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IRREVERSIBLE REINSURANCE: MINIMIZATION OF CAPITAL INJECTIONS

IN PRESENCE OF A FIXED COST

SALVATORE FEDERICO, GIORGIO FERRARI, AND MARIA LAURA TORRENTE

Abstract. We propose a model in which, in exchange to the payment of a fixed transaction cost,
an insurance company can choose the retention level as well as the time at which subscribing a
perpetual reinsurance contract. The surplus process of the insurance company evolves according to
the diffusive approximation of the Cramér-Lundberg model, claims arrive at a fixed constant rate,
and the distribution of their sizes is general. Furthermore, we do not specify any specific functional
form of the retention level. The aim of the company is to take actions in order to minimize the sum
of the expected value of the total discounted flow of capital injections needed to avoid bankruptcy
and of the fixed activation cost of the reinsurance contract. We provide an explicit solution to this
problem, which involves the resolution of a static nonlinear optimization problem and of an optimal
stopping problem for a reflected diffusion. We then illustrate the theoretical results in the case of
proportional and excess-of-loss reinsurance, by providing a numerical study of the dependency of the
optimal solution with respect to the model’s parameters.

Keywords: reinsurance; fixed cost; capital injections; diffusive risk model; optimal stopping.

MSC2010 subject classification: 97M30, 91B30, 60G40, 49L20.

JEL classification: C61, G22, C41.

1. Introduction

Reinsurance contracts usually run for long time periods (at least for longer than the typical ma-
turity of financial contracts) and are exposed to high frictional costs. As a result, reinsurance
negotiations are costly, lengthy, and can be thought of as irreversible, cf. [5]. As noticed by [6],
it is indeed the case that “although reinsurance, in principle, is reversible, in practice reversing a
reinsurance transaction exposes the insurer to relatively high transaction costs as well as additional
charges to protect the reinsurer against adverse selection.” Furthermore, many external factors can
interfere with changes in the reinsurance contracts. It is recent news that “2023’s renegotiation of
reinsurance policies has been the most challenging in years as reinsurers respond to pressure from
spiralling inflation and large losses from natural catastrophes, as well as the fallout from Russia’s
invasion of Ukraine” (cf. Ian Smith, Insurance Correspondent of the “Financial Times”, January 3
2023∗).

Optimal reinsurance decisions are typically formulated in terms of regular control problems, thus
neglecting the aforementioned irreversibility feature. Given the vastity of the related literature, we
refrain here form providing a list of references (that would necessarily result in being not exhaustive)
and we simply refer to the discussion in Chapter 2 of [21] or in Chapter 11 of [1] for models and
solutions. However, in the last decade the actuarial literature has started experiencing models of
optimal irreversible reinsurance. In [2] it is investigated an optimal reinsurance problem under
fixed cost, for an insurance company aiming at maximizing exponential expected utility at terminal
time. The problem of optimal reinsurance negotiations with implementation delay and fixed cost
is considered in [8], the optimal timing for the activation of an excess-of-loss reinsurance with fixed
costs is studied in [18], while the presence of additional proportional transaction costs for a company

Date: September 28, 2023.
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minimizing the ruin probability is treated in [17]. Finally, a singular stochastic control model for the
optimal sequential adjustment of reinsurance contracts has been recently formulated in [26].

Our paper contributes to that bunch of literature by proposing a model in which, in exchange
to the payment of a fixed transaction cost, an insurance company can choose the retention level as
well as the time at which subscribing a (perpetual) reinsurance contract. Assuming that investors
inject capital to avoid bankruptcy of the company, the insurance company aims at minimizing the
sum of the expected value of the discounted fixed activation cost and of the cumulative discounted
flow of capital injections. Capital injection models have been introduced by Dickson and Waters in
[7]. Therein, starting from the observation that ruin occurs almost surely when the company pays
dividends by following the optimal strategy of the de Finetti’s problem, a model has been suggested
in which the shareholders are obliged to inject capital in order to avoid bankruptcy. We also refer
to [13], [14], [19], [20], [22], [27] and reference therein for works related to the optimal dividends’
distribution in presence of capital injections. In the context of optimal reinsurance problems, the
employment of the cumulative discounted flow of capital injections as a risk measure alternative to
the ruin probability has firstly been proposed in [10], and later also used in [9] and [12]. As a matter
of fact, the use of the ruin probability as measure of risk presents drawbacks: first of all, it is not a
coherent risk measure, this potentially leading to decisions that are not economically sounded; second
of all, it does not provide information about neither the time of ruin nor the severity of ruin. In order
to define a unified framework for the evaluation of a variety of risk quantities, and in particular to
give indications about the deficit at ruin and the time of ruin, Gerber and Shiu proposed in [15] the
so-called expected discounted penalty function – also known as Gerber-Shiu function – of which the
capital injection criterion represents an example (see, e.g., Section 2.4.3 in [16] or Chapter 4 in [25]).

In this paper, we assume that the surplus process of an insurance company evolves according
to the diffusive approximation of the Cramér-Lundberg model. Claims arrive at a fixed constant
rate and the distribution of their sizes is general. Furthermore, we do not specify any form of the
retention level, which is simply assumed to be a continuous function, strictly increasing with respect
to the reinsurance parameter. The company can choose the time τ at which buying reinsurance
and the desired retention level, which will then be kept from time τ on. Those once-for-all actions
involve a fixed cost, which is immediately withdrawn from the company’s surplus at time τ . The
aim of the company is to take actions in such a way that the total discounted costs of capital
injection and of the reinsurance contract are minimized. We provide an explicit solution to this
problem which we show can be solved via a two-step procedure (see also [2] and [17], among others).
We first solve for the optimal retention level, which is uniquely identified through the solution to
a nonlinear algebraic equation. Then, given the optimal retention level, we look for the optimal
time at which it is worth activating the irreversible reinsurance contract. This turns out to be
given as the solution to a one-dimensional optimal stopping problem for a reflected drifted Brownian
motion. We use the classical guess-and-verify approach by determining a smooth solution to the
corresponding variational inequality with Neumann boundary condition and then by verifying the
actual optimality of the candidate policy. It is worth noticing that, given the reflecting condition of
the surplus process at zero, the verification argument requires quite some technical work in order to
check that the variational inequality is indeed satisfied by the candidate value function (see the proofs
of Proposition 3.10 and of Theorem 3.11 below). We find that a barrier-strategy is optimal and that
reinsurance should be bought when the insurance company’s surplus process is sufficiently large, in
particular larger than an endogenously determined trigger level (free boundary) that depends on the
model’s parameters. Interestingly, we observe that the solution to our problem is consistent with
that of [10], where, given the absence of a fixed transaction cost, reinsurance is bought immediately.
Namely, the optimal retention level in our model is the same as that in [10], and, when the fixed cost
K ↓ 0, the free boundary converge to zero as well, implying that immediate reinsurance is in fact
optimal.
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We finally illustrate our results in the two relevant cases of proportional and excess-of-loss rein-
surance, when the distribution of the claims’ sizes are Exponential or Pareto with parameters (ζ, α),
for some α > 2 and ζ > 0. We solve numerically the equations that uniquely determine the op-
timal retention level and the free boundary and we study the dependency of those quantities with
respect to relevant model’s parameters. We observe that both the optimal retention level and the free
boundary exhibit a monotonic behavior with respect to the considered parameters and we provide
explanations of these findings. Furthermore, we show (for fixed values of the model’s parameters)
that, when the claim’s size is exponentially distributed, the value function one has in the case of
proportional reinsurance is smaller than the one related to an excess-of-loss reinsurance, while no
uniform comparison can be made in the case of Pareto-distributed claim’s size.

The rest of the paper is organized as follows. Section 2 presents the problem, which is then solved
in Section 3. Section 4 illustrates numerically the theoretical findings in the case of proportional and
excess-of-loss reinsurance, while a final appendix collects most of the technical proofs of the paper.

