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In this paper we analyze a continuous-time Coase setting with finite horizon, interdependent values, and

different discount rates for the buyer and seller. We fully characterize the equilibrium behavior, which

permits us to study how the agents’ discount rates (i.e., patience levels) shape the bargaining outcome.

We find that the seller’s commitment problem persists even when she is fully patient, and that higher

seller impatience may lead to higher equilibrium prices. Higher buyer impatience, on the other hand,

incentivizes the buyer to trade earlier, which accelerates price decline since the seller’s commitment

problem is more severe at earlier times. Under appropriate conditions, we conclude that the buyer is
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1 Introduction

Bargaining theory – the study of how bargaining outcomes depend on factors such as protocols,

information, and costs – is a central tool in economics. It provides insights into areas such as

price formation in decentralized markets (Osborne and Rubinstein, 1990), negotiations between

unions and firms (Hart, 1989; Cramton and Tracy, 1992), cartel stability (Hnyilicza and Pindyck,

1976), and pretrial settlements (Spier, 1992). The seminal paper of Rubinstein (1982) showed

that in a bargaining model with alternating offers and without private information, an agent’s

payoff is higher when she is more patient and lower when the other agent is more patient;

furthermore, as she becomes fully patient, her payoff approaches the commitment payoff.

In this paper we consider the other canonical dynamic bargaining model, in which a seller

(she) makes sequential offers to a buyer (he) with private information about his valuation. We

fully characterize how discounting (or impatience) affects the outcome in this model, providing

results which were largely unknown until now. Remarkably, we find that because of a feedback

loop between the seller’s commitment problem and rapid belief updating, the buyer may be

better off when he is more impatient, as well as when the seller is more impatient. Also, in

the presence of adverse selection, the seller sometimes offers higher prices when she becomes

more impatient or when the deadline for negotiation is extended. Our analysis shows that

when information is asymmetric, unlike in the Rubinstein model, lower impatience (i.e., a

lower discount rate) does not necessarily lead to greater bargaining power.

Our setting is general, in that it encompasses several cases studied in the literature. First,

we allow the discount (or interest) rates of the seller and the buyer – denoted by rs and rb,

respectively – to be different. Second, we allow the seller’s cost c(v)∈[0, v] either to be inde-

pendent of the buyer’s valuation v (which corresponds to the private-values case, as in Gul

et al., 1986, where c(·)=0), or to depend on v (which corresponds to the interdependent-values

case, as in Deneckere and Liang, 2006, where c(·) is increasing). Third, while we focus on the

“no-gap” case (where v is distributed on [0, v0] and c(0)=0), we require the time horizon T to

be finite; hence, the game ends in finite time with probability one. This permits us to study the

seller’s commitment problem independently of her discount rate, which broadens the range of

settings in which our results apply.1

1As Fuchs and Skrzypacz (2013a) point out, bargaining with a deadline is frequent in practice, for example, in

pretrial negotiations, negotiations before international summits, sales of advertising or insurance before live events,
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Our paper makes two main contributions. The first is that we provide a general, tract-

able continuous-time bargaining model with one-sided offers and asymmetric information, for

which we obtain a full characterization of the equilibrium dynamics.2 We characterize the

unique reservation-price Markov perfect equilibrium, with the time t and the highest remain-

ing buyer’s valuation vt as state variables. We find that in equilibrium, the seller screens the

buyer slowly, no trade impasses occur, and the only trade burst occurs at the deadline.

Our second contribution is that, thanks to the tractability of our approach, we are able to

document how the bargaining outcome is shaped by the agents’ discount rates (impatience

levels). We find that the seller’s commitment problem is severe: independently of her own

discount rate, that of the buyer, and the time horizon, her payoff is equal to the payoff she can

obtain by waiting until the deadline and then selling at the monopolistic price. Furthermore,

her commitment problem does not vanish in the limit where rs approaches 0 while rb remains

fixed: in this limit, her equilibrium payoff converges to the static monopolistic payoff, while a

seller with commitment can obtain a higher payoff by slowly lowering the price over time (see

Fudenberg and Tirole, 1983).

We start by establishing that the equilibrium dynamics are fully determined by the follow-

ing simple and easily interpreted equations:

pt=c(vt)+e−rs (T−t) (p∗(vt)−c(vt)) , and (1)

ṗt=−rb (vt− pt) , (2)

where p∗(vt) is the static monopolistic price when the buyer’s valuation is known to be lower

than vt. Equation (1) shows that the seller’s commitment problem is more severe at earlier

times (when the price is close to the cost) and less severe at later times (when the price is close

to the static monopolistic price). Equation (2) ensures that it is optimal for the buyer with

valuation vt to buy at time t at price pt.

We then identify the key condition that determines how changes in the agents’ discount

rates affect the outcome: we say that the no-lemons condition holds if p∗(v)≥c(v) for all v –

and negotiations to renew labor contracts before their expiration. Fuchs and Skrzypacz reference several empirical

studies documenting “deadline effects” (last-minute deals) in labor contract negotiations and civil lawsuits.

2Although there are several recent studies of bargaining models in continuous time (see the literature review be-

low), this paper is, to our knowledge, the first to analyze the standard one-sided-offers settings (Gul et al., 1986;

Deneckere and Liang, 2006) directly in continuous time.
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that is, if, in a setting where the distribution of buyer valuations is truncated above by v, the

static monopolist will not lose money when selling to a high-valuation buyer. For example, the

no-lemons condition holds in the private-values case.

Now, if the buyer’s discount rate rb increases, then the equilibrium price must decrease

more rapidly at each given state, in order to keep low-valuation buyers willing to delay trade

(by equation (2)). When the no-lemons condition holds, increasing rb has an additional effect:

since p∗(vt)>c(vt), the fact that every buyer type trades sooner means that the price he pays in

equilibrium must be lower (by equation (1)). This creates a feedback loop: because the buyer is

less willing to delay trade, the difference between his valuation and the purchase price increases

(further decreasing the right-hand side of equation (2)), which makes him still less willing to

delay and therefore further accelerates price decline. Consequently, the buyer is better off when

he is more impatient, independently of his valuation: the reduction in equilibrium trade delay

and purchase price more than compensates for the increase in the cost of delay.

We also find that the buyer is better off when the seller’s discount rate rs increases, provided

the no-lemons condition holds. This is because increasing rs lowers the price in each state (since

it increases the second term of the right-hand side of (1)), which we show increases the buyer’s

payoff, independently of his valuation.

On the other hand, if the no-lemons condition fails, then the effect of increasing either rb

or rs is ambiguous for the buyer. For example, if p∗(v0)<c(v0), then in equilibrium, the seller

will lose money if she sells early (because p0<c(v0) by equation (1)), with the losses offset by

higher profits if she sells later. An increase in rs makes her less willing to incur these early

losses, so she charges higher prices at the start to slow down trade. This benefits low-valuation

buyers but hurts high-valuation buyers (who trade sooner). Similar intuition applies when rb

is increased.

Our results show that an agent with private information may actually benefit from needing

to reach an agreement sooner (e.g., from facing a higher interest rate), as the fact of his impa-

tience can lead to a faster decline in his opponent’s optimism.3 In other words, in bargaining

settings with asymmetric information, it may not be appropriate to use patience as a measure

of bargaining power.

3Such behavior by the seller is often interpreted as anxiety (see Brooks and Schweitzer, 2011). In our case, the seller

becomes more anxious when she faces a weaker buyer (with higher bargaining costs).
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To shed further light on our results, we compare our setting to one in which the seller has

commitment power. Analyzing an example that admits a closed-form solution, we observe that

when the seller is more patient than the buyer (rs<rb), giving her commitment power reduces

the probability of trade; furthermore, unlike in the case where the seller and the buyer are

equally patient, it increases trade delay.

Finally, motivated by the analysis in Hart (1989), we study a setting in which discount rates

are time-dependent. We find that in the private-values case, the agreement rate is large during

periods in which either rs or rb is large, but faster price decline occurs only when rb is large. For

example, if both rs and rb increase over time, then trade speeds up and the price declines more

quickly near the deadline; thus, in periods with high impatience, there is a high probability of

trade.

Literature review: Our paper contributes to the literature on bargaining with asymmetric

information, as reviewed in Ausubel et al. (2002) and Fuchs and Skrzypacz (2020). To our

knowledge, the role of discounting in one-sided bargaining with private information has been

analyzed only by Sobel and Takahashi (1983) and Evans (1989). Sobel and Takahashi study

two-period and infinite-horizon versions of a bargaining model with private values and find

that each trader benefits from an increase in the other trader’s impatience. Evans studies a

two-type model with interdependent values and shows that a trade impasse may occur if the

buyer is more patient than the seller. Our paper provides a complete analysis of the role of

discounting for both the private-values case and the interdependent-values case. We obtain

new results: for example, we show that in the interdependent-values case, a more impatient

seller may charge higher prices, while in the private-values case, the buyer may benefit from

being more impatient.

Several other papers have studied bargaining with a deadline. Most saliently, Fuchs and

Skrzypacz (2013a) study how the efficiency of the bargaining outcome depends on the deadline

and the disagreement payoff, in the case when the agents are equally patient and the buyer’s

valuation follows a power distribution. They find that a smaller disagreement payoff induces

more trade before the deadline, while the length of the bargaining period may affect efficiency

non-monotonically.4

4Other bargaining models with finite horizon are studied in Ma and Manove (1993), Fershtman and Seidmann

(1993), Thépot (1998), Fanning (2016), Simsek and Yildiz (2016), and Berbeglia et al. (2019). See Ausubel and

Deneckere (1989) and Fuchs and Skrzypacz (2013b) for analyses of the no-gap case with private values and inter-
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We also contribute to the recent literature that models bargaining directly in continuous

time. Examples include Ortner (2017) (bargaining in which the seller has time-varying private

costs), Daley and Green (2020) and Lomys (2020) (bargaining with learning), and Chaves (2020)

(bargaining with arrival of new traders). In this context, our paper provides a new approach to

defining strategies and the corresponding outcomes. In particular, we place minimal assump-

tions on endogenous variables (for example, we do not impose the smoothness conditions

required for the Bellman equation to hold, nor do we assume right-continuity or monotonicity

of prices). Furthermore, we contribute to the study of non-stationary settings, given that our

time horizon is finite.

The rest of the paper is organized as follows: Section 2 presents our model, Section 3 con-

tains the equilibrium analysis, Section 4 provides the comparative statics results showing how

discounting affects the bargaining outcome, and Section 5 concludes. The appendix contains

the proofs of the results.

2 Model

We study a continuous-time bargaining model with a finite horizon, where time belongs to

[0, T]. There is a seller of a durable good and a buyer. The buyer’s private valuation for

the good, v, is distributed according to some distribution F with a continuous and positive

probability density function f and with support equal to [0, v0], for some v0>0. The seller’s

valuation for the good is c(v), where c :[0, v0]→R+ is a continuously differentiable and non-

decreasing function satisfying c(v)<v for all v∈(0, v0].5 Hence, there is common knowledge of

dependent values, respectively.

5Note that we allow for the case of private values, where c(v)=0 for all v. By allowing for non-constant c(·), our

model is also applicable in many settings where it is plausible to assume that the informed agent has superior

knowledge about the uninformed agent’s valuation. For example, this may hold when the durable good is the

procurement of a legal, medical, or repair service: the buyer may then know more than the seller about the cost of

solving his particular problem.

In addition, our setting is equivalent to one where the seller sells to a unit mass of buyers, and the cost of producing

1−F(v) units is
∫ v0

v c(v) F(dv). In this case, the decline in marginal cost can be attributed to learning-by-doing,

for example. Finally, analogous results can be obtained if the roles of the seller and the buyer are reversed; in that

case, the positively correlated valuations may correspond to the underlying quality of the good, which is known

by the seller.
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gains from trade, and there is no gap for lower buyer valuations.6 At each instant t∈[0, T], the

seller makes an offer, and the buyer decides whether to accept it or not. The game ends when

the buyer accepts an offer or when the deadline is reached. Both the seller and the buyer are

risk-neutral, and their discount (or interest) rates are rs>0 and rb>0, respectively.

