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Abstract
Determining potential output and the output gap—two inherently unobservable vari-

ables—is a major challenge for macroeconomists. This paper presents the R package
sectorgap, which features a flexible modeling and estimation framework for a multivari-
ate Bayesian state space model identifying economic output fluctuations consistent with
subsectors of the economy. The proposed model is able to capture various correlations
between output and a set of aggregate as well as subsector indicators. Estimation of the
latent states and parameters is achieved using a simple Gibbs sampling procedure and
various plotting options facilitate the assessment of the results. An illustrative example
with Swiss data outline data preparation, model definition, estimation, and evaluation
using sectorgap.

Keywords: R, state space models, time series, simulation smoother, Gibbs sampling, business
cycle, output gap, potential output.
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1. Introduction

Determining the cyclical position of the economy—unobservable by nature—consitutes an
essential problem in macroeconomics. The business cycle, also known as the output gap, is
the di�erence between observed economic output and its potential, i.e., the level of sustainable
and non-inflationary output (Hall and Taylor 1991).
Numerous modeling and estimation techniques have been developed, among them univariate
and multivariate time series filters (e.g. Hodrick and Prescott 1997; Baxter and King 1999;
Hamilton 2018; Quast and Wolters 2022), production-function based methods (e.g. Havik,
Mc Morrow, Orlandi, Planas, Raciborski, Röger, Rossi, Thum-Thysen, and Vandermeulen
2014), and semi-structural unobserved component models hat incorporate economic theory
(Kuttner 1994; Gerlach and Smets 1999; Blagrave, Garcia-Saltos, Laxton, and Zhang 2015;
JarociÒski and Lenza 2018; Hasenzagl, Pellegrino, Reichlin, and Ricco 2022).
sectorgap enables the estimation of the output gap according to a new bottom-up approach
which incorporates the cycle and trend dynamics of subsectors of the economy (Rathke and
Streicher 2023). Similar to previous unobserved component models, the sectorgap (SG) model
is able to incorporate correlations between output and the labor market and inflation develop-
ments. In addition, by incorporating subsectors of economic output and ensuring consistency
between aggregate and subsector trends, the SG model provides a comprehensive overview of
the emergence of economic fluctuations and secular trends.
In essence, sectorgap facilitates the estimation of a large Bayesian state space model. The
model definition is kept general to ensure applicability in various settings. Unobserved states
and parameters are obtained using a Gibbs sampling approach. Finally, sectorgap provides
useful plotting options to analyze the results.
Section 2 defines the bottom-up sector gap methodology and elaborates on the aggregation
constraints. The Bayesian estimation approach is detailed in Section 3. Section 4 gives a
brief overview of the general functionality of sectorgap and Section 5 illustrates its usage by
applying it to Swiss data. Section 6 gives a short overview to related software and Section 7
concludes.

2. A bottom-up output gap model

Our model is based on the methodology described by Rathke and Streicher (2023), but allows
for a more general structure here.
Potential output and the output gap are latent processes and are thus modeled via an un-
observed component model. The observed variable, aggregate output yt—or gross domestic
product (GDP)—splits up into a trend ·yt and a cycle cyt, the latter of which defines the
so-called output gap gyt. It is common to complement output by a set of aggregate vari-
ables at := (a1t, . . . , akt)Õ. Examples of such variables are price and labor market indica-
tors.1 In addition, we allow for subsector output y̌t = (y̌1t, . . . , y̌nt) and subsector indicators
ǎt := (ǎ1t, . . . , ǎmt)Õ.
Similar to output, we decompose each of these additional variables into a trend and a cycle.
The individual cycles of the aggregate variables at and the subsectors y̌t are assumed to be

1Okun’s law (Okun 1963) connects employment and unemployment to the output gap and a Phillips curve
relationship can be used to capture correlations to inflation.
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linearly dependent on the output gap, while the cycles of the subsector indicators in ǎt are
correlated with their corresponding output subsectors y̌t. Summing up, we obtain
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·ǎt

R

dddb +

Q

ccca

gyt

gat

gy̌t

gǎt
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where �j (x) = Âj0x0 + . . . + Âjqj xqj , j œ {a, y̌, ǎ} are diagonal matrix lag polynomials of
possibly di�erent orders qa, qy̌, qǎ.
For the trends we allow several di�erent processes. Dropping the group indices for notational
convenience, we have

·t = ·t≠1 + Á· t, (2a)
·t = ·t≠1 + µt≠1 + Á·t, µt = µt≠1 + Áµt, (2b)
·t = ·t≠1 + µt≠1, µt = µt≠1 + Áµt, (2c)
·t = ·t≠1 + µt≠1 + Á·t, µt = “ + „µµt≠1 + Áµt. (2d)

The innovations Á·t and Áµt, with Á·t ‹ Áµt are normally distributed and may each be corre-
lated across their respective group, but are assumed independent between groups. Equation
(2a) describes a standard random walk and Equation (2b) a random walk with random drift,
also called a local linear trend. Equation (2a) drops the innovation to the level of the local
linear trend and finally, Equation (2d) assumes a stationary autoregressive drift of order one.
The output gap and all idiosyncratic cycles are modeled as stationary autoregressive processes,
i.e.,

� (L) ct = Áct, Áct ≥ N
1
0, ‡2

c

2
, (3)

where we again drop the group indizes for convenience. Since Equation (1) already imposes
a correlation between the cycles, we assume that the innovations Áct are independent. The
diagonal matrix lag polynomials �j (x) = 1 ≠ �j1x ≠ . . . ≠ �jpj xpj , j œ {y, a, y̌, ǎ} are of order
py, pa, py̌, and pǎ.
sectorgap also features a second group of subsectors ˇ̌yt which we exclude here to simplify
notation. Expanding the model for a second subgroup is trivial. In addition, we allow for
a group of variables with characteristics that do not fit into any of the above groups. For
instance, an additional measure of inflation that shares the same trend as one of the variables
in at. To keep notation simple, we refrain from including this group at this point and comment
on it in Section 2.3.
Identification can be achieved by placing restrictions on the innovation correlations between
trends, drifts, and cycles. The Clark (1987) model is a subversion of the model in Equation
(1) – (3) and for identification Clark (1987) assumes an autoregressive cycle of at least order
two and additionally drops possible correlation between trend and drift innovations, leaving
within trend and within drift correlations possible.2 Similar restrictions carry over to our
model, and thus we enforce Á·t ‹ Áµt and recommend an autoregressive order larger two.

