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 Abstract 

 A  typical  empirical  study  involves  choosing  a  sample,  a  research  design,  and  an  analysis 
 path.  Variation  in  such  choices  across  studies  leads  to  heterogeneity  in  results  that 
 introduce  an  additional  layer  of  uncertainty  not  accounted  for  in  reported  standard 
 errors  and  con�dence  intervals.  We  provide  a  framework  for  studying  heterogeneity  in 
 the  social  sciences  and  divide  heterogeneity  into  population  heterogeneity,  design 
 heterogeneity,  and  analytical  heterogeneity.  We  estimate  each  type's  heterogeneity  from 
 multi-lab  replication  studies,  prospective  meta-analyses  of  studies  varying 
 experimental  designs,  and  multi-analyst  studies.  Our  results  suggest  that  population 
 heterogeneity  tends  to  be  relatively  small,  whereas  design  and  analytical  heterogeneity 
 are  large.  A  conservative  interpretation  of  the  estimates  suggests  that  incorporating  the 
 uncertainty  due  to  heterogeneity  would  approximately  double  sample  standard  errors 
 and  con�dence  intervals.  We  illustrate  that  heterogeneity  of  this  magnitude—unless 
 properly  accounted  for—has  severe  implications  for  statistical  inference  with  strongly 
 increased rates of false scienti�c claims. 
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 Introduction 

 Designing  an  empirical  study,  collecting  or  sourcing  data,  and  analyzing  data  calls  for 
 making  decisions  in  heaps,  many  of  which  are  up  to  the  researcher’s  discretion  1  .  This 
 �exibility,  dubbed  researcher  degrees  of  freedom,  opens  the  door  to  a  “garden  of  forking 
 paths”  2  involving  many  branches  (choices)  and  countless  designations  (empirical 
 results).  Yet,  empirical  research  methods  in  the  social  sciences  typically  involve  relying 
 on  one  particular  sample,  choosing  one  out  of  many  possible  study  designs,  and 
 reporting  the  results  for  one  of  many  possible  analysis  pipelines.  In  light  of  a  “publish  or 
 perish”  culture  in  academia  3–5  ,  scholars  have  a  strong  incentive  to  exploit  researcher 
 degrees  of  freedom  to  obtain  statistically  signi�cant  results  and  selectively  report 
 empirical  estimates  that  maximize  the  publication  potential  6–9  .  It  is  now  acknowledged 
 that  the  opportunistic  misuse  of  researcher  degrees  of  freedom—commonly  referred  to 
 as  selective  reporting  and  p  -hacking—implicates  increased  false-positive  rates  10–12  and 
 in�ated  effect  sizes  13–15  .  Alongside  publication  bias  16–18  ,  low  statistical  power  19–22  ,  and 
 HARKing  23,24  ,  p  -hacking  has  been  argued  to  be  one  of  the  “four  horsemen  of  the 
 reproducibility  apocalypse”  25  .  The  overall  impact  of  questionable  research  practices  has 
 been  empirically  demonstrated  in  several  large-scale  direct  replication  projects  26–28  , 
 which  suggest  that,  on  average,  replication  effect  sizes  are  only  about  50%  of  the 
 published  effect  sizes  in  empirical  social  science  research.  Scienti�c  reforms  such  as 
 open,  transparent,  and  con�rmatory  research  practices  have  been  advocated—and 
 implemented  to  a  greater  or  lesser  extent—to  reduce  systematic  bias  in  the  published 
 literature and “rein in the four horsemen”  29–33  . 

 Even  if  researchers  and  journals  adopt  a  culture  of  con�rmatory  research  practices  34,35  to 
 remedy  systematic  bias  in  the  scienti�c  knowledge  accumulation,  the  scienti�c 
 community  faces  another  major  obstacle  on  its  way  toward  reliable  empirical  evidence: 
 the  doubt  about  the  generalizability  and  robustness  of  the  reported  results  to  alternative 
 populations,  research  designs,  and  analytical  decisions  36–40  .  Typically,  empirical  studies 
 only  capture  tiny  snapshots  of  the  range  of  possible  results,  and  common  estimates  of 
 the  uncertainty  about  these  snapshots  do  not  account  for  the  uncertainty  due  to  the 
 �exibility  in  choosing  a  sample,  a  research  design,  and  an  analysis  path  during  a 
 research  project.  The  magnitude  of  this  unaccounted-for  uncertainty—commonly 
 referred  to  as  heterogeneity—depends  on  how  much  results  vary  across  populations, 
 alternative  research  designs,  and  alternative  analysis  paths.  Failing  to  account  for 
 heterogeneity  undermines  the  generalizability  of  empirical  �ndings  and  can  result  in 
 unwarranted claims. 
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 In  this  paper,  we  delve  into  the  various  sources  of  heterogeneity  in  the  empirical  social 
 sciences,  categorizing  heterogeneity  into  three  distinct  types:  population  heterogeneity, 
 design  heterogeneity,  and  analytical  heterogeneity.  We  review  the  evidence  on  different 
 types  of  heterogeneity  in  the  social  sciences  based  on  research  settings  where  each  type 
 is  isolated  and  systematic  bias  in  effect  sizes  (due  to  p  -hacking  and  publication  bias)  has 
 been  ruled  out  by  design.  We  illustrate  the  implications  of  the  observed  levels  of 
 heterogeneity  for  statistical  inference  and  show  that  it  can  drastically  increase  the 
 fraction  of  false  scienti�c  claims  and  severely  limit  the  informativeness  and 
 generalizability  of  individual  scienti�c  studies.  We  discuss  the  implications  of  our 
 �ndings  for  scienti�c  practice  and  shed  light  on  potential  pathways  to  improve  the 
 knowledge  generation  process  of  empirical  studies  in  the  social  sciences  to  avoid 
 getting  stuck  in  a  generalizability  crisis  36–39  .  We  argue  for  moving  away  from  the 
 common  “one  population–one  design–one  analysis”  approach  toward  large-scale 
 preregistered  prospective  meta-analyses  systematically  varying  populations,  designs, 
 and analyses. 

 Framework 

 While  the  term  heterogeneity  may  be  used  with  slightly  different  meanings  across 
 various  contexts,  we  adhere  to  the  de�nition  that  is  speci�c  to  random-effects 
 meta-analyses,  where  a  distinction  is  made  between  the  within-study  variance  (𝜎²;  i.e., 
 the  sampling  error)  and  the  between-study  variance  (𝜏²;  heterogeneity)  41  .  In  this  realm, 
 heterogeneity  is  uniformly  de�ned  as  the  variation  in  effect  size  estimates  over  and 
 above  sampling  variation,  i.e.,  observing  study  outcomes  being  more  different  from  one 
 another  than  would  be  expected  due  to  chance  alone.  The  square  root  of  the 
 between-study  variance  (𝜏)  has  the  intuitive  interpretation  of  the  standard  deviation  of 
 the distribution of true effect sizes across the studies included in the meta-analysis. 

 Heterogeneity  can  be  quanti�ed  in  terms  of  𝜏  and  can  be  expressed  in  both  absolute  and 
 relative  terms.  While  the  absolute  magnitude  of  heterogeneity  is  important,  it  is  difficult 
 to  compare  estimates  across  studies  utilizing  different  effect  size  measures.  Estimates  of 
 𝜏  can  only  be  reasonably  compared  across  meta-analyses  if  they  utilize  the  same 
 standardized  effect  size  measure.  As  the  effect  size  measurement  varies  across  the 
 empirical  studies  reviewed  below,  we  focus  on  quantifying  heterogeneity  in  relative 
 terms  to  facilitate  comparability  but  also  report  the  heterogeneity  estimates  in  absolute 
 terms.  A  common  way  to  quantify  heterogeneity  in  relative  terms  is  to  express  the 
 overall  variability  in  effect  sizes,  i.e.,  𝜏² + 𝜎²,  in  within-study  variance  (𝜎²)  units.  This 
 ratio  is  commonly  denoted  as  H  ²  and  can  be  thought  of  as  a  variance  in�ation  factor  due 
 to  heterogeneity.  In  what  follows,  we  favor  the  square  root-transformed  version  of  H  ²  to 
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 facilitate  interpretability  (i.e.,  to  characterize  heterogeneity  in  standard  deviation  units 
 rather  than  in  variance  units),  and  refer  to  it  as  the  heterogeneity  factor  (  H  ),  which  is 
 de�ned as 

 . 