We make two assumptions throughout the paper:

Assumption 1. For any v∈(0, v0], the function p 7→
∫ v

p (p−c(v)) F(dv) has a unique maximizer,

henceforth denoted by p∗(v), which is continuous and strictly increasing in v.

Assumption 2. For any v∈[0, v0], c(v)≤ rb
rs

v.

Assumption 1 is standard. In Section 3.3 we discuss and relax Assumption 2. Note that

Assumption 2 is always satisfied in the private-values case (i.e., when c(v)=0 for all v∈(0, v0]),

and also when the seller is at least as patient as the buyer (i.e., when rs≤rb).

We now formally define the continuous-time game.

Histories: A history is a measurable function from [0, t] to R, for some t∈{0−}∪ [0, T], generic-

ally denoted by pt∈R[0,t], where p0− is the empty history and [0, 0−] :=∅. Note that pt contains

the prices offered up to time t, including the price at time t.

Seller’s strategies: A (pure) strategy for the seller is a measurable function P specifying, for each

history pt, a continuation price path P(pt)∈R(t,T] (where (0−, T] :=[0, T]) such that

Pt′′(pt)=Pt′′(pt, P(t,t′](pt)) for all t′>t and t′′>t′ , (3)

where Pt′′(pt) is the price P(pt) assigns to t′′, and (pt, P(t,t′](pt)) is the concatenation of the

histories pt∈R[0,t] and P(t,t′](pt)∈R(t,t′]. Intuitively, the consistency condition (3) requires that

the seller does not deviate from her continuation strategy. More formally, note that when

the seller follows strategy P on (t, t′] after history pt, the history at time t′ is (pt, P(t,t′](pt)).

Condition (3) requires that the price path specified by P after pt and the one specified by P after

(pt, P(t,t′](pt)) both assign the same price to any time t′′>t′ (see Figure 1 for an illustration). We

6In finite-horizon Coase-conjecture models (e.g., Fuchs and Skrzypacz, 2013a), there is no significant difference

between the equilibrium outcomes in the gap and no-gap cases, both of which typically feature Coasian dynamics

(since backward induction from the last trading period can be used). The no-gap assumption is technically con-

venient in our model because it ensures that, in equilibrium, the game does not end for sure before the deadline.
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tTt′ t′′

pt′

P(pt′)
p̂t′′

P( p̂t′′)

tT

pt′

p̂t′′ P(pt′)

P( p̂t′′)

t′ t′′

(a) (b)

Figure 1: Subfigures (a) and (b) provide examples of two price histories, pt′ and p̂t′′ , and the corres-
ponding continuation price paths, P(pt′) and P( p̂t′′). Note that in (b), p̂t′′ coincides with P[0,t′′ ](pt′), and

hence the consistency condition (3) imposes that P[0,T](pt′)=P[0,T]( p̂t′′).

extend our notation by letting Pt′(pt) denote the price assigned by pt to time t′≤t. Condition

(3) can then be written as follows: P(t′,T](pt)=P(t′,T](P[0,t′](pt)) for all t′≥t.

Our definition of a seller’s strategy is a modeling innovation of this paper. Unlike reduced

normal-form strategies (which, in our model, would specify only a single price path), our

seller’s strategies permit us to easily describe the continuation play after any on- or off-path

history. Also, unlike behavior strategies (which, in our game, would specify a price for each

information set of the seller), they avoid the usual continuous-time complications.7 This is

because, under our definition, a seller’s strategy specifies a continuation price path after every

on- or off-path history, which (as we will see), together with the buyer’s strategy, pins down

a unique continuation outcome. Note that we do not impose any monotonicity or regularity

conditions on the choice of the price path. For example, the price path induced by strategy P

for the entire bargaining period (until the buyer accepts) is P(∅), which can be any measurable

function from [0, T] to R. The same applies to the continuation play after any history, P(pt).

Buyer’s strategies: A (pure) strategy for the buyer specifies, for each history pt and valuation

v, an acceptance decision av(pt)∈{0, 1}, where av(pt)=1 means “accept” and av(pt)=0 means

“reject”. We assume that {v|av(pt)=1} is a measurable set for all pt.

7It is known that when strategies are defined as maps from previous histories to current actions, they may generate

non-unique outcomes even when there is only one agent taking actions. For example, if one specifies a strategy as

a map from previous prices to the current price, multiple outcomes are consistent with the specification “Pt=0 if

the price is 0 at all times in [0, t) and Pt=1 otherwise”.
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Outcome: Fix some strategy profile (P, a), a history pt, and a buyer’s valuation v. Let

Av(pt; P, a) :={ t′>t
∣∣ av(P[0,t′](pt))=1

}
be the set of times at which the buyer with valuation v (the v-buyer) will accept after time t.

The transaction time that (P, a) generates for the v-buyer after pt is equal to

tv(pt; P, a) :=inf(Av(pt; P, a))∈[t, T]∪{+∞} ,

where tv(pt; P, a)=+∞ means that the v-buyer rejects all offers after time t. If tv(pt; P, a)<+∞,

the transaction price that (P, a) generates for the v-buyer after pt is equal to

pv(pt; P, a) :=


Ptv(pt;P,a)(pt) if tv(pt; P, a)∈Av(pt; P, a),

limt′↘tv(pt;P,a) inf
(

P(tv(pt;P,a),t′]∩Av(pt;P,a)(pt)
)

otherwise.

The use of the limit inferior guarantees that the transaction price is uniquely defined. The

choice of the limit inferior (instead of the limit superior or a combination of the two) is innoc-

uous for the equilibrium analysis.

Payoffs: Fix a strategy profile (P, a), a history pt, and a buyer’s valuation v. The realized

continuation payoff of the seller is e−rs (tv(pt;P,a)−t) (pv(pt; P, a)−c(v)), and the continuation payoff of

the buyer (with valuation v) is e−rb (tv(pt;P,a)−t) (v− pv(pt; P, a)).

2.1 Equilibrium concept

Perfect Bayesian equilibria

We now define perfect Bayesian equilibria in the usual way. A belief process is a function F(·|·)

assigning, to each history pt, a posterior belief F(·|pt)∈∆([0, v0]).

Definition 2.1. A (pure-strategy) perfect Bayesian equilibrium (PBE) is given by a strategy profile

(P, a) and a belief process F(·|·) such that the following hold:

1. The seller’s strategy P maximizes the seller’s expected continuation payoff after each

8



history pt, given the buyer’s strategy and the belief F(·|pt); that is, it maximizes

∫ v0

0
e−rs (tv(pt;P†,a)−t) (pv(pt; P†, a)−c(v)

)
F(dv|pt)

across all seller’s strategies P†.

2. For any v, the buyer’s strategy a maximizes the v-buyer’s payoff after each history pt;

that is, it maximizes

e−rb (tv(pt;P,a†)−t) (v− pv(pt; P, a†))

across all buyer’s strategies a†.

3. Bayes’ rule: F(·|∅)=F(·), and for all histories pt and t′<t (or t′=0−), we have

F(v|pt)=

∫ v
0 I{v′′|av′′ (P[0,t′′ ](pt))=0 ∀t′′∈(t′,t]}(v

′) F̂(dv′|P[0,t′](pt))∫ v0
0 I{v′′|av′′ (P[0,t′′ ](pt))=0 ∀t′′∈(t′,t]}(v

′) F(dv′|P[0,t′](pt))

whenever the denominator is not 0.8

It is now convenient for us to state a standard property of the buyer’s equilibrium behavior

in bargaining models, which will facilitate the definition of Markov perfect equilibria:

Lemma 2.1 (skimming property). In any PBE (P, a, F(·|·)), the higher the buyer’s valuation is, the

earlier he trades and the more he pays; that is, for all pt, tv(pt; P, a) is decreasing in v and pv(pt; P, a)

is increasing in v.

As usual, the skimming property permits us to focus, from now on, on a simple class of

belief processes: namely, those that (on- or off-path) are upper truncations of F. The upper

bound on the support of the belief distribution after some history for a fixed PBE and history

pt is then obtained as follows:

v(pt) :=sup(supp(F(·|pt)))=sup{v|av(pt′)=0 ∀t′∈[0, t]} . (4)

8As usual, for a set A⊂R, IA(·) is the indicator function, defined by IA(x)=1 if x∈A and IA(x)=0 otherwise.

Hence, I{v′′ |av′′ (P[0,t′′ ](pt))=0 ∀t′′∈(t′ ,t]}(v
′)=1 if and only if the v′-buyer does not trade in (t′, t].
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When the history pt is clear, we will use vt′ to denote v(P[0,t′](pt)); that is, vt′ is the supremum of

the support of the seller’s belief at time t′. Note that by the skimming property, vt′ is decreasing

in t′. Finally, note that optimality dictates that at time T, the seller offers the static monopolistic

price for the residual demand (i.e., p∗(vT−)), and the buyer accepts if his valuation is above this

price (i.e., vT=p∗(vT−)).

Reservation-price Markov perfect equilibria

Definition 2.2. A reservation-price Markov perfect equilibrium is a PBE (P, a, F(·|·)) with the fol-

lowing properties:

1. For all pt and p̂t such that v(pt)=v( p̂t), we have that Pt′(pt)=Pt′( p̂t) for all t′>t.

2. For every t and v there is some p(t, v) such that, for any history pt satisfying v(pt−)≥v

and pt≤p(t, v), we have av(pt)=1.

The first property is standard: the price (and seller’s continuation strategy) at time t de-

pends on the state variable (t, vt). The second requirement is analogous to the usual requirement

that the v-buyer uses a reservation-price strategy (see Gul et al., 1986): at each history pt where he

has not traded before (i.e., such that v∈[0, v(pt−)]), the buyer accepts a price only if it is below

his time-dependent reservation price. Note that such a requirement is natural for a Markov

strategy: if the price at time t is the same for two t-histories in which the v-buyer has not

traded before time t, and if this price is below p(t, v), then the same buyer types remain after

time t (by the skimming property), the continuation play is the same under both histories, and

hence the incentive for the buyer to trade at time t is the same.9 From now on, we refer to

reservation-price Markov perfect equilibria simply as equilibria.

For a fixed equilibrium, we use tv(t, v)∈[0, T]∪{+∞} and pv(t, v)∈R to denote the trans-

action time and price, respectively, for a buyer with valuation v∈[0, v) at a history pt with

v=v(pt) (recall that tv(t, v)=+∞ means that the v-buyer does not trade if the seller follows

the equilibrium continuation strategy after (t, v)). It is convenient to use Π(t, v) to denote the

9More formally, if pt and p̂t are such that pt= p̂t, and if inf{v|p(t, v)≥pt}≥min{v(pt− ), v(pt− )} (i.e., if there is a type

of buyer who has not traded before time t in either history, and who is willing to accept pt), then v(pt)=v( p̂t)=

inf{v|p(t, v)>pt}; hence the continuation plays after histories pt and p̂t coincide. Note that, by the skimming

property, p(t, v) is (weakly) increasing in v.
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normalized continuation payoff of the seller in state (t, v),

Π(t, v) :=
∫ v

0
e−rs (tv(t,v)−t) (pv(t, v)−c(v)) F(dv) . (5)

Note that the continuation payoff of the seller in state (t, v) is Π(t, v)/F(v).