2The correlation between permanent and transitory shocks is likely negligible (Clark 1987; Morley, Nelson,
and Zivot 2003; Morley 2007; Oh, Zivot et al. 2006)
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2.1. Aggregation and constraints

In most cases, subsector trends are subject to known restrictions. The derivations in this
section build on the assumption that data in levels enters the model using a log transformation
g(x) = log x. As a result, the estimated cycles can be readily interpreted since, e.g.,

Yt

TY t
≠ 1 ¥ log Yt ≠ log TY t = yt ≠ ·yt = gyt, (4)

where TY t denotes the untransformed trend of aggregate output.3 By definition, aggregate
real output Yt = exp yt is a chain-linked volume index, i.e., it can be represented as the
weighted sum of real subsector output

Yt = wP
t

Õ
Y̌t, (5)

where Y̌t =
1
Y̌1t, . . . , Y̌nt

2
, Y̌it = exp y̌it and wP

t =
1
wP

1t, . . . , wP
nt

2Õ
, wP

it = P̌it≠1/Pt≠1 contains
relative previous period prices for the subsectors. Naturally, these restrictions can be carried
over to the unobservable trends, i.e.,

exp ·yt = wP
t

Õ exp ·y̌t , (6)

where ·y̌t = (·y̌1t, . . . , ·y̌nt). Similarly, without loss of generality, let now k = 1 and let
At = exp at represent an aggregate indicator in levels, for instance aggregate employment.
For the corresponding subsector indicators Ǎt =

1
Ǎ1, . . . , Ǎm

2
, Ǎj = exp ǎj , we have

At = 1Õ
mǍt

where 1m is a m ◊ 1 vector of ones, which implies

exp ·at = 1Õ
m exp ·ǎt. (7)

We use an iterative procedure to approximate the non-linear constraints in Equations (6) and
(7), which we elaborate on in Section 2.2.
In addition, we can deduce linear constraints for parts of the trend growth rates · and drifts µ.
Let now Y nom

t , Y nom
it , i = 1 . . . , n denote the respective nominal output series. From Equation

(5) and since Y nom
it = 1/100 PitYit, we have

�yt ¥ Yt

Yt≠1
≠ 1 = wP

t
Õ
Y̌t

Yt≠1
≠ 1

= wP
t

Õ

Yt≠1
diag

1
Y̌t≠1

2
diag

1
Y̌t≠1

2≠1
Y̌t ≠ 1

=
P̌ Õ

t≠1
Pt≠1Yt≠1

diag
1
Y̌t≠1

2
diag

1
Y̌t≠1

2≠1
Y̌t ≠ 1

= wY nom

t
Õ diag

1
Y̌t≠1

2≠1
Y̌t ≠ 1

¥ wY nom

t
Õ�y̌t,

3In fact, the applied transformation is usually g (x) = 100 log x, as this results in cycle estimates in percent.
For ease of readability, we drop the multiplier.
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where wY nom

t =
1
wY nom

1t , . . . , wY nom

nt

2Õ
, wY nom

it = Y̌ nom
it≠1/Y nom

t≠1 are the nominal output weights
at t ≠ 1 for which naturally, wY nom

t
Õ1n = 1 for all t œ Z. Hence, the growth rate of output

is a linear combination of the growth rates of subsector output.4 If we assume that relative
previous period prices wP

it are the same for output and its trend, this linear constraint carries
over to trend growth rates and drifts

�·yt = wY nom

t
Õ�·y̌t, (8)

µyt = wY nom

t
Õ
µy̌t, (9)

where µy̌t = (µy̌1t, . . . , µy̌nt). Both linear constraints can be imposed by adding an identity
series to the observation equation (Doran 1992). For trend specifications without short-term
changes to trend growth (Á·yt = 0, Á·y̌t = 0, see Equation (2c)), consistency between aggregate
and subsector trends can be attained by enforcing Equation (9) only. On the other hand, if
the model allows for shocks to trend growth, Equation (8) can be enforced through the trend
shocks Á·yt , Á·y̌t and via Equation (9).5

Analogously, for the subsector (employment) indicators, we obtain

�·at = wA
t �·ǎt, (10)

µat = wA
t µǎt, (11)

where wA
t =

1
wA

1t, . . . , wA
mt

2Õ
, wA

jt = Ǎit≠1/At≠1 denotes the weight of the indicator in sector i
at point in time t ≠ 1.

2.2. State space representation

The model in Equation (1) – (3) with di�erent trend and cycle specification can be cast into
state space representation. We stack all observation variables and their cycles, trends, and
drifts in corresponding order, i.e.,

ȳt
o◊1

=
!
yt, aÕ

t, y̌Õ
t, ǎÕ

t

"Õ

ct
o◊1

=
1
cyt, cÕ

at, cÕ
y̌t, cÕ

ǎt

2Õ

·t
o◊1

=
1
·yt, · Õ

at, · Õ
y̌t, · Õ

ǎt

2Õ

µt
oµ◊1

=
1
µyt, µÕ

at, µÕ
y̌t, µÕ

ǎt

2Õ

where o = 1 + k + n + m is the number of observables and oµ the number of drifts. The state
vector can be defined by

–t
s◊1

=
!
cÕ

t, . . . , cÕ
t≠‚, · Õ

t , µÕ
t

"Õ ,

4For annual figures, this holds with equality if the data is compiled using the Annual Overlap method. For
quarterly figures, small deviations are possible which we assume to be zero for the trend component we are
interested in.

5Note that �·yt ≠ µyt≠1 = Á·yt, �·y̌t ≠ µy̌t≠1 = Á·y̌t and thus Equation (8) is satisfied if Á·yt = wnom
t

ÕÁ·y̌t

and if Equation (9) holds.
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where s = (‚+1)o+oµ is the number of states with ‚ = max {p, q} where q = max {qa, qy̌, qǎ}
is the maximum lag of all loadings and p = max {py, pa, py̌, pǎ} the maximum autoregressive
order of all cycles. The measurement and state equation are given by

ȳt
o◊1

= cȳt
o◊1

+ Zt
o◊s

–t
s◊1

,

–t
s◊1

= c–t
s◊1

+ Tt
s◊s

–t≠1
s◊1

+ Rt
s◊s̃

Át
s̃◊1

, Át
s̃◊1

≥ N
!
0, Qt

s̃◊s̃

"
,

(12)

where s̃ = o + o· + oµ denotes the number of state equations and o· Æ o the number of trends
that include an innovation term. For ease of readability, we split the system matrices into
three blocks, one concerning the vector of contemporaneous and lagged cycles

!
cÕ

t, . . . , cÕ
t≠‚

"Õ,
one for the trends ·t and a final block for the drifts µt. The structure of the blocks is indicated
by vertical and horizontal lines. The system matrices of the state space model in Equation
(12) are given by

Zt
o◊s

=
Ë

Z0
t · · · Z‚

t Io 0
È

, Tt
s◊s

=

S

WWWWWWWWWWWU
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Io 0

. . . . . .
Io 0 0

0 · · · 0 0 0
Io T ·

t

T µ
t

T

XXXXXXXXXXXV

,

Rt
s◊s̃

=

S

WWWWWWWWU

Io 0 0
0 0 0
...

