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Disentangling Small-Scale Solar Photovoltaic Adoption: A Spatial Analysis of Decision 

Factors and Localized Interactions in Germany 

by Tobias Stein, Lisa Sieger and Christoph Weber 

 

Abstract 

 

The existence of spatial patterns in the adoption of small-scale solar photovoltaic (PV) systems 

is widely accepted in the academic literature. The diffusion of these systems depends on 

decisions of heterogenous units, often households, that form their decision based on unit 

characteristics and attitudes, the built environment, economic and physical factors, as well as 

peer effects. When including several of these factors, many studies use macro-level datasets, 

which have a limited ability to capture ‘real’ small-scale spatial patterns. Using data on a 1 km² 

grid level for Germany, we identify spatial patterns of adoption while also controlling for highly 

localized explanatory variables. Spatial dependence is estimated and tested with spatial 

econometric models. Using this set of small-scale data, we show that spatial clustering affects 

the adoption of residential PV systems, which is increasing with larger neighborhood sizes. 

Further, the presence of large-scale PV installations has strong direct and also indirect, i.e., 

spillover effects on the adoption of rooftop PV installations. Finally, spillover effects from 

defined neighborhoods are found to become statistically insignificant with larger distances, 

promoting the use of such small-scale data. 
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1 Introduction 

The presence of spatial patterns in the adoption of small-scale photovoltaic (PV) systems has 

received widespread recognition in the academic literature (e.g., Balta-Ozkan et al., 2015; 

Dharshing, 2017; Müller and Rode, 2013). This diffusion process depends on decisions made 

by a variety of actors, typically households, with their choices being shaped by a complex 

interplay of system characteristics, the built environment, economic factors, individual 

preferences, and the influence of peer behavior (Alipour et al., 2021). While different studies 

have attempted to capture a variety of these determinants, the use of macro-level datasets often 

leads to limitations in capturing the complex and ‘authentic’ spatial patterns that determine 

adoption dynamics at the small spatial scale (Alipour et al., 2021). 

In this study, we therefore shift the focus to the use of small-scale raster data to identify spatial 

spillover effects underlying the adoption of rooftop PV installations. To shed light on the latent 

spatial dependence, we employ spatial econometric models that allow for a more accurate 

estimation of the comprehensive spatial relationships – and thus enable better predictions of 

future penetrations and the resulting impacts on the distribution grids. The inclusion of 

socioeconomic information at a small spatial scale further allows to control simultaneously for 

differences in neighborhoods. 

We thus examine (1) the influence of neighborhood-specific factors associated with the 

socioeconomic status and the built environment, and (2) the impact of spatial interaction effects 

on the adoption of residential solar PV systems, both at a standardized 1 km² grid level. Spatial 

interaction effects comprise spatial endogenous effects resulting from the adoption of solar PV 

systems in adjacent neighborhoods as well as spatial spillover effects resulting from driving 

factors in these surrounding neighborhoods. 

This paper focuses on PV systems with a capacity of up to 10 kWp, following the research of 

Balta-Ozkan et al. (2015) and Dharshing (2017). However, in contrast to prior studies we 

expand the analysis by incorporating the impact of larger PV systems on the adoption of these 

smaller ones into our spatial regression modelling. Moreover, we calculate sensitivities across 

various neighborhood sizes, ultimately highlighting spillover effects within different spatial 

contexts. 

We employ data from Germany as a case study, where there has been a significant increase in 

usage of PV systems in recent years. At present, Germany has 2.6 million PV systems with a 

total installed capacity of 70.6 GW (Statistisches Bundesamt, 2023). However, further 
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expansion is required as the Renewable Energy Sources Act (EEG) 2023 sets an expansion 

target of 215 GW for PV by 2030, roughly tripling the installed capacity over the next eight 

years compared to the expansion status at the end of 2022 (UBA, 2023). 

Therefore, our paper makes three major contributions to the extant literature. First, we examine 

drivers for the adoption of small-scale PV installations while also controlling for regional 

differences in adopter characteristics and settlement structure at a standardized and very local 

level. We thereby investigate whether spatial autoregressive effects persist if similarities in 

socioeconomic factors are controlled for – and thus point at actual neighborhood interactions. 

Second, we extend previous findings by controlling for the influence of large-scale systems on 

the adoption of small-scale residential PV. Third, we test the sensitivity of the results to 

different cutoff distances in the definition of neighborhoods to determine the radius at which 

the spillover effects disappear. 

The study is organized as follows. Section 2 provides a brief literature review, focusing on 

relevant empirical studies. Section 3 discusses some theoretical considerations regarding direct 

and indirect effects of different drivers for the adoption of residential PV. Section 4 then 

outlines the methodological approach as well as the data and data processing together with 

descriptive statistics. Empirical results are presented in Section 5 and further discussed in 

Section 6. Finally, Section 7 concludes. 

2 Literature review 

Analyzing the adoption of residential PV systems has gained much attention in recent years; 

however, modeling technology diffusion across households has a long tradition in economics 

since Bass (1969). Most research focuses on Germany (e.g., Arnold et al., 2022; Baginski and 

Weber, 2019; Müller and Rode, 2013; Rode and Müller, 2021, 2016), the United States (e.g. 

Bollinger and Gillingham, 2019; Graziano et al., 2019; Irwin, 2021; Kwan, 2012) and the 

United Kingdom (e.g. Alderete Peralta et al., 2022; Balta-Ozkan et al., 2015; Collier et al., 

2023; Snape, 2016), but there are also studies investigating inter alia China (Zhao et al., 2017), 

Australia (Lan et al., 2020; Li et al., 2023; Zander, 2021), Switzerland (Baranzini et al., 2018; 

Thormeyer et al., 2020), Japan (Zhang et al., 2011), Sweden (Mundaca and Samahita, 2020; 

Palm, 2017, 2016; Palm and Lantz, 2020), and Belgium (Groote and Verboven, 2019). Further, 

there are various strands of literature in this field, of which research on regional spillovers and 

spatial dependencies in technology diffusion (e.g., Copiello and Grillenzoni, 2017; Curtius et 

al., 2018), as well as on the sociodemographic and economic characteristics of PV adopters 
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(e.g., Dharshing, 2017; Moerkerken et al., 2023; Zhang et al., 2023b) are most important to our 

study.  

Prior research generally confirms that predictors of adoption behavior can be categorized as 

either individual, social, or informational (Alipour et al., 2020). Moreover, numerous studies 

indicate that geographic characteristics, which include inter alii sunshine hours (Lamp, 2023) 

and solar irradiation but also spatial spillovers – both within (Rode and Weber, 2016) and even 

between counties (Fadly and Fontes, 2019) – or peer effects (e.g. Bollinger and Gillingham, 

2012; Graziano and Gillingham, 2015; Steadman et al., 2023; Wolske et al., 2020) play crucial 

roles in explaining the diffusion of residential PV systems. We subsequently focus on a review 

of key quantitative studies. For a qualitative analysis resulting in a comprehensive review of 

further drivers and barriers to technology adoption, see Balcombe et al. (2013); for a theoretical 

framework examining psychological and social determinants of interest in residential PV 

systems, see Wolske et al. (2017). 

Rode and Weber (2016) concentrate their research on spatial components and investigate 

whether localized imitation is a driver for technology adoption. For more than 500,000 

household PV systems installed in Germany through 2009, they employ an epidemic diffusion 

model, dating back on Bass (1969) and Geroski (2000), to control for spatial and temporal 

heterogeneity. The authors find that imitative adoption behavior is highly localized, with its 

effects decreasing with increasing distance in a predefined radius of 0.5 km, 1 km, 4 km and 

10 km, respectively. There is no influence found for a radius larger than 1 km. Irwin (2021), 

Kim and Gim (2021), and Kosugi et al. (2019) also show spillover effects to be largest within 

the 15 nearest neighbors, within a 0.5 km radius or within a 1 km radius, respectively. 

Based on econometric analysis, Schaffer and Brun (2015) investigate small-scale PV adoption 

in Germany as well, with more than 820,000 observations registered between 1991 and 2012. 

The authors find different effects between counties, which they partly explain by varying solar 

irradiation. However, they state that neighborhood effects such as the house density, the 

homeownership rate and the purchasing power per capita have greater influence on adoption 

rates. Similar results were found in various studies (e.g., Balta-Ozkan et al., 2015; Kosugi et 

al., 2019; Kucher et al., 2021). 

Rode and Müller (2021) further explore the micro-level variation of peer effects in household 

PV adoption. By using geocoded data for Germany up until 2010 and panel data to construct a 

discrete choice model, they find evidence supporting causal peer effects that are strongest 

within up to 200 m. Nevertheless, these effects diminish over time and are found to be larger in 
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regions with low economic activity – suggesting that regionally different promotion and support 

may be necessary. Moreover, Balta-Ozkan et al. (2021) examine effects of various factors on 

the spatial patterns of PV adoption at a local level in the UK while also considering peer effects. 

They employ a geographically weighted regression model to corroborate the presence of peer 

effects and report regional differences in the influential factors. 

A comprehensive review of studies is provided by Alipour et al. (2021, 2020). They state that 

„limited quality sample size has been a major drawback for many researchers, leading to few 

well-structured models developed to date, and weakly supported conclusions on causal 

relationships“ (Alipour et al., 2021, p. 484). Additionally, the authors criticize that most studies 

only focus on the years when financial incentives were introduced, with the phase-out years 

rarely being considered.  