Our definition of equilibrium has a small caveat: in principle, for a fixed equilibrium, there

may be states which are never reached (not even after a seller’s deviation); that is, there may be

states (t, v) for which there is no history pt such that (t, v(pt))=(t, v). Although these states are

irrelevant to the equilibrium analysis, it would clutter the exposition unnecessarily to specify

conditions to exclude them. To circumvent this problem while keeping the argumentation

simple, we make the following changes to our setting: from now on, we assume that there is

some large M>0 such that, if at time t=0 (and only at this time) the seller sets a price that

can be written as −M+v for some v∈[0, v0], then the buyer is “forced” to accept this price if

his valuation is higher than v, and to reject it otherwise. If she offers such a price, the seller

receives an additional lump-sum payoff of −M. Of course, this is irrelevant for equilibrium

behavior: setting a negative price at time 0 is strictly dominated. However, introducing this

assumption has the following effect: now, for any equilibrium, t∈(0, T], and v∈[0, v0], there is

a history pt such that v(pt)=v, and the strategy is sequentially optimal afterward.10

Remark 2.1. While our focus is on reservation-price Markov perfect equilibria, we believe that

our approach of first constructing (non-Markovian) strategies and PBE is beneficial, as it keeps

the assumptions on endogenous variables simple. Indeed, in other models in the literature,

only Markov strategies are defined, and technical conditions (such as continuity or differen-

tiability) are then imposed, with unclear effects on equilibrium behavior, to guarantee that

strategy profiles generate unique outcomes (e.g., to guarantee that a Bellman equation is ne-

cessary and sufficient for optimality). By contrast, our definition does not require additional

regularity conditions, and we allow agents to deviate to non-Markovian strategies.

Also, we believe that focusing on reservation-price Markov perfect equilibria is natural in

our setting. For example, for the gap case of the discrete-time model with infinite horizon,

Gul et al. (1986) use backward induction from the last period with trade to show that all

equilibria are reservation-price Markov perfect. We expect their result to generalize to a finite-

10An example of a history pt such that v(pt)=v is the following: at time 0, the price is −M+v, while at any other

time t′∈(0, t), the price offer is unacceptable (above v0).
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horizon model even in the no-gap case, since backward induction can also be used there. In

the continuous-time model, the restriction to reservation-price Markov perfect equilibria is

necessary for tractability (and backward induction cannot be directly used); however, we do

not rule out the possibility that all PBE in our model are reservation-price Markov perfect.

3 Equilibrium characterization

In this section, we fully characterize the unique equilibrium of our model, first presenting the

main result and then explaining why it holds and how we obtain it. A reader interested in

using our characterization of predicted trade dynamics under a price path can jump to Section

3.2. A reader interested in the implied comparative statics results can jump to Section 4. Section

3.3 provides a discussion of Assumption 2.

Our main result establishes that there is an essentially unique equilibrium (i.e., a unique

outcome for every state, apart from a zero-measure set of times), which is fully characterized

by the two simple equations presented in the Introduction (equations (1) and (2)).

Theorem 3.1. There is an essentially unique equilibrium. For each state (t̂, vt̂), the on-path threshold

type vt and price pt are continuously differentiable for all t∈(t̂, T), and are fully characterized by the

following equations:

pt=(1−e−rs (T−t)) c(vt)+e−rs (T−t) p∗(vt) , and (6)

ṗt=−rb (vt− pt) , (7)

for all t∈(t̂, T), with limt↘t̂ vt=vt̂ and vT=pT=limt↗T pt. Furthermore, the seller’s payoff is e−rs T Π∗(v0),

where Π∗(v0) :=
∫ v0

p∗(v0)
(p∗(v0)−c(v)) F(dv) is the static monopolistic payoff.

3.1 Equilibrium properties

In this section, we derive some important properties that apply to any equilibrium of the game.

(For brevity, we omit writing “In any equilibrium” before each statement.) Together, these

properties imply that equations (6) and (7) are satisfied in any equilibrium. We then deduce

the (essential) uniqueness of the equilibrium by showing that these equations have a unique

solution.
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No silent period

We begin with a property often referred to as “no silent period” (especially in discrete-time

models) or “no trade gaps,” which says that there are no intervals of time where the probability

of trade is 0; equivalently, it says that all equilibrium offers are “serious” (i.e., not “losing”)

offers.11 The no-silent-period property implies that if pt is on path, then tv(pt)(t, v(pt))=t and

pv(pt)(t, v(pt))=pt=p(t, v(pt)) (i.e., the v(pt)-buyer trades at time t and pays his reservation

price).

Proposition 3.1 (no silent period). There is no time interval with no trade; that is, there is no history

pt1 and t2>t1 such that vt1(pt1)=vt2(pt1)>0.

In some stationary settings, Proposition 3.1 is immediate, but in our setting it is not, for

two reasons. The first is that our time horizon is finite; thus, although an interval without

trade would delay revenue, it would also shorten the time left until the deadline, reducing the

seller’s commitment problem. (We show, however, that the price decline on the path of play is

enough to guarantee that the seller’s expected revenue increases if she sells earlier.) The second

reason is that in the interdependent-values case, trading earlier increases the present value of

the revenue but also the present value of the seller’s cost. Thus, an early sale to the v-buyer at

a price lower than the cost c(v) may be detrimental for the seller. Such a sale may occur, for

example, when the buyer is patient, since then the price that will induce him to trade earlier

cannot be much higher than the equilibrium purchase price.

We now provide some intuition for Proposition 3.1, as illustrated in Figure 2. First, fix an

equilibrium. We argue using contradiction: we assume that there is an interval of time without

trade, (t1, t2), and then show that the seller has an incentive to speed up trade in this interval.

Let pt2∈[0, vt2 ] be the equilibrium price at time t2. Fix some small ∆>0, and let p̂t2−∆ be the

price at which the vt2-buyer is indifferent between buying at time t2−∆ and buying at time t2.

We compare the seller’s discounted payoffs from selling to the vt2-buyer at t2 at price pt2 and

from selling to the vt2-buyer at t2−∆ at price p̂t2−∆; that is, we compare

e−rs ∆ (pt2−c(vt2)) vs (1−e−rb ∆) vt2 +e−rb ∆ pt2︸ ︷︷ ︸
= p̂t2−∆

− c(vt2) . (8)

11Similar properties are found in models with arrival of buyers (Fuchs and Skrzypacz, 2010) and news arrival (Daley

and Green, 2020).
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t

pt

vt

t2t2−∆

p̂t2−∆
pt2

Figure 2: Illustration of the argument ruling out time intervals without trade. The dashed curve indicates
the indifference curve for the vt2 -buyer. The seller can sell to the vt2 -buyer earlier (at time t2−∆ instead
of t2) and at a higher price (p̂t2−∆ instead of pt2 ) but also has to pay the cost c(vt2) earlier.

If pt2=vt2 , the gain from selling earlier is (1−e−rb ∆) (vt2−c(vt2)>0. If pt2=0, the gain from

selling earlier is approximately (rb vt2−rs c(vt2))∆, which by Assumption 2 is non-negative.

Hence, since the gain from selling earlier to the vt2-buyer is linear in pt2 , the earlier sale is

profitable for the seller independently of the equilibrium price pt2∈[0, vt2 ]. Now, if the seller

chooses a price slightly below p̂t2−∆ at t2−∆, then the buyer will purchase only when his

valuation is close to vt2 , and hence this will be a profitable deviation for the seller. See Section

3.3 for further discussion.

Seller’s equilibrium payoff

We now state, and provide heuristic arguments for, two results characterizing the seller’s equi-

librium payoff. These results can be interpreted in light of the seller’s willingness to speed

up or slow down her screening of the buyer. The intuition behind both results is shown in

Figure 3.

Proposition 3.2. For any (t, v) with t<T,

Π(t, v)=
∫ v

0
(p(t, v)−c(v)) F(dv) . (9)

Proposition 3.2 can be interpreted as follows. Assume the seller deviates and decreases the

price very quickly (but continuously) after time t. For example, as illustrated in Figure 3(b), she

could set the price at p̂t′=
t+ε−t′

ε p(t, v) for all t′∈(t, t+ε] for some small ε>0; the price would

then fall rapidly and continuously from p(t, v) to 0, and so trade would occur for sure before

14
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Figure 3: (a) An example of an equilibrium path for p and v. (b) A deviation in which the seller lowers
the price very quickly after time t′, and thus screens the buyer very quickly. (c) A deviation in which the
seller charges unacceptable prices during the interval (t′, T), then charges p∗(vT) at time T. Propositions
3.2 and 3.3 establish that all three strategies give the same payoff to the seller.

time t+ε. Under this deviation, each buyer type v∈[0, v] would buy at the first time t′∈(t, t+ε]

such that p̂t′=p(t′, v), and would therefore pay a price close to p(t, v) (Lemma A.4 shows that

p(·, v) is continuous). The seller’s payoff from her deviation would then be approximately

equal to the right-hand side of (9). Hence, Proposition 3.2 can be interpreted as establishing

that in equilibrium, the seller is willing to screen the buyer “infinitely fast”.

Proposition 3.3, by contrast, states that the seller is also willing not to screen the buyer at all.

More formally, the seller’s equilibrium payoff in state (t, v) coincides with the payoff she would

obtain if she made unacceptable offers (above v, for example) until the deadline and then, at

the deadline, charged the monopolistic price p∗(v) (see Figure 3(c) for an illustration).12

Proposition 3.3. For any (t, v) with t<T, the seller’s payoff equals the payoff she obtains from charging

an unacceptable price until time T and then charging p∗(v); that is,

Π(t, v)=e−(T−t) rs Π∗(v) , (10)

where Π∗(v) :=
∫ v

p∗(v)(p∗(v)−c(v)) F(dv) equals the static normalized monopolistic payoff for the type

distribution truncated at v.

We now provide intuition for why Propositions 3.2 and 3.3 hold. Heuristically, the seller’s

continuation value is derived from the payoff from selling during the next small interval dt

12Fuchs and Skrzypacz (2013a) obtain an analogous result in a model with private values, where the buyer’s

distribution follows a power distribution (F(v)=va for v∈[0, 1]) and where the buyer and seller have the same

impatience level (rs=rb).
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plus the continuation value from not selling during this time, so

Π(t, v)' f (v) (p(t, v)−c(v)) v̇(t, v)dt+(1−rs dt)
(

Π(t, v)+dt
(

∂
∂t Π(t, v)+ ∂

∂v Π(t, v) v̇(t, v)
))

.

From the previous expression, we can heuristically obtain the standard Bellman equation:13

rs Π(t, v)= ∂
∂t Π(t, v)+

(
− f (v) (p(t, v)−c(v))+ ∂

∂v Π(t, v)
)

v̇(t, v), (11)

where, by an abuse of notation, v̇(t, v) denotes the speed at which the upper bound of the

distribution of remaining types changes at state (t, v). The interpretation of this equation is

standard.

We can heuristically think of the seller’s problem as that of choosing, at each instant, the

screening speed v̇(t, v) (by deciding how quickly to decrease the price). Faster screening (a

more negative choice of v̇(t, v)) yields a higher flow payoff but also makes the continuation

value decrease faster. From Proposition 3.1, we see that choosing v̇(t, v)=0 (i.e., not screening

at all) cannot be strictly optimal. Similarly, if setting v̇(t, v)=−∞ were strictly optimal for all

v, then the price would have to be 0 (since screening would be very fast, and the v-buyer never

buys at a price above v). As a result, and because the right-hand side of equation (11) is linear in

v̇(t, v), it must be that − f (v) (p(t, v)−c(v))+ ∂
∂v Π(t, v)=0, which implies equation (9). Hence,

the seller is indifferent between screening very quickly and screening very slowly (as well as

screening at any intermediate rate).

Equilibrium price

Equations (9) and (10) provide two expressions for the normalized continuation payoff of the

seller. Differentiating these expressions with respect to v, we obtain

(p(t, v)−c(v)) f (v)= ∂
∂v Π(t, v)=e−rs (T−t) Π∗(v)=e−rs (T−t) (p∗(v)−c(v)) f (v) ,

where the first equality follows from equation (9), the second from (10), and the third from

using the envelope theorem on the static normalized payoff Π∗. Hence, equation (6) holds

13Unlike most of the literature modeling bargaining directly in continuous time, we do not make any regularity,

continuity, or smoothness assumptions on strategies to guarantee that standard recursive analysis can be used.