2. Problem Formulation

Let (Ω,F ,F := (Ft)t,P) be a complete probability space, rich enough to accommodate a one-
dimensional F-Brownian motion (Wt)t≥0 and an independent square-integrable random variable Z,
taking values in Z ⊂ R+, and with law νZ under P. Within this probabilistic setting, we consider the

unaffected surplus process (X̂t)t≥0 of an insurance company, with initial value X̂0 = x > 0, evolving
through the diffusion approximation of the classical Cramér-Lundberg model (see, e.g., Appendix D
in [21] or Section 8 in Chapter IV of [1])

X̂x
t = x+ ληµt+ σ

√
λWt, t ≥ 0.(2.1)

Here, µ :=
∫
Z zνZ(dz) > 0 and σ2 :=

∫
Z z

2νZ(dz) > 0 are, respectively, the mean and the standard
deviation of the generic claim size Z, λ is the arrival time parameter of the claims, η is the safety
loading.

In order to avoid bankruptcy, investors are asked by the insurance company to inject capital when-
ever the surplus level attempts to become negative. Assuming that investors are impatient agents,
it is clear that those injections of capital are made only when strictly necessary. The cumulative
amount of capital injections (It)t will then reflect (à la Skorokhod) the surplus process at x = 0, so
that the resulting dynamics are

Xx
t = x+ ληµt+ σ

√
λWt + It = X̂x

t + It, t ≥ 0,(2.2)

with

It = sup
0≤s≤t

[
−X̂x

s

]+
, t ≥ 0.

Within this model, we consider the possibility for the insurer of adopting a reinsurance strategy.
More precisely, we consider a continuous function

r : Z × [0, 1]→ R+,

which represents the retention level of the insurer — that is, the part of risk remaining in her charge
— whose value depends on the chosen level b ∈ [0, 1]. It is assumed r(z, ·) is strictly increasing and
that b = 1 corresponds to no reinsurance and b = 0 corresponds to full reinsurance; that is,

r(z, 1) = z, r(z, 0) = 0.(2.3)

Typical examples are the case of proportional reinsurance, for which

r(z, b) = bz,(2.4)

and that of the excess-of-loss reinsurance, for which

r(z, b) = z ∧
(

b

1− b

)
.(2.5)
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Remark 2.1. It is worth noticing that choosing the reinsurance parameter b ∈ [0, 1] allows us to
cover the relevant reinsurance models using a unique parametrization within a unified setting. In the
case of excess-of-loss reinsurance (cf. (2.5) above), this leads to a deviation from the classical formula
of the reinsurance retention level which assumes b ≥ 0 (cf. [21]).

In our model, we assume that the reinsurance policy is irreversible. This means that at a properly
picked F-stopping time τ the insurer chooses the level bτ , which will then be kept from time τ on.
Formally, the reinsurance policy is thus a couple

a := (τ, bτ ) ∈ A := T ×MFτ ,

where

T := {τ : Ω→ R+ F-stopping time}, MFτ := {B : (Ω,Fτ )→ [0, 1] measurable}.

To implement the reinsurance strategy a, the insurer faces a fixed transaction cost K ≥ 0 at the time
τ ∈ T at which the reinsurance contract is signed. From time τ on, according to the expected value
principle, the insurer pays to the reinsurance company a perpetual premium rate with value

θλ(µ−M1(bτ )), where M1(b) :=

∫
Z
r(z, b)νZ(dz),(2.6)

for θ > η. On the other hand, the risk exposure of the insurance company is reduced, leading to the
diffusion coefficient

M2(bτ ), where M2(b) :=

∫
Z
r(z, b)2νZ(dz).(2.7)

In particular, from (2.3) it follows that M1(1) = µ and M2(1) = σ2. Consequently, for t ≥ τ , the
insurer only faces the outflows relative to her part of risk, represented by the retention level r. All
in all, the dynamics with capital injection of the surplus process after time τ are

Xx
t = Xx

τ− −K + λ(θM1(bτ )− (θ − η)µ)(t− τ) +
√
λM2(bτ )(Wt −Wτ ) + It, t ≥ τ,(2.8)

where (It)t is now such that

It = sup
τ≤s≤t

[
−
(
Xx
τ− −K + λ(θM1(bτ )− (θ − η)µ)(t− τ) +

√
λM2(bτ )(Wt −Wτ )

)]+
, t ≥ τ.

In the sequel, in order to stress the dependency of I on the reinsurance policy and x, we shall write
Ix,a, when needed.

Following [9], [10], and [11], we assume that the insurance company employs the expected to-
tal amount of discounted capital injections as a measure of risk and thus aims at determining an
admissible irreversible reinsurance policy a∗ ∈ A such that

a∗ ∈ argmin
a∈A

E

[∫ ∞
0

e−ρtdIx,at

]
,

where ρ > 0 is a subjective intertemporal discount rate. For future frequent use we also define

U(x) := inf
a∈A

E

[∫ ∞
0

e−ρtdIx,at

]
, x ≥ 0.(2.9)

3. Solution to the problem

In this section, we determine the explicit solution to (2.9). To accomplish that, we shall first
reformulate the problem in an handier way (cf. Section 3.1), then we shall obtain the optimal level
(cf. Section 3.2) and, finally, the optimal time for reinsurance (cf. Section 3.3).



IRREVERSIBLE REINSURANCE WITH FIXED COST 5

3.1. Reformulation of the problem. In order to obtain an handy representation of U , we compute
the injection costs associated to a fixed retention parameter b ∈ [0, 1] taken at t = 0; that is, given
y ≥ 0 and b ∈ [0, 1], we calculate

Gb(y) := E

[∫ ∞
0

e−ρtdHy,b
t

]
,(3.1)

where

Hy,b
t := sup

0≤s≤t

[
−Y y,b

s

]+
, t ≥ 0,(3.2)

with

Y y,b
t := y + λ(θM1(b)− (θ − η)µ)t+

√
λM2(b) W̃t, t ≥ 0,

for another F-Brownian motion (W̃t)t≥0.
Following [24], we know that, when y ≥ 0, the function Gb is the solution to the differential

problem 
1

2
λM2(b)G

′′
b (y) + λ(θM1(b)− (θ − η)µ)G′b(y)− ρGb(y) = 0,

G′b(0) = −1, lim
y→+∞

Gb(y) = 0.

(3.3)

It then follows from (3.3) that

Gb(y) = − 1

γ−(b)
eγ

−(b)y, ∀y ≥ 0,(3.4)

where γ−(b) < 0 is the negative solution to the equation Φ(b, γ) = 0, with

Φ(b, γ) :=
1

2
λM2(b)γ

2 + λ (θM1(b)− (θ − η)µ) γ − ρ, γ ∈ R.(3.5)

On the other hand, when y < 0, we have

Gb(y) = −y +Gb(0) = −y − 1

γ−(b)
.(3.6)

With the help of the previously defined quantities (cf. (3.1) and (3.2)), an application of the strong
Markov property allows us to rewrite U as follows:

U(x) = inf
a∈A

E

[∫ τ−

0
e−ρtdIx,at +

∫ ∞
τ−

e−ρtdIx,at

]

= inf
a∈A

E

[∫ τ−

0
e−ρtdIx,at + E

[∫ ∞
τ−

e−ρtdIx,at
∣∣ Fτ−]

]

= inf
a∈A

E

[∫ ∞
0

e−ρtdHx,1
t −

∫ ∞
τ−

e−ρtdHx,1
t + E

[∫ ∞
τ−

e−ρtdIx,at
∣∣ Fτ−]]

= G1(x) + inf
a∈A

E
[
e−ρτ (Gbτ (Xx

τ− −K)−G1(X
x
τ−))

]
=: G1(x) + inf

a∈A
J (x, a).

Letting

V (x) := inf
a∈A
J (x, a),(3.7)

where

J (x, a) := E
[
e−ρτfbτ (Xx

τ−)
]
, fb(y) := Gb(y −K)−G1(y),(3.8)
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we have

U(x) = G1(x) + V (x).(3.9)

We now continue our analysis by determining the optimal a∗ = (τ∗, b∗) s.t. V (x) = J (x, a∗). Clearly,
such an a∗ will also be optimal for (2.9).

