel and Articles Thereof	MPR	Metal & Metal Products
	Aluminium and Articles Thereof	MPR	Metal & Metal Products
	Lead and Articles Thereof	MPR	Metal & Metal Products
	Zinc and Articles Thereof	MPR	Metal & Metal Products
	Tin and Articles Thereof	MPR	Metal & Metal Products
	Other Base Metals, Cermets, Articles Thereof	MPR	Metal & Metal Products
	Tools, Implements, Cutlery, Etc of Base Metal	MPR	Metal & Metal Products
	Miscellaneous Articles of Base Metal	MPR	Metal & Metal Products
	Nuclear Reactors, Boilers, Machinery, Etc	ELM	Electrical & Machinery
	Electrical, Electronic Equipment	ELM	Electrical & Machinery
	Railway, Tramway Locomotives, Rolling Stock, Equipmen	TEQ	Transport Equipment
	Vehicles Other than Railway, Tramway	TEQ	Transport Equipment
	Aircraft, Spacecraft, and Parts Thereof	TEQ	Transport Equipment
	Ships, Boats and Other Floating Structures	TEQ	Transport Equipment
	Optical, Photo, Technical, Medical, Etc Apparatus	ELM	Electrical & Machinery
	Clocks and Watches and Parts Thereof	ELM	Electrical & Machinery
	Musical Instruments, Parts and Accessories	ELM	Electrical & Machinery
	Arms and Ammunition. Parts and Accessories Thereof	ELM	Electrical & Machinery
	Furniture, Lighting, Signs, Prefabricated Buildings	MAN	Manufacturing & Recycling
	Toys, Games, Sports Requisites	MAN	Manufacturing & Recycling
	Miscellaneous Manufactured Articles	MAN	Manufacturing & Recycling
	Works of Art, Collectors Pieces and Antiques	MAN	Manufacturing & Recycling
	Commodities not Specified According to Kind	MAN	Manufacturing & Recycling
	Electricity	EGW	Electricity, Gas & Water
	Gas Manufacture, Distribution	EGW	Electricity, Gas & Water
	Water Collection, Purification, and Distribution	EGW	Electricity, Gas & Water
	Coal	MIN	Mining & Quarrying
	Oil	MIN	Mining & Quarrying
	Gas	MIN	Mining & Quarrying
	Petroleum, Coal Products	PCM	Petroleum, Chemicals & Non-Metallic Mineral Products
	Manufacturing Services on Physical Inputs Owned by Others	SMH	Sale, Maintenance & Repair of Vehicles; Fuel; Trade; Hotels & Restaurant
	Maintenance and Repair Services N.i.e.	SMH	Sale, Maintenance & Repair of Vehicles; Fuel; Trade; Hotels & Restaurant
	Sea Transport	TRA	Transport
	Air Transport	TRA	Transport
	Other Modes of Transport	TRA	Transport
	Postal and Courier Services	PTE	Post & Telecommunications
	Goods (Travel)	TRA	Transport
	Local Transport Services	TRA	Transport
	Accommodation Services	SMH	Sale, Maintenance & Repair of Vehicles; Fuel; Trade; Hotels & Restaurant
	Food-Serving Services	SMH	Sale, Maintenance & Repair of Vehicles; Fuel; Trade; Hotels & Restaurant
	Construction	CON	Construction
	Direct Insurance	FIB FIB	Financial Intermediation & Business Activity Financial Intermediation & Business Activity
	Pension and Standardized Guaranteed Services Financial Services	FIB	Financial Intermediation & Business Activity Financial Intermediation & Business Activity
	Real Estate	FIB	Financial Intermediation & Business Activity
	Charges for the Use of Intellectual Property N.i.e.	FIB	Financial Intermediation & Business Activity
	Telecommunications Services	PTE	Post & Telecommunications
	Computer Services	PTE PTE	Post & Telecommunications Post & Telecommunications
	Information Services	FIB	Financial Intermediation & Business Activity
	Research and Development Services		Financial Intermediation & Business Activity
	Research and Development Services Professional and Management Consulting Services Engineering	FIB FIB	Financial Intermediation & Business Activity Financial Intermediation & Business Activity
	Research and Development Services Professional and Management Consulting Services Engineering Waste Treatment and De-Pollution Agricultural and Mining Services	FIB	
	Research and Development Services Professional and Management Consulting Services Engineering Waste Treatment and De-Pollution Agricultural and Mining Services Operating Leasing Services Other Business Services N.i.e.	FIB FIB PAO FIB FIB	Financial Intermediation & Business Activity Public Administration; Education; Health; Recreation; Other Services Financial Intermediation & Business Activity Financial Intermediation & Business Activity
	Research and Development Services Professional and Management Consulting Services Engineering Waste Treatment and De-Pollution Agricultural and Mining Services Operating Leasing Services	FIB FIB PAO FIB	Financial Intermediation & Business Activity Public Administration; Education; Health; Recreation; Other Services Financial Intermediation & Business Activity

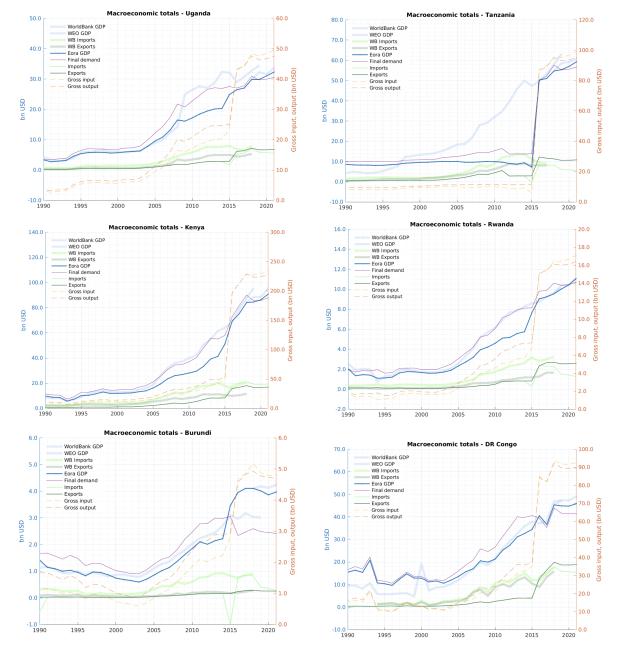


Figure A1: EORA Data Quality Reports: EAC Macroeconomic Totals

B. Additional Tables and Figures

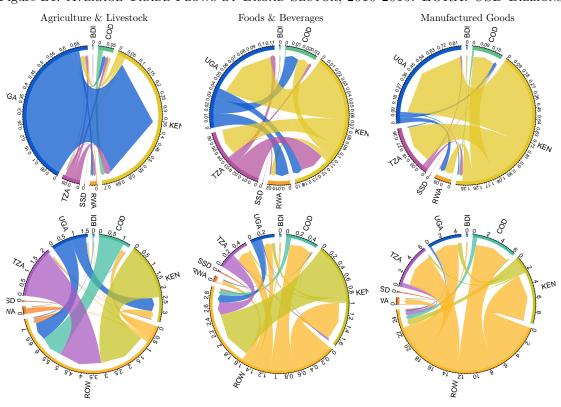
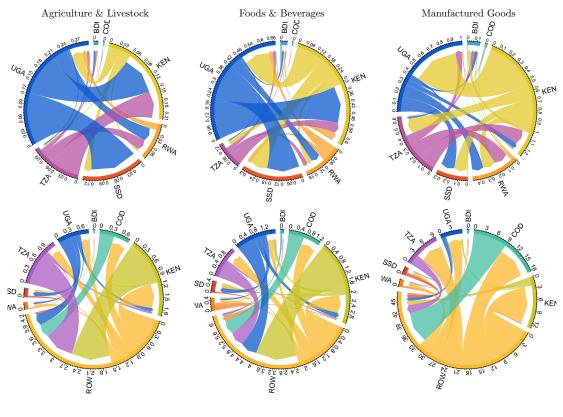