...
...

0 0 0
0 Io 0
0 0 Io

T

XXXXXXXXV

, Qt
s̃◊s̃

=

S

WU
�c

�·

�µ

T

XV .

The submatrices in Zt are defined by

Zj
t

o◊o

=
I

Io + Z̃0
t j = 0,

Z̃j
t j > 0,

Z̃j
t

o◊o

=

S

WWWU

0
Âj

a 0
Âj

y̌ 0
�j

ǎ 0

T

XXXV

with �j
ǎ = diag

1
Âj

ǎ

2
for j œ {0, . . . , q}, where Âj

a, Âj
y̌, Âj

ǎ are k ◊ 1, n ◊ 1, and m ◊ 1
vectors, respectively. The auxiliary matrices Z̃j

t , j œ {0, . . . , q} contain the (lagged) loadings
of all aggregate variables at and the subsectors y̌t on aggregate output yt, and those of the
subsector indicators ǎ on the associate subsectors y̌t. In addition, the matrix Z0

t links each
observable with its contemporaneous cycle. Note that Âj

a = 0 for j > qa, Âj
y̌ = 0 for j > qy̌,

and Âj
ǎ = 0 for j > qǎ,.

The state matrix Tt contains the diagonal autoregressive coe�cient matrices

�j = diag
1
„j

y
Õ
, „j

a
Õ
, „j

y̌

Õ
, „j

ǎ

Õ2
, j œ {1, . . . , p}
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of the cycles. Note that, depending on the specified autoregressive order, some elements on
the diagonal of �j are zero. In addition, the matrix Tt contains a number of identities for
the lagged cycles and it defines the trend processes. T ·

t is a matrix of size o ◊ oµ, which
connects the trends to their respective drifts, i.e., the rows associated with trends that do not
contain a drift are zero. T µ

t is a oµ ◊oµ diagonal matrix that links the drifts to their lags. For
local linear trend specifications (Equation (2b)), the respective diagonal value is one, while
for AR(1) drift specifications (Equation (2d)), it contains the autoregressive parameter „µ.
The vector c–t contains zeros for all states except AR(1) drifts, for which it holds the constant
“. The matrix Rt connects each state equation to its corresponding innovation term (or none).
Finally, the variance-covariance matrix Qt contains all cycle, trend, and drift variances �c, �· ,
and �µ, which are matrices of sizes o ◊ o, o· ◊ o· , and oµ ◊ oµ. By assumption, �c is
diagonal, while the trend and drift variances �· , �µ may contain o�-diagonal values allowing
for correlation within each group.

Constraints
To impose constraints on the trends of sector output and employment as discussed in Section
2.1, the system in Equation (12) needs to be adjusted. For j œ Z linear constraints on the
states of the form

Wt–t = ÷t,

where Wt is a j ◊ s matrix and ÷t a j ◊ 1 vector, the aggregation constraints can be imposed
by a simple extension of the observation equation (Doran 1992). Non-linear constraints

ft (–t) = 0

can by approximated by an iterative procedure using a first-order Taylor expansion

0 = ft (–t) ¥ ft

1
–(ÿ)

t

2
+ Dft

1
–(ÿ)

t

2 1
–t ≠ –(ÿ)

t

2

(Doran 1992). We can augment the observation equation analogous to linear constraints by
defining

Wt = Dft

1
–(ÿ)

t

2
,

÷t = Dft

1
–(ÿ)

t

2
–(ÿ)

t ≠ ft

1
–(ÿ)

t

2
,

where Dft is the Jacobian matrix of the vector function ft : Rs æ Rj . The iterative nature
can easily be incorporated into the Bayesian estimation framework, i.e., –(ÿ)

t denotes the ÿ-th
draw of the state vector.
We first consider the simple case where shocks to trend growth are set to zero, i.e., it su�ces
to impose linear constraints on the drifts, i.e., ·yt = wY nom

t ·y̌t and ·at = wA
t ·ǎt. To that end,

Zt and ȳt are augmented. We define

ˆ̄yt
o+2◊1

=
!
ȳÕ

t, 0, 0
"Õ , Ẑt

o+2◊s
=

5
Z0

t · · · Zq
t Io 0

0 · · · 0 0 Ẑµ
t

6
,

Ẑµ
t

2◊o

=
5

1 0 ≠wY nom

1t . . . ≠wY nom

nt 0 · · · 0
0 1 0 · · · 0 ≠wA

1t · · · ≠wA
mt

6
,

(13)
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where, without loss of generality, we again impose k = 1, i.e., there is only one aggregate
indicator in at which corresponds to the subindicators ǎt. Note that the weights wY nom

it , i =
1, . . . , n and wA

jt, j = 1, . . . m as defined in Section 2.1 are time-dependent. If contraints
involve a residual ÷t ”= 0, this term can be included in the vector cȳt.6

If the model allows for shocks to the trends, non-linear constraints are implemented in a
similar way. Subsector trends satisfy

0 = ft (–t) = exp {·yt} ≠ wP
t

Õ exp {·y̌t} ≠ rY
t

where the residual rY
t is zero if the subsectors are exhaustive. Thus, we have

”Dft (–t) =
1
exp · (ÿ)

yt , ≠wP
t

Õ exp · (ÿ)
y̌t

2Õ

and

”ÕW Y
t =

1
exp · (ÿ)

yt , ≠wP
t

Õ exp · (ÿ)
y̌t

2Õ
=

1
w̃Y

t , ≠w̃Y
1t, . . . , ≠w̃Y

nt

2(ÿ)Õ
,

÷Y
t = exp · (ÿ)

yt

1
· (ÿ)

yt ≠ 1
2

≠ wP
t

Õ diag
1
exp · (ÿ)

y̌t

2 1
· (ÿ)

y̌t ≠ 1
2

+ rY
t ,

where ” is a (n + 1) ◊ s selection matrix such that ”Õ–t =
1
·yt, · Õ

y̌t

2Õ
. The adjustments for the

non-linear constraint for the subindicators in Equation (7) follow analogously, i.e.,

”ÕW A
t =

1
exp · (ÿ)

at , ≠1Õ
m exp · (ÿ)

ǎt

2Õ
=

1
w̃A

t , ≠w̃A
1t, . . . , ≠w̃A

nt

2(ÿ)Õ
,

÷A
t = exp · (ÿ)

at

1
· (ÿ)

at ≠ 1
2

≠ 1Õ
m diag

1
exp · (ÿ)

ǎt

2 1
· (ÿ)

ǎt ≠ 1
2

+ rA
t .

