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1 Introduction

Does the anticipation of future shocks have a stabilizing and hence welfare-enhancing

effect on the economy when compared to unanticipated shocks? In this paper, we attempt

to answer this question by comparing the welfare effects of unanticipated and anticipated

cost-push shocks within the canonical New Keynesian model with a monetary authority

which minimizes a standard loss function that weights the volatility of inflation and the

output gap. In particular, we analytically solve for the dynamics and the welfare in the

case of optimal monetary policy under timeless perspective commitment and discretion.

We distinguish the common case of unanticipated cost-push shocks and the case of future

cost-push disturbances that are known in advance.

Since the real business cycle revolution, initiated by Kydland and Prescott (1982),

unanticipated random disturbances are considered as the main driving force in explain-

ing business cycles. New Keynesians add nominal rigidities to the real business cycle

framework to study the role of monetary policy in aggregate fluctuations but maintain

the assumption of unpredictable random shocks (see, for example, the textbooks of Walsh

(2003), Woodford (2003), or Gaĺı (2008)). An exception is the stream of literature that an-

alyzes anticipated disinflations going back to Ball (1994) who shows that a simple variant

of the New Keynesian model predicts a boom in response to an anticipated disinflation.

However, the literature on the optimal design of monetary policy usually considers only

unanticipated shocks (see, for example, Clarida, Gaĺı, and Gertler (1999), Svensson (1999),

King, Khan, and Wolman (2003), or Woodford (2003)).

Recently, a number of macroeconometric studies emphasized the role of anticipated

shocks as sources of macroeconomic fluctuations. Beaudry and Portier (2006) find that

more than one-half of business cycle fluctuations are caused by news about future techno-

logical opportunities. Davis (2007) and Fujiwara, Hirose, and Shintani (2008) analyze the

importance of anticipated shocks in medium-scale New Keynesian DSGE models and find

that these disturbances are important components of aggregate fluctuations. Schmitt-

Grohé and Uribe (2008) conduct a Bayesian estimation of a real-business cycle model

and find that anticipated shocks are the most important source of aggregate fluctuations.
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In particular, they show that anticipated shocks explain two thirds of the volatility in

consumption, output, investment, and employment.

Theoretical studies about the role of anticipations regarding business cycle fluctuations

include Beaudry and Portier (2004, 2007), Beaudry, Collard, and Portier (2006), Jaimovich

and Rebelo (2006, 2008), Den Haan and Kaltenbrunner (2007), or Christiano, Ilut, Motto,

and Rostagno (2008).

However, none of these studies considered the welfare effects of the anticipation of

future shocks. In this paper, we derive a solution of welfare as a function of the time

span between the anticipation and the realization of the shock which allows us to discover

the dependency of welfare on the length of the anticipation period. Furthermore, we

contribute to the literature by systematically investigating the role of nominal rigidities

for the welfare impacts of anticipations.

The main results of this paper are as follows: For empirically plausible degrees of

nominal rigidity, the anticipation of a future cost-push shock leads to a higher welfare loss

than an analogous unanticipated shock. A welfare gain from the anticipation of a future

cost shock may only occur if prices are sufficiently flexible. This result is consistent with

the findings of Schmitt-Grohé and Uribe (2008) who show that the anticipation of future

shocks has a stabilizing effect on an economy without nominal rigidities. We point out

that precisely this degree of nominal rigidity plays an important role for the evaluation of

the welfare effects of anticipations.

Our results are driven by two opposing effects. On the one hand, we obtain the

well-known result that the anticipation of a future shock dampens its impact effect. On

the other hand, we show that the anticipation of future cost-push shocks increases the

persistence of output and inflation and therefore increases the welfare loss. This persistence

effect, in turn, is amplified by the degree of price stickiness.

Nevertheless, at a first glance, our finding seems to be puzzling since it suggests that the

information about the occurrence of future shocks is in general welfare-reducing. But this

prompts the question, why rational agents do not ignore their knowledge about future

disturbances. In the remainder of this paper, we will seek to shed more light on this
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question.