Figure B1: Average Trade Flows by Broad Sector, 2010-2015: EORA: USD BILLIONS

Figure B2: Average Trade Flows by Broad Sector, 2010-2015: EMERGING: USD BILLIONS

		Overall			Inner-EAC	
	From	To	Value	From	To	Value
2	UGA.PCM	MEA.MIN	254.72	KEN.PCM	UGA.CON	65.28
3	MEA.PCM	KEN.FBE	245.28	KEN.PCM	RWA.AFF	41.38
4	SAS.PCM	TZA.TRA	244.89	KEN.PCM	UGA.FBE	40.42
5	SAS.PCM	KEN.FBE	233.83	UGA.FBE	KEN.TRA	40.12
6	CHN.TEX	TZA.TEX	222.33	UGA.FBE	KEN.FBE	38.88
7	CHN.TEX	KEN.TEX	213.58	TZA.PCM	RWA.AFF	38.36
8	CHN.PCM	KEN.PCM	213.41	UGA.PCM	RWA.AFF	31.44
9	CHN.ELM	TZA.ELM	211.46	KEN.MPR	UGA.CON	31.15
10	CHN.TEX	KEN.TRA	211.10	TZA.AFF	KEN.FBE	30.07
11	KEN.TRA	EUU.TRA	207.65	KEN.FBE	UGA.FBE	29.40
12	TZA.PCM	ECA.PCM	196.53	KEN.PCM	UGA.AFF	29.18
13	KEN.FBE	SAS.FBE	196.09	UGA.AFF	KEN.FBE	28.80
14	KEN.AFF	EUU.FBE	191.72	KEN.PCM	TZA.PCM	27.12
15	MEA.PCM	TZA.TRA	191.05	KEN.MPR	UGA.MPR	22.62
16	CHN.MPR	KEN.EGW	186.79	RWA.FBE	KEN.FBE	21.90
17	UGA.PCM	MEA.CON	180.61	TZA.TEX	KEN.TEX	19.46
18	CHN.TEX	KEN.WAP	175.45	RWA.FBE	KEN.TRA	17.37
19 20	SAS.PCM	KEN.PCM	172.61	UGA.EGW	KEN.CON	17.14
20	TZA.AFF	SAS.AFF	163.76	UGA.PCM	RWA.TRA	16.29
21	KEN.AFF	EUU.AFF	160.71	KEN.FBE	UGA.SMH	14.99
22	CHN.PCM	KEN.FBE	158.19	UGA.AFF	KEN.AFF	14.28
23	SAS.PCM TZA.PCM	KEN.EGW	156.87	KEN.MPR	UGA.PTE KEN.WAP	13.76
24 25		SSA.MPR	155.21	TZA.WAP		13.70
$\frac{25}{26}$	MEA.PCM	KEN.PCM	142.64	TZA.FBE	KEN.TEX	13.64
$\frac{26}{27}$	MEA.PCM CHN.PCM	KEN.EGW TZA.CON	142.53	KEN.PCM	TZA.FBE RWA.TRA	13.10
$\frac{27}{28}$	CHN.PCM CHN.PCM	TZA.CON TZA.PCM	$136.05 \\ 135.90$	UGA.FBE KEN.AFF	UGA.FBE	$13.07 \\ 12.36$
$\frac{28}{29}$	TZA.TRA	EUU.TRA	$135.90 \\ 131.02$	UGA.FBE	KEN.TEX	12.30 12.33
$\frac{29}{30}$	KEN.FBE	SAS.PCM	131.02 129.12	KEN.PCM	UGA.TRA	12.33 12.22
$\frac{30}{31}$	UGA.PCM	MEA.PCM	129.12 129.11	KEN.PCM KEN.PCM	UGA.EGW	12.22 11.55
$31 \\ 32$	MEA.PCM	KEN.CON	129.11 128.95	UGA.WAP	KEN.WAP	11.33 11.23
$\frac{52}{33}$	EUU.PCM	KEN.PCM	123.90 114.90	KEN.TEX	UGA.TEX	11.23 10.58
$\frac{33}{34}$	CHN.PCM	KEN.AFF	114.90 114.73	TZA.FBE	KEN.FBE	10.38 10.45
35 - 35	SAS.PCM	KEN.AFF	114.75 113.57	TZA.FBE	KEN.PCM	10.43 10.21
$\frac{35}{36}$	EUU.PCM	KEN.FBE	113.37 113.21	TZA.WAP	KEN.FBE	9.72
$\frac{30}{37}$	CHN.ELM	TZA.CON	113.02	UGA.FBE	KEN.PCM	8.79
38	CHN.ELM	UGA.EGW	110.02 112.73	UGA.WAP	KEN.FBE	8.42
$\frac{39}{39}$	MEA.PCM	TZA.CON	112.75 106.08	KEN.PCM	RWA.FBE	8.40
$\frac{33}{40}$	KEN.FBE	MEA.FBE	100.03 104.53	TZA.TEX	KEN.TRA	8.00
40	CHN.MAN	KEN.MAN	104.33 104.29	KEN.PCM	BDI.AFF	8.00
42	UGA.FBE	EUU.FBE	104.25 102.62	KEN.FBE	UGA.TRA	7.66
43	TZA.AFF	ASE.AFF	102.02 102.24	TZA.FBE	KEN.TRA	7.18
44	CHN.ELM	KEN.CON	102.24 100.89	TZA.AFF	KEN.AFF	6.96
45	CHN.MPR	TZA.ELM	98.29	KEN.PCM	TZA.CON	6.93
46	KEN.FBE	EUU.FBE	96.18	KEN.PCM	TZA.TRA	6.83
47	TZA.PCM	SSA.PCM	95.74	TZA.PCM	BDI.AFF	6.80
48	CHN.ELM	KEN.FBE	94.59	KEN.FBE	UGA.PTE	6.49
49	SAS.PCM	KEN.CON	93.59	KEN.PCM	TZA.AFF	6.48
50	TZA.TRA	SAS.TRA	91.13	KEN.WAP	RWA.CON	6.43
			01.10			0.10

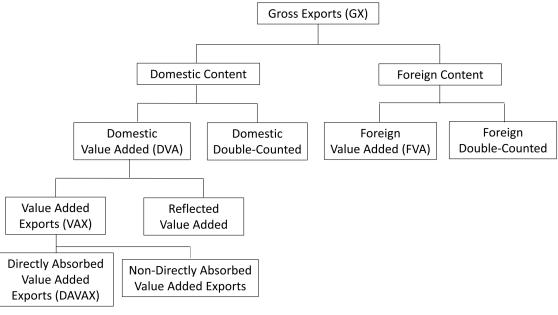


Figure B3: Refined Koopman Wang Wei Decomposition of Gross Exports

Source: Antràs & Chor (2022)