In addition, the empirical studies in the current literature that emphasize the spatial dimension 

of residential solar adoption have a major limitation. The low spatial resolution of the data used 

limits the ability to capture spatial characteristics and measure spatial interaction effects for 

small-scale PV system adoption. Multiple studies considered areas ranging in size from 

288 km² (Müller and Trutnevyte, 2020) to 1,809 km² (Balta-Ozkan et al., 2015). Studies that 

utilize high-resolution spatial data often limit their observation frame to individual cities 

without looking at influences of the surrounding areas (e.g., Kosugi et al., 2019) or only look 

at spatial effects without the inclusion of additional explanatory variables (Rode and Müller, 

2021; Rode and Weber, 2016). To our knowledge, there is only one recent study that accounts 

for such small spatial scales while also controlling for additional explanatory variables: Zhang 

et al. (2023a) explore spatial effects for over 13,000 neighborhoods in the Netherlands, each 

with an average size of 2.59 km². 

Furthermore, it is often argued that observational learning through the visibility of solar panels 

is one of the main mechanisms behind the spatial interaction effects. However, studies often 

limit these visible effects to small-scale residential PV systems while not considering the visible 

effects of larger PV systems. Thus, spatial interaction effects may be underestimated (Zhang et 

al., 2023a). 

We therefore add to the extant literature in different ways. First, we create a unique dataset by 

using socioeconomic data at a standardized 1 km² grid level combined with geocoded PV data 

on an individual level. By employing a Spatial Durbin Model (SDM), we are able to capture 

both spatial spillover as well as spatial autoregressive effects. Second, we include large 

installations in our analysis to account for visible effects of these PV systems. Third, we apply 
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different cutoff distances in the definition of neighborhoods to test the sensitivity of results 

regarding the spatial spillover effects. Finally, we draw on data from 2014 and 2020, and thus 

take two specific years with reduced financial incentives into account.   

3 Drivers for PV adoption – theoretical considerations 

The installation of a PV system on a building can be conceptualized as an individual discrete 

choice (cf. e.g., McFadden, 2001; Train, 2009) usually made by the building owner and 

potentially influenced by social interactions (cf. e.g., Brock and Durlauf, 2001). At the same 

time, the PV installation represents an investment which provides returns through feed-in 

compensations or through avoided costs for purchases from the electricity grid/retailer or both. 

The utility 𝑉𝑗 of such a binary adoption choice 𝜔𝑗 ∈ {0,1} may then be written in general terms 

as 

𝑉𝑗(𝜔𝑗) =  𝑚𝑗 (𝜋𝑗(𝜔𝑗 , 𝑥𝑗)) + 𝑛𝑗(𝜔𝑗 , 𝑥𝑗 , 𝜔−𝑗, 𝑥−𝑗) + 휀𝑗 . (1) 

The individual utility is thereby composed of a monetary part 𝑚𝑗 which is a (monotonously 

increasing) function of the profit 𝜋𝑗(𝜔𝑗, 𝑥𝑗), depending in turn on the adoption decision 𝜔𝑗 as 

well as on characteristics of both the building and its owner summarized in the vector 𝑥𝑗. Profit 

may be determined through a net present value calculation:  

𝜋𝑗(𝜔𝑗 , 𝑥𝑗) =  −𝐼𝑗 + ∑
1

(1 + 𝛿𝑗)
𝑡 𝑂𝑗,𝑡

𝑇

𝑡=1

=  −𝐼𝑗 + 𝑏(𝑇, 𝛿𝑗)�̅�𝑗  (2) 

with 𝐼𝑗 the initial investment cost, 𝛿𝑗 the discount rate and 𝑂𝑗,𝑡 the operational cash flows per 

year. These may be replaced by an appropriately weighted average �̅�𝑗 multiplied by the present 

value factor 𝑏(𝑇, 𝛿𝑗) which depends on the useful lifetime 𝑇 and the discount rate 𝛿𝑗. 

Besides the direct monetary benefits there may be other, often non-monetary advantages of PV 

adoption which are summarized in the term 𝑛𝑗  and where we also hypothesize a dependence on 

individual characteristics 𝑥𝑗, on adoption decisions of other individuals 𝜔−𝑗 (aggregated in a 

decision vector) and on the characteristics of these other individuals 𝑥−𝑗. Besides these (in 

principle) observable utility components there is also an unobservable stochastic component 휀𝑗.  

In detailed studies on adoption behavior, various, often rather detailed behavioral models have 

been used for investigation (cf. Alipour et al., 2020). However, when it comes to large data sets 

on PV adoption (as available for Germany), the level of detail regarding the individual adoption 
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decisions remains limited and information on the characteristics of the buildings and decision 

makers are only available at the neighborhood level. In this setting, the individual decisions 

may be aggregated to the neighborhood level by defining the PV adoption rate as a dependent 

variable, corresponding to the share of buildings with a small-scale PV installation on the roof. 

For explaining this adoption rate, the available information may then be classified according to 

the four categories indicated in Figure 1.  

 

Figure 1 Drivers for PV adoption. 

Source: Own illustration. 

Each category includes various influencing factors that may affect both the monetary and the 

non-monetary utility components driving the adoption of residential PV installations. At the 

level of neighborhoods, we may then consider direct effects on adoption, which describe the 

impact of an influencing factor in a given (focal) neighborhood on the adoption of PV in the 

same neighborhood. But additionally indirect effects may arise, which encompass impacts of 

an influencing factor of a neighboring region on the PV adoption in the focal neighborhood. All 

factors considered in this study, including the expected direct and indirect effects, are 

summarized in Table 1.  

In the category of climatic characteristics, the annual solar irradiation is a key physical driver 

for the profitability of PV systems, since it has direct effects on the electricity production and, 

consequently, the operational cash flows generated by a PV installation. Indirect effects of solar 

irradiation are yet implausible since the radiation in neighboring regions has no impact on the 
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profitability and also no transmission channel for indirect impacts on the adoption of PV 

systems seems likely.  

Table 1 Expected direct and indirect effects of the drivers for PV adoption. 

Category Influencing factor Direct effects Indirect effects,  

i.e., spillover effects 

Climatic 

characteristics 

Solar irradiation positive: the higher the solar 

irradiation, the higher the 

profitability of the system 

no effects 

Socioeconomic 

characteristics 

Purchasing power per 

household 

positive: with higher income 

it is easier to bear large 

investments 

positive: network effects 

Unemployment rate 

(UER) 

negative: high UER is 

associated with higher 

income risk 

negative: spillover of income risk 

from neighborhoods 

Old-age-dependency 

ratio 

negative: for a relatively 

older population long-term 

investments might not be 

profitable. Moreover, future 

expected incomes tend to be 

lower due to retirement 

no effects 

Settlement 

characteristics 

Share of 1- and 2-family 

homes 

positive: residential PV 

installations are common on 

individual houses and are 

not complicated by the 

landlord-tenant dilemma or 

by issues of co-propriety 

positive: network effects 

Household density negative: high household 

densities are related to a 

high share of multi-family 

buildings, which has direct 

negative impacts on the 

available roof size for PV 

installations 

positive: network effects 

 

negative: if seen as indicator for 

settlement structure, it has 

opposite effects of the share of 1- 

and 2-family homes 

Neighborhood 

effects 

PV adoption rate in 

surroundings 

- positive: effects due to visibility 

of systems and network effects 

 No. of large-scale PV 

systems 

positive: effects due to 

visibility of systems 

positive: effects due to visibility 

of systems 

Source: Own illustration. 

Regarding socioeconomic characteristics, two key influencing factors are the purchasing power 

per household and the unemployment rate, both related to the wealthiness of a neighborhood. 
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High purchasing powers are correspondingly expected to have positive direct effects, as 

investments are less restricted by borrowing constraints (which would translate into higher 

discount rates and thus lower investment profitability). For the unemployment rate, a negative 

correlation with the (unobservable) wealthiness is likely, and moreover a higher unemployment 

rate is also an indicator of increased income risk – which in turn will induce a higher preference 

for liquidity and thus lower propensity to invest. Especially the latter transmission channel 

suggests that there may also be indirect effects of the same (negative) sign, as income risk is 

also dependent on unemployment rates beyond the immediate neighborhood.  

Additionally also network effects (cf. Bollinger and Gillingham, 2012; Manski, 1993) may lead 

to indirect effects reinforcing the direct effects. Thereby two transmission channels are 

potentially relevant. First, social networks among adopters and potential adopters which lower 

the (non-monetary) costs of finding information and assessing adoption choices. Or put 

differently: in existing social networks, people can talk about (the advantages of) rooftop PV 

systems if someone starts to deal with the topic. Second, supplier-customer networks which not 

only channel information but are also enablers of adoption – as most homeowners will rely on 

craftsmen for the actual installation works – so their absence would increase the cost of 

adoption. Both types of networks tend to cover areas which extend beyond the immediate 

neighborhood yet fade out with larger distances. But especially social networks are only partly 

correlated with physical proximity and could also induce indirect effects over longer distances.  

A further relevant socioeconomic factor is the age structure of the population. The old-age 

dependency ratio1, i.e., the share of the population aged 65 years and older in relation to the 

population aged 20 to 64, is used here to describe this socioeconomic characteristic of a 

neighborhood. Evidence regarding the effect of different age groups is rather mixed in the 

literature (cf. Alipour et al., 2020); however, we expect that a high old-age-dependency ratio 

has negative direct effects on the adoption of residential PV. The older the population, the 

higher the discounting of the (more distant) future given that it may exceed the individual 

lifespan. Correspondingly it becomes less profitable to make long-term investments such as 

installing PV systems. Also expected future incomes are lower due to retirement, inducing also 

more severe credit constraints. Given that these are impacts at the level of the individual 

profitability, we assume that there are no spillover effects of the old-age-dependency ratio from 

neighboring regions. 