 This  expression  has  previously  been  proposed  as  a  heterogeneity  measure  in  the  context 
 of  random-effects  meta-analyses  42,43  ,  and  is  related  to  the  commonly  reported 
 heterogeneity  measure  I  ²,  de�ned  as  the  percentage  of  the  total  variability  in  effect  size 
 estimates attributable to heterogeneity, i.e., 

 . 

 The  commonly  referenced  cut-off  values  of  25%,  50%,  and  75%  for  I  ²  are  used  to  indicate 
 small,  medium,  and  large  heterogeneity  44,45  and  translate  into  cutoff  values  for  H  of  1.15, 
 1.41,  and  2.00,  respectively.  H  is  the  factor  that  the  sampling  standard  error  needs  to  be 
 multiplied  by  to  account  for  heterogeneity;  H   = 1  implies  homogeneity,  and  H   = 2  implies 
 that  incorporating  uncertainty  due  to  between-study  variation  will  double  the  sample 
 standard error of an individual study. 

 Heterogeneity  in  effect  sizes  may  stem  from  various  sources:  study  outcomes  might  be 
 heterogeneous  across  samples  drawn  from  different  populations  (  population 
 heterogeneity  ),  estimates  can  vary  depending  on  the  study  design  used  to  address  a 
 particular  hypothesis  (  design  heterogeneity  ),  and  effect  sizes  may  differ  depending  on 
 the  analysis  path  implemented  (  analytical  heterogeneity  ).  For  studies  that  rely  on 
 prospective  data  collections,  such  as  experiments,  the  three  types  of  heterogeneity 
 relate  to  degrees  of  freedom  in  different  layers  of  the  research  process.  These  include 
 deciding  (i)  which  population(s)  to  use  to  draw  a  sample  from,  (ii)  which  research  design 
 to  implement,  and  (iii)  how  to  analyze  the  sampled  data.  For  empirical  studies  that  rely 
 on  observational  data,  it  may  not  be  clear  where  to  draw  the  line  between  design  and 
 analytic  decisions.  For  ease  of  exposition,  we  consider  all  researcher  decisions  made 
 after  choosing  which  raw  data  to  use  as  part  of  the  analytical  domain  in  empirical 
 studies. 

 Each  type  of  heterogeneity  can  be  isolated  and  quanti�ed  by  implementing  proper 
 research  designs.  By  allowing  for  variation  in  only  one  dimension  (e.g.,  the  study 
 designs)  while  holding  the  other  dimensions  (e.g.,  the  population  and  the  analysis) 
 constant,  the  magnitude  of  heterogeneity  due  to  the  different  sources  of  variation  can 
 be  examined  systematically.  In  our  empirical  review,  we  report  estimates  of 
 heterogeneity  expressed  in  terms  of  the  heterogeneity  factor  (  H  )  separately  for 
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 population,  design,  and  analytical  heterogeneity  (based  on  meta-analyses  isolating 
 either  of  the  three  sources  by  design).  Note  that  heterogeneity  estimates  due  to  different 
 sources  of  variability  are  linearly  additive  in  variances,  such  that  the  overall 
 heterogeneity  (in  absolute  terms)  is  given  by  𝜏² = 𝜏  P  ² + 𝜏  D  ² + 𝜏  A  ²,  where  𝜏  s  denotes  the 
 between-study  variance  due  to  variability  across  populations  (  s     =     P  ),  designs  (  s     =     D  ),  or 
 analysis  paths  (  s     =     A  ),  respectively.  The  total  variance  in  the  effect  size  estimate  of  study 
 j  ,  𝜈  j  ²,  is  thus  given  by  𝜈  j  ² = 𝜎  j  ² + 𝜏  P  ² + 𝜏  D  ² + 𝜏  A  ²,  and  its  square  root,  𝜈  j  ,  can  be  thought  of  as 
 study  j  ’s  total  standard  error.  Importantly,  the  way  H  is  constructed  remains  unchanged 
 irrespective  of  the  source  of  variability,  i.e.,  whether  H  pertains  to  one  of  the  three 
 sources  of  heterogeneity  or  any  combination  thereof  is  solely  governed  by  the  research 
 design.  In  all  empirical  analyses  reported  below,  the  heterogeneity  factor  H  is 
 determined  based  on  the  within-study  variance  (𝜎²)  estimated  as  part  of  the 
 meta-analytic  random-effects  model.  If  the  sample  variance  of  some  study  j  differs  from 
 the  average  within-study  variance  (𝜎²)  due  to,  for  instance,  using  a  larger  sample  size  or 
 due  to  more  precise  measurement,  the  heterogeneity  factor  H  for  study  j  can  be  derived 
 by replacing 𝜎² by 𝜎  j  ²  . 

 Empirical estimates of population, design, and analytical heterogeneity 

 To  gauge  the  extent  of  heterogeneity  in  empirical  social  science  research,  we  provide  a 
 review  of  heterogeneity  estimates  re-estimated  using  random-effects  meta-analysis 
 based  on  published  crowd  science  projects.  We  outline  the  inclusion  criteria  and  the 
 estimation  procedures  in  the  Methods  section;  details  about  the  individual  studies  are 
 provided  in  sections 1–3  in  the  Supplementary  Methods.  The  results  are  illustrated  in 
 Figure 1,  which  also  indicates  benchmarks  for  low,  medium,  and  high  heterogeneity 
 based  on  an  I  ²  of  25%  (  H   = 1.15),  50%  (  H   = 1.41),  and  75%  (  H   = 2.00);  these  benchmarks  are 
 commonly  used  in  meta-analysis  to  classify  the  magnitude  of  heterogeneity  44,45  . 
 Estimates  of  the  heterogeneity  measures  𝜏,  I  ²,  and  H  (together  with  their  corresponding 
 95%  CIs)  and  the  results  of  Cochran’s  Q  -test  for  each  meta-analysis  reviewed  in  our 
 empirical analysis are tabulated in Supplementary Table 1. 

 Population  heterogeneity.  Population  heterogeneity  can  be  measured  by 
 implementing  the  same  research  design  and  analysis  in  separate  samples  from  different 
 populations  and  estimating  the  standard  deviation  in  true  effect  sizes  across  samples  (𝜏) 
 in  a  random-effects  meta-analysis.  This  is  what  has  been  pioneered  in  the  ManyLabs 
 (ML)  replication  studies  and  various  Registered  Replication  Reports  (RRRs)  in
 psychology,  which  are  ideal  for  measuring  population  heterogeneity.  Our  analysis
 involves  four  ML  studies  46–49  and  nine  RRRs  50–58  .  As  some  of  the  included  studies  report
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 results  for  multiple  effects,  our  sample  of  studies  isolating  population  heterogeneity 
 comprises 70 meta-analyses. 