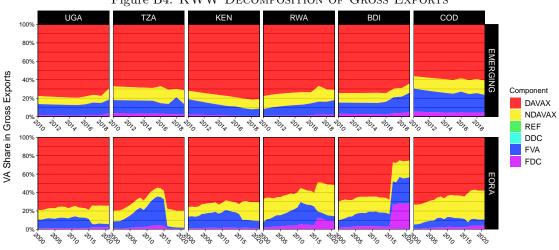
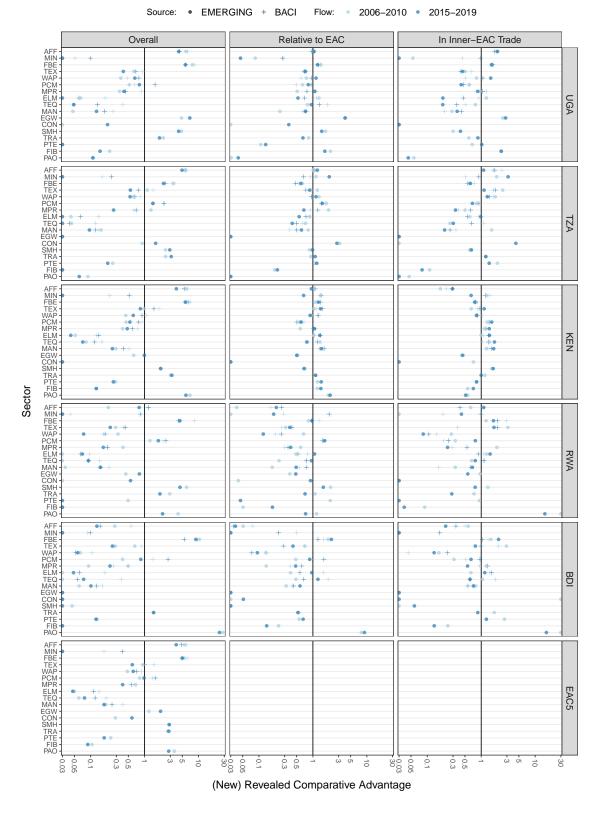


Figure B4: KWW DECOMPOSITION OF GROSS EXPORTS


Table B2: (N)RCA Estimates from Figure 19

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	04 2.76 06 1.43 70 1.73 69 5.12	FIB PA0 0.02 1.0 1.02 0.5 0.44 0.1 0.12 2.5 0.10 3.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{r} 06 & 1.43 \\ 70 & 1.73 \\ 59 & 5.12 \\ 82 & 6.10 \end{array} $	$\begin{array}{ccc} 1.02 & 0.5 \\ 0.44 & 0.1 \\ 0.12 & 2.5 \end{array}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccc} 70 & 1.73 \\ 59 & 5.12 \\ 32 & 6.10 \end{array}$	0.44 0.1 0.12 2.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	59 5.12 32 6.10	0.12 2.5
BDI WDR_EORA GX 6.83 0.32 0.31 0.38 0.20 0.13 0.24 0.07 0.25 1.18 4.23 12.99 5.53 1. EAC5 WDR_EORA GX 11.54 1.10 2.68 0.96 0.77 0.55 0.38 0.22 0.14 1.64 2.09 2.17 1.64 1.10	6.10	
EAC5 WDR_EORA GX 11.54 1.10 2.68 0.96 0.77 0.55 0.38 0.22 0.14 1.64 2.09 2.17 1.64 1.		0.10 0.0
	2.00	0.48 0.5
	31 2.69	0.02 1.3
	03 1.34	1.00 0.6
KEN EORA GX 11.95 1.79 1.41 0.89 1.20 0.77 0.44 0.23 0.11 0.92 2.20 0.95 1.24 1.		0.44 0.2
RWA EORA GX 4.82 3.38 0.34 0.28 0.45 0.17 0.32 0.10 0.14 0.58 6.55 8.74 3.56 1.		0.12 3.2
	52 6.05	0.10 4.4
EAC5 EORA GX 12.28 0.83 3.07 0.90 0.98 0.58 0.38 0.20 0.19 1.39 2.92 1.91 1.43 1.		0.47 0.6
UGA EMERGING GX 4.76 0.00 7.16 0.52 0.70 0.82 0.46 0.03 0.05 0.14 7.29 0.19 4.42 1. TZA EMERGING GX 4.93 0.01 2.46 0.55 0.64 1.38 0.58 0.04 0.04 0.12 0.00 1.61 3.04 3.	02 0.03 1 0.27	0.16 0.1 0.02 0.0
	1 0.27 28 0.29	
	0.29	0.13 6.7 0.01 2.2
	30 0.02 30 0.12	0.01 2.2 0.01 24.1
	0.12 0.12	0.01 24.1
	90 0.21	0.09 5.1
UGA BACI GX 5.03 0.08 7.60 0.88 0.73 0.68 0.80 0.18 0.20 0.24		
TZA BACI GX 5.08 0.23 2.85 0.93 0.60 2.42 0.58 0.13 0.08 0.16		
KEN BACI GX 5.74 0.45 6.61 1.63 0.89 0.77 0.59 0.17 0.12 0.40		
RWA BACI GX 1.27 0.65 5.02 0.51 0.18 2.32 0.26 0.07 0.11 0.18		
BDI BACI GX 0.25 0.02 5.53 0.42 0.06 2.84 0.30 0.07 0.09 0.11		
EAC5 BACI GX 5.21 0.32 5.16 1.19 0.73 1.55 0.58 0.15 0.15 0.28		
	79 2.37	0.02 3.4
TZA WDR_EORA VAX 10.87 1.23 2.07 1.31 0.42 0.16 0.13 0.07 0.15 3.15 3.76 1.75 1.01 0.		1.04 1.7
KEN WDR_EORA VAX 10.62 0.84 2.63 0.91 0.84 0.72 0.29 0.19 0.06 0.98 1.52 0.86 1.22 1.	42 1.53	0.38 0.6
RWA WDR_EORA VAX 4.55 3.74 0.31 0.24 0.35 0.17 0.30 0.11 0.09 0.27 4.23 10.26 3.49 1.	70 5.07	0.11 4.1
BDI WDR_EORA VAX 6.36 0.19 0.31 0.30 0.20 0.13 0.23 0.08 0.26 0.82 3.41 12.58 4.41 1.		0.09 9.8
EAC5 WDR_EORA VAX 10.80 0.86 2.38 0.85 0.68 0.54 0.27 0.16 0.10 1.24 1.87 1.91 1.42 1.	41 1.80	0.42 1.4
	73 2.55	0.02 1.5
	35 1.40	1.12 0.7
KEN EORA VAX 12.20 0.72 3.07 0.89 1.09 0.75 0.30 0.17 0.07 0.90 2.32 0.80 1.21 1.	41 1.69	0.43 0.3
RWA EORA VAX 5.37 3.29 0.37 0.23 0.46 0.18 0.30 0.10 0.12 0.26 6.42 9.69 3.43 1.	55 5.46	0.13 2.1
BDI EORA VAX 7.67 0.17 0.37 0.29 0.26 0.14 0.25 0.08 0.32 0.75 4.96 12.92 4.37 1.		0.11 4.7
EAC5 EORA VAX 12.68 0.76 2.76 0.83 0.88 0.56 0.28 0.14 0.12 1.10 2.97 1.78 1.39 1.	35 1.93	0.47 0.7
UGA EMERGING VAX 4.67 0.00 6.15 0.42 0.65 0.79 0.40 0.03 0.05 0.12 5.87 0.18 4.36 1.	0.02	0.16 0.1
TZA EMERGING VAX 5.08 0.01 2.53 0.55 0.58 1.43 0.51 0.03 0.04 0.10 0.00 1.58 2.83 3.	0.23	0.02 0.0
KEN EMERGING VAX 4.05 0.01 5.79 0.84 0.60 0.52 0.47 0.05 0.07 0.26 0.99 0.00 2.00 3.	13 0.27	0.13 6.0
RWA EMERGING VAX 0.77 0.00 4.50 0.26 0.08 1.56 0.18 0.06 0.08 0.11 0.79 0.52 4.64 2.	0.02	0.01 2.3
BDI EMERGING VAX 0.16 0.00 9.67 0.34 0.06 0.69 0.18 0.04 0.07 0.09 0.00 0.01 0.02 1.	47 0.13	0.01 26.1
EAC5 EMERGING VAX 4.17 0.01 5.01 0.61 0.58 0.89 0.43 0.05 0.08 0.18 1.73 0.58 2.85 2.	77 0.19	0.09 2.9

