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A Runs Test for Stock-Market Prices with an Unobserved

Trend

Nils Herger∗

January, 2024

Abstract

To analyze whether stock-market prices follow a random walk, the algebraic sign
of their returns has been compared with a coin toss, which is a prominent example
for a Bernoulli trial with equiprobable outcomes. Like coin tosses, signed returns lend
themselves for a simple runs test for randomness. However, they typically comprise an
unobserved trend, and therefore represent Bernoulli trials whose theoretical outcome
probability is not easily known. Fortunately, the Von Neumann algorithm can trans-
form Bernoulli trials with unknown outcome probabilities into equiprobable outcomes.
Thus, a runs test on correspondingly transformed returns can handle an unobserved
stock-market trend.

JEL classification: C14, C22, G11, G14
Keywords: coin tossing; stock-market prices; random walk; runs test; Von Neumann

algorithm

1 Introduction

In the popular imagination, gambling in casinos and investing in stock markets have much
in common. On closer inspection, this analogy runs somewhat deeper than a mere cynical
view on modern capitalism, insofar as the risk and luck associated with games of chance,
including coin tossing, have indeed served as illustrative examples when mathematicians,
such as Jakob Bernoulli (1655-1705), began to develop the very probability theory on which
the modern analysis of stock-market prices is based.1 Against this background, it is perhaps
not surprising that early empirical work on the hypothesis that these prices follow a random
walk, and can therefore not be predicted from their own past, compared their behavior with
that of coin tosses, which are a textbook example for a Bernoulli trial with equiprobable
outcomes (see Cowles and Jones, 1937, p.281; Osborne, 1959, pp.55ff.; Cowles, 1960, p.909).
Another case in point is the runs test, which employs the number of uninterrupted sequences
within a discrete variable to infer whether its realizations appear in a purely random manner.
Obviously, this test can be applied to repeated coin tosses to ask whether their outcomes
are fair in the sense that heads and tails have occurred, a priori, with equal probability
(Siegel and Castellan, 1988, pp.58-59). That runs test for randomness have also been used
to analyze the ordering of positively and negatively signed stock-market returns, and notably
featured in the path-breaking contribution of Fama (1965a, pp.74-81) on the random-walk
hypothesis, bears further testimony to the analogy mentioned at the outset.

In contrast to coin tosses, the stochastic behavior of stock-market prices continues to be the
subject of a fierce debate with random and non-random walks down Wall Street both being
propagated by popular books on this topic (Malkiel, 2011; Lo and McKinley, 1999). By and

∗Study Center Gerzensee, E-mail: nils.herger@szgerzensee.ch.
1See Bernstein (1998) for a historical account of the overlaps between the analysis of games of chance,

the development of probability theory, and modern theoretical and empirical research on financial markets.
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large, this debate stems from the delicacies of statistical testing for randomness with prices
that are not necessarily driven by an unchangeable, and more or less self-evident, stochastic
process (Rapach and Zhou, 2013). With specific regard to the runs test for randomness,
an outstanding feature is that stock markets are usually driven by an upward trend, which
is not directly observable (see e.g. Campbell et al., 1997, pp.33ff.). Then again, that the
standard framework for the corresponding prices is a random walk with an unobserved drift
term is not innocuous. For example, although Fama (1965a), Praetz (1969), Dryden (1970),
and Jennergren and Korsvold (1974) all found that observed sequences comprising signed
stock-market returns tend to produce significantly fewer runs than expected from Bernoulli
trials with equiprobable outcomes, this finding leaves ample room for interpretation. In
particular, as long as the properties and effects of the underlying trend are partially un-
known, it remains unclear whether a shortage of runs is a reflection of non-randomness, or
merely an artefact of a trend (or drift) giving rise to clustered return increases. By way of
contrast, observing significantly fewer runs between heads and tails than expected from an
equiprobable Bernoulli trial would be highly suspicious in a game of supposedly unbiased
(or fair) coin tosses, for which the stochastic process is no source of controversy.

This paper endeavors to contribute to the literature on the runs test for randomness in
stock-market prices by taking into account that they are almost always driven by unobserved
trends. Based on a discussion of their effect on the derivation and interpretation of the runs
test, the main contribution lies in suggesting a way to deal with unobserved trends by pre-
treating sequences comprising signed stock-market returns with an algorithm proposed by
Von Neumann (1951). Originally, this algorithm was developed to transform coin tosses
that might suffer from an unknown bias, meaning that there is an incalculable suspicion
that heads or tails occur more often, into Bernoulli trials with equiprobable outcomes. This
transformation is done by tossing the coin twice and retaining only the first observation
when different outcomes arise. In principle, the Von Neumann unfair coin algorithm can
be adapted to a sequence of stock-market returns with an unobserved trend, whose effect
on the probability of observing a positive return is hard, or even impossible, to determine.
By doing so, this paper aims at developing a more conclusive version of the runs test to
determine whether signed stock-market returns appear in a completely random manner.