Finally, the state-space model in Equation (12) can be adjusted as follows,

ˆ̄yt
o+2◊1

=
!
ȳÕ

t, 0, 0
"Õ , Ẑt

o+2◊s
=

C
Z0

t · · · Zq
t Io 0

0 · · · 0 Ẑ·(ÿ)
t 0

D

,

ĉȳt
o+2◊1

=
1
cÕ

ȳt, ≠÷Y
t , ≠÷A

t

2Õ
, Ẑ·(ÿ)

t
2◊o

=
5

w̃Y
t 0 ≠w̃Y

1t . . . ≠w̃Y
nt 0 · · · 0

0 wA
t 0 · · · 0 ≠w̃A

1t · · · ≠w̃A
mt

6
,

(14)

Alternatively, we may want to impose linear constraints on the trend growth rates. Similar
to the constraints on the drifts, the system matrices in Equation (12) need to be augmented.
By adding the trend shocks Á·t to the state equation, the additional constraints can again be
imposed via Zt. Let now

–̂t
s+o◊1

=
!
–Õ

t|ÁÕ
·t

"Õ , T̂t
s+o◊s+o

=
C

Tt

0

D

, R̂t
s+o◊s̃

=
C

Rt

0 Io 0

D

,

ˆ̄yt
o+2◊1

=
!
ȳÕ

t|0
"Õ , Ẑt

o+2◊s+o
=

C
Z0

t · · · Zq
t Io 0 0

0 · · · 0 0 0 Ẑ·
t

D

with Ẑ·
t = Ẑµ

t .

6For instance if the subsector data is non exhaustive, i.e., if Yt ”= wP
t

Õ
Y̌t or At ”= 1Õ

mǍt.
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2.3. Model extensions

In this section, we introduce a group of observable variables bt which does not fall into any of
the previous groups at, y̌t, ǎt. For each variable in bt, a cycle, trend, and loading specification
can be made. Without loss of generality, let now bt be a scalar which follows

bt = ·bt + ÂÕ
b–t + cbt, (15)

where –t is the state vector from Equation (12) in Section 2.2 and cbt is an AR(pb) cycle.
The s ◊ 1 vector Âb contains loadings for the state vector, i.e., bt can load on cycles as well
as trends in –t. The trend ·bt can be one of the above specifications or dropped.7

The state space representation in Equation (12) can be easily augmented for extensions of
the type outlined in Equation (15).

3. Estimation

sectorgap provides simple tools to define the multivariate state space model in Equation (12)
based on previously specified model settings. To that end, it uses the extensive modeling
framework of the R package KFAS (Helske 2017). The unobserved states –t and parameters

� = {�c, �· , �µ} , �cj =
Ó

„j1, . . . , „jpj , Âj0, . . . , Âjqj , ‡2
cj

Ô
, j œ {y, a, y̌, ǎ} ,

�· = �·

�µ = {“, „µ, �µ}

are then estimated using a Bayesian approach. To be more precise, we use a Gibbs algorithm
structured in multiple blocks. The first three steps draw the parameters conditional on
the states, i.e., �|–t. In a final step, the unobserved states are drawn conditional on the
previously drawn parameters using the simulation smoother of Durbin and Koopman (2002,
2012) provided by the R package KFAS (Helske 2017). To compute each posterior we generate
R draws and discard the specified burnin phase (e.g. the first 50%). If specified, thinning is
applied, i.e. the Gibbs prodecure discards draws to prevent possible autocorrelation between
draws. See Appendix A for details on the algorithm.

3.1. Prior distribution

For the prior distributions of all loading and autoregressive parameters, we assume a nor-
mal distribution, while for the variances we assume inverse-gamma or inverse-wishart priors.
sectorgap uses weakly informative distributions to initialize the priors, see Table 3.1. To facil-
itate economically meaningful trend cycle decompositions, we adopt a smoothing parameter
⁄ = E[‡2

c ]/E[‡2
i ], i œ {·, µ} defining the ratio between the variance of cycle and trend or drift

innovations. For instance, a smoothing constant of ⁄ = 100 implies an a priori signal-to-noise
ratio of 1%.

7An example of an equation with a dropped trend is when bt shares a trend with one or more of the variables
in ȳt.
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Name Support Density Parameters

(Â0, . . . , Âq)Õ Rq Normal µ0 = 0, �0 = 1000Iq

(„1, . . . , „p)Õ Rp ◊ I„œS„
Normal µ0 = (0, 0)Õ , �0 = 1000Ip

(“, „µ)Õ R2 ◊ I„µœS„
Normal µ0 = (0, 0)Õ , ‡2

0 = 1000I2
‡2

c (0, Œ) Inverse-gamma ‹0 = 6, s0 = 4
�2

µ (0, Œ) Inverse-wishart ‹0 = 6, S0 = 4⁄≠1Io

�2
· (0, Œ) Inverse-wishart ‹0 = 6, S0 = 4⁄≠1Io·

Table 1: Prior distributions. I„œS„
denotes the indicator function and S„ the stationary

region of an AR(p) process. All indices are suppressed for the sake of readability. The
normal distribution is parameterized via mean and variance, the inverse-gamma distribution
via degrees of freedom ‹ and location s with mean s/‹≠2, the inverse-wishart distribution via
degrees of freedom ‹ and Ÿ ◊ Ÿ scale matrix S, with mean 1/‹≠Ÿ≠1S.

3.2. Posterior distribution

Given the model specification and the prior distributions, we now outline a procedure to
obtain the posterior distribution of the parameters and the states.
Let now ȳT := (ȳ1, . . . , ȳT ) and analogously, for the state vector, –T := (–1, . . . , –T ). Since
the posterior distribution of

1
–T , �

2
conditional on the data ȳT is not given in closed form,

we use a Gibbs sampling procedure to obtain draws from it. We have that

p
1
–T , �

---ȳT
2

= p
1
–T

---�, ȳT
2

p
1
�

---–T , ȳT
2

(16)

and the first term on the right hand side factorizes to

p
1
–T

---�, ȳT
2

= p (–T |�, ȳT )
T ≠1Ÿ

t=d+1
p

1
–t

---–t+1, �, ȳT
2 dŸ

t=1
p

1
–t

---–t+1, �, ȳT
2

,

where d denotes the number of non-stationary states. Samples from the first two terms can be
readily obtained by applying the simulation smoother conditional on the model parameters
and the data (Durbin and Koopman 2002, 2012). For the third term, the exact di�use
initialization is applied (see e.g. Helske 2017; Durbin and Koopman 2002, 2012).
For the second term in Equation (16), we assume the block independence

p
1
�

---–T , ȳT
2

= p
1
�

---cT , ·T , µT , ȳT
2

= p
1
�·

---·T , µT
2

p
1
�µ

---µT
2 Ÿ

jœ{y,a,y̌,ǎ}
p

1
�cj

---cT
j , ȳT

2
. (17)

The next sections describes how to draw from each of the conditionals in Equation (17).