 
1 The old-age dependency ratio is easy to interpret and commonly applied in the literature (cf. Breidenbach et al., 

2022). In a time series, this indicator maps the process of demographic aging of the population (VDSt, FachAG-

Bevölkerung, Unterarbeitsgruppe Demografie, 2011). 
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Regarding the settlement structure, we retain two potential drivers for the adoption of small-

scale PV. First, the share of one- and two-family homes is considered relevant as the installation 

of PV systems on individual houses is not complicated by the landlord-tenant dilemma or by 

issues of co-propriety. Moreover, positive network effects also tend to emerge based on this 

factor – if there are other areas with high shares of one- and two-family homes in the vicinity, 

this provides opportunities for information networks as well as supplier-customer networks as 

described above. 

A second relevant factor regarding the settlement structure but linked also to socioeconomic 

characteristics is the household density, i.e., the number of households per 1 km², which is 

related to the wealthiness of the population but also reflects the settlement structure in the 

specific grid cell2. When controlling for the settlement structure (cf. above), we expect the direct 

effect of household density still to be negative, as higher population densities are then an 

indication of rather confined dwelling space in larger multi-family buildings or smaller 

individual houses. This comes along with a more limited roof area available for PV installations. 

Regarding indirect effects, different transmission channels may be envisaged. On the one hand, 

positive network effects may be strengthened given the higher population density. On the other 

hand, the negative direct effect also implies that the probability for strong information and 

supply networks decreases inducing also a negative indirect impact. 

The last category depicted in Figure 1 are neighborhood effects. Besides the spillover effects of 

influencing factors from the neighboring regions as discussed before, there are usually two 

channels of action discussed in the literature. One is the visibility of PV systems (cf. e.g., Rode 

and Müller, 2021). If people see a lot of PV systems in their own neighborhood and in the 

surrounding area, this could be a trigger for them to become involved in the issue. Another 

channel are the aforementioned network effects. The visibility argument provides a strong case 

to include spatial lags of the dependent variable into the specification, whereas the network 

effects could also be captured as spillovers from explanatory variables in neighboring cells. 

A second relevant neighborhood effect is the total number of large-scale PV systems with a 

capacity of more than 10 kWp and up to 100 kWp. For these, the same arguments of visibility 

and network effects apply as for the small-scale units which are in the focus of the analysis. 

The existence of such larger PV system is an indication for not purely residential 

 
2 This illustrates that settlement characteristics and socioeconomic characteristics of the population do not evolve 

independently one from another. The classification of the characteristics may therefore be considered to some 

extent as arbitrary, yet it is useful to distinguish more household and more building related characteristics. 
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neighborhoods, yet their impact may be similar if not more pronounced than for small-scale 

systems. 

4 Methodological approach and data 

Following inter alia Zhang et al. (2023a), Müller and Trutnevyte (2020), Kosugi et al. (2019) 

and Dharshing (2017), we use a spatial econometric approach to capture the impact of different 

socioeconomic and neighborhood characteristics, as well as spatial spillovers on the adoption 

of residential PV systems. We thereby distinguish between the use of a Spatial Autoregressive 

Model (SAR), Spatial Error Model (SEM) or Spatial Durbin Model (SDM). Model selection 

and specification are described in Chapters 4.1 and 4.2. Contrary to the previously mentioned 

studies, we use raster data that consist of 125,441 standardized 1 km² grid cells rather than pre-

defined spatial units (e.g., counties, cities, postal code zones). This approach not only allows 

for a more flexible choice of neighboring units, but also for the investigation of highly localized 

effects. 

4.1 Spatial model specification and selection 

Two approaches are commonly used to select spatial econometric models: the specific-to-

general approach and the general-to-specific approach (cf. Elhorst, 2010; Florax et al., 2003). 

We apply a mix of both approaches and first adopt the specific-to-general approach to determine 

whether the non-spatial model should be extended to a SAR or SEM. Later, we employ a 

general-to-specific approach to test whether the SDM should be simplified to either SAR or 

SEM. We perform a series of tests to identify the optimal spatial econometric models for our 

cross-sectional data. A description of variables included in the regression model is given in 

Section 3. 

4.1.1 Specific-to-general approach 

The specific-to-general approach starts with a non-spatial linear regression model, estimated by 

ordinary least squares (OLS). It is assumed that the dependent variable in one spatial unit 

(i.e., grid cell)3 manifests itself independently of its expression in neighboring spatial units (cf. 

Elhorst, 2010). The baseline equation takes the form: 

𝑌 =  𝛼 +  𝛽𝑋 +  휀 (3) 

 
3 In the following we will only refer to grid cells even if the described models can be used with other spatial units 

too. 
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where 𝑌 is a 𝑁 × 1 vector consisting of observations on the dependent variable – in our case, 

the adoption rate of PV systems up to 10 kWp – for each unit 𝑖 in the data. 𝑋 is a 𝑁 × 𝐾 

dimensional matrix of observations on 𝐾 exogenous (explanatory) variables, i.e., the solar 

irradiation and different socioeconomic factors, for all 𝑖 grid cells. The corresponding 𝐾 × 1 

vector of parameters is denoted by 𝛽 while 𝛼 is the associated intercept parameter. Finally, 휀 is 

an 𝑁 × 1 vector of error terms for the regression.  

Spatial data often violate the standard assumptions of OLS models, which assume 

independency between observations. Using a Moran’s I test (Moran, 1950), the assumption of 

no autocorrelation in the residuals can be tested. If this hypothesis is rejected, the OLS model 

can be extended to models incorporating spatial autocorrelation. Since Moran’s I does not 

provide any guidance on whether to extend the OLS model to SEM or SAR, standard (Anselin, 

1988) and robust (Anselin et al., 1996) Lagrange multiplier (LM) tests can be conducted.  

In spatial autoregressive models, the value of the dependent variable in one grid cell is assumed 

to be influenced by the dependent variables of neighboring grid cells. The neighborhood 

structure is defined by the non-negative spatial matrix 𝑊 of known constants displaying the 

spatial arrangement of the grid cells used in the dataset. The SAR model can be written as: 

𝑌 =  𝛼 + 𝜌𝑊𝑌 +  𝛽𝑋 +  휀 (4) 

where 𝜌 denotes the spatial autoregressive parameter of the dependent variable 𝑌 that measures 

the interdependence across grid cells. Interpretation in case of PV adoption is as follows: the 

PV adoption in grid cell 𝑖 is dependent on different exogenous variables 𝑋 in grid cell 𝑖, such 

as the solar irradiation, and also on spillover effects of the PV adoption in neighboring grid 

cells, as given by 𝜌𝑊𝑌.  

The SEM specification, on the other hand, is dealing with the interactions between the residuals 

of the spatial units. Here, a spatial autoregressive specification is used to allow for spatial 

dependence in the model’s disturbances. Thus, a certain disturbance in a single grid cell is 

expected to have an impact on the disturbances of neighboring grid cells according to a spatial 

weights matrix. The neighborhood matrix is the same as in the SAR model. The SEM is 

formulated as follows: 

𝑌 =  𝛼 +  𝛽𝑋 +  𝑢, 𝑤𝑖𝑡ℎ 𝑢 =  𝜆𝑊𝑢 +  휀 (5) 

where 𝑊𝑢 describes the impact of spatially correlated disturbances and 𝜆 is the corresponding 

spatial autocorrelation coefficient, whereas 휀 represents an independently and identically 



 

12 

distributed error term with zero mean and a constant variance 𝜎2. A statistically significant 

estimate for 𝜆 thus indicates that there is a spatial correlation in the disturbances of the PV 

adoption; however, it is not captured by the included exogenous variables.  

Both, the SAR and SEM are estimated by maximum likelihood estimation (MLE)4. The two-

step estimation procedure consists of a numerical optimization of the spatial error parameters 

first, and second, of a parameter estimation for 𝛽 by generalized least squares (GLS).  

4.1.2 General-to-specific approach 

If the LM-test results reject the OLS in favor of SAR and SEM, the next step is to test if an 

SDM can be reduced to SAR and SEM.5 For this purpose, an SDM is set up, which takes the 

following form: 

𝑌 =  𝛼 + 𝜌𝑊𝑌 +  𝛽𝑋 +  𝜃𝑊𝑋 + 휀 (6) 

where 𝜌 has the same definition as in the SAR model, while 𝜃 represents a 𝐾 × 1 vector of 

coefficients of spatially lagged exogenous variables, i.e., it captures the influence of inter alia 

socioeconomic variables of grid cell 𝑗 on the PV adoption in the focal grid cell 𝑖, and 𝛽 remains 

a vector of parameters for the exogenous variables. The SDM model is also estimated by MLE. 

The results of the SDM are utilized to conduct a Likelihood Ratio (LR) test to evaluate the two 

hypotheses: 𝑯𝟎: 𝜃 = 0 and 𝑯𝟎: 𝜌𝛽 + 𝜃 = 0. The first hypothesis examines whether the SDM 

can be simplified to SAR, whereas the second hypothesis examines the possibility of 

simplifying to SEM. Based on test results, there are four possible outcomes (cf. Burridge, 1981): 

First, if both hypotheses are rejected based on the LR tests, then the use of the SDM is preferred 

for the data at hand. Second, if  𝑯𝟎: 𝜃 = 0 cannot be rejected through LR while the LM test 

results point towards SAR, then the SAR model should be used. Third, if 𝑯𝟎: 𝜌𝛽 + 𝜃 = 0 

cannot be rejected via LR, while the LM test results point towards SEM, then a SEM is the most 

appropriate model for the data. Finally, if neither of these conditions is satisfied, a SDM should 

be used to account for both SAR and SEM arguments. Figure 2 illustrates the relationship 

among the various spatial econometric models examined in this study.  