Our paper is organized as follows. Section 2 presents the canonical New Keynesian

model and its solution under the policy regimes of timeless perspective commitment and of

discretion. In Section 3, we report and discuss our main findings. Furthermore, we provide

analytical proofs and, for the purpose of illustration, numerical simulations. Section 4

summarizes and provides a conclusion. Attached to this paper is a mathematical appendix.

2 The Framework

The canonical New Keynesian model serves as an analytical framework. It consists of an

optimizing IS-type relationship of the form

xt = Etxt+1 −
1

σ
(it − Etπt+1) (σ > 0) (1)

and a price adjustment equation of the Calvo-Rotemberg type, often referred to as New

Keynesian Phillips Curve (NKPC)

πt = βEtπt+1 + κxt + kt (0 < β < 1, κ > 0) (2)

xt denotes the output gap, πt is inflation, and it is the nominal interest rate. Et is the

expectations operator conditional on information up to date t. The parameter β is the

discount factor and 1/σ denotes the intertemporal elasticity of substitution. It is well-

known that under the assumptions of Calvo (1983) price setting, a constant returns to

scale production function with labor as its single input, and perfect labor markets, the

slope parameter κ is given by κ = (η + σ)(1 − ω)(1 − βω)/ω, where η is the inverse of

the labor supply elasticity.1 Obviously, κ is negatively correlated with the degree of price

rigidity ω. According to the Calvo price adjustment mechanism, a fraction 1 − ω of firms

can adjust their price in period t. Simultaneously, ω is the probability that a single price –

which is reoptimized in period t – also holds in the next period t+1. The Calvo parameter

1See, e.g., Walsh (2003) for a derivation of the NKPC under Calvo pricing.
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ω is therefore a measure of the degree of price rigidity in the goods markets.

In the NKPC, kt represents a temporary cost-push shock that is assumed to be au-

toregressive of order one with AR parameter ϕ ∈ [0, 1) and a one-unit cost shock εt

kt = ϕkt−1 + εt (t ≥ T > 0) (3)

Since we consider anticipated cost-push shocks, the one-unit cost shock εt is not white

noise, but known to the public before the shock actually occurs.2 Assume that at time

t = 0 the public anticipates the cost-push shock to take place at some future time T > 0.

Then,

εt =















1 for t = T > 0

0 for t 6= T

(4)

The adjustment dynamics induced by the anticipated shock are comprised of two

phases, the time span between the anticipation and the realization of the shock (0 ≤ t < T )

and the time span after the occurrence of the shock (T ≤ t ≤ ∞). The lead time T up

to the realization of the shock is equal to the length of the anticipation phase 0 ≤ t < T .

An implication of our definition of anticipated shocks is that rational expectations are

equivalent to perfect foresight so that we can omit the expectations operator.

The policy maker’s objective at the time of anticipation, t = 0, is to minimize the

intertemporal loss function

V = E0

∞
∑

t=0

βt(α1π
2
t + α2x

2
t ) (α1 > α2 > 0, 0 < β ≤ 1) (5)

which reflects the objective of flexible inflation targeting (see Svensson (1999)). Rotemberg

and Woodford (1999) and Woodford (2003) show that, under the assumptions made in our

study, a quadratic loss function in inflation and the output gap is the correct approximation

to the representative agent’s utility function.3

2Schmitt-Grohé and Uribe (2007) study the impacts of anticipated cost shocks on the pass-through to prices.
3Note that α1 and α2 are then functions of the underlying structural parameters of the model and given by
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The first-order conditions for the policy problem under timeless perspective precom-

mitment monetary policy as well as under discretion are well known and need not to be

derived here (see, for example, Walsh (2003)). Under the optimal timeless perspective

precommitment policy, inflation satisfies the targeting rule

πt = −
α2

α1κ
(xt − xt−1) (6)

while the output gap is described by the second-order difference equation

(

1 + β +
α1κ

2

α2

)

xt − xt−1 − βEtxt+1 = −
α1κ

α2
kt (7)

where the expectations operator can be omitted in the case of anticipated shocks.

