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Abstract

We propose a multivariate Bayesian state space model to identify potential
growth and the output gap consistent with the dynamics of the underlying pro-
duction sectors of the economy and those of inflation and the labor market. Our
approach allows us to decompose economic fluctuations and long-term trend growth
of output and employment into its driving factors. Applying our model to the Swiss
economy reveals substantial divergence among the considered production sectors–
their contributions to gap and potential vary both in size and direction. Potential
growth has been declining over the past two decades and the data points to labor
market frictions and a well-identified Phillips curve. In a comprehensive real-time
study, we review revision and forecasting properties of our estimate and compare it
to established methods. Overall, we document several advantages of our sector gap
model: a) It facilitates the interpretability of economic trends and cycles, allowing
for more efficient policy actions, b) it has favorable revision properties compared to
standard univariate filtering techniques and a baseline model without sectors, c) it
is useful in forecasting output growth and inflation, and d) it produces economically
meaningful potential growth rates.
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1 Introduction

Potential output and its difference to actual observed gross domestic product (GDP)—the

output gap—are used to determine the cyclical position of the economy. Potential output

measures the level of a sustainable and non-inflationary economy, while the output gap re-

veals short-term deviations from this level (Hall and Taylor, 1991). A positive output gap

indicates that the economy is overheating, while a negative gap signals underutilization

of production factors. In this paper, we present a model that enables the estimation of

potential output and the output gap consistent with the cyclical fluctuations and secular

trend dynamics of the sub-sectors of the economy.

For fiscal and monetary policy makers, the output gap serves as a basis for monitor-

ing inflation developments and structural imbalances (Gerlach and Smets, 1999, Coibion

and Gorodnichenko, 2015). Generally, most structural models used in macroeconomic

forecasting require an estimate of potential output which is key in determining the de-

velopment of prices and wages (Dupasquier et al., 1999). Central banks rely on a precise

estimation of the business cycle to determine possible inflationary and disinflationary

pressures. To help maintain a balanced budget, many countries have introduced expen-

diture caps based on the cyclical position of the economy.1 Moreover, the aftermath of

the Global Financial Crisis has revived the debate on secular stagnation and structural

changes in potential growth (Summers, 2015, Gordon, 2014), emphasizing the importance

of a reliable and informative estimation strategy.

Potential growth and the output gap are unobservable quantities for which a multi-

tude of estimation procedures have been proposed in the literature. The first category of

methods comprises univariate filtering techniques which are essentially free of an economic

model and decompose output into a permanent and transitory component (Hodrick and

Prescott, 1997, Baxter and King, 1999, Hamilton, 2018, Quast and Wolters, 2022). The

1For instance, the fiscal surveillance framework of the European Union uses an estimate of the output
gap to extract the structural budget balance. To stabilize the business cycle, spending is increased
during economic downturns, while savings are increased in times of economic boom.
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next class of methods extends the univariate filters to include other observable variables—

such as inflation and unemployment—that are related to the output gap using economic

theory (e.g. Kuttner, 1994, Gerlach and Smets, 1999, Blagrave et al., 2015).2 An alter-

native multivariate approach builds on the identification of temporary versus permanent

shocks using structural vector autoregressions (Cochrane, 1994, Dupasquier et al., 1999),

following the contribution of Blanchard and Quah (1989). More recently, Jarociński

and Lenza (2018) use six indicators of real economic activity alongside a Phillips curve

specification to identify the euro area business cycle. Hasenzagl et al. (2022) propose a

semi-structural model that links inflation dynamics and expectations to output, energy

prices, and labor market developments. The third class comprises production-function

approaches which first decompose output into its production factors—labor, capital, and

productivity—and in turn determine their trends and cycles using similar unobserved

component models as above (e.g. Havik et al., 2014, Streicher, 2022).

Apart from the unobservability and thus dependence on model assumptions, output

gap estimates suffer from significant revisions, particularly at the end of the sample (Or-

phanides and van Norden, 2002). For some models, the revisions are as large as the

output gap itself, which makes them partially useless from the perspective of policy mak-

ers. The debate about the reliability of output gap estimates gave rise, for example, to

the Hamilton filter (Hamilton, 2018) and a modified version thereof (Quast and Wolters,

2022), which show significantly better real-time properties than other simple univariate

statistical trend-cycle decompositions, but which still lack economic theory. Model com-

binations have been shown to dampen the impact of data revisions and in turn improve

real-time output gap estimates (Guérin et al., 2015).

We also aim to benefit from an expanded pool of information by incorporating data on

sub-sectors of the economy. Output gaps are usually estimated at the national and supra-

2Kuttner (1994) links deviations from potential output to inflation via a Phillips curve relationship and
Gerlach and Smets (1999) additionally incorporate the real interest rate through an aggregate demand
equation. The model of Blagrave et al. (2015) comprises inflation and labor market developments as
well as growth and inflation expectations to inform the output gap.
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regional level, i.e., for an economic area or monetary union. Business cycles of individual

economic sectors within one such area are rarely considered. However, tracking them

separately allows for more targeted and thus efficient policy actions, thereby reducing

the chance of pro-cyclical outcomes. For instance, the contraction at the outbreak of the

COVID-19 pandemic in 2020 varied widely across different industries and was far from

being akin to former economic crisis. Industries associated with leisure activities such

as restaurant visits and holiday travel were the hardest hit, while financial and business

services experienced a comparably small decline.3

We propose a multidimensional state space model which estimates the aggregate out-

put gap and long-term growth consistent with the dynamics of the various sectors of

the economy. This approach enables the decomposition of the business cycle into sector

contributions on the one hand, and the separation of the sector cycles into economy-

wide and sector-specific contributions on the other hand. Our model connects output to

employment and unemployment via Okun’s law and captures inflation dynamics via a

Phillips curve relationship. The structure of the model is inspired by the semistructural

models of Jarociński and Lenza (2018) and Hasenzagl et al. (2022). While those authors

also use sub components of the economy to inform the business cycle, our model offers a

comprehensive and complete overview of the emergence of output and employment fluc-

tuations and secular trends. Its primary innovation is the integration of consistent trends

and cycles by imposing aggregation constraints. The resulting decompositions provide a

valuable tool to tackle these cycles at their roots, but also to understand the historical

developments of potential growth.

We illustrate our sector gap (SG) model for the Swiss economy and document the

anatomy of the various driving forces of the up- and downturns since 1991. Our results

suggest that the dynamics of the sectors differ considerably and that their contributions

to the aggregate business cycle may vary in size as well as direction. Our potential growth

3A similar argument can be made for estimates of potential output. Decomposing potential growth into
contributions by different economic areas can shed light on why recent trend growth rates lag behind
those of earlier decades.
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decomposition shows that the sector trade, transport and hospitality is responsible for

the slowly decreasing potential growth rate over the past 20 years, with manufacturing

counteracting this development. A comparison to output gap figures published by other

national institutions reveals at least three considerable distinctions. Our model points to

a stronger underutilization during the 1990s, greater overheating of the economy prior to

the financial crisis, and a faster recovery afterwards. Most importantly, potential growth

in our model is much smoother, highlighting its resilience against transitory shocks and

its ability to reflect structural development (Coibion et al., 2017). We show that it is

precisely the inclusion of sub-sector information that is responsible for achieving this.

Second, we conduct a comprehensive pseudo real-time evaluation regarding real-time

reliability and predictive power for output growth and inflation.4 A comparison to a

baseline specification without sub-sectors and four well-established univariate filters shows

that the additional sub-sectors decrease output gap revisions and stabilize trend growth

rates.5 While the SG is more informative in forecasting output growth than univariate

filters, it performs equally well than its baseline specification, i.e., its forecasting accuracy

is not altered by including additional information on sector output and employment.

Similarly, using a standard Phillips curve forecasting equation, we find evidence that

our output gap is superior to univariate methods and even adds informational content

compared to a benchmark forecasting specification without gap.

Overall, we find that our sector gap model elevates the interpretability of economic

trends and cycles, produces smooth potential growth rates in line with theoretical con-

cepts, has favorable pseudo real-time properties and is useful in forecasting inflation and

output growth.

This paper is organized as follows. Section 2 details the methodology and in Section

3 we illustrate the application of our model to the Swiss economy. Section 4 provides a

4Our analysis focuses on purely filter induced revisions, since actual real-time data on sector output and
employment has undergone substantial changes in classification during this period.

5Only the Hamilton filter shows better real-time characteristics for the output gap. However, the lack
of economic interpretability of its potential growth estimates makes its use impracticable.

5



comprehensive pseudo real-time analysis and compares revisions and output and inflation

forecasting performance across different model specifications and well-known alternative

models. The last section concludes.

2 Methodology

This section discusses the intuition and structure of our empirical approach. We estimate

a multivariate state space model to extract output gaps for the aggregate economy and

its sectors simultaneously. We assume that each sector gap is a linear combination of the

common cycle—the output gap—and a sector specific cycle. The sector specific cycles

are independent, as are all trend processes. The unemployment and employment gap are

each connected to the output gap via Okun’s law (Okun, 1963). In the spirit of Stock

and Watson (2007), Cogley et al. (2010) and Hasenzagl et al. (2022), among others, we

incorporate long-term trend inflation and assume a Phillips curve relationship between

short-term inflation developments and output fluctuations.

2.1 Econometric model

We use an unobserved component model to estimate the output gap. The observed

variables, i.e., aggregate and sector output and employment, the unemployment rate,

and inflation are each linked to unobserved cycles and trend series.

Let yt denote log output and yit log output in sector i. We assume log output splits

into a trend τt and a cycle component gt—the output gap—i.e.,

yt = τt + gt (1)

with local linear trend

τt = τt−1 + µt−1 + ετt, ετt ∼ N
(
0, σ2

τ

)
,

µt = µt−1 + εµt, εµt ∼ N
(
0, σ2

µ

)
.

(2)

The trend drift µt can be interpreted as slowly changing potential growth rate. Shocks
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to the trend τt allow for short-term changes in potential growth. Analogously, we assume

that output in each sector i can be separated into a trend τit and a cycle git. Each sector

cycle is assumed to be linearly connected to the output gap and an idiosyncratic cycle,

i.e.,

yit = τit + git = τit + βigt + cit.

This implies that the sign of the coefficient βi determines the nature of the correlation

among the cycles.6 All output sector trends are modeled as in Equation (2) with normal

and independent errors

ετt = (ετt , ετ1t, . . . , ετnt)′ , εµt = (εµt , εµ1t, . . . , εµnt)′ .

To summarize, output in all sectors fluctuates around a longer-term trend whose average

growth rate may slowly change over time, driven, for instance, by technological innovation,

globalization, or demographic change.

We use both labor market and price developments to inform the fluctuations of the

business cycle. The output gap is connected to employment as well as unemployment

via Okun’s law and to inflation via a Phillips curve relationship. Let et denote log

employment, ut the unemployment rate and πt the inflation rate. We assume

et = τet + Ψe (L) gt + cet,

ut = τut + Ψu (L) gt + cut,

πt = τπt + Ψπ (L) gt + cπt

(3)

with Ψ· (x) = ψ·0 + . . .+ψ·kxk. The slack in the economy affects employment, unemploy-

ment and inflation both contemporaneously and with a lag of up to k quarters, capturing

labor market frictions and price stickiness (e.g. Hasenzagl et al., 2022). In addition, we

use Okun’s law to help extract the sector output cycles. Since the unemployment rate is

usually not available for individual economic sectors, we use sector employment eit. We

6Note that cov (gt, git) = cov (gt, βigt + cit) = βi var (gt) and cov (gjt, git) = cov (βjgt + cjt, βigt + cit) =
βjβi var (gt) .
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assume

eit = τeit + Ψei
(L) git + ceit (4)

for i = 1, . . . ,m with m ≤ n. The employment and unemployment trends are each

modeled as local linear trends, analogous to Equation (2) with normal and uncorrelated

trend and drift innovations

ετet =
(
ετet, ετe

1 t, . . . , ετe
nt

)′
, εµet =

(
εµet, εµe

1t, . . . , εµe
nt

)′

and ετut, εµut, respectively. In the spirit of Stock and Watson (2007), Cogley et al. (2010),

and Hasenzagl et al. (2022), trend inflation behaves like a random walk without drift,

i.e.,

τπt = τπt−1 + ετπt, ετπt ∼ N
(
0, σ2

τπ

)
.

Collecting all trend and drift innovations, we have that

ετt =
(
ε′

τt, ε
′
τet, ετut, ετπt

)′
∼ N (0,Στ ) ,

εµt =
(
ε′

µt, ε
′
µet, εµut

)′
∼ N (0,Σµ) ,

where Στ and Σµ are diagonal. The output gap and all idiosyncratic cycles are modeled as

stationary autoregressive processes, i.e., for ct = (gt, c1t, . . . , cnt, cet , ce1t, . . . , cent, cut, cπt)′,

we have that

Φ (L) ct = εct,

εct =
(
εgt, εc1t, . . . , εcnt, εcet, εce

1t, . . . , εce
nt, εcut, εcπt

)′
∼ N (0,Σc) ,

with Σc diagonal, and the lag polynomial Φ (x) = 1 − Φ1x − . . . − Φpx
p with diagonal

coefficient matrices Φj, j = 1 . . . , p.