 
4 While MLE is the most commonly used method for estimation of SAR/SEM SDM, other methods like quasi-

maximum likelihood, Bayesian Markov Chain Monte Carlo (MCMC), semiparametric models, and GMM could 

also be used as alternatives.  
5 If the LM-test does not reject the null hypothesis, a calculation of an OLS model including spatially lagged 

explanatory variables can be used to test if 𝜃 = 0 . If this is also rejected, OLS remains the most appropriate model, 

and it is not desirable to make further generalizations. 
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In the presence of a spatially lagged variable 𝑊𝑌 or/and 𝑊𝑋, the point estimates should not be 

interpreted in the way they are in the usual linear model framework. In spatial regression models 

point estimates are used to calculate overall multiplier effects because they can potentially 

affect the entire sample. LeSage and Pace (2009) show that impact measures should be used 

that distinguish between direct effects and indirect effects. Direct effects are defined as a 

measure of the effect of changes in the independent variable 𝑿𝑖 in the same grid cell 𝑖 on the 

dependent variable 𝑌𝑖, including feedback effects that arise from the change from 𝑿𝑖 on 𝑌𝑗 in 

the system of spatially dependent regions. The indirect effects deal with the impact of changes 

in the independent variables of neighboring grid cells 𝑿𝑗 on the dependent variable in grid cell 

𝑖 (i.e., 𝑌𝑖) – which mainly describes the spillover effects (LeSage and Pace, 2009). In an OLS 

and SEM, the 𝛽 coefficients correspond to the direct effects, and the indirect effects are zero 

(Elhorst, 2010).  

 

Figure 2 Comparison of the different spatial model specifications. 

Source: Own illustration based on Elhorst (2010). 

4.2 Spatial weights  

𝑊 is a 𝑁 × 𝑁 non-negative, non-stochastic and symmetric spatial weights matrix, reflecting the 

spatial structure of the units in our sample. It is utilized on several occasions in this spatial 

econometric study. It is employed to compute the spatial lag, examine spatial autocorrelation, 

and importantly, compute the Jacobian determinant in the MLE. It generally takes the form: 

𝑊𝑖,𝑗  {
> 0, 𝑖𝑓 𝑖 𝑎𝑛𝑑 𝑗 𝑎𝑟𝑒 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠
= 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                            

 (7) 
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By convention, the diagonal elements of the weights matrix are set to zero, as units cannot be 

their own neighbors while all non-zero elements of the matrix reflect neighboring units. Further, 

the weights matrix is row-standardized such that the elements of each row sum up to one. This 

facilitates the interpretation of operations with the weights matrix as an averaging of 

neighboring values (Anselin and Bera, 1998). 

Several methods exist to define the neighbors, e.g., based on distance (i.e., all spatial units 

within a specific radius are neighbors) or contiguity (i.e., all spatial units that either share a 

border or a single point are neighbors). We use a spatial weights matrix based on distance to 

define the neighborhood, i.e., all grid cells whose centers are within a certain radius are counted 

as neighbors. With an increasing radius, the number of (possible) neighbors thus increases. 

Figure 3 illustrates the number of (possible) neighbors within a 1 km and 2 km radius. 

 

Figure 3 Neighbors within a 1 km and 2 km radius. 

Source: Own illustration.  

Higher order matrices, i.e., matrices using a larger cutoff distance (or a larger radius 

respectively), can be constructed analogously6. In this way, we can test the sensitivity of our 

 
6 LeSage (2014) shows that the concept of neighbors in spatial weights matrices may be extended to regions or 

grid cells that are not in direct vicinity.  
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results, especially with regard to the spillover effects. With larger distances and a higher number 

of neighbors, spillover effects are assumed to decrease. Since we apply a row standardization 

to unity, the same weight is assigned to each neighbor when estimating spillover effects. Thus, 

with an increasing number of neighbors, the value of each weight decreases7.  

All benchmark analyses are performed using a radius of 1 km, which is the smallest possible 

radius that generates neighbors in our data. We then gradually expand the radius in 1 km steps 

up to a radius of 10 km. Additionally, a radius of 15 km is tested to account for even larger 

distances8.   

4.3 Data 

Our dataset combines information on PV systems with socioeconomic data on a small spatial 

scale. The PV data originates from the “MarktStammdatenRegister (MaStR)” and is obtained 

from the BundesNetzAgentur (BNetzA, 2021). The data is georeferenced at an individual level. 

The socioeconomic data (RWI-GEO-GRID) is obtained from microm Micromarketingsysteme 

and Consult GmbH, a research firm specializing on regional analysis and is provided by the 

RWI – Leibniz-Institute for Economic Research (RWI and microm, 2022). Georeference is 

given at a 1 km² grid level. Finally, yearly information on solar irradiation per 1 km² grid cell 

are downloaded from the Open Data Server of the German Weather Service (DWD, 2023)  

After assigning the individual PV systems to the 1 km² grid cells and removing outliers based 

on the 0.5 and 99.5 percentiles, the final dataset consists of 2×125,441 observations (i.e., grid 

cells9) for 2014 and 2020. Table 2 reports descriptive statistics for the year 2020, which is used 

for all benchmark estimations. Descriptive statistics for 2014 that are used for a robustness 

check, are shown in Table A 1. 

The variable to be explained is the adoption rate of small-scale PV systems, given as the ratio 

of the number of PV systems with a capacity up to 10 kWp10 to the number of houses. We 

normalize the number of PV systems to the number of houses to abstract from different 

 
7 We additionally tested a weights matrix based on inverse-distance where the weight of each neighbor decreases 

with distance, i.e. spatial units that are farther away have a smaller weight and thus a smaller impact on the focal 

spatial unit. Results are available on request.  
8 The average commuting distance in Germany is about 16.9 km (BBSR, 2022), and the average radius of a NUTS3 

region in Germany, which is often used as a spatial unit in other studies (e.g., Dharshing, 2017; Schaffer and Brun, 

2015) is roughly 16.8 km. Our largest distance is therefore still somewhat smaller. 
9 PV systems were summed up at grid level. 
10 The PV systems under investigation were limited to a capacity of up to 10 kWp, which 1) corresponds to a 

common rooftop system for one- to two-family homes, 2) is used as a limit for specific regulations (cf. §48 Section 

2, EEG (2017)) and 3) is also a commonly used threshold in the literature (cf. Balta-Ozkan et al., 2015; Dharshing, 

2017). The lower bound is set to 0.1 kWp to remove outliers, such as small pocket systems.  
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settlement structures and to describe the degree of saturation regarding PV installations. The 

adoption share is (loosely) bounded from above by a maximum share of one, which corresponds 

to one PV system per building11. The PV adoption rate averages 0.09, i.e., 9 % of all houses 

have a small-scale PV system installed. The maximum of 1.86 shows that there are rare cases, 

in which there are more PV systems than houses, e.g., since several PV systems are installed 

on one roof. Nevertheless, only 38 grid cells out of 125,441 have a PV adoption rate above 

100 %. The solar irradiation only shows small variations across grid cells and amounts, on 

average, to 1,171 W/m². The minimum is about 1,040 W/m² whereas the maximum is 

1,320 W/m². Despite the small variation, clear regional differences can be identified. Solar 

irradiation is stronger in the southern and eastern parts of Germany (cf. Figure A 1).  

Three factors are considered when describing the socioeconomic characteristics of the 

respective neighborhood. The purchasing power per household ranges from €22,500 to 

€72,400, with an average household income of  €48,800. The average unemployment rate 

amounts to about 4 %12. Finally, the old-age dependency ratio represents the ratio of persons 

aged 65 years and older to 100 persons from 20 to 64 years. It ranges from 17 to 70, with an 

average of 39.9.  

For the settlement structure, we mainly look at the share of one- and two-family homes. On 

average, each grid cell has 128 houses, of which about 70 % are one- or two-family homes. 

Contrary to solar irradiation, the number of houses as well as population and household 

densities, i.e., the number of inhabitants or households per 1 km², show large ranges between 

minimum and maximum values, pointing at huge differences in settlement structures. Also, 

very high numbers of population densities occur (in contrast to official federal statistics), as 

only inhabited grid cells are included and grid cells with forest and water areas, for example, 

are excluded for calculations.  

Finally, additionally to the small-scale PV installations, there are also on average 3.23 large-

scale PV systems installed per grid cell, referring to systems between 10 and 100 kWp. The 

maximum amounts to 24 systems, the median is 2 systems. As large-scale installations require 

 
11 An adoption rate of 100 % means that all houses have an installed PV system. However, in some rare cases, 

there may be more PV systems than houses, e.g., if installations have been put up on large garages or if more than 

one PV system has been installed on one roof. 
12 The unemployment rate (UER) is slightly lower than the one reported in official statistics, because we calculate 

the simple average over all grid cells and do not weight the UER with the number of inhabitants per grid. This 

“cell-based” averaging may also distort other averages compared to the numbers reported in official statistics. 
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more space compared to small-scale systems, they are often found in more rural regions but 

also in some densely populated areas such as Berlin13 (cf. Figure A 2).  

Table 2 Descriptive statistics for the year 2020. (n = 125,441)

 Variable Mean Std. Dev. Min Max Median 

PV adoption rate, i.e. 