Trends and drifts
We specify prior and posterior for a general innovation vector Át of size Ÿ ◊ 1 and in turn
relate these results to each of the trend specifications in Equation (2a)–(2d). For the unknown
variance � of Át, we impose

� ≥ IW (S0, ‹0)
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as prior distribution, where S0 is a Ÿ ◊ Ÿ positive definite scale matrix and ‹0 denotes the
degrees of freedom.8 Using standard results, we obtain

p
1
�

---ÁT
2

=
TŸ

t=1
p (Át|�) p (�) Ã IW (Sú, ‹ú)

with

‹ú = ‹0 + T,

Sú = S0 + ÁÕ
tÁt.

For a random walk specification (Equation (2a)), we have �· with Á·t = �·t. For a local
linear trend (Equation (2b)), we have �· with Á·t = �·t ≠ µt and �µ with Áµt = �µt. If
the trend innovation drops (Equation (2c)), only �µ is required. Finally, in case of an AR(1)
drift (Equation (2d)), the posterior distribution of the drift variance follows as decribed in
the next section.

Cycles and loadings
For the observation equations, we can apply the results of Chib (1993). We define the uni-
variate linear model with autoregressive errors

ỹt = xÕ
t— + Át, � (L) Át = ut, ut ≥ N

1
0, ‡2

2
, (18)

where � (L) = 1 ≠ „1L ≠ . . . ≠ „pLp, — is a b ◊ 1 vector of coe�cients and xt is a b ◊ 1 vector
of covariates. Define

ỹú
t = � (L) ỹt, xú

t = � (L) xt,

for t = p + 1, . . . , T and ỹú =
1
ỹú

p+1, . . . , ỹT

2Õ
, ỹ = (ỹp+1, . . . , ỹT )Õ and xú =

1
xú

p+1
Õ, . . . , xú

T
Õ
2Õ

are of dimension T ≠ p ◊ 1 and T ≠ p ◊ b, respectively.
We assume the prior distribution of the involved parameters factorizes, i.e.,

fi
1
—, ‡2, „

2
= fi (—) fi

1
‡2

2
fi („)

with „ = („1, . . . , „p)Õ and for the individual prior distributions,

— ≥ Nb

1
—0, A≠1

0
2

,

‡2 ≥ IG (s0, ‹0) ,

„ ≥ Np

1
„0, „≠1

0
2

I„œS„
.

Note that the inverse-gamma distribution is parametrized via location s0 and degrees of
freedom ‹0, which is equivalent to a parametrization via shape ‹0/2 and scale s0/2. The
posterior distribution of the coe�cient vector is given by

—|y ≥ Nb

1
—ú, A≠1

ú

2
, Aú = A0 + ‡≠2XúÕXú,

—ú = A≠1
ú

1
A0—0 + ‡≠2Xúyú

2
,

8This implies that � has mean S0/‹0≠Ÿ≠1.
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that of the variance by

‡2|y, —, „ ≥ IG (sú, ‹ú) , sú = s0 + (yú ≠ Xú—)Õ (yú ≠ Xú—) ,

‹ú = T ≠ p + ‹0 + k

and the autoregressive coe�cient by

„|y, —, ‡2 ≥ Np

1
„ú, �≠1

ú

2
I„, �ú = „0 + ‡≠2EÕE,

„ú = �≠1
ú

1
�0„0 + ‡≠2EÕE

2
,

where E = {Át}t , Át = (Át≠1, . . . , Át≠p) is a T ≠ p ◊ p matrix (Chib 1993).
It is straightforward to see that each observation equation is a subgroup of this model. For
instance, for the sector cycle equations, we have y̌it ≠·y̌it = Ây̌igt +cy̌it with cy̌it = „y̌i1cy̌it≠1 +
. . . + „y̌ipcy̌it≠p + Ácit, i.e., the above model is of dimension b = 1 and p. In the case of the
output gap, the covariate and coe�cient vectors xt and — are dropped. The AR(1) drift
µt = “ + „µµt≠1 + Áµt from the previous section is also a special case of the linear model in
Equation (18). More precisely, b = 2 and p = 0.

4. Functionality of sectorgap
The output gap can be estimated using sectorgap with a simple, multi-step procedure. The
package contains example data for Switzerland which is used here to guide through the pro-
cess.
The first step concerns data preparation and the definition of the state space model. Model
settings can be initialized via the function initialize_settings(), returning a nested list
with settings for each group of variables, which can subsequently be modified. Based on the
model settings, the function prepare_data() performs transformations to the raw data and
computes weights for the constraints. Finally, the model can be defined via the function
define_model(), returning an object of class ‘ss_model’ which can be printed via the S3
method print().
In a second step, the model parameters and unobserved states can be estimated via Bayesian
methods. Prior densities and starting values for the MCMC chain can be initialized using
initialize_prior() and the returned object of class ‘prior’ can subsequently be modified if
necessary. The Gibbs sampling procedure is performed using the function estimate_model(),
producing an object of class ‘ss_fit’. The estimation function returns several MCMC sum-
mary statistics and convergence criteria, computed by the function compute_mcmc_results().
Optionally, compute_mcmc_results() can be also be directly called by the user given an ob-
ject of class ‘ss_fit’, which is also what the function itself returns. In case the MCMC chain
has not yet converged, the function estimate_model() can be called again by supplying the
returned object of class ‘ss_fit’ and the number of additional repetitions. S3 methods for
printing are provided for objects of class ‘prior’ and ‘ss_fit’.
The third and final step presents the results in the form of time series, density, and trace
plots, provided by the S3 method plot(). In addition, the function transform_results()

consolidates the estimated time series in long format.
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5. Computing the output gap with sectorgap
This section exemplifies the estimation of the output gap using sectorgap, providing details
on each of the three steps mentioned in Section 4.

