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1 Introduction

Uncertainty has been regarded as a key issue in the economics of climate change (for

reviews, see Heal and Kriström [2002], Peterson [2006] and Pindyck [2007]). While

the entire range of research on climate change and uncertainty goes well beyond the

realm of economics, a question with a particular economic implication regarding this

topic is the decision making under uncertainty whose outcome is not reversible. The

concept of quasi-option value (Arrow and Fisher [1974] and Henry [1974]) clarifies

that the combination of irreversibility and uncertainty, which is the case for climate

change being caused by irreversible accumulation of carbon dioxide in the atmosphere,

would justify precautionary actions against the worst possible outcome, in other words,

stronger mitigation under uncertainty relative to a deterministic case.

There are a number of studies that examine the validity and applicability of this

thesis. They are broadly categorized into two groups. The first group, whose works

draw on Epstein’s seminal paper (Epstein [1980]), is analytical models with simple set-

tings (often limited to two time periods) to clarify the conditions in which uncertainty

leads to precautionary actions. A major insight obtained by this set of literature is

that the effect of uncertainty becomes ambiguous if two sorts of irreversibility coexist,

namely the irreversibility of atmospheric carbon dioxide concentrations and of invest-

ment in mitigation that is sunk (Kolstad [1996a], Kolstad [1996b], Pindyck [2000],

Fisher and Narain [2003]). If a part of investment costs in mitigation is not recover-

able, a wait-and-see approach to delay actions may rather be preferred because of a

possibility that climate change proves to cause smaller damage than expected, in other

words, overinvestment in mitigation becomes evident. Other papers in this group (e.g.

Ulph and Ulph [1997], Gollier et al. [2000]) look into some other mathematical features

leading to the result, such as sufficiency of conditions, the effects of functional shape,

and informational structures.

The second group of studies addressing the above question is of integrated as-

sessment models incorporating uncertainty, whose examples are Peck and Teisberg

[1993], Nordhaus [1994], Nordhaus [2008], and Pizer [1999]. They use comprehensive

economic-climate models calibrated with empirical data on key parameters (e.g., TFP,

climate sensitivity to carbon dioxide increase, discount rate) showing a variance of es-
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timates. Here, the effects of uncertainties are examined essentially through a large

number of runs with parameters being set at different levels. This group of stud-

ies generally show that uncertainty leads to stronger mitigation, although apparently

what matters most in their models is not the uncertainty of climate system but of

growth and technology parameters such as TFP.

While the two groups of works shed light on the question in a considerable way,

there is still an unfilled gap between the literatures. On the one hand, analytical

models are only solvable with parsimonious assumptions, and a number of parameters

commonly considered in modeling climate change are omitted. On the other hand,

the second group of studies, integrated assessment models, does not directly conduct

stochastic optimization due to computational difficulties. This means that they do not

take account of the effect that uncertainty influences optimal decisions through agents’

risk aversion. Furthermore, this limitation frames constraints on uncertainties they

investigate; they mostly focus on uncertainties of parameters (e.g., energy intensity)

with pre-defined probability distributions, not randomness of state or control variables

themselves (e.g., atmospheric temperatures). This feature makes the models unattrac-

tive in examining the question of uncertainty and irreversibility about climate, because

a part of climatic patterns could only be explained by highly non-linear, possibly in-

herently unpredictable, mechanisms of the climate system, whose evidence includes

paleoclimatic records of abrupt temperature changes (e.g., NRC [2002]). Accordingly,

studies of integrated assessment models have not explicitly examined this question.

This paper is an attempt to fill the current gap between the two sets of scholarship

described above. We directly perform stochastic optimization with variable random-

ness represented as a Brownian motion. A numerical approach allows us much greater

latitude for parameter choice than analytical model studies would do. Stochastic dy-

namic optimization has an established body of analytical model studies (in the field of

environmental and resource economics, e.g., Arrow and Chang [1982], Tsur and Zemel

[1998]), but has been generally considered difficult in finding numerical solutions. Re-

cently, however, standardized techniques are developed (e.g. Judd [1998]), and some

simple models are now able to be solved readily. Our approach is to apply these

techniques to the climate change issue with representations that are simple but could

still have direct relevance to the actual climatic-economic interactions. Though not
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the focus of this paper, this approach would leave us a scope to link the quasi-option

value literature and the economic studies on abrupt climate change (e.g. Azar and

Lindgren [1992], Keller et al. [2004], Lempert et al. [2006], McInerney and Keller [2008]

and Weitzman [2009]). Our research question here is the effect of climatic uncertainty

on the optimal mitigation policy. Our analysis covers a large range of the parameter

space, in particular the degree of risk aversion and the level of uncertainty. We identify

regions of the state space for which higher levels of uncertainty or risk aversion result

in different policy rules for emission control. Similarly, given a certain state of the

world we conclude that the effect of uncertainty on emission control changes (in level

and sign) with the degree of risk aversion.