To solve the difference equation for xt, write equation (7) as

(

xt+1

wt+1

)

= C

(

xt

wt

)

+

(α1κ
α2β

0

)

kt (8)

where wt = xt−1 and

C =







1
β

(

1 + β + α1κ2

α2

)

− 1
β

1 0






(9)

The auxiliary variable wt is backward-looking (with the initial value w0 = 0), while the

output gap xt is forward-looking. The system matrix C has two real eigenvalues r1 and

r2 with r1 > 1 > r2 > 0 so that the Blanchard and Kahn (1980) saddle path stability

condition is satisfied.

The solution for the output gap over the anticipation phase is given by

xt = −
1

r1 − ϕ

1

r1 − r2

α1κ

α2β
r−T
1 (rt+1

1 − rt+1
2 ) for t < T (10)

α1 = εω/((1−ω)(1−βω)) and α2 = σ + η, where ε denotes the elasticity of substitution between different
varieties of goods.
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with the initial values

x0 = −
1

r1 − ϕ

α1κ

α2β
r−T
1 , x−1 = 0 (11)

while the solution for t ≥ T is defined as

xt =
α1κ

α2β

1

(r1 − ϕ)(r2 − ϕ)

[

ϕt+1−T −
(r1 − ϕ)r−T

2 − (r2 − ϕ)r−T
1

r1 − r2
rt+1
2

]

for t ≥ T (12)

In the limiting case of unanticipated shocks (T = 0), the term in brackets in equation

(12) simplifies to ϕt+1 − rt+1
2 . Note that the solution formula (10) also holds in the shock

period t = T .

Using (6), the solution time path of the inflation rate follows

πt =
1

β

1

r1 − ϕ

1

r1 − r2
r−T
1

[

(r1 − 1)rt
1 − (r2 − 1)rt

2

]

for t ≤ T (13)

with the initial value

π0 =
1

β

1

r1 − ϕ
r−T
1 (14)

and

πt =
1

β

1

r1 − ϕ

1

r2 − ϕ

[

(1 − ϕ)ϕt−T −
(r1 − ϕ)r−T

2 − (r2 − ϕ)r−T
1

r1 − r2
(1 − r2)r

t
2

]

for t ≥ T

(15)

In the limiting case T = 0, the term in the brackets simplifies to (1 − ϕ)ϕt − (1 − r2)r
t
2.

To determine the welfare loss under the optimal precommitment policy, we write the

loss function as V = V1 + V2, where

V1 = E0

T−1
∑

t=0

βt
(

α1π
2
t + α2x

2
t

)

(16)
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is the loss in the anticipation period and

V2 = E0

∞
∑

t=T

βt
(

α1π
2
t + α2x

2
t

)

(17)

is the loss caused by the realization of the shock.

By substituting the solution for xt and πt, the loss V1 can be rewritten as

V1 = α1λ
2r−2T

1

(

rT
1 − rT

2

)

(

r1 − 1

rT
2

+
1 − r2

rT
1

)

(18)

where

λ =
1

β

1

r1 − ϕ

1

r1 − r2
. (19)

Accordingly, the loss V2 can be rewritten as

V2 =
α1β

T

β2(r1 − ϕ)2

{

(

rT
2 − rT

1

)2
(1 − r2)

(r1 − r2)2r2T
1

+
r1

r1r2 − ϕ2

}

(20)

The total loss V is then simply given by V = V1 + V2.

Under the policy regime discretion (D), the central bank is unable to make a commit-

ment to future policies. Then, private expectations are given for the central bank and the

reduced form of the first-order conditions reads as

πt = −
α2

α1κ
xt (21)

Etxt+1 =
1

β

[

1 +
α1κ

2

α2

]

xt +
α1κ

α2β
kt (22)

with Etxt+1 = xt+1 in the case of anticipated shocks. The difference equation in xt has

an unstable eigenvalue rD, defined as

rD =
1

β

[

1 +
α1κ

2

α2

]

=
1

α2β

[

α2 + α1κ
2
]

> 1 (23)
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and the forward solution

xt = −

∞
∑

s=0

r−s
D

1

rD

α1κ

α2β
kt+s (24)

Since

kt+s =















ϕt+s−T for t+ s ≥ T

0 for t+ s < T

(25)

we obtain for t ≥ T

xt = −
α1κ

α2 + α1κ2 − α2βϕ
ϕt−T (26)

and for t < T

xt = −
α1κ

α2 + α1κ2 − α2βϕ
rt−T
D (27)

Due to rt−T
D = 1 for t = T , the solution formula (27) also holds in the shock period t = T .