Some restrictions on the innovation correlations between trends, drifts, and cycles are

necessary for identification. The model in Equations (1) and (2) with an autoregressive

output gap gt is identical to the one put forward by Clark (1987). In this model, identifi-

cation can be achieved by placing restrictions on the innovation covariance structure and

by including at least 2 autoregressive lags in the cycle equation (Clark, 1987, Schleicher
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et al., 2003, Morley et al., 2003, Morley, 2007).7 We therefore set p = 2 and impose

that all innovations ετt, εµt and εct are mutually independent. This implies that tran-

sitional changes in consumption or government expenditures do not affect output trend

growth. Similarly, demographic or technological changes are assumed to trigger changes

in long-run trend growth but not temporary changes in demand.8 The same identification

restrictions carry over to our full model, as each of our additional observation equations

features its own trend and cycle component.

2.2 Aggregation and constraints

To ensure that aggregate outcomes are consistent with sector specific ones, we impose

linear constraints on the trends and drifts, both for output and employment.9 Let Yit

and Y nom
it denote real and nominal output in sector i and let Pit = 100 Y nom

it /Yit be the

corresponding price index. The associated aggregate series are given by Yt, Y
nom

t and Pt.

Real aggregate output is defined as the chain-linked volume index

Yt =
n∑

i=1

Pit−1

Pt−1
Yit =

n∑
i=1

wp
tiYit,

which implies that

Yt

Yt−1
=

n∑
i=1

Pit−1

Pt−1Yt−1
Yit−1 =

n∑
i=1

Pit−1Yit−1

Pt−1Yt−1

Yit

Yit−1

=
n∑

i=1

Y nom
it−1
Y nom

t−1

(
Yit

Yit−1

)
=

n∑
i=1

wnom
it

(
Yit

Yit−1

)

7To see this, the model can be rearranged into a reduced form for which there exists an equivalent
ARIMA representation which is just identified for p = 2 (Hamilton, 1994, Morley et al., 2003, Oh et al.,
2006). Intuitively, increasing the autoregressive order p increases the number of non-zero autocovariance
terms used to estimate the variances.

8Even though the presence of correlation between permanent and transitory shocks cannot be ruled out,
it will likely be negligible. See, for instance, Clark (1987), Morley et al. (2003), Morley (2007), and
Oh et al. (2006) for an analysis and discussion of unobserved component models with correlated trend,
drift, and cycle innovations.

9This is technically only relevant if the sectoral series included in the model are exhaustive, i.e., they
add up to aggregate output and employment, respectively. Yet, even if they are non-exhaustive, an
approximate solution is available by first computing a residual and in turn including a smoothed residual
weight on a constant in the constraint equation.
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and where wp
ti denotes relative previous period prices and wnom

it nominal output weights

at t− 1. Since ∑n
i=1 w

nom
it = 1 for all t ∈ Z, it holds that

Yt

Yt−1
− 1 =

n∑
i=1

wnom
it

(
Yit

Yit−1
− 1

)
.

The growth rate of output can thus be represented as a weighted average of the growth

rates of individual sectors, i.e.,

∆yt =
n∑

i=1
wnom

it ∆yit,

where yt = ln Yt.10 Consequently, assuming that the relative previous period prices wp
it

are the same for output and potential, for potential growth, we have that

∆τt =
n∑

i=1
wnom

it ∆τit, (5)

which can be imposed by adding an identity series to the observation equation (Doran,

1992).11 To ensure that short-term as well as longer-term changes to potential output

are consistent, we further set

µt =
n∑

i=1
wnom

it µit. (6)

If short-term changes to trend growth are eliminated, i.e., ∆τt = µt and ∆τit = µit by

setting ετt = 0 and ετit = 0, consistency can be attained by only enforcing Equation (6).

For aggregate employment Et, we have that Et = ∑m
i=1 Eit, where Eit represents the

number of persons employed in sector i. Similarly to above, we can deduce

∆et =
m∑

i=1
we

it∆eit,

µet =
m∑

i=1
we

itµeit,

where et = lnEt and we
ti = Eit−1/Et−1 denotes the share of employment in sector i at point

in time t− 1.

10When the data is compiled using the Annual Overlap method, this holds with equality for annual
values. For quarterly quantities there can be small deviations, but we assume that these are zero for
the trend component we are interested in.

11To that end, lagged values of τt, τit need to be included in the state equation.
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2.3 State space representation

We stack all observation variables and their cycles, trends, and trend drifts in correspond-

ing order, i.e.,

yt
ℓ×1

=
(
yt,y1:n

t
′
, et, e1:m

t
′
, ut, πt

)′
= (y1, y1t, . . . , ynt, et, e1t, . . . , emt, ut, πt)′

ct
ℓ×1

=
(
gt, c′

yt, cet, c′
et, cut, cπt

)′
= (gt, c1t, . . . , cnt, cet, ce1t, . . . , cemt, cut, cπt)′

τt
ℓ×1

=
(
τt, τ

′
yt, τet, τ

′
et, τut, τπt

)′
= (τt, τ1t, . . . , τnt, τet, τe1t, . . . , τemt, τut, τπt)′ ,

µt
ℓ−1×1

=
(
µt,µ

′
yt, µet,µ

′
et, µut

)′
= (µt, µ1t, . . . , µnt, µet, µe1t, . . . , µemt, µut)′ ,

where ℓ = n+m+ 4 is the number of observables. The state vector can be defined by

αt
5ℓ−1×1

=
(
c′

t, c′
t−1, c′

t−2, τ
′
t ,µ

′
t

)′
,

and the measurement and state equations are given by

yt
ℓ×1

= Zt
ℓ×5ℓ−1

αt
5ℓ−1×1

,

αt
5ℓ−1×1

= Tt
5ℓ−1×5ℓ−1

αt−1
5ℓ−1×1

+ Rt
5ℓ−1×3ℓ−1

εt
3ℓ−1×1

, εt
3ℓ−1×1

∼ N
(
0, Qt

3ℓ−1×3ℓ−1

)
.

(7)

For ease of readibility, we split the system matrices into three blocks, one concerning the

vector of contemporaneous and lagged cycles
(
c′

t, c′
t−1, c′

t−2

)′
, one for the trends τt and

a final block for the drifts µt. The structure of the blocks is indicated by vertical and

horizontal lines. The system matrices of the state space model in Equation (7) are given

by

Zt
ℓ×5ℓ−1

=
[

Z0
t

ℓ×ℓ

Z1
t

ℓ×ℓ

Z2
t

ℓ×ℓ

Iℓ 0
]
, Tt

5ℓ−1×5ℓ−1
=



Φ1 Φ2 0
Iℓ 0 0
0 Iℓ 0

Iℓ

Iℓ−1

0

Iℓ−1


,
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Rt
5ℓ−1×3ℓ−1

=



Iℓ 0 0
0 0 0
0 0 0
0 Iℓ 0
0 0 Iℓ−1


, Qt

3ℓ−1×3ℓ−1
=


Σc

Στ

Σµ

 .

The state matrix Tt contains the autoregressive coefficients Φj, j ∈ {1, 2} of the cycles,

defines the trend processes as integrated or regular random walks, and additionally in-

cludes a number of identities for the lagged cycles. The matrix Rt connects each state

equation to its corresponding innovation term (or none) and the variance-covariance ma-

trix Qt contains all cycle, trend and drift variances on its diagonal. The submatrices in

Zt are defined by

Z0
t

ℓ×ℓ

=



0
β

. . .

0 0 . . .
... . . . . . .
... 0 . . .
0 · · · · · · 0 0 0


+ Iℓ + Z̃0

t
ℓ×ℓ

Z̃j
t

ℓ×ℓ

=



0
0 . . .

ψej 0 . . .

β◦ψe1:mj Ψe1:mj 0 . . .

ψuj 0 · · · 0 . . .
ψπj 0 · · · 0 0 0


and Zj

t = Z̃j
t for j ∈ {1, 2} , where ψe1:mj = (ψe1j, . . . , ψemj) and Ψe1:mj = diag (ψe1:mj)

for j ∈ {0, 1, 2} and β = (β1, . . . , βn)′.

The auxiliary matrices Z̃j
t , j ∈ {0, 1, 2} contain the (lagged) loading of employment

ψej, sector employment β ◦ψe1:mj, unemployment ψuj, and inflation ψπj on the business

cycle and in the case of sector employment on the sector output cycles (Ψe1:mj). In

addition, the matrix Z0
t links each observable with its contemporaneous cycle and it

contains the loading coefficients of sector output on the output gap β.

To impose constraints on the trends of sector output and employment as discussed in

12



Section 2.2, the system in Equation (7) needs to be adjusted. In the simple case where

shocks to trend growth are set to zero, the aggregation constraints can be imposed by

expanding Zt and yt (Doran, 1992). To be precise, we define

ŷt = (y′
t, 0, 0)′

, Ẑt
ℓ+2×5ℓ−1

=

 Z0
t

ℓ×ℓ

Z1
t

ℓ×ℓ

Z2
t

ℓ×ℓ

Iℓ 0

0 0 0 0 Zµ
t

2×ℓ−1

 ,

Zµ
t

2×ℓ−1
=
 −1 wnom

1t . . . wnom
nt 0 · · · 0

0 · · · 0 −1 we
1t · · · we

mt 0

 .
Note that the weights wnom

it , i = 1, . . . , n and we
jt, j = 1, . . .m as defined in Section 2.2

are time-dependent.

If we allow for shocks to trend growth, the system matrices need to be extended

further. By adding lagged output and employment trends to the state equation, the

additional constraints can again be imposed via Zt. Let now

α̂t =
(
α′

t, τ
′
t−1

)′
, T̂t

6ℓ−1×6ℓ−1
=



Φ1 Φ2 0
Iℓ 0 0
0 Iℓ 0

Iℓ

Iℓ−1

0

Iℓ−1

Iℓ 0


,

ŷt = (y′
t,0)′

, Ẑt
ℓ+4×6ℓ−1

=


Z0

t
ℓ×ℓ

Z1
t

ℓ×ℓ

Z2
t

ℓ×ℓ

Iℓ 0 0

0 0 0 0 Zµ
t

2×ℓ−1
0

0 0 0 Zτ
t

2×ℓ

0 −Zτ
t

2×ℓ

 ,

Zτ
t

2×ℓ

=
 −1 wnom

1t . . . wnom
nt 0 · · · 0

0 · · · 0 −1 we
1t · · · we

mt 0

 .

2.4 Estimation

The computational task comprises estimating the unobserved states αt and the param-

eters β,ψe,ψu,ψπ,ψe1:m0,ψe1:m1,ψe1:m2,Φ1,Φ2,Σc,Στ ,Σµ, where ψe = (ψe0, ψe1, ψe2)′ ,

ψu = (ψu0, ψu1, ψu2)′ ,ψπ = (ψπ0, ψπ1, ψπ2)′. Our estimation procedure involves a Gibbs

algorithm structured in multiple blocks. The first block draws from the posterior distri-
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butions of all trend and trend drift equations. The second block handles all equations

involving loading factors and their respective cycles. The third block draws the parame-

ters of the output gap equation. The final block updates the unobserved states conditional

on the previously drawn parameters using the simulation smoother of Durbin and Koop-

man (2012). To compute each posterior we generate 50’000 draws, discard the first 50%

and finally consider each 10th draw to limit possible autocorrelation between draws. See

Appendix A.2 for details.

We adopt weakly informative priors in the form of diffuse normal or inverse-gamma

priors, see Table 1. To facilitate the estimation of meaningful trends and cycles, we use

a smoothing parameter λ = E[σ2
c ]/E[σ2

k], k ∈ {τ, µ} defining the ratio between the variance

of cycle and trend innovations.

Table 1. Prior distributions

Name Support Density Parameters
βi R Normal µ = 0, σ2 = 1000
(ψ0, ψ1, ψ2)′ R3 Normal µ = (0, 0, 0)′ , σ2 = 1000I3
(ϕ1, ϕ2)′ R2 × Iϕ∈Sϕ

Normal µ = (0, 0)′ , σ2 = 1000I2
σ2

c (0,∞) Inverse-gamma ν = 6, s = 4
σ2

µ (0,∞) Inverse-gamma ν = 6, s = 4λ−1

σ2
τ (0,∞) Inverse-gamma ν = 6, s = 4λ−1

Notes: Iϕ∈Sϕ
denotes the indicator function and Sϕ the stationary region of an AR(2) process.

All indices are suppressed for the sake of readability. The normal distribution is parameterized
via mean and variance, the inverse-gamma distribution via degrees of freedom ν and location
s with mean s/ν−2. The smoothing constant λ is set to 100 implying an a priori signal-to-noise
ratio of 1%.