We proceed as follows: In section 2 we describe the model framework. In section

3 we briefly describe the Chebyshev collocation method, the computational technique

which we use for solving our stochastic control problem in continuous time. Section 4

presents the main results of our model and provides a discussion. Section 5 concludes

2 The Model

Consider an economy where total output Y is a function of the capital stock K, with

YK > 0 and YKK < 0. The production process generates emissions ε · Y , where ε

denotes the emissions coefficient of output. With additional expenditure, the amount

of emissions is reduced; m represents the fraction of carbon emissions which is under

control, i.e. not emitted in the atmosphere. Consequently, the atmospheric stock of

carbon S evolves with

dS = ε · Y (K) · (1−m)− β · S (1)

where β is the constant removal rate of atmospheric carbon into the ocean. At this

point we assume that the atmospheric stock of carbon causes a rise in the level of global

mean temperature. Let T (S) be the increase of global mean temperature from the pre-

industrial level with TS > 0 and TSS ≥ 0. We assume that rising levels of global mean

temperature cause damage to output and the damage is subject to randomness. Denote
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the damage by D(T, η) with η being a scaling factor of the temperature’s impact on

damage: we assume DT , Dη > 0, DTT , Dηη > 0, DT,η > 0 and D(T, 0) = D(0, η) = 1.

For the rest of the paper we assume that η is stochastic with

dη = θ · (η̄ − η) + σdB (2)

i.e, the damage coefficient follows an Ornstein-Uhlenbeck process, the continuous time

equivalent of a mean-reverting AR(1) process. The mean of η is denoted by η̄ and θ is

the strength of mean reversion. For the diffusion, we assume B ∼ (0, σ2). Furthermore,

the output balance condition reads

Y (K)

D(T (S), η)
= I + c + M(m) (3)

The left-hand side of (3) is the net output inclusive of damage. The net output is

in balance with the sum of the following: (i) consumption c which yields utility U(c)

with Uc > 0 and Ucc < 0; (ii) M(m,Y (K)), the emission control costs with Mm > 0,

Mmm > 0, MK > 0, MmK > 0 and MKK = 0; (iii) capital accumulation via investment

I. The stock of capital K evolves according to

dK = I − δ ·K (4)

where δ is the capital depreciation rate. Our purpose is to investigate the dynamically

optimal choice of consumption, emissions control and capital investment given uncer-

tainty about the temperature’s impact on damage to gross output. To this end, we

formulate the problem from the social planner’s perspective. Given the uncertainty

over η, the social planner maximizes the expected present value welfare.

max
ct>0,0≤mt≤1

E

∫ ∞

0

e−ρt [U(ct)] dt (5)

subject to (1)-(4) and S(0) = S0, K(0) = K0 and η(0) = η0. To solve (5) we per-

form stochastic control, the continuous time version of dynamic programming. The
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corresponding Hamilton-Jacobi-Bellman (HJB) equation is 1

0 = max
c>0,0≤m≤1

{U(c) + VS(S, K, η)(ε · Y (K) · (1−m)− β · S)

+ VK(S, K, η)(
Y (K)

D(η, S))
− c−M(m,K)− δ ·K)

+ Vη(S, K, η)(θ · (η̄ − η))

+
1

2
σ2Vηη(S, K, η)− ρV (S, K, η)} (6)

where V (S, K, η) is the value function. A solution to (6) requires finding a value func-

tion and policy functions c(S, K, η) and m(S, K, η) which constitute explicit control

rules. The first-order conditions for c and m are

Uc = VK(S, K, η) (7)

Mm = −VS(S, K, η) · ε · Y (K)

VK(S, K, η)
(8)

Equation (7) states that the marginal utility from consumption should be equal to the

derivative of the value function with respect to capital, i.e. the shadow price of capital.

From (8) it can be easily seen that VS ≥ 0. The optimal choice of m, the emissions

control rate, thus positively depends on the shadow price of atmospheric carbon (in

absolute terms) and instant emissions. It negatively depends on the shadow price of

capital.

A closed form solution to (6)-(8) could be obtained by applying specific func-

tion forms to Y, D, M, T and U and using an intelligent guess for the value function

V (S,K, η). However, due to the dimension of the state space and the nonlinearities

of the functional forms we are not able to derive a closed form solution. Instead, we

determine the value function and the policy functions numerically.