 The  estimated  population  heterogeneity  varies  substantially  across  the  meta-analyses 
 in  our  sample,  with  a  large  number  of  estimates  (19/70 = 27.1%)  indicating  homogeneity 
 (  H   = 1.00),  but  also  some  estimates  unveiling  substantial  heterogeneity  of  up  to  H   = 3.91 
 (with  4/70  estimates  exceeding  the  threshold  value  of  H   = 2.00,  indicative  of  large 
 heterogeneity).  The  median  H  across  the  70  meta-analyses  is  1.08,  and  a  large  fraction  of 
 the  estimates  are  in  the  small  to  moderate  heterogeneity  range.  Cochran’s  Q  -test  rejects 
 the  null  hypothesis  of  homogeneity  at  the  5%  level  for  21  (30%)  of  the  sampled 
 meta-analyses  and  at  the  0.5%  level  for  14  (20%)  of  the  sampled  meta-analyses.  Some 
 meta-analyses  (46/70  in  4/13  papers)  are  based  on  effect  sizes  measured  in  terms  of 
 Cohen’s  d  ;  heterogeneity  can  be  reasonably  compared  across  studies  in  absolute  terms 
 (𝜏)  for  this  subsample.  The  estimated  𝜏  varies  between  0.00  and  0.69  for  these  estimates, 
 with  a  median  of  0.06.  Note  that  the  distributions  of  H  and  𝜏  estimates  of  population 
 heterogeneity  are  subject  to  some  upward  bias  as  a  consequence  of  following  the 
 convention  to  truncate  𝜏  ²  estimates  at  zero  (i.e.,  to  prevent  the  identi�cation  of  excess 
 homogeneity)  42,43  .  For  genuinely  homogeneous  effect  sizes,  randomness  would  lead  to 
 both  negative  and  positive  estimates  of  𝜏  ².  Whenever  the  fraction  of  meta-analyses  with 
 zero  estimated  heterogeneity  is  large—as  is  the  case  for  our  sample  of  studies  isolating 
 population heterogeneity—, this upward bias can be substantial. 

 Design  heterogeneity.  Design  heterogeneity  can  be  measured  by  randomly  allocating 
 experimental  participants  sampled  from  the  same  population  to  different  research 
 designs  while  holding  the  analysis  constant,  and  estimating  the  standard  deviation  in 
 true  effect  sizes  across  research  designs  (𝜏)  in  a  random-effects  meta-analysis.  We 
 identi�ed  two  studies  that  implemented  such  a  research  design,  reporting  the  results  of 
 11  meta-analytic  estimates  for  six  empirical  claims:  Landy  et  al.  59  tested  �ve  hypotheses 
 on  moral  judgments,  negotiations,  and  implicit  cognition  in  12  to  13  experimental 
 designs  each  (once  in  a  “main  study”  and  once  in  a  replication).  Huber  et  al.  60  examined 
 the  effect  of  competition  on  moral  behavior  across  45  crowd-sourced  experimental 
 protocols.  The  estimates  of  H  for  the  11  meta-analyses  reported  in  the  sampled  studies 
 (see  Figure 1)  suggest  that  the  extent  of  design  heterogeneity  is  substantial.  The 
 estimates  of  H  vary  between  1.92  and  10.44,  with  a  median  of  3.36,  and  Cochran’s  Q  -test 
 rejects  the  null  hypothesis  of  homogeneity  (  p   < 0.005)  for  each  of  the  11  meta-analyses. 
 These  results  suggest  that  design  heterogeneity  is  substantially  larger  than  population 
 heterogeneity  and  adds  substantial  uncertainty  to  studies  based  on  individual  designs. 
 All  estimates  of  design  heterogeneity  are  in  Cohen’s  d  units,  and  the  estimated  𝜏  varies 
 between 0.14 and 0.78, with a median of 0.23. 
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 Analytical  heterogeneity.  An  effective  means  to  estimate  analytical  heterogeneity 
 involves  randomly  allocating  independent  analysts  to  test  the  same  hypothesis  on 
 mutually  exclusive  random  sub-samples  of  a  dataset  and  estimate  the  standard 
 deviation  in  true  effect  sizes  across  analysts  (𝜏)  in  a  random-effects  meta-analysis.  To 
 the  best  of  our  knowledge,  no  studies  have  employed  this  method  yet.  The  most  similar 
 approach  to  this  ideal  comprises  studies  that  rely  on  the  multi-analyst  approach,  where 
 different  analysts  independently  test  the  same  hypothesis  on  the  same  data.  Our  review 
 involves  three  papers  that  ful�ll  our  inclusion  criteria  (see  Methods  for  details), 
 examining  the  variability  in  effect  sizes  due  to  analytical  �exibility  for  �ve 
 hypotheses  61–63  . 

 As  the  analysts  in  multi-analyst  studies  are  required  to  estimate  the  effect  in  question 
 using  the  same  data,  the  individual  estimates  generated  by  analysts  are  not 
 independent.  Despite  the  violation  of  the  model  assumptions,  we  use  random-effects 
 meta-analyses  to  estimate  𝜏  and  H  as  an  approximation  of  the  analytical  heterogeneity 
 for  the  sampled  multi-analyst  studies.  This  method  was  also  recently  used  by  a 
 multi-analyst  study  in  biology  64  to  estimate  the  heterogeneity  of  results  across  analysts. 
 The  estimates  reported  in  Figure 1  should  be  interpreted  cautiously  since  relying  on  the 
 random-effects  meta-analytic  model  will  underestimate  heterogeneity  for  correlated 
 observations  (as  the  within-study  variation  will  be  lower  in  the  case  of  dependent 
 observations).  The  estimated  analytical  heterogeneity  is  large,  with  H  estimates  ranging 
 from  1.72  to  12.69,  with  a  median  of  4.08.  Cochran’s  Q  -test  is  statistically  signi�cant 
 (  p   < 0.005)  for  each  of  the  �ve  meta-analyses.  In  the  Methods  section  we  provide  a 
 robustness  test  on  the  estimates  of  analytical  heterogeneity,  showing  that  the  high 
 estimate  of  12.69  for  Silberzahn  et  al.  61  is  driven  by  two  outliers  in  terms  of  sampling 
 variance;  removing  these  outliers  reduced  the  estimated  heterogeneity  factor  H  (and  the 
 median  estimate  for  the  multi-analyst  studies  in  our  sample)  to  2.72.  Our  results  suggest 
 that  analytical  heterogeneity  is  substantial,  in  the  same  ballpark  as  the  estimates  for 
 design  heterogeneity,  and  substantially  larger  than  population  heterogeneity.  None  of 
 the  estimates  of  analytical  heterogeneity  are  in  standardized  effect  size  units,  and  the 
 analytical  heterogeneity  estimates  cannot  be  reasonably  compared  in  absolute  terms 
 across the studies. 

 Limitations.  It  is  worth  emphasizing  that  the  estimated  heterogeneity  factor  for  all 
 three  types  of  heterogeneity  carries  a  signi�cant  amount  of  uncertainty:  Heterogeneity 
 estimates  can  be  highly  sensitive  to  outliers  in  effect  sizes  and  sample  variances  of  the 
 individual  studies  included  in  the  meta-analyses.  The  individual  estimates  of  H  in 
 Figure 1  should  therefore  be  interpreted  with  caution.  Multi-analyst  studies  have  also 
 been  criticized  for  overestimating  the  analytical  variation,  e.g.,  due  to  ambiguity  about 
 the  studied  research  question  65,66  .  Notwithstanding,  it  is  important  to  note  that  even  the 
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 smallest  estimates  obtained  from  our  review  of  the  literature  point  toward  considerable 
 heterogeneity  due  to  the  variability  in  designs  (  H   = 1.92)  and  analyses  (  H   = 1.72).  It  is  also 
 worth  emphasizing  that  a  typical  empirical  study  in  the  social  sciences  will  involve 
 heterogeneity  due  to  all  three  sources  investigated  above,  which  implies  that  the  overall 
 level of heterogeneity is likely to be even higher than the estimates reported in Figure 1. 