3 An illustration for Switzerland

We estimate our model with m = 6 exhaustive economic production sectors, autore-

gressive cycles of order p = 2, and to capture a potentially lagged reaction of the labor

market, we set k = 2. We first give an overview of the data and in turn elaborate on the

role of the prior distributions in identifying the model. The subsequent section discusses

the estimated trends and cycles of the Swiss economy at an aggregate level and then

moves to the sector contributions of the output and employment gaps. A similar analysis
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is done for potential growth and employment trend growth.

3.1 Data

We use quarterly aggregates of gross domestic product for Switzerland according to the

production approach. In addition to real GDP, we consider real gross value added before

adjustments of five economic sectors. To facilitate the cyclical interpretation of output,

we use output series that are adjusted for major international sports events.12 Aggregate

adjustments are treated as an individual sector to complete the model. All production

series are provided by the Swiss State Secretariat for Economic Affairs (SECO). The

composition of the sectors is documented in Table 2. For employment, we use full-

time equivalents gathered by the Swiss Federal Statistical Office (FSO) as part of the Job

Statistic (JOBSTAT). The provided sectoral full-time equivalent series can be aggregated

such that the resulting series largely correspond to the production ones specified in Table

2.13,14 Finally, we use the unemployment rate based on the definition of the International

Labor Organization (ILO) and for inflation we use the year-on-year growth rate of the

Consumer Price Index (CPI). Both series are provided by the Swiss FSO. All series are

seasonally-adjusted and all output series are additionally calendar-adjusted.

Figure 1 shows the development of output (solid lines) and full-time equivalent em-

ployment (dashed lines) in Switzerland at the aggregate as well as disaggregate level.

The economic development of the various sectors differs, in some cases significantly. For

12Several international sport organisations are based in Switzerland, including the International Asso-
ciation Football Federation (FIFA), the Union of European Football Associations (UEFA) and the
International Olympic Committee (IOC). These associations contribute to output mainly through in-
come from intangible assets such as licenses and patents. However, from a business cycle perspective,
the periodicity of their contributions to output disables an economic interpretation. At the same time,
output from international sporting events is usually created abroad and therefore only of little rele-
vance to the domestic economy in Switzerland. Excluding output from international sporting events
therefore creates a more fitting measure of economic output for business cycle analysis.

13For the agricultural sector NOGA 01-03, no employment data is available. However, given the relative
size of the sector compared to manufacturing as a whole (less than 1% of output versus 22%), this
shortcoming is negligible.

14We repeat the analysis in Section 3 for an extended set of sub-sectors and report our findings in Section
A.3.1 in the Appendix. The differences between the trends, cycles, and drifts of output, employment,
unemployment, and inflation are negligible.
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Table 2. Structure of sectors

Sector Sub-sectors NOGA

Manufacturing

Agriculture, forestry and fishing 01-03
Mining and quarrying 05-09
Manufacturing 10-33
Electricity, gas, steam and air conditioning supply 35
Water supply, sewerage, waste management and remediation activities 36-39

Construction Construction 41-43

Trade, transport
and hospitality

Trade, repair of motor vehicles and motorcycles 45-57
Transportation and storage; Information and communication 49-53; 58-63
Accommodation and food service activities 55-56

Financial and
other economic
services

Financial service activities 64
Insurance service activities 65
Real estate, professional, scientific and technical activities; Administra-
tive and support service activities

68-57; 77-82

Government
and consumer-
related services

Public administration and defense; compulsory social services 84
Education 85
Human health and social work activities 86-88
Arts, entertainment and recreation 90-93
Other service activities 94-96
Activities of housholds as employers and producers for own use 97-98

Adjustments Taxes on products
Subsidies on products

Notes: The General Classification of Economic Activities (NOGA) provided by the Swiss FSO
is derived from the Statistical Classification of Economic Activities in the European Union
(NACE). The current NOGA (2008) was enacted in 2008.

instance, the construction sector experienced a considerable decline in the 1990s, after the

bursting of a housing bubble while the overall economic development was decent. Sectors

also react differently to crises such as the 2007–2008 financial crisis or the COVID-19

pandemic that began in early 2020. The financial crisis mainly affected manufacturing

and financial and other economic services, while consumer-related services did not experi-

ence a decline. The coronavirus pandemic initially led to a reduction in output across all

sectors, but this decrease was particularly pronounced in trade, transport and hospitality.

In general, roughly since the second half of the 1990s, all sectors have been on a steady

growth path.

The development of full-time equivalent employment is also heterogeneous across sec-

tors. Approximately until the turn of the century, employment has been decreasing in

manufacturing, construction and trade, transport, and hospitality. Most sectors show

an upward trend thereafter, while employment in manufacturing has been stagnant. For
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the aggregate economy and most sectors, there exists a positive correlation between out-

put and employment with the exception of manufacturing which is experiencing elevated

levels of productivity growth.
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Figure 1: Output and full-time equivalent employment in different sectors. The
series are depicted from 1992 Q1 until 2023 Q2. The solid lines (left axes) show quarterly
output in million 2020 CHF and the dashed lines (right axes) depict full-time equivalent (FTE)
employment in million. Vertical shaded areas highlight recessions.

3.2 Prior and posterior distributions

Figure 2 illustrates prior and posterior densities for all parameters that load on the busi-

ness cycle.15 The posteriors are well peaked indicating that the data is quite informative

in estimating the model parameters.

All sector cycles are positively correlated with the output gap, as indicated by the

posterior means of the loading factors. As expected, the posterior of the loadings of

aggregate employment on the output cycle has positive mean. The contemporaneous

effect appears to be the strongest and it wears off with increasing lag order. Accordingly,

the posterior distribution of the loadings of the unemployment gap on the output gap

and its lags has negative mean. The Phillips curve appears well-identified—the positive

connection of inflation and the business cycle is evident and similar to above, it slowly

decreases in size with increasing lag order.
15Table A.2 in Appendix A.5 summarizes the mean, median, first and ninth decile of the posterior

distribution of all parameters.
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Prior and posterior distributions for the loading factors of sector employment on the

respective output series and lags thereof are shown in Figure A.2 and for the cycle,

trend, and drift variances in Figure A.3 in Appendix A.4. The posteriors indicate a

positive contemporaneous relationship between sector employment and sector output.

The model also suggests that the lagged reaction of employment is heterogeneous among

the considered production sectors.

(a) Sector output loadings on aggregate output

(b) Labor market and inflation loadings on aggregate output

Figure 2: Prior and posterior distributions. The prior distributions are specified as in
Table 1. BS denotes the business cycle (output gap). The posterior densities are based on
50’000 draws, with the first 25’000 being discarded. Of the remaining draws, all but every 10th
draw are discarded.

18



3.3 Aggregate trends and cycles in the Swiss economy

Figure 3 plots aggregate output and employment, the unemployment rate and inflation

alongside their trend estimates (panel (a)) and corresponding cycles (panel (b)) with 68%

highest-posterior density intervals (HPDI). We can clearly recognize the stylized facts of

the Swiss business cycle. Despite comparably low trend growth rates, the nineties were

marked by a long phase of underutilization, naming it Switzerland’s lost decade. The

next recession took place after the dot-com bubble. Leading up to Global Financial Crisis

in 2007–2008, our model clearly emphasizes an overheating of the economy. Interestingly,

the subsequent Great Recession was much less pronounced than the ones before it. During

the 2010s, the aggregate Swiss economy was mostly operating close to capacity. The most

severe underutilization combined with an unusually swift recovery occurred at the outset

of the COVID-19 pandemic.

The labor market shares much of the same dynamics. As expected, there is an inverse

relation between the output gap and the unemployment gap, while its correlation to the

employment gap is evidently positive. Underutilization of economic production factors

mostly came hand in hand with elevated levels of unemployment and a negative employ-

ment gap and vice versa. At the beginning of the pandemic, however, the labor market

response was less pronounced than indicated by the historic relationship to the output

gap, suggesting that the massive use of short time working schemes successfully protected

the labor market. For instance, the responses of the employment and unemployment gaps

in the second quarter of 2020 were roughly 12% respective 43% below the responses in

line with historic declines in capacity utilization, i.e., the idiosyncratic parts of the labor

market gaps counteract the effect of the negative shocks to the output gap.16

In line with the continuous population growth in Switzerland, particularly since the

turn of the millennium, employment alongside its trend have been steadily increasing.

Trend unemployment has experienced a level shift between 2000 and 2007, and has re-

mained relatively stable at rates between 4.5% and 5%. Only lately has trend unemploy-
16The figures are based on the medians of the posterior distributions.
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ment been decreasing again, reflecting the tight situation on the labor market.

The long-term inflation trend has been slowly decreasing from around 1.9% in 1992 to

levels between 0.4% to 0.5% during the European debt crisis. Roughly since 2020, trend

inflation started to increase slightly to rates close to 0.8%. We identify three phases

marked by a positive inflation gap: First, the surge in inflation in the early 1990s was

triggered by a spillover from the reunification boom in Germany.17 The second phase

occurred before the Great Recession, when the Swiss Franc experienced an unusually

long period of weakness and the third phase in 2022, triggered by the war in Ukraine

and post COVID-19 pandemic effects. Negative inflation gaps have occurred in times of

strong appreciation of the Swiss Franc, e.g., after the SNB scrapped the floor of CHF

1.20 to the Euro in January 2015 and in the course of the demand shortfall during the

pandemic.

(a) Trends

(b) Gaps (in %)

Figure 3: Aggregate trends and gaps. The original data are dashed and the trends solid
(upper panel). The estimated gaps are solid (lower panel). The shaded areas indicate 68%
HPDI. Vertical shaded areas highlight recessions.

17For more details on this episode, see Rich (1997).
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3.4 A sector perspective on output and employment cycles

The output and employment gaps are decomposed into sectoral contributions in Figure

4. In the lost decade, a broad mix of sectors contributed to the negative output gap.

The dot-com recession is mainly attributable to financial services, which enjoyed strong

growth before the crisis. The overheating prior to the Financial Crisis is mostly related

to manufacturing, trade, transport and hospitality, and financial and other economic ser-

vices. However, the negative contributions in the aftermath are limited. Even though

there was a strong consolidation in the banking sector after the crisis, its negative con-

tribution were somewhat offset by a sizable compensatory expansion in the insurance

sector. Moreover, while the manufacturing sector suffered, wholesale trade and especially

merchanting activities acted as a stabilizer. A similar picture emerges after the SNB

lifted the floor for the euro in January 2015: While there were negative contribution from

manufacturing and business related sectors, trading activities stabilized the aggregate

output gap. When the COVID crisis hit, all sectors were initially affected by the partial

lockdown of activities and other containment restrictions. In fact, also personal and gov-

ernment related services contribute to the negative output gap, a sector that normally

exhibits no business cycle at all. While the manufacturing sector recovered rapidly, the

consumer-oriented services experienced a prolonged period of slowdown. The advantage

of such a comprehensive decomposition is obvious: Policy targeting the aggregate output

gap is likely to overlook the state of the individual sectors, resulting in a loss in efficacy.

By construction, the picture for employment is similar to the one for value added,

but the importance of the underlying sector contributions differs. The three aggregate

sectors manufacturing, trade, transport, and hospitality, and financial and other economic

services show the largest contributions to the employment gap, whereas those of the

remaining sectors, i.e., the construction sector and government and consumer-related

services are comparably small. Hence, intuitively, government employment does not

react as strongly to the business cycle as other sectors do.18

18See Figure 5 for a decomposition of sector employment cycles into contributions by the (lagged) business
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When comparing the output and employment gaps, it is particularly noteworthy that

although the impact of the appreciation of the Swiss Franc in 2015 on output was limited,

it is very well reflected in the employment gap. The slowdown in output, which was

driven by manufacturing and financial and other economic services was counteracted by

an expansion in merchanting activities. However, this expansion was not transmitted to

the labor market, resulting in a negative employment gap.

(a) Output gap decomposition

(b) Employment gap decomposition

Figure 4: Output and employment gap decomposition. Contributions to the output
and employment gap are in %. Vertical shaded areas highlight recessions.

The breakdown of the individual output and employment gaps in Figure 5 reveals

that despite some commonalities, there is also plenty of room for idiosyncrasies among

the sectors. Panel (a) contains the cycle decomposition for sector output and panel

cycle and idiosyncratic employment cycles.
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(b) that of sector employment. Panel (c) shows similar decompositions for employment,

unemployment and inflation. Light areas represent sector-specific output and employment

contributions. For sector output, aggregate employment, unemployment, and inflation,

dark areas show the contribution of the common business cycle. For sector employment,

they signal the influence of the sector-specific business cycle.

The sector output gaps are heterogeneous, not only in terms of their progression and

amplitude but also in terms of how they are impacted by the aggregate business cycle.

As suggested by the posterior distributions in Figure 2, the output gap has the strongest

influence on manufacturing and on the collected sector trade, transport and hospitality.