Nevertheless, as we will see, the equilibrium objects will be smooth enough for equation (11) to hold.
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with pt replaced by p(t, vt) for any state (t, vt)∈[0, T]×(0, v0], on- or off-path (note that this

expression is equivalent to the expression (1) in the introduction). The price at state (t, v) is

then a convex combination of the monopolistic price when the valuation is known to be below

v (i.e., p∗(v)) and the seller’s valuation of the good if the buyer’s valuation is v (i.e., c(v)). Close

to the deadline, the seller’s commitment problem is reduced, so the weight on the monopolistic

price increases, and p(T, v)=p∗(v).

Equation (6) provides a remarkably simple recipe for computing the price in a given state

(t, v). First, compute the surplus the seller obtains from the v-buyer in the static monopolistic

problem with valuations in [0, v] (which equals p∗(v)−c(v)). Second, “discount” the surplus

based on the time remaining until the deadline (at the seller’s discount rate). The result is equal

to the surplus the seller obtains from the v-buyer in state (t, v), that is, p(t, v)−c(v).

Note that Assumption 1 and the fact that F is differentiable imply that p∗ is continuous

and strictly increasing. Note also that p(·, v) is increasing if p∗(v)>c(v): intuitively, the seller’s

commitment problem becomes less severe as the deadline approaches, and she has more cred-

ibility in charging higher prices. Still, if p∗(v)<c(v), then p(·, v) is a decreasing function: as

t approaches T, the seller is more willing to sell at a loss to the v-buyer at time t in order to

obtain the monopolistic payoff at the deadline. In both cases, the equilibrium price pt=p(t, vt)

decreases over time, as the decrease in vt more than compensates for the increase in t.

An important implication of equation (6) is that for a given history pt, there are no “trade

bursts” on [t, T) (assuming the seller plays according to the equilibrium strategy on [t, T]). That

is, there is no t′∈[t, T) such that vt′(pt)>vt′+(pt). To see this, note that by the optimality of the

buyer’s strategy and Proposition 3.1, the price pt′(t, v) is continuous in t′ on [t, T]. Furthermore,

the right-hand side of equation (6) is continuous and strictly increasing in v. The continuity of

the on-path price pt=p(t, vt) implies that vt is continuous too. This result is consistent with

the finding in Fuchs and Skrzypacz (2013b) that the trade bursts obtained in the study of the

interdependent-values case (Deneckere and Liang, 2006) disappear in the limit where the gap

between the lowest seller’s valuation and the lowest buyer’s valuation vanishes.

Buyer optimality

We now use the optimality of the buyer’s strategy to obtain the equilibrium price dynamics.

For simplicity, we let pt denote Pt(∅); that is, pt is the price set by the seller at time t on the
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equilibrium path (the analysis of price dynamics after deviations is analogous). The “marginal

buyer” at time t∈(0, T) (i.e., the buyer with valuation vt) is willing to purchase at time t, and

not before or after. Since, by the absence of trade bursts, vt is continuous in t, equation (7)

holds. The negative of the left-hand side of equation (7) is the vt-buyer’s instantaneous gain

from delaying trade by an instant. The negative of the right-hand side is the cost owed to the

consequent delay in obtaining his surplus.

Equations (6) and (7) fully determine the equilibrium price dynamics. Indeed, they imply

= ṗt︷ ︸︸ ︷
d
dt

(
c(vt)+e−rs (T−t) (p∗(vt)−c(vt))

)
=−rb

(
vt−

( =pt︷ ︸︸ ︷
c(vt)+e−rs (T−t) (p∗(vt)−c(vt))

))
. (12)

Equation (12) gives an ordinary differential equation for the evolution of the upper threshold

vt and hence fully characterizes the equilibrium dynamics (note that the initial condition is that

vt at time 0 is equal to the parameter v0). The proof of Theorem 3.1 shows that the solution to

equation (12) for vt is, indeed, decreasing.

A final observation

From Theorem 3.1 we can make the following observations. As T converges towards 0, (i) the

seller’s payoff converges to the static monopolistic payoff Π∗(v0), (ii) the initial price converges

to p∗(v0), and (iii) in equilibrium, the seller remains willing to screen infinitely fast. Hence,

the theorem directly implies that the static monopolistic payoff equals the payoff that the seller

would get in a market in which she could perfectly price-discriminate by charging, to each

buyer type v, the monopolistic price she would charge if it were known that the buyer’s valu-

ation was lower than v (i.e., p∗(v)). Thus, the static monopolistic payoff can be characterized as

follows.

Corollary 3.1. The static monopolistic payoff satisfies Π∗(v0)=
∫ v0

0 (p∗(v)−c(v)) F(dv).

Corollary 3.1 can be proven independently of Theorem 3.1 by applying the envelope the-

orem to Π∗(v).
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3.2 Equilibrium dynamics

In this section, we discuss the model dynamics implied by the equilibrium strategies both when

the seller follows the prescribed price path and when she deviates.

We first explain how the state variable is obtained after a deviation by the seller. Assume

that the seller has deviated on [0, t) by setting a price history pt∈R[0,t). The state at time t is

then (t, v(pt)), where v(pt) is defined in equation (4). From the previous results, we can write

v(pt)=inf{v(t′, pt′)|t′∈[0, t)} ,

where v(t, pt) is the (unique) solution to p(t, v(t, pt))=pt in equation (6), when it exists, and

v(t, pt)=v0 otherwise.14 Intuitively, if the seller sets price pt at time t, then v(t, pt) is the

valuation of the buyer who is indifferent between trading and not trading at time t. Therefore,

for a price path pt up to time t, a buyer with valuation v>v(t, pt) must have traded before time

t, because there was some time t′∈[0, t) such that pt′≤p(t′, v). For example, when c(v)=0, we

have v(t, pt)=ers (T−t) p∗−1(pt).

We now illustrate the equilibrium dynamics through a specific example. Take F to be uni-

form on [0, v0] and c(v)=0 for all v∈[0, v0] (the private-values case), so the static monopolistic

price is p∗(v)=v/2. In this case, the on-path equilibrium dynamics (determined by (12)) are

given by

vt=e−2 rb
rs (ers T−ers (T−t))−(rs−rb) t v0

and pt=e−rs (T−t) vt/2. These are shown in Figure 4(a).

Next we describe the equilibrium dynamics if the seller deviates to a different price path

pT. First note that when F is uniform and c is 0, we have

v(t, pt)=ers (T−t) 2 pt .

Intuitively, close to the deadline, the v-buyer accepts a price close to the monopolistic price,

that is, v/2, when the distribution of valuations is truncated at v. This is because, when the

14Note that p∗ is continuous and strictly increasing, while c is non-decreasing, so the right-hand side is strictly

increasing in v.
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Figure 4: Example with T=1, rb=rs=0.5, F uniform in [0, 1], and c(v)=0. Each subfigure depicts pt
(continuous black line), the implied v(t, pt) (continuous gray line), and vt (dotted black line). Subfigure
(a) corresponds to the equilibrium price path, while subfigures (b) and (c) correspond to two deviations
by the seller.

deadline is near, he does not expect much more screening, and the equilibrium price at the

deadline coincides with the static monopolistic price for the residual demand. Far from the

deadline, however, the expected price decline implies that the set of prices acceptable to the

buyer shrinks.

Now suppose that the seller deviates by charging a price of 0.35 v0 until some time t2 and

0.4 v0 afterward, as depicted in Figure 4(b). Under this deviation, at any given time t, the buyer

trades if his valuation is min{v0 , 2 pt ers (T−t)} or above (provided he has not already traded).

Note that there is no trade on [0, t1), as in this interval p(t, v0)>0.35 v0. Trade begins at t1

satisfying p(t1, v0)=0.35 v0, and then there is slow screening until t2. The price increase at t2

implies that v(t, pt) also jumps; hence, there is no trade for some time. Trade resumes again

between time t3 and the deadline, when there is a burst (note that vT−=2 ·0.4, so 0.4 is the static

monopolistic price given the residual demand at the deadline).

Figure 4(c) illustrates another seller deviation. Here the price pt rises and falls twice, and so

does v(t, pt). As explained above, the corresponding path for vt is determined by the minimum

value reached by v(t′, pt′) before time t. In this case, since the initial price is below p(0, v0),

there is a trade burst at the game’s outset. After that, there is no trade until time t1. Trade

resumes from t1 to t2, and again from t3 until the deadline, where there is a trade burst.

Remarkably, the seller’s payoff under the first deviation is the same as her equilibrium

payoff. Indeed, note that conditionally on trading before the deadline, a buyer with valuation v

pays e−rs (T−t) p∗(v) (from equation (6)), while a buyer who trades at the deadline pays p∗(vT).
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Hence, the seller’s payoff is

∫ v0

vT

e−rs te−rs (T−t) p∗(v) F(dv)+
∫ vT

p∗(vT)
e−rs T p∗(vT) F(dv) .

Using Corollary 3.1 (applied at vT instead of v0), we can rewrite the second term of this expres-

sion so that the seller’s payoff becomes

e−rs T
∫ v0

0
p∗(v) F(dv) ,

which again by Corollary 3.1 equals e−rs T Π∗(v0), the seller’s equilibrium payoff.

By contrast, the seller’s payoff under the second deviation is lower than her equilibrium

payoff. The reason is that, under this deviation, there is a trade burst at time 0; hence, the seller

obtains e−rs T p∗(v0−)<e−rs T p∗(v) for buyer types v∈(v0+ , v0]. In general, price paths pt that

induce a continuous vt and such that pT=p∗(vT) (if vT>0) give the seller the same payoff she

obtains in equilibrium, while those not satisfying these conditions are suboptimal.15

3.3 Discussion of Assumption 2

Assumption 2 plays a critical role in the proof of Proposition 3.1. The intuitive argument

outlined in Section 3.1 proceeds by contradiction, assuming there is no trade in some interval

(t1, t2). It is shown that Assumption 2 guarantees that even if the price at t2 is 0, the seller gains

from deviating and selling earlier to a high-valuation buyer.

Proposition 3.1 is then used to prove Propositions 3.2 and 3.3. From these we conclude

that the equilibrium price satisfies equation (6) when Assumption 2 holds. The cost–benefit

argument used to prove Proposition 3.1 can be replicated using the equilibrium price instead

of 0. Doing so yields the following condition, which is less restrictive than Assumption 2, yet

still sufficient for the no-silent-period condition to hold.

Assumption 3. For any v∈(0, v0], we have rb (v− p∗(v))≥rs (c(v)− p∗(v)).

It is easy to see that Assumption 3 is less restrictive than Assumption 2 (see the proof of

Theorem 3.1). In fact, Assumption 2 is the least restrictive condition that guarantees that As-

15Note that, for the reasons given above, pT=p∗(vT) whenever there is trade towards the end of the game and pt is

continuous at T (as it is for the two deviations discussed).

21



sumption 3 holds independently of the distribution of buyer’s valuations. That is, if Assumption

2 holds, then Assumption 3 holds as well (independently of F), and for any (c, rs, rb) not satisfy-

ing Assumption 2, there is some distribution F (and corresponding p∗) for which Assumption

3 does not hold. Additionally, the proof of Theorem 3.1 shows that Assumption 3 is necessary

and sufficient for the solution of equation (12) for vt to be decreasing. Hence, we have the

following:

Corollary 3.2. If Assumption 2 is not required to hold, the strategy profile described in Theorem 3.1 is

an equilibrium if and only if Assumption 3 holds.

When, then, does Assumption 3 not hold? That is, when is the strategy profile described in

Theorem 3.1 not an equilibrium? For this to occur, it is necessary that (i) Assumption 2 does

not hold,16 and (ii) the seller’s cost is above the monopolistic price for some of the buyer’s

valuations. Conditions (i) and (ii) hold if, for example, the seller is very impatient and has a

very high cost for supplying high buyer types. In this case, the static monopolistic price p∗(v)

is low even for large values of v, so c(v0)>p∗(v0). Therefore, if the seller is impatient enough,

she will not be willing to sell at time 0, since her sale price would be lower than c(v0) by

equation (6) (see Figure 5 below). Such trade delay, when the buyer is more patient than the

seller, is consistent with the findings of Evans (1989).