No. of PV ≤ 10 kWp/No. of houses 

0.09 0.10 0.00 1.86 0.06 

Solar irradiation,  

in W/m² 

1,171.24 59.36 1,042.00 1,318.61 1,162.40 

Purchasing power per household,  

in €  

48,788.62 8,625.33 22,534.39 72,392.13 48,599.57 

Unemployment rate,  

in % 

4.07 2.19 0.00 20.15 3.67 

Old-age dependency ratio 

 

39.90 8.73 17.48 70.62 38.69 

No. of houses 

 

127.64 176.33 2.00 1,038.00 54.00 

Share of one-, two-family homes, in 

% 

69.68 20.68 2.04 100.00 73.22 

Population density,  

inhabitants/km² 

454.96 815.62 12.00 7,262.00 145.00 

Household density, 

households/km² 

224.10 414.67 10.00 3,928.00 69.00 

No. of large-scale PV systems, 

 > 10 kWp and ≤100 kWp 

3.23 4.10 0.00 24.00 2.00 

Notes: Descriptives for 2014 are reported in Table A 1 in the appendix. The old-age dependency ratio represents 

the ratio of persons of retirement age (here: 65 years and older) to 100 persons of working age (here: from 20 to 

64 years). Values are based on inhabited 1 km² grid cells only. 

Source: Own calculations based on MaStR, DWD and RWI-GEO-GRID. 

To have a closer look at the regional distribution of small-scale PV installations across 

Germany, Figure 4 illustrates this regional distribution for the year 2020. Grey spots represent 

grid cells without small-scale PV systems, whereas white spots denote areas with no population 

at all14. Grid cells with installed PV systems are indicated in yellow to red, with darker colors 

indicating a higher number of installations. Large regional differences in the distribution of 

small-scale PV installations can be observed. We find large clusters of grids with high PV 

adoption rates at the southern and south-eastern border of Germany in Bavaria and Baden-

Wurttemberg. Another cluster is located in the north of the largest federal state in terms of 

population, North Rhine-Westphalia, at the border to Lower Saxony. In northern and especially 

eastern Germany, on the other hand, we find lower adoption rates, with the exception of the 

Berlin region, the northern part of Schleswig-Holstein and the southern part of Saxony.  

 
13 These may be larger installations on shopping malls, etc.  
14 These could either be water or forest areas, or the grid cell was either anonymized due to data security constraints 

(if a grid has less than 10 households, it will be removed from the analysis) or removed as an outlier. 
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Figure 4 Regional distribution of small-scale PV adoption rates in Germany, 2020. 

Source: Own illustration based on MaStR and RWI-GEO-GRID. Map data: @GeoBasis-DE/BKG 2021 
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5 Results 

Regression results for the non-spatial OLS with data for 2020 are reported in Table 3. Results 

reveal that the main physical driver, the solar irradiation, has a positive and significant effect 

on PV adoption rates.  

Table 3 Main regression results for the non-spatial OLS model. 

Dependent Variable: 

PV adoption rate 
OLS  

Solar irradiation 0.0003 *** 

 [4.41e-06]  

Purchasing power 0.0006 *** 

(in €1,000) [3.35e-05]  

Unemployment rate -0.0044 *** 

 [0.0001]  

Old-age dependency ratio -0.0010 *** 

 [2.98e-05]  

One-, two-family homes 0.0004 *** 

 [1.40e-05]  

Household density -3.30e-05 *** 

 [7.14e-08]  

No. of large-scale PV 0.0039 *** 

 [6.38e-05]  

Constant -0.3144 *** 

 [0.0060]  

Adj.-R² 0.1981  

Observations 125,441  

Notes: Standard errors in brackets. *** p <0.001, ** p <0.01, * p <0.05.  

Source: Own calculations based on MaStR, DWD and RWI-GEO-GRID. 

Regarding the socioeconomic drivers, evidence is rather mixed. While the purchasing power 

per household shows positive effects, the old-age dependency ratio as well as the 

unemployment rate show negative effects on the adoption rate of small-scale PV systems. 

However, these effects are in line with the expected effects described in section 3. Also for the 

settlement and neighborhood characteristics, mixed effects are found. The share of one- and 

two-family homes as well as the number of large-scale PV systems between 10 and 100 kWp 

have positive impacts on the adoption of small-scale PV, whereas household density has a 

negative impact, in line with expectations. Nevertheless, the OLS explains only a small part of 

the variance, so that the relatively small R² already indicates a rather poor model fit.  

For the model selection, we first tested for spatial correlation in the OLS by calculating Moran’s 

I (Moran, 1950). Test results are presented in Table 4. The positive value points to spatial 
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dependence of the OLS residuals between neighboring grid cells. Following the specific-to-

general approach, we then employed the LM and robust LM tests to evaluate the null hypothesis 

of no spatial dependence against alternatives of spatial error and spatial lag dependence, 

respectively.  

All LM test results are statistically significant, thus rejecting the null hypotheses of no spatial 

dependence. Accordingly, the non-spatial OLS regression is inappropriate and may lead to 

biased estimates because the spatial forces driving photovoltaic expansion are not limited to the 

1 km² grid cells but are likely to spill over into nearby neighborhoods. The OLS model is 

therefore rejected in favor of SAR and SEM.  

Table 4 Tests for OLS extension. 

Tests for spatial dependence in the OLS regression: 

Morans’s I for residuals 54.8 *** 

LM (error) 3,003.3 *** 

robust LM (error) 1,770.5 *** 

LM (lag) 4,102.8 *** 

robust LM (lag) 2,870.0 *** 

Notes: *** p <0.001, ** p <0.01, * p <0.05.  

Source: Own calculations. 

5.1 Spatial model specification 

Spatial regression results for the SAR, SEM and SDM using a cutoff distance of 1 km are 

presented in Table 5. Compared to the OLS results, the signs of the coefficients do not change 

when incorporating spatial models; however, the magnitude of all 𝛽-estimates in the SAR and 

SDM (except of solar irradiation) decrease. In the SEM, however, the 𝛽-estimates are 

comparable to those in the non-spatial OLS. Also, the positive and significant spatial effects of  

𝜆 and 𝜌 in all models suggest the existence of spatial dependence between neighboring grid 

cells. The coefficient 𝜌 is slightly larger in the SAR compared to the SDM; however, as the 

latter also controls for spatial spillovers of the exogenous variables, less unobserved 

autocorrelation is left to be captured by 𝜌. 

According to the general-to-specific approach, we conducted two LR tests to determine whether 

the SDM can be simplified towards SAR or SEM. Both test statistics were positive and 

significant. Thus, it can be inferred that the null hypotheses have to be rejected, indicating that 

the SDM should not be restricted to either a SAR or a SEM. Thus, the SDM is the best model 

to fit our data and will therefore be used for the following interpretation and analyses. 
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Table 5 Spatial regression results using a cutoff distance of 1 km. 

Dependent Variable: 

PV adoption rate 

SAR  SEM            SDM  

𝛽  𝛽  𝛽  𝜃  

Solar irradiation 0.0003 *** 0.0004 *** 0.0003 ***   

 [4.43e-06]  [5.11e-06]  [4.47e-06]    

Purchasing power  0.0005 *** 0.0006 *** 0.0002 ** 0.0003 *** 

(in €1,000) [3.36e-05]  [3.70e-05]  [6.11e-05]  [6.75e-05]  

Unemployment rate -0.0036 *** -0.0045 *** -0.0011 *** -0.0022 *** 

 [0.0001]  [0.0002]  [0.0003]  [0.0003]  

Old-age dependency ratio -0.0008 *** -0.0010 *** -0.0003 *** -0.0004 *** 

 [2.89e-05]  [3.29e-05]  [5.65e-05]  [6.33e-05]  

One-, two-family homes 0.0003 *** 0.0003 *** 0.0002 *** 0.0002 *** 

 [1.38e-05]  [1.43e-05]  [1.51e-05]  [1.95e-05]  

Household density -2.89e-05 *** -3.14e-05 *** -2.26e-05 *** -9.19e-06 *** 

 [6.93e-07]  [7,40e-07]  [8.32e-07]  [1.11e-06]  

No. of large-scale PV 0.0032 *** 0.0030 *** 0.0022 *** 0.0036 *** 

 [6.27e-05]  [6.49e-05]  [6.66e-05]  [8.14e-05]  

Constant -0.2619 *** -0.3226 *** -0.2502 ***   

 [0.0061]  [0.0068]  [0.0064]    

𝜆    0.1584 ***     

   [0.0028]      

𝜌 0.1746 ***   0.1523 ***   

 [0.0027]    [0.0027]    

LR (error)     3,335.4 ***   

LR (lag)     2,359.9 ***   

Log-likelihood 131,655.5  131,167.7  132,835.4    

Observations 125,441  125,441  125,441    

Notes: Standard errors in brackets. *** p <0.001, ** p <0.01, * p <0.05. For SDM, 𝛽-estimates show coefficients 

for the independent variables; 𝜃-estimates show coefficients for the spatially lagged independent variables. Data 

for 2020 is used in all regressions. 

Source: Own calculations based on MaStR, DWD and RWI-GEO-GRID. 

The positive and significant autoregressive parameter 𝜌 in the SDM indicates that there is still 

a significant level of spatial autocorrelation, even when controlling for spatial spillovers of e.g., 

socioeconomic factors. This provides evidence of spatial endogenous effects at grid level on 

the adoption of small-scale PV systems. Hence there is more than network effects induced by 

socioeconomic or settlement factors – although the available data do not enable us to 

disentangle the impact of PV visibility from the network effects related to actually installed PV 

systems (notably supplier networks). 

As the interpretation of point estimates may lead to erroneous conclusions (cf. section 4.1), 

Table 6 provides corresponding impact measures that are used for the interpretation of direct 
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and indirect effects. The indirect effect (and also the total effect, i.e., the sum of direct and 

indirect effects) of solar irradiation is excluded, as we suggest that there are no logical reasons 

to believe that solar irradiation from neighboring spatial units has any additional impact on the 

PV adoption rate in the focal unit. 

Table 6 Impact measures of the SDM. 