The paper is organised as follows. Setting the stage, the next section defines the conditions
under which stock-market prices follow a random walk. This discussion starts with the size
of returns, but mainly contemplates their algebraic sign, which provides the basis for the
runs tests for randomness. Section 3 discusses this test and derives the corresponding test
statistics when positive and non-positive stock market returns are not necessarily equiprob-
able outcomes. Section 4 explains why the effect of unobserved stock-market trends on the
probability of observing a positively signed return is at most vaguely known, and why they
undermine the interpretation of a standard runs test. Section 5 proposes a way to deal with
this problem by adapting the Von Neumann algorithm to the case of stock-market prices
with an unobserved trend. Section 6 contains an example applying the Von Neumann al-
gorithm to more than 13’000 work-daily observations of the Dow Jones Industrial Average
(DJIA) between 1970 and 2023. The final section concludes.

2 Random walk in stock-market returns

2.1 Conventional random walk

Consider a stock-market price process {Pt} observed at time periods denoted by subscripts
t = 0, 1, 2, . . . , T . The logarithmic values of these prices, i.e. pt = ln(Pt), are conventionally
modelled through a recursive equation given by

pt = δ + pt−1 + εt with t = 0, 1, 2, . . . , T, (1)
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whereby δ denotes an unobserved price trend, also called drift, and εt captures random
disturbances with an expected value of 0 (see, among many others, Campbell et al., 1997,
pp.33ff; Lo and McKenzie, 1999, pp.19ff.). Because logarithmic differences represent per-
centage changes, the stock-market return rt between t− 1 and t is given by rt = pt − pt−1.
Note that r0 cannot be calculated from the data. However, across the remaining observa-
tions, (1) lends itself to a rearrangement into

rt = pt − pt−1 = δ + εt with t = 1, 2, . . . , T, (2)

whereby δ reflects the average return, and εt is typically thought to be drawn from some
stochastic distribution. According to Fama (1965a, p.35), within this environment, the
random-walk hypothesis is encapsulated in the following, interrelated conditions:

Definition 1: The stock-market returns rt of (2) follow a random walk across t = 1, 2, . . . , T ,
when the underlying price changes pt − pt−1 are (serially) independent, and conform
to some probability distribution.

Comment 1: When δ 6= 0, (2) represents a random walk with drift.

It is well known that the random-walk property has profound implications for the behavior
of stock-market prices and returns. In particular, when the conditions of Definition 1 are
fulfilled, these prices and returns follow no regular pattern and, hence, cannot be predicted
from their own past in a meaningful way (Fama, 1965b, p.56). Considering this far-reaching
implication, it is perhaps not surprising that various statistical tests for random walks have
been applied to a vast number of stock-market prices and indices. A key challenge for this
research has arisen from the fact that the stochastic distribution underlying the returns of
(2) is neither obvious, nor necessarily unchangeable across time. Rather, the behavior of
stock-market prices and returns is characterized by substantial model instability and, hence,
uncertainty (Rapach and Zhou, 2013). In this regard, the effects of extreme value distri-
butions (see e.g. Jansen and De Vries, 1992), and questions on the appropriate modelling
of time-varying return volatility loom particularly large (see e.g. Andersen et al., 2006).
When random-walk tests are susceptible to this model uncertainty, their results can remain
inconclusive.2

2.2 Random walk in signed stock-market returns

Focusing on the algebraic sign, rather than the value, of stock-market returns provides a way
to avoid some of the model uncertainty underlying rt. To represent this algebraic sign, a
binomial indicator variable Irt is constructed, which adopts a value of 1 in case rt is positive
and 0 otherwise, that is

Irt =

{
1 if rt+1 = pt+1 − pt > 0 with probability π
0 if rt+1 = p1+t − pt ≤ 0 wih probability 1− π. (3)

Signed stock-market returns formed the basis for some of the earliest tests on the random-
walk hypothesis (Campbell et al. 1997, pp.35ff.). Probably, the simplicity to calculate their
results was a major consideration when Cowles and Jones (1937) or Fama (1965a) introduced
these tests. However, since computational power has become easily available, it is rather
the above-mentioned model uncertainty as regards the stochastic process of stock-market
returns that provides the key advantage for focusing on binomial outcomes encapsulated in

2A case in point are mean-reversion tests, where (2) is rearranged into a regression equation given by

rt = δ + φ(rt−1 − δ) + εt.

Within this regression equation, returns deviate from the random-walk property when their current value rt
is correlated with pervious return deviations from the drift δ, i.e. when φ 6= 0. Fama and French (1988) as
well as Poterba and Summers (1988) report cases, where the parametrization of these mean-reversion tests
does affect their result.

3



Irt . Indeed, the assumptions for testing the random-walk hypothesis by means of (3) are
essentially restricted to the probability of observing a positive return.