For t = 0 we obtain

x0 = −
α1κ

α2 + α1κ2 − α2βϕ
r−T
D (28)

so that the the size of the initial jump of xt decreases with increasing T .

For the inflation rate πt we obtain the solution time path

πt =















α2

α2 + α1κ2 − α2βϕ
rt−T
D if 0 ≤ t ≤ T

α2

α2 + α1κ2 − α2βϕ
ϕt−T if t ≥ T

(29)

Note that the limiting case ϕ = 0 implies πt = xt = 0 for t > T .

It is well-known that the loss under discretion, VD, is greater than the total loss under

the optimal precommitment policy. By inserting the solution time paths for πt and xt in
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the loss function, we obtain

VD = V D
1 + V D

2 =
T−1
∑

t=0

βt

[

α2
2

α1κ2
+ α2

]

x2
t +

∞
∑

t=T

βt

[

α2
2

α1κ2
+ α2

]

x2
t (30)

=
α1α2[α2 + α1κ

2]

[α2(1 − βϕ) + α1κ2]2

(

r−2T
D − βT

1 − βr2D
+

βT

1 − βϕ2

)

=
α1α2[α2 + α1κ

2]

[α2(1 − βϕ) + α1κ2]2
1

1 − βr2D

(

r−2T
D −

β(r2D − ϕ2)

1 − βϕ2
βT

)

where

1

1 − βr2D
=

α2
2β

α2
2β − (α2 + α1κ2)2

< 0 (31)

3 Main Results

In this section, we compare the welfare loss induced by anticipated shocks (T > 0) to the

corresponding loss if the same deterministic shock is not anticipated in advance (T = 0).

In particular, we investigate the properties of the welfare loss V considered as function of

the lead time T .

Since the size of the initial jumps of the forward-looking variables xt and πt are nega-

tively correlated with the lead time T , we can conjecture that the loss function V = V (T )

is a decreasing function in T . In the following, we will demonstrate that this conjecture

is, in general, false. It will be shown that it is only true, if the degree of price flexibility is

very high.

Our main results can be summarized in the form of four propositions.

Proposition 1. Without discounting (i.e. β = 1), the welfare loss induced by an antici-

pated cost-push shock is greater than the corresponding loss in the case of an unanticipated

shock. This result is independent of the length of the lead time T and the degree of price
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rigidity ω:

If β = 1, then V (0) < V (T ) for all T > 0 (32)

and all ω > 0 .

A similar result holds with discounting (β < 1), provided that the degree of price

rigidity ω is sufficiently high and the time span between anticipation and realization of

the shock is not too large.

Proposition 2. If β is less than unity and the degree of price flexibility, 1 − ω, is low,

then there exists a positive upper bound T ∗

c for the lead time T which depends positively

on ω, such that

V (0) < V (T ) for all 0 < T < T ∗

c . (33)

Proposition 3. If the degree of price flexibility is very high (i.e. ω is very small) then

T ∗

c = 0, so that

V (T ) < V (0) for all T > 0 . (34)

Only in this case (which seems empirically not very realistic), the welfare loss under an-

ticipated cost-push shocks is always smaller than under unanticipated shocks.

Proposition 4. Propositions 1, 2, and 3 hold under the optimal monetary policy regimes

timeless perspective commitment and discretion. They also hold under Taylor-type (opti-

mal) simple rules.

Sketch of the Proof of Propositions 1, 2, and 3. Consider the partial loss function

V1, given by equation (18), as a function of T (the time span between the anticipation and

realization of the cost-push shock).
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The function V1 = V1(T ) has the following properties:

V1(0) = 0, lim
T→∞

V1(T ) =















0 for β < 1

V 1 > 0 for β = 1

(35)

where

V 1 =
α1(r1 − 1)

(r1 − ϕ)2(r1 − r2)2
(36)

The derivative of V1 with respect to T

dV1

dT
= α1λ

2

{

2 ln r1 · r
−2T
1 [r1 + r2 − 2] − (r1 − 1) ln(r1r2) · (r1r2)

−T (37)

− (1 − r2) ln

(

r2
r31

)

·

(

r2
r31

)T }

is positive at time T = 0:

dV1

dT

∣

∣

∣

T=0
= α1

1

β2

1

(r1 − ϕ)2
1

r1 − r2
[ln r1 − ln r2] > 0 (38)

Therefore, V1(T ) starts to rise with increasing T (although the size of the initial jumps of

xt and πt is decreasing in T ). For β < 1, the limit value limT→∞ V1(T ) is equal to zero.