In contrast, for the sector employment gaps, idiosyncratic factors predominate the impact

of sector output fluctuations. It is worth noting that the output cycle of financial and

other economic services appears to be less sensitive than its employment cycle. Compared

to most other sectors and in contrast to the output cycle, the employment gap contains

periods of strong under- and overutilization, indicating the sectors’ ability to cushion

economic fluctuations. Okun’s law is nicely reflected in the employment and particularly

in the unemployment gap decomposition, and also the Phillips curve relationship is clearly

visible. Much of the idiosyncratic part of the inflation gap can be attributed to oil price

fluctuations and movements in the exchange rate.

Table A.1 in Appendix A.5 presents the correlation coefficients between the business

cycle, sector output gaps, employment, unemployment and inflation gaps, and those be-

tween sector output and its associated sector employment. The direction and magnitude

of the correlation figures confirm our previous results. As expected, the unemployment

gap is negatively correlated with the output gap, most sector gaps, and the inflation gap.

Interestingly, correlation between the output gap and the construction gap is near zero,

which can be attributed to the fact that in times of low international demand, emigration

to Switzerland increases, which in turn increases the demand for housing.
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(a) Sector output gap decomposition

(b) Sector employment gap decomposition

(c) Aggregate gap decomposition

Figure 5: Gap decompositions. All gaps are in %. Light shaded areas represent idiosyn-
cratic contributions and dark areas those of the respective loading series. Vertical shaded areas
highlight recessions.
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3.5 A sector perspective on potential growth and trend employ-

ment

Figure 6 shows the decomposition of structural potential growth (upper panel) and that

of the employment drift (lower panel).19 Quarterly potential output growth has increased

from 0.40% in the early nineties to peak levels of approximately 0.50% from 2004 until

2009 and in turn decreased back to roughly 0.40% in 2022.20 More recently, the de-

cline has been driven by the sector trade, transport and hospitality, while the increasing

contribution of manufacturing has counteracted this development. In 2020, the manufac-

turing sector surpassed a quarterly trend growth rate of 0.8%, making it the sector with

the highest growth potential. This reflects the sector’s changing composition, with the

highly productive pharmaceutical sector becoming increasingly important.

In contrast, the breakdown of trend employment growth reveals a continued shift

toward a service-based economy, driven by labor-intensive sectors such as health care

and education (panel (b) in Figure 6). Trend employment growth in manufacturing and

construction is no longer as negative as it was in the 1990s, but it is now stagnating. This

development also reflects the shift to higher productivity activities in these sectors. Again,

employment trends reflect developments in the international economy, the exchange rate,

and emigration to Switzerland.

3.6 Comparison to models from policy institutions

We compare our measure of the business cycle and trend growth to alternative models in

Figure 7. The output gaps published by the Swiss National Bank (SNB), the Swiss State

Secretariat of Economic Affairs (SECO) and the KOF Swiss Economic Institute are each

based on a production function approach.21 Finally, we also include a baseline version of

19Sector trends and drifts alongside credible sets can be found in Figures A.4 and A.5 in Appendix A.4.
20These quarterly rates corresponds to annual rates of approximately 1.6%, 2.0%, and 1.6%, respectively.
21A Cobb-Douglas production function is used to split potential output into three input factors: non-

financial capital stock, trend labor input and the trend of total factor productivity. Total factor
productivity contains the component of output that cannot be explained by the production factors
capital and labor. See e.g. Havik et al. (2014) and Streicher (2022) for details on the methodology.
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(a) Output drift decomposition

(b) Employment drift decomposition

Figure 6: Output and employment long-term trend growth decomposition. Contri-
butions and quarterly growth rates are in %. Vertical shaded areas highlight recessions.

our model excluding all sector output and employment equations (model (5), see Table

3 in Section 4).

All estimates of the output gap suggest a similar course of the business cycle in

Switzerland. While our baseline model is broadly in line with all remaining models in

terms of the level and variability, the model that includes sectoral output and employment

(model (1) SG) shows some divergence. The clearest difference can be observed in two

phases. First, our model indicates that the underutilization during the nineties was more

pronounced. Second, the boom leading up to the Financial crisis was even more extreme,

with the subsequent recession being less prominent and of shorter duration. As we have

seen in Figure 4, the latter fact is mostly attributable to a strong performance in the
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Figure 7: Comparison across policy institutions. Output gaps and annualized trend
growth rates in %. The output gaps from SECO, SNB, and KOF are each based on a production-
function approach. Vertical shaded areas highlight recessions.

sector trade, transport, and hospitality.

The comparably large amplitude of the output gap in our model can in part be

attributed to the rather smooth trend growth rate (right side of Figure 7). The standard

deviation of annualized potential growth in model (1) is 0.15% compared to 0.43%, 0.41%,

and 0.69% for the KOF, SECO, and SNB models and 0.46% for the baseline model (5).

Given mean potential growth rates of 1.7 − 1.8% across models, model (1) seems more

plausible from an economic perspective.22

Smoother estimates of potential output are desirable for multiple reasons. Potential

output is typically understood as the longer-term level of sustainable output, influenced

by persistent movements in investment, the labor market, and population growth (Ho-

drick, 2020, Quast and Wolters, 2022). In addition, fiscal and monetary policy makers

benefit from smooth trend estimates to prevent rapid policy changes, which is particu-

larly important given the delays in implementation and enforcement (Quast and Wolters,

2022). Indeed, many estimates of potential output react to transitory shocks (Coibion

et al., 2017), rendering them impractical from the perspective of a policy maker. Potential

output in our full model including sector output and employment alongside aggregation

22The somewhat erratic behaviour of the baseline trend compared to the KOF and SECO trends is due
to the fact the latter models do not allow for short-term shocks to total factor productivity and thus to
potential output. Instead, all variation stems from shocks to the slowly adjusting growth rate, thereby
leading to smoother estimates.
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constraints does not suffer from such excess cyclicality, suggesting that it reflects purely

structural developments.

Figure 8: Sources of model differences. The left panel decomposes the differences
between the output gap estimates of models (1) and (5) into its contribution by the aggregation
constraints, sector output, and sector employment. The right panel decomposes the differences
in annualized potential growth rates between the respective models. Vertical shaded areas
highlight recessions.

Figure 8 exposes some of the underlying factors between the difference in output

gap estimates. We split the differences in output gap and trend growth between models

(1) and (5) into contributions by the aggregation constraints, sector output, and sector

employment. To arrive at this decomposition, we estimate two complementary models:

First, model (1) without sector employment23, and second, we additionally drop the

aggregation constraints. Most of the divergence can be explained by the inclusion of sector

output and particularly its corresponding aggregation constraints. The latter make up

58% of the difference in output gap estimates while sector output and sector employment

account for 32% and 10%, respectively. For potential output growth, including sector

output accounts for 54% of the difference, additionally imposing constraints for 45% and

the inclusion of sector employment for 2%.24

23This corresponds to model (3) in Table 3 in Section 4.
24Needless to say, there are multiple ways to decompose the differences between model (1) and the

baseline model (5). Using alternative decompositions, the main conclusions remain valid, i.e., the
reported shares are similar.
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4 Real-time analysis

This section investigates pseudo real-time properties of our model regarding revisions and

output and inflation forecasting performance. To that end, we use data published until

2023 Q2 and estimate a variety of models in pseudo real-time, i.e., by cutting off recent

data from 2005 Q1 onward and subsequently extending the sample quarter by quarter.

As actual real-time data on sector output and employment has undergone substantial

changes in classification during this period, we limit our analysis on the impact of purely

filter induced revisions.

Our analysis includes four different specifications of our proposed sector gap model

(SG), two baseline specifications excluding sectoral information and four well-established

univariate filtering techniques. The models are summarized in Table 3. Vintages of the

output gap and annualized trend growth rates are shown in Figure A.6 in Appendix A.4.

The output gap and potential growth vintages differ in terms of volatility, amplitude,

and revisions. The revisions of the HP and BK filter are mostly right sided, i.e., the

business cycle towards the beginning of the sample is hardly revised, while the remaining

models revise the entire path. Notably, with the exception of the HP filter, most models

produce somewhat unreasonable estimates for the vintage at the onset of the COVID-

19 pandemic. However, expanding the sample further appears to push estimates back

to their prior path. In the following revision and forecasting exercises, we exclude the

recent COVID-19 pandemic to avoid outlier distortion and later report robustness checks

including this period.25

25It is highly unlikely that the real-time estimates at the beginning of the pandemic would have been used
by policy makers without some adaptation to account for the extreme shock in the first two quarters
of 2020.
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Table 3. Models

Abbreviation Model
(1) SG Full model including sector output and employment
(2) SG w/o trend shock Model (1) excluding shocks to trends
(3) SG w/o sector empl. Model (1) excluding sector employment
(4) SG w/o trend shock, w/o sector empl. Model (1) excluding shocks to trends, sector employment
(5) Baseline Model (1) excluding sector output and employment
(6) Baseline w/o trend shock Model (5) excluding shocks to trend
(7) HP Hodrick-Prescott filter (Hodrick and Prescott, 1997)
(8) BK Baxter-King filter (Baxter and King, 1999)
(9) Hamilton Hamilton filter (Hamilton, 1994)
(10) mod. Hamilton Modified Hamilton filter (Quast and Wolters, 2022)

Notes: Models included in the pseudo real-time analysis. SG denotes sector gap.

4.1 Revisions

An important property of output gaps is real-time reliability. As filtering methods are

prone to large revisions when new information becomes available, output gaps are of-

ten revised substantially, limiting its usefulness for monetary and fiscal policy makers

(Orphanides and van Norden, 2002).

In our revision analysis, we include all vintages from 2005 Q1 until 2017 Q4 and

define 2019 Q4 as the final vintage.26 Figure 9 shows the final (solid), initial (dashed),

and the corresponding revision (dotted) of the output gap estimates (top panel) and its

corresponding trends (bottom panel). Unsurprisingly, gap revisions have been the largest

prior to the Financial Crisis of 2007–2008, and for all methods but the BK filter, the

overheating was underestimated. The corresponding annualized potential growth rates

(bottom panel) appear somewhat more heterogeneous. Models (1) – (4) produce stable

potential growth with little revisions, while the two baseline models (5) and (6) allow for

more variations. Notably, the BK and Hamilton filters produce very volatile trend growth

rates, which are hard to justify from an economic point of view. The erratic behaviour

is somewhat mitigated for the modified version of the Hamilton filter, yet, its potential

growth rate clearly still reflects transitory developments.

Table 4 summarizes revision and reliability indicators of the considered models. We

26We implicitly assume that most revisions take place within two years after the initial release, which is
standard in the literature (Orphanides and van Norden, 2002, Quast and Wolters, 2022).
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(a) Output gap (in %)

(b) Potential growth (yoy in %)

Figure 9: Revisions, pseudo real-time, and final estimates. Pseudo real-time estimates
are estimated from vintage 2005 Q1 until 2019 Q4 at quarterly frequency. Vertical shaded areas
highlight recessions.

report mean and standard deviation of the final vintage and the revisions, the root mean

squared revisions (RMSR), and to account for differences in gap variability, the RMSR

normalizes by the standard deviation of the final vintage (NRMSR). Finally, we document

the correlation (COR) and the frequency of sign mismatches (SIGN) between initial and

final vintage.

Regarding output gap revisions, the first thing to note is that the NRMSR for models

(1) and (2) is lower than for those excluding employment (3) and (4) and the two baseline

specification (5) and (6). Second, the additional sectoral information of models (1) – (4)

increases the correlation to the final vintage. However, the sign conformity of the baseline

models is among the lowest across all models. The four competing models (7) – (10)
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show mixed results. The variability of the HP filter is similar to that of the final output

gap vintage itself and the BK revisions even surpass it. The two Hamilton filters both

produces a comparably volatile output gap, yet with a high correlation between initial to

final vintage and a sign mismatch of only 4–6%.

The inclusion of sectors also seems to stabilize trend growth rates and their revisions;

models (1) – (4) produce the least volatile final trend estimates, least volatile revisions,

and smallest RMSR.27 The ratio between the variance of final quarterly trend growth to

the one of the final output gap amounts to roughly 0.1-0.2% for models (1) – (4), 2% and

0.4% for the baseline models (5) and (6) and 1%, 17%, 9%, and 2% for the univariate

models.