 Direct Indirect Total 

Solar irradiation 0.0003 ***     

Purchasing power (in €1,000) 0.0002 *** 0.0004 *** 0.0006 *** 

Unemployment rate -0.0013 *** -0.0026 *** -0.0039 *** 

Old-age dependency ratio -0.0003 *** -0.0005 *** -0.0009 *** 

One-, two-family homes 0.0003 *** 0.0002 *** 0.0005 *** 

Household density -2.35e-05 *** -1.40e-05 *** -3.75e-05 *** 

No. of large-scale PV 0.0024 *** 0.0044 *** 0.0068 *** 

Notes: *** p <0.001, ** p <0.01, * p <0.05.  

Source: Own calculations. 

As expected, solar irradiation has a positive direct effect on the PV adoption rate. If the solar 

irradiation increases by one unit, the PV adoption rate is likely to increase by 0.03 percentage 

points on average. The purchasing power per household also shows the expected outcomes. 

Increasing the average purchasing power per household by €1,000 is associated with a projected 

increase of 0.02 percentage points in the adoption rate of small-scale PV systems. Indirect 

effects, indicating the wealthiness of the surrounding neighborhood, are double in size.  

Conversely, the unemployment rate shows expected negative coefficients. If the unemployment 

rate increases by one percentage point, the PV adoption rate is expected to decrease by 0.13 

percentage points. Again, indirect impacts are larger than direct impacts, indicating that the 

overall unemployment rate in the surrounding area is more important than the unemployment 

rate in just the local grid cell – at least within a radius of 1 km.  

Negative effects are also found for the old-age dependency ratio. A one-unit increase is 

indicative of a 0.03 percentage point decrease in the PV adoption rate. Contrary to our 

expectation, we also find significant indirect effects within a 1 km radius. By 2045, the old-age 

dependency ratio is expected to increase by about 11 points (Destatis, 2023). Other things 

remaining equal, this would imply a reduction in the PV adoption rate by a mere 0.33 percentage 

points. 

Furthermore, direct and indirect effects of the share of one- and two-family homes on the PV 

adoption rate are positively correlated as expected: a one percentage-point increase in the share 

of one- and two-family homes in the focal neighborhood indicates an increase in the PV 
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adoption rate of on average 0.03 percentage points. A one percentage-point increase in the share 

of one- and two-family homes in the defined neighborhood is related to an additional increase 

in the PV adoption rate of 0.02 percentage points. 

The household density serves as a proxy for a high degree of urbanization, which is associated 

with a larger number of multi-family buildings that rarely have PV installations in Germany. 

The direct and indirect effects are thus expected and also found to be opposite to the effects of 

the share of one- and two-family homes. Thereby, direct impacts are larger (negative) than 

indirect impacts. 

Finally, a positive effect on the PV adoption rate can also be found for the number of large-

scale PV systems. If the number of large-scale PV systems in the focal neighborhood increases 

by one unit, it is associated with a PV-adoption-rate increase of 0.0024, i.e., 0.24 percentage 

points. With an increase of 0.44 percentage points in the adoption rate, the indirect impact and 

thus the spillover effect of an increase in the number of large-scale PV systems in neighboring 

units is even larger than the direct effect.  

5.2 Variations in neighborhood size 

To check the sensitivity of our results regarding the size of the defined neighborhood, we 

estimate the SDM using increasing cutoff distances of up to 15 km. Thereby, possible changes 

in the significance of direct and indirect effects might be detected. Further, the changing 

influence of endogenous spatial autoregressive effects will be examined. Direct effects and 

indirect effects are illustrated in Figure 5. Corresponding regression results are given in Table 

A 2 and Table A 3 in the appendix.  

On the one hand, all direct effects, are statistically significant at least at the 5 % level, regardless 

of the cutoff distance used in the regression. On the other hand, indirect or spatial spillover 

effects of the share of purchasing power per household, unemployment rate, old-age 

dependency ratio as well as one- and two-family homes become insignificant15 with increasing 

distances. The spillover effects of large PV systems and the household density, however, remain 

statistically significant at the 0.1 % level in all specifications. Looking at the log-likelihood as 

 
15 As soon as the coefficients with the 95% Conf. Int. cross the zero line (cf. Figure 5), they become statistically 

insignificant at the 5 % level.  
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a goodness-of-fit measure, a radius of 8 km yields the best results for our data. With larger 

distances beyond this threshold, the log-likelihood starts decreasing again.  

 

Figure 5 Direct and indirect effects of all exogenous variables for different cutoff distances. 

Source: Own calculation and illustration based on MaStR, DWD and RWI-GEO-GRID. 
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With increasing cutoff distances, the positive direct effects of solar irradiation and the number 

of large-scale PV systems are decreasing. Contrary, the spillover effects of the number of large-

scale systems are increasing with rising cutoff distances and this effect largely overcompensates 

the decrease in the direct effect. This suggests that the visibility (and possibly also the network 

effects) of (large) PV systems do not only impact the immediate neighborhood, but also affects 

adoption decisions in a wider area.  

This finding corresponds to the results obtained for the autoregressive parameter 𝜌. Also, this 

parameter increases with distance (cf. Figure 6), indicating spatial spillovers of the adoption of 

small-scale PV systems in neighboring regions even over distances above 10 km and when 

controlling for socioeconomic and settlement factors.  

 

Figure 6 Spatial interaction effect for different cutoff distances. 

Source: Own calculation and illustration based on MaStR, DWD and RWI-GEO-GRID. 

For the socioeconomic factors themselves, i.e., purchasing power per household, 

unemployment rate and old-age dependency ratio, results are substantially different. The 

magnitude of direct effects tends to increase slightly with larger cutoff distances whereas the 

magnitude of spillover effects decreases. For both purchasing power and unemployment rate, 

the indirect effects become insignificant when the cutoff distance exceeds a radius of 6 km. In 

the case of the old-age dependency ratio, the spillovers already become statistically 

insignificant for distances of 4 km and more. As the best fit in terms of log-likelihood is 

obtained for a cutoff distance of 8 km, we tentatively conclude that spillovers for socioeconomic 

factors are rather irrelevant – and that their presence at smaller cutoff distances rather 



 

26 

constitutes an artefact which results from the omission of far-ranging indirect effects of (small 

and large) PV installations. 

Regarding the settlement structure,  similar patterns emerge for the share of one- and two-family 

homes. As for the socioeconomic factors, its indirect effect decreases at higher cutoff distances, 

becoming insignificant from a radius of 5 km onwards. For the household density, both direct 

and indirect effects remain significant across the different regression specifications, with the 

magnitude of indirect effects even increasing with higher cutoff distances. “Rurality”, which 

broadly corresponds to large areas with low household density, hence, seems to have a 

substantial positive effect – other things being equal – on the adoption of PV systems. 

5.3 Robustness of results  

To test the robustness of our results, we additionally use data for 2014 and re-estimate the SDM 

for a cutoff distance of 1 km. Results for the SDM regression and corresponding impact 

measures are given in Table 7. The autoregressive parameter 𝜌 is slightly lower compared to 

the results for 2020, yet remains positive and statistically significant, indicating endogenous 

spatial spillovers between neighboring grids. The minor decrease in the parameter value may 

be related to the fact that there were generally fewer PV installations in 2014 than in 2020 and 

spillover effects due to the visibility of other installations in neighboring regions have been 

correspondingly lower.  

With the exception of purchasing power, old-age dependency ratio and the number of large-

scale PV systems, all direct effects are slightly smaller in 2014 compared to 2020. The direct 

effects of purchasing power and large-scale PV systems on the adoption rate of small-scale 

installations, are on the contrary larger in the regression with data of 2014 – which suggests that 

PV adoption at that time was more driven by higher income classes and the presence of large 

“pilot” installations. For the spillover effects, rather similar patterns arise exempt for the 

unemployment rate: indirect effects are slightly smaller in 2014 compared to 2020. The indirect 

effect of purchasing power per household, even becomes statistically insignificant when using 

data of 2014. Overall, changes in effect sizes appear to be rather limited. Accordingly, the 

results are robust to changes in the year under consideration. 
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Table 7 SDM regression results and impact measures, using a cutoff distance of 1 km and data 

from 2014 . 

Dependent Variable: 

PV adoption rate 

SDM   Impact measures 

𝛽  𝜃  Direct Indirect Total 

Solar irradiation 0.0002 ***   0.0002 ***     

 [4.81e-06]       

Purchasing power 0.0003 *** -0.0001 * 0.0003 *** -0.0001  0.0002 *** 

(in 1,000 €) [6.63e-05]  [7.35e-05]     

Unemployment rate -0.0005 * -0.0025 *** -0.0006 ** -0.0029 *** -0.0035 *** 

 [0.0002]  [0.0002]     

Old-age dependency ratio -0.0002 *** -0.0001 * -0.0003 *** -0.0002 ** -0.0005 *** 

 [5.77e-05]  [6.52e-05]     

One-, two-family homes 0.0001 *** 0.0001 *** 0.0002 *** 0.0001 *** 0.0003 *** 

 [1.40e-05]  [1.80e-05]     

Household density -2.00e-05 *** -7.59e-06 *** -2.07e-05 *** -1.16e-05 *** -3.23e-05 *** 

 [7.86e-07]  [1.05e-06]     

No. of large-scale PV 0.0028 *** 0.0038 *** 0.0031 *** 0.0046 *** 0.0077 *** 

 [6.99e-05]  [8.51e-05]     

Constant -0.1613 ***         

 [0.0063]      

𝜌 0.1468 ***        

 [0.0028]     

Log-likelihood 138,887.4     

Observations 125,441     

Notes: Standard errors in brackets. *** p <0.001, ** p <0.01, * p <0.05. For SDM, 𝛽-estimates show 

coefficients for the independent variables; 𝜃-estimates show coefficients for the spatially lagged independent 

variables. 