Therefore, V1(T ) must decrease when T is sufficiently large.

The loss function V2 = V2(T ), given by equation (20), has the following properties:

V2(0) =
α1

β2(r1 − ϕ)2
r1

r1r2 − ϕ2
> 0 (39)

lim
T→∞

V2(T ) =















0 if β < 1

V 2 > V2(0)
∣

∣

∣

β = 1
=

α1r1
(r1 − ϕ)2(1 − ϕ2)

if β = 1

(40)

where

V 2 =
α1

(r1 − ϕ)2

{

1 − r2
(r1 − r2)2

+
r1

1 − ϕ2

}

(41)
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The first derivative of V2 with respect to T

dV2

dT
=

α1

β2(r1 − ϕ)2
βT

{

r1
r1r2 − ϕ2

lnβ (42)

+
1 − r2

(r1 − r2)2

[

(ln r2 − 3 ln r1)

(

r2
r1

)2T

+ 4 ln r1

(

r2
r1

)T

+ lnβ

]}

implies for β < 1 and T = 0

dV2

dT

∣

∣

∣

T=0
=

α1

β2(r1 − ϕ)2
r1

r1r2 − ϕ2
lnβ < 0 (43)

since β = 1/(r1r2). For β < 1, the derivative dV2/dT is also negative if T is sufficiently

large. In the limiting case β = 1, the loss function V2(T ) is an increasing function in T

with a limit value V 2 > V2(0).

We can now investigate how the total loss V = V1 + V2 depends on the lead time T .

In the limiting case β = 1, the total loss V (T ) is an overall increasing function in T with

V (0) = V2(0) > 0 and

lim
T→∞

V (T ) =
α1

(r1 − ϕ)2

{

1

r1 − r2
+

r1
1 − ϕ2

}

> V2(0)
∣

∣

∣

β=1
> 0 (44)

If β = 1, we can write V (T ) as V1(T ) + V2(T ), where

V1(T ) =
α1

(r1 − ϕ)2(r1 − r2)2

[

(r1 − 1) + (2 − r1 − r2)r
−2T
1 − (1 − r2)

(

r2
r31

)T
]

(45)

V2(T ) =
α1

(r1 − ϕ)2







1 − r2
(r1 − r2)2

[

1 −

(

r2
r1

)T
]2

+
r1

1 − ϕ2







(46)

Then

dV1

dT
=

α1

(r1 − ϕ)2(r1 − r2)2

{

2[r1 + r2 − 2] ln r1 (47)

+[3 ln r1 − ln r2](1 − r2)

(

r2
r1

)T
}

r−2T
1 > 0 for all T ≥ 0
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(due to r1 + r2 = tr C > 2 and ln r2 < 0) and

dV2

dT
=

α1

(r1 − ϕ)2
1 − r2

(r1 − r2)2

{

−2

(

1 −

(

r2
r1

)T
)

ln

(

r2
r1

)

}

(

r2
r1

)T

>
(=)

0 if T >
(=)

0 (48)

(because 0 < r2 < 1 < r1). Therefore, dV/dT > 0 for all T ≥ 0 so that V is a mono-

tonically increasing function in T . This result holds independently of the degree of price

rigidity ω.

For β < 1, V (0) = V2(0) > 0 (with V2(0) defined in (39)) and limT→∞ V (T ) = 0. For

small values of ω, i.e. a high degree of price flexibility, the total loss V is a decreasing

function in T implying V (T ) < V (0) for all T > 0. With high price flexibility, the welfare

loss under anticipated shocks is smaller than under unanticipated shocks.