Table 4. Revision and reliability indicators
Final vintage Revision Initial vs. Final
Mean SD Mean SD RMSR NRMSR COR SIGN

Output gap (in %)
(1) SG −0.28 1.42 0.32 0.83 0.88 0.62 0.81 0.15
(2) SG w/o trend shock −0.23 1.42 0.40 0.78 0.87 0.62 0.83 0.17
(3) SG w/o sector empl. −0.16 1.40 0.54 0.79 0.95 0.68 0.83 0.13
(4) SG w/o trend shock, w/o sector empl. −0.24 1.39 0.47 0.80 0.92 0.66 0.82 0.12
(5) Baseline −0.25 1.19 0.32 0.75 0.80 0.68 0.77 0.10
(6) Baseline w/o trend shock −0.26 1.29 0.29 0.84 0.88 0.69 0.76 0.10
(7) HP 0.00 1.07 −0.03 1.02 1.01 0.94 0.61 0.15
(8) BK −0.06 0.99 −0.35 1.45 1.47 1.48 0.75 0.29
(9) Hamilton 0.00 2.14 0.36 0.93 0.99 0.46 0.91 0.04
(10) mod. Hamilton 0.05 1.89 0.33 0.84 0.90 0.47 0.91 0.06

Trend growth (yoy in %)
(1) SG 1.82 0.18 −0.09 0.14 0.17 0.91 0.41 0.00
(2) SG w/o trend shock 1.81 0.19 −0.09 0.15 0.17 0.92 0.46 0.00
(3) SG w/o sector empl. 1.83 0.20 −0.12 0.16 0.20 1.02 0.46 0.00
(4) SG w/o trend shock, w/o sector empl. 1.82 0.21 −0.12 0.16 0.20 0.97 0.41 0.00
(5) Baseline 1.80 0.41 −0.08 0.27 0.28 0.69 0.82 0.00
(6) Baseline w/o trend shock 1.81 0.31 −0.11 0.33 0.35 1.12 0.67 0.00
(7) HP 1.78 0.44 −0.01 0.52 0.52 1.17 0.44 0.00
(8) BK 1.89 0.52 0.08 0.64 0.64 1.23 −0.55 0.00
(9) Hamilton 1.80 1.42 −0.11 0.28 0.30 0.21 0.99 0.00
(10) mod. Hamilton 1.84 0.90 −0.10 0.20 0.22 0.25 0.99 0.00

Notes: RMSR denotes the root mean squared revision and NRMSR the normalized RNSR, i.e.,
the ratio of RMSR to the standard deviation of the final estimate. COR denotes the correlation
and SIGN the frequency of sign mismatches between real-time and final estimates. Pseudo
real-time estimates are estimated from 2005 Q1 until 2017 Q4 at quarterly frequency and 2019
Q4 defines the final vintage.

The main findings remain valid when we expand the set of vintages to include the

COVID-19 pandemic (see Table A.3 in Appendix A.5). The revisions are elevated across

all models and so is the frequency of sign mismatches between initial and final output gap,
27For the sake of completeness, we include the NRSMR and COR for trend growth rates in the table,

even though their interpretation is not economically meaningful.
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which is not surprising given the size of the shock. Interestingly, the two baseline models,

the BK filter, and the Hamilton filter show sign mismatches for annualized potential

growth, highlighting one of the drawback of volatile trend estimates.

Overall, we find that the output gap and potential growth based on our sector model

are to some extend more reliable than their baseline model counterparts and those of

the univariate filters considered. Even though the two Hamilton filters show comparably

good real-time characteristics, the economic interpretation of potential growth is difficult.

4.2 Forecasting performance: Output

We follow Nelson (2008) and Quast and Wolters (2022) and compare the output growth

forecasting performance of the competing models. The intuition is simple, a negative

output gap should be indicative of an above average growth in the future, while a positive

gap should imply growth rates below trend.

We use the pseudo real-time estimates to predict the h quarter ahead output growth

using three specifications, i.e.,

yt+h − yt = c+ β̃hgt + εt+h|t, (8a)

yt+h − yt = c+ β̃hgt + γ̃h∆gt + εt+h|t, (8b)

yt+h − yt = c+
p∑

k=0
β̃hkgt−k + εt+h|t, (8c)

where yt denotes log output and gt is the pseudo real-time output gap estimate. If

the coefficient β̃h in Equation (8a) is negative, the output gap predicts trend-reverting

behavior of output growth over the h quarter horizon. The extension in Equation (8b)

controls for changes in the level of the gap (Nelson, 2008). In a similar notion, Equation

(8c) includes up to p ≤ 12 lags of the output gap, where p is chosen based on the Bayesian

Information Criterion using the final vintage.

We estimate Equations (8a) – (8c) for all models in Table 3 and pseudo real-time

vintages from 2005 Q1 until 2019 Q4. With the exception of the two Hamilton filters,

the coefficients β̃h in Equation (8a) are predominantly significantly negative for horizons
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h > 1, and increasing in absolute terms, indicating the ability of the gap to predict

trend-reverting dynamics of output growth (see Table A.4 in Appendix A.5).28 Table 5

reports the root mean squared errors (RMSE) of model (1) relative to the alternative

specifications and other filtering techniques. A value smaller one thus indicates superior

forecasting performance of model (1) and statistical significance is tested via a Diebold-

Mariano test.29 Across all three forecasting equations, our model performs equally well

as its closely related alternative specifications (2) – (4) and the baseline specifications

(5) and (6), i.e., not enabling transitory shocks to trend growth and dropping sectoral

output or employment does not alter the forecasting performance. We find evidence that

the forecasting performance of the Hodrick-Prescott filter (7) and the Baxter-King filter

(8) is inferior to that of model (1).30 However, the forecast errors of the Hamilton filter

(9) and its modified version (10) are not statistically different from those or model (1).

Overall, the results suggest that while the output gap in our model is more informative

in forecasting output growth than univariate filters, it’s forecasting accuracy does not

benefit from the additional information on sector output and employment. If we expand

the vintage sample to include the COVID-19 pandemic, the main conclusions are not

altered (see Table A.5 in Appendix A.5).

28For the two versions of the Hamilton filter, the frequency of statistically significant negative values at
the 10% level surpasses 90% only for horizons h > 8 and h > 7, respectively. At the same time, the
coefficients are comparably small, partly reflecting its relatively volatile output gap but also indicating
its inferior output forecasting performance.

29The null hypothesis states that there are no differences.
30The results for Equation (8c) suggest that while model (1) outperforms the HP-filter for one quarter

ahead projections, the opposite is true for some medium-term horizons.

34



Table 5. GDP forecast evaluation: Relative RMSE of model (1) SG to alternative
models

Horizon in quarters
1 2 3 4 5 6 7 8 9 10 11 12
Equation (8a): p = 0

(2) SG w/o trend shock 0.999 1.000 1.001 1.003 1.001 1.000 1.007 1.008 1.007∗∗ 1.003 1.004 1.008∗

(3) SG w/o sector empl. 1.004 1.000 1.003 1.001 0.995 0.995 0.994 0.989 0.989 0.989 0.983 0.978
(4) SG w/o trend shock, w/o sector empl. 1.006 1.004 1.004 1.004 0.999 0.994 0.994 0.989 0.989 0.986 0.979 0.971
(5) Baseline 1.010∗ 1.011 1.017 1.028 1.024 1.020 1.027 1.010 1.018 1.026 1.036 1.042
(6) Baseline w/o trend shock 1.002 1.005 1.008 1.014 1.006 1.000 1.004 0.995 1.007 1.021 1.032 1.048
(7) HP 0.920∗ 0.938∗ 0.911∗ 0.883∗ 0.867∗ 0.853∗ 0.835 0.837 0.837 0.834 0.825 0.820
(8) BK 1.007 0.977 0.940 0.891∗∗ 0.854 0.834 0.815 0.785 0.741 0.688 0.653 0.632
(9) Hamilton 1.018 1.001 0.996 0.982 0.961 0.944 0.934 0.943 0.965 0.977 0.988 0.979
(10) mod. Hamilton 1.020 0.999 0.988 0.967 0.940 0.922 0.916 0.925 0.942 0.948 0.947 0.929

Equation (8b): p = 0, including ∆gt

(2) SG w/o trend shock 1.000 1.001 1.003 1.004∗∗ 1.004 1.001 1.007 1.008 1.006∗ 1.003 1.003 1.005∗∗

(3) SG w/o sector empl. 1.004 0.999 1.000 0.998 0.993 0.991 0.990 0.987 0.986 0.987 0.982 0.976
(4) SG w/o trend shock, w/o sector empl. 1.004 1.002 1.002 1.003 0.998 0.993 0.994 0.991 0.991 0.990 0.982 0.972
(5) Baseline 0.987 0.996 1.001 1.008 1.004 1.003 1.007 1.001 1.011 1.023 1.031 1.035
(6) Baseline w/o trend shock 0.989 1.001 1.004 1.008 1.003 0.998 1.002 1.000 1.008 1.023 1.029 1.037
(7) HP 0.941∗ 0.961∗ 0.946 0.920 0.904 0.903 0.890 0.890 0.897 0.896 0.884 0.879
(8) BK 0.883 0.869 0.840 0.810 0.787∗ 0.777∗∗ 0.761∗ 0.748 0.705 0.675 0.649 0.627
(9) Hamilton 0.948 0.991 0.984 0.972 0.958 0.943 0.943 0.956 0.964 0.983 0.988 0.961
(10) mod. Hamilton 0.998 0.986 0.977 0.960 0.941 0.925 0.917 0.927 0.928 0.931 0.931 0.912

Equation (8c): p < 12 chosen by BIC
(2) SG w/o trend shock 1.000 0.987 0.992 1.019∗∗ 0.998 0.995 1.003 1.008 1.010 1.004 0.965 0.969
(3) SG w/o sector empl. 1.004 0.999 0.918 1.019 1.014 1.007 0.995 0.999 0.997 0.993 0.979 0.974
(4) SG w/o trend shock, w/o sector empl. 1.004 1.002 0.924 1.044 1.034 1.019 1.004 1.002 1.001 0.997 0.980 0.968
(5) Baseline 0.987 0.996 0.952 1.071 1.073 1.070 1.065 1.087 1.084 1.055 1.013 0.989
(6) Baseline w/o trend shock 0.989 1.001 1.004 1.048 1.040 1.032 1.028 1.058 1.059 1.040 1.017 0.994
(7) HP 0.941∗ 0.975 0.974 1.103 1.108 1.110 1.104 1.121∗∗∗ 1.099∗∗ 1.058 0.973 0.883
(8) BK 0.698∗ 0.435∗∗∗ 0.081∗∗∗ 0.107∗∗∗ 0.132∗∗ 0.166∗∗∗ 0.109∗∗ 0.103∗ 0.153∗∗∗ 0.133 0.123∗ 0.124∗

(9) Hamilton 0.948 0.991 0.895 1.036 1.032 1.048 1.056 1.105 1.101 1.081 1.065 1.034
(10) mod. Hamilton 0.998 0.971 0.912 1.037 1.039 1.068 1.105 1.165 1.153 1.113 1.037 1.011

Notes: *, **, and *** denote significant differences in forecasting accuracy at the 10, 5, and
1% level based on a two-sided Diebold and Mariano (1995) with squared loss. Pseudo real-time
estimates are estimated for vintages from 2005 Q1 until 2019 Q4 at quarterly frequency.

4.3 Forecasting performance: Inflation

We use two autoregressive distributed lag (ADL) Phillips curve specifications to evaluate

and compare the ability of the pseudo real-time output gap estimates to forecast inflation

(see e.g. Stock and Watson, 1999, Clark and McCracken, 2006, Kamber et al., 2018,

Quast and Wolters, 2022). Let Pt denote the quarterly CPI, πjt = lnPt − lnPt−j denotes

CPI inflation and gt is the pseudo real-time output gap estimate. We use j ∈ {1, 4}

to consider both quarter-on-quarter and year-on-year inflation. The two specifications

include contemporaneous and lagged values of the output gap and (change in) inflation,

i.e.,

πjt+h − πjt = c+
pπ∑

k=0
γ̃kh∆πjt−k +

pg∑
k=0

δ̃khgt−k + εt+h|t, (9a)

lnPt+h − lnPt = c+
pπ∑

k=0
γ̃kh∆ lnPt−k +

pg∑
k=0

δ̃khgt−k + εt+h|t. (9b)
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Equation (9a) predicts h quarter ahead inflation πjt+h while Equation (9b) makes pro-

jections for the total inflation rate over h quarters, i.e., π̄t+h = lnPt+h − lnPt.31 The

maximum lag sizes pπ, pg ∈ [0, 12] are again chosen via the Bayesian Information Crite-

rion based on the final vintage (Quast and Wolters, 2022).

Table 6 shows the root mean squared forecast errors of model (1) relative to the

competing models and a specification of Equations (9a) and (9b) without the output gap.

We again use the Diebold-Mariano test to check for significant differences in forecasting

accuracy of model (1) to the remaining models.

When it comes to forecasting quarterly inflation (Equation 9a), model (1) performs

similar to its alternative specifications, i.e., model (2) – (4), as well as its baseline spec-

ifications (5) and (6). While there is evidence that model (1) performs better than all

competing univariate models, especially for medium and long-term forecast horizons, only

for q-o-q inflation it partly outperforms the simple benchmark model without gap. How-

ever, projections for total h quarter inflation appear to benefit from adding a measure

of economic slack to the forecasting equation. Model (1) outperforms the benchmark

model for most horizons while differences to the remaining models are statistically in-

significant.32

Our results indicate a slight superiority of our model, which is in contrast to recent

literature. Stock and Watson (2007, 2008) and Blanchard et al. (2015)—among others—

document a decrease in predictability of inflation over past decades. In addition, naive

benchmark models have been proven almost impossible to beat (Stock and Watson, 2007,

2008, Dotsey et al., 2017, Kamber et al., 2018, Forbes et al., 2021, Quast and Wolters,

2022). While most of this research focuses on the United States, similar findings have

been reported for Switzerland. For instance, Gerlach (2017) finds that the link between

31Specification (9a) imposes a unit root in inflation which is in line with our assumption that trend
inflation follows a random walk.

