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Abstract

A typical empirical study involves choosing a sample, a research design, and an analysis
path. Variation in such choices across studies leads to heterogeneity in results that
introduce an additional layer of uncertainty not accounted for in reported standard
errors and confidence intervals. We provide a framework for studying heterogeneity in
the social sciences and divide heterogeneity into population heterogeneity, design
heterogeneity, and analytical heterogeneity. We estimate each type's heterogeneity from
multi-lab replication studies, prospective meta-analyses of studies varying
experimental designs, and multi-analyst studies. Our results suggest that population
heterogeneity tends to be relatively small, whereas design and analytical heterogeneity
are large. A conservative interpretation of the estimates suggests that incorporating the
uncertainty due to heterogeneity would approximately double sample standard errors
and confidence intervals. We illustrate that heterogeneity of this magnitude—unless
properly accounted for—has severe implications for statistical inference with strongly

increased rates of false scientific claims.



Introduction

Designing an empirical study, collecting or sourcing data, and analyzing data calls for
making decisions in heaps, many of which are up to the researcher’s discretion’. This
flexibility, dubbed researcher degrees of freedom, opens the door to a “garden of forking
paths” involving many branches (choices) and countless designations (empirical
results). Yet, empirical research methods in the social sciences typically involve relying
on one particular sample, choosing one out of many possible study designs, and
reporting the results for one of many possible analysis pipelines. In light of a “publish or
perish” culture in academia®™, scholars have a strong incentive to exploit researcher
degrees of freedom to obtain statistically significant results and selectively report
empirical estimates that maximize the publication potential®™®. It is now acknowledged
that the opportunistic misuse of researcher degrees of freedom—commonly referred to
as selective reporting and p-hacking—implicates increased false-positive rates** and
inflated effect sizes®*. Alongside publication bias'®*¥, low statistical power* 2, and
HARKing®?*, p-hacking has been argued to be one of the “four horsemen of the
reproducibility apocalypse”®. The overall impact of questionable research practices has
been empirically demonstrated in several large-scale direct replication projects?®2,
which suggest that, on average, replication effect sizes are only about 50% of the
published effect sizes in empirical social science research. Scientific reforms such as
open, transparent, and confirmatory research practices have been advocated—and
implemented to a greater or lesser extent—to reduce systematic bias in the published

literature and “rein in the four horsemen”°-3,

Even if researchers and journals adopt a culture of confirmatory research practices*** to
remedy systematic bias in the scientific knowledge accumulation, the scientific
community faces another major obstacle on its way toward reliable empirical evidence:
the doubt about the generalizability and robustness of the reported results to alternative
populations, research designs, and analytical decisions®**. Typically, empirical studies
only capture tiny snapshots of the range of possible results, and common estimates of
the uncertainty about these snapshots do not account for the uncertainty due to the
flexibility in choosing a sample, a research design, and an analysis path during a
research project. The magnitude of this unaccounted-for uncertainty—commonly
referred to as heterogeneity—depends on how much results vary across populations,
alternative research designs, and alternative analysis paths. Failing to account for
heterogeneity undermines the generalizability of empirical findings and can result in

unwarranted claims.



In this paper, we delve into the various sources of heterogeneity in the empirical social
sciences, categorizing heterogeneity into three distinct types: population heterogeneity,
design heterogeneity, and analytical heterogeneity. We review the evidence on different
types of heterogeneity in the social sciences based on research settings where each type
is isolated and systematic bias in effect sizes (due to p-hacking and publication bias) has
been ruled out by design. We illustrate the implications of the observed levels of
heterogeneity for statistical inference and show that it can drastically increase the
fraction of false scientific claims and severely limit the informativeness and
generalizability of individual scientific studies. We discuss the implications of our
findings for scientific practice and shed light on potential pathways to improve the
knowledge generation process of empirical studies in the social sciences to avoid
getting stuck in a generalizability crisis®**. We argue for moving away from the
common “one population-one design-one analysis” approach toward large-scale
preregistered prospective meta-analyses systematically varying populations, designs,

and analyses.

Framework

While the term heterogeneity may be used with slightly different meanings across
various contexts, we adhere to the definition that is specific to random-effects
meta-analyses, where a distinction is made between the within-study variance (¢?; i.e.,
the sampling error) and the between-study variance (z%; heterogeneity)*. In this realm,
heterogeneity is uniformly defined as the variation in effect size estimates over and
above sampling variation, i.e., observing study outcomes being more different from one
another than would be expected due to chance alone. The square root of the
between-study variance (r) has the intuitive interpretation of the standard deviation of
the distribution of true effect sizes across the studies included in the meta-analysis.

Heterogeneity can be quantified in terms of r and can be expressed in both absolute and
relative terms. While the absolute magnitude of heterogeneity is important, it is difficult
to compare estimates across studies utilizing different effect size measures. Estimates of
T can only be reasonably compared across meta-analyses if they utilize the same
standardized effect size measure. As the effect size measurement varies across the
empirical studies reviewed below, we focus on quantifying heterogeneity in relative
terms to facilitate comparability but also report the heterogeneity estimates in absolute
terms. A common way to quantify heterogeneity in relative terms is to express the
overall variability in effect sizes, i.e., t® + ¢2, in within-study variance (¢?) units. This
ratio is commonly denoted as H? and can be thought of as a variance inflation factor due

to heterogeneity. In what follows, we favor the square root-transformed version of H? to



facilitate interpretability (i.e., to characterize heterogeneity in standard deviation units
rather than in variance units), and refer to it as the heterogeneity factor (H), which is
defined as

o2 4 72
2

H =

g

This expression has previously been proposed as a heterogeneity measure in the context
of random-effects meta-analyses***, and is related to the commonly reported
heterogeneity measure I?, defined as the percentage of the total variability in effect size

estimates attributable to heterogeneity, i.e.,

T2 1
2=y H=/—
o2 + 72 V1—12.