5.1. Data

In our example, we use quarterly Swiss economic data sourced in November 2023, i.e., the
2023 Q2 vintage. Table 2 describes the variables. The aggregate variable yt is real gross
domestic product and the group of aggregate variables at consists of full-time equivalent em-
ployment ftet and the unemployment rate ut. Group bt, which is characterized by individual
settings for each variable, contains inflation based on the consumer price index fit. The
first subgroup y̌t is real value added in three exhaustive subsectors of the production side,
namely A–goods-producing industries, B–service industries, and C–government and adjust-
ments. The associated nominal series add up to nominal output and thus, constraints can be
placed on the trends and drifts. Full-time equivalent employment in sectors A, B, and C are
used to inform the dynamics of subsector value added. These three series thus define ǎt. The
second group consists of four sectors on the expenditure side, namely i–total consumption,
ii–investment, iii–exports, iv–imports. In contrast to subsector value added, the expenditure
side does not add up to aggregate output. However, the residual of the growth contributions
is automatically computed and thus constraints can be implemented.
In terms of the model outlined in Section 2,

yt = log outputt,

at = (log ftet, ut)Õ ,

bt = fit,

y̌t = log (vaAt, vaBt, vaCt)Õ ,

ǎt = log (fteAt, fteBt, fteCt)Õ ,

ˇ̌yt = log (expit, expiit, expiiit, expivt)Õ .

For illustrative purposes, the package contains the series in Table 2 alongside their nominal
counterparts if applicable, which can be retrieved by

R> data("data_ch")

A nested list called data_ch is loaded into the working environment. It contains two lists with
time series. tsl contains all series described in Table 2 while tsl_n contains the corresponding
nominal series for aggregate output, and the production and expenditure side, i.e., yt, y̌t, ˇ̌yt.
Settings can be initialied and the data prepared by

R> settings <- initialize_settings()

R> data <- prepate_data(

+ settings = settings,

+ tsl = data_ch$tsl,

+ tsl_n = data_ch$tsl_n,

+ ts_start = c(1990, 1),

+ ts_end = c(2023, 2)

+ )
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Variables Description Unit

yt output gross domestic product at 2020 prices in million

at
fte full-time equivalent empoyment in thousand
u ILO unemployment rate in percent

bt fi consumer price inflation year on year in percent

y̌t

vaA value added in sector A: Goods-producing industries at 2020 prices in million
vaB value added in sector B: Service industries at 2020 prices in million
vaC value added in sector C: Government and adjustments at 2020 prices in million

ǎt

fteA full-time equivalent empoyment in sector A: Goods-producing industries in thousand
fteB full-time equivalent empoyment in sector B: Service industries in thousand
fteC full-time equivalent empoyment in government sector in thousand

ˇ̌yt

expi expenditure side sector i: Total consumption at 2020 prices in million
expii expenditure side sector ii: Investment at 2020 prices in million
expiii expenditure side sector iii: Exports at 2020 prices in million
expiv expenditure side sector iv: Imports at 2020 prices in million

Table 2: List of variables used to compute the sector output gap for Switzerland. sectorgap
contains these series for the 2023 Q2 vintage alongside their nominal counterparts, if appli-
cable.

The function prepare_data() performs the specified transformations to the raw data and
uses the nominal and real series to compute weights for the constraints. It returns a list with
four multiple time series objects containing the transformed input data, the untransformed
real, nominal, and price series, and lists with weights for the di�erent (sub-) groups.
It is straightforward to obtain predictions, i.e., by setting ts_end = c(2027, 4) for predic-
tions until the end of 2027.

5.2. Model definition

Bases on the previously defined settings and data, the state space model can be defined by

R> model <- define_ssmodel(

+ settings = settings,

+ data = data

+ )

which returns an object of class ‘ss_model’. An S3 printing method is available returning the
dimensions of the state space model and the set of stationary as well as non-stationary states.

R> model

Call:

define_ssmodel(settings = settings, data = data)

State space model object of class ss_model

--------------- Dimensions:

Time points: 134

Time series: 20
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Innovations: 41

States: 60

--------------- Stationary states:

[1] "const" "cycle_output" "cycle_output_L1"

[4] "cycle_output_L2" "cycle_vaA" "cycle_vaA_L1"

[7] "cycle_vaA_L2" "cycle_vaB" "cycle_vaB_L1"

[10] "cycle_vaB_L2" "cycle_vaC" "cycle_vaC_L1"

[13] "cycle_vaC_L2" "cycle_fteA" "cycle_fteA_L1"

[16] "cycle_fteB" "cycle_fteB_L1" "cycle_fteC"

[19] "cycle_fteC_L1" "cycle_exp1" "cycle_exp1_L1"

[22] "cycle_exp2" "cycle_exp2_L1" "cycle_exp3"

[25] "cycle_exp3_L1" "cycle_exp4" "cycle_exp4_L1"

[28] "cycle_employment" "cycle_employment_L1" "cycle_urate"

[31] "cycle_urate_L1" "cycle_inflation" "cycle_inflation_L1"

--------------- Non-stationary states:

[1] "trend_output" "drift_output" "trend_vaA"

[4] "drift_vaA" "trend_vaB" "drift_vaB"

[7] "trend_vaC" "drift_vaC" "trend_fteA"

[10] "drift_fteA" "trend_fteB" "drift_fteB"

[13] "trend_fteC" "drift_fteC" "trend_exp1"

[16] "drift_exp1" "trend_exp2" "drift_exp2"

[19] "trend_exp3" "drift_exp3" "trend_exp4"

[22] "drift_exp4" "trend_employment" "drift_employment"

[25] "trend_urate" "drift_urate" "trend_inflation"

5.3. Estimation

Priors can be initialized by

R> prior <- initialize_prior(

+ model = model,

+ settings = settings,

+ lambda_t = 100,

+ lambda_d = 100,

+ df = 6

+ )

The returned object of class ‘prior’ is essentially a data frame defining the prior distribution
of each parameter—normal, inverse-gamma, or inverse-wishart—and the intitial value for the
MCMC chain for which the unconditional means are used. S3 printing methods return
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R> head(prior)

Call:

initialize_prior(model = model, settings = settings, lambda_d = 100,

lambda_t = 100, df = 6)

Data frame object of class prior

--------------- Normally distributed parameters:

variable parameter name mean variance initial value

output cycle_output_AR 0 1000 0

output cycle_output_AR_L1 0 1000 0

vaA cycle_load_vaA_output_L0 0 1000 0

--------------- Inverse-gamma/wishart distributed parameters:

variable parameter name scale degrees of freedom initial value

output var_cycle_output 4.00 6 1.00

output var_drift_output 0.04 6 0.01

output var_trend_output 0.04 6 0.01

Finally, the model can be estimated by

R> fit <- estimate_ssmodel(

+ model = model,

+ settings = settings,

+ prior = prior,

+ R = 50000,

+ burnin = 0.5,

+ thin = 10,

+ HPDIprob = 0.68

+ )

which starts s Gibbs sampling procedure and computes a set of summary statistics and highest
posterior density intervals (HPDI) based on the specified value HPDIprob. For the latter,
estimate_ssmodel() calls the function compute_mcmc_results(), which can also be called
post estimation in order to adapt the HPDI. Both functions return an object of class ‘ss_fit’
for which S3 printing methods return information on the Bayesian settings and convergence
of parameters and states based on Geweke’s convergence diagnostic (Geweke 1992).