4 Comparative statics and other results

The following measure of the degree of adverse selection will be an important factor in determ-

ining the qualitative features of the comparative statics results.

Definition 4.1. We say that the no-lemons condition holds if p∗(v)≥c(v) for all v∈(0, v0] – that is,

if for any v the static monopolistic payoff is non-negative valuation-by-valuation.

The no-lemons condition holds if, independently of the truncation of the type distribution,

the static monopolist does not face any “lemons”, that is, any buyer types to whom a sale at the

static monopolistic price yields a negative payoff for the monopolist. This holds, for example, in

the private-values case, where c(·)=0. Equation (1) implies that when the no-lemons condition

16Recall that, as explained above, Assumption 2 holds in two canonical cases: the private-values case and the case

where the seller is (weakly) more patient than the buyer.
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fails, the seller sells to some buyers at a loss, both in the static and in the dynamic model. If,

for example, p∗(v0)<c(v0), then the monopolist loses when selling to high buyer types. Such

losses are offset by sales at p∗(v0) to lower buyer types in the static setting, and by later sales

at lower prices in the dynamic setting, making the overall profits positive in both cases. The

following result establishes that when the no-lemons condition holds, the profile described in

Theorem 3.1 is an equilibrium irrespective of the values of rs and rb.

Corollary 4.1. If Assumption 2 is not required to hold, then the strategy profile described in Theorem

3.1 is an equilibrium for all values of rs and rb if and only if the no-lemons condition holds.

4.1 Buyer’s patience

We first investigate how changes in the buyer’s level of impatience, rb, affect the equilibrium

outcome.

Clearly rb does not affect either the seller’s payoff (by Proposition 3.2) or the price at time 0

(by equation (6)). It does, however, affect the price path and the timing of trade. The following

result establishes that if the no-lemons condition holds, then the buyer benefits ex-post from

being more impatient. In other words, he is more willing to pay to enter the market when rb is

higher, independently of his valuation.

Proposition 4.1. The seller’s payoff is independent of rb. If the no-lemons condition holds, then for any

v∈[0, v0], the v-buyer’s payoff is increasing in rb.

An intuition for Proposition 4.1 is the following. Suppose the no-lemons condition holds.

An increase in rb does not affect the seller’s commitment problem, and hence it does not change

the equilibrium price in each state (t, v) (see equation (6)) or the seller’s payoff (see equation

(10)). However, it increases the speed at which the price declines: if the buyer becomes more

impatient, then for him to remain indifferent between buying now or an instant later, the price

must decline faster (see equation (7)). In other words, when the buyer is more impatient, his

rejection of a given price offer is a stronger signal of a low valuation, and thus forces the

seller to lower the price faster. Therefore, the buyer is screened more rapidly. Importantly, in

equilibrium, the faster price decline is reinforced by the fact that each given v is reached earlier,

so that the v-buyer pays a lower price (by the no-lemons condition and equation (6)). Hence,

again by equation (7), the speed of price decline at the instant at which each v-buyer trades
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increases more than proportionally to the increase in rb. This reinforcement gives the result

in the proposition: namely, that the decrease in the buyer’s payoff due to an increase in his

impatience is more than offset, in equilibrium, by the increase in his payoff due to the resulting

increase in the speed of price decline.17

When the no-lemons condition fails, the effect of an increase in rb is ambiguous. From the

proof of Proposition 4.1, it is easily seen that if, for example, p∗(v0)<c(v0), then high-valuation

buyers are worse off when they are more impatient. However, increased impatience may benefit

low-valuation buyers because it causes the seller to screen them more quickly. The example

presented in the next section provides some intuition for this.

4.2 Seller’s patience

We now present the comparative statics analysis with respect to the seller’s level of impatience,

rs. From Proposition 3.3, the seller’s payoff is decreasing in rs. The effect of rs on the buyer’s

payoff again depends on whether the no-lemons condition holds.

Proposition 4.2. The seller’s payoff is decreasing in rs. If the no-lemons condition holds, then for any

v∈[0, v0], the v-buyer’s payoff is increasing in rs.

To gather intuition for Proposition 4.2, assume the no-lemons condition holds. Then a

more impatient seller faces a more severe commitment problem, and therefore charges a lower

price given t and vt (i.e., the right-hand side of equation (6) is decreasing in rs). This implies

that the price declines faster (by equation (6)), and therefore the highest buyer type willing to

accept a given price pt (i.e., v(t, pt) as defined in Section 3.2) is higher as well. As a result,

when rs increases, p0 decreases, and for any given time and price, the price decline speeds up.

Therefore, the price is lower for all t, and all buyer types are better off.

Now assume that the no-lemons condition fails and, in particular, that p∗(v0)<c(v0). In this

case, a more impatient seller charges higher initial prices, because she is less willing to take

losses on early trades in exchange for higher profits on later trades. This makes high-valuation

buyers worse off. However, for values of v such that p∗(v)>c(v), an increase in rs decreases the

17Proposition 4.1 illustrates the advantages of the tractability of our approach: for a discrete-time model analogous

to ours (with private values), Sobel and Takahashi (1983) say, “No general statements can be made about how the

no-commitment equilibrium prices change when the buyer’s discount factor changes” (p. 417).
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Figure 5: Example with T=3, rb=1, F uniform in [0, 1], and c(v)= 3
4 v2, with rs=0.1 (gray) and rs=1

(black). (a) Plot of p∗(v) and c(v) with respect to v. (b) Threshold types vt (upper curves) and prices pt
(lower curves). (c) Seller’s flow payoff, (pt−c(vt)) v̇t.

price at each state (t, v), and so accelerates the price decline. Hence, greater seller impatience

may benefit low-valuation buyers.

Figure 5 depicts an example in which the no-lemons condition fails. Subfigure (a) shows

that for high buyer valuations, the static monopolistic price is lower than the cost. Intuitively,

this means the seller is willing to sell at a loss to high-valuation buyers so that she can sell

at a higher profit to buyers with intermediate valuations. Subfigure (b) shows the price and

threshold-type trajectories for small rs (gray) and large rs (black). Here we see that when the

seller is more impatient, initial prices are higher while later prices are lower. Intuitively, a more

impatient seller is less willing to accept early losses (by selling to high-valuation buyers), as

her higher discount rate makes it more difficult to compensate for these with later sales to

intermediate-valuation buyers. Finally, subfigure (c) shows that late in the bargaining period,

when the cost is below the static monopolistic price, a higher rs implies faster buyer screening:

when the seller is more impatient, the initial flow payoff is less negative, but the later flow

payoff is smaller. Overall, we see that when the seller is more impatient, she initially screens

high-valuation buyers more slowly (by charging higher prices); later, she screens medium- and

low-valuation buyers more quickly.

4.3 Time horizon

The effect of increasing the time horizon T is similar to that of increasing the seller’s interest

rate.

Proposition 4.3. The seller’s payoff is decreasing in T. If the no-lemons condition holds, then for any

v∈[0, v0], the v-buyer’s payoff is increasing in T.
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Intuitively, increasing T lowers the seller’s payoff because it gives her more time to screen

the buyer, worsening her commitment problem. Furthermore, if the no-lemons condition holds,

then changing the deadline from T to T′>T reduces the equilibrium price at state (T, v), lead-

ing to lower initial prices and therefore benefiting all buyer types. On the other hand, if the

no-lemons condition fails, then the effect of increasing T is similar to that of increasing rs:

it worsens the seller’s commitment problem, making sales at later times less profitable and

inducing the seller to charge higher initial prices.

An interesting exercise is to consider simultaneous changes in rs and T that keep rs T con-

stant. Such changes do not affect the equilibrium commitment problem of the seller: her payoff

depends on rs and T only through rs T. However, they do affect the buyer’s payoff. An ar-

gument similar to that in the proof of Proposition 4.1 illustrates that, when the no-lemons

condition fails, the buyer benefits from any such change provided that it makes the seller more

patient (i.e., the buyer benefits when rs decreases, T increases, and rs T remains the same).

Infinite-horizon limit

We now analyze the limit where the time horizon becomes large. As T increases, our model

approximates continuous-time versions of the discrete-time models studied in Gul et al. (1986)

and Deneckere and Liang (2006).

If c(·)=0 (the private-values case), then by equation (6), p(t, v)→0 as T→∞ for all (t, v). In

other words, we recover the conjecture of Coase (1972): even if the seller is more patient than

the buyer, her inability to commit not to lower future prices dissipates all her rents from trade.

When c(·) is strictly increasing, we can combine equations (6) and (7) to obtain

d
dt c(vt)=−rb (vt−c(vt)) . (13)

This is the same as the equation obtained in Fuchs and Skrzypacz (2013b) for the case rs=rb

in the double limit where both the gap between the lowest seller’s and buyer’s valuations and

the length of the period vanish. It implies that the price dynamics are independent not only of

the distribution of buyer’s valuations in the infinite-horizon model (as observed by Fuchs and

Skrzypacz), but also of the seller’s patience level. Furthermore, for each value v, the payoff of
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the v-buyer is independent of rs, rb, and F.18

Note that the dynamics described in Theorem 3.1 in the limit as T→∞ coincide with the

equilibrium dynamics in the limit as rs→∞ when the no-lemons condition holds (and hence

Assumption 3 holds for all rs): in both cases, p(t, v)=c(v) for all (t, v), and the seller’s payoff is

zero. The limit outcome in the double limit as rs, T→∞ can be reinterpreted as the outcome in

a model with an infinite sequence of short-lived sellers, as in Hörner and Vieille (2009) (public-

offers case). Our results imply that when the no-lemons condition holds and no gap exists

between the lowest valuations of the seller and the buyer, the “trade impasse” disappears (and

trade is smooth). In fact, unlike Hörner and Vieille, we find that there is no trade burst at time

0; trade is smooth, and it eventually occurs with probability one. This result can be seen as

analogous to that of Fuchs and Skrzypacz (2013b): they show that the trade bursts predicted by

Deneckere and Liang (2006) (for a long-lived seller having the same discount rate as the buyer)

do not occur in the no-gap case.

4.4 Seller commitment

In our model, because the seller cannot commit not to lower the price in the future, her payoff

is strictly lower than the one she would obtain if she could commit. This is clear when rs≥rb:

Stokey (1979) showed that in this case, when the seller can commit, trade occurs only at time 0

and at the monopolistic price p∗(v0) (the result can be extended to the interdependent-values

case).

When rs<rb, a seller with commitment power price-discriminates, taking advantage of the

higher delay cost of the buyer (see Fudenberg and Tirole, 1983, and Landsberger and Meilijson,

1985).19 The commitment solution is, in general, difficult to obtain. For intuition, we heuristic-

ally derive the optimal (non-stochastic) pricing strategy of a seller with commitment when the

buyer’s valuation is distributed uniformly on [0, 1] and the seller’s cost is linear: c(v)=k v for

some k∈[0, 1). In this case, p∗(v)= 1
2−k v. We also focus, for simplicity, on the case where the

seller is fully patient; that is, rs=0.

18From equation (13), the payoff of the v-buyer is exp
(
−
∫ v0

v
c′(v′)

v′−c(v′) dv′
)
(v−c(v)).

19Beccuti and Möller (2018) analyze a two-type, discrete-time, private-values model where the seller can offer a

mechanism in each period and is more patient than the buyer. They obtain significant differences between selling

and renting mechanisms.
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To apply calculus of variations, we assume equation (7) holds in any interior time interval

(t1, t2). Hence, the objective function of the seller in this interval is

∫ t2

t1

(pt−c(vt)) v̇t dt=
∫ t2

t1

(
pt−k (pt−r−1

b ṗt)
)
( ṗt−r−1

b p̈t)︸ ︷︷ ︸
:=L(pt,ṗt,p̈t)

dt .

Standard calculus of variations requires that the Euler–Lagrange equation holds:

0=
∂L
∂pt
− d

dt
∂L
∂ ṗt

+
d2

dt2
∂L
∂ p̈t

=−2 p̈t

rb
.