For the derivative dV/dT at time T = 0 we obtain

dV

dT

∣

∣

∣

T=0
=

α1

β2(r1 − ϕ)2

{[

1

r1 − r2
−

r1
r1r2 − ϕ2

]

ln r1 −

[

1

r1 − r2
+

r1
r1r2 − ϕ2

]

ln r2

}

(49)

By using ln r2 = −(ln r1 + lnβ), it turns out that

dV

dT

∣

∣

∣

T=0
> 0 ⇔ 2

(

1

β
− ϕ2

)

ln r1 +
(

r21 − ϕ2
)

lnβ > 0 (50)

A rising ω induces a fall in the unstable eigenvalue r1 because dκ/dω < 0. Since the fall

in r21 is stronger than the decrease in ln r1, and 1/β −ϕ2 > 0, inequality (50) is fulfilled if

the degree of price rigidity ω is sufficiently large. In this case, V (T ) starts to rise and due

to limT→∞ V (T ) = 0 its development must be hump-shaped implying the existence of an

upper bound T ∗

c > 0 such that V (T ) > V (0) > 0 for all T < T ∗

c .

The value of the upper bound T ∗

c is the positive solution to the equation V (T ) = V (0),

where V (0) = V2(0) is given by (39). This leads to the equation

1 −

(

r2
r1

)T

=
[

(r1r2)
T − 1

] r1(r1 − r2)

r1r2 − ϕ2
(51)
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Equation (51) can be written as

βT r2T
1

[

βr21

(

1 −
1

βT

)

+
1

βT
− βϕ2

]

= 1 − βϕ2 ⇔ (52)

r2T
1

[

βT+1
(

r21 − ϕ2
)

+
(

1 − βr21
)]

= 1 − βϕ2 (53)

so that T ∗

c is also the positive solution of (52) and (53). The value of T ∗

c is dependent on

ω and β. A rising ω (a higher degree of price rigidity) lowers the unstable eigenvalue r1

so that the left-hand side of equation (52) is decreased, while the right-hand side remains

unchanged. Since βT r2T
1 = (r1/r2)

T is increasing in T , equation (52) implies that the

solution value T ∗

c must increase if ω rises. Conversely, a higher degree of price flexibility

induces a fall in T ∗

c . For sufficiently small values of ω, the only solution to (53) is T ∗

c = 0

(so that V (T ) < V (0) for all T > 0). If a positive solution T ∗

c to (53) exists, then it is also

an increasing function in the discount factor β with T ∗

c = ∞ if β = 1.

Sketch of the Proof of Proposition 4. Consider VD (given by (30)) as function in T .

Then

VD(0) =
α1α2[α2 + α1κ

2]

[α2(1 − βϕ) + α1κ2]2
1

1 − βϕ2
> 0 (54)

and

lim
T→∞

VD(T ) =















0 if β < 1

α1α2[α2+α1κ2]
[α2(1−βϕ)+α1κ2]2

(

1
r2

D
−1

+ 1
1−ϕ2

)

> VD(0) > 0 if β = 1

(55)

The partial loss function

V D
2 (T ) =

α1α2[α2 + α1κ
2]

[α2(1 − βϕ) + α1κ2]2
βT

1 − βϕ2
(56)

has the properties

V D
2 (0) = VD(0) (57)
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lim
T→∞

V D
2 (T ) = 0 if β < 1 (58)

dV D
2

dT
= (lnβ)V D

2 (T ) < 0 if β < 1 for all 0 ≤ T <∞ (59)

For β = 1, the function V D
2 (T ) is constant (independent of T ).

The partial loss function V D
1 (T ), given by

V D
1 (T ) =

α1α2[α2 + α1κ
2]

[α2(1 − βϕ) + α1κ2]2
r−2T
D − βT

1 − βr2D
(60)

has similar properties as the corresponding function V1(T ) under the policy regime timeless

perspective commitment:

V D
1 (0) = 0 (61)

lim
T→∞

V D
1 (T ) =















0 if β < 1

α1α2[α2 + α1κ
2]

[α2(1 − βϕ) + α1κ2]2
1

r2D − 1
> 0 if β = 1

(62)

The first derivative with respect to T

dV D
1 (T )

dT
=

α1α2[α2 + α1κ
2]

[α2(1 − βϕ) + α1κ2]2
1

1 − βr2D

[

−2(ln rD)r−2T
D − (lnβ)βT

]

(63)

is positive at time T = 0, since 1 − βr2D < 0 and −2 ln rD − lnβ < 0 due to rD > 1 ≥ β.