The commonly referenced cut-off values of 25%, 50%, and 75% for I? are used to indicate
small, medium, and large heterogeneity*+* and translate into cutoff values for H of 1.15,
1.41, and 2.00, respectively. H is the factor that the sampling standard error needs to be
multiplied by to account for heterogeneity; H = 1 implies homogeneity, and H = 2 implies
that incorporating uncertainty due to between-study variation will double the sample
standard error of an individual study.

Heterogeneity in effect sizes may stem from various sources: study outcomes might be
heterogeneous across samples drawn from different populations (population
heterogeneity), estimates can vary depending on the study design used to address a
particular hypothesis (design heterogeneity), and effect sizes may differ depending on
the analysis path implemented (analytical heterogeneity). For studies that rely on
prospective data collections, such as experiments, the three types of heterogeneity
relate to degrees of freedom in different layers of the research process. These include
deciding (1) which population(s) to use to draw a sample from, (ii) which research design
to implement, and (iii)) how to analyze the sampled data. For empirical studies that rely
on observational data, it may not be clear where to draw the line between design and
analytic decisions. For ease of exposition, we consider all researcher decisions made
after choosing which raw data to use as part of the analytical domain in empirical
studies.

Each type of heterogeneity can be isolated and quantified by implementing proper
research designs. By allowing for variation in only one dimension (e.g., the study
designs) while holding the other dimensions (e.g., the population and the analysis)
constant, the magnitude of heterogeneity due to the different sources of variation can
be examined systematically. In our empirical review, we report estimates of

heterogeneity expressed in terms of the heterogeneity factor (H) separately for
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population, design, and analytical heterogeneity (based on meta-analyses isolating
either of the three sources by design). Note that heterogeneity estimates due to different
sources of variability are linearly additive in variances, such that the overall
heterogeneity (in absolute terms) is given by 2 =1,* + 752 + 7,2, where 7, denotes the
between-study variance due to variability across populations (s = P), designs (s = D), or
analysis paths (s = A), respectively. The total variance in the effect size estimate of study
J» v{%, is thus given by v{* = 0/ + 1, + 1p* + 7,%, and its square root, v;, can be thought of as
study j’s total standard error. Importantly, the way H is constructed remains unchanged
irrespective of the source of variability, i.e., whether H pertains to one of the three
sources of heterogeneity or any combination thereof is solely governed by the research
design. In all empirical analyses reported below, the heterogeneity factor H is
determined based on the within-study variance (¢2) estimated as part of the
meta-analytic random-effects model. If the sample variance of some study j differs from
the average within-study variance (¢2) due to, for instance, using a larger sample size or
due to more precise measurement, the heterogeneity factor H for study j can be derived
by replacing ¢ by ¢/

Empirical estimates of population, design, and analytical heterogeneity

To gauge the extent of heterogeneity in empirical social science research, we review
heterogeneity estimates re-estimated using random-effects meta-analysis based on
published crowd science projects. We outline the inclusion criteria and the estimation
procedures in the Methods section; details about the individual studies are provided in
sections 1-3 in the Supplementary Methods. The results are illustrated in Figure 1,
which also indicates benchmarks for low, medium, and high heterogeneity based on an
I? of 25% (H =1.15), 50% (H = 1.41), and 75% (H = 2.00); these benchmarks are commonly
used in meta-analysis to classify the magnitude of heterogeneity**. Estimates of the
heterogeneity measures 7, I?, and H (together with their corresponding 95% CIs) and the
results of Cochran’s Q-test for each meta-analysis reviewed in our empirical analysis are

tabulated in Supplementary Table 1.

Population heterogeneity. Population heterogeneity can be measured by
implementing the same research design and analysis in separate samples from different
populations and estimating the standard deviation in true effect sizes across samples (7)
in a random-effects meta-analysis. This is what has been pioneered in the ManyLabs
(ML) replication studies and various Registered Replication Reports (RRRs) in
psychology, which are ideal for measuring population heterogeneity. Our analysis

involves four ML studies*** and nine RRRs**%, As some of the included studies report



results for multiple effects, our sample of studies isolating population heterogeneity

comprises 70 meta-analyses.

The estimated population heterogeneity varies substantially across the meta-analyses
in our sample, with a large number of estimates (19/70 = 27.1%) indicating homogeneity
(H = 1.00), but also some estimates unveiling substantial heterogeneity of up to H =3.91
(with 4/70 estimates exceeding the threshold value of H =2.00, indicative of large
heterogeneity). The median H across the 70 meta-analyses is 1.08, and a large fraction of
the estimates are in the small to moderate heterogeneity range. Cochran’s Q-test rejects
the null hypothesis of homogeneity at the 5% level for 21 (30%) of the sampled
meta-analyses and at the 0.5% level for 14 (20%) of the sampled meta-analyses. Some
meta-analyses (46/70 in 4/13 papers) are based on effect sizes measured in terms of
Cohen’s d; heterogeneity can be reasonably compared across studies in absolute terms
(t) for this subsample. The estimated 7 varies between 0.00 and 0.69 for these estimates,
with a median of 0.06. Note that the distributions of H and t estimates of population
heterogeneity are subject to some upward bias as a consequence of following the
convention to truncate 72 estimates at zero (i.e., to prevent the identification of excess
homogeneity)**. For genuinely homogeneous effect sizes, randomness would lead to
both negative and positive estimates of 72 Whenever the fraction of meta-analyses with
zero estimated heterogeneity is large—as is the case for our sample of studies isolating

population heterogeneity—, this upward bias can be substantial.