That is, the price is a linear function of time. The seller’s problem is then to find the optimal

values for the prices at times 0 and T, denoted by p0 and pT, respectively. Equation (7) dictates

that v(p)=p− pT−p0
rb T , and hence the seller chooses p0 and pT to maximize

(1−v(p0)) p0+(v(p0)−v(pT))
pT+p0

2 +(v(pT)− pT) pT− k
2 (1− p2

T) .

There is a unique pair {pc
0, pc

T} maximizing this expression, from which we can obtain the price

the committed seller charges:

pc
t :=

2−k+(1−k) rb (T− t)
2−k+(1−k) rb T

.

From equations (6) and (7), we have that, in the absence of seller commitment, the equilib-

rium price is pnc
t := 1

2−k e−rb (1−k) t. Figure 6 depicts the price and upper valuation paths in

the commitment and no-commitment cases for k=0 (the private-values case) and k= 1
2 (the

interdependent-values case).

Three observations are worth mentioning. First, since the seller is fully patient, her equilib-

rium payoff (with no commitment) is equal to the static monopolistic payoff Π∗(v0). The equi-

librium price, however, decreases over time. Hence, even though the seller price-discriminates

regardless of whether she can commit, she fails to benefit from such price discrimination when

she cannot commit. Second, in line with what occurs in the no-commitment case, the price at

the deadline under commitment coincides with the static monopolistic price for the remaining

buyer types. Hence, the seller’s commitment problem arises not from her inability to commit to

not lowering the price at the very end of the bargaining period (and the consequent backward

induction argument), but from her inability to commit to not lowering the price quickly at an
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Figure 6: Price and upper valuation paths in the commitment solution (gray) and no-commitment
solution (black) for F uniform on [0, 1], rs=0, rb=1, T=3, and c(v)=k v. For all cases, the only trade
burst occurs at the deadline. As expected, the probability of trade is higher and the trade delay is lower
in the no-commitment case than in the commitment case (i.e., vnc

t <vc
t for all t>0). Also, there is a higher

probability of trade and less trade delay in the private-values case.

earlier stage. Finally, in the commitment solution, every buyer type trades later than in the

no-commitment solution (or does not trade at all). Thus, giving the seller commitment power

not only decreases the probability of trade but also increases trade delay. This is the opposite

of the result when the seller is more impatient than the buyer: in that case, when the seller has

commitment power, trade occurs immediately.

4.5 Time-dependent discount rates

In this section, we consider a generalization of our main model in which the seller’s and buyer’s

discount rates are time-dependent. In practice, changes in an agent’s discount rate over time

may correspond to increases in the probability of exogenous breakdown, a stochastic value

decline (see Hart, 1989), or changes in the idiosyncratic interest rate.

Suppose that the seller’s and buyer’s discount rates are given by two bounded functions,

rs, rb :[0, T]→R++. We analyze the same model as in Section 2, the only difference being that if

a transaction occurs at time t at price pt, the respective payoffs of the seller and the buyer are

e−
∫ t

0 rs(t′)dt′ (pt−c(v)) and e−
∫ t

0 rb(t′)dt′ (v− pt) .

Assumption 2 is replaced by the requirement that for any v∈(0, v0] and t, c(v)≤ rb(t)
rs(t)

v.

It is not difficult to see that all the results in Sections 2.1 and 3.1 still hold (with appropriate

changes to equation (10)). This can be best seen by normalizing the time unit so that the seller
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has a constant discount factor, for example, equal to 1. Most of the arguments for the previous

results can then be extended immediately to this setting. In the normalized model, equation (6)

holds with rs=1. The normalized, time-dependent discount rate for the buyer, r̃b(t), modulates

the speed at which the price changes through equation (7).

Now suppose that rs(t) and rb(t) increase over time, but rb(t)/rs(t) is constant, equal to

some κ, as in Hart (1989).20 Let r̂s :=
∫ T

0 rs(t)dt/T, and consider a model with time horizon T

in which the seller and the buyer have (constant) discount rates r̂s and κ r̂s, respectively. Let

p̂t be the on-path price for this auxiliary model. The price in the model with time-dependent

discount rates is then

pt= p̂t̂(t) , where t̂(t) := r̂−1
s

∫ t

0
rs(t)dt .

Because rs(·) is increasing, we have that t̂(·) is convex. Hence, pt is an “accelerated” version

of the price in the auxiliary model: as delay becomes more costly, the probability of trade

increases. The seller and buyer payoffs coincide with those in the normalized model.

For further intuition, consider the private-values case with general rs(·) and rb(·). Then,

differentiating pt=p(t, vt) using equation (6), we obtain

ṗt=e−
∫ T

t rs(t′)dt′ (rs(t) p∗(vt)︸ ︷︷ ︸
(∗)

+ p∗′(vt) v̇t︸ ︷︷ ︸
(∗∗)

) . (14)

If rs(·) grows larger during a given interval of time while rb(·) remains roughly the same, then

the price p(t, vt) does not vary much in this interval (by equation (7)). Given that the term (∗)

in equation (14) is larger, the term (∗∗) has to be more negative, meaning the buyer is screened

more quickly in this interval. Conversely, if rb(·) grows larger during a given interval while

rs(·) remains roughly the same, then the price decreases rapidly in this interval (by equation

(7)). Since the term (∗) in equation (14) does not change much, the term (∗∗) must become

more negative; hence, the buyer is again screened more quickly. Thus, faster buyer screening

occurs when either the seller’s or the buyer’s relative discount rate is high; however, more

rapid price decline occurs only when the buyer’s relative discount rate is high.

20Hart (1989) studies a two-type model in discrete time where the probability of decline of the value of the good

significantly increases in the period before a deadline. He finds that most trade occurs in the first and the last

periods.
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5 Conclusions

In real-life negotiations, it is common for the agents to reach an agreement only after a delay, or

not at all. The outcome of a negotiation depends on numerous factors, including each party’s

bargaining costs, the gains from trade, and the deadlines that govern the bargaining process.

In this paper we have presented a tractable model of a negotiation with private information

that enables us to characterize how all of these factors affect the trade dynamics. While some

of our results validate standard intuitions, others are less straightforward. In particular, we

identify the conditions on the gains from trade that determine how changes in buyer and seller

impatience (discount rates) qualitatively affect the outcome. The crucial condition is the no-

lemons condition, which says that the seller’s cost for supplying high-valuation buyers is less

than the static monopolistic price.

When the no-lemons condition holds (e.g., in the private-values case), the buyer is better

off when his discount rate is higher. Intuitively, a higher buyer discount rate implies that the

buyer is less willing to reject any given price offer; thus, a rejection is a stronger signal that

his valuation is low. This induces the seller to decrease the price more quickly. There is also

an additional effect: the seller’s commitment problem is more severe at earlier times, which

further accelerates the price decline. We find that the drop in prices is sufficient to offset the

increase in the buyer’s discount rate; thus, the buyer benefits independently of his valuation.

Through similar arguments, we also find that the buyer is better off when the seller’s discount

rate is higher or the deadline is later.

On the other hand, when the no-lemons condition fails, the seller’s payoff from early sales

is negative. In equilibrium, these losses are offset by more profitable sales at later times. When

the seller has a higher discount rate, this intertemporal trade-off of losses and gains is less

attractive; hence, instead of speeding trade up by lowering prices, she delays trade by charging

higher initial prices. Thus, an increase in the seller’s discount rate makes high-valuation buyers

worse off, although low-valuation buyers continue to benefit from rapid price decline at later

times. A similar intuition applies when the deadline is extended: later sales are more heavily

discounted and hence less profitable (from the perspective of the seller at time 0), so the seller

chargers more initially to avoid losses.

In future research, it would be interesting to extend our results to settings not analyzed

here. For example, as we argue in Section 3.3, other types of equilibria may arise when both
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the seller is very impatient and the no-lemons condition fails. In this case, there may be trade

impasses, that is, intervals of time without trade. Similarly, the analysis could be extended to

the gap case, where the buyer’s valuation is bounded away from 0.21 In this case, there may

be equilibria in which trade occurs before the deadline with probability one. (Note, however,

that because our results apply to a broad set of distributions, one could approximate the gap

by assigning progressively lower probability to lower valuations.)

A Proofs of the results

A.1 Proofs of results in Section 2

Proof of Lemma 2.1

Proof. The proof follows the standard argument. Fix some PBE (P, a, F) and history pt. Take

two valuations v>v′ and assume, for the sake of contradiction, that tv>tv′ (we omit the explicit

dependence on the strategy profile and the history). Note that the optimality of the buyer’s

strategy requires that pv<pv′<v′. Then, we have

exp
(
−rb tv) (v−v′)=exp

(
−rb tv) (v− pv)−exp

(
−rb tv) (v′− pv)

≥exp
(
−rb tv′) (v− pv′)−exp

(
−rb tv′) (v′− pv′)

=exp
(
−rb tv′) (v−v′) ,

which contradicts that tv>tv′ . The inequality holds because the v-buyer is (weakly) worse off

following the v′-buyer’s equilibrium strategy and the v′-buyer is (weakly) better off following

his equilibrium strategy.

A.2 Proofs of results in Section 3

As explained in the main text, the proofs of Proposition 3.1–3.3 are used to prove Theorem 3.1.

Hence, we prove them first, and then provide a proof of Theorem 3.1.

21In discrete time, the finite horizon plays a role similar to that of the gap. In particular, the folk theorem in Ausubel

and Deneckere (1989) for the no-gap case fails when the horizon is finite, as one can use backward induction from

the last period with trade.
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Proof of Proposition 3.1

Proof. We begin the proof with an auxiliary result:

Lemma A.1. Let pt and p̂t be such that v(pt)<v( p̂t). Then

Π(t, v(pt))≥
∫ v(pt)

0
e−rs (tv( p̂t;P,a)−t) (pv( p̂t; P, a)−c(v)

)
F(dv) . (15)

Proof. Consider a deviation of the seller to the strategy P̂ defined by P̂(pt′) :=P(P[0,t′]( p̂t)) for all

pt′ . Intuitively, for each t′, the strategy P̂ requires the seller to do what the strategy P specifies

after history P[0,t′]( p̂t). Then, from the second condition in Definition 2.2, all types of the buyer

below v(pt) buy at the same time and price when the seller uses P̂ after pt as they do when the

seller uses strategy P after history p̂t. The seller’s payoff from using strategy P̂ after history

pt then coincides with the right-hand side of equation (15). Hence, the seller’s payoff at state

(t, v(pt)) can not be lower than the right-hand side of equation (15).

(Proof of Proposition 3.1 continues.)

The proof of Lemma A.1 uses a mimicking argument. The seller at state (t, v) can imitate

the continuation strategy after state (t, v′) with v′>v. By doing this, the seller’s payoff from

buyer types below v coincides with the one she obtains from these types after state (t, v′).

Fix an equilibrium and history pt1 , for some t1∈[0, T). Assume, for the sake of contradiction,

that there is some t2>t1 satisfying that vt1=vt−2
>0 (as noted before, the explicit dependence on

the history pt1 is omitted).22 We first observe that it must be that vT<vt1 , since vT−≤vt−2
(by

the skimming property) and vT=p∗(vT−)<vT− . It is convenient to pick t2 to be the supremum

among the times in (t1, T] satisfying that vt−2
=vt1 . We consider two separate cases:

Case 1: There is a “burst” of trade at time t2. Assume first vt2<vt−2
; that is, there is a positive

probability of trade at time t2 (at price pt2 :=Pt2(pt1)). Fix some t∈(t1, t2) and some ε>0, and

consider the following deviation by the seller from time t on: offer price

p̂t :=(1−e−rb (t2−t)) (vt1−ε)+e−rb (t2−t) pt2 (16)

at date t, unacceptable prices on (t, t2), and continue with the equilibrium strategy P(pt1)

22Note that, for each t1, there exists t2>t1 such that vt1 =vt−2
if and only if there exists t′2>t1 such that vt1 =vt′2 .
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from date t2 on (that is, “as if” she did not deviate at time t). Note that the (vt1−ε)-buyer

is indifferent between accepting p̂t at time t and accepting pt2 at time t2. Hence, for all v∈

(vt1−ε, vt1) the v-buyer obtains a strictly bigger payoff from accepting p̂t at time t than from

accepting pt2 at time t2. Let v̂t denote v(P[0,t)(pt1), p̂t).