32Table A.6 in Appendix A.5 reports the results including the COVID-19 pandemic. The main conclu-
sions remain unchanged. Not all that surprising, the benefit of including the output gap in benchmark
projections of total h period ahead inflation is less stable for short-horizons, since the pandemic involved
a large demand shock unrelated to past economic developments.
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inflation and economic slack was lost in the early 1990s and Stuart (2018) documents a

reduction of the importance of the output gap starting in 1993. In contrast, Hasenzagl

et al. (2022) find a well-identified Phillips curve for the United States, using a medium-

size semistructural time series model which also incorporates energy price fluctuations.

Similarly, Coibion and Gorodnichenko (2015) stress the importance of oil prices which

have lead to an increase in household inflation expectations following the Great Financial

Crisis, thereby accounting for the missing disinflation. As suggested by the inflation gap

decomposition in Section 3.4, we also find a sizeable cycle in CPI inflation unrelated to the

real economy, driven mainly by fluctuations in energy prices and the exchange rate. At

the same time, a Phillips curve relationship informative for future inflation developments

is supported by the data.

Table 6. Inflation forecast evaluation: Relative RMSE of model (1) SG to alterna-
tive models

Horizon in quarters
1 2 3 4 5 6 7 8 9 10 11 12
Equation (9a): h period ahead y-o-y inflation (πt+h = Pt+h − Pt+h−4)

(2) SG w/o trend shock 0.999 0.998 0.998 0.996 0.996 0.997 0.998 0.960 1.008∗∗∗ 1.010∗∗ 1.011 1.009
(3) SG w/o sector empl. 0.999 0.998 0.999 1.002 1.000 0.999 1.000 0.990 0.926 0.994 1.005 1.011
(4) SG w/o trend shock, w/o sector empl. 1.000 1.000 1.001 1.001 0.998 0.997 0.997 0.999 0.932 0.996 0.998 1.006
(5) Baseline 1.011 1.006 1.010 1.015 1.012 1.007 1.005 0.962 0.972 1.161 1.035 0.997
(6) Baseline w/o trend shock 1.001 1.007 1.011 1.016 1.010 1.003 1.000 0.957 0.944 1.007 0.990 0.974
(7) HP 1.005 1.002 0.999 0.996 0.981 0.963∗∗ 0.948∗ 0.897 0.880∗∗∗ 0.993 0.888∗∗∗ 0.832∗∗∗

(8) BK 1.056 0.983 0.862 0.093∗∗∗ 0.095∗∗∗ 0.061∗∗ 0.060∗ 0.080∗∗ 0.073∗∗∗ 0.116∗∗∗ 0.094∗ 0.076∗

(9) Hamilton 1.020 0.998 0.997 1.007 0.798∗ 0.797 0.881 0.809∗ 0.836∗∗∗ 0.929 0.777 0.844
(10) mod. Hamilton 1.014 0.970 0.952 0.964 0.918∗ 0.769∗ 0.849∗∗∗ 0.106 0.798∗∗∗ 0.909 0.849 0.858
Only infl. 1.004 0.991 0.991 1.018 0.989 0.970 0.963 0.924 0.929 1.062 0.975 0.927

Equation (9a): h period ahead q-o-q inflation (πt+h = Pt+h − Pt+h−1)
(2) SG w/o trend shock 0.997∗∗ 0.999 0.997 1.000 1.000 0.996∗ 0.997 0.997 0.996 1.003 1.002 1.001
(3) SG w/o sector empl. 0.999 1.001 1.003 1.001 1.002 1.005 1.003 0.997 1.000 1.009 1.010 1.007
(4) SG w/o trend shock, w/o sector empl. 1.000 1.002 1.001 1.000 0.999 0.997 1.000 0.996 1.001 1.005 1.001 1.004
(5) Baseline 1.005 1.010 1.014 1.017 1.009 1.013 1.007 0.983 0.990 1.008 0.997 0.985
(6) Baseline w/o trend shock 1.006 1.010 1.014 1.013 0.998 0.999 1.007 0.986 0.988 1.002 0.991 0.971
(7) HP 0.990 0.997 0.995 0.973 0.959 0.952∗ 0.932∗∗ 0.914∗∗ 0.939∗ 0.925∗∗ 0.921∗∗ 0.914∗∗

(8) BK 0.993 0.927 0.883 0.851 0.922 0.954 1.014 0.980 1.016 0.981 0.978 0.977
(9) Hamilton 1.013 0.984 0.979 0.944 0.953 0.975 1.027 1.040 1.013 0.972 0.943 0.929
(10) mod. Hamilton 0.954 0.959 0.961 0.948 0.907 0.930 0.983 0.941 0.991 0.982 0.939 0.913
Only infl. 0.992 0.908 0.872 0.965 0.919 0.903∗∗ 0.859∗∗ 0.877 0.907 0.897∗∗∗ 0.890∗∗∗ 0.843∗∗∗

Equation (9b): h period inflation (π̄t+h = lnPt+h − lnPt)
(2) SG w/o trend shock 1.001 0.999 0.997 0.997 0.997 0.998 0.999 0.999 0.998 0.999 1.000 1.000
(3) SG w/o sector empl. 1.005∗ 1.006 1.008 1.011 1.005 1.004 1.002 1.000 0.998 0.997 0.996 0.994
(4) SG w/o trend shock, w/o sector empl. 1.006 1.006 1.007 1.009 1.005 1.004 1.002 0.999 0.997 0.995 0.994 0.992
(5) Baseline 1.001 1.007 1.013 1.014 0.999 0.996 0.998 1.002 1.000 1.000 1.001 1.001
(6) Baseline w/o trend shock 1.007 1.014 1.020 1.021 1.004 1.001 1.001 1.003 0.999 0.998 0.999 0.983∗∗∗

(7) HP 1.014 1.028 1.028 1.023 1.020 1.018 1.014 1.016 0.974 1.003 0.998 0.983
(8) BK 0.968 0.965 0.969 0.991 0.953 0.945 0.951 0.964 0.931 0.914 0.926 0.934
(9) Hamilton 0.970 1.008 1.040 1.062 0.996 0.975 0.977 0.987 0.954 0.939 0.955 0.963
(10) mod. Hamilton 0.972 1.010 1.043 1.068 1.005 0.985 0.983 0.990 0.956 0.940 0.951 0.956
Only infl. 0.981 0.939∗∗ 0.906∗ 0.873∗ 0.790∗ 0.752∗∗ 0.736∗∗ 0.729∗∗ 0.695∗∗ 0.681∗∗∗ 0.698∗∗∗ 0.705∗∗

Notes: *, **, and *** denote significant differences in forecasting accuracy at the 10, 5, and
1% level based on a two-sided Diebold and Mariano (1995) with squared loss. Pseudo real-time
estimates are estimated for vintages from 2005 Q1 until 2019 Q4 at quarterly frequency.
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5 Conclusion

Most conventional multivariate methods estimate the output gap consistent with infla-

tion or unemployment dynamics. We go beyond this approach and propose a multivariate

state space model in which potential output and the output gap match the dynamics of

the underlying production sectors. The complementary information on sector output and

employment allows for a decomposition of economic fluctuations and long-term develop-

ments into its driving factors, thereby providing a more profound and useful estimate.

Tracking the economic dynamics of individual sectors, rather than the economy as a

whole, can increase the efficiency of fiscal and monetary policy actions and avoid pro-

cyclical outcomes.

We illustrate the proposed model to document the dynamics of the Swiss economy,

revealing substantial divergence among the considered production sectors. Manufacturing

and financial and other economic services are the main drivers of the Swiss business cycle,

which demonstrates their dependence on fluctuations in the global economy. The slow

decline in growth potential over the past 20 years is mainly due to a slowdown in the sector

trade, transport and hospitality, while structural shifts in the manufacturing sector toward

higher productivity activities have cushioned this development. A comparison of our

estimate of the business cycle to those of national institutions reveals some divergences.

For instance, our model points to a stronger overheating prior to the Great Financial

Crisis and a faster recovery afterwards. Our output gap decomposition exposes that the

latter is caused by an expansion in merchanting activities.

In a comprehensive pseudo real-time evaluation, we show that the additional sub-

sector information helps to decrease filter induced revisions of the output gap and stabi-

lizes potential output growth. Only the two Hamilton filters possesses better real-time

characteristics, however, considering the erratic behavior of the corresponding trends and

thus lack of economic meaningfulness, their usefulness is limited. Compared to univariate

filters, the SG model yields better forecasting accuracy of output growth and inflation.
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In contrast to recent literature, we find evidence that conditioning on our SG improves a

univariate inflation forecast excluding a measure of economic slack.

Our results suggest that augmenting conventional multivariate models with sub-sector

data offers a variety of advantages, with the only disadvantage being higher computational

cost. We believe that our model provides a transparent narrative that is consistent with

the data and helpful for the policy debate.

References

Baxter, M. and R. G. King (1999). Measuring business cycles: Approximate band-pass

filters for economic time series. Review of Economics and Statistics 81 (4), 575–593.

Blagrave, P., M. R. Garcia-Saltos, M. D. Laxton, and F. Zhang (2015). A simple multi-

variate filter for estimating potential output. IMF Working Papers 79.

Blanchard, O., E. Cerutti, and L. Summers (2015). Inflation and activity–two explo-

rations and their monetary policy implications. Technical report, National Bureau of

Economic Research.

Blanchard, O. J. and D. Quah (1989, September). The Dynamic Effects of Aggregate

Demand and Supply Disturbances. American Economic Review 79 (4), 655–673.

Chib, S. (1993). Bayes regression with autoregressive errors: A Gibbs sampling approach.

Journal of Econometrics 58 (3), 275–294.

Clark, P. K. (1987). The cyclical component of US economic activity. Quarterly Journal

of Economics 102 (4), 797–814.

Clark, T. E. and M. W. McCracken (2006). The predictive content of the output gap for

inflation: Resolving in-sample and out-of-sample evidence. Journal of Money, Credit

and Banking 38 (5), 1127–1148.

39



Cochrane, J. H. (1994). Permanent and transitory components of GNP and stock prices.

Quarterly Journal of Economics 109 (1), 241–265.

Cogley, T., G. E. Primiceri, and T. J. Sargent (2010). Inflation-gap persistence in the

US. American Economic Journal: Macroeconomics 2 (1), 43–69.

Coibion, O. and Y. Gorodnichenko (2015). Is the Phillips curve alive and well after

all? Inflation expectations and the missing disinflation. American Economic Journal:

Macroeconomics 7 (1), 197–232.

Coibion, O., Y. Gorodnichenko, and M. Ulate (2017). The cyclical sensitivity in estimates

of potential output. Technical report, National Bureau of Economic Research.

Diebold, F. X. and R. S. Mariano (1995). Comparing predictive accuracy. Journal of

Business and Economic Statistics 13 (3), 253–263.

Doran, H. E. (1992). Constraining Kalman filter and smoothing estimates to satisfy

time-varying restrictions. Review of Economics and Statistics 74 (3), 568–572.

Dotsey, M., S. Fujita, and T. Stark (2017). Do Phillips curves conditionally help to

forecast inflation? International Journal of Central Banking 14 (4), 43–92.

Dupasquier, C., A. Guay, and P. St-Amant (1999). A survey of alternative methodologies

for estimating potential output and the output gap. Journal of Macroeconomics 21 (3),

577–595.

Durbin, J. and S. J. Koopman (2012). Time series analysis by state space methods.

Oxford University Press.

Forbes, K., L. Kirkham, and K. Theodoridis (2021). A trendy approach to UK inflation

dynamics. The Manchester School 89, 23–75.

Gerlach, S. (2017). The output-inflation trade-off in switzerland, 1916–2015. CEPR

Discussion Paper DP11714.

40



Gerlach, S. and F. Smets (1999). Output gaps and monetary policy in the EMU area.

European Economic Review 43 (4-6), 801–812.

Gordon, R. J. (2014). The turtle’s progress: Secular stagnation meets the headwinds.

In Secular stagnation: facts, causes and cures, Volume 2014, pp. 47–60. CEPR Press

London.
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A Appendix

A.1 Decompositions

The decomposition of potential output growth and trend employment growth into its

sector contributions directly follows by the aggregation constraints detailed in Section

2.2.

To facilitate the decomposition of the output gap into a weighted average of sector

output gaps, we assume that relative previous period prices wp
it for real potential output

Tt are the same as for real output Yt, i.e.,

Tt =
n∑
i

wp
itTit.

Hence,

gt = Yt

Tt

− 1

=
∑n

i w
p
itYit

Tt

Tit

Tit

− 1

=
n∑
i

wp
itw

T
it

Yit

Tit

− 1

=
n∑
i

wp
itw

T
it

(
Yit

Tit

− 1
)

+
n∑
i

wp
itw

T
it − 1

=
n∑
i

wp
itw

T
itgit,

where wT
it = Tit/Tt denotes relative potential output in sector i. The decomposition of the

employment gap follows analogously.