Design heterogeneity. Design heterogeneity can be measured by randomly allocating
experimental participants sampled from the same population to different research
designs while holding the analysis constant, and estimating the standard deviation in
true effect sizes across research designs (r) in a random-effects meta-analysis. We
identified two studies that implemented such a research design, reporting the results of
11 meta-analytic estimates for six empirical claims: Landy et al.* tested five hypotheses
on moral judgments, negotiations, and implicit cognition in 12 to 13 experimental
designs each (once in a “main study” and once in a replication). Huber et al.®® examined
the effect of competition on moral behavior across 45 crowd-sourced experimental
protocols. The estimates of H for the 11 meta-analyses reported in the sampled studies
(see Figure 1) suggest that the extent of design heterogeneity is substantial. The
estimates of H vary between 1.92 and 10.44, with a median of 3.36, and Cochran’s Q-test
rejects the null hypothesis of homogeneity (p < 0.005) for each of the 11 meta-analyses.
These results suggest that design heterogeneity is substantially larger than population
heterogeneity and adds substantial uncertainty to studies based on individual designs.
All estimates of design heterogeneity are in Cohen’s d units, and the estimated t varies

between 0.14 and 0.78, with a median of 0.23.



Analytical heterogeneity. An effective means to estimate analytical heterogeneity
involves randomly allocating independent analysts to test the same hypothesis on
mutually exclusive random sub-samples of a dataset and estimate the standard
deviation in true effect sizes across analysts () in a random-effects meta-analysis. To
the best of our knowledge, no studies have employed this method yet. The most similar
approach to this ideal comprises studies that rely on the multi-analyst approach, where
different analysts independently test the same hypothesis on the same data. Our review
involves three papers that fulfill our inclusion criteria (see Methods for details),
examining the variability in effect sizes due to analytical flexibility for five
hypotheses®'-3,

As the analysts in multi-analyst studies are required to estimate the effect in question
using the same data, the individual estimates generated by analysts are not
independent. Despite the violation of the model assumptions, we use random-effects
meta-analyses to estimate t and H as an approximation of the analytical heterogeneity
for the sampled multi-analyst studies. This method was also recently used by a
multi-analyst study in biology® to estimate the heterogeneity of results across analysts.
The estimates reported in Figure 1 should be interpreted cautiously since relying on the
random-effects meta-analytic model will underestimate heterogeneity for correlated
observations (as the within-study variation will be lower in the case of dependent
observations). The estimated analytical heterogeneity is large, with H estimates ranging
from 1.72 to 12.69, with a median of 4.08. Cochran’s Q-test is statistically significant
(p <0.005) for each of the five meta-analyses. In the Methods section we provide a
robustness test on the estimates of analytical heterogeneity, showing that the high
estimate of 12.69 for Silberzahn et al.®* is driven by two outliers in terms of sampling
variance; removing these outliers reduced the estimated heterogeneity factor H (and the
median estimate for the multi-analyst studies in our sample) to 2.72. Our results suggest
that analytical heterogeneity is substantial, in the same ballpark as the estimates for
design heterogeneity, and substantially larger than population heterogeneity. None of
the estimates of analytical heterogeneity are in standardized effect size units, and the
analytical heterogeneity estimates cannot be reasonably compared in absolute terms

across the studies.

Limitations. It is worth emphasizing that the estimated heterogeneity factor for all
three types of heterogeneity carries a significant amount of uncertainty: Heterogeneity
estimates can be highly sensitive to outliers in effect sizes and sample variances of the
individual studies included in the meta-analyses. The individual estimates of H in
Figure 1 should therefore be interpreted with great caution. Multi-analyst studies have
also been criticized for overestimating the analytical variation, e.g., due to ambiguity

about the studied research question®®. Notwithstanding, it is important to note that



even the smallest estimates obtained from our review of the literature point toward
considerable heterogeneity due to the variability in designs (H =1.92) and analyses
(H=1.72). It is also worth emphasizing that a typical empirical study in the social
sciences will involve heterogeneity due to all three sources investigated above, which
implies that the overall level of heterogeneity is likely to be even higher than the

estimates reported in Figure 1.

Illustrating the Impact of Heterogeneity on Statistical Inference

The above results illustrate that the variation in results across studies testing the same
hypothesis can be large, especially due to the variation in research designs and
analytical decisions. In this section, we illustrate the implications of unaccounted-for
heterogeneity for statistical inference (see the Methods section for more details). We use
the following scenario as a starting point: A researcher sources data to test a hypothesis
with 90% statistical power to detect the hypothesized effect size at the 5% significance
threshold (in a two-sided z-test) only taking into consideration sampling uncertainty
but not heterogeneity (i.e., the standard way to test hypotheses and to do power
calculations). What are the consequences of ignoring heterogeneity if the true effect size

is genuinely heterogeneous?