3.2. Optimal reinsurance. Recall that the function γ−(b) has been defined as the negative solution
to the equation Φ(b, ·) = 0, with Φ as in (3.5). Its explicit expression is

γ−(b) = −
(θM1(b)− (θ − η)µ) +

√
(θM1(b)− (θ − η)µ)2 + 2ρM2(b)

λ

M2(b)
, b ∈ [0, 1].(3.10)

The next assumption will be standing throughout the rest of the paper.

Assumption 3.1. Recall (2.6) and (2.7). We have M1,M2 ∈ C1([0, 1];R).

Under Assumption 3.1, we clearly have γ− ∈ C1([0, 1];R) and

(γ−)′(b) = −γ−(b)
φ(b)

D(b)
, ∀b ∈ [0, 1],(3.11)

where

φ(b) :=
1

2
γ−(b)M ′2(b) + θM ′1(b)(3.12)

D(b) := M2(b)γ
−(b) + θM1(b)− (θ − η)µ.(3.13)

A relevant fact is that the minimum points of γ− in [0, 1] coincide with the minimum points of Gb(x)
for any x ≥ 0, as it is shown in the following result.

Proposition 3.2. For any x ≥ 0, we have

argminb∈[0,1]γ
−(b) = argminb∈[0,1]Gb(x).

Proof. Explicit calculations give

∂Gb
∂b

(x) =
(γ−)′(b)

(γ−(b))2
eγ

−(b)x(x− γ−(b)), ∀x ≥ 0.

Since x− γ−(b) > 0 for each b ∈ [0, 1] and x ≥ 0, then the functions b 7→ Gb(x) and b 7→ γ−(b) have
the same monotonicity and the claim follows. �

Remark 3.3. It is worth noticing that the function γ−(b), b ∈ [0, 1], as defined in (3.10) coincides

with the opposite of the function β(b), b ∈ [0, b̃], defined in [10] (when b̃ = 1). In particular, up to
a parametrization, any optimizer b∗ of γ− on [0, 1] does also optimize β in [10], and viceversa. We
shall see in the next Theorem that, as in [10], optimizers of γ− actually give the optimal level to
be adopted. The optimal timing for reinsurance is then determined given the optimal level b∗ (see
Section 3.3 below).

Taking into account Proposition 3.2, for any x ≥ 0, we denote

B∗ := argminb∈[0,1] γ
−(b) = argminb∈[0,1] Gb(x).

The next result shows how to reduce the solution to (3.7) to a pure optimal timing problem.

Theorem 3.4. Recall (3.7) and (3.8). Let b∗ ∈ B∗ and let τ∗(b∗) ∈ T such that

τ∗(b∗) ∈ argminτ∈T E
[
e−ρτfb∗(Xx

τ−)
]

= argminτ∈T J (x, (τ, b∗)),

with the convention e−ρτfb∗(Xx
τ ) = 0 on {τ = ∞}. Then, the couple a∗ := (τ∗(b∗), b∗) ∈ A is an

optimal reinsurance strategy (with b∗ thought of as a constant random variable).
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Proof. Since Gb∗(x) = minb∈[0,1]Gb(x) (see Proposition 3.2) then

U(x) = G1(x) + V (x)

≥ G1(x) + inf
τ∈T

E
[
e−ρτ (Gb∗(Xx

τ− −K)−G1(X
x
τ−))

]
= G1(x) + inf

τ∈T
J (x, (τ, b∗))

= G1(x) + J (x, (τ∗(b∗), b∗)).

On the other hand

U(x) = G1(x) + V (x)

≤ G1(x) + E
[
e−ρτ

∗(b∗)
(
Gb∗(Xx

τ∗(b∗)− −K)−G1(X
x
τ∗(b∗)−)

)]
= G1(x) + J (x, (τ∗(b∗), b∗)).

Consequently U(x) = G1(x) + J (x, (τ∗(b∗), b∗)) and (τ∗(b∗), b∗) is optimal. �

Theorem 3.4 provides sufficient conditions needed to identify an optimal reinsurance parameter
b∗. If b∗ ∈ B∗, then the level corresponding to a random variable with constant value belonging to
the set B∗ is the second component of an optimal reinsurance strategy. It is then worthful to give
at least sufficient conditions under which such optimal level is nontrivial, i.e. to rule out the case
1 ∈ B∗. This is provided in Proposition 3.6 below, under the following assumption.

Assumption 3.5. Recall (3.12). There exists δ > 0 such that

(3.14) φ(b) < 0, ∀b ∈ (1− δ, 1).

Proposition 3.6. If Assumption 3.5 holds true, then 1 /∈ B∗.

Proof. See Appendix. �

Remark 3.7. Notice that, instead of (3.14), a stronger sufficient condition that would rule out the
case 1 ∈ B∗ is

φ(1) < 0.(3.15)

We will see that the proportional reinsurance case treated in Section 4.1 satisfies (3.15), whereas the
excess-of-loss reinsurance presented in Section 4.2 satisfies the weaker Assumption 3.5.

3.3. Optimal reinsurance timing. Given Theorem 3.4, in order to solve the optimization prob-
lem (3.7) we need to solve, for a fixed b∗ ∈ B∗, the optimal stopping problem (cf. (3.8))

Fb∗(x) := inf
τ∈T
J (x, (τ, b∗)) = inf

τ∈T
E
[
e−ρτfb∗(Xx

τ−)
]
, x ∈ [0,∞).(3.16)

Before addressing problem (3.16) we collect properties of the obstacle function fb∗ .

Proposition 3.8. The following hold true:

(a) fb∗ is strictly decreasing in [0, x̂b∗ ] and strictly increasing in [x̂b∗ ,∞), where

x̂b∗ :=
γ−(b∗)

γ−(b∗)− γ−(1)
K ∈ (K,∞).(3.17)

(b) limx→∞ fb∗(x) = 0.
(c) fb∗ is bounded. Precisely, we have the following two cases:

(i) If −Kγ−(1)γ−(b∗) ≤ γ−(b∗)− γ−(1) < 0, then fb∗(0) ≥ 0 (†), and

−γ
−(1)− γ−(b∗)

γ−(1)γ−(b∗)
e
− γ−(1)γ−(b∗)
γ−(1)−γ−(b∗) ≤ fb∗(x) ≤ K +

γ−(b∗)− γ−(1)

γ−(1)γ−(b∗)
, ∀x ∈ [0,∞).

†With fb∗(0) = 0 if and only if −K =
γ−(b∗) − γ−(1)

γ−(1)γ−(b∗)
.
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(ii) If γ−(b∗)− γ−(1) < −Kγ−(1)γ−(b∗), then fb∗(0) < 0 and

−γ
−(1)− γ−(b∗)

γ−(1)γ−(b∗)
e
− γ−(1)γ−(b∗)
γ−(1)−γ−(b∗) ≤ fb∗(x) < 0, ∀x ∈ [0,∞).

Proof. See Appendix. �
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Case (i) : −Kγ−(1)γ−(b∗) ≤ γ−(b∗)− γ−(1) < 0 Case (ii) : γ−(b∗)− γ−(1) < −Kγ−(1)γ−(b∗)

Figure 1. Function fb∗ in the case b∗ ∈ [0, 1).

From Proposition 3.8 we see that, if 1 ∈ B∗, then 0 ≤ f1(x) ≤ K, ∀x ≥ 0. This in turn leads to
the fact that it it is never optimal to start the reinsurance contract and F1 ≡ 0 (cf. (3.16)). Hence,
in this section, we enforce Assumption 3.5.

Problem (3.16) is a one-dimensional optimal stopping problem for a reflected diffusion that can
be addressed by techniques of the Dynamic Programming Principle. To that end, set

Lϕ :=
1

2
λσ2ϕ′′ + ληµϕ′, ϕ ∈ C2((0,∞);R).(3.18)

By classical dynamic programming arguments, the optimization problem (3.16) is expected to be
associated to the variational problem:

(3.19)

{
min {(L − ρ)w(x), fb∗(x)− w(x)} = 0, x ∈ (0,∞),

w′(0) = 0.