A.2 Estimation algorithm

To estimate our model parameters and unobserved states, we adopt a Gibbs sampling

procedure involving simulation smoothing based on Durbin and Koopman (2012) and

related articles.

The parameter set Θ = {θj}j contains the subsets

θτ = σ2
τ , θµ = σ2

µ, θg =
{
ϕ1, ϕ2, σ

2
c

}
,
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θτi
= σ2

τi
, θµi

= σ2
µi
, θci

=
{
βi, ϕi1, ϕi2, σ

2
ic

}
,

θeτ = σ2
τe
, θeµ = σ2

µe
, θce =

{
ψe0, ψe1, ψe2, ϕe1, ϕe2, σ

2
ec

}
,

θeiτ = σ2
τe

i
, θeiµ = σ2

µe
i
, θce

i
=
{
ψei0, ψei1, ψei2, ϕei1, ϕei2, σ

2
eic

}
,

θuτ = σ2
τu
, θuµ = σ2

µu
, θcu =

{
ψu0, ψu1, ψu2, ϕu1, ϕu2, σ

2
uc

}
,

θπτ = σ2
τπ
, θcπ =

{
ψπ0, ψπ1, ψπ2, , ϕπ1, ϕπ2, σ

2
πc

}
,

where all trend parameters are listed in the left column, all drift coefficients in the middle

column, and all cycle and loading parameters in the right column. Assuming a block

independence structure, we have that

p (θ) =
∏

θj∈Θ
p (θj) ,

where θ stacks all components of Θ. Thus, the distribution of the parameters factorizes

into all trend, drift, and cycle and loading components, respectively.

A.2.1 Trends

For the local linear trends, the only two parameters are the trend and drift innovation

variances σ2
τ and σ2

µ. For notational convenience, we drop the subscripts. We impose

π
(
σ2
)

= IG (s0, ν0)

as prior distribution. For the trend τ = {τt}t, using standard results, we obtain

p
(
σ2
∣∣∣τ) =

T∏
t=3

p
(
εt

∣∣∣σ2
)
p
(
σ2
)

∝ IG (s∗, ν∗)

with

ν∗ = ν0 + T,

s∗ = s0 +
n∑

t=3
ε2

t ,

where εt = ετt = ∆τt − µt. For the drift, we replace τ with µ = {µt}t and set εt =

εµt = ∆µt. For trend inflation, we assume a random walk without drift, for which the

innovation term simplifies to εt = ετt = ∆τt.
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A.2.2 Cycles and loadings

All of our observation equations are variations of a linear model with autoregressive errors,

for which we apply the results of Chib (1993). Let now

yt = x′
tβ + εt, Φ (L) εt = ut, ut ∼ N

(
0, σ2

)
,

where Φ (L) = 1 − ϕ1L− . . . − ϕpL
p, β is a s× 1 vector of coefficients and xt is a s× 1

vector of covariates. Define

y∗
t = Φ (L) yt, x∗

t = Φ (L) xt,

for t = p+ 1, . . . , T and y∗ = {y∗
t }t ,y = {yt}t and X∗ = {x∗}t are of dimension T − p× 1

and T − p× s, respectively.

We assume the prior distribution of the involved parameters factorizes, i.e.,

π
(
β, σ2,ϕ

)
= π (β) π

(
σ2
)
π (ϕ)

with ϕ = (ϕ1, . . . , ϕp)′ and for the individual prior distributions,

β ∼ Ns

(
β0,A−1

0

)
,

σ2 ∼ IG (ν0/2, δ0/2) ,

ϕ ∼ Np

(
ϕ0,Φ

−1
0

)
Iϕ∈Sϕ

.

The posterior distribution of the coefficient vector is given by

β|y ∼ Ns

(
β̃0, Ã−1

)
,

Ã = A0 + σ−2X∗′X∗,

β̃ = Ã−1
(
A0β0 + σ−2X∗y∗

)
,

that of the variance by

σ2|y,β,ϕ ∼ IG
(
T − p+ ν0 + k

2 ,
δ0 + dβ

2

)
,

dβ = (y∗ − X∗β)′ (y∗ − X∗β) ,
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and the autoregressive coefficient by

ϕ|y,β, σ2 ∼ Np

(
ϕ̃, Φ̃−1

)
Iϕ,

Φ̃ = Φ0 + σ−2E′E,

ϕ̃ = Φ̃−1
(
Φ0ϕ0 + σ−2E′E

)
.

where E = {εt}t , εt = (εt−1, . . . , εt−p) is a T − p× p matrix (Chib, 1993).

It is straightforward to see that each observation equation is a subgroup of this model.

For instance, for the sector cycle equations we have yit − τit = βigt + cit with cit =

ϕi1cit−1 + ϕi2cit−2 + εcit, i.e., the above model is of dimension s = 1 and p = 2. In the

case of the output gap, the covariate and coefficient vectors xt and β are dropped.

A.2.3 Algorithm

The algorithm is structured in four blocks: The first three blocks sample the parameter

vector θk conditional on the states αk−1 and the last block samples αk conditional on

θk. More precisely, the first block deals with all trend equations in separate Gibbs steps.

In the second block, the parameters of the equations involving loading factors and au-

toregressive cycles are drawn in another Gibbs step. The third block is an additional

Gibbs step to draw the parameters of the output gap equation. The final block applies

simulation smoothing as suggested by Durbin and Koopman (2012) conditional on the

previously drawn parameters.

Initialization: We use the prior means to initialize all parameters θ0 and apply the

Kalman filter and smoother based on those parameters to initialize the states α0.

Recursion: For k = 1, . . . , K:

1. Trends (Gibbs steps): Draw all trend variances σ2k|τ k−1.

2. Sector output, aggregate and sector employment, unemployment and inflation (Gibbs

steps): For each equation, draw autoregressive coefficients, loading coefficients, and
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cycle variances, i.e.,

ϕk
∣∣∣ σ2k−1

,αk−1

βk
∣∣∣ ϕk, σ2k−1

,αk−1

σ2k
∣∣∣ βk,ϕk,αk−1

sequentially in this order as detailed in Section A.2.1. If the characteristic polyno-

mial Φk (x) has roots inside the unit circle, redraw ϕk.

3. Output gap (Gibbs step): Draw autoregressive coefficients and cycle variance, i.e.,

ϕk
∣∣∣ σ2k−1

,αk−1

σ2k
∣∣∣ ϕk,αk−1

sequentially in this order as detailed in Section A.2.1, conditional on the trend τ k−1

and cycle gk−1. If the characteristic polynomial Φk (x) has roots inside the unit

circle, redraw ϕk.

4. States: Apply the simulation smoothing recursion (Durbin and Koopman, 2012) to

sample the unobserved states conditional on the parameters

αk
∣∣∣ θk.

Discard the first Kb draws of
{
θk
}

k
and {α}k and finally select each 10th draw from the

remaining sample.

A.3 Robustness

A.3.1 Number of production sectors

To assess the sensitivity of our model to the number of sectors, we split the 5 output and

employment sectors into 8 and re-estimate our main model for Switzerland. The aggre-

gate sector trade, transport and hospitality is split up into its three sub-components.33

33The second component actually consists of transport and communication services.
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In addition, financial and other economic services is dissected into financial services and

the remaining economic services, the latter of which comprises real estate activities, pro-

fessional, scientific, and technical services and finally administrative and support service

activities. Figure A.1 compares the resulting latent series (dotted) to the main model

(solid) and the baseline model without sectors (solid grey) and additionally features the

differences between the main model and the version with more sectors (dashed). The dif-

ferences are negligible, especially compared to those that prevail to the baseline model.

(a) Gap (in %)

(b) Trend growth (yoy in %)

(c) Drift (qoq in %)

Figure A.1: Sensitivity to the number of sectors. The plots compare model (1) which
includes 5 production and employment sectors to an alternative model with 8 sectors, and to the
baseline model (5) without sectors. The dashed line defines the difference between the 5-sector
and 8-sector model. Vertical shaded areas highlight recessions.
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A.4 Figures

Figure A.2: Prior and posterior distribution of sector employment loadings on the
output gap. The prior distributions are specified as in Table 1. The posterior densities are
based on 50’000 draws, with the first 25’000 being discarded. Of the remaining draws, all but
every 10th draw are discarded.
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(a) Trend variances

(b) Trend drift variances
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(c) Cycle variances

Figure A.3: Prior and posterior distribution of trend, drift, and cycle variances.
The prior distributions are specified as in Table 1. The posterior densities are based on 50’000
draws, with the first 25’000 being discarded. Of the remaining draws, all but every 10th draw
are discarded.
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(a) Sector output trends

(b) Sector employment trends

Figure A.4: Sector output and employment trends. Output in mio CHF (upper panel)
and full-time equivalent employment in thousand (lower panel). The original data are dashed
and the trends solid. The shaded areas indicate 68% HPDI. Vertical shaded areas highlight
recessions.
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(a) Sector output drifts

(b) Sector employment drifts

Figure A.5: Sector output and employment drifts. Output and employment growth in
%. The original data are dashed and the trends solid. The shaded areas indicate 68% HPDI.
Vertical shaded areas highlight recessions.
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(a) Output gap (in %)

(b) Potential growth (yoy in %)

Figure A.6: Pseudo real-time estimates. Pseudo real-time estimates are computed for
the vintages from 2005 Q1 until 2023 Q2 at quarterly frequency. Vertical shaded areas highlight
recessions.
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A.5 Tables

Table A.1. Gap correlations

Output (1) (2) (3) (4) (5) (6) Employ-
ment

Unem-
ploy-
ment

Inflation (sector)
empl.

nom.
weights

Output 1.00 0.60 1.00
(1) Manufacturing 0.74 1.00 0.39 0.22
(2) Construction 0.02 0.05 1.00 0.63 0.05
(3) Trade, transport, and hospitality 0.54 −0.03 0.06 1.00 0.47 0.25
(4) Financial and other economic services 0.54 0.38 −0.40 −0.10 1.00 0.27 0.26
(5) Government and consumer-related services 0.47 0.35 0.32 0.49 −0.31 1.00 0.21 0.19
(6) Adjustments 0.78 0.43 −0.23 0.40 0.63 0.20 1.00 0.03
Employment 0.60 0.37 0.02 0.49 0.14 0.51 0.40 1.00
Unemployment −0.67 −0.47 0.17 −0.43 −0.34 −0.32 −0.53 −0.75 1.00
Inflation 0.57 0.60 0.10 0.22 0.10 0.46 0.39 0.29 −0.38 1.00

Notes: Correlation coefficients between the output gap, sector output gaps, the employment
and unemployment gap, the inflation gap and (sector) employment gaps. The weights reflect
average nominal output weights over the sample period.

Table A.3. Revision and reliability indicators including the COVID-19 pandemic
Final vintage Revision Initial vs. Final
Mean SD Mean SD RMSR NRMSR COR SIGN

Output gap (in %)
(1) SG −0.21 1.61 0.44 0.88 0.98 0.61 0.85 0.24
(2) SG w/o trend shock −0.18 1.61 0.46 0.86 0.97 0.60 0.87 0.29
(3) SG w/o sector empl. −0.22 1.58 0.53 0.90 1.04 0.66 0.84 0.26
(4) SG w/o trend shock, w/o sector empl. −0.18 1.58 0.60 0.87 1.05 0.66 0.85 0.27
(5) Baseline −0.27 1.34 0.05 0.93 0.93 0.69 0.74 0.11
(6) Baseline w/o trend shock −0.25 1.49 0.09 1.05 1.05 0.70 0.75 0.11
(7) HP −0.00 1.30 0.00 1.04 1.03 0.79 0.74 0.26
(8) BK 0.14 1.43 −0.03 1.71 1.70 1.18 0.63 0.33
(9) Hamilton −0.00 2.38 0.37 1.07 1.13 0.47 0.90 0.11
(10) mod. Hamilton 0.06 2.13 0.38 0.90 0.97 0.46 0.92 0.17

Trend growth (yoy in %)
(1) SG 1.78 0.15 −0.11 0.16 0.19 1.30 0.68 0.00
(2) SG w/o trend shock 1.78 0.15 −0.11 0.16 0.20 1.30 0.67 0.00
(3) SG w/o sector empl. 1.78 0.16 −0.14 0.19 0.23 1.42 0.66 0.00
(4) SG w/o trend shock, w/o sector empl. 1.78 0.16 −0.13 0.17 0.21 1.32 0.69 0.00
(5) Baseline 1.75 0.47 −0.04 0.34 0.34 0.73 0.86 0.02
(6) Baseline w/o trend shock 1.75 0.31 −0.08 0.42 0.43 1.37 0.69 0.02
(7) HP 1.75 0.42 −0.02 0.52 0.52 1.23 0.44 0.00
(8) BK 1.76 0.88 −0.06 0.90 0.89 1.01 −0.27 0.03
(9) Hamilton 1.69 1.45 −0.11 0.69 0.69 0.48 0.90 0.05
(10) mod. Hamilton 1.76 0.86 −0.11 0.32 0.33 0.38 0.95 0.00