We distinguish between the nominal and effective error rates below, where the effective
error rates are the observed error rates after accounting for heterogeneity. Fig. 2
demonstrates the effective type-I and type-II error rates for this scenario, assuming that
the true effect size is heterogeneous with H = 2, which is close to the smallest estimates
of design heterogeneity and analytical heterogeneity reported in Fig. 1. As illustrated in
Fig. 2, heterogeneity increases the dispersion of an effect’s probability density under
both the null and the alternative hypothesis as the sample standard error will double
when heterogeneity is incorporated. Since the researcher in our scenario ignores
heterogeneity, she will not adapt the test’s critical value but will decide on whether or
not to reject the hypothesis based on the critical value based on the nominal
significance threshold. As a consequence, both the effective false positive rate and the
effective false negative rate are inflated (or, put differently, both the specificity and the
sensitivity of the test are depleted). As exemplified in Fig. 2, the implications of
heterogeneity can be severe: a study that is supposed to involve a type-I error rate of 5%
and a type-II error rate of 10% actually entails a 33% risk of a false positive and a 26% risk
of a false negative result under the assumption of H = 2.

Fig. 3a plots the relationship between the nominal and effective type-I error rates for
various levels of heterogeneity. The effective type-I error rate increases strongly with

heterogeneity, implying that unaccounted-for heterogeneity has considerable adverse



effects even for comparably low levels of between-study variance. The corresponding
relationship between nominal and effective statistical power is illustrated in Fig 3b. As
we already saw in Fig. 2, large heterogeneity substantially decreases effective power
when the nominal power is high, but the effect of heterogeneity goes in the opposite
direction for low nominal power. This may at first seem counterintuitive, but the
effective power will go toward 50% when heterogeneity increases, irrespective of the
nominal power, as high levels of heterogeneity decrease the chance of detecting a
statistically significant effect when nominal power is high (>50%) but increase the

chance of observing a statistically significant effect when nominal power is low (<50%).

By taking into account the prior likelihood of a tested hypothesis being true (¢), the
effective false discovery rate can be estimated. Fig. 4a shows how the false discovery
rate—i.e., the fraction of statistically significant findings that are false—varies with
heterogeneity for different priors ¢ (assuming 90% nominal statistical power and a 5%
nominal significance threshold as in Fig. 2). The effective false discovery rate (FDR’)
increases strongly with the H unless heterogeneity is incorporated into statistical
testing; e.g., for a prior of ¢ = 30%, FDR’ goes from 11.5% for H = 1 to 50.8% for H = 2. For
lower priors, the impact of heterogeneity on the false discovery rate is even more severe.

Instead of directly incorporating heterogeneity into the standard errors of reported
effect sizes (by multiplying sampling errors with an appropriate heterogeneity factor H),
the adverse effects of heterogeneity could be tamed by applying a stricter nominal
significance threshold in statistical testing. Benjamin et al.®’ recently suggested lowering
the p-value threshold from 5% to 0.5%. In Fig. 4b, we show the false discovery rate for
nominal p-value thresholds of 5%, 0.5%, and 0.05% for different priors as a function of
the heterogeneity factor H (based on our example with a nominal statistical power of
90%). For H = 2, lowering the p-value threshold from 5% to 0.5% (0.05%) reduces FDR’ from
50.8% to 33.6% (20.5%) for a prior of 30%. While adopting lower p-value thresholds curbs
the detrimental impact of heterogeneity on false discoveries, the nominal significance
level needs to be lowered more drastically than proposed by Benjamin et al.®” to cope
with the magnitude of design and analytical heterogeneity identified in our empirical
exercise summarized in Fig. 2. To counteract the impact of heterogeneity of H = 2 given a
prior of 30%, the (nominal) a-threshold needs to be reduced to 0.005% (to uphold the
FDR’ for H=1 and a=0.05) ). For settings with lower statistical power, the patterns
highlighted in Fig. 4a and 4b are similar, but the FDR’ will converge even faster toward

its limit of 1 - ¢/2 for increasing magnitudes of H.

The considerations sketched above draw an unmistakable picture of why the scientific
enterprise ought to start taking action to parse and cope with heterogeneity®* . As
illustrated, disregarding heterogeneity can have a substantial impact on statistical

inference, which in turn implies that a priori power analyses can be misleading and the



planning of original and replication studies might be misguided®. Ignoring the
implications of heterogeneity will leave us with substantially inflated numbers of false
scientific claims, and compromises the informativeness and conclusiveness of
individual scientific contributions. Consequently, unaccounted-for heterogeneity bears
the risk of generating research waste, potentially slowing down the process of scientific

discovery, and generating a poor return on the invested funding® .

Discussion

Aside from the literature reviewed above, there is a wealth of meta-analytic studies in
the social sciences reporting heterogeneity estimates as part of random-effects
meta-analyses. For the sake of comparison, the results of two studies are worthwhile to
mention: van Erp et al.” sourced more than 700 meta-analyses published in the
Psychological Bulletin and reported a median I? estimate of 71%; Stanley et al.” reviewed
a convenience sample of 200 meta-analyses published in the same journal and reported
a median I* of 74%. These I? estimates—pooling all potential sources of heterogeneity—
translate into heterogeneity factors (H) of 1.86 and 1.96, respectively. However, these
estimates are difficult to draw on for our purpose, and the comparability with our
estimates is limited since heterogeneity estimates in meta-analyses based on the
published literature will be impacted by publication bias and p-hacking>*®7, In our
review of results, we only draw on studies that are, by design, free from publication bias
and obvious incentives for p-hacking. This literature is still at an early stage, and our
results should be interpreted with care; yet, drawing some preliminary conclusions
appears tenable. Our results suggest that population heterogeneity is typically small,
which is consistent with two other recent studies estimating population heterogeneity
based on multi-lab replication studies™™. Our results furthermore suggest that both
design heterogeneity and analytical heterogeneity are large: even the lowest estimates
in the reviewed literature imply that design and analytical heterogeneity almost double

standard errors and confidence intervals if accounted for in statistical testing.