Statistically, Irt represents a Bernoulli trial with two outcomes, whose probability is de-
noted by, respectively, π and 1 − π. Furthermore, across time periods t = 1, 2, . . . , T , the
resulting Bernoulli trials give rise to a sequence of random variables It ∈ (0, 1) displaying
the chronology of signed stock-market returns. For an illustration of this type of sequence,
contemplate the positive and non-positive returns calculated from 15 observations of the
Dow Jones Industrial Index (DJIA) at the beginning of the year 1970. Owing to nontrading
days on weekends or public holidays, the dates of these recordings are irregular. Also, as
mentioned above, r0 and, in turn, Ir0 cannot be calculated from the data. However, the
chronology according to (3) over the next 14 values of the DJIA is given by

Year 1970:

Irt :
DJIA:

2.Jan

NA
809.2

5.Jan

1
811.3

6.Jan

0
803.7

7.Jan

0
801.8

8.Jan

1
802.1

9.Jan

0
798.1

12.Jan

0
790.5

13.Jan

0
788.0

14.Jan

0
787.2

15.Jan

0
785.0

16.Jan

0
782.6

19.Jan

0
776.1

20.Jan

1
777.9

21.Jan

1
782.3

22.Jan

1
786.1
−→
...

To test whether this sequence reflects a purely random ordering, contemplate the conditional
probabilities of the possible transitions between pairs of consecutive return indicators Irt and
Irt+1. In particular, π1|1 defines the probability of observing a positive return in t+1 given a
positive return in t. The counterpart of observing a negative return conditional on a positive
return occurs with probability π0|1 = 1− π1|1. In a similar vein, π0|0 pertains to the case of

successive negative returns and π
1|0
t = 1−π0|0 refers to the conditional probability with the

superscript indicating that a positive return will occur given a negative return. Commonly,
conditional probabilities are displayed through the Markov-chain transition matrix, which
is here given by

Irt+1

1 0

Irt
1
0

(
π1|1 π0|1

π1|0 π0|0

)
.

(4)

The transition matrix (4) represents the short-term dynamics of Irt in terms of describing how
the algebraic sign of stock-market returns depends on that of past observations. In principle,
the stochastic transition between signed returns can either follow some regular pattern,
including clusters or recurrent cycles, or reflect a completely random arrangement. Recall
from Definition 1 that randomness in stock markets typically requires that current prices,
and the sequence of returns derived from them, are (serially) independent of past prices
and returns (see also Campbell et al., 1997, pp.28ff.; Lo and McKinley, pp.3ff.). In signed
returns, according to the standard statistical definition, this kind of independence occurs
when conditional probabilities coincide with their corresponding marginal, or unconditional,
probability.3 More specifically, with a marginal probability of π for observing a positive
stock-market return, statistical independence across the four possible contingencies of the
transition between Irt and Irt+1 occurs when

π1|1 = π π0|1 = 1− π
π1|0 = π π0|0 = 1− π. (5)

Substituting (5) into (4) yields a simplified 2 × 2 transition matrix for the Markov chain
given by

3Here, independence refers only to adjacent returns. In addition, it would be possible to look at indepen-
dence across returns separated by more than one period. The empirical example of Sec. 6 will deal with this
issue in a pragmatic way by contemplating stock-price data at the daily, weekly, and monthly frequency.
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Irt+1

1 0

Irt
1
0

(
π 1− π
π 1− π

)
.

(6)

In (6), complete randomness manifests itself in a probability of signed stock-market returns
as indicated by Irt+1 that does not depend on the realization of Irt .

As alluded to at the outset, coin tosses provide a textbook example for Bernoulli trials with
statistical independence. Then again, the analogy between coin tossing and signed stock-
market returns is far from being perfect. For example, constant returns, which have no
practical similarity in coin tossing, are a conceivable stock-market outcome alongside positive
and negative returns. In (3), constant and negative returns have somewhat arbitrarily been
grouped together into a non-positive category with Irt+1 = 0.4 This asymmetry can imply
that positive and non-positive returns are not necessarily equiprobable outcomes, i.e. π 6= 1

2
(Campbell et al., 1997, pp.35-36). As discussed in more detail in Section 4, the presence
of an unobserved trend, as emphasized in Comment 1, only adds to this problem when
testing the random-walk hypothesis through Irt . To frame this discussion, the following
definition and comment stipulate the interrelated conditions of the random-walk hypothesis
when contemplating signed stock-market returns.

Definition 2: The signed stock-market returns rt, as indicated by Irt of (3), follow a random
walk across t = 1, 2, . . . , T , when the transition probabilities between Irt and Irt+1 are
serially independent, and, hence, each time period t has the same a priori probability
π of witnessing a positive stock-market return.

Comment 2: For stock-market prices, random walks can be consistent with π 6= 1
2 .

3 Conventional runs test for stock-market returns

The runs test for randomness was introduced by Fama (1965a) to the analysis of stock
markets, and subsequently also employed by Praetz (1969), Dryden (1970), and Jennergren
and Korsvold (1974) to infer whether signed returns are serially independent and, hence,
fulfill a key property of the random-walk hypothesis of Definition 2.5 In statistics, a run refers
to an uninterrupted sequence of any length, across which data share the same characteristic,
reflect similar events, or represent like objects (see Bradley, 1968, p.251; Siegel and Castellan,
1988, p.58). Typical applications involve binomial variables, such as coin tosses where runs
summarize successions of heads and tails. In the analysis of stock markets, the focus lies on
signed returns, with a run comprising unbroken sequences of increasing or decreasing prices.
The question is whether the corresponding ordering encapsulates some regular pattern, or
is completely random. As an illustration, contemplate the runs that arise within the above-
mentioned 14 observations of the DJIA.