 Illustrating the Impact of Heterogeneity on Statistical Inference 

 The  above  results  illustrate  that  the  variation  in  results  across  studies  testing  the  same 
 hypothesis  can  be  large,  especially  due  to  the  variation  in  research  designs  and 
 analytical  decisions.  In  this  section,  we  illustrate  the  implications  of  unaccounted-for 
 heterogeneity  for  statistical  inference  (see  the  Methods  section  for  more  details).  We  use 
 the  following  scenario  as  a  starting  point:  A  researcher  sources  data  to  test  a  hypothesis 
 with  90%  statistical  power  to  detect  the  hypothesized  effect  size  at  the  5%  signi�cance 
 threshold  (in  a  two-sided  z  -test)  only  taking  into  consideration  sampling  uncertainty 
 but  not  heterogeneity  (i.e.,  the  standard  way  to  test  hypotheses  and  to  do  power 
 calculations).  What  are  the  consequences  of  ignoring  heterogeneity  if  the  true  effect  size 
 is genuinely heterogeneous? 

 We  distinguish  between  the  nominal  and  effective  error  rates  below,  where  the  effective 
 error  rates  are  the  observed  error  rates  after  taking  into  account  heterogeneity.  Fig.  2 
 demonstrates  the  effective  type-I  and  type-II  error  rates  for  this  scenario,  assuming  that 
 the  true  effect  size  is  heterogeneous  with  H   = 2,  which  is  close  to  the  smallest  estimates 
 of  design  heterogeneity  and  analytical  heterogeneity  reported  in  Fig.  1.  As  illustrated  in 
 Fig.  2,  heterogeneity  increases  the  dispersion  of  an  effect’s  probability  density  under 
 both  the  null  and  the  alternative  hypothesis  as  the  sample  standard  error  will  double 
 when  heterogeneity  is  incorporated.  Since  the  researcher  in  our  scenario  ignores 
 heterogeneity,  she  will  not  adapt  the  test’s  critical  value  but  will  decide  on  whether  or 
 not  to  reject  the  hypothesis  based  on  the  critical  value  based  on  the  nominal 
 signi�cance  threshold.  As  a  consequence,  both  the  effective  false  positive  rate  and  the 
 effective  false  negative  rate  are  in�ated  (or,  put  differently,  both  the  speci�city  and  the 
 sensitivity  of  the  test  are  depleted).  As  exempli�ed  in  Fig.  2,  the  implications  of 
 heterogeneity  can  be  severe:  a  study  that  is  supposed  to  involve  a  type-I  error  rate  of  5% 
 and  a  type-II  error  rate  of  10%  actually  entails  a  33%  risk  of  a  false  positive  and  a  26%  risk 
 of a false negative result under the assumption of  H  = 2. 

 Fig.  3a  plots  the  relationship  between  the  nominal  and  effective  type-I  error  rates  for 
 various  levels  of  heterogeneity.  The  effective  type-I  error  rate  increases  strongly  with 
 heterogeneity,  implying  that  unaccounted-for  heterogeneity  has  considerable  adverse 
 effects  even  for  comparably  low  levels  of  between-study  variance.  The  corresponding 
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 relationship  between  nominal  and  effective  statistical  power  is  illustrated  in  Fig  3b.  As 
 we  already  saw  in  Fig.  2,  large  heterogeneity  substantially  decreases  effective  power 
 when  the  nominal  power  is  high,  but  the  effect  of  heterogeneity  goes  in  the  opposite 
 direction  for  low  nominal  power.  This  may  at  �rst  seem  counterintuitive,  but  the 
 effective  power  will  go  toward  50%  when  heterogeneity  increases,  irrespective  of  the 
 nominal  power,  as  high  levels  of  heterogeneity  decrease  the  chance  of  detecting  a 
 statistically  signi�cant  effect  when  nominal  power  is  high  (>50%)  but  increase  the 
 chance of observing a statistically signi�cant effect when nominal power is low (<50%). 

 By  taking  into  account  the  prior  likelihood  of  a  tested  hypothesis  being  true  (𝜙),  the 
 effective  false  discovery  rate  can  be  estimated.  Fig.  4a  shows  how  the  false  discovery 
 rate—i.e.,  the  fraction  of  statistically  signi�cant  �ndings  that  are  false—varies  with 
 heterogeneity  for  different  priors  𝜙  (assuming  90%  nominal  statistical  power  and  a  5% 
 nominal  signi�cance  threshold  as  in  Fig. 2).  The  effective  false  discovery  rate  (  FDR’  ) 
 increases  strongly  with  the  H  unless  heterogeneity  is  incorporated  into  statistical 
 testing;  e.g.,  for  a  prior  of  𝜙 = 30%,  FDR’  goes  from  11.5%  for  H   = 1  to  50.8%  for  H   = 2.  For 
 lower priors, the impact of heterogeneity on the false discovery rate is even more severe. 

 Instead  of  directly  incorporating  heterogeneity  into  the  standard  errors  of  reported 
 effect  sizes  (by  multiplying  sampling  errors  with  an  appropriate  heterogeneity  factor  H  ), 
 the  adverse  effects  of  heterogeneity  could  be  tamed  through  applying  a  stricter  nominal 
 signi�cance  threshold  in  statistical  testing.  Benjamin  et  al.  67  recently  suggested  lowering 
 the  p  -value  threshold  from  5%  to  0.5%.  In  Fig.  4b,  we  show  the  false  discovery  rate  for 
 nominal  p  -value  thresholds  of  5%,  0.5%,  and  0.05%  for  different  priors  as  a  function  of 
 the  heterogeneity  factor  H  (based  on  our  example  with  a  nominal  statistical  power  of 
 90%).  For  H   = 2,  lowering  the  p  -value  threshold  from  5%  to  0.5%  (0.05%)  reduces  FDR’  from 
 50.8%  to  33.6%  (20.5%)  for  a  prior  of  30%.  While  adopting  lower  p  -value  thresholds  curbs 
 the  detrimental  impact  of  heterogeneity  on  false  discoveries,  the  nominal  signi�cance 
 level  needs  to  be  lowered  more  drastically  than  proposed  by  Benjamin  et  al.  67  to  cope 
 with  the  magnitude  of  design  and  analytical  heterogeneity  identi�ed  in  our  empirical 
 exercise  summarized  in  Fig.  2.  To  counteract  the  impact  of  heterogeneity  of  H   = 2  given  a 
 prior  of  30%,  the  (nominal)  𝛼-threshold  needs  to  be  reduced  to  0.005%  (to  uphold  the 
 FDR’  for  H   = 1  and  𝛼 = 0.05)  ).  For  settings  with  lower  statistical  power,  the  patterns 
 highlighted  in  Fig.  4a  and  4b  are  similar,  but  the  FDR’  will  converge  even  faster  toward 
 its limit of 1 − 𝜙/2 for increasing magnitudes of  H  . 

 The  considerations  sketched  above  draw  an  unmistakable  picture  of  why  the  scienti�c 
 enterprise  ought  to  start  taking  action  to  parse  and  cope  with  heterogeneity  36–40  .  As 
 illustrated,  disregarding  heterogeneity  can  have  a  substantial  impact  on  statistical 
 inference,  which  in  turn  implies  that  a  priori  power  analyses  can  be  misleading  and  the 
 planning  of  original  and  replication  studies  might  be  misguided  68  .  Ignoring  the 
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 implications  of  heterogeneity  will  leave  us  with  substantially  in�ated  numbers  of  false 
 scienti�c  claims,  and  compromises  the  informativeness  and  conclusiveness  of 
 individual  scienti�c  contributions.  Consequently,  unaccounted-for  heterogeneity  bears 
 the  risk  of  generating  research  waste,  potentially  slowing  down  the  process  of  scienti�c 
 discovery, and generating a poor return on the invested funding  69–71  . 