A typical empirical study will be associated with all three sources of heterogeneity,
implying even higher levels of uncertainty not captured by standard errors. However,
we would be reluctant to simply add up our three estimates for different sources of
heterogeneity as they are based on different types of studies. The estimates of
population and design heterogeneity are based on experimental studies, whereas the
estimates of analytical heterogeneity are based on observational data research. We
would expect less analytical heterogeneity for the typical experiment than for the
typical observational study due to fewer analytical choice points encountered on

average™. Conversely, for observational data studies, it is more difficult to cleanly



separate the research design from analytical decisions; analytical heterogeneity may
incorporate (part of) the variability of “design elements,” whereas the remaining design
heterogeneity may be lower than for experiments. More research is needed to gauge the
relative importance of various types of heterogeneity. The tentative insights gained
from our review suggest that total heterogeneity in social science research can be

expected to be substantial, with substantial implications for statistical inference.

The sizeable analytical heterogeneity identified in our review also implies that the scope
to selectively report favorable results is wide. While p-hacking is often thought of as
marginally affecting results around the significance thresholds, the extent of observed
analytical heterogeneity suggests that there is potential for much larger systematic bias
in published effect sizes. Similarly, design heterogeneity implies that researchers may
be able to selectively report results for research designs that deliver the desired results.
“Design hacking” could manifest itself in opportunistically choosing the experimental
design that is expected to maximize the chances of finding statistically significant
results based on, e.g., piloting different protocols and parameterizations. In reported
research, all pilot studies and related tests that have been used to inform the eventual
research design should be explicitly reported; ideally, studies should be preregistered
before conducting any pilot tests such that the piloting choices are explicitly

incorporated into the overall research design.

For our estimates of population heterogeneity, an important caveat is that the reviewed
multi-lab replication studies are typically based on university student samples from
different western countries, which may involve lower population heterogeneity than in
other settings™ ™. Moreover, the multi-lab replication studies included in our review
feature a relatively high share of null results, which may artificially limit the scope of
heterogeneity further. Put differently, our comparatively low estimates of population
heterogeneity might be subject to population heterogeneity itself. To what extent one
should incorporate population heterogeneity into the reported uncertainty of individual
studies also depends on which population the researcher wants to generalize the results
to®®#, When conducting an experiment on university students, it seems fair to expect
that results are generalizable to similar student populations. However, it may not be
justifiable to generalize the findings to other populations, such as students in different
countries, or the general population. To avoid overgeneralization, empirical
investigations should start with representative samples of the population for which the
results ought to be informative, in which case the population heterogeneity will be
“absorbed” by the sampling standard error of the study. For population heterogeneity, it
may also be important to study whether and to what extent effect sizes systematically
vary across populations rather than generalizing results beyond the population studied

10



in a specific study. Gauging the variability in effect sizes across populations is of direct

interest, can inform future research agendas, and may be policy-relevant.

For analytical heterogeneity, there is a strong case for adding the analytical uncertainty
to the sampling variance uncertainty of individual studies per se. The same applies to
design heterogeneity, except for normative studies that aim to identify the most
effective design to achieve some specific goal. An example would be randomized control
trials testing various nudging interventions, where different experimental designs
compete in a horserace to achieve a particular goal most efficiently®*-®*. In such a setting,
we are not interested in generalizing the results of a specific design to all the feasible
designs, and the heterogeneity in effect sizes across all feasible research designs is not
part of the uncertainty of the effect of the most efficient design.

Incorporating the additional uncertainty due to heterogeneity into statistical testing is
difficult due to the uncertainty about the magnitude of heterogeneity that should be
expected for different settings. An alternative could be to report the level of
heterogeneity an individual study would be robust to in generalizing findings to other
populations, designs, and analysis paths. The heterogeneity factor H, at which an
individual result would turn insignificant, could be reported alongside the p-value for
studies reporting statistically significant findings. For z- and t-tests, this “heterogeneity
buffer” can be straightforwardly determined as the ratio of the test statistic and the
critical value. The buffer can be interpreted as an indicator of the generalizability of an
individual study’s result, and the cutoff values for small (H = 1.15), medium (H = 1.41),
and large (H = 2.00) heterogeneity could be used as a pointer as to whether an empirical

claim is robust to low, medium, or large heterogeneity.

The estimated levels of design and analytical heterogeneity imply that the
informativeness and generalizability of individual studies are typically low, and we
believe that the common “one population - one design - one analysis” approach is
outdated. Besides the low generalizability of such studies, another major issue is that
the sequential production of studies implies that the scientific knowledge-generation
process is delayed.** The publication of one random study might inspire follow-up
studies, which in turn trigger follow-up studies, etc. With scientific evidence pertaining
to a narrowly defined set of hypotheses being published sequentially, it could take years
to reach a broader perspective on heterogeneity and generalizability. The process of
sequential publication further involves the threat that flawed initial results could steer
an entire sub-discipline in the wrong direction, which, in turn, could lead to loads of

research waste and impede efficient knowledge accumulation.