As a matter of fact, one has the following verification theorem.

Theorem 3.9. Let w ∈W 2,∞
loc ([0,∞);R) be a bounded solution to (3.19) and define the reinsurance

region

R := {x ∈ [0,∞) : w(x) ≥ fb∗(x)}.

Then w = Fb∗ and the entry time

τ∗(b∗) := inf{t ≥ 0 : Xx
t ∈ R}

(with the convention inf ∅ =∞) is the optimal reinsurance time for (3.7); that is, one has Fb∗(x) =
J (x, (τ∗(b∗), b∗)).

Proof. See Appendix. �
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Now, given b∗ ∈ B∗, with regards to the properties of fb∗ collected in Proposition 3.8, we expect
that R = {x ≥ 0 : x ≥ x∗b∗} for some x∗b∗ > 0 and that (3.16) is thus related to the following
free-boundary problem: Find (ŵ, x∗b∗) ∈ C2((0, x∗b∗);R)× R+ such that:

(L − ρ)ŵ(x) = 0, if x ∈ (0, x∗b∗),

ŵ′(0) = 0,

ŵ(x∗b∗) = fb∗(x∗b∗), ŵ′(x∗b∗) = f ′b∗(x∗b∗).

(3.20)

Note that the general solution to (L − ρ)w = 0 is

h(x;C1, C2) = C1e
γ−(1)x + C2e

γ+(1)x, C1, C2 ∈ R,(3.21)

where (see (3.5)) γ−(1), γ+(1) are, respectively, the negative and the positive solutions to

Φ(1, γ) =
1

2
λσ2γ2 + ληµγ − ρ, γ ∈ R.(3.22)

The following result characterizes the solution to (3.20).

Proposition 3.10.
(i) The equation

γ+(1)(γ−(b∗)− γ−(1))e(γ
−(b∗)−γ+(1))x − γ−(1)(γ−(b∗)− γ+(1))e(γ

−(b∗)−γ−(1))x

= γ−(b∗)(γ+(1)− γ−(1))eγ
−(b∗)K(3.23)

admits a unique solution x∗b∗ in the interval [0,∞).
(ii) The function K 7→ x∗b∗ = x∗b∗(K) is strictly increasing and

K ≤ x∗b∗ ≤ x̂b∗ :=
γ−(b∗)

γ−(b∗)− γ−(1)
K.

(iii) The unique solution to (3.20) is

ŵ(x) = h(x;C1, C2), x ∈ [0, x∗b∗),(3.24)

where

C1 :=
1

γ−(1)
B(x∗b∗), C2 := − 1

γ+(1)
B(x∗b∗),(3.25)

B(x∗b∗) := γ+(1)(γ−(b)− γ−(1))
eγ

−(1)x∗
b∗

H(x∗b∗)
∈ (0, 1).(3.26)

with

H(x∗b∗) := γ+(1)
(
γ−(b∗)− γ−(1)

)
eγ

−(1)x∗
b∗ − γ−(1)

(
γ−(b∗)− γ+(1)

)
eγ

+(1)x∗
b∗ < 0.(3.27)

The next result provides the needed link between (3.19) and (3.20).

Theorem 3.11. Let (ŵ, x∗b∗) be the solution to (3.20) provided in Proposition 3.10. Then,

w(x) :=

{
ŵ(x), if x ∈ [0, x∗b∗),

fb∗(x) if x ≥ x∗b∗ ,

is a bounded solution to (3.19) such that w ∈ W 2,∞
loc ([0,∞);R). Therefore Theorem 3.9 applies:

w = Fb∗ on [0,∞) and τ∗(b∗) = inf{t ≥ 0 : Xx
t ≥ x∗b∗} is optimal for (3.16).

Proof. See Appendix. �
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Theorem 3.11 provides the optimal reinsurance rule. In particular, once the optimal level b∗ ∈ B∗
has been determined by minimizing the function γ− over [0, 1], it is optimal to reinsure at the first
time at which the company’s surplus process exceeds the critical level x∗b∗ . Such a trigger value is
completely determined as the unique solution to (3.23). Since the level b∗ is independent of K, due
to Proposition 3.10-(ii), we see that, when the fixed cost K ↓ 0, also x∗b∗ ↓ 0, so that it is optimal to
immediately undertake reinsurance. Given that our b∗ coincides, up to a parametrization, with that
of [10] (cf. Remark 3.3), we can thus observe that our optimal policy is consistent with that of [10]
in the limit of vanishing fixed cost.

4. Examples and Illustrations

In this section we apply the general findings to the two relevant cases of proportional and excess-
of-loss reinsurance.

4.1. Proportional reinsurance. We consider the case of proportional reinsurance. The retention
level of the insurer is given by the function r(z, b) = bz, for each b ∈ [0, 1] (cf. (2.4)); consequently,
M1(b) = µb and M2(b) = σ2b2. The surplus process Xx

t (cf. (2.8)) then becomes

Xx
t = Xx

τ− −K + λµ(θbτ − (θ − η))(t− τ) +
√
λσbτ (Wt −Wτ ) + It, t ≥ τ.(4.1)

In this case, equation (3.5) reads:

Φ(b, γ) :=
1

2
λσ2b2γ2 + λµ (θb− (θ − η)) γ − ρ, γ ∈ R(4.2)

and (3.15) becomes

η < θ < η +

√
η2 +

2ρσ2

λµ2
.(4.3)

Assuming condition (4.3) (see Assumption 3.5) guarantees that 1 6∈ B (see Proposition 3.10 and
Remark 3.7). It is worth noticing that, in this case, (4.3) is actually not only sufficient but also
necessary in order to ensure that the minimum of γ− over [0, 1] is not attained at b = 1. This is
shown in Proposition 4.1 below.

The unique negative solution γ−(b) to Φ(b, γ) = 0 has derivative (see (3.11))

(γ−)′(b) = −γ−(b)
φ(b)

D(b)
,(4.4)

where
φ(b) = σ2bγ−(b) + µθ

and D(b) = σ2b2γ−(b) + µ(θb− (θ − η)) < 0 (cf. (4.9)). Since φ(0) = µθ > 0 and because, by some
computations,

φ′(b) = − σ2µ(θ − η)γ−(b)

σ2b2γ−(b) + µ(θb− (θ − η))
< 0,

we then have that the equation φ(b) = 0 has at most one solution b > 0 and the unique minimum
point b∗ of γ− over [0, 1] is

b∗ = argmin
b∈[0,1]

γ−(b) = b ∈ (0, 1).

The previous discussion is formalized in the next result.

Proposition 4.1. We have

b∗ = argmin
b∈[0,1]

γ−(b) = b ∈ (0, 1)(4.5)

if and only if (4.3) holds.

Proof. See Appendix. �
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We next illustrate numerically the sensitivity of the optimal level b∗ and of the optimal reinsurance
boundary x∗b∗ with respect some relevant model’s parameters. We choose benchmark values of the
parameters as it follows: θ = 0.5, η = 0.3, λ = 0.05, ρ = 0.04, µ = 10, σ2 = 200, K = 10. With
such a choice of values, condition (4.3) is satisfied, and from (4.5) and Proposition 3.10 we compute
b∗ = 0.0580 and x∗b∗ = 12.2341.

Figure 2 shows how b∗ varies with the parameters ρ, µ and σ2. We observe that the level b∗

is decreasing with respect to the time-preference factor ρ of the insurer: The more the insurer is
impatient, the less is the (discounted) cost paid at time τ , the more is convenient to reinsure in order
to minimize the amplitude of the Brownian fluctuations and therefore the probability of capital
injections being necessary. Furthermore, if µ increases, the drift of the surplus process decreases
(see (4.1)), thus increasing the probability of the need of additional capital injections. Hence, the
company reinsures less, i.e. b∗ increases, in order to mitigate such an effect. Finally, we see that if σ2

increases, hence if the size of the Brownian risk increases, the insurance company passes more risk
on.

b∗(ρ) b∗(µ) b∗(σ2)

Figure 2. Dependency of b∗ with respect to ρ, µ and σ2.