 Discussion 

 Aside  from  the  literature  reviewed  above,  there  is  a  wealth  of  meta-analytic  studies  in 
 the  social  sciences  reporting  heterogeneity  estimates  as  part  of  random-effects 
 meta-analyses.  For  the  sake  of  comparison,  the  results  of  two  studies  are  worthwhile  to 
 mention:  van  Erp  et  al.  72  sourced  more  than  700  meta-analyses  published  in  the 
 Psychological  Bulletin  and  reported  a  median  I  ²  estimate  of  71%;  Stanley  et  al.  73  reviewed 
 a  convenience  sample  of  200  meta-analyses  published  in  the  same  journal  and  reported 
 a  median  I  ²  of  74%.  These  I  ²  estimates—pooling  all  potential  sources  of  heterogeneity— 
 translate  into  heterogeneity  factors  (  H  )  of  1.86  and  1.96,  respectively.  However,  these 
 estimates  are  difficult  to  draw  on  for  our  purpose  and  the  comparability  with  our 
 estimates  is  limited  since  heterogeneity  estimates  in  meta-analyses  based  on  the 
 published  literature  will  be  impacted  by  publication  bias  and  p  -hacking  15–18,74  .  In  our 
 review  of  results,  we  only  draw  on  studies  that  are,  by  design,  free  from  publication  bias 
 and  obvious  incentives  for  p  -hacking.  This  literature  is  still  at  an  early  stage,  and  our 
 results  should  be  interpreted  with  care;  yet,  drawing  some  preliminary  conclusions 
 appears  tenable.  Our  results  suggest  that  population  heterogeneity  is  typically  small, 
 which  is  consistent  with  two  other  recent  studies  estimating  population  heterogeneity 
 based  on  multi-lab  replication  studies  75,76  .  Our  results  furthermore  suggest  that  both 
 design  heterogeneity  and  analytical  heterogeneity  are  large:  even  the  lowest  estimates 
 in  the  reviewed  literature  imply  that  design  and  analytical  heterogeneity  almost  double 
 standard errors and con�dence intervals if accounted for in statistical testing. 

 A  typical  empirical  study  will  be  associated  with  all  three  sources  of  heterogeneity, 
 implying  even  higher  levels  of  uncertainty  not  captured  by  standard  errors.  However, 
 we  would  be  reluctant  to  simply  add  up  our  three  estimates  for  different  sources  of 
 heterogeneity  as  they  are  based  on  different  types  of  studies.  The  estimates  of 
 population  and  design  heterogeneity  are  based  on  experimental  studies,  whereas  the 
 estimates  of  analytical  heterogeneity  are  based  on  observational  data  research.  We 
 would  expect  less  analytical  heterogeneity  for  the  typical  experiment  than  for  the 
 typical  observational  study  due  to  fewer  analytical  choice  points  encountered  on 
 average  7,8  .  Conversely,  for  observational  data  studies,  it  is  more  difficult  to  cleanly 
 separate  the  research  design  from  analytical  decisions;  analytical  heterogeneity  may 
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 incorporate  (part  of)  the  variability  of  “design  elements,”  whereas  the  remaining  design 
 heterogeneity  may  be  lower  than  for  experiments.  More  research  is  needed  to  gauge  the 
 relative  importance  of  various  types  of  heterogeneity.  The  tentative  insights  gained 
 from  our  review  suggest  that  total  heterogeneity  in  social  science  research  can  be 
 expected to be substantial, with substantial implications for statistical inference. 

 The  sizeable  analytical  heterogeneity  identi�ed  in  our  review  also  implies  that  the  scope 
 to  selectively  report  favorable  results  is  wide.  While  p  -hacking  is  often  thought  of  as 
 marginally  affecting  results  around  the  signi�cance  thresholds,  the  extent  of  observed 
 analytical  heterogeneity  suggests  that  there  is  potential  for  much  larger  systematic  bias 
 in  published  effect  sizes.  Similarly,  design  heterogeneity  implies  that  researchers  may 
 be  able  to  selectively  report  results  for  research  designs  that  deliver  the  desired  results. 
 “Design  hacking”  could  manifest  itself  in  opportunistically  choosing  the  experimental 
 design  that  is  expected  to  maximize  the  chances  of  �nding  statistically  signi�cant 
 results  based  on,  e.g.,  piloting  different  protocols  and  parameterizations.  In  reported 
 research,  all  pilot  studies  and  related  tests  that  have  been  used  to  inform  the  eventual 
 research  design  should  be  explicitly  reported;  ideally,  studies  should  be  preregistered 
 before  conducting  any  pilot  tests  such  that  the  piloting  choices  are  explicitly 
 incorporated into the overall research design. 

 For  our  estimates  of  population  heterogeneity,  an  important  caveat  is  that  the  reviewed 
 multi-lab  replication  studies  are  typically  based  on  university  student  samples  from 
 different  western  countries,  which  may  involve  lower  population  heterogeneity  than  in 
 other  settings.  Put  differently,  our  comparatively  low  estimates  of  population 
 heterogeneity  might  be  subject  to  population  heterogeneity  itself.  To  what  extent  one 
 should  incorporate  population  heterogeneity  into  the  reported  uncertainty  of  individual 
 studies  also  depends  on  which  population  the  researcher  wants  to  generalize  the  results 
 to  77,78  .  When  conducting  an  experiment  on  university  students,  it  seems  fair  to  expect 
 that  results  are  generalizable  to  similar  student  populations.  However,  it  may  not  be 
 justi�able  to  generalize  the  �ndings  to  other  populations,  such  as  students  in  different 
 countries,  or  the  general  population.  To  avoid  overgeneralization,  empirical 
 investigations  should  start  with  representative  samples  of  the  population  for  which  the 
 results  ought  to  be  informative,  in  which  case  the  population  heterogeneity  will  be 
 “absorbed”  by  the  sampling  standard  error  of  the  study.  For  population  heterogeneity,  it 
 may  also  be  important  to  study  whether  and  to  what  extent  effect  sizes  systematically 
 vary  across  populations  rather  than  generalizing  results  beyond  the  population  studied 
 in  a  speci�c  study.  Gauging  the  variability  in  effect  sizes  across  populations  is  of  direct 
 interest, can inform future research agendas, and may be policy-relevant. 

 For  analytical  heterogeneity,  there  is  a  strong  case  for  adding  the  analytical  uncertainty 
 to  the  sampling  variance  uncertainty  of  individual  studies  per  se  .  The  same  applies  to 
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 design  heterogeneity,  except  for  normative  studies  that  aim  to  identify  the  most 
 effective  design  to  achieve  some  speci�c  goal.  An  example  would  be  randomized  control 
 trials  testing  various  nudging  interventions,  where  different  experimental  designs 
 compete  in  a  horserace  to  achieve  a  particular  goal  most  efficiently  79–81  .  In  such  a  setting, 
 we  are  not  interested  in  generalizing  the  results  of  a  speci�c  design  to  all  the  feasible 
 designs,  and  the  heterogeneity  in  effect  sizes  across  all  feasible  research  designs  is  not 
 part of the uncertainty of the effect of the most efficient design. 

 Incorporating  the  additional  uncertainty  due  to  heterogeneity  into  statistical  testing  is 
 difficult  due  to  the  uncertainty  about  the  magnitude  of  heterogeneity  that  should  be 
 expected  for  different  settings.  An  alternative  could  be  to  report  the  level  of 
 heterogeneity  an  individual  study  would  be  robust  to  in  generalizing  �ndings  to  other 
 populations,  designs,  and  analysis  paths.  The  heterogeneity  factor  H,  at  which  an 
 individual  result  would  turn  insigni�cant,  could  be  reported  alongside  the  p  -value  for 
 studies  reporting  statistically  signi�cant  �ndings.  For  z  -  and  t  -tests,  this  “heterogeneity 
 buffer”  can  be  straightforwardly  determined  as  the  ratio  of  the  test  statistic  and  the 
 critical  value.  The  buffer  can  be  interpreted  as  an  indicator  of  the  generalizability  of  an 
 individual  study’s  result,  and  the  cutoff  values  for  small  (  H   = 1.15),  medium  (  H   = 1.41), 
 and  large  (  H   = 2.00)  heterogeneity  could  be  used  as  a  pointer  as  to  whether  an  empirical 
 claim is robust to  low, medium, or large heterogeneity. 