Notes: RMSR denotes the root mean squared revision and NRMSR the normalized RMSR, i.e.,
the ratio of RMSR to the standard deviation of the final estimate. COR denotes the correlation
and SIGN the frequency of sign mismatches between real-time and final estimates. Pseudo
real-time estimates are estimated from 2005 Q1 until 2021 Q2 at quarterly frequency and 2023
Q4 defines the final vintage.
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Table A.4. GDP forecast evaluation: Average β̃ coefficients
Horizon in quarters

1 2 3 4 5 6 7 8 9 10 11 12
(1) SG −0.11 −0.29† −0.44† −0.59† −0.71† −0.84† −0.98† −1.11† −1.22† −1.30† −1.39† −1.49†

(2) SG w/o trend shock −0.11 −0.29† −0.44† −0.59† −0.71† −0.83† −0.98† −1.11† −1.21† −1.30† −1.39† −1.49†

(3) SG w/o sector empl. −0.12 −0.29† −0.45† −0.60† −0.72† −0.85† −0.99† −1.13† −1.23† −1.32† −1.41† −1.51†

(4) SG w/o trend shock, w/o sector empl. −0.12 −0.29† −0.45† −0.59† −0.72† −0.85† −0.99† −1.12† −1.23† −1.31† −1.41† −1.50†

(5) Baseline −0.17† −0.41† −0.63† −0.82† −0.98† −1.13† −1.30† −1.44† −1.55† −1.63† −1.71† −1.80†

(6) Baseline w/o trend shock −0.16† −0.38† −0.58† −0.76† −0.90† −1.04† −1.20† −1.33† −1.43† −1.50† −1.58† −1.66†

(7) HP −0.17† −0.43† −0.67† −0.88† −1.04† −1.19† −1.37† −1.52† −1.62† −1.70† −1.78† −1.88†

(8) BK −0.07 −0.26 −0.52 −0.79† −1.02† −1.22† −1.39† −1.54† −1.68† −1.81† −1.92† −2.02†

(9) Hamilton −0.01 −0.01 −0.05 −0.08 −0.11 −0.16 −0.23 −0.30 −0.36† −0.43† −0.49† −0.57†

(10) mod. Hamilton −0.02 −0.02 −0.07 −0.13 −0.20 −0.27 −0.36 −0.44† −0.52† −0.59† −0.68† −0.78†

Notes: † signals a rejection frequency of the null hypothesis of β̃ = 0 at the 10% level of larger
or equal 90%. Pseudo real-time estimates are estimated for vintages from 2005 Q1 until 2019
Q4 at quarterly frequency.

Table A.5. GDP forecast evaluation including the COVID-19 pandemic: Relative
RMSE of model (1) SG to alternative models

Horizon in quarters
1 2 3 4 5 6 7 8 9 10 11 12
Equation (8a): p = 0

(2) SG w/o trend shock 0.999 0.998 0.999 1.000 0.998 0.997 1.003 1.005 1.005 1.002 1.002 1.007∗

(3) SG w/o sector empl. 1.003 1.003 1.006 1.007 1.001 1.000 0.998 0.992 0.991 0.991 0.984 0.978
(4) SG w/o trend shock, w/o sector empl. 1.001 1.003 1.004 1.005 1.001 0.996 0.996 0.990 0.990 0.987 0.979 0.971
(5) Baseline 0.981 0.965 0.966 0.964 0.954 0.950 0.958 0.948 0.963 0.977 0.989 1.003
(6) Baseline w/o trend shock 0.983 0.966 0.965 0.960 0.949 0.944 0.949 0.945 0.964 0.983 0.996 1.020
(7) HP 0.973 0.948 0.907∗∗ 0.888∗ 0.879∗ 0.861∗ 0.833∗ 0.831 0.832 0.827 0.820 0.813
(8) BK 0.946 1.006 0.974 0.938 0.907 0.870 0.824∗ 0.776 0.727 0.671 0.637 0.614
(9) Hamilton 0.958 0.960 0.960 0.940 0.918 0.906 0.903 0.916 0.941 0.959 0.968 0.968
(10) mod. Hamilton 0.956 0.963 0.959 0.939 0.920 0.907 0.905 0.914 0.932 0.941 0.939 0.926

Equation (8b): p = 0, including ∆gt

(2) SG w/o trend shock 0.999 0.997 0.998 1.000 0.999 0.996 1.003 1.004 1.003 1.000 0.999 1.001
(3) SG w/o sector empl. 1.006 1.002 1.006 1.006 1.001 0.997 0.996 0.991 0.989 0.989 0.983 0.979
(4) SG w/o trend shock, w/o sector empl. 1.004 0.998 1.000 0.999 0.997 0.991 0.993 0.989 0.989 0.989 0.981 0.973
(5) Baseline 0.979 0.946 0.951 0.957 0.952 0.956 0.964 0.955 0.972 0.985 0.994 0.990
(6) Baseline w/o trend shock 1.006 0.973 0.963 0.959 0.954 0.953 0.956 0.954 0.967 0.986 0.994 0.991
(7) HP 1.004 0.995 0.974 0.957 0.956 0.958 0.941 0.912 0.917 0.910 0.907 0.898
(8) BK 0.731 0.711 0.735 0.804∗ 0.816∗∗ 0.817∗∗ 0.800∗ 0.767 0.714 0.672 0.663 0.637
(9) Hamilton 1.042 0.994 0.986 0.963 0.945 0.937 0.932∗ 0.923∗ 0.937∗∗∗ 0.956 0.944 0.925
(10) mod. Hamilton 0.944 0.948 0.940 0.906 0.898 0.893 0.881 0.890 0.891 0.888 0.866 0.866

Equation (8c): p < 12 chosen by BIC
(2) SG w/o trend shock 0.999 0.998 0.998 0.999 0.996 0.991 1.001 1.007 1.007 0.997 0.994 1.000
(3) SG w/o sector empl. 1.003 1.003 1.006 1.028 1.024 1.016 1.006 0.979 1.002 0.980 0.987 0.978
(4) SG w/o trend shock, w/o sector empl. 1.001 1.003 1.002 1.038 1.032 1.019 1.007 0.978 1.005 0.983 0.989 0.970
(5) Baseline 0.981 0.965 0.955 0.997 0.996 1.008 1.015 1.018 1.016 0.992 0.978 0.945
(6) Baseline w/o trend shock 0.983 0.966 0.972 0.981 0.977 0.972 0.979 0.976 0.986 0.980 0.963 0.948
(7) HP 0.973 0.949 0.976 1.117 1.139 1.114 1.140∗∗ 1.049 1.065 0.998 0.965 0.899
(8) BK 0.612 0.126 0.021 0.030 0.032 0.044 0.053 0.049 0.122∗∗ 0.086 0.108∗∗ 0.115∗∗∗

(9) Hamilton 0.958 0.960 0.890∗ 1.066 1.074 1.089 1.083 1.085 1.093 1.078 1.079 1.038
(10) mod. Hamilton 0.956 0.963 0.873∗ 1.019 1.052 1.098 1.110 1.150 1.132 1.109 1.057 1.013

Notes: *, **, and *** denote significant differences in forecasting accuracy at the 10, 5, and
1% level based on a two-sided Diebold and Mariano (1995) with squared loss. Pseudo real-time
estimates are estimated for vintages from 2005 Q1 until 2023 Q2 at quarterly frequency.
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Table A.6. Inflation forecast evaluation including the COVID-19 pandemic: Rela-
tive RMSE of model (1) SG to alternative models

Horizon in quarters
1 2 3 4 5 6 7 8 9 10 11 12
Equation (9a): h period ahead y-o-y inflation (πt+h = Pt+h − Pt+h−4)

(2) SG w/o trend shock 0.999 0.998 0.998 0.997 0.998 0.997 0.998 0.995 0.996 0.999 0.999 1.002
(3) SG w/o sector empl. 1.000 1.000 1.001 1.003 1.003 1.002 1.003 1.003 1.001 0.996 0.987 0.981
(4) SG w/o trend shock, w/o sector empl. 1.000 1.000 1.001 1.001 1.000 0.999 0.997 0.999 0.998 0.994 0.984 0.980
(5) Baseline 0.998 0.998 0.999 0.996 0.990 0.984 0.965 0.965 1.041 0.966 0.963 0.964
(6) Baseline w/o trend shock 1.000 1.001 1.001 0.997 0.988 0.981 0.965 0.964 0.972 0.972 0.958 0.952
(7) HP 1.001 1.002 0.994 0.980 0.963 0.959∗ 0.966∗∗ 0.954∗∗∗ 0.975 0.949 0.893 0.858∗

(8) BK 0.981 0.952 0.599 0.093∗∗ 0.052 0.111∗∗∗ 0.072∗∗ 0.106∗∗∗ 0.090∗∗∗ 0.096∗∗∗ 0.105∗∗∗ 0.090∗∗

(9) Hamilton 0.998 0.995 0.885∗ 0.909 0.881∗ 0.904 0.919 0.953 1.033 0.970 0.885 0.949
(10) mod. Hamilton 1.003 0.975 0.961 0.966 0.827∗∗ 0.858∗ 0.874 0.925 0.982 0.965 0.893 0.914
Only infl. 1.002 1.008 1.014 1.003 0.992 0.972∗∗ 0.957 0.937∗ 0.994 0.988 0.960 0.949

Equation (9a): h period ahead q-o-q inflation (πt+h = Pt+h − Pt+h−1)
(2) SG w/o trend shock 0.998∗ 0.999 0.998 0.999 0.998 0.995∗∗ 0.994 0.994 0.995∗ 1.000 1.000 1.000
(3) SG w/o sector empl. 1.001 1.001 1.004 1.004 1.003 1.009 1.006 1.003 1.003 1.009 1.012 1.006
(4) SG w/o trend shock, w/o sector empl. 1.001 1.002 1.001 1.001 0.999 1.000 1.002 0.999 1.004 1.006 1.001 1.003
(5) Baseline 0.998 0.995 0.996 0.991 0.983 0.974 0.961 0.940 0.959 0.988 0.970 0.974
(6) Baseline w/o trend shock 0.998 0.996 0.995 0.987 0.979 0.968 0.965 0.947 0.962 0.985 0.970 0.965
(7) HP 0.984 0.952 0.970 0.962 0.958∗ 0.939∗ 0.940∗∗ 0.951 0.936∗∗∗ 0.933∗∗ 0.930∗ 0.937∗

(8) BK 0.966 0.943 0.915 0.908 0.952 1.000 1.005 1.018 1.018 0.977 0.981 0.986
(9) Hamilton 0.976 0.993 0.988 0.967 0.963 0.967 0.965 1.002 0.972 0.964 0.934 0.936
(10) mod. Hamilton 0.959 0.938 0.978 0.972 0.959 0.940 0.953 0.945 0.962 0.986 0.935 0.926
Only infl. 0.984 0.943 0.911 0.966 0.942 0.905∗∗∗ 0.857∗∗∗ 0.859∗ 0.878∗∗ 0.886∗∗∗ 0.852∗∗∗ 0.908∗∗

Equation (9b): h period inflation (π̄t+h = lnPt+h − lnPt)
(2) SG w/o trend shock 1.001 0.999 0.998 0.998 0.998 0.999 0.999 0.999 0.999 0.998 0.998 0.999
(3) SG w/o sector empl. 1.004 1.005 1.006 1.008 1.009 1.007 1.005 1.003 1.002 0.996 0.993 0.985∗∗∗

(4) SG w/o trend shock, w/o sector empl. 1.004 1.005 1.005 1.007 1.008 1.008 1.006 1.003 1.001 0.995 0.992 0.983∗∗∗

(5) Baseline 0.999 1.004 1.008 1.009 1.007 1.004 1.001 0.997 0.994 0.920 0.976 0.974
(6) Baseline w/o trend shock 1.005 1.010 1.014 1.014 1.012 1.008 1.004 0.998 0.995 0.921 0.977 0.974
(7) HP 1.005 1.011 1.007 1.003 1.003 1.005 1.008 1.012 1.015 0.939 0.990 0.987
(8) BK 0.959∗ 0.951 0.951 0.970 0.999 1.023∗ 1.035∗∗ 1.044 1.045 0.962 0.945 0.942
(9) Hamilton 0.969 0.985 1.002 1.014 1.016 1.020 1.020 1.017 1.014 0.939 0.928 0.935
(10) mod. Hamilton 0.967 0.982 1.000 1.012 1.015 1.019 1.018 1.012 1.009 0.935 0.924 0.928
Only infl. 0.987 0.970 0.948 0.926 0.911 0.881 0.849∗ 0.816∗∗ 0.793∗∗ 0.721∗∗∗ 0.703∗∗∗ 0.695∗∗∗

Notes: *, **, and *** denote significant differences in forecasting accuracy at the 10, 5, and
1% level based on a two-sided Diebold and Mariano (1995) with squared loss. Pseudo real-time
estimates are estimated for vintages from 2005 Q1 until 2023 Q2 at quarterly frequency.
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