Table B3: (New) Revealed Comparative Advantage: Correlations of 2010-19 Medians

	WDR	EORA	EC	RA	EMEI	RGING	BACI
	\mathbf{GX}	VAX	\mathbf{GX}	VAX	\mathbf{GX}	VAX	\mathbf{GX}
WDR_EORA_GX	1	.962	.990	.987	.179	.186	.550
WDR_EORA_VAX	.962	1	.960	.967	.341	.362	.563
EORA_GX	.990	.960	1	.995	.215	.223	.571
EORA_VAX	.987	.967	.995	1	.217	.227	.570
EMERGING_GX	.179	.341	.215	.217	1	.994	.925
EMERGING_VAX	.186	.362	.223	.227	.994	1	.934
BACI_GX	.550	.563	.571	.570	.925	.934	1

Notes: WDR EORA is only available for 2010-15, EMERGING misses years 2011-14.

Figure B5: (N)RCA in 2006-2010 and 2015-2019 (Medians)

47

Country	Source	Flow	AFF	MIN	FBE	TEX	WAP	\mathbf{PCM}	MPR	ELM	TEQ	MAN	EGW	CON	\mathbf{SMH}	TRA	PTE	FIB	PA
Relative t	to the EAC																		
UGA	WDR_EORA	$\mathbf{G}\mathbf{X}$	1.39	0.13	0.93	0.26	0.38	0.33	1.02	0.81	1.95	0.58	0.43	2.12	1.41	1.25	1.37	0.05	2.
TZA	WDR_EORA	GX	0.91	1.32	0.91	1.71	0.74	0.38	0.52	0.54	2.04	2.80	1.90	0.93	0.70	0.65	0.71	2.12	1.
KEN	WDR_EORA	GX	1.00	0.98	1.10	0.99	1.22	1.32	1.14	1.19	0.56	0.64	0.77	0.51	0.87	1.04	0.88	0.92	0
RWA BDI	WDR_EORA WDR_EORA	GX GX	$0.39 \\ 0.60$	4.06 0.29	0.11 0.12	$0.30 \\ 0.39$	$0.45 \\ 0.26$	0.29 0.23	$0.84 \\ 0.64$	$0.50 \\ 0.34$	$0.69 \\ 1.73$	0.40 0.71	2.35 2.01	$4.57 \\ 6.05$	2.47 3.38	$1.04 \\ 1.12$	2.56 3.07	0.24 0.21	5 7
UGA	EORA	GX	1.34	0.13	0.91	0.26	0.39	0.32								1.24	1.36	0.05	2
TZA	EORA	GX	1.34 0.92	1.25	0.91	1.68	0.39	0.32	$1.03 \\ 0.50$	$0.80 \\ 0.52$	1.88 2.02	0.57 2.76	$0.45 \\ 1.83$	$2.06 \\ 0.90$	1.40 0.68	0.64	1.30	$\frac{0.05}{2.12}$	1
KEN	EORA	GX	0.92	1.00	1.12	0.99	1.23	1.33	1.15	1.20	0.58	0.64	0.79	0.54	0.88	1.05	0.89	0.94	0
RWA	EORA	GX	0.40	3.96	0.11	0.31	0.46	0.30	0.86	0.50	0.72	0.41	2.24	4.48	2.46	1.01	2.55	0.24	5
BDI	EORA	\mathbf{GX}	0.59	0.28	0.12	0.40	0.27	0.23	0.65	0.34	1.78	0.73	1.94	6.26	3.42	1.09	3.03	0.22	6
UGA	EMERGING	\mathbf{GX}	1.02	0.07	1.43	0.74	0.82	0.82	0.85	0.47	0.70	0.51	4.06	0.31	1.40	0.65	0.13	1.71	(
TZA	EMERGING	\mathbf{GX}	1.12	1.83	0.56	0.80	1.08	1.48	1.14	0.73	0.50	0.59	0.00	2.71	0.97	1.17	1.27	0.22	(
KEN	EMERGING	GX	1.04	0.81	1.18	1.46	1.08	0.63	1.02	1.30	1.34	1.52	0.54	0.00	0.71	1.11	1.36	1.42	-
RWA BDI	EMERGING EMERGING	GX GX	0.18 0.04	0.17 0.13	1.02 2.08	0.31 0.42	0.10 0.07	1.34 1.03	$0.34 \\ 0.44$	0.77 0.72	$0.70 \\ 0.95$	$0.30 \\ 0.38$	$0.33 \\ 0.00$	0.81 0.02	1.88 0.01	$0.69 \\ 0.46$	$0.07 \\ 0.51$	$0.14 \\ 0.14$	1
													0.00	0.02	0.01	0.40	0.51	0.14	
UGA TZA	BACI BACI	GX GX	$0.97 \\ 0.97$	$0.29 \\ 0.65$	$1.43 \\ 0.53$	$0.78 \\ 0.75$	$0.96 \\ 0.87$	$0.44 \\ 1.57$	$1.21 \\ 0.97$	$1.14 \\ 0.83$	1.87 0.51	$0.89 \\ 0.63$							
KEN	BACI	GX	1.13	1.49	1.28	1.42	1.28	0.48	0.99	1.16	0.91	1.43							
RWA	BACI	GX	0.25	1.95	1.00	0.42	0.24	1.44	0.48	0.52	0.89	0.67							
BDI	BACI	GX	0.05	0.09	1.17	0.35	0.07	1.70	0.43	0.56	0.78	0.39							
UGA	WDR_EORA	VAX	1.28	0.13	0.94	0.24	0.37	0.29	1.22	0.97	2.38	0.65	0.41	2.13	1.35	1.27	1.30	0.04	5
ΓZA	WDR_EORA	VAX	1.01	1.43	0.87	1.51	0.61	0.29	0.45	0.43	1.48	2.51	2.02	0.92	0.70	0.64	0.77	2.48	
KEN	WDR_EORA	VAX	0.98	0.98	1.10	1.07	1.24	1.32	1.08	1.16	0.60	0.78	0.81	0.46	0.87	1.02	0.86	0.90	
RWA	WDR_EORA	VAX	0.42	4.33	0.13	0.28	0.51	0.32	1.10	0.69	0.93	0.21	2.29	5.48	2.46	1.21	2.81	0.27	:
BDI	WDR_EORA	VAX	0.60	0.22	0.13	0.35	0.29	0.25	0.85	0.50	2.57	0.65	1.82	6.74	3.11	1.22	3.03	0.22	
UGA	EORA	VAX	1.28	0.13	0.92	0.23	0.38	0.29	1.16	0.93	2.16	0.61	0.42	2.06	1.34	1.26	1.29	0.05	-