Source: Own calculations based on MaStR, DWD and RWI-GEO-GRID. 

6 Discussion 

Estimation results reveal that the adoption of residential solar PV systems is influenced by a 

combination of local factors, such as socioeconomic characteristics, settlement structure as well 

as features describing the physical environment. Moreover, there's an observable impact from 

spillover effects. Similar to numerous studies, we incorporate solar irradiation as an explanatory 

variable in the category of climate characteristics. Since solar irradiation varies geographically, 

areas with greater solar irradiation can generate more electricity from the same system size (and 

cost), leading to improved economic viability. This is found to have positive and significant 

effects on the adoption of residential PV installations. Our results are thus in line with Balta-

Ozkan et al. (2015), Balta-Ozkan et al. (2021), Copiello and Grillenzoni (2017), Schaffer and 

Brun (2015) and Collier et al. (2023), among others. 

Regarding the socioeconomic characteristics of the respective neighborhood, we find positive 

and statistically significant direct effects for purchasing power that were also reported inter alia 
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in Zhang et al. (2023a), Dharshing (2017) and Irwin (2021). This is in line with expectations, 

as higher-income households tend to have fewer financial constraints and a higher willingness 

to bear risk for new investments such as installing PV systems. These results are contrary to 

those of Balta-Ozkan et al. (2015), who found insignificant impacts of income on the diffusion 

of residential solar PV systems in the UK.  

Besides positive direct effects, we additionally find statistically significant indirect impacts of 

purchasing power on PV saturation – at least when limiting neighborhood sizes to a radius of 

6 km or less. These results are contrary to those of Zhang et al. (2023a), as they report 

insignificant indirect impacts drawing on data of about 13,000 neighborhoods in the 

Netherlands (and using a cutoff distance of 3.5 km). The significant indirect effects in our study 

may be explained by network effects that are not limited to the own neighborhood in a 1 km² 

grid and that are not captured by existing PV installations (cf. below). So these are probably 

information networks in the sense that there is more talk and discussion about the merits of 

sustainable technologies, which reduces uncertainties e.g., about possible payback periods (cf. 

Bollinger and Gillingham, 2012). Another explanation is the increased probability of a larger 

fraction of high-income residents in the area if the average income in the surrounding area is 

also higher. The effect thus reflects some spillover in the overall economic situation of the 

neighborhood.  

The consistent (negative) effects of the unemployment rate further support this hypothesis. 

Elevated unemployment within a neighborhood often correlates with lower rates of 

homeownership and, consequently, reduced disposable income. Additionally, there's a direct 

connection with the number of welfare recipients, showing an inverse relationship with the 

percentage of the population that earns an income. These factors have also been explored in 

other studies (e.g., Baginski and Weber, 2019; Thormeyer et al., 2020; Zhang et al., 2023a), 

which discover negative impacts associated with the proportion of welfare recipients and 

positive impacts linked to an increasing prevalence of homeownership and income-earning 

individuals in the population. Consequently, these outcomes align with the negative effects we 

have identified concerning increasing unemployment rates.  

Regarding effects of age on the adoption of residential PV installations, there is mixed evidence 

in the extant literature (cf. Alipour et al., 2020). Contrary to most studies that use shares of 

different age groups, we align with studies on the demographic transition and include the old-

age dependency ratio in our analysis (cf. Section 3). This leads to negative and significant direct 

effects in all model specifications. As a result, PV adoption rates decrease when the ratio of 
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people aged 65 and over to people aged 20 to 64 increases, i.e., the population becomes 

proportionately older. A negative effect of the share of people aged 65 and older was also found 

in Bollinger and Gillingham (2012), Dharshing (2017) and Zhang et al. (2023a); however, all 

studies also report negative effects for younger age groups, leading to an inconclusive or non-

linear effect of age on the adoption of residential solar PV.  

A factor describing the settlement structure of the neighborhood is the share of one-and two-

family homes. Some studies also use the share of detached houses or single-family houses only; 

however, effects are comparable as all of these factors describe the built environment in a 

neighborhood. Similar to Kucher et al. (2021), Müller and Rode (2013), Dharshing (2017), 

Balta-Ozkan et al. (2015) and Collier et al. (2023), among others, we find positive direct and 

indirect effects in all specifications; however, the spatial spillovers for this variable become 

insignificant with cutoff distances beyond 4 km. 

The impact of household density, serving as a representation of urbanization, follows a similar 

pattern. In regions with elevated household density, the adoption of PV systems tends to be 

lower (e.g., Balta-Ozkan et al., 2015; Bollinger and Gillingham, 2012; Collier et al., 2023; 

Kucher et al., 2021; Kwan, 2012). This might be attributed to a greater prevalence of 

apartments, a particularly significant factor in urban settings – albeit this is in principle already 

controlled for ex negative by including the share of one- and two-family houses as explanatory 

variables. Hence it is rather attributable to smaller available rooftop spaces in high-density 

neighborhoods, which reduces the profitability of PV installations. This prevails also in the 

indirect effects indicating that household density in the surroundings does not induce strong 

positive network effects as hypothesized in Section 3. 

Finally, neighborhood effects are captured inter alia by the impact of large-scale PV 

installations on the adoption of residential rooftop PV. To our knowledge, this has not received 

attention in the existing literature (cf. Zhang et al., 2023a). It is often argued that peer effects 

mainly work through the visibility of other PV installations (Bollinger and Gillingham, 2012; 

cf. Rode and Müller, 2021). The strong positive direct and indirect effects of large-scale PV 

plants that we find in all models supports this visibility argument. Concurrently, it implies that 

the inclusion of large solar installations is crucial, even when studying the distribution of 

smaller installations. 

Neighborhood effects are also captured by the autoregressive parameter 𝜌. As the size of this 

coefficient is dependent on inter alia the weights matrix used and also the chosen cutoff 

distances, it is not directly comparable to other studies. With an increasing distance, we find 
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that the autoregressive parameter 𝜌 also increases. The effect depicts spillovers of the adoption 

of small-scale PV systems in the surrounding neighborhood on the adoption rates in the focal 

neighborhood and thus is an indicator for the effect of visibility of these systems.  

The increase in spatial autocorrelation underscores the enduring importance of PV system 

visibility beyond small neighborhoods and points to the conclusion that not only neighborhoods 

but also supply and information networks matter. This also underlines the increasing indirect 

effects of large-scale PV systems with increasing distances. Contrarily, indirect effects and thus 

spillover effects of almost all other variables become insignificant when neighborhood size is 

increased. This aligns with results from studies using coarser data, yet any estimate of spillovers 

related to visibility and network effects will be blurred if coarse data is used – as then there is 

a broad range of distances between individual units belonging to contiguous neighborhoods, 

e.g., in a range between less than 1 km up to 40 km, if two regions of 20 km diameter are next 

to each other.  

7 Conclusion  

Based on a Spatial Durbin Model and a novel dataset at a standardized 1 km² grid cell level, we 

investigate the adoption of residential solar PV systems in Germany for the year 2020. Thereby, 

we not only consider socioeconomic as well as geographic factors at a small spatial scale; we 

also examine spatial spillovers for different neighborhood sizes and investigate the effect of 

large-scale solar PV systems up to 100 kWp on the adoption of installations up to 10 kWp. Our 

results reveal that the number of large-scale PV systems has strong positive effects on the 

adoption of residential PV installations, indicating that an inclusion of such systems is crucial 

for estimating adoption effects. It further indicates that the installation of large systems in 

neighborhoods with low adoption rates may foster the installation of residential PV.  

Additionally, the autoregressive parameter increases with increasing neighborhood sizes, 

pointing to relevant spatial effects e.g., due to the visibility of small-scale PV systems, even 

beyond the immediate neighborhoods. However, spillover effects of other explanatory factors 

become insignificant with larger distances. Given these differentiated findings, we strongly 

recommend the use of high-resolution spatial data to avoid the blurring of different types of 

spillover effects when using coarser data. 

Nevertheless, there are several limitations to this study. First, system prices and subsidies are 

found to be important drivers of PV diffusion, both of which are not included in our study. This 

is, however, related to the use of cross-sectional data for a single year on which we base our 
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analysis. As spatial price variations are hardly observable, we have excluded these factors from 

the regression. Second, a minor drawback is the lack of information on the share of owner-

occupied homes as this is also found to have significant influence on the adoption of residential 

PV systems (e.g., Zhang et al., 2023a). Nonetheless, as previous research consistently points to 

the same outcome, the inclusion of this factor would probably not have led to new findings.  

Finally, as we employ cross-sectional data, unobserved time-invariant effects that occur during 

dynamic technological diffusion processes are not captured in our analysis. However, we leave 

this for future research, as our initial objective has been to examine the merits of small-scale 

raster data with combined adoption, socioeconomic and settlement variables to assess the 

impact of neighborhood effects on the penetration of residential solar PV installations when 

controlling for multiple other factors.  
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Appendix 

Table A 1 Descriptive statistics for the year 2014. (n = 125,441)

 Variable Mean Std. Dev. Min Max Median 

PV adoption rate, i.e. 