 The  estimated  levels  of  design  and  analytical  heterogeneity  imply  that  the 
 informativeness  and  generalizability  of  individual  studies  are  typically  low,  and  we 
 believe  that  the  common  “one  population  –  one  design  –  one  analysis”  approach  is 
 outdated.  Besides  the  low  generalizability  of  such  studies,  another  major  issue  is  that 
 the  sequential  production  of  studies  implies  that  the  scienti�c  knowledge-generation 
 process  is  delayed.  39  The  publication  of  one  random  study  might  inspire  follow-up 
 studies,  which  in  turn  trigger  follow-up  studies,  etc.  With  scienti�c  evidence  pertaining 
 to  a  narrowly  de�ned  set  of  hypotheses  being  published  sequentially,  it  could  take  years 
 to  reach  a  broader  perspective  on  heterogeneity  and  generalizability.  The  process  of 
 sequential  publication  further  involves  the  threat  that  �awed  initial  results  could  steer 
 an  entire  sub-discipline  in  the  wrong  direction,  which,  in  turn,  could  lead  to  loads  of 
 research waste and impede efficient knowledge accumulation. 

 We  thus  argue  that  it  is  time  to  initiate  a  paradigm  shift,  both  in  how  to  conduct 
 (empirical)  scienti�c  research  and  in  how  to  communicate  the  evidential  value  of 
 scienti�c  contributions  to  various  stakeholders.  We  advocate  moving  towards  fewer  and 
 much  larger  empirical  studies  in  which  conclusive  research  designs,  justi�able  analysis 
 paths,  and  relevant  populations  are  systematically  varied  as  part  of  an  encompassing 
 research  design.  When  analyzing  such  studies  using  a  random-effects  meta-analytic 
 model,  heterogeneity  is  incorporated  into  the  standard  errors  of  the  meta-analytic  effect 
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 size,  and  heterogeneity  can  be  leveraged  to  build  more  complete  and  more  nuanced 
 theories  38  .  Importantly,  such  studies  should  be  preregistered  and  can  involve  elements 
 of  crowd  science  to  reach  the  necessary  scale  71,82  .  We  think  of  such  studies  as 
 preregistered  prospective  meta-analyses  to  distinguish  them  from  classical 
 meta-analyses  based  on  the  published  literature  that  are  hampered  by  publication  bias 
 and  p  -hacking  (not  only  in  primary  studies  but  also  in  meta-analyses,  which  involve 
 many  degrees  of  freedom  such  as,  e.g.,  de�ning  inclusion  criteria)  74  .  The  ManyLabs 
 studies  46–49  in  psychology  can  be  thought  of  as  examples  of  pioneering  work  in  this 
 direction, although primarily concerned with studying population heterogeneity. 

 There  is  also  a  case  for  more  use  of  multi-analyst  studies  and  multiverse  analysis  83–87  . 
 These  approaches  can  be  used  to  unveil  the  scope  of  analytical  variation  and 
 incorporate  the  implied  uncertainty  into  eventual  conclusions  as  to  the  hypothesis  in 
 question.  While  a  wider  adoption  of  these  methodologies  is  desirable  per  se  ,  integrating 
 these  approaches  into  pre-registered  prospective  meta-analyses  will  unleash  their  full 
 potential.  Furthermore,  sharper  theoretical  predictions,  methodological 
 standardization,  and  clearer  alignment  of  theoretical  conceptualizations  and  empirical 
 instrumentalizations  facilitate  narrowing  down  the  set  of  plausible  research  designs  and 
 analytical choices, ultimately  reducing heterogeneity  36–38  . 

 Methods 

 Included studies 

 Population  heterogeneity.  We  reviewed  the  literature  for  ManyLabs  (ML)  replication 
 studies  and  Registered  Replication  Reports  (RRRs)  in  psychology,  which  are  ideal  for 
 measuring  population  heterogeneity,  and  included  all  ML  and  RRRs  using 
 random-effects  meta-analysis  and  with  available  data  on  effect  sizes  and  standard 
 errors  for  each  included  lab.  We  included  ML1-4  46–49  and  nine  RRRs  published  in 
 Perspectives  on  Psychological  Science  and  Advances  in  Methods  and  Practices  in 
 Psychological  Science  50–58  .  We  did  not  include  ML5  88  due  to  a  lack  of  data  availability.  As 
 ML1–3  and  several  RRRs  report  results  for  multiple  effects,  our  sample  comprises  70 
 separate  meta-analyses  for  which  we  estimated  population  heterogeneity.  See 
 Supplementary Methods, Section 1, for details of the included studies. 

 Design  heterogeneity.  To  the  best  of  our  knowledge,  there  are  only  two  studies  59,60  that 
 vary  the  experimental  design  to  test  the  same  hypothesis  in  random  subsamples  to 
 isolate  design  heterogeneity  in  a  random-effects  meta-analysis.  Both  studies,  reporting 
 results  on  six  different  hypotheses,  are  included  in  our  analysis  of  design  heterogeneity. 
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 The  �ve  hypotheses  examined  in  the  study  by  Landy  et  al.  59  were  tested  in  a  main  study 
 and  an  independent  replication  study  each,  implying  that  the  number  of  estimates  on 
 design  heterogeneity  from  that  study  is  10,  and  the  total  number  of  estimates  is  11).  See 
 Supplementary Methods, Section 2, for more details of the included studies. 

 Analytical  heterogeneity.  We  reviewed  all  multi-analyst  studies  in  the  social  sciences 
 for  which  data  on  effect  sizes  and  standard  errors  are  available  for  each  analyst,  and 
 effect  sizes  are  measured  in  the  same  units  across  analysts.  We  found  three  papers  that 
 meet  our  criteria:  Silberzahn  et  al.  61  ,  Huntington-Klein  et  al.  62  ,  and  Hoogeveen  et  al.  63  .  In 
 total,  these  papers  examine  analytical  variability  for  �ve  different  hypotheses.  We 
 identi�ed  �ve  more  published  multi-analyst  studies  in  the  social  sciences,  but  these  did 
 not  meet  our  inclusion  criteria:  Bastiaansen  et  al.  89  detail  the  variation  in  analytic 
 decisions  across  analysis  teams  but  do  not  report  estimates  pertaining  to  each  of  the 
 proposed  analysis  pipelines;  Botvinik-Nezer  et  al.  90  was  excluded  as  the  primary 
 outcome  reported  by  analysis  teams  is  a  binary  classi�cation  of  whether  the  hypotheses 
 are  supported  by  the  data,  but  no  effect  size  measure  is  reported;  Schweinsberg  et  al.  91 

 was  excluded  since  the  individual  results  by  analysts  are  not  available  in  standardized 
 effect-size  units  but  only  in  terms  of  z  -scores;  Menkveld  et  al.  92  was  excluded  as  the  data 
 is  yet  embargoed;  Breznau  et  al.  93  was  excluded  as  the  research  teams  reported  various 
 results  for  the  same  hypothesis  and  it  is  not  clear  which  effect  size  estimate  to  include 
 for  each  team.  Note  that  the  reported  variation  in  results  is  very  large  across  analysts 
 also  in  the  �ve  excluded  studies.  See  Supplementary  Methods,  Section  3,  for  more 
 details of the included studies. 

 Estimation of results for included studies 

 For  each  included  study,  we  re-estimated  the  random-effects  meta-analytic  models 
 based  on  the  original  data.  In  Supplementary  Table 1,  we  provide  detailed  results  for 
 each  included  meta-analysis,  comprising  the  Q  -test,  whether  effect  sizes  were  measured 
 in  Cohen’s  d  units,  the  between-study  variation  (𝜏  and  its  95%  CI),  the  within-study 
 variation  (𝜎),  the  ratio  between  the  between-  and  within-study  variation  (𝜏/𝜎;  which  we 
 refer  to  as  the  heterogeneity  ratio  HR  ),  I  ²  and  its  95%  CI,  and  H  and  its  95%  CI.  If  not 
 indicated  otherwise  in  Supplementary  Methods,  Sections  1–3,  we  were  able  to  precisely 
 (computationally)  reproduce  the  results  reported  in  the  papers.  As  such,  our  study 
 provides—as  a  “side  product”—evidence  on  the  computational  reproducibility  94–98  of 
 large-scale meta-scienti�c results. 