TZA KEN	EORA EORA	VAX VAX	1.03 0.97	$1.36 \\ 1.00$	$0.79 \\ 1.12$	$1.49 \\ 1.09$	$0.59 \\ 1.25$	0.27 1.33	$0.45 \\ 1.10$	$0.41 \\ 1.17$	$1.31 \\ 0.61$	2.46 0.80	1.93	0.86 0.48	$0.68 \\ 0.89$	0.63 1.02	0.73 0.87	2.35 0.92	(
RWA	EORA	VAA	0.97	4.28	0.13	0.29	0.52	0.32	1.10	0.68	0.01	0.80	0.84 2.27	5.30	2.43	1.02	2.77	0.92	
BDI	EORA	VAX	0.62	0.22	0.13	0.33	0.29	0.25	0.87	0.51	2.64	0.65	1.74	6.94	3.19	1.20	3.13	0.23	(
UGA	EMERGING	VAX	1.05	0.06	1.26	0.71	1.09	0.80	0.80	0.66	0.87	0.53	3.98	0.31	1.50	0.67	0.13	1.73	(
TZA	EMERGING	VAX	1.15	1.89	0.60	0.87	1.21	1.53	1.12	0.71	0.57	0.62	0.00	2.86	0.97	1.09	1.15	0.21	(
KEN	EMERGING	VAX	1.00	0.80	1.24	1.37	0.91	0.58	1.00	1.19	1.07	1.43	0.52	0.00	0.70	1.13	1.41	1.37	2
RWA	EMERGING	VAX	0.19	0.19	0.93	0.37	0.15	1.60	0.41	1.03	0.88	0.42	0.44	0.88	1.63	0.75	0.09	0.15	(
BDI	EMERGING	VAX	0.04	0.11	2.06	0.53	0.10	0.75	0.41	0.76	0.86	0.57	0.00	0.03	0.01	0.54	0.63	0.15	8
	EAC Trade																		
UGA	EORA	GX	5.74	0.02	0.89	0.18	0.21	0.25	0.41	0.33	1.26	0.47	0.07	0.94	0.71	0.85	0.64	0.00	1
TZA	EORA	GX	1.14	0.37	3.74	0.92	0.49	0.38	0.24	0.71	1.49	2.81	1.62	0.98	0.63	0.85	0.90	2.88	-
KEN RWA	EORA EORA	GX GX	$0.13 \\ 1.64$	1.22 0.33	$0.86 \\ 0.66$	$1.15 \\ 0.43$	1.18 0.24	1.18 0.36	$1.15 \\ 0.43$	$1.14 \\ 0.38$	$0.93 \\ 0.75$	$0.98 \\ 0.54$	1.11 7.71	$0.94 \\ 15.20$	$1.06 \\ 3.40$	$1.03 \\ 1.41$	1.06 3.10	$1.07 \\ 0.45$	(15
BDI	EORA	GX	1.04	0.33	0.00 0.35	0.43	0.24	0.30	0.43	0.38	1.83	1.13	7.06	27.72	4.85	0.73	4.00	0.43	2
UGA	EMERGING	GX	2.04	0.01	1.61	0.51	1.18	0.53	0.95	0.16	0.17	0.33	2.78	0.00	0.40	0.85	0.98	2.47	-
TZA	EMERGING	GX	2.04	2.92	0.61	1.90	1.18	0.55	0.33	0.10	0.17	0.33	2.10	4.11	0.40	1.34	1.87	0.09	Ì
KEN	EMERGING	GX	0.28	0.70	0.72	0.99	0.93	1.52	1.34	1.37	1.79	1.63	0.47	0.00	1.60	1.01	0.74	0.64	(
RWA	EMERGING	\mathbf{GX}	0.87	0.64	2.00	1.38	0.06	0.49	0.19	0.88	0.53	0.46	0.51	0.00	0.84	0.25	0.02	0.05	13
BDI	EMERGING	GX	0.24	0.15	2.11	0.99	0.12	0.57	0.65	0.95	0.84	0.60	0.00	0.00	0.05	0.94	1.26	0.20	2
UGA	BACI	GX	1.67	0.52	1.70	0.44	0.89	0.66	1.04	0.70	0.55	0.28							
TZA	BACI	\mathbf{GX}	2.07	0.94	0.58	1.83	1.36	0.84	0.50	0.59	0.70	0.63							
KEN	BACI	GX	0.24	1.10	0.76	0.92	0.97	1.32	1.23	1.25	1.31	1.48							
RWA BDI	BACI	GX	0.50	1.07	2.08	1.96	0.11	0.21	0.58	0.73	1.04	0.55							
	BACI	GX	0.44	0.03	1.24	0.97	0.15	0.61	1.33	0.98	0.95	0.46							
UGA	EORA	VAX	4.92	0.02	0.85	0.15	0.18	0.21	0.46	0.37	1.28	0.42	0.06	0.93	0.63	0.81	0.57	0.00	-
TZA KEN	EORA EORA	VAX VAX	1.20 0.14	0.39 1.25	$3.80 \\ 0.91$	$0.86 \\ 1.19$	$0.43 \\ 1.21$	0.29 1.21	0.23 1.16	$0.60 \\ 1.16$	$1.17 \\ 0.94$	$2.32 \\ 1.05$	1.72 1.15	1.09 0.93	0.62 1.08	0.86 1.04	0.96 1.08	3.27 1.09	:
RWA	EORA	VAX	0.14 1.64	0.32	0.91	0.34	0.24	0.36	0.52	0.49	0.94	0.17	1.15 6.53	18.05	3.11	1.04	3.15	0.47	6
BDI	EORA	VAX	1.47	0.32	0.39	0.34	0.24	0.13	0.32	0.45	2.31	0.88	5.84	31.37	3.95	0.78	3.89	0.46	1
UGA	EMERGING	VAX	1.97	0.01	1.54	0.48	1.36	0.51	0.90	0.20	0.22	0.32	2.68	0.00	0.41	0.85	1.01	2.35	
TZA	EMERGING	VAA	1.97	2.99	0.62	1.43	1.30	0.51	0.90	0.20	0.22	0.32	2.00	4.39	0.41	1.22	1.62	2.55	(
KEN	EMERGING	VAX	0.26	0.70	0.78	1.12	0.82	1.54	1.39	1.21	1.68	1.63	0.47	0.00	1.62	1.04	0.82	0.65	(
RWA	EMERGING	VAX	0.96	0.77	1.50	1.73	0.09	0.57	0.26	1.36	0.72	0.60	0.76	0.00	0.81	0.31	0.03	0.05	1
		VAX	0.22	0.12	1.96	1.06	0.15	0.57	0.56	1.16	0.77	0.76	0.00	0.00	0.05	1.09	1.59	0.19	23