1Notice that by setting up the maximization problem as in (6), we do not restrict capital invest-
ments I to be positive. In fact, for some areas of the state and parameter space optimal investment
is negative.
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3 The Approximation Method

From the first-order conditions (7) and (8) we can obtain explicit solutions for the

optimal stochastic control of c and m as functions of the state variables.

c̃ = Γ−1
U (VK(S, K, η)) (9)

m̃ = Γ−1
M

(
−VS(S,K, η) · ε · Y (K)

VK(S, K, η)

)
(10)

Inserting (9) and (10) into (6) we obtain the concentrated HJB equation in terms of the

value function and its derivatives with respect to the states. Thus, the concentrated

HJB equation is three-dimensional in S, K and η and reads

0 = VS(S,K, η)(ε · Y (K) ·
(

1− Γ−1
M

(
−VS(S, K, η) · ε · Y (K)

VK(S, K, η)

))
− β · S)

+ VK(S, K, η)(1 +
Y (K)

D(η, S))
− Γ−1

U (VK(S, K, η)) +
VS(S, K, η) · ε · Y (K)

VK(S,K, η)
− δ ·K)

+ Vη(S,K, η)(θ · (η̄ − η)) +
1

2
σ2Vηη(S,K, η)− ρV (S, K, η) (11)

Equation (11) constitutes a nonlinear second-order partial differential equation which

can be solved numerically using projection methods (Judd [1992][1998]). Projec-

tion methods work very well with continuous-time, continuous-state problems (Judd

[1998]). We estimate the value function with the Chebyshev collocation method us-

ing Matlab’s CompEcon toolbox (Miranda and Fackler [2002]). Making use of the

Weierstrass theorem, the collocation method approximates the solution to (11) with

a linear combination of basis functions whose coefficients approximately solve (11) at

specific collocation nodes by value function iteration with Newton’s method until a

convergence rule is satisfied. The approximated value function is given by

Ṽ (S, K, η) =

ni∑
i=1

nj∑
j=1

nk∑

k=1

gijkTi(xS)Tj(xK)Tk(xη)
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Ti(xS), Tj(xK) and Tk(xη) are ni, nj, nk-degree Chebyshev polynomials which are eval-

uated at the states with xS, xK , xη being the mapping [Smin, Smax] × [Kmin, Kmax] ×
[ηmin, ηmax] 7−→ [−1, 1] × [−1, 1] × [−1, 1]. The collocation coefficients gijk are then

estimated in order to deliver a good approximation of (11).

4 Results and Discussion

The functional forms and parameter values used for the numerical analysis are re-

ported in the Appendix. With these parameter values we compute numerically the

deterministic steady state and obtain S̃ = 1546.6, K̃ = 1180.2. Furthermore, we de-

fine η = 1 in the deterministic case. Given these values we set up the projection grid

by discretizing the spate space around the steady state. We choose S ∈ [800, 3500],

K ∈ [500, 3000] and η ∈ [0, 2]. The Chebyshev polynomials are of degree 10 in all

states i.e.: ni, nj, nk = 10. Figure 1 illustrates the value function for the stochastic

1000
1500

2000
2500

3000
3500

0

1000

2000

3000

1460

1480

1500

1520

1540

1560

1580

S

K

Figure 1: Value function

case in the S −K grid 2. The value function is concave and smooth. It increases with

larger volumes of the capital stock and decreases with rising atmospheric carbon con-

centrations3. The relative value function residual is at around ×10−8 over the entire

2For the graphical presentation of the results we choose η = 1 unless stated otherwise
3Notice that low levels of the capital stock imply low levels of gross output. This in turn results in

low emissions. On the other hand, lower output volumes are available for consumption, investment
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state grid. Figure 2 displays the shadow values of the atmospheric carbon stock (VS)
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Figure 2: Shadow prices of atmospheric carbon stock (λS) and capital stock (λK)

and the capital stock (VK). Notice that VS is negative over the entire state space -

an intuitive result, since rising temperature levels are proportional to the atmospheric

carbon stock. This fact also explains why VS decreases with rising levels of the carbon

stock while it is rather invariant to changes in capital. An analogous picture is obtained

for VK , the shadow value of the capital stock (right plot in Figure 3). It is positive

over the entire state space and decreases with rising levels of the capital stock. Figure

3 maps the policy functions for consumption c, emissions control m and investment I

into the K − S space, again for the stochastic case. The optimal consumption policy

rule follows the Euler equation which sets equal marginal utility to the shadow price

of capital. Consumption thus increases with the level of capital.