Year 1970:

Irt :
Runs:

5.Jan

1︸︷︷︸
run 1

6.Jan

0
7.Jan

0︸ ︷︷ ︸
run 2

−−−−−−−−−−−−−−−−−−−−−−−−−−−→
1︸︷︷︸

run 3

0 0 0 0 0 0 0︸ ︷︷ ︸
run 4

1 1 1︸ ︷︷ ︸
run 5

. . .︸︷︷︸
etc.

When testing for randomness in stock-market returns, the focus lies usually on the number
of runs, denoted by Nruns, observed across t = 1, 2, . . . T (see e.g. Campbell et al., 1997,

4Fama (1965a) as well as Jennergren and Korsvold (1974) consider a separate category for zero returns
(or constant prices). Usually, zero-valued returns occur very rarely in stock-market data.

5In statistics, an early comprehensive derivation of the distribution of runs can be found in Mood (1940).
Runs have been used for testing various scenarios, including whether two samples have been randomly drawn
from the same population (Wald and Wolfowitz, 1940), whether the probability of success—e.g. having no
breakdown in a production process—remains constant across time (Mosteller, 1941), or whether runs up
(e.g. sequences of increasing observations) and runs down (e.g. sequences of decreasing observations) reflect
a purely random ordering (Moore and Wallis, 1943). For textbook discussions of the runs test, see Bradley
(1968, Ch.11 and Ch.12), Siegel and Castellan (1988, Ch.4.5.), or Gibbons and Chakraborti (2003, Ch.3.).
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pp.39-41).6 In principle, deviations from the benchmark of complete randomness—implying
a lack of independence—can manifest themselves in too few runs, which could signal that
price increases are clustered due to momentum effects or trends, but also in too many runs,
which could result from some cyclical pattern. Obviously, the implementation of the runs
test warrants a clearly defined benchmark of randomness. In concurrence with Definition
2, an ordering of signed stock-market returns shall here be considered as random when Irt
of (3) has, a priori, the same probability π of recording a value of 1 across all time periods
t = 1, 2, . . . , T (see also Bradley, 1968, pp.250, 277).

Crucial components of the runs test are the theoretical mean and standard deviation ofNruns.
When making the corresponding derivation based on the statistical theory of Bernoulli trials,
textbooks have often had examples with equiprobable outcomes in mind (see e.g. Siegel and
Castellan, 1988, pp.58-60). To analyze the behavior of stock-market prices, this scenario
is clearly inadequate (see Comment 2). For obtaining a more general derivation of the
theoretical mean and standard deviation of Nruns, it will be helpful to know the probability
of observing a reversal, which refers to cases of sign switches of stock-market returns between
t and t+1. To compute these reversals, as indicated byRr

t , recall from Definition 2 that under
independence and complete randomness, positive returns occur with a constant probability
π. Hence, the probability that they occur in succession at t and t + 1 is given by π2. In a
similar vein, the probability of successive negative returns is given by (1−π)2. Consequently,
the probability of observing a sign reversal equals 1 − π2 − (1 − π)2 = 2π(1 − π).7 Taken
together, the binomial variable describing a sign reversal is characterized by

Rr
t =

{
0 with probability π2 + (1− π)2

1 wih probability 2π(1− π).
(7)

Intuitively, the theoretical mean of the number of runs under complete randomness, as
denoted by µ(Nruns), reflects that they are by definition delimited by the sign reversals
indicated by Rr

t . Consequently, µ(Nruns) simply comprises the sum of the initial run that
automatically appears at t = 1 and the expected number of sign reversals, which occur inde-
pendently and with constant probability 2π(1−π) across the T − 1 remaining observations.
The formal result, as derived in Appendix A, is given by

µ(Nruns) = 1 + (T − 1)2π(1− π). (8)

A more complicated derivation, which is again relegated to Appendix A, yields the corre-
sponding standard deviation, which is for large values of T approximately given by

σ(Nruns) ≈ 2
√

(T − 1)π(1− π)[1− 3π(1− π)]. (9)

For large samples, the distribution of the runs test converges to a normal distribution with
mean µ(Nruns) and standard deviation σ(Nruns) (see e.g. Siegel and Castellan, 1988, p.62;
Gibbons and Chakraborti, 2003, pp.83-84). Hence, the null-hypothesis that the number of
runs does not deviate from a completely random ordering can be tested via a conventional
z-test for mean differences. Formally, the test statistic z(Nruns) is a function of the difference
between the observed and expected number of runs, e.g. Nruns − µ(Nruns), standardized by
σruns.