We thus argue that it is time to initiate a paradigm shift, both in how to conduct

(empirical) scientific research and in how to communicate the evidential value of
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scientific contributions to various stakeholders. We advocate moving towards fewer and
much larger empirical studies in which conclusive research designs, justifiable analysis
paths, and relevant populations are systematically varied as part of an encompassing
research design. When analyzing such studies using a random-effects meta-analytic
model, heterogeneity is incorporated into the standard errors of the meta-analytic effect
size, and heterogeneity can be leveraged to build more complete and more nuanced
theories®. Importantly, such studies should be preregistered and can involve elements
of crowd science to reach the necessary scale™®. We think of such studies as
preregistered prospective meta-analyses to distinguish them from classical
meta-analyses based on the published literature that are hampered by publication bias
and p-hacking (not only in primary studies but also in meta-analyses, which involve
many degrees of freedom such as, e.g., defining inclusion criteria)™. The ManyLabs
studies** in psychology can be thought of as examples of pioneering work in this

direction, although primarily concerned with studying population heterogeneity.

There is also a case for using more multi-analyst studies and multiverse analysis® .
These approaches can be used to unveil the scope of analytical variation and
incorporate the implied uncertainty into eventual conclusions as to the hypothesis in
question. While a wider adoption of these methodologies is desirable per se, integrating
these approaches into pre-registered prospective meta-analyses will unleash their full
potential. Furthermore, sharper theoretical  predictions, methodological
standardization, and clearer alignment of theoretical conceptualizations and empirical
instrumentalizations facilitate narrowing down the set of plausible research designs and
analytical choices, ultimately reducing heterogeneity®¢-2,

Methods

Included studies

Population heterogeneity. We reviewed the literature for ManyLabs (ML) replication
studies and Registered Replication Reports (RRRs) in psychology, which are ideal for
measuring population heterogeneity, and included all ML and RRRs using
random-effects meta-analysis and with available data on effect sizes and standard
errors for each included lab. We included ML1-4** and nine RRRs published in
Perspectives on Psychological Science and Advances in Methods and Practices in
Psychological Science® 8. We did not include ML5° due to a lack of data availability. As
ML1-3 and several RRRs report results for multiple effects, our sample comprises 70
separate meta-analyses for which we estimated population heterogeneity. See
Supplementary Methods, Section 1, for details of the included studies.
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Design heterogeneity. To the best of our knowledge, there are only two studies®*®® that
vary the experimental design to test the same hypothesis in random subsamples to
isolate design heterogeneity in a random-effects meta-analysis. Both studies, reporting
results on six different hypotheses, are included in our analysis of design heterogeneity.
The five hypotheses examined in the study by Landy et al.*® were tested in a main study
and an independent replication study each, implying that the number of estimates on
design heterogeneity from that study is 10, and the total number of estimates is 11). See

Supplementary Methods, Section 2, for more details of the included studies.

Analytical heterogeneity. We reviewed all multi-analyst studies in the social sciences
for which data on effect sizes and standard errors are available for each analyst, and
effect sizes are measured in the same units across analysts. We found three papers that
meet our criteria: Silberzahn et al.®', Huntington-Klein et al.®?, and Hoogeveen et al.®. In
total, these papers examine analytical variability for five different hypotheses. We
identified five more published multi-analyst studies in the social sciences, but these did
not meet our inclusion criteria: Bastiaansen et al.®? detail the variation in analytic
decisions across analysis teams but do not report estimates pertaining to each of the
proposed analysis pipelines; Botvinik-Nezer et al.®® was excluded as the primary
outcome reported by analysis teams is a binary classification of whether the hypotheses
are supported by the data, but no effect size measure is reported; Schweinsberg et al.*
was excluded since the individual results by analysts are not available in standardized
effect-size units but only in terms of z-scores; Menkveld et al.*® was excluded as the data
is yet embargoed; Breznau et al.*® was excluded as the research teams reported various
results for the same hypothesis and it is not clear which effect size estimate to include
for each team. Note that the reported variation in results is very large across analysts
also in the five excluded studies. See Supplementary Methods, Section 3, for more

details of the included studies.

Estimation of results for included studies

For each included study, we re-estimated the random-effects meta-analytic models
based on the original data. In Supplementary Table 1, we provide detailed results for
each included meta-analysis, comprising the Q-test, whether effect sizes were measured
in Cohen’s d units, the between-study variation (r and its 95% CI), the within-study
variation (o), the ratio between the between- and within-study variation (z/¢; which we
refer to as the heterogeneity ratio HR), I* and its 95% CI, and H and its 95% CI. If not
indicated otherwise in Supplementary Methods, Sections 1-3, we were able to precisely
(computationally) reproduce the results reported in the papers. As such, our study
provides—as a “side product”—evidence on the computational reproducibility®”** of

large-scale meta-scientific results.
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To keep things simple and easily replicable, we created copies of the relevant input data
for the meta-analyses (i.e., the effect size estimate and the corresponding standard error
for each study included in the meta-analysis) for each paper based on the original data
(all of which are publicly available under a CC-by license). These copies of the original
data constitute our raw data. All data and analysis scripts used to generate the results
reported in the main text and the SI are available at our project’s OSF repository:

osf.io/yegsx.