The emissions control policy generally replicates the tendency that most integrated

assessment models exhibit, i.e., both carbon stock and capital accumulation increase

enhances mitigation (e.g., Nordhaus, 1994). Notice that for a constant level of K,

a higher atmospheric carbon concentration generates more damage to output, and

that less output is available to be divided between consumption, emission control and

investment. Also, for any level of K the emissions control is larger increases with

and emission control. Furthermore, for any level of capital a higher S invokes more damage and
consequently less net output while the level of gross output is unchanged.
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Figure 3: Policy functions for consumption (c), emission control (m), investment(I)
and shares of net output spent on c, m and I

larger values of S with a constant consumption and therefore capital investments

must decrease in order to balance the economy’s budget (Equation 3). This behavior

is shown in the lower left plot of Figure 3. On the other hand, higher levels of the

capital stock invoke more investment. The lower right plot in Figure 3 displays the

shares of net output4 spent on consumption, emissions control and investment which

we define as γM , γC and γI respectively5 We observe that γC and γM both follow the

same pattern. They increase with higher levels of capital and atmospheric carbon

stock. However, while the share of net output spent on consumption ranges from 25%

(low K, low S) - 60% (low K, low S), much less fractions of net output are used for

emission control. Its share ranges from 5% (low K, low S) - 20% (low K, low S). On

the contrary, the policy function for investment implies lower investment values for

rising levels of capital and atmospheric carbon stock.

In order to shed more light on the effect of uncertainty on the distribution of

net output over consumption, emission control and investment Figure 4 displays the

absolute change in γC , γM and γI when including uncertainty. Three important points

can be made: 1) For low values of the atmospheric carbon stock uncertainty leads

to higher emission control and consumption while it lowers capital accumulation. 2)

4Net output is defined as Y net = Y
D

5Consumption, emission control and investment are defined in units of output. It holds that:
γM + γC + γI = 1
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The previous effect is reversed for high values of the atmospheric carbon stock. When

uncertainty is included, a larger share of net output is spent on capital accumulation

atmospheric while a lower share of net output is used for consumption and emission

control. 3) The impact of uncertainty on changes in the output shares used optimally

for c, m and I decreases (lower amplitude) with smaller levels of the capital stock. The

latter effect mirrors the fact that a low value of the capital stock limits the freedom

of action to adapt to stochasticity. From Figure 4 it becomes clear that if the carbon
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Figure 4: Difference in the shares of net output spent on emission control, Investment
and consumption when uncertainty is included (∆gM , ∆gI , ∆gC) respectively

content in the atmosphere is large, uncertainty about damage to output induces a

reallocation of net output towards capital services. A perhaps striking feature of this

model is also that in the latter case emission control is reduced. To obtain more

insights on the effect of stochasticity on emission control, we examine the optimal

levels of emission control with varying levels of risk aversion and randomness (Figure

5). We show nine contour plots in the α − σ space for different levels of S and K.

They exhibit three major patterns. (1) The general tendency is that both a high

capital and a high carbon stock results in a high emission control. A large carbon

stock corresponds to a large negative carbon price and a large emission reduction,

while a large capital stock is linked to a low capital return and thus a diversion of

resource from investment to emission control. (2) The risk aversion is a very influential
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Figure 5: Optimal Emission control - Contour plots in the α−σ space for combinations
of S and K. S ∈ [800, 2150, 3500] and K ∈ [500, 1750, 3000], with [S,K]=[800,500] in
the lower left subplot.

parameter on the level of emission control. Interestingly, however, the risk aversion

exerts different effects on the control level depending on the level of capital. With the

middle or high capital, more risk aversion leads to more abatement. Meanwhile, the

emission control decreases with higher levels of risk aversion when the capital level is

low. This is because a risk conscious agent prefers capital investment over emission

control when the return to capital is relatively high (i.e., low capital), in other words,

capital investment facilitates intertemporal income smoothing more effectively than

emission control does. (3) The level of carbon stock has a critical meaning for the

effect of stochasticity on the emission control. Higher uncertainty leads to higher

emission control with a low S but lower emission reduction with a high S. In other

words, a risk conscious agent rather prefers consumption over emission control when

climate mitigation needs considerable effort and in turn the effect of actions is highly

uncertain in absolute terms.