Table B4: (N)RCA Estimates from Figure 20

Table B5: (N)RCA Estimates from Figures B5 and 21 $\,$

Country	Source	Flow	Period	AFF	MIN	FBE	TEX	WAP	PCM	MPR	ELM	TEQ	MAN	EGW	CON	SMH	TRA	PTE	FIB	PAO
	to the EA								-			~	-				-	-		
UGA	EM	VAX	2006-2010	1.06	0.09	1.41	0.68	0.76	0.64	0.51	1.30	0.79	0.25	4.02	0.00	1.71	0.83	0.11	2.12	0.03
UGA	EM	VAX	2015-2019	1.00	0.05	1.41	0.03	1.14	0.82	1.09	0.53	0.75	0.23	3.94	0.36	1.46	0.65	0.11	1.66	0.03
UGA	EM	VAX	Growth Rate	-1.39	-46.65	-13.86	6.01	50.98	27.69	112.59	-59.19	18.23	196.66	-2.04	Inf	-15.04	-21.60	23.52	-21.53	35.46
TZA	EM	VAX	2006-2010	1.02	1.14	0.64	1.21	1.30	1.77	1.95	0.86	0.73	0.82	0.00	3.14	0.86	0.92	1.09	0.20	0.02
TZA	EM	VAX	2015-2019	1.21	2.01	0.60	0.87	1.14	1.50	0.68	0.56	0.41	0.61	0.00	2.79	0.98	1.10	1.18	0.22	0.02
TZA	EM	VAX	Growth Rate	18.19	75.99	-6.40	-27.84	-12.20	-15.45	-65.06	-35.41	-43.39	-24.94	. * .	-11.18	13.80	20.31	8.45	12.72	-19.63
KEN KEN	EM EM	VAX VAX	2006-2010 2015-2019	1.07 0.94	1.39 0.67	1.08 1.27	1.05 1.39	0.94 0.89	$0.56 \\ 0.61$	0.58 1.07	1.03 1.34	1.36 0.77	1.54 1.43	$0.52 \\ 0.50$	0.00 0.00	0.71 0.68	1.13 1.12	1.22 1.42	1.21 1.41	1.94 2.09
KEN	EM	VAX	Growth Rate	-11.93	-51.73	17.33	31.73	-5.04	7.90	83.87	29.57	-43.19	-7.11	-3.87	-46.04	-4.20	-0.80	16.61	16.47	7.66
RWA	EM	VAX	2006-2010	0.04	0.01	0.83	0.31	0.67	1.55	0.59	0.49	0.24	0.18	0.37	0.04	2.13	1.10	2.10	0.05	1.17
RWA	EM	VAX	2015-2019	0.21	0.19	0.96	0.37	0.12	1.65	0.39	1.07	0.93	0.49	0.48	0.90	1.56	0.72	0.05	0.18	0.73
RWA	EM	VAX	Growth Rate	443.79	1341.66	16.12	19.09	-82.12	6.35	-34.65	120.96	296.51	177.25	29.12	2082.03	-26.75	-34.81	-97.83	251.07	-37.38
BDI	EM	VAX	2006-2010	0.05	0.00	1.91	0.71	0.13	0.48	0.14	0.38	0.49	0.32	0.00	0.00	0.02	0.55	0.56	0.23	7.95
BDI BDI	EM EM	VAX VAX	2015-2019 Growth Rate	0.04 -28.04	0.00	2.20 15.16	0.43 -39.62	0.09 -30.48	0.87 80.02	0.48 252.01	0.95 148.31	1.24 155.41	$0.58 \\ 80.37$	0.00 -100.00	0.05 1936.67	0.01 -59.84	0.53 -3.48	0.66 17.94	0.14 -39.97	9.05 13.92
UGA	BACI	GX	2006-2010	-28.04	0.29	1.37	-39.02	-30.48	0.49	1.13	1.16	1.86	0.64	-100.00	1930.07	-09.04	-0.40	17.34	-33.31	13.32
UGA	BACI	GX	2015-2019	0.95	0.27	1.26	0.69	0.93	0.93	0.78	0.70	1.32	0.74							
UGA	BACI	GX	Growth Rate	-11.13	-5.31	-8.41	-6.84	54.78	88.34	-31.09	-39.41	-28.98	16.22							
TZA	BACI	GX	2006-2010	1.01	0.89	0.53	0.95	0.95	1.68	0.89	0.90	0.64	0.37							
TZA	BACI	GX	2015-2019	1.09	0.67	0.48	0.74	0.94	1.43	1.23	0.74	0.50	0.49							
TZA KEN	BACI	GX GX	Growth Rate	8.17	-25.00	-9.91	-22.37	-0.75 1.22	-14.85 0.68	38.13	-17.42 1.06	-22.21 0.82	32.79 1.30							
KEN	BACI BACI	GX	2006-2010 2015-2019	1.06 1.10	1.35 1.42	1.17 1.38	1.18 1.49	1.22	0.68	1.11 1.03	1.06	1.21	1.30							
KEN	BACI	GX	Growth Rate	3.24	5.28	18.32	25.93	3.24	-26.02	-7.38	29.15	48.27	24.73							
RWA	BACI	GX	2006-2010	0.17	0.28	1.30	0.26	0.20	1.53	0.30	0.80	0.76	0.56							
RWA	BACI	GX	2015-2019	0.26	2.00	0.96	0.41	0.26	1.52	0.35	0.53	0.76	0.77							
RWA	BACI	GX	Growth Rate	57.96	607.63	-26.33	54.71	29.28	-0.60	15.23	-33.97	0.35	37.42							
BDI BDI	BACI	GX	2006-2010	0.08	0.50	1.57	0.71	0.14	0.97	0.38	1.55	1.92	0.42							
BDI	BACI BACI	GX GX	2015-2019 Growth Rate	-55.95	0.23 -53.77	1.24 -20.90	0.28 -60.08	0.07 -46.96	$1.59 \\ 64.66$	0.62 63.99	0.58 -62.93	0.68 -64.74	0.44 5.04							
	EAC Tra					_0.00			0 210 0									-		
UGA	EM	VAX	2006-2010	1.94	0.05	1.52	0.50	0.82	0.60	0.94	1.24	0.78	0.29	2.52	0.00	0.30	0.59	0.68	2.34	0.06
UGA	EM	VAX	2015-2019	2.00	0.01	1.57	0.45	1.50	0.43	0.86	0.19	0.19	0.36	2.84	0.00	0.41	0.87	1.03	2.36	0.04
UGA	EM	VAX	Growth Rate	3.49	-90.65	3.57	-10.48	83.04	-28.89	-9.28	-84.33	-75.23	24.96	12.66	Inf	36.54	47.02	51.20	0.86	-21.50
TZA	EM	VAX	2006-2010	1.73	1.93	0.61	2.50	1.83	0.81	0.50	0.62	0.26	1.56	0.00	0.00	0.61	1.21	1.99	0.11	0.05
TZA	EM	VAX	2015-2019	1.11	3.15	0.63	1.13	1.30	0.69	0.33	0.98	0.30	0.21	0.00	4.39	0.66	1.22	1.41	0.08	0.01
TZA KEN	EM EM	VAX VAX	Growth Rate 2006-2010	-35.87 0.18	63.25 1.26	3.48 0.82	-54.80 0.65	-29.22 0.83	-15.67 1.34	-33.43 1.19	59.41 0.99	14.99 1.42	-86.53 1.24	0.47	Inf 0.72	7.54 1.56	0.41 1.17	-29.39 0.81	-27.59 0.56	-84.28 0.56
KEN	EM	VAA	2006-2010 2015-2019	0.18	0.65	0.82	1.14	0.83	1.54	1.19	1.42	1.42	1.24	0.47	0.72	1.67	1.00	0.81	0.56	0.50
KEN	EM	VAX	Growth Rate	67.56	-48.48	-7.78	74.19	-0.82	16.84	18.37	43.50	24.12	37.23	-4.84	-100.00	6.69	-14.63	1.69	26.88	-8.42
RWA	EM	VAX	2006-2010	0.64	0.00	1.23	3.12	0.28	0.33	1.95	1.25	0.67	0.33	0.95	0.00	1.33	0.74	0.93	0.09	30.72
RWA	EM	VAX	2015-2019	1.11	0.43	1.69	1.72	0.08	0.78	0.24	1.46	0.78	0.69	0.56	0.00	0.77	0.28	0.03	0.04	15.14
RWA	EM	VAX	Growth Rate	75.06	Inf	36.84	-44.80	-69.86	136.03	-87.79	16.94	16.78	108.43	-40.66	Inf	-41.92	-61.31	-97.23	-58.24	-50.72
BDI BDI	EM EM	VAX VAX	2006-2010 2015-2019	0.57 0.22	0.00	1.51 2.10	2.93 0.78	0.16 0.13	0.31 0.65	1.25 0.56	0.65	1.06 0.62	0.79 0.72	0.00	167.36 0.00	0.02 0.06	1.75 0.86	2.70 1.25	0.24 0.13	54.71 16.18
BDI	EM	VAX	Growth Rate	-61.82	0.00	2.10 38.60	-73.45	-18.47	0.65	-55.19	1.17 80.69	-41.52	-9.43	-100.00	-100.00	0.06	-50.61	-53.85	-44.31	-70.42
UGA	BACI	GX	2006-2010	-01.82	0.45	1.70	0.65	0.51	0.61	1.25	0.91	0.51	0.21	100.00	100.00	100.04	00.01	30.00	44.01	10.42
UGA	BACI	GX	2015-2019	1.77	0.98	1.61	0.42	1.07	0.47	1.06	0.47	0.35	0.43							
UGA	BACI	$\mathbf{G}\mathbf{X}$	Growth Rate	-9.81	118.48	-5.50	-35.71	109.45	-22.41	-14.85	-48.72	-30.42	104.38							
TZA	BACI	GX	2006-2010	2.42	0.51	0.74	1.68	1.67	0.93	0.38	0.90	1.10	0.34							
TZA TZA	BACI	GX GX	2015-2019	1.77	0.90	0.56 -23.87	1.83	1.42 -15.04	0.88	0.63 67.01	0.56	0.67 -39.34	0.26 -22.19							
TZA KEN	BACI BACI	GX GX	Growth Rate 2006-2010	-26.89 0.23	77.56 1.44	-23.87 0.74	9.19 0.85	-15.04 1.03	-6.17 1.23	67.01	-38.13 1.09	-39.34 1.07	-22.19 1.33							
KEN	BACI	GX	2015-2019	0.23	1.44	0.74	0.95	0.85	1.40	1.23	1.36	1.35	1.54							
KEN	BACI	GX	Growth Rate	27.48	-17.40	5.71	11.44	-17.87	14.15	10.99	24.65	26.66	15.57							
RWA	BACI	GX	2006-2010	1.07	0.20	2.95	0.36	0.15	0.20	0.29	1.10	1.16	0.16							
RWA	BACI	GX	2015 - 2019	0.41	0.99	2.01	2.02	0.11	0.25	0.55	0.88	1.12	0.64							
RWA	BACI	GX	Growth Rate	-62.09	405.49	-32.05	456.91	-28.76	22.00	89.77	-19.51	-3.06	293.22							
BDI BDI	BACI BACI	GX GX	2006-2010 2015-2019	0.51 0.34	0.00 0.17	1.34 1.04	2.10 0.99	0.04 0.24	0.51 0.95	0.93 1.32	1.45 1.55	1.83 0.62	0.73 0.57							
	DAUL	GA	2010-2019	0.54	0.17	1.04	0.99	0.24	0.95	1.52	1.00	0.02	0.07							
BDI	BACI	GX	Growth Rate	-32.71	5411.76	-22.22	-52.85	434.09	84.86	41.59	7.56	-66.14	-21.93							