 To  keep  things  simple  and  easily  replicable,  we  created  copies  of  the  relevant  input  data 
 for  the  meta-analyses  (i.e.,  the  effect  size  estimate  and  the  corresponding  standard  error 
 for  each  study  included  in  the  meta-analysis)  for  each  paper  based  on  the  original  data 
 (all  of  which  are  publicly  available  under  a  CC-by  license).  These  copies  of  the  original 
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 data  constitute  our  raw  data.  All  data  and  analysis  scripts  used  to  generate  the  results 
 reported  in  the  main  text  and  the  SI  are  available  at  our  project’s  OSF  repository: 
 osf.io/yegsx  . 

 Random  effects  meta-analyses  were  estimated  using  the  metafor  package  (v-4.4.0)  99  in  R 

 (v-4.3.2)  100  .  Estimates  for  the  con�dence  intervals  around  the  heterogeneity  measures  𝜏  2  , 
 I²  ,  and  H²  were  based  on  the  Q  -pro�le  method  101  implemented  using  the  confint() 

 function  shipped  with  the  metafor  package.  For  all  papers  reporting  the  results  of 

 meta-analyses  (i.e.,  all  papers  on  population  or  design  heterogeneity),  we  used  the  same 
 estimator  for  𝜏  2  as  used  in  the  original  paper.  The  majority  of  these  papers  relied  on  the 
 restricted  maximum  likelihood  estimator  102  ;  but  one  study  used  the 
 DerSimonian-Laird  103  estimator, and one study used the Hartung-Knapp  104  estimator. 

 For  multi-analyst  studies,  heterogeneity  estimates  were  based  on  the  restricted 
 maximum  likelihood  estimator.  Note  that  estimating  a  random-effects  model  on 
 multi-analyst-style  data  is  unconventional,  as  discussed  in  the  main  text.  Hence  it  does 
 not  come  as  a  surprise  that  none  of  the  multi-analyst  studies  included  in  our  review  did 
 report  the  results  of  a  random-effects  meta-analysis;  however,  a  recent  multi-analyst 
 study  in  biology  64  used  a  meta-analytic  random-effects  model  to  estimate  the 
 heterogeneity  of  results  across  analysts.  The  estimated  heterogeneity  measures  𝜏  2  ,  I²  , 
 and  H²  for  multi-analyst  studies  can  be  interpreted  as  lower  bound  estimates  as  they  are 
 derived  based  on  the  within-study  variance  that  would  be  observed  if  the  effect  size 
 estimates  reported  by  multiple  analysts  were  independent  observations;  if  the  sampling 
 variances  of  the  multiple  analysts  are  correlated  (which  is  the  case  for  multi-analyst 
 studies,  since  analysts  based  their  estimates  on  the  same  dataset),  the  actual 
 within-study variance is lower, and the between-study variance is higher. 

 Robustness tests on Analytical Heterogeneity 

 Huntington-Klein  et  al.  62  introduced  the  ratio  between  the  standard  deviation  of  effect 
 size  estimates  across  analysts  and  the  mean  standard  error  as  a  measure  of  the 
 analytical  heterogeneity  in  multi-analyst  studies.  This  measure  can  be  interpreted  as  a 
 proxy  for  the  ratio  of  the  between-study  variation  and  the  within-study  variation  (  HR  ) 
 and  can  be  converted  to  a  proxy  measure  of  H  by  taking  the  square  root  of  1  plus  the 
 squared  ratio;  to  distinguish  the  two  measures  from  HR  and  H  obtained  from  the 
 estimates  of  random-effects  meta-analyses,  we  denote  them  as  HR  P  and  H  P  .  In 
 Supplementary  Table  2,  we  report  both  HR  P  and  H  P  for  the  multi-analyst  studies 
 included  in  our  review.  HR  P  varies  between  1.48  and  3.98  for  the  multi-analyst  studies, 
 with  a  median  of  3.07;  H  P  varies  between  1.79  and  4.11  for  the  multi-analyst  studies,  with 
 a  median  of  3.23.  Note  that  while  the  between-study  variation  (𝜏)  estimated  in  the 
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 random-effects  meta-analysis  is  a  lower  bound  of  the  standard  deviation  in  effect  sizes 
 across  analysts,  the  proxy  H  P  may  exceed  H  as  estimated  using  a  random-effects 
 meta-analysis  as  the  estimated  within-study  variation  (𝜎)  in  the  random-effects 
 meta-analysis  can  differ  from  the  average  standard  error  of  estimates  generated  by  the 
 analysts.  The  proxy  H  P  is  quite  similar  to  H  based  on  the  random-effects  meta-analysis 
 for  four  of  the  �ve  multi-analyst  estimates,  but  differs  substantially  for  Silberzahn  et 
 al.  61  .  This  is  due  to  two  outliers  in  terms  of  low  standard  errors  strongly  affecting  the 
 estimated  within-study  variance  in  the  random-effects  meta-analysis  (as  the  individual 
 effects  are  weighted  by  the  inverse  of  their  variance).  This  is  an  indication  that  the 
 estimate  of  H  for  of  Silberzahn  et  al.  61  should  be  interpreted  very  cautiously;  but  also  the 
 proxy  H  P  indicates  substantial  analytical  heterogeneity.  Removing  the  two  outliers  for 
 Silberzahn  et  al.  61  (implying  k   = 27  effect  size  estimates)  results  in  the  following 
 heterogeneity  estimates  in  a  random-effect  meta-analysis:  Q  (26) = 130.3,  p   < 0.001; 
 𝜏 = 0.107,  I  ² = 86.5%,  H   = 2.717,  HR   = 2.527;  the  Huntington-Klein  et  al.  62  -based  proxy 
 measures remain qualitatively unchanged (  H  P   = 1.721,  HR  P   = 1.401). 

 Illustrating the impact of heterogeneity on statistical inference 

 Consider  a  generic  two-tailed  z  -test  with  power  𝜋  to  detect  an  effect  𝜃  at  a  type-I  error 
 rate  ⍺.  The  effect  size  𝜃  (measured  in  z  -score  units  in  the  generic  test)  corresponds  to  the 
 non-centrality  parameter  𝛿 = |  z  𝛼/2  | + |  z  𝛽  |,  where  z  p  denotes  the  p  th  quantile  of  the  inverse 
 cumulative  standard  normal  distribution  and  𝛽 = 1 − 𝜋  denotes  the  false  negative  rate. 
 Assuming  that  the  true  effects  to  be  estimated  are  homogeneous,  𝜃  i   ~   N  (𝜇  0  , 𝜎  2  )  under  the 
 null  hypothesis  H  0  (with  𝜇  0  indicating  the  test  value  and  𝜎  2  denoting  the  test's  sampling 

 variance); under the alternative hypothesis  H  A  , 𝜃  i   ~   N  (𝛿, 𝜎  2  ). 

 Now  suppose  there  is  variation  in  the  true  effect  size  above  and  beyond  the  uncertainty 
 that  is  accounted  for  by  the  test's  sampling  variance  (𝜎  i  2  ).  Put  differently,  effect  size 
 estimates  are  subject  to  an  additional  source  of  uncertainty—heterogeneity—such  that 
 the  overall  variance  of  study  i  ’s  estimate  𝜃  i  is  given  by  𝜈  i  2   = 𝜎  2   + 𝜏  2  .  The  heterogeneity 
 estimate  𝜏  2  indicates  the  variance  of  the  genuine  effect,  such  that  𝜃  i   ~   N  (𝜇  0  , 𝜈  i  2  )  under  H  0

 and 𝜃  i   ~   N  (𝛿, 𝜈  i  2  ) under  H  A  . 