R> fit

Call:

estimate_ssmodel(model = model, settings = settings, prior = prior,

R = 50000, burnin = 0.5, thin = 10, HPDIprob = 0.68)
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Fitted state space model of class ss_fit

--------------- Bayesian settings:

Repetitions: 50000

Burnin period (%): 0.5

Skipped draws: 9/10

HPDI (%): 68

--------------- Convergence at 10% level:

88/94 parameters have converged

40/41 states have converged for all time points (Bonferroni corrected)

Non-converged parameters:

[1] "cycle_load_fteC_vaC_L0" "cycle_load_inflation_output_L0"

[3] "cycle_load_inflation_output_L1" "cycle_load_urate_output_L1"

[5] "var_drift_exp3" "var_drift_vaC"

Non-converged states:

state time points

drift_vaB 9

In case su�cient convergence has not been achieved, Gibbs sampling can be continued by re-
calling the function estimate_ssmodel() and supplying the fitted object fit and the number
of additional draws R:

R> fit <- estimate_ssmodel(

+ fit = fit,

+ R = 10000

+ )

5.4. Results

sectorgap provides convenient and extensive plotting options for the posterior densities of
parameters and the estimated unobserved states.

R> plot(

+ fit,

+ plot_type = "density",

+ file_path = "doc/fig",

+ n_col = 4

+ )

Figures 1 and 2 exemplify the output for inverse-gamma and normally distributed parameters,
respectively. Prior densities are shown in dashed grey while posterior densities are solid black.
Figure 1 compares the prior and posterior densities for all drift innovation variances. For the
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Figure 1: Posterior densities of drift innovation variances.

majority of variances, the posterior is well peaked and clearly distinguishable from the prior
density, indicating that the data was informative in updating these parameters.
Similarly, Figure 2 shows the results for the normally distributed parameters that load on
the aggregate output gap. The prior distributions were flat while the posterior distributions
are well peaked. As expected, the employment loadings are positive, while the ones for
unemployment are negative and for both indicators, the data suggests labor market frictions
of at least two quarters. The loadings of the production and expenditure side are all positive,
indicating a positive correlation to the business cycle. Goods-producing industries and exports
and imports have a comparably strong connection to the output gap.
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Figure 2: Posterior densities of selected loadings on the aggregate output gap.
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Figure 3: Trace plot for output loadings of the expenditure side.

In order to visually assess the convergence of the Gibbs sampler, trace plots can be obtained
via

plot(

+ fit,

+ plot_type = "trace",

+ file_path = "doc/fig",

+ include_burnin = TRUE,

+ n_col = 4,

+ height = 2

+ )

The resulting plot for the output loading parameters of the expenditure side sectors can be
found in Figure 3. The x-axis represents the number of posterior draws and the vertical
line shows the burnin cut o�. The thick black line is the expanding mean of the posterior
draws. Visual inspection suggests that for the considered parameters, the Gibbs sampler
indeed converged, which has been confirmed by a Geweke test in the previous section.
Complementary to the Swiss data set, sectorgap contains data on recessions in Switzerland
to enhance visualizations. An extensive set of time series plots can be obtained via

data("recessions_ch")

R> plot(

+ fit,

+ plot_type = "timeseries",

+ data = data,

+ highlighted_area = recessions_ch,

+ n_col = 3,

+ file_path = "doc/fig"

+ )

One of the key results of the above analysis are the gap decompositions in Figure 4. Regarding
output, large parts of the negative gap during the Nineties and after the Dotcom bubble can
be attributed to sector B: Service industries. However, the aftermath of the financial crisis of
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Figure 4: Output gap decomposition for the production and expenditure side.

2007–2008 and the scrapping of the floor to the euro by the Swiss National Bank (SNB) in
January 2015 is mainly visible in sector A: Goods-producing industries. On the expenditure
side, export and imports explain comparably large parts of the aggregate gap.
Figure 5 shows the corresponding decompositions of the output drift, revealing that the
share of sector B: Service industries has been declining recently. This development is in
part counteracted by the increasing share of sector A: Goods-producing industries. For the
expenditure side, the contributions by iii–exports and iv–import appear mostly stable, while
those for i–total consumption and ii–investment have been slightly decreasing during recent
years. Note that the residual for the expenditure side is clearly visible since the expenditure
side components are non-exhaustive. At the same time, the residual for the production side is
negligible and is purely a side e�ect of the Bayesian estimation, as constraints were in place.
The individual series that load on the output gap can also be decomposed into idiosyncratic
and shared contributions, the latter of which is attributed to the business cycle. Figure 6
exemplifies those decompositions. Dark shaded regions signal shared contributions and light
shaded regions idiosyncratic ones. The impact of the business cycle on the employment and
unemployment gaps is clearly visible. Similar results can be observed for the value added
subsectors A: goods-producing industries and B: service industries and for the expenditure
side components iii–exports and iv–imports.
The latest call to the function plot() with plot_type = "timeseries" also produces sep-
arate plots for each estimated state, i.e., cycles, trends, and drifts, alongside their HPDI.
Figure 7 shows these plots for the production side. The resulting trends and drifts are fairly
smooth, allowing for an economically meaningful interpretation.
Finally, sectorgap provides a function to summarize the resulting time series in long format,
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Figure 5: Drift decompositions for the production and expenditure side.

including mean and median estimates, HPDI bounds, group labels, variable labels:

data("recessions_ch")

R> df <- transform_results(

+ fit = fit,

+ data = data,

+ estimate = "median"

+ )