Figure 3 shows how x∗b∗ depends on the parameters ρ, µ, σ2 and K. Our numerical example reveals
that, if ρ increases, then the insurance company becomes more impatient and anticipates reinsurance.
Increasing monotonicity of x∗b∗ is instead observed with respect to the transaction cost K and the
parameter µ. The larger K is, the more expensive is the reinsurance contract, and the later is its
starting time. Also, if µ increases, the trend of the surplus process decreases (see again (4.1)), thus
inducing the company to postpone reinsurance and hence to keep b = 1 for a longer time period
in order to reduce the negative growth of X (in absolute value) and consequently the possibility of
capital injections. Finally, if σ2 increases, the amplitude of the Brownian fluctuations becomes more
relevant, this calling for an earlier reinsurance aiming at mitigating the increase of the probability of
additional capital injections.

x∗b∗(ρ) x∗b∗(µ) x∗b∗(σ2) x∗b∗(K)

Figure 3. Dependency of x∗b∗ with respect to ρ, µ, σ2 and K.

4.2. Excess-of-loss reinsurance. We here consider the case of excess-of-loss reinsurance. The
retention level of the insurer is given by the function r(z, b) = z ∧ b

1−b , for each b ∈ [0, 1] (cf. (2.5)).
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We assume that the distribution of the claim sizes has a density p with respect to the Lebesgue
measure; that is, νZ(dz) = p(z)dz. Note that Assumption 3.5 is satisfied, so that we can conclude
that 1 6∈ B (see Proposition 3.10). In order to see this, it is sufficient to compute

M ′1(b) =
1

(1− b)2

∫ +∞

b
1−b

p(z)dz

M ′2(b) =
2b

(1− b)3

∫ +∞

b
1−b

p(z)dz,

so that, by (3.12),

φ(b) = ψ(b)χ(b),

where

ψ(b) :=
b

1− b
γ−(b) + θ, b ∈ [0, 1].(4.6)

and

χ(b) :=
1

(1− b)2

∫ +∞

b
1−b

p(z)dz, b ∈ [0, 1].(4.7)

Since χ is strictly positive on [0, 1) and limb→1− ψ(b) = −∞, condition (3.14) is satisfied.
In order to determine the optimal level(s) b∗, we recall that the unique negative solution γ−(b) to

Φ(b, γ) = 0 has derivative (γ−)′(b) given in (3.11), which, in this case, becomes

(γ−)′(b) = −γ−(b)
ψ(b)χ(b)

D(b)
,

where χ(b) is strictly positive and γ−(b) and D(b) are strictly negative (cf. (4.9)), for each b ∈ [0, 1].
Since ψ(0) = θ > 0, then the equation ψ(b) = 0 has at least one solution in (0, 1), and γ− is therefore
minimized by some b∗ ∈ (0, 1) such that

ψ(b∗) = 0.(4.8)

4.2.1. The case Z ∼ Exp(1/µ). We assume here that the claim sizes are exponentially distributed

with νZ(dz) = 1
µe
−z/µdz. Consequently, by some easy computations, we find

M1(b) = µ
(

1− e−
b

(1−b)µ
)

M2(b) = 2µ

(
µ−

(
b

1− b
+ µ

)
e
− b

(1−b)µ

)
.

The surplus process Xx
t (cf. (2.8)) thus becomes

Xx
t = Xx

τ− −K + λµ
(
η − θe−

bτ
(1−bτ )µ

)
(t− τ) +

+

√
2λµ

(
µ−

(
bτ

1− bτ
+ µ

)
e
− bτ

(1−bτ )µ

)
(Wt −Wτ ) + It, t ≥ τ,

while equation (3.5) now reads

Φ(b, γ) := λµ

(
µ−

(
b

1− b
+ µ

)
e
− b

(1−b)µ

)
γ2 + λµ

(
η − θe−

b
(1−b)µ

)
γ − ρ, γ ∈ R.

We illustrate numerically the sensitivity of the optimal level b∗ and of the optimal reinsurance
boundary x∗b∗ with respect some relevant model’s parameters. We choose benchmark values of the
parameters as it follows: θ = 0.5, η = 0.3, λ = 0.05, ρ = 0.04, µ = 10, K = 10. With such a choice,
by (4.8) and Proposition 3.10, we obtain b∗ = 0.4627 and x∗b∗ = 11.4785.
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Figure 4 shows how b∗ depends on the parameters ρ and µ. With respect to ρ, we observe a
behavior of b∗ which is line with that we had in the case of proportional reinsurance, which can be
then explained in the same way. Noticing that under the Exponential distribution of the claim’s
size the parameter µ measures both the amplitude of the Brownian fluctuations and the trend of
the average profits of the company, we observe that an increase in µ leads the company to reinsure
less, i.e. to an increase of b∗. Hence, in the interplay of the two roles played by µ, the drift effect
appears to be dominant and the behavior of µ 7→ b∗(µ) can be thus explained as in the case of the
proportional reinsurance (cf. Figure 2).

b∗(ρ) b∗(µ)

Figure 4. Dependency of b∗ with respect to ρ and µ.

Figure 5 plots x∗b∗ as a function of the parameters ρ, µ and K. While the behavior of x∗b∗ with
respect to ρ and K can be explained by the same reasoning that we followed in the case of proportional
reinsurance, a different pattern is observed for the dependency of x∗b∗ with respect to µ. Here, we
see that x∗b∗ is decreasing with respect to µ. Recalling again that µ measures both the amplitude of
the Brownian fluctuations and the trend of the average profits of the company, we find that in the
interplay of the two roles played by µ, the volatility effect appears to be dominant and the behavior
of µ 7→ b∗(µ) can be thus explained as that of σ2 7→ b∗(σ2) in the case of the proportional reinsurance
(cf. Figure 3).

x∗b∗(ρ) x∗b∗(µ) x∗b∗(K)

Figure 5. Dependency of x∗b∗ with respect to ρ, µ, and K.

4.2.2. The case Z ∼ Pareto(ζ, α). We assume that the claim sizes Z ∼ Pareto(ζ, α), α > 2, with
density

p(z) =

0 if z < ζ
αζα

zα+1
if z ≥ ζ.
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By some computations, we find

M1(b) =


b

1− b
if b <

ζ

1 + ζ

ζ

α− 1

(
α−

(
ζ

1− b
b

)α−1)
if b ≥ ζ

1 + ζ

M2(b) =


(

b

1− b

)2

if b <
ζ

1 + ζ

ζ2

α− 2

(
α− 2

(
ζ

1− b
b

)α−2)
if b ≥ ζ

1 + ζ
.

Equation (3.5) now reads

Φ(b, γ) :=

1
2λ
(

b
1−b

)2
γ2 + λ

[
θ
(

b
1−b − ζ

)
+ ηζ

]
γ − ρ if b < ζ

1+ζ

1
2λ

ζ2

α−2

(
α− 2

(
ζ 1−b

b

)α−2)
γ2 + λ

[
θζ
α−1

(
1−

(
ζ 1−b

b

)α−1)
+ ηζ

]
γ − ρ if b ≥ ζ

1+ζ ,

with γ ∈ R.
We illustrate numerically the sensitivity of the optimal level b∗ and of the optimal reinsurance

boundary x∗b∗ with respect some relevant model’s parameters. We choose benchmark values of the
parameters as it follows: θ = 0.5, η = 0.3, λ = 0.05, ρ = 0.04, ζ = 10, K = 10. With such a choice,
by (4.8) and Proposition 3.10, we obtain b∗ = 0.5195 and x∗b∗ = 11.7572.