Among the above findings, the point (3), the ambiguity regarding the effect of un-

certainty on optimal emission control levels, addresses a feature that is not adequately

discussed in previous studies in the economics of climate change. In fact, this am-
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biguity is a persistent characteristic in our model results, and the model can present

it even in a more illustrative way. Figure 6 is a contour plot for low K and high S

when the climate change damage coefficient is set low (η = 0.5). It clearly shows that

the effect of uncertainty is even dependent on the level of risk aversion. With a low

risk aversion, uncertainty decreases emission reduction, whereas it increases emission

reduction with a high risk aversion.

A particularly interesting point regarding these patterns is that uncertainty may

in fact reduce the optimal level of emission control. This is against the most basic

argument of quasi-option value, but it is straightforward to interpret the feature. Pre-

vious studies already clarified that if investment in abatement involves sunk costs,

uncertainty in stock pollution can either enhance or decrease abatement, dependent

on the parameter choice (e.g., Pindyck [2000]). This is because both the installment

of abatement equipment and the pollution stock have irreversibility, and the effect of

uncertainty only arises in balance of those two opposing factors. Our model does not

have an explicit representation of sunk investment on abatement, but there is a simi-

lar, though indirect, mechanism at work. Abatement costs (flow) are subtracted from

the output, and thus their increase reduces either consumption, capital investment,

or both, if the output is unchanged. Capital produces a continuous flow of income

from the time of investment onwards, and forgone capital investment due to excessive

abatement therefore sets irreversibility in the other direction. This argument could
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be paraphrased as follows: The standard argument of quasi-option value says that

the presence of uncertainty leads to increasing abatement of stock pollution because

one cannot reduce the pollution stock later in case the pollution damage is greater

than expected. In our settings, a similar argument holds for the other direction. If we

overspend our resource on abatement, capital investment could be comparatively de-

creased. Lower investment leads to lower capital accumulation. By the time we realize

the overspending on abatement, the accumulated abatement cannot be converted into

capital, and one cannot recover the income flow that capital would bring about if our

resource was allocated in investment, not abatement. Relative significance of capital

return and climate damage determines the dynamics to either of the two directions.

5 Conclusion

We carried out a numerical stochastic optimization in the context of climate change.

We applied standardized numerical techniques of stochastic optimization recently de-

veloped Judd [1998] to the climate change issue, with an assumption of stochastic-

ity in the climate system. The novelty of this study is that we directly performed

stochastic dynamic optimization, rather than reproducing randomness by conducting

a large number of simulation runs, to see changes of key determinants of climate policy.

An advantage of our stochastic optimization approach over previous climate-economy

simulation studies is that the model internalizes agents preference about risk in opti-

mization. Our analysis covers a large range of the parameter space, in particular the

degree of risk aversion and the level of uncertainty. We identify regions of the state

space for which higher levels of uncertainty or risk aversion result in different policy

rules for emission control.

The results show that the effects of uncertainty are indeed different with different

levels of agents risk aversion. A main finding is that with the effects of stochastic-

ity differ even in sign as to emission control with varying parameters: introduction

of stochasticity may increase or decrease emission control depending on parameter

settings, in other words, uncertainties of climatic trends may induce peoples precau-

tionary emission reduction but also may drive away money from abatement. This
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paper’s conclusions would set a call for a more precise conceptualization about the

meaning of uncertainties in the decision making on climate change. This aspect would

have a particular importance in the context of policy discussions, where uncertainty

is often used as a justification for policy actions yet tends to be vaguely framed, no-

tably as phrased in the United Nations Framework Convention on Climate Change’s

objective to ”prevent dangerous anthropogenic interference with the climate system.”

Finally, while our model does highlight some important features of uncertainties and

climate change, the simulations are admittedly simplistic for explaining the complex

phenomena of climate change. A more comprehensive numerical stochastic model,

perhaps with uncertainties in technological change and global business cycle in addi-

tion to climate indicators, would allow us to conduct a complete sensitivity analysis of

parameters. Impacts of uncertainties about large discrete shocks, a feature that could

be represented with a jump process, should also be a future research question.
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6 Appendix

We apply the following functional forms. with A, ν, κ, τ, ε, ψ, SPI , α > 0

Y (K) = A ·Kν (12)

D(η, T (S)) = 1 + κ · (η · T (S))2 (13)

T (S) = τ · (S − SPI) (14)

M(m) = ψ · ε · Y ·m2 (15)

U(c) =
c1−α

1− α
(16)

Concerning the parameter space, we use the following specification:

Parameter Value Parameter Value

ν 0.75 SPI 400
κ 0.005 α 0.9
τ 0.003 ρ 0.01
ψ 40 A 1
ε 0.1 η̄ 1
θ 0.1 σ 0.05

Table 1: Parameter Values
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