Random effects meta-analyses were estimated using the metafor package (v-4.4.0)"%2in R
(v-4.3.2)'%, Estimates for the confidence intervals around the heterogeneity measures 72,
I?, and H? were based on the Q-profile method'™ implemented using the confint()
function shipped with the metafor package. For all papers reporting the results of
meta-analyses (i.e., all papers on population or design heterogeneity), we used the same
estimator for 7* as used in the original paper. The majority of these papers relied on the
restricted maximum likelihood estimator'®; but one study wused the

DerSimonian-Laird'® estimator, and one study used the Hartung-Knapp'?” estimator.

For multi-analyst studies, heterogeneity estimates were based on the restricted
maximum likelihood estimator. Note that estimating a random-effects model on
multi-analyst-style data is unconventional, as discussed in the main text. Hence it does
not come as a surprise that none of the multi-analyst studies included in our review
reported the results of a random-effects meta-analysis; however, a recent multi-analyst
study in biology** used a meta-analytic random-effects model to estimate the
heterogeneity of results across analysts. The estimated heterogeneity measures 72, IZ,
and H? for multi-analyst studies can be interpreted as lower bound estimates as they are
derived based on the within-study variance that would be observed if the effect size
estimates reported by multiple analysts were independent observations; if the sampling
variances of the multiple analysts are correlated (which is the case for multi-analyst
studies, since analysts based their estimates on the same dataset), the actual

within-study variance is lower, and the between-study variance is higher.

Robustness tests on Analytical Heterogeneity

Huntington-Klein et al.®® introduced the ratio between the standard deviation of effect
size estimates across analysts and the mean standard error as a measure of the
analytical heterogeneity in multi-analyst studies. This measure can be interpreted as a
proxy for the ratio of the between-study variation and the within-study variation (HR)
and can be converted to a proxy measure of H by taking the square root of 1 plus the
squared ratio; to distinguish the two measures from HR and H obtained from the

estimates of random-effects meta-analyses, we denote them as HR, and H,. In
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Supplementary Table 2, we report both HR, and H, for the multi-analyst studies
included in our review. HR, varies between 1.48 and 3.98 for the multi-analyst studies,
with a median of 3.07; Hy varies between 1.79 and 4.11 for the multi-analyst studies, with
a median of 3.23. Note that while the between-study variation (zr) estimated in the
random-effects meta-analysis is a lower bound of the standard deviation in effect sizes
across analysts, the proxy H, may exceed H as estimated using a random-effects
meta-analysis as the estimated within-study variation (¢) in the random-effects
meta-analysis can differ from the average standard error of estimates generated by the
analysts. The proxy Hj is quite similar to H based on the random-effects meta-analysis
for four of the five multi-analyst estimates but differs substantially for Silberzahn et
al.’*. This is due to two outliers in terms of low standard errors strongly affecting the
estimated within-study variance in the random-effects meta-analysis (as the individual
effects are weighted by the inverse of their variance). This is an indication that the
estimate of H for Silberzahn et al.®* should be interpreted very cautiously; but also the
proxy Hj indicates substantial analytical heterogeneity. Removing the two outliers for
Silberzahn et al.®* (implying k=27 effect size estimates) results in the following
heterogeneity estimates in a random-effect meta-analysis: Q(26) = 130.3, p < 0.001;
7=0.107, [?=86.5%, H=2.717, HR =2.527; the Huntington-Klein et al.?-based proxy

measures remain qualitatively unchanged (Hp = 1.721, HRp = 1.401).

Illustrating the impact of heterogeneity on statistical inference

Consider a generic two-tailed z-test with power = to detect an effect 6 at a type-I error
rate a. The effect size 6 (measured in z-score units in the generic test) corresponds to the
non-centrality parameter § = |z,,,| + |z,/, where z, denotes the p™ quantile of the inverse
cumulative standard normal distribution and g =1 - = denotes the false negative rate.
Assuming that the true effects to be estimated are homogeneous, 6; ~ N(u,, 0*) under the

null hypothesis #, (with y, indicating the test value and ¢* denoting the test's sampling

variance); under the alternative hypothesis #,, 6; ~ N(5, o2).

Now suppose there is variation in the true effect size above and beyond the uncertainty
that is accounted for by the test's sampling variance (o). Put differently, effect size
estimates are subject to an additional source of uncertainty—heterogeneity—such that
the overall variance of study i’s estimate 6; is given by vi* = ¢* + 7. The heterogeneity

estimate 7* indicates the variance of the genuine effect, such that 6; ~ N(u,, vi*) under #,

and 0; ~ N(8, v2) under #,.

Instead of quantifying the extent of heterogeneity in absolute terms (i.e., in terms of 7*

or t, respectively), it is expedient to denote it relative to the test’s sampling variance
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(o1%). Following the notational conventions applicable to random-effects meta-analysis*,
we define a heterogeneity factor H as

o2+ 72

H = 5

o

b

which is equivalent to the square root of H?, a commonly used measure of heterogeneity
reported in meta-analyses. H? can be interpreted as a “variance inflation factor” due to
heterogeneity**, i.e., as the factor a test’s sampling error g; needs to be multiplied with
to incorporate the uncertainty due to heterogeneity into statistical inference. We prefer
H over H? as thinking about heterogeneity in terms of standard deviation units appears
more convenient than thinking about it in terms of variance units. H* is defined as the
relative excess of the Q-statistic over its degrees of freedom, ie., H*=Q/ (k- 1).
Following conventions, we presume H = max(1, H), though we acknowledge that this
prevents identifying excessive homogeneity—i.e., less variability than would be
expected due to chance.*