Figure 6 shows how b∗ depends on the parameters ρ and ζ, while Figure 7 plots x∗b∗ as a function of
the parameters ρ, ζ and K. We observe behaviors of b∗ and x∗b∗ which are similar to those observed
with respect to ρ, µ and K in the case of an Exponential distribution of the claim size, and which
can be then explained through the same rationale. As a matter of fact, in the Pareto distribution,
the average and the variance of the sizes of the claims are increasing functions of the only parameter
ζ, just as they are functions of µ in the case of an Exponential distribution.

b∗(ρ) b∗(ζ)

Figure 6. Dependency of b∗ with respect to ρ and ζ.

4.3. Comparison of the value function in the case of proportional and excess-of-loss
reinsurance. In Figure 8 we collect drawings of the value function in the case of proportional rein-
surance (solid line) and excess-of-loss reinsurance (dashed line), when the claim size Z ∼ Exp(1/µ)
(left panel) and Z ∼ Pareto(ζ, α) (right panel). We observe that, when the claim’s size is exponen-
tially distributed, the value function one obtains in the case of proportional reinsurance is smaller
than the one related to an excess-of-loss reinsurance, while no uniform comparison can be made
in the case of Pareto-distributed claim’s size. We thus conclude that (at least for the benchmark
values of the parameters that we have used) excess-of-loss reinsurance is not necessarily favourable
to proportional reinsurance, a finding that is in contrast to that of Figure 3 in [10] (see also the
subsequent discussion at page 13 therein).
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x∗b∗(ρ) x∗b∗(ζ) x∗b∗(K)

Figure 7. Dependency of x∗b∗ with respect to ρ, ζ and K.

Z ∼ Exp(1/µ) Z ∼ Pareto(ζ, α)

Figure 8. Value function (zoomed image in the bottom panels) in the case of pro-
portional reinsurance (solid line) and excess-of-loss reinsurance (dashed line), when
the claim sizes Z ∼ Exp(1/µ) (left panel) and Z ∼ Pareto(ζ, α) (right panel).

Appendix

Proof of Proposition 3.6

Proof. The symmetric axis of the parabola Φ(b, γ) = 0 is γ̂(b) = −θM1(b)− (θ − η)µ

M2(b)
; as a conse-

quence, since γ−(b) is the negative solution to the equation Φ(b, γ) = 0,

D(b) = M2(b)γ
−(b) + θM1(b)− (θ − η)µ < 0, ∀b ∈ [0, 1].(4.9)
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Then, by (3.11), (3.14) and (4.9), we obtain (γ−)′(b) > 0 for each b ∈ (1 − δ, 1), which implies
1 /∈ B∗. �

Proof of Proposition 3.8

Proof. From (3.4), (3.6) and (3.8), the explicit expression of fb∗ is:

fb∗(x) =


−(x−K)− 1

γ−(b∗)
+

1

γ−(1)
eγ

−(1)x 0 ≤ x ≤ K,

− 1

γ−(b∗)
eγ

−(b∗)(x−K) +
1

γ−(1)
eγ

−(1)x x > K,
(4.10)

from which fb∗(0) = K +
γ−(b∗)− γ−(1)

γ−(1)γ−(b∗)
and limx→∞ fb∗(x) = 0. We compute

f ′b∗(x) =

{
−1 + eγ

−(1)x 0 < x < K,

−eγ−(b∗)(x−K) + eγ
−(1)x x > K.

Then, fb∗ is strictly decreasing in [0, x̂b∗ ] and strictly increasing in [x̂b∗ ,∞), where x̂b∗ is defined in
(3.17). The point x̂b∗ is the unique global minimum point of fb∗ , whose minimum value is:

fb∗(x̂b∗) = −γ
−(1)− γ−(b∗)

γ−(1)γ−(b∗)
e
− γ−(1)γ−(b∗)
γ−(1)−γ−(b∗) .

If −Kγ−(1)γ−(b∗) ≤ γ−(b∗) − γ−(1) < 0, then fb∗(0) ≥ 0 and item (i) follows. Otherwise, if
γ−(b∗)− γ−(1) < −Kγ−(1)γ−(b∗), then fb∗(0) < 0 and item (ii) follows. �

Proof of Theorem 3.9

Proof. Let x ≥ 0, T > 0, τn := inf{t ≥ 0 : Xx
t ≥ n}, n ≥ 0, and τ ∈ T . Applying a change of

variable formula for semimartingales (see e.g. [4], Theorem 2.1) to {e−ρtw(Xx
t ), t ∈ [0, τn ∧ τ ∧ T ]}

and then taking expectations we find:

E
[
e−ρ(τn∧τ∧T )w(Xx

τn∧τ∧T )
]

= w(x)+E

[∫ τn∧τ∧T

0
e−ρs ((L − ρ)w) (Xx

s )ds+

∫ τn∧τ∧T

0
e−ρsw(Xx

s )dIs

]
,

where the Brownian-local martingale term has vanished in expectation since w ∈ C1([0,∞);R) (by
Sobolev embedding) and because of the definition of τn. With regards to the fact that w solves (3.19)
and t 7→ It increases on {t ≥ 0 : Xx

t = 0}, we have (after rearranging terms)

w(x) ≤ E
[
e−ρ(τn∧τ∧T )fb∗(Xx

τn∧τ∧T )
]
.

As fb∗ is bounded (cf. Proposition 3.8), by sending n ↑ ∞ and T ↑ ∞, by the dominated convergence
theorem we obtain

w(x) ≤ E
[
e−ρτfb∗(Xx

τ )
]
.

Given the arbitrariness of τ ∈ T and x ≥ 0, we have

w ≤ Fb∗ on [0,∞).

Repeating now the same arguments above, but with τ replaced by τ∗(b∗), we find (by definition of
τ∗(b∗))

w(x) = E
[
e−ρτ

∗(b∗)fb∗
(
Xx
τ∗(b∗)

)]
.

Hence,

w(x) ≥ inf
τ∈T

E
[
e−ρτfb∗(Xx

τ )
]

= Fb∗(x).

Given the arbitrariness of x ≥ 0, we have w ≥ Fb∗ , which, together with the previously proved
w ≤ Fb∗ , implies that w = Fb∗ and that τ∗(b∗) is optimal. �
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Proof of Proposition 3.10

Proof. Step 1. We here prove existence and uniqueness of x∗b∗ . Using (3.21), we rewrite problem
(3.20) as follows 

C1γ
−(1) + C2γ

+(1) = 0

C1e
γ−(1)x + C2e

γ+(1)x = fb∗(x)

C1γ
−(1)eγ

−(1)x + C2γ
+(1)eγ

+(1)x = f ′b∗(x),

(4.11)

where the explicit expression of fb∗ is given in (4.10). The first equation yields:

C2 = −C1
γ−(1)

γ+(1)
,(4.12)

whereas the second and third equation depend on the expression of fb∗ . We consider two distinct
cases.
(i) If 0 ≤ x ≤ K, then the second and the third equations of (4.11) become C1γ

−(1)
(
eγ

−(1)x − γ−(1)
γ+(1)

eγ
+(1)x

)
= −γ−(1)(x−K)− γ−(1)

γ−(b∗) + eγ
−(1)x

C1γ
−(1)

(
eγ

−(1)x − eγ+(1)x
)

= −1 + eγ
−(1)x.

(4.13)

Since γ−(1) 6= γ+(1), the previous system yields:

−γ−(1)(x−K)− γ−(1)
γ−(b∗) + eγ

−(1)x

eγ−(1)x − γ−(1)
γ+(1)

eγ+(1)x
=

−1 + eγ
−(1)x

eγ−(1)x − eγ+(1)x
,

which can be rewritten as

F1(x) = F2(x),(4.14)

where

F1(x) :=

(
x−K +

1

γ−(b∗)

)(
e−γ

−(1)x − e−γ+(1)x
)

F2(x) :=
1

γ−(1)

(
1− e−γ+(1)x

)
− 1

γ+(1)

(
1− e−γ−(1)x

)
.