Runs test for randomness (with 0 < π < 1):

z(Nruns) =
Nruns − µ(Nruns)

σruns

a∼ N(0, 1) (10)

with µ(Nruns) = 1 + (T − 1)2π(1− π)

and σ(Nruns) ≈ 2
√

(T − 1)π(1− π)[1− 3π(1− π)]
6In principle, runs tests can also be based on the maximal length of runs.
7As a predecessor of the runs test, Cowles and Jones (1937) developed a statistical test for randomness

in stock markets based on the ratio between the number of these types of sequences, and sign reversals. For
a discussion, see Campbell et al. (1996, pp.34-38).
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Significant mean deviations according z(Nruns) imply a rejection of the null-hypothesis of
complete randomness in signed stock-market returns. Further to the discussion above, the
corresponding test is typically two-sided, because too many as well as too few runs are
conceivable alternatives to the hypothesis of completely random stock-market returns.

4 Complications with the unobserved stock-market trend

Thanks to the focus on signed returns, the runs test is less susceptible to potential dis-
turbances from outliers, structural breaks, parameter instability, or other thorny features
of stock-market price processes. Still, the theoretically expected mean of the number of
runs µ(Nruns) and the corresponding standard deviation σ(Nruns) depend on the underlying
probability π of observing a positively signed return. Therefore, by design, the runs test
leaves room for interpretation when this outcome probability is not exactly known. By the
same token, it is hard to distinguish between the effect of a given value of π and certain non-
random patterns, such as momentum effects, on the number of runs (Bradley, 1968, p.280;
Siegel and Castellan, 1988, p.59). In the classical coin tossing example, these issues hardly
matter, as a fifty-fifty chance of observing heads and tails can theoretically be presupposed.
By setting π = 1

2 , the calculation of the theoretical mean of (8), the corresponding standard
deviation of (9), and ultimately the test statistic of the number of runs under randomness
(10) is indeed straightforward. Conversely, as emphasized above, in this regard the analogy
between coin tossing and stock-market prices is wanting. In particular, further to Comment
2, there is no reason why positive and non-positive stock-market returns should, a-priori, be
equiprobable outcomes.

When testing for random walks in stock-market returns, the complications associated with
the probability π are further aggravated by the fact that the underlying trend, as reflected
by the drift term δ of (2), is not directly observable. However, unless the value of δ as well
as its mapping into π are known, it remains unclear what conclusions can be drawn from the
test statistic of (10). For example, the observation of relatively few runs of positive stock-
market returns could either reflect non-random momentum effects, or a random walk with a
sufficiently strong upward trend. In principle, various trends, as comprised in δ, can give rise
to a broad range of probabilities π and, in turn, different numbers of runs expected under
complete randomness (Campbell et al., 1997, p.40). Moreover, even if stock-market trends
were observable, uncovering their mapping into the outcome probability π would be anything
but straightforward. For example, although it sounds plausible that upward trends, i.e.
δ > 0, should make positively signed stock-market returns relatively more likely, i.e. π > 1

2 ,
this relationship cannot be taken for granted. The reason is that trends could also result
from larger average increments of upward than of downward price changes. Conceptually,
the connections between δ and π, as described by the function π = Pr(rt > 0) = f(δ),
depend on the model postulated for the price process of (1). Consequently, in all attempts
to establish π = Pr(rt > 0) = f(δ), questions about model uncertainty could reenter through
the back door. Hence, if the key advantages of the runs test are to be retained, a different
approach is warranted.

5 A runs test for stock-market returns with equiproba-
ble outcomes

Provided that the unobserved trend has an unclear effect on the probability of observing
a positive return, and therefore undermines the interpretation of the runs test, removing
this effect would facilitate the analysis of stock-market prices. Fortunately, Von Neumann
(1951) has developed an algorithm for the similar task of transferring coin tosses, which are
suspected to suffer from an unobserved bias (i.e. π 6= 1

2 ), into equiprobable outcomes (i.e.
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π̃ = 1
2 ).8 More specifically, consider a potentially unfair coin with an unknown probability π

of observing heads, which is an outcome labelled by H, and an equally unknown probability
1−π of observing tails, which is an outcome labelled by T . Despite the suspected bias hidden
in π, the Von Neumann algorithm can reproduce a fair (or fifty-fifty) outcome through the
following three-step procedure.

Von Neumann algorithm (for coin tosses):

1. Toss the potentially biased coin twice.

2. In case the same outcomes (i.e., HH or TT) arise, return to step 1.

3. In case mixed outcomes (i.e., HT or TH) arise, retain the observation of the first
coin toss.

To understand why under randomness and independence π̃(H) = π̃(T ) = 1
2 necessarily

results from the algorithm, recall from the discussion above that the probability of observing
either HH or TT in step 2 is given by π2 + (1− π)2 = 1− 2π(1− π).9 Crucially, in step 3,
the probabilities of observing either HT or TH are the same and given by π(1− π). Across
the three steps, π̃ summarizes the joint probabilities of either restarting over at step 2, i.e.
(1−2π(1−π))π̃, or arriving at step 3, i.e. π(1−π). Hence, π̃ = (1−2π(1−π))π̃+π(1−π).
Solving this expression for π̃ yields π̃ = 1

2 for the mixed outcomes (i.e., HT or TH). The
crucial ingredient for arriving at this result is statistical independence, which implies that
heads (and tails) have, a priori, the same probability of being observed across coin tosses.
Without this property, the Von Neumannn trick would not work (see e.g. Samuelson, 1968,
p.1526).