R> head(df)

date series value type obs_name obs lb

1 1990 trend_output 1.073830e+05 trend output NA 1.057008e+05

2 1990 drift_output 3.614392e-01 drift output NA 2.765256e-01

3 1990 trend_vaA 2.971960e+04 trend vaA 31169.46 2.880804e+04

4 1990 drift_vaA 4.585089e-01 drift vaA NA 2.659045e-01

5 1990 trend_vaB 6.246305e+04 trend vaB 65628.77 6.129841e+04

6 1990 drift_vaB 3.778030e-01 drift vaB NA 2.562194e-01

ub contr group group_label series_label

1 1.092838e+05 NA agg Aggregate output GDP

2 4.778077e-01 NA agg Aggregate output GDP

3 3.051303e+04 NA group1 Production Prod. A: Goods-producing industries

4 6.390992e-01 NA group1 Production Prod. A: Goods-producing industries

5 6.371592e+04 NA group1 Production Prod. B: Service industries

6 5.075749e-01 NA group1 Production Prod. B: Service industries
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Figure 6: Sector gap decompositions for all groups that load on the output gap.
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Figure 7: Production side gaps, trends, and drifts. The shaded area represents 68% HPDI.
All estimated series are solid while the data is dashed.
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6. Other software

There are no other software solutions for the estimation of a consistent bottom-up output
gap as defined in Section 5.2. However, given the unobservability of the true business cycle,
numerous other modeling frameworks exist. One such framework, for which a package is
available, is the Cobb-Douglas production function methodology proposed by the European
Commission (EC) (Havik et al. 2014; Blondeau, Planas, and Rossi 2021). The R package
RGAP available on CRAN provides tools to estimate the output gap according to the EC
approach (Streicher 2022).9 In addition, RGAP enables the estimation of the output gap
according to Kuttner (1994), which is essentially a version of our model without subsectors.
When it comes to models free from economic theory such as univariate and multivariate time
series filters (Hodrick and Prescott 1997; Baxter and King 1999), there are a multitude of
package options. An example is mFilter, which o�ers time series filters for trend and cycle
extraction (Balcilar 2019).

7. Concluding remarks

In this paper, we introduce the R package sectorgap which enables the estimation of economic
trends and cycles. By including subsectors of economic output, the proposed multivariate
state space model allows for a comprehensive decomposition of the business cycle and potential
output growth into its sectoral contributions. The resulting estimates are extremely useful
for fiscal and monetary policy makers. They help to identify the specific causes of economic
fluctuations and facilitate targeted political measures to stabilize the economic cycle.
sectorgap provides a transparent, reliable, and easy to use modeling and estimation framework
and is suitable both for beginners and advanced R users. The model definition is kept as
general as possible to allow for a wide range of possible applications. Bayesian estimation is
performed using a simple Gibbs sampling procedure incorporating the simulation smoother
implemented in KFAS. Finally, sectorgap provides tools to assess posterior densities and
the convergence of the Gibbs sampler and o�ers an extensive set of time series plots of the
resulting trends, cycles, and decompositions thereof. After individual data preparation, the
output gap can be estimated with just a few lines of code.
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A. Estimation algorithm

The algorithm is structured in multiple Gibbs sampling blocks: The first three blocks sample
parts of the parameter set �(ÿ) conditional on the states –(ÿ≠1). The final block applies
simulation smoothing to sample –(ÿ) conditional on the previously drawn parameters �(ÿ)

(Durbin and Koopman 2002, 2012).
Initialization: We use the prior means to initialize all parameters �(0) and apply the simu-
lation smoother based on those parameters to initialize the states –(0).
Recursion: For ÿ = 1, . . . , I:

1. Trends and drifts: Draw all trend and drift variances

�·
(ÿ) -- · (ÿ≠1), µ(ÿ≠1)

�µ
(ÿ) -- µ(ÿ≠1)

For each AR(1) drift equation, additionally draw

(“, „µ)(ÿ) -- µ(ÿ≠1), ‡2(ÿ)

2. Output gap equation: Draw autoregressive coe�cients and cycle variance, i.e.,

„(ÿ) -- · (ÿ≠1), ‡2(ÿ≠1)

‡2(ÿ) -- · (ÿ≠1), „(ÿ)

sequentially in this order as detailed in Section 3.2.2. If the characteristic polynomial
�(ÿ) (x) has roots inside the unit circle, redraw „(ÿ).

3. Observation equations including cycles, excluding trends: For each equation, draw au-
toregressive coe�cients, loading coe�cients, and cycle variances, i.e.,

„(ÿ) -- · (ÿ≠1), c(ÿ≠1), ‡2(ÿ≠1)

Â(ÿ) -- · (ÿ≠1), c(ÿ≠1), ‡2(ÿ≠1)
, „(ÿ)

‡2(ÿ) -- · (ÿ≠1), c(ÿ≠1), „(ÿ), Â(ÿ)

sequentially in this order as detailed in Section 3.2.2. If the characteristic polynomial
�(ÿ) (x) has roots inside the unit circle, redraw „(ÿ).

4. States: Apply the simulation smoothing recursion (Durbin and Koopman 2002) to sam-
ple the unobserved states conditional on the previously drawn parameters

–(ÿ) -- �(ÿ).

Discard a specified burnin phase and finally, apply thinning, i.e., for the posterior distribution,
select only the draws �(ÿ) and –(ÿ) with ÿ = Ĩ , Ĩ + ›, . . . , I ≠ ›, I, where › œ N.
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B. Decompositions

The decompositions of output trend growth �·yt, the output drift µyt and trend growth and
drift of the aggregate indicator �·at, µat into its sector contributions directly follows by the
aggregation constraints in Equations (8) – (11) detailed in Section 2.1.10

Similarly, we can deduce a decomposition of the output gap gyt into a weighted average of
subsector output gaps gy̌t = (gy̌1t, . . . , gy̌nt)Õ. We again assume that relative previous period
prices wP

t for real potential output TY t = exp ·yt are the same as for real output Yt, i.e.,

TY t = wP
t

Õ
TY̌ t, (19)

where TY̌ t =
1
TY̌1t, . . . , TY̌nt

2Õ
with TY̌it

= exp ·y̌it. Then,

gyt = Yt

TY t
≠ 1

= wP
t

Õ

TY t
diag

!
TY̌ t

"
diag

!
TY̌ t

"≠1 Y̌t ≠ 1

= wP T
t

Õ diag
!
TY̌ t

"≠1 Y̌t ≠ 1

= wP T
t

Õ
ǧt

where wP T
t =

1
wP T

1t , . . . , wP T
nt

2
and wP T

it = P̌it≠1TY̌it/Pt≠1TY t with 1Õ
nwP T

t = 1 for all t by
Equation (19). The decomposition of the employment gap gat follows analogously by replacing
wP

t with 1m.

10Without loss of generality, at with k = 1 denotes the aggregate indicator corresponding to the subindicators
in ǎt.
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