We have F1(0) = F2(0) = 0 and

F ′1(x) = γ+(1)

(
x−K +

1

γ−(b∗)
− 1

γ+(1)

)
e−γ

+(1)x − γ−(1)

(
x−K +

1

γ−(b∗)
− 1

γ−(1)

)
e−γ

−(1)x

F ′2(x) =
γ+(1)

γ−(1)
e−γ

+(1)x − γ−(1)

γ+(1)
e−γ

−(1)x.

From (3.22) we note that

1

γ−(1)
+

1

γ+(1)
=
γ−(1) + γ+(1)

γ−(1)γ+(1)
=
ληµ

ρ
> 0.

Consequently
1

γ−(b∗)
<

1

γ+(1)
+

1

γ−(1)
and, for each x ∈ [0,K], it holds:

F ′1(x) = γ+(1)

(
x−K +

1

γ−(b∗)
− 1

γ+(1)

)
e−γ

+(1)x − γ−(1)

(
x−K +

1

γ−(b∗)
− 1

γ−(1)

)
e−γ

−(1)x

≤ γ+(1)

(
1

γ−(b∗)
− 1

γ+(1)

)
e−γ

+(1)x − γ−(1)

(
1

γ−(b∗)
− 1

γ−(1)

)
e−γ

−(1)x

<
γ+(1)

γ−(1)
e−γ

+(1)x − γ−(1)

γ+(1)
e−γ

−(1)x = F ′2(x).
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Hence, the unique solution of (4.14) in [0,K] is x = 0, and (4.13) and (4.12) yield C1 = C2 = 0.

(ii) If x > K, then the second and the third equation of (4.11) become C1γ
−(1)

(
eγ

−(1)x − γ−(1)
γ+(1)

eγ
+(1)x

)
= −γ−(1)

γ−(b)
eγ

−(b∗)(x−K) + eγ
−(1)x

C1γ
−(1)

(
eγ

−(1)x − eγ+(1)x
)

= −eγ−(b∗)(x−K) + eγ
−(1)x.

(4.15)

Since γ−(1) 6= γ+(1), the previous system yields:

− γ−(1)
γ−(b∗)e

γ−(b∗)(x−K) + eγ
−(1)x

eγ−(1)x − γ−(1)
γ+(1)

eγ+(1)x
=
−eγ−(b∗)(x−K) + eγ

−(1)x

eγ−(1)x − eγ+(1)x
,

which can be rewritten as (3.23); that is,

Θ(x) = D(K),(4.16)

where

Θ(x) := γ+(1)(γ−(b∗)− γ−(1))e(γ
−(b∗)−γ+(1))x − γ−(1)(γ−(b∗)− γ+(1))e(γ

−(b∗)−γ−(1))x

and

D(K) := γ−(b∗)(γ+(1)− γ−(1))eγ
−(b∗)K < 0.

We have

Θ(0) = γ−(b∗)(γ+(1)− γ−(1)) ≤ γ−(b∗)(γ+(1)− γ−(1))eγ
−(b∗)K = D(K).

and

Θ′(x) = (γ−(b∗)− γ−(1))(γ−(b∗)− γ+(1))
(
γ+(1)e−γ

+(1)x − γ−(1)e−γ
−(1)x

)
eγ

−(b∗)x > 0.

Since Θ is strictly increasing and limx→+∞Θ(x) = 0, (4.16) (and (3.23)) admits in [0,+∞) the
unique positive solution x∗b∗ = x∗b∗(K) = Θ−1(D(K)) > 0. Further, since D′(K) = (γ−(b∗))2(γ+(1)−
γ−(1))eγ

−(b∗)K > 0, then x∗b∗ is strictly increasing in K.

Step 2. We show that x∗b∗ ≤ x̂b∗ . Because

Θ(x̂b∗) = γ+(1)(γ−(b∗)− γ−(1))e
γ−(b∗)−γ+(1)

γ−(b∗)−γ−(1)
γ−(b∗)K − γ−(1)(γ−(b∗)− γ+(1))eγ

−(b∗)K

=

(
γ+(1)(γ−(b∗)− γ−(1))e

γ−(1)−γ+(1)

γ−(b∗)−γ−(1)
γ−(b∗)K − γ−(1)(γ−(b∗)− γ+(1))

)
eγ

−(b∗)K

≥
(
γ+(1)(γ−(b∗)− γ−(1))− γ−(1)(γ−(b∗)− γ+(1))

)
eγ

−(b∗)K

= γ−(b∗)(γ+(1)− γ−(1))eγ
−(b∗)K = D(K),

then the monotonicity of Θ yields x∗b∗ ≤ x̂b∗ =
γ−(b∗)

γ−(b∗)− γ−(1)
K.

Step 3. We now aim at proving that x∗b∗ ≥ K. Notice that

Θ(K) = eγ
−(b∗)K

(
γ+(1)(γ−(b∗)− γ−(1))e−γ

+(1)K − γ−(1)(γ−(b∗)− γ+(1))e−γ
−(1)K

)
.

Let

S(K) := γ+(1)(γ−(b∗)− γ−(1))e−γ
+(1)K − γ−(1)(γ−(b∗)− γ+(1))e−γ

−(1)K , K ≥ 0.
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It holds S(0) = γ−(b∗)(γ+(1)− γ−(1)) < 0 and

S′(K) = −γ+(1)2(γ−(b∗)− γ−(1))e−γ
+(1)K + γ−(1)2(γ−(b∗)− γ+(1))e−γ

−(1)K

= −γ+(1)2(γ−(b∗)− γ−(1))e−γ
−(1)K

(
e(γ

−(1)−γ+(1))K − γ−(1)2 (γ−(b∗)− γ+(1))

γ+(1)2 (γ−(b∗)− γ−(1))

)
.

Since γ−(1) + γ+(1) < 0, then
γ−(1)2(γ−(b∗)−γ+(1))
γ+(1)2(γ−(b∗)−γ−(1))

> 1. Therefore, S′(K) < 0 for each K ≥ 0, so

that

Θ(K) = eγ
−(b∗)KS(K) ≤ eγ−(b∗)KS(0) = γ−(b∗)(γ+(1)− γ−(1))eγ

−(b∗)K = D(K)

and K ≤ x∗b∗ by monotonicity of Θ.

Step 4. Finally, using (4.15) and (4.12) we get C1 = 1
γ−(1)

B and C2 = 1
γ+(1)

B, where

B =
eγ

−(b∗)(x∗
b∗−K) − eγ−(1)x∗

b∗

eγ
+(1)x∗

b∗ − eγ−(1)x∗
b∗

.(4.17)

We rewrite (3.23) (or equivalently Θ(x) = D(K)) as follows:

eγ
−(b∗)(x∗

b∗−K)H(x∗b∗) = γ−(b∗)
(
γ+(1)− γ−(1)

)
e(γ

−(1)+γ+(1))x∗
b∗ ,(4.18)

where H(x∗b∗) is given in (3.27). Using (4.18) in (4.17) we get

B =
eγ

−(b∗)(x∗
b∗−K) − eγ−(1)x∗

b∗

eγ
+(1)x∗

b∗ − eγ−(1)x∗
b∗

=

(
γ−(b∗) (γ+(1)− γ−(1)) eγ

+(1)x∗
b∗

H(x∗b∗)
− 1

)
eγ

−(1)x∗
b∗

eγ
+(1)x∗

b∗ − eγ−(1)x∗
b∗

=
γ+(1)(γ−(b)− γ−(1))(eγ

+(1)x∗
b∗ − eγ−(1)x∗

b∗ )

H(x∗b∗)

eγ
−(1)x∗

b∗

eγ
+(1)x∗

b∗ − eγ−(1)x∗
b∗

= γ+(1)(γ−(b)− γ−(1))
eγ

−(1)x∗
b∗

H(x∗b∗)
=: B(x∗b∗)

as given by (3.26). Since γ−(b) < γ−(1) and H < 0, then B(x∗b∗) > 0; further, H < γ+(1)(γ−(b) −
γ−(1))eγ

−(1)x∗
b∗ and therefore B(x∗b∗) < 1. �

Proof of Theorem 3.11

Proof. In order to prove that w ≡ V , we need to show that:{
w(x) ≤ fb∗(x), ∀x > 0
w is s.t. 0 ≤ (L − ρ)w(x), ∀x > 0,

(4.19)

which is implied by the following two conditions:

(i) w(x) ≤ fb∗(x), ∀0 < x ≤ x∗b∗
(ii) 0 ≤ (L − ρ)w(x), ∀x > x∗b∗ .