Consider now the analogy between dealing with potentially biased coin tosses and stock-
market prices driven by an unobserved trend, whose effect on the probability π for a positive
return is at most partially known. Then again, it would be helpful when these signed stock-
market returns could be converted into a sequence, within which positive and non-positive
returns are equiprobable. To this end, the following version of the Von Neumann algorithm
can be applied to the signed stock-market returns encapsulated in the binomial variable Irt
of (3).

Von Neumann algorithm (for signed stock-market returns):

1. Arrange the sequence of stock-market return indicators Irt observed across t =
1, 2, . . . , T into non-overlapping pairs of consecutive observations.

2. Drop pairs with sequences of positive or negative returns (e.g. pairs between t
and t+ 1 with Irt = Irt+1).

3. Retain the first observation of pairs, within which a reversal occurs (e.g. pairs
between t and t+ 1 with Irt 6= Irt+1).

Under the assumption of randomness and independence, this algorithm should give rise to
a transformed sequence with T̃ observations of positively or non-positively signed stock-
market returns that occur with equal probability (i.e. π̃ = 1

2 ). Given this probability, the

calculation of the theoretical mean µ(Ñruns) and standard deviation σ(Ñruns) of this trans-
formed sequence from (8) and (9) is straightforward. As a result, the following, simplified
test statistic for the runs test for randomness arises.

8Subsequently, Hoeffding and Simons (1970) analyzed the The Von Neumann algorithm in greater detail.
9This probability results directly from the indicator variable of observing a reversal Rr

t according to (7).
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Runs test for randomness (with π̃ = 1
2):

z(Ñruns) =
Ñruns − µ(Ñ runs)

σ(Ñ runs)

a∼ N(0, 1)

with µ(Ñruns) = 1 + (T̃ − 1)/2

and σ(Ñruns) =

√
T̃ − 1

2

As an illustration for a sequence of binomial variables transformed by the Von Neumann
algorithm, contemplate again the stock-market returns resulting from the observations of
the DJIA at the beginning of the year 1970. The above-mentioned three-step procedure to
obtain equiprobable outcomes under randomness and independence yields

Year 1970:

Irt :
Runs:

5.Jan

1
6.Jan

0︸ ︷︷ ︸
1︸ ︷︷ ︸

run 1̃

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
0 1︸︷︷︸
0

0 0︸︷︷︸
drop

0 0︸︷︷︸
drop

0 0︸︷︷︸
drop

0 1︸︷︷︸
0

1 1︸︷︷︸
drop︸ ︷︷ ︸

run 2̃

. . .︸︷︷︸
etc.︸︷︷︸

run ...

6 Example: Dow Jones Industrial Average (1970-2023)

To illustrate the runs test for randomness in the analysis of stock-market returns with
an example, this section contemplates the Dow Jones Industrial Average (DJIA) for the
period beyond the beginning of 1970. In particular, on a logarithmic scale, the top panel
of Figure 1 depicts more than 13’0000 daily closing values of the DJIA up until the end
of the year 2023. The resulting line graph underscores that stock-market prices pt tend
to follow an upward trend, which is constantly affected by erratic shocks and recurrent
crashes that sometimes degenerate into outright crises. Within the present sample, the
economic turbulences following the oil-price shock of 1973, the crash of 1987, the dotcom
bubble around the turning of the millennium, the instability after the Global Financial Crisis
of 2008, and the economic disruptions amid the Covid-19 pandemic represent outstanding
boom-and-bust episodes on the stock market.

The bottom panel of Figure 1 depicts the corresponding daily returns as calculated from
(2). Reflecting the just-mentioned erratic development of the DJIA, these returns follow
no simple stochastic process. In particular, various episodes of economic, financial, and
political crises are reflected in complex patterns of return volatility. Moreover, crashes have
manifested themselves in outliers, such as the negative daily return of -13.8 per cent on 16.
March 2020, and -25.6 per cent on 19. October 1987.