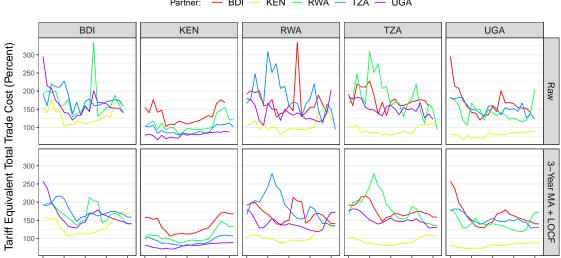


Figure B6: ESCAP BILATERAL TRADE COST MEASURE FOR THE EAC5 $\,$

Partner: - BDI - KEN - RWA - TZA - UGA

Dependent Variable:	Gros	s Exports	Final G	oods Exports
Data:	EORA	EMERGING	EORA	EMERGING
$\log(\tau_{oiut})$	$\begin{array}{c} 6.454^{***} \\ (0.3439) \end{array}$	$\frac{1.245^{***}}{(0.0792)}$	$5.312^{***} \\ (0.3959)$	$\frac{1.023^{***}}{(0.0695)}$
$\begin{array}{l} \text{Observations} \\ \text{R}^2 \\ \text{Within } \text{R}^2 \end{array}$	$155,584 \\ 0.5971 \\ 0.0225$	$208,635 \\ 0.4951 \\ 0.0072$	$155,584 \\ 0.6306 \\ 0.0188$	208,519 0.4915 0.0073
Fixed-effects # country-sector # country-year # sector-year	442 374 572	$2,202 \\ 102 \\ 780$	442 374 572	$2,201 \\ 102 \\ 780$

 Table B6:
 Zero-Stage Regressions:
 Gross Trade

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

 Table B7:
 Zero-Stage Regressions:
 Value Added Trade

Dependent Variable:		$\log(vbe)$	$_{piujt}+1)$	
Data:	EORA	EMERGING	EORA	EMERGING
$\log(\tau_{out} \times \delta_{oiuj})$	-2.774^{***} (0.0717)	-0.1234^{***} (0.0049)	-1.820*** (0.0300)	-0.1959^{***} (0.0062)
R^2 Within R^2	$0.6279 \\ 0.3419$	$0.2629 \\ 0.0395$	$0.4301 \\ 0.0303$	$0.1906 \\ 0.0451$
$\log(\tau_{out} \times \delta_{ij})$	-3.018^{***} (0.0772)	-0.1484^{***} (0.0060)	-3.112^{***} (0.0560)	-0.2373^{***} (0.0072)
R^2 Within R^2	$0.6241 \\ 0.3352$	$0.2573 \\ 0.0322$	$0.4402 \\ 0.0475$	$0.1636 \\ 0.0132$
Fixed-effects # country-sector # country-year # sector-year	Using 441 374 572	; Country 2,202 102 780	Source 440 374 572	e Country 2,202 102 780
Observations	3,928,956	27,381,322	3,928,956	27,381,322