We start proving (i). By Proposition 3.10

w(x) = B(x∗b∗)

(
1

γ−(1)
eγ

−(1)x − 1

γ+(1)
eγ

+(1)x

)
,
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where B(x∗b∗) is given by (3.26). We compute w(0) = B(x∗b∗)
(

1
γ−(1)

− 1
γ+(1)

)
and fb∗(0) = K −

1
γ−(b∗) + 1

γ−(1)
, so that w(0) ≤ fb∗(0) if and only if

K ≥ B(x∗b∗)

(
1

γ−(1)
− 1

γ+(1)

)
+

1

γ−(b∗)
− 1

γ−(1)

=
(γ−(b∗)− γ+(1))(γ−(b∗)− γ−(1))

γ−(b∗)

eγ
+(1)x∗

b∗ − eγ−(1)x∗
b∗

H(x∗b∗)
= Q(x∗b∗),

where, for x > 0,

Q(x) :=
(γ−(b∗)− γ+(1))(γ−(b∗)− γ−(1))

γ−(b∗)

eγ
+(1)x − eγ−(1)

H(x)
,

and (cf. (3.27))

H(x) := γ+(1)
(
γ−(b∗)− γ−(1)

)
eγ

−(1)x − γ−(1)
(
γ−(b∗)− γ+(1)

)
eγ

+(1)x < 0.

By some computations we have

Q′(x) = (γ−(b∗)− γ+(1))(γ−(b∗)− γ−(1))(γ+(1)− γ−(1))2
e(γ

+(1)+γ−(1))x

(H(x))2
> 0.

Recalling that x∗b∗ = x∗b∗(K) = Θ−1(D(K)) (see Step 1 in the proof of Proposition (3.10)), it holds
Q(x∗b∗(0)) = Q(0) = 0. Further,

∂Q(x∗b∗(K))

∂K
= Q′(x∗b∗(K)) · (x∗b∗)′(K).

Since x∗b∗ is strictly increasing in K it follows that Q(x∗b∗(K)) is strictly increasing in K and

∂Q(x∗b∗(0))

∂K
= Q′(0) · (x∗b∗)′(0)

=
(γ−(b∗)− γ+(1))(γ−(b∗)− γ−(1))

γ−(b∗)2
· γ−(b∗)2

(γ−(b∗)− γ−(1))(γ−(b∗)− γ+(1))
= 1.

In order to study the concavity of K 7→ Q(x∗b∗(K)), we compute

∂2Q(x∗b∗(K))

∂K2
= Q′′(x∗b∗(K)) ·

(
(x∗b∗)′(K)

)2
+Q′(x∗b∗(K)) · (x∗b∗)′′(K).(4.20)

We find

Q′′(x) = (γ−(b∗)− γ+(1))(γ−(b∗)− γ−(1))(γ+(1)− γ−(1))3
e(γ

+(1)+γ−(1))x

(H(x))3
A(x)

where

A(x) := γ+(1)(γ−(b∗)− γ−(1))eγ
−(1)x + γ−(1)(γ−(b∗)− γ+(1))eγ

+(1)x.

Since γ+(1)+γ−(1) = −2ηµ

σ2
< 0, then A(x∗b∗(0)) = A(0) = γ−(b∗)(γ+(1)+γ−(1))−2γ−(1)γ+(1) > 0;

further,

A′(x) = γ+(1)γ−(1)
(

(γ−(b∗)− γ−(1))eγ
−(1)x + (γ−(b∗)− γ+(1))eγ

+(1)x
)
> 0,

therefore A(x) ≥ 0 for each x ≥ 0, and consequently, since H(x) < 0 for each x ≥ 0, it holds
Q′′(x) ≤ 0. In particular,

Q′′(x∗b∗(K)) ≤ 0, for each K ≥ 0.(4.21)
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Using that x∗b∗ = x∗b∗(K) is the unique solution to the equation Ψ(x,K) = Θ(x)−D(K) = 0 (see again

step 1 of the proof of Proposition 3.10), we have (see [3]) (x∗b∗)′′(K) =

(
∂Ψ

∂K

∂2Ψ

∂K∂x
− ∂Ψ

∂x

∂2Ψ

∂K2

)
/

(
∂Ψ

∂x

)2

,

so that the sign of (x∗b∗)′′(K) coincides with the sign of the following quantity:

∂Ψ

∂K

∂2Ψ

∂K∂x
− ∂Ψ

∂x

∂2Ψ

∂K2
= Θ′(x) ·D′′(K) < 0.(4.22)

Using (4.20), (4.21) and (4.22), we get
∂2Q(x∗

b∗ (K)

∂K2 < 0; consequently, K ≥ Q(x∗b∗(K)), and w(0) ≤
fb∗(0). Further, w is negative and, because

w′(x) = B
(
eγ

−(1)x − eγ+(1)x
)
< 0,

w is strictly decreasing. We recall by Proposition 3.8 that fb∗ is strictly decreasing in [0, x̂b∗ ]. If
x ∈ [0,K] then

w′(x) = B
(
eγ

−(1)x − eγ+(1)x
)
< eγ

−(1)x − eγ+(1)x < eγ
−(1)x − 1 = f ′b∗(x).

Consequently, it holds w(x) ≤ fb∗(x) for each x ∈ [0,K]. On the other hand, since x∗b∗ > K >
γ−(b)K

γ−(b)− γ+(1)
,

then for each x ∈ [K,x∗b∗ ]

w′(x) = B
(
eγ

−(1)x − eγ+(1)x
)
< eγ

−(1)x − eγ+(1)x < eγ
−(1)x − eγ−(b)(x−K) = f ′b∗(x),

which, coupled with w(K) < fb∗(K), yields w(x) ≤ fb∗(x) for each x ∈ [K,x∗b∗ ].

We now prove (ii). For each x > x∗b∗ > K we have

(L − ρ)fb∗(x) = (L − ρ)

(
− 1

γ−(b∗)
eγ

−(b∗)(x−K) +
1

γ−(1)
eγ

−(1)x

)
= − 1

γ−(b∗)
eγ

−(b∗)(x−K)

(
1

2
λσ2(γ−(b∗))2 + λ(θµ− (θ − η)µ)γ−(b∗)− ρ

)
= − 1

γ−(b∗)
eγ

−(b∗)(x−K)Φ(1, γ−(b∗)).(4.23)

Since γ−(1) is the unique negative solution to Φ(1, γ) = 0 and because γ−(b∗) < γ−(1), then
Φ(1, γ−(b)) > 0 and, by (4.23), (L − ρ)fb∗(x) > 0 for each x > x∗b∗ . �

Proof of Proposition 4.1

Proof. Since condition (4.3) is equivalent to (3.15), by Proposition 3.10 and Remark 3.7 it is enough
to prove that 1 6∈ B∗ implies (4.3). From (3.10) and (4.4) we explicitly compute the expressions of

γ−(1) = − µ

σ2

(
η +

√
η2 +

2ρσ2

λµ2

)
< 0(4.24)

and

(γ−)′(1) = −γ−(1)
σ2γ−(1) + µθ

σ2γ−(1) + µη
.(4.25)

From the hypothesis 1 6∈ B∗ it follows that (γ−)′(1) < 0. We recall that σ2γ−(1) +µη < 0 (cf. (4.9));
hence, using (4.24), one has that

σ2γ−(1) + µθ = µ

(
θ − η −

√
η2 +

2ρσ2

λµ2

)
< 0.(4.26)

implies (4.3). �
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Bologna, Italy

E-mail address: s.federico@unibo.it

G. Ferrari: Center for Mathematical Economics (IMW), Bielefeld University, Universitätsstrasse
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