No. of PV ≤ 10 kWp/No. of houses 

0.07 0.09 0.00 4.00 0.04 

Solar irradiation,  

in W/m² 

1,074.69 50.80 936.70 1,224.00 1,069.00 

Purchasing power per household,  

in €  

44,939.86 7,704.12 22,338.10 71,515.86 44,809.51 

Unemployment rate,  

in % 

4.73 3.01 0.00 20.00 4.11 

Old-age dependency ratio 

 

36.19 7.64 17.28 70.24 35.33 

No. of houses 

 

120.86 167.93 2.00 1,032.00 50.00 

Share of one-, two-family homes, 

in % 

67.44 21.08 1.91 100.00 70.77 

Population density,  

inhabitants/km² 

444.27 791.77 12.00 6,998.00 143.00 

Household density, 

households/km² 

221.48 411.75 10.00 3,873.00 67.00 

No. of large-scale PV systems, 

 > 10 kWp and ≤100 kWp 

2.79 3.69 0.00 24.00 1.00 

Notes: The old-age dependency ratio represents the ratio of persons of retirement age (here: 65 years and 

older) to 100 persons of working age (here: from 20 to 64 years). Values are based on inhabited 1 km² 

grid cells only. 

Source: Own calculations based on MaStR, DWD and RWI-GEO-GRID. 
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Figure A 1 Regional distribution of solar irradiation in 2020. 

Source: Own illustration. Map data: @GeoBasis-DE/BKG 2021 
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Figure A 2 Regional distribution of large-scale PV systems across Germany, 2020. 

Source: Own illustration based on MaStR and RWI-GEO-GRID. Map data: @GeoBasis-DE/BKG 2021 
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Table A 2 SDM-regression results for cutoff distances of 2 km to 6 km. 

Dependent Variable: 

PV adoption rate 
2 km  3 km  4 km  5 km  6 km  

𝛽-estimates: 

Solar irradiation 0.0002 *** 0.0002 *** 0.0001 *** 0.0001 *** 8.78e-05 *** 

 [4.56e-06]  [4.67e-06]  [4.76e-06]  [4.86e-06]  [4.92e-06]  

Purchasing power  0.0001  0.0001 ** 0.0001 ** 0.0002 *** 0.0002 *** 

(in €1,000) [5.66e-05]  [5.06e-05]  [4.75e-05]  [4.52e-05]  [4.39e-05]  

Unemployment rate -0.0012 *** -0.0014 *** -0.0016 *** -0.0018 *** -0.0018 *** 

 [0.0002]  [0.0002]  [0.0002]  [0.0002]  [0.0002]  

Old-age dependency -0.0003 *** -0.0003 *** -0.0003 *** -0.0004 *** -0.0004 *** 

ratio [4.96e-05]  [4.32e-05]  [4.02e-05]  [3.81e-05]  [3.70e-05]  

One-, two-family  0.0002 *** 0.0002 *** 0.0002 *** 0.0002 *** 0.0002 *** 

homes [1.51e-05]  [1.50e-05]  [1.49e-05]  [1.48e-05]  [1.48e-05]  

Household density -2.14e-05 *** -2.12e-05 *** -2.14e-05 *** -2.20e-05 *** -2.24e-05 *** 

 [8.13e-07]  [7.85e-07]  [7.72e-07]  [7.63e-07]  [7.58e-07]  

No. of large-scale PV 0.0015 *** 0.0012 *** 0.0010 *** 0.0010 *** 0.0009 *** 

 [6.72e-05]  [6.75e-05]  [6.77e-05]  [6.78e-05]  [6.79e-05]  

Constant -0.2038 *** -0.1573 *** -0.1315 *** -0.1051 *** -0.0891 *** 

 [0.0068]  [0.0073]  [0.0077]  [0.0082]  [0.0085]  

𝜃-estimates: 

Purchasing power  0.0003 *** 0.0002 *** 0.0002 ** 9.43e-05  2.57e-05  

(in €1,000) [6.93e-05]  [6.88e-05]  [6.96e-05]  [7.17e-05]  [7.37e-05]  

Unemployment rate -0.0017 *** -0.0011 *** -0.0005  0.0001  -0.0004  

 [0.0003]  [0.0003]  [0.0003]  [0.0003]  [0.0003]  

Old-age dependency  -0.0003 *** -9.35e-05  3.86e-05  0.0001 * -0.0002 ** 

ratio [6.22e-05]  [6.10e-05]  [6.19e-05]  [6.44e-05]  [6.66e-05]  

One-, two-family  0.0002 *** 7.37e-05 * 1.70e-05  -4.77e-05  -8.86e-05 * 

homes [2.50e-05]  [3.00e-05]  [3.36e-05]  [3.70e-05]  [3.92e-05]  

Household density -9.36e-06 *** -8.66e-06 *** -6.57e-06 *** -3.17e-06  -1.11e-06  

 [1.38e-06]  [1.59e-06]  [1.75e-06]  [1.92e-06]  [2.04e-06]  

No. of large-scale PV 0.0052 *** 0.0061 *** 0.0061 *** 0.0058 *** 0.0054 *** 

 [0.0001]  [0.0001]  [0.0002]  [0.0002]  [0.0002]  

𝜌 0.2420 *** 0.3386 *** 0.4123 *** 0.4930 *** 0.5448 *** 

 [0.0038]  [0.0048]  [0.0056]  [0.0065]  [0.0071]  

Log-likelihood 134,166.1  135,104.3  135,537.1  135,864.4  135,997.18  

Observations 125,441  125,441  125,441  125,441  125,441  

Notes: Standard errors in brackets. *** p <0.001, ** p <0.01, * p <0.05. 𝛽-estimates show coefficients for the 

independent variables; 𝜃-estimates show coefficients for the spatially lagged independent variables. Data for 2020 

is used in all regressions. 

Source: Own calculations based on MaStR, DWD and RWI-GEO-GRID. 
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Table A 3 SDM-regression results for cutoff distances of 7 km to 10 km and 15 km. 

Dependent Variable: 

PV adoption rate 
7 km  8 km  9 km  10 km  15 km  

𝛽-estimates: 

Solar irradiation 7.57e-05 *** 6.53e-05 *** 5.75e-05 *** 5.05e-05 *** 2.82e-05 *** 

 [4.98e-06]  [5.04e-06]  [5.09e-06]  [5.14e-06]  [5.30e-06]  

Purchasing power  0.0003 *** 0.0003 *** 0.0003 *** 0.0003 *** 0.0004 *** 

(in €1,000) [4.30e-05]  [4.22e-05]  [4.18e-05]  [4.12e-05]  [4.00e-05]  

Unemployment rate -0.0019 *** -0.0020 *** -0.0020 *** -0.0020 *** -0.0020 *** 

 [0.0002]  [0.0002]  [0.0002]  [0.0002]  [0.0002]  

Old-age dependency -0.0004 *** -0.0004 *** -0.0004 *** -0.0004 *** -0.0005 *** 

ratio [3.62e-05]  [3.56e-05]  [3.51e-05]  [3.48e-05]  [3.37e-05]  

One-, two-family  0.0002 *** 0.0002 *** 0.0002 *** 0.0003 *** 0.0003 *** 

homes [1.47e-05]  [1.47e-05]  [1.47e-05]  [1.47e-05]  [1.46e-05]  

Household density -2.26e-05 *** -2.30e-05 *** -2.32e-05 *** -2.34e-05 *** -2.46e-05 *** 

 [7.53e-07]  [7.48e-07]  [7.45e-07]  [7.43e-07]  [7.33e-07]  

No. of large-scale PV 0.0010 *** 0.0010 *** 0.0010 *** 0.0011 *** 0.0012 *** 

 [6.78e-05]  [6.78e-05]  [6.78e-05]  [6.78e-05]  [6.74e-05]  

Constant -0.0762 *** -0.0671 *** -0.0596 *** -0.0507 *** -0.0268 * 

 [0.0088]  [0.0091]  [0.0094]  [0.0097]  [0.0108]  

𝜃-estimates: 

Purchasing power  -2.98e-05  -7.12e-05  -0.0001  -0.0002 * -0.0003 *** 

(in €1,000) [7.57e-05]  [7.81e-05]  [8.06e-05]  [8.32e-05]  [9.41e-05]  

Unemployment rate 0.0007 * 0.0009 ** 0.0012 *** 0.0013 *** 0.0018 *** 

 [0.0003]  [0.0003]  [0.0003]  [0.0003]  [0.0003]  

Old-age dependency  0.0002 *** 0.0003 *** 0.0003 *** 0.0004 *** 0.0004 *** 

ratio [6.87e-05]  [7.13e-05]  [7.38e-05]  [7.64e-05]  [8.70e-05]  

One-, two-family  -0.0001 ** -0.0001 *** -0.0002 *** -0.0002 *** -0.0003 **** 

homes [4.09e-05]  [4.27e-05]  [4.43e-05]  [4.57e-05]  [5.05e-05]  

Household density 5.44e-07  2.44e-06  3.47e-06  4.08e-06  1.01e-05 *** 

 [2.13e-06]  [2.22e-06]  [2.32e-06]  [2.41e-06]  [2.76e-06]  

No. of large-scale PV 0.0050 *** 0.0046 *** 0.0042 *** 0.0040 *** 0.0026 *** 

 [0.0002]  [0.0002]  [0.0002]  [0.0002]  [0.0003]  

𝜌 0.5900 *** 0.6321 *** 0.6646 *** 0.6913 *** 0.7977 *** 

 [0.0076]  [0.0081]  [0.0085]  [0.0089]  [0.0102]  

Log-likelihood 136,078.1  136,098.7  136,057.1  136,005.7  135,862.2  

Observations 125,441  125,441  125,441  125,441  125,441  

Notes: Standard errors in brackets. *** p <0.001, ** p <0.01, * p <0.05. 𝛽-estimates show coefficients for the 

independent variables; 𝜃-estimates show coefficients for the spatially lagged independent variables. Data for 2020 

is used in all regressions. 

Source: Own calculations based on MaStR, DWD and RWI-GEO-GRID. 
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