There are two possibilities. The first is that there is no trade at time t when p̂t is offered;

that is, v̂t=vt1 .23 Then, by the Markov property, the buyer believes that the seller’s continuation

strategy is such that there is no trade until t2, where the price is pt2 . This, nevertheless, leads

to a contradiction, since as we observed before, there is a positive mass of buyer’s valuations

such that the buyer strictly prefers accepting p̂t at t to accepting pt2 at t2. The second possibility

is that there is a positive probability of trade at date t when p̂t is offered; that is, v̂t<vt1 . By

the argument in the proof of Lemma A.1, the seller obtains the same payoff from all types

v< v̂t under the deviation than under the equilibrium strategy (given that, under the deviation,

her continuation strategy coincides with the continuation strategy if she did not deviate). The

increase in the seller’s payoff from the buyer when his valuation is in [v̂t, vt1 ] is given by

payoff when p̂t is offered︷ ︸︸ ︷
p̂t−E[c(ṽ)|ṽ∈[v̂t, vt1 ]]−

equilibrium payoff︷ ︸︸ ︷
e−rs (t2−t) (pt2−E[c(ṽ)|ṽ∈[v̂t, vt1 ]]) .

Using equation (16) we have that, as t→t2, the previous expression can be written as:

(
rb (vt1−ε− pt2)−rs (E[c(ṽ)|ṽ∈[v̂t, vt1 ]]− pt2)︸ ︷︷ ︸

(∗)

)
(t2− t)+O((t2− t)2) .

Note that, since c(·) is increasing, E[c(ṽ)|ṽ∈[v̂t, vt1 ]]≤c(vt1). Note also that the term (∗) is

linear in pt2 , larger than rs (vt1−c(vt1))−rb ε when pt2=vt1 , and larger than rb
(
vt1− rs

rb
c(vt1)−ε

)
when pt2=0. Hence, using that vt1>c(vt1) and Assumption 2, we have that (∗) is postitive if ε is

small enough. We then conclude that a profitable deviation for the seller exists, a contradiction.

Case 2: There is no “burst” of trade at time t2. Assume now vt−2
=vt2 . The logic for this case

is similar to the logic for Case 1, but the argument is slightly more involving. First note that,

by the observation above, it must be that t2<T (because there is trade a burst at the deadline).

23Note that, as we have argued, the v-buyer obtains a strictly bigger payoff from accepting p̂t at time t than from

accepting pt2 at time t2 for all v∈(vt1−ε, vt1 ). Still, it could be that these none of these types accept p̂t: it depends

on what the seller’s continuation play after the deviation prescribed by the equilibrium.
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Pick again some t∈(t1, t2) and now let p̃t be such that the (vt2−ε)-buyer is indifferent between

accepting p̃t at time t or pvt2−ε at time tvt2−ε. Noticing that, if ε is small enough, tvt2−ε is close

to t2 (by the definition of t2), the same argument as in Case 1 goes through.

Proof of Proposition 3.2

Proof. The proof is divided into three lemmas. Lemma A.2 sets an upper bound on the seller’s

payoff. Lemma A.3 establishes a lower and an upper bound on the seller’s payoff in terms of

the continuation payoffs at lower threshold valuations. Lemma A.4 establishes the continuity

of p(t, ·) for all t. We finally argue that these lemmas imply the result stated in Proposition 3.2.

We first present an auxiliary result. The result establishes that, after any t-history, the

seller’s payoff is no higher than that from selling to a range of higher buyer types at the price

at time t, while continuing selling at the same time and prices to the lower buyer types. The

result is intuitive, as the seller sells earlier and at a higher price to higher types. Nevertheless,

the fact that the seller incurs the cost of selling to the higher types at an earlier time makes the

result not trivial.

Lemma A.2. Fix some state (t, v). Then, for all v′<v close enough to v, we have

Π(t, v)≤(F(v)−F(v′))
(

p(t, v)−E[c(ṽ)|ṽ∈[v′, v]]
)
+
∫ v′

0
e−rs (tv(t,v)−t) πtv(t,v)(t, v) F(dv) , (17)

where πt′(t, v) :=pt′(t, v)−c(v).

Proof. By the optimality of the buyer’s strategy, it must be that, for each v∈(v′, v),

v− p(t, v)≤e−rb (tv(t,v)−t) (v− ptv(t,v)(t, v)) .

Rewriting the previous inequality, we have that the payoff the seller obtains from selling to the

buyer with valuation v at time t at price p(t, v) – which is equal to p(t, v)−c(v) – instead of at

time tv(t, v) at price ptv(t,v)(t, v) is no smaller than

v−c(v)−e−rb (tv(t,v)−t) (v− ptv(t,v)(t, v)) .

By adding and subtracting the seller’s payoff from selling to the buyer with valuation v at time

tv(t, v) at price ptv(t,v)(t, v) (as the continuation strategy prescribes), the previous expression is
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equal to

e−rs (tv(t,v)−t) (ptv(t,v)(t, v)−c(v))

+(e−rb (tv(t,v)−t)−e−rs (tv(t,v)−t)) ptv(t,v)(t, v)+(1−e−rb (tv(t,v)−t)) v−(1−e−rs (tv(t,v)−t)) c(v)︸ ︷︷ ︸
(∗)

.

Then, proving that the term (∗) is bigger than 0 when v is close enough to v shows the res-

ult. Note that (∗) is linear in ptv(t,v)(t, v). By Proposition 3.1, we have that limv↗v tv(t, v)=t.

Furthermore, note that if ptv(t,v)(t, v)=0 we have that (∗) is approximately equal to (rb v−

rbc(v)) (ptv(t,v)(t, v)− t), which is non-negative by Assumption 2. When instead ptv(t,v)(t, v)=v,

the term (∗) is equal to

g(t̂) :=(1−e−rb t̂) v−(1−e−rs t̂) c(v) ,

where t̂ :=tv(t, v)− t. Note that g(0)=0 and limt̂→∞ g(t̂)=v−c(v)>0. Simple analysis shows

that g′(·) is single peaked, limt̂→∞ g′(t̂)=0, and, by Assumption 2, we have g′(0)≥0. Hence,

the term (∗) is positive when ptv(t,v)(t, v)=v. Henceforth, the term (∗) is positive because

ptv(t,v)(t, v)∈(0, v].

(Proof of Proposition 3.2 continues.)

We now establish bounds on the seller’s payoff, both from below and from above:

Lemma A.3. For any t, v, and v′, with v>v′,

(F(v)−F(v′))
(

p(t, v′)−E[c(ṽ)|ṽ∈[v′, v]]
)
+Π(t, v′)

≤Π(t, v)≤(F(v)−F(v′))
(

p(t, v)−E[c(ṽ)|ṽ∈[v′, v]]
)
+Π(t, v′) . (18)

Proof. The first inequality in equation (18) follows from the following observation. The seller

has the option to “replicate” the continuation strategy she uses in state (t, v′) when the state is,

instead, (t, v). By the same argument as in the proof of Lemma A.1, the seller obtains a payoff

equal to the expression on the left-hand side of the first inequality in equation (18) by doing so.

To prove the second inequality, recall Lemma A.2. Using the optimality of the seller’s

continuation strategy at (tv′ , v′), we have that the right-hand side of expression (17) is no larger
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than

(F(v)−F(v′))
(

p(t, v)−E[c(ṽ)|ṽ∈[v′, v]]
)
+e−rs (tv′−t) Π(tv′ , v′) , (19)

and hence Π(t, v) is smaller than expression (19). Note finally that, because the seller has

the option of making unacceptable offers on [t, tv′), we have e−rs (tv′−t) Π(tv′ , v′)≤Π(t, v′), and

hence the second inequality in expression (18) holds.

(Proof of Proposition 3.2 continues.)

The following result establishes that p(t, ·) is increasing and continuous:

Lemma A.4. For all t, p(t, ·) is increasing and continuous.

Proof. Proof that p(t, ·) is increasing. It follows directly from equation (18).

Proof that p(t, ·) is continuous. The proof is similar to the proof of Proposition 3.1. We prove

that p(t, ·) is left-continuous (right-continuity is proven analogously). We do this by assuming,

for the sake of contradiction, that p(t, ·) is not left continuous at some v; that is, there is a

strictly increasing sequence (vn)n converging to v such that p(t, vn)→p∞ 6=p(t, v). Since p(t, ·)

is increasing, it must be that p∞<p(t, v). Let pt be some history with v(pt)=v, and we let vt′

denote vt′(pt). Also, for for each n, let pt
n be a history with v(pt

n)=vn (note they exist, see

Footnote 10). Let finally tn denote tvn(pt), and note that (tn)n (weakly) decreases toward t by

Proposition 3.1.

We first prove that tn>t for all n. To see this, note that tn≥t for all n, and so assume by

contradiction that tn−1=t for some n (indicating that vt+≤vn−1). This implies that vt+<vn.

Consider the continuation price path p̂(t,T] defined by

p̂t′ :=


Pt′(pt) if t′∈(t, t+ε],

Pt′(pt
n+1) if t′∈(t+ε, T],

for some ε>0. As ε shrinks towards 0, the seller’s payoff from the previous continuation play
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at history pt
n converges to

(F(vn)−F(vt+(pt)))
(

p(t, v)−E[c(ṽ)|ṽ∈[vt+(pt), vn]]
)

+
∫ vt+ (pt)

0
e−rs (tv(pt

n;P,a)−t) (pv(pt
n; P, a)−c(v)) F(dv) .

Given that p(t, v)>p(t, vn) and F(vn)−F(vt+(pt))>0, Lemma A.2 implies that the previous

expression is strictly larger than Π(t, vn). Since the seller has a profitable deviation, we reach a

contradiction, and hence it must be that tn>t for all n.

Take some price p̂∈(p∞, p(t, v)). For each t′>t, let v̂t′ :=v(pt, P[0,t′)(pt), p̂) be the upper

valuation at time t′ if the seller charges p̂ at time t′. Consider a deviation of the seller after

pt, consisting in following the continuation path P(t,tn)(pt) on (t, tn), then charging p̂ at time

tn, and then continuing to follow the equilibrium strategy after tn. Note that, since p(t′, vt′) is

continuous in t′ on (t, tn) (by the optimality of the buyer’s strategy), we have that p(t′, vt′)> p̂

if n is big enough. There are two cases:

1. In the first case, there is no trade at time tn when the seller offers p̂ at time tn; that

is, v̂tn =vtn . In this case, the continuation play after tn is unchanged. Nevertheless, this

implies that an interval of buyer’s types [v, vtn ], for some v<vtn , are willing to buy at

prices larger than p̂ at time tn or later (recall that p(tn, vtn)> p̂), a contradiction.

2. In the second case, trade occurs with positive probability at time tn when the seller offers

p̂; that is, v̂tn <vtn . Now, there are two possibilities:

(a) The first possibility is that v̂tn≤vtn(pt
n), but this implies that

p(tn, v̂tn)= p̂>p∞>p(t, vn)>ptn(t, vn)=p(tn, vtn(pt
n)) ;

contradicting that p(tn, ·) is increasing.

(b) The second possibility is that v̂tn >vtn(pt
n). Now, consider the following deviation

of the seller on the continuation strategy at history pt
n for n is large enough: the

seller charges unacceptable prices in (t, tn), then charges p̂ at time tn, and then offers

Pt′′(t, vn) for all t′′>tn. By the argument in the proof of Lemma A.1, using this

strategy, the seller obtains the same payoff for all valuations in [0, v̂tn ]. Also, since the

seller sells to the buyer when his valuation [v̂tn , vn] at time tn at price p̂, the deviation
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is profitable (note that when n is large, tn is close to t, but pt′(t, vn)<p∞< p̂ for all

t′∈(t, tn)), which is again a contradiction.