By means of (2), the returns of the bottom panel of Figure 1 can be coded into positive and
non-positive signs. The resulting realisation of the indicator variable Irt provides, in turn,
the basis for the runs test for randomness of (10). Table 1 summarizes the corresponding
results. In particular, the top panel focuses on the daily closing values between 1970 and
2023 with a total of 13,569 observations, among which 6,589 runs have been recorded.
As discussed in Sec. 4, whether or not this number reflects a scenario with too many
or too few runs with respect to the benchmark of complete randomness depends on the
probability π of observing an increase of the DJIA. In this regard, column (1) contemplates
the case of equiprobability, i.e. π = 0.5, under which the theoretically expected number
of runs µ(Nruns), as calculated from (8), is 6,785. The corresponding standard deviation
σ(Nruns), as calculated from (9), is 58.24. A runs test based on the standardized mean
difference of (10) yields a z-statistic of -3.37, which is statistically different from 0 at any
conventionally used level of rejection. This result would suggest that the DJIA contains too
few runs between 1970 and 2023, which coincides with the findings reported in Fama (1965a,
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Figure 1: Dow Jones Industrial Average (1970-2023)
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p.76) or Jennergren and Korsvold (1974, p.179). Nevertheless, it remains unclear whether
this finding provides evidence against the hypothesis of randomly arranged returns, as the
upward trending behavior of the DJIA is hardly compatible with equiprobable positive and
negative returns. These doubts are reinforced by the fact that higher values of π affect
the just-mentioned statistical conclusion as reported in columns (2) to (10), across which
the theoretically expected number of runs declines considerably. In particular, when π lies
above 0.55, the runs test is barely significant or becomes even non-significant. Under these
scenarios, the observed number of runs within the daily returns of the DJIA of Figure 1 would
no longer be significantly lower than expected under pure randomness. In case π = 0.59, the
observed number of runs even exceeds the theoretical benchmark of 6,565 of column (10).
Although, with a z-value of 0.40, the corresponding deviation is non-significant.

The main conclusion that can be drawn from the runs tests of columns (1) to (10) of the top
panel of Table 1 depends, obviously, on the value of π. In principle, the probability of ob-
serving an increase of the DJIA can be estimated from the data. Within the current sample,
7,085 out of 13,569 observations reported an increase implying an estimated probability of
7,085/13,569 ≈ 0.522. Despite this estimate, the following question about the interpretation
of the results remains: Would a rejection of the hypothesis of randomness at a given value
of π merely imply that the DJIA follows a random walk with drift, or reflect some genuine
non-random pattern? To avoid this question, column (11) reports the result of a runs test,
where the DJIA has been transformed through the Von Neumann algorithm of Sec. 5. Recall
from discussion above that under randomness and independence, the corresponding three-
step procedure necessarily yields equiprobable outcomes, which lend themselves for a runs
test that is no longer susceptible to discussions about the outcome probability. Of course, a
downside of reconstructing a sequence of the DJIA with π̃ = 1

2 is that around three quarters
of the observations are dropped within the process. However, owing to the large number of
closing values of the DJIA at the daily frequency, a sample with 3,267 observations, among
which 1,656 runs are observed, remains. For the current example, the corresponding runs
test yields a z-value of 0.77 and, hence, does not reject the hypothesis that signed returns
of the DJIA represent a purely random ordering.

In the empirical analysis of stock-market prices, daily data can suffer from distortions due to
nontrading on weekends or public holidays (Lo and McKinley, 1999, pp.26-27). Furthermore,
the focus on sequences with daily closing prices cannot reveal non-random patterns that
potentially arise over somewhat longer time horizons. To address these issues, the middle of
Table 1 focuses on a sample of the DJIA with end-of-the-week observations (e.g. Fridays),
which encompasses 2,712 observations and 1,287 runs between 1970 and 2023. In essence, the
results of the runs tests with weekly data coincide with those of daily data. In particular,
in columns (1) to (10), there tend to be fewer observed runs when compared with the
benchmark of pure randomness. However, the significance of these differences depends on
the value of π. Furthermore, when avoiding questions as regards this probability by means
of the Von Neumann algorithm, there are 331 runs among 649 observations. According to
the z-statistics of column (11), in this case, the hypothesis of pure randomness cannot be
rejected.10 A potential drawback of the runs test for randomness is illustrated by the bottom
panel, where the data have been summarized into end-of-month observations. Within this
sample, there are only 646 observations and 323 runs left. The resulting lack of statistical
power could explain why no statistically significant results arise for all values of π between
0.5 and 0.59. The Von Neumann transformation of column (11) aggravates the situation in
the sense of leaving only 166 observations and 86 runs.

10Similar results arise when contemplating weekly data based on mid-week, i.e. Wednesday, observations.
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7 Conclusion

To this day, a lively debate exists whether stock-market returns follow a random walk, and
can therefore not be predicted from their own past. This debate reflects major challenges
in testing for randomness in stock-market prices, whose underlying stochastic process is
neither self-evident, nor unchangeable across time. To shed new light on this question, this
paper has revisited the runs test that focuses on the algebraic sign of stock-market returns
to test for randomness. A crucial advantage of using these signed returns is that they can
be interpreted as Bernoulli trials similar to coin tosses, whose statistical distribution is well
known. However, in contrast to heads and tails, positive and non-positive stock market
returns typically comprise an unobserved trend and are, therefore, not necessarily equiprob-
able outcomes. Against this background, this paper has derived the statistical distribution
of the runs test under various probabilities of observing a positive return. Furthermore,
to avoid questions as to whether this probability reflects a genuine trend or some form of
non-randomness, this paper has turned to an algorithm developed by John von Neumann to
convert coin tosses that might suffer from an unobserved bias into equiprobable outcomes.
When adapting this algorithm to the example of the Dow Jones Industrial Average (DJIA)
since 1970, the hypothesis that the corresponding returns are randomly arranged cannot be
rejected.
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A Deriving the mean and standard deviation of Nruns

This appendix provides a concise derivation of the mean, variance, and standard deviation
of the number of runs, i.e. Nruns, as a function of the (constant) probability π ∈ [0, 1] of
observing Irt = 1. The derivations draw on Gibbons and Chakraborti (2003, pp.82-83). See
also Campbell et al. (1997, pp.39-41).