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Data:	EOR	A21 (2000-	2021)	WDR E	CORA15 (20	00-2015)
Model:	IV- δ_{ij}	IV- δ_{oiuj}	2SLS	IV- δ_{ij}	IV- δ_{oiuj}	2SLS
Dependent Variable:			log	g(VS)		
Variables						
$\log(\hat{\mathrm{VS}}^{\delta_{ij}})$	-0.9737 (0.7575)		-24.23^{*} (12.41)	-2.472^{***} (0.3597)		-9.525 (6.322)
$\log(\hat{VS}^{\delta_{oiuj}})$		-1.054 (0.8474)	25.82^{*} (14.56)		-2.735^{***} (0.3985)	7.846 (7.331)
Fit statistics						()
Observations	2,740	2,740	2,740	2,023	2,023	2,023
\mathbb{R}^2	0.9868	0.9868	0.9870	0.9914	0.9914	0.9914
Within \mathbb{R}^2	0.0314	0.0299	0.0493	0.1952	0.1932	0.1976
Kleibergen-Paap, F-stat.	1.652	1.547	32.23	47.22	47.07	53.78
Wald, p-value	0.1988	0.2136	< 0.001	< 0.001	< 0.001	< 0.001
Dependent Variable:			\log	(E2R)		
Variables						
$\log(\hat{\mathrm{E2R}}^{\delta_{ij}})$	-0.1017 (0.1531)		0.1118 (0.5633)	-0.2892^{*} (0.1564)		-0.7687^{*} $(0.3569$
$\log(\mathrm{E2R}^{\delta_{oiuj}})$	· · · ·	-0.0529 (0.1334)	-0.1306 (0.3157)		-0.2005^{*} (0.1003)	0.2822 (0.1743)
Fit statistics		()	()		()	(
Observations	2,734	2,733	2,733	2,017	2,016	2,016
\mathbb{R}^2	0.9768	0.9767	0.9767	0.9879	0.9878	0.9879
Within \mathbb{R}^2	0.0015	0.0006	0.0007	0.0202	0.0163	0.0278
Kleibergen-Paap, F-stat.	0.4409	0.1569	0.2861	3.421	3.989	4.301
Wald, p-value	0.5067	0.6920	0.7512	0.0645	0.0459	0.0137
Fixed-effects						
# country-sector	130	130	130	129	129	129
# country-year	110	110	110	80	80	80
# sector-year	572	572	572	416	416	416

 Table B8:
 GVC Participation EAC5 Regressions:
 First Stages

Driscoll-Kraay (L=2) standard-errors in parentheses Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Data:	EOR	A21 (2000-	-2021)	WDR EORA15 (2000-2015)					
Model:	IV- δ_{ij}	IV- δ_{oiuj}	2SLS	$\text{IV-}\delta_{ij}$	IV- δ_{oiuj}	2SLS			
Dependent Variable:	$\log(VS)$								
Variables									
$\log(\hat{\mathrm{VS}}^{\delta_{ij}})$	-0.5992 (0.8678)		-135.1^{***} (15.26)	-2.674^{***} (0.3400)		-113.5^{***} (16.48)			
$\log(\hat{VS}^{\delta_{oiuj}})$		-0.5249 (0.9394)	147.1^{***} (17.37)		-2.785^{***} (0.3516)	121.1^{***} (17.76)			
Fit statistics		· · · ·	· /			~ /			
Observations	859	859	859	640	640	640			
\mathbb{R}^2	0.9928	0.9928	0.9938	0.9968	0.9967	0.9974			
Within \mathbb{R}^2	0.0030	0.0019	0.1354	0.0929	0.0846	0.2681			
Kleibergen-Paap, F-stat.	0.4762	0.3118	51.79	61.77	62.66	24.34			
Wald, p-value	0.4901	0.5765	< 0.001	< 0.001	< 0.001	< 0.001			
Dependent Variable:	$\log(E2R)$								
Variables									
$\log({ m E2R}^{\delta_{ij}})$	1.251^{**} (0.4556)		-4.393^{***} (1.140)	-0.1504^{***} (0.0437)		-0.6463 (1.044)			
$\log(\hat{E2R}^{\delta_{oiuj}})$		1.058^{***} (0.3451)	4.618^{***} (0.8651)		-0.1237^{***} (0.0410)	0.4307 (0.9137)			
Fit statistics									
Observations	859	859	859	640	640	640			
\mathbb{R}^2	0.9873	0.9875	0.9878	0.9921	0.9921	0.9921			
Within \mathbb{R}^2	0.1821	0.1965	0.2180	0.0030	0.0027	0.0034			
Kleibergen-Paap, F-stat.	7.529	9.387	22.39	11.86	9.076	7.092			
Wald, p-value	0.0062	0.0022	< 0.001	0.0006	0.0027	0.0009			
Fixed-effects									
# country-sector	40	40	40	40	40	40			
# country-year	110	110	110	80	80	80			
# sector-year	176	176	176	128	128	128			

Table B9: GVC Participation EAC5 Regressions: Manufacturing Sectors: First Stages

Driscoll-Kraay (L=2) standard-errors in parentheses Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Dependent Variable:	$\log(VA)$							
Exports Measure: Data: Model:	Gross				Final Goods			
	EORA21		EORA15		EORA21		EORA15	
	OLS	IV	OLS	IV	OLS	IV	OLS	IV
Variables								
$\log(E)$	0.0923^{***}	-0.4191	0.1154^{***}	0.2048	-0.0556	0.0411	0.1087^{***}	0.0246
	(0.0263)	(0.3939)	(0.0295)	(0.1446)	(0.0892)	(0.1168)	(0.0302)	(0.1038)
$\log(E) \times SH^{EAC5}$	-0.0283	-0.1999	-0.0481	0.0073	0.0037	-0.0091	-0.0360	-0.0287
	(0.0284)	(0.1367)	(0.0360)	(0.0362)	(0.0196)	(0.0300)	(0.0338)	(0.0418)
Fixed-effects								
# country-sector	40	40	40	40	40	40	40	40
# country-year	110	110	80	80	110	110	80	80
# sector-year	176	176	128	128	176	176	128	128
Fit statistics								
Observations	859	859	640	640	859	859	640	640
\mathbb{R}^2	0.9883	0.9860	0.9952	0.9951	0.9883	0.9882	0.9952	0.9951
Within \mathbb{R}^2	0.0088	-0.1884	0.0276	0.0078	0.0022	-0.0050	0.0252	0.0119
Wu-Hausman, p-value		0.2981		0.7154		0.8432		0.8630

EAC5 REGIONAL INTEGRATION VIA GROSS TRADE REGRESSIONS: Table B10: MANUFACTURING SECTORS

Driscoll-Kraay (L=2) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table B11: EAC5 REGIONAL INTEGRATION VIA RVCs REGRESSIONS: MANUFACTURING Sectors

Dependent Variable:	$\log(VA)$								
GVC Indicator:	Backward Integration (VS)				Forward Integration (E2R)				
Data: Model:	EORA21		EORA15		EORA21		EORA15		
	OLS	2SLS	OLS	2SLS	OLS	2SLS	OLS	2SLS	
Variables									
$\log(GVC)$	0.1991^{***}	0.4829^{***}	0.0742^{**}	0.3588^{***}	0.6728^{***}	0.8804^{***}	0.5249^{***}	0.7451^{***}	
	(0.0471)	(0.1146)	(0.0271)	(0.0814)	(0.0785)	(0.0284)	(0.1524)	(0.1848)	
$\log(GVC) \times SH^{EAC5}$	-0.1954^{*}	-0.4012*	-0.1208	-1.314**	0.0553	-0.0546	0.0368	-0.3621*	
	(0.0967)	(0.1929)	(0.0914)	(0.4490)	(0.0582)	(0.4691)	(0.0386)	(0.1951)	
Fixed-effects									
# country-sector	40	40	40	40	40	40	40	40	
# country-year	110	110	80	80	110	110	80	80	
# sector-year	176	176	128	128	176	176	128	128	
Fit statistics									
Observations	859	859	640	640	859	859	640	640	
\mathbb{R}^2	0.9886	0.9879	0.9951	0.9944	0.9967	0.9958	0.9978	0.9969	
Within \mathbb{R}^2	0.0318	-0.0313	0.0064	-0.1233	0.7155	0.6439	0.5504	0.3820	
Wu-Hausman, p-value		0.0052		0.0082		< 0.001		0.0541	

Driscoll-Kraay (L=2) standard-errors in parentheses Signif. Codes: ***: 0.01, **: 0.05, *: 0.1