 Instead  of  quantifying  the  extent  of  heterogeneity  in  absolute  terms  (i.e.,  in  terms  of  𝜏  2

 or  𝜏,  respectively),  it  is  expedient  to  denote  it  relative  to  the  test’s  sampling  variance 
 (𝜎  i  2  ).  Following  the  notational  conventions  applicable  to  random-effects  meta-analysis  41  , 
 we de�ne a heterogeneity factor  H  as 

 , 
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 which  is  equivalent  to  the  square  root  of  H  2  ,  a  commonly  used  measure  of  heterogeneity 
 reported  in  meta-analyses.  H  2  can  be  interpreted  as  a  “variance  in�ation  factor”  due  to 
 heterogeneity  42,43  ,  i.e.,  as  the  factor  a  test’s  sampling  error  𝜎  i  needs  to  be  multiplied  with 
 to  incorporate  the  uncertainty  due  to  heterogeneity  into  statistical  inference.  We  prefer 
 H  over  H  2  as  thinking  about  heterogeneity  in  terms  of  standard  deviation  units  appears 
 more  convenient  than  thinking  about  it  in  terms  of  variance  units.  H  2  is  de�ned  as  the 
 relative  excess  of  the  Q  -statistic  over  its  degrees  of  freedom,  i.e.,  H  2   =   Q   / (  k   − 1). 
 Following  conventions,  we  presume  H   = max(1,  H  ),  though  we  acknowledge  that  this 
 prevents  identifying  excessive  homogeneity—i.e.,  less  variability  than  would  be 
 expected due to chance.  42

 The  effective  false  positive  rate  𝛼’  in  a  two-tailed  z  -test  in  the  presence  of  heterogeneity 
 (expressed in terms of the heterogeneity factor  H  ) is given by 

 , 

 where  Φ(·)  indicates  the  cumulative  standard  normal  distribution  and  z  ⍺/2  denotes  the 
 𝛼/2-percentile  of  the  inverse  cumulative  standard  normal  density  function  Φ  −1  (·)  (i.e.,  the 
 critical  value  of  a  two-tailed  z  -test  at  a  nominal  signi�cance  threshold  ⍺).  It  follows  that 
 ⍺’ > ⍺ for any  H  > 1. Correspondingly, the effective false negative rate 𝛽’ is given by 

 , 

 which  implies  that  𝛽’ > 𝛽  for  any  H   > 1  whenever  𝛽 < 0.5  and  𝛽’ < 𝛽  for  any  H  whenever 
 𝛽 > 0.5.  The  relationship  between  nominal  and  effective  error  rates  is  graphically 
 illustrated in Fig. 2 and Fig. 3. 

 The  false  discovery  rate  (  FDR  )  is  de�ned  as  the  ratio  of  false  positive  results  to  the  total 
 number  of  positive  classi�cations,  which  implies  that  the  FDR  is  a  function  of  the  prior 
 probability 𝜙 for the alternative hypothesis being genuinely true, i.e., 

 . 

 Since  heterogeneity  in�ates  the  effective  type-I  error  rate  (for  any  nominal  ⍺-level  in  a 
 two-tailed  test)  and  the  effective  type-II  error  rate  (for  a  nominal  𝛽 > 0.5),  it  follows  that 
 the effective false discovery rate  FDR  ’ is given by 

 . 

 Since  the  cumulative  normal  density  Φ(·)  is  convex  in  the  domain  (−∞, 0],  it  follows  that 
 FDR’   >   FDR  for  any  H   > 1.  Figure 4  illustrates  the  effective  false  discovery  rate  FDR’  as  a 
 function of  H  for various levels of the prior 𝜙 and different signi�cance thresholds ⍺. 
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 analysis  scripts  generating  all  results,  �gures,  and  tables  reported  in  the  main  text  and 
 the  Supplementary  Information  are  available  at  the  project’s  OSF  repository 
 (  osf.io/yegsx  ). 
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 Figures 

 Fig.  1.  Empirical  estimates  of  population,  design,  and  analytical  heterogeneity.  (a)  The  �gure 
 shows  estimates  of  the  heterogeneity  factor  H  for  70  estimates  from  13  papers  isolating 
 population  heterogeneity  46–58  ,  11  estimates  from  2  papers  isolating  design  heterogeneity  59,60  ,  and  5 
 estimates  from  3  papers  isolating  analytical  heterogeneity  61–63  .  The  vertical  reference  lines 
 indicate  benchmark  levels  for  small,  medium,  and  large  heterogeneity  based  on  I²  values  of  25% 
 (  H   = 1.15),  50%  (  H   = 1.41),  and  75%  (  H   = 2),  respectively.  (b)  The  �gure  shows  box  plots  of  the 
 distribution  of  heterogeneity  factors  H  ,  separated  by  the  source  of  heterogeneity,  illustrated  in 
 panel (a). 
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 Fig.  2.  The  �gure  shows  the  probability  density  function  of  an  effect  under  the  null  hypothesis 
 (  H  0  ;  purple  density  functions)  and  the  alternative  hypothesis  (  H  A  ;  green  density  functions)  for  a 
 two-tailed  z  -test  with  90%  nominal  power  (𝜋)  at  a  5%  nominal  signi�cance  level  (𝛼)  assuming 
 homogeneity  (i.e.,  H   = 1;  dashed  lines)  and  the  implications  of  disregarded  heterogeneity  of  H   = 2.0 
 (solid  lines)  on  the  effective  type-I  error  rate  𝛼’  and  statistical  power  𝜋’.  Areas  shaded  in  purple 
 indicate  the  test’s  nominal  and  effective  false  positive  rates  (𝛼  and  𝛼’);  areas  shaded  in  green 
 correspond to the test’s nominal and effective false negative rates (𝛽 and 𝛽’). 
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 Fig.  3.  (a)  The  �gure  illustrates  the  effective  type-I  error  rates  𝛼’  as  a  function  of  the  nominal 
 type-I  error  rate  𝛼  for  various  levels  of  heterogeneity.  H   = 1  implies  the  absence  of  heterogeneity; 
 H   = 1.15,  H   = 1.41,  and  H   = 2.00  correspond  to  the  commonly  used  I  ²  thresholds  of  25%,  50%,  and 
 75%  (i.e.,  small,  medium,  and  large  heterogeneity);  H   = 4.00  corresponds  to  “extreme” 
 heterogeneity  (equivalent  to  I  ² = 93.75%).  The  dashed  vertical  lines  indicate  the  5%  and  0.5% 
 nominal  signi�cance  thresholds.  (b)  The  �gure  illustrates  the  effective  statistical  power  (𝜋’)  as  a 
 function  of  nominal  statistical  power  (𝜋)  for  the  same  values  of  the  heterogeneity  factor  H  as 
 shown  in  (a).  The  dashed  vertical  lines  indicate  the  80%  and  90%  nominal  statistical  power  levels. 
 The x-markers in both panels map the values in the generic example illustrated in Fig. 1. 
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 Fig.  4.  (a)  The  panel  illustrates  the  effective  false  discovery  rate  (  FDR’  ),  i.e.,  the  ratio  of  false 
 positive  results  to  the  total  number  of  positive  classi�cations  in  the  presence  of  heterogeneity,  for 
 different  prior  probabilities  for  the  alternative  hypothesis  being  genuinely  true  (𝜙),  as  a  function 
 of  the  heterogeneity  factor  H  for  a  two-tailed  z  -test  with  nominal  statistical  power  of  𝜋 = 90%.  (b) 
 The  panel  illustrates  the  FDR’  ,  for  different  prior  probabilities  𝜙  and  various  signi�cance 
 thresholds  𝛼,  as  a  function  of  the  heterogeneity  factor  H  for  a  two-tailed  z  -test  with  nominal 
 statistical power of 𝜋 = 90%. 
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