(Proof of Proposition 3.2 continues.)

From the first inequality in equation (A.4) and the continuity of π(t, v) :=p(t, v)−c(v) with

respect to v (which follows from Lemma A.4 and the continuity of c(·)) we have that

lim inf
v′↗v

Π(t,v)−Π(t,v′)
v−v′ ≥π(t, v) f (v) and lim inf

v↘v′
Π(t,v)−Π(t,v′)

v−v′ ≥π(t, v′) f (v′) . (20)

Using the second inequality in equation (18) and, again, the continuity of p(t, ·), we have that

lim sup
v′↗v

Π(t,v)−Π(t,v′)
v−v′ ≤π(t, v) f (v) and lim sup

v↘v′

Π(t,v)−Π(t,v′)
v−v′ ≤π(t, v′) f (v′) . (21)

The four inequalities in expressions (20) and (21), together with the continuity of p(t, ·)

established in Lemma A.4, imply that Π(t, ·) is differentiable, and the derivative is equal to

d
dv Π(t, v)=π(t, v) f (v) . (22)

Integrating the previous expression gives equation (9).

Proof of Proposition 3.3

Proof. Fix an equilibrium and history pt. We write

Π(t, vt)=
∫
[vt,vt+ε)

e−rs (tv(t,vt)−t) πtv(t,vt)(t, vt) F(dv)+e−rs ε Π(t+ε, vt+ε) ,

where πtv(t,vt)(t, vt) :=ptv(t,vt)(t, vt)−c(v). Using Proposition 3.2, we have

0=
∫
[vt,vt+ε)

(
π(t, v)−e−rs (tv(t,vt)−t) πtv(t,vt)(t, vt)

)
F(dv)+e−rs ε Π(t+ε, vt+ε)−Π(t, vt+ε) .
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Note that if vt+<vt then all types in (vt+,vt] trade at time t, hence they do not contribute to the

previous expression. Hence, we can write the previous expression as

0=
∫
[vt+ ,vt+ε)

(
π(t, v)−e−rs (tv(t,vt)−t) πtv(t,vt)(t, vt)︸ ︷︷ ︸

(∗)

)
F(dv)+e−rs ε Π(t+ε, vt+ε)−Π(t, vt+ε) .

Note then that the term (∗) tends to 0 as ε→0. By Proposition 3.1, we have that tv(t, vt)→t

as v↗vt. Furthermore, by the incentive compatibility of the buyer strategy (both when he has

valuation v and vt), we have ptv(t,vt)(t, vt)→p(t, vt) as v↗vt, hence πtv(t,vt)(t, vt)→p(t, vt). Since

the term (∗) is integrated on [vt+ , vt+ε) and F has a continuous density, we have that the first

term on the right hand side of the previous expression tends to 0 faster than ε (i.e., it is o(ε)).

As a result, we have

lim
ε↘0

e−rs ε Π(t+ε, vt+ε)−Π(t, vt+ε)

ε
=0 .

A similar argument can be made when ε↗0. Hence, the function t 7→e−rs t Π(t, v) (for a fixed v)

is continuous and differentiable (on [0, T]), with a derivative equal to 0. Since Π(T, v)=Π∗(v),

we have that Π(t, v)=e−(T−t) rs Π∗(v), as desired.

Proof of Theorem 3.1

Proof. We first argue that the strategies of the seller and the buyer are mutual best responses.

Indeed, equation (7) guarantees that the buyer’s strategy is optimal. To see that the seller does

not have the incentive to deviate, fix some state (t, v) with t<T and v>0 and a history pt such

that v(pt)=v. Assume that the seller deviates at history pt to some strategy P̂. The continuation

payoff from the deviation is

∫ v

0
e−rs (tv(pt;P̂,a)−t) (pv(pt; P̂, a)−c(v)) F(dv) .

By equation (6), the price paid by the v-buyer is at most

(
1−e−rs (T−tv(pt;P̂,a))) c(v)+e−rs (T−tv(pt;P̂,a)) p∗(v) .
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Hence, the payoff the seller obtains from the deviation is no larger than

∫ v

0
e−rs (T−t) (p∗(v)−c(v)) F(dv) .

By Corollary 3.1 (which is proven independently of Theorem 3.1), the payoff the seller obtains

from the deviation is no larger than Π(t, v).

We proceed by showing that the differential equation (12) (with the initial condition that vt

at time 0 is equal to the parameter v0), denoted vt, is decreasing. To verify this, we apply some

algebra to equation (12) and obtain that

v̇t=−
rb (vt−c(vt))+e−rs (T−t) (rs−rb) (p∗(vt)−c(vt))

(1−e−rs (T−t)) c′(vt)+e−rs (T−t) p∗′(vt)
. (23)

From Assumption 1 we have that p∗(vt) is increasing. Because vt>c(vt) and e−rs (T−t)∈(0, 1],

the right-hand side of (23) is non-negative for all t and vt if and only if

0<rb (vt−c(vt))+(rs−rb) (p∗(vt)−c(vt)) . (24)

This is equivalent to Assumption 3.

The fact that Assumption 2 implies Assumption 3 follows from the fact that p∗(vt)∈(0, vt)

and that the right-hand side of the expression (24) is linear in p∗(vt), equal to rs (vt−c(vt))>

0 when p∗(vt)=vt, and equal to rb
(
vt− rs

rb
c(vt)

)
(which is positive by Assumption 2) when

p∗(vt)=0.

The uniqueness of the equilibrium follows from the arguments in Section 3.1, that clarify

why the strategy profile described in statement of Theorem 3.1 is the unique candidate to be

an equilibrium.

Proof of Corollary 3.1

Proof. Using the envelope theorem, we have

d
dv0

Π∗(v0)=
d

dv0

( ∫ v0

p∗(v0)
(p∗(v0)−c(v)) F(dv)

)
= f (v0) (p∗(v0)−c(v0)) .

It is then clear that the statement of the Corollary holds.
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Proof of Corollary 3.2

Proof. That the strategy profile described in Theorem 3.1 is an equilibrium if Assumption 3

holds follows from the proof of Theorem 3.1. The converse follows from the fact that the right-

hand (23) is negative for some t and vt whenever Assumption 3 fails, but v̇t cannot be positive

in equilibrium.

A.3 Proofs of results in Section 4

Proof of Corollary 4.1

Proof. The result follows directly from Corollary 3.2 and the observation that, if c(v)>p∗(v)

for some v, then rb (v− p∗(v))<rs (c(v)− p∗(v)) for high enough rs (hence Assumption 3 fails),

while if c(v)≤p∗(v) for all v, then rb (v− p∗(v))≥rs (c(v)− p∗(v)) for high enough rs (because,

v≥p∗(v) for all v).

Proof of Proposition 4.1

Proof. We first note that a change in rb can be reformulated as a change in the unit used

to measure time. To see this, fix some λ>1. We use λ-model to refer to the model where the

discount rate of the buyer is λ rb>rb, while all other parameters are the same. The model where

the discount rate of the seller is rλ
s :=rs/λ<rs and the time horizon is Tλ :=λ T>T, while all

other parameters are the same, is referred to as the normalized λ-model. Using (pλ
t , vλ

t ) to denote

the equilibrium outcome of the λ-model, it is easy to see that the normalized λ-model has a

unique equilibrium outcome, denoted (p∗λt , v∗λt ), and that this equilibrium outcome satisfies

(p∗λt , v∗λt )=(pλ
t/λ, vλ

t/λ). As a result, both the seller and each valuation of the buyer obtain the

same payoff in the λ-model and in the normalized λ-model.

Note that the product rλ
s Tλ is independent of λ. From equations (6) and (7), we see that

both p∗λ0 and ṗ∗λ0 are independent of λ as well. Furthermore, using equation (12), we have that

d
dλ p̈∗λ0 =−rb

d
dλ v̇∗λ0 =−rb

rλ
s (p∗(v0)−c(v0))

λ2 ((erλ
s Tλ−1) c′(v0)−p∗′(v0))

<0 ,

where we the last inequality holds because both c and p∗ are increasing and because the no-

lemons condition holds. Hence, since λ>1, the price decreases faster around t=0 in the nor-
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malized λ-model than in our base model. Finally, note the following. Assume that pt=p∗λt for

some time t∈(0, T). In this case, from equation (6), we have that

(
1−e−rs (T−t)) c(vt

)
+e−rs (T−t) p∗(vt)=

(
1−e−rλ

s (Tλ−t)) c(v∗λt )+e−rλ
s (Tλ−t) p∗(v∗λt ) . (25)

Since (i) e−rs (T−t)>e−rλ
s (Tλ−t), (ii) both c and p∗ are increasing, and (iii) the no-lemons condition

holds, we have that vt<v∗λt .24 Hence, from equation (7), it follows that ṗt> ṗ∗λt . Nevertheless,

standard analysis of ordinary differential equations implies that pt and p∗λt can only cross once,

and such crossing time is t=0.25 As a result, pt>p∗λt for all t∈(0, T]. Since the buyer’s discount

rate is the same in the normalized λ-model and in our base model (equal to rb), the buyer is

better off in the normalized λ-model independently of his valuation, and therefore he is also

better off in the λ-model than in our base model. In other words, the buyer is better off when

he is more impatient.

Proof of Proposition 4.2

Proof. The proof parallels the arguments in the proof of Proposition 4.1. Fix some λ>1. We

now define the λ-model as the model where the discount factor of the seller is rλ
s :=rs/λ<rs,

while the rest of the parameters remain the same. We use (pλ
t , vλ

t ) to denote the equilibrium

outcome of the λ-model. Note that, because the no-lemons condition holds, p0<pλ
0 . Assume,

by contradiction, there is some t∈(0, T) such that pλ
t =pt. Equation (25) now holds with Tλ=T.

Since e−rs (T−t)<e−rλ
s (T−t) (note that this inequality is reversed in the proof of Proposition 4.1),

an argument analogous to the one in the proof of Proposition 4.1 (see footnote 24) implies that

now vt>vλ
t , and hence ṗt< ṗλ

t . As in the proof of Proposition 4.1, this leads a contradiction,

and so pt<pλ
t for all t∈[0, T). Hence, all prices are higher in the λ-model than in our base

model, and therefore the buyer is worse off when the seller is more patient.

24Note that, since e−rs (T−t)>e−rλ
s (Tλ−t), the weight on the static monopolistic price is larger on the left-hand side

of equation (25) than on its right-hand side. Since the static monopolistic price is larger than the cost (because the

no-lemons condition holds), and both are increasing functions, the threshold type of the left-hand side should be

lower than the threshold type on the right-hand side; that is, vt<v∗λt .

25Intuitively, if pt=p∗λt for some t>0, we have that p̃∗λt decreases faster (since vt<v∗λt ), and hence p∗λt crosses pt

“from above.” Nevertheless, we also showed that pλ
t is smaller than p∗λt for low values of t. This implies that pt

and pλ
t cross (at most) once, that is, at t=0.
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Proof of Proposition 4.3

Proof. The proof parallels the arguments in the proof of Propositions 4.1 and 4.2. Fix some λ>1.

We now define the λ-model as the model where the discount factor of the seller is Tλ :=λ T>T,

while the rest of the parameters remain the same. We use (pλ
t , vλ

t ) to denote the equilibrium

outcome of the λ-model. Note that, because the no-lemons condition holds, p0>pλ
0 . Assume,

by contradiction, there is some t∈(0, T) such that pλ
t =pt. Equation (25) now holds with rλ

s =

rs. Since e−rs (T−t)>e−rs (Tλ−t) (note that this inequality is now the same as in the proof of

Proposition 4.1), an argument analogous to the one in the proof of Proposition 4.1 (see Footnote

24) implies that vt<vλ
t , and hence ṗt> ṗλ

t . As in the proof of Proposition 4.1, this leads a

contradiction, and hence pt>pλ
t for all t∈[0, T). Hence, all prices are lower in the λ-model than

in our base model, and therefore the buyer is better off when the time horizon is longer.
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