The mean number of runs, i.e. µ(Nruns) of (9), involves the initial run at t = 1, and the
expected number of sign-reversals Rr

t across the remaining observations at t = 2, 3, . . . , T ,
that is

µ(Nruns) = 1 + E
[ T∑

t=2

Rr
t

]
= 1 +

T∑
t=2

E[Rr
t ]. (11)

Using (7), under statistical independence, E[Rr
t ] is given by

E[Rr
t ] = 2π(1− π) · 1 + (1− 2π(1− π)) · 0 = 2π(1− π).

Across t = 2, 3, . . . , T , sign-reversals Rr
t represent independent Bernoulli trials. Hence,

T∑
t=2

E[Rr
t ] = (T − 1)2π(1− π). (12)

Inserting (12) into (11) yields the mean11 of (8), that is

µ(Nruns) = 1 + (T − 1)2π(1− π).

Under independence, the corresponding variance σ2(Nruns) can also be broken into the (zero-
valued) contribution of the initial run at t = 1, and the contributions of the overlapping
Bernoulli random variables Rr

t across t = 2, 3, . . . , T , that is

σ2(Nruns) = V ar[1]︸ ︷︷ ︸
=0

+V ar
[ T∑

t=2

Rr
t

]
= (T − 1)V ar[Rr

t ] +

T∑
s=2
s6=t

T∑
t=2
t6=s

Cov[Rr
s, R

r
t ]

= (T − 1)E[(Rr
t )2]− (T − 1)2(E[Rr

t ])2 +

T∑
s=2
s6=t

T∑
t=2
t6=s

Cov[Rr
s, R

r
t ]. (13)

Using (7), the first terms on the right-hand side of (13) are given by

(T − 1)E[(Rr
t )2]− (T − 1)2(E[Rr

t ])2 = (T − 1)2π(1− π) (12)︸︷︷︸
=1

−(T − 1)2(2π(1− π))2. (14)

The covariance term
∑∑

Cov[Rr
s, R

r
t ] of (13) captures joint sign reversals between Rr

s and
Rr

t . They can either occur within triplets, or between two (disjoint) pairs observations.
These cases have different probabilities:

11Instead of contemplating the probabilities π and 1−π, the mean of Nruns is often reported through the
frequency of the outcomes (see e.g. Wald and Wolfowitz, 1940, p.151). When m refers to the number of
positive stock-market returns counted across T − 1 observations, probability and frequency are connected
via π = m/(T − 1). In a similar vein, for n negative returns, we have (1− π) = n/(T − 1). Inserting these
expressions into (12) yields the formula reported in e.g. Bradley (1968, p.262) or Siegel and Castellan (1988,
p.62), that is

µ(Nruns) = 1 +
2mn

T − 1
.
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i. Joint sign reversals within triplets can either occur with probability π(1 − π)π, or
with probability (1 − π)π(1 − π). Hence, across the 2(T − 2) possible triplets, the
corresponding probability is given by

2(T − 2)[π(1− π)π + (1− π)π(1− π)] = (T − 2)2π(1− π).

ii. The disjoint pairs involve 4 combinations between two sign reversals, which all have
either probability π(1 − π) or equivalently (1 − π)π. Hence, across the remaining
(T − 1)(T − 2) − 2(T − 1) = (T − 2)(T − 3) joint sign reversals, the disjoint pairs’
probability is given by

4(T − 2)(T − 3)π2(1− π)2.

Taken together, we have that

T∑
s=2
s6=t

T∑
t=2
t 6=s

Cov[Rr
s, R

r
t ] = (T − 2)2π(1− π) + 4(T − 2)(T − 3)π2(1− π)2. (15)

Substituting (14) and (15) back into (13) yields

σ2(Nruns) = (T−1)2π(1−π)−(T−1)2(2π(1−π))2+(T−2)2π(1−π)+4(T−2)(T−3)π2(1−π)2.

Rearranging and simplifying yields

σ2(Nruns) = 4(T − 1)π(1− π)
[1

2
+

1

2

T − 2

T − 1
−
(

(T − 1)− (T − 2)(T − 3)

T − 1

)
π(1− π)

]
= 4(T − 1)π(1− π)

[1

2
+

1

2

T − 2

T − 1
− 3

T − 2

T − 1
π(1− π)

]
.

For large values of T , we have approximately that

σ2(Nruns) ≈ 4(T − 1)π(1− π)[1− 3π(1− π)].

Taking the square root yields σ(Nruns) of (9).
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