The effective false positive rate o’ in a two-tailed z-test in the presence of heterogeneity
(expressed in terms of the heterogeneity factor H) is given by

Za/2
2o (3)
@ i

b

where @(-) indicates the cumulative standard normal distribution and z,,, denotes the
a/2-percentile of the inverse cumulative standard normal density function ®7'(-) (i.e., the
critical value of a two-tailed z-test at a nominal significance threshold a). It follows that
o’ > a for any H > 1. Correspondingly, the effective false negative rate g’ is given by
V4
o)
p H

b

which implies that g’ > g for any H > 1 whenever g < 0.5 and g’ < g for any H whenever
B >0.5. The relationship between nominal and effective error rates is graphically

illustrated in Fig. 2 and Fig. 3.

The false discovery rate (FDR) is defined as the ratio of false positive results to the total
number of positive classifications, which implies that the FDR is a function of the prior
probability ¢ for the alternative hypothesis being genuinely true, i.e.,

(1-9¢)-«a

FDR =
i (1-9¢)-at+o-8,

Since heterogeneity inflates the effective type-I error rate (for any nominal a-level in a
two-tailed test) and the effective type-II error rate (for a nominal g > 0.5), it follows that

the effective false discovery rate FDR’ is given by
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Since the cumulative normal density @(-) is convex in the domain (-, 0], it follows that
FDR’ > FDR for any H > 1. Figure 4 illustrates the effective false discovery rate FDR’ as a
function of H for various levels of the prior ¢ and different significance thresholds a.

Data and Code Availability

The data used to estimate population, design, and analytical heterogeneity and the
analysis scripts generating all results, figures, and tables reported in the main text and
the Supplementary Information are available at the project’s OSF repository

(osf.io/yegsx).
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Fig. 1. Empirical estimates of population, design, and analytical heterogeneity. (a) The figure
shows estimates of the heterogeneity factor H for 70 estimates from 13 papers isolating
population heterogeneity*-®, 11 estimates from 2 papers isolating design heterogeneity®**°, and 5
estimates from 3 papers isolating analytical heterogeneity®-%%. The vertical reference lines
indicate benchmark levels for small, medium, and large heterogeneity based on I? values of 25%
(H =1.15), 50% (H =1.41), and 75% (H = 2), respectively. (b) The figure shows box plots of the
distribution of heterogeneity factors H, separated by the source of heterogeneity, illustrated in

panel (a).
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Fig. 2. The figure shows the probability density function of an effect under the null hypothesis
(#o; purple density functions) and the alternative hypothesis (#,; green density functions) for a
two-tailed z-test with 90% nominal power (n) at a 5% nominal significance level (a) assuming
homogeneity (i.e., H = 1; dashed lines) and the implications of disregarded heterogeneity of H = 2.0
(solid lines) on the effective type-I error rate «’ and statistical power n’. Areas shaded in purple
indicate the test’s nominal and effective false positive rates (¢ and «’); areas shaded in green
correspond to the test’s nominal and effective false negative rates (g and g’).
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Fig. 3. (a) The figure illustrates the effective type-I error rates «’ as a function of the nominal
type-I error rate a for various levels of heterogeneity. H = 1 implies the absence of heterogeneity;
H=1.15, H=1.41, and H = 2.00 correspond to the commonly used I? thresholds of 25%, 50%, and
75% (i.e., small, medium, and large heterogeneity); H=4.00 corresponds to “extreme”
heterogeneity (equivalent to I?>=93.75%). The dashed vertical lines indicate the 5% and 0.5%
nominal significance thresholds. (b) The figure illustrates the effective statistical power (z’) as a
function of nominal statistical power (r) for the same values of the heterogeneity factor H as
shown in (a). The dashed vertical lines indicate the 80% and 90% nominal statistical power levels.
The x-markers in both panels map the values in the generic example illustrated in Fig. 1.
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Fig. 4. (a) The panel illustrates the effective false discovery rate (FDR’), i.e., the ratio of false
positive results to the total number of positive classifications in the presence of heterogeneity, for
different prior probabilities for the alternative hypothesis being genuinely true (¢), as a function
of the heterogeneity factor H for a two-tailed z-test with nominal statistical power of = = 90%. (b)
The panel illustrates the FDR’, for different prior probabilities ¢ and various significance
thresholds «, as a function of the heterogeneity factor H for a two-tailed z-test with nominal
statistical power of = = 90%.
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Abstract

A typical empirical study involves choosing a sample, a research design, and an analysis
path. Variation in such choices across studies leads to heterogeneity in results that in-
troduce an additional layer of uncertainty not accounted for in reported standard errors
and confidence intervals. We provide a framework for studying heterogeneity in the so-
cial sciences and divide heterogeneity into population heterogeneity, design heteroge-
neity, and analytical heterogeneity. We estimate each type’s heterogeneity from multi-lab
replication studies, prospective meta-analyses of studies varying experimental designs,
and multi-analyst studies. Our results suggest that population heterogeneity tends to be
relatively small, whereas design and analytical heterogeneity are large. A conservative
interpretation of the estimates suggests that incorporating the uncertainty due to hete-
rogeneity would approximately double sample standard errors and confidence intervals.
We illustrate that heterogeneity of this magnitude — unless properly accounted for —has
severe implications for statistical inference with strongly increased rates of false scientific
claims.
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