In the case β < 1, the evolution of V D
1 (T ) is hump-shaped with a maximum value at

time T ∗

d which is the solution to the equation

2(ln rD)r−2T
D + (lnβ)βT = 0 (64)

Equation (64) is equivalent to

−
2 ln rD
lnβ

= (βr2D)T (65)
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with the solution

T ∗

d =

ln

[

−
2 ln rD
lnβ

]

ln(βr2D)
> 0 (66)

The total loss function VD(T ) = V D
1 (T )+V D

2 (T ) has a similar shape as the correspond-

ing function V (T ) under timeless perspective commitment. In the limiting case β = 1, it

is overall increasing. For β < 1, it is hump-shaped, if the degree of price flexibility is not

too large, while it is monotonically decreasing in T if the value of ω is small. For small

values of ω, the derivative of VD at time T = 0 is negative, while it is positive if ω is

sufficiently large. For the sake of brevity, the proof for the case of simple (optimal) Taylor

rules is presented in the mathematical appendix.

The Propositions 1 to 3 follow from two opposing effects on the welfare loss which head

in opposite directions with increasing lead time T . On the one hand, the size of the initial

jumps of the forward-looking variables xt and πt, taking place at the time of anticipation,

is inversely related to the time span between anticipation and realization of the cost-push

shock. The longer the lead time T , the smaller the responses of output and inflation

are on impact. Hence, the contribution of this anticipation effect to the welfare loss V

decreases with increasing T . On the other hand, the persistence effect of the cost-push

shock on the target variables xt and πt is increasing in T . Thereby, we depart from the

usual approach of measuring persistence by the speed of dying out. Instead – and in the

spirit of the measure of quantitative inertia proposed by Merkl and Snower (2009) – we

measure persistence as the total variation of a variable over time, i.e. its intertemporal

deviation from the respective initial steady state. For example, the persistence of the price

level pt is given by
∑

∞

t=0 |pt − p0| where the initial steady state can be normalized to zero.

In the appendix, we derive the persistence of pt, xt, and πt under the optimal monetary

policy regimes commitment and discretion. We then show that persistence is smaller in

the case of unanticipated shocks than in the case of anticipated shocks.

For the purpose of illustration, we numerically simulated our solutions by using a

standard calibration. The time unit is one quarter. The discount rate is equal to β = 0.99,
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implying an annual steady state real interest rate of approximately 4 percent. The inverse

of the intertemporal elasticity of substitution is set to σ = 2. We set η = 1 implying a

quadratic disutility of labor. The Calvo parameter ω is set to either 0.25 implying an

average duration of price contracts of four months or to 0.75 implying an average duration

of price contracts of one year. The weights in the loss function are set to α1 = 1 and

α2 = 0.5, reflecting the objective of flexible inflation targeting.4 Finally, we assume the

cost-push shock to be persistent and choose ϕ = 0.5.

Figure 1 depicts the impulse response functions of inflation, output gap, and price level

in the case of low (ω = 0.25) and high (ω = 0.75) price rigidity under the optimal monetary

policy with timeless perspective commitment on the left and right column, respectively.

Solid lines with stars denote responses to a cost-push shock that unexpectedly emerged

in period t = 0, while solid lines with circles denote responses to a cost-push shock whose

realization in period T = 2 is anticipated in period t = 0.

– Figure 1 about here –

We first consider the empirically plausible case of high price rigidity. In the case of an

unanticipated cost-shock, both the price level and the inflation rate rise, whereas output

falls in response to the realization of an increase in the costs of production.5 Subsequently,

all variables converge in a hump-shaped fashion to their respective steady state values.

Anticipated cost shocks have two effects, namely the anticipation effect which reflects

the change in xt, πt, and pt in response to the anticipation of a future change in costs

and the realization effect which occurs when the anticipated change in costs actually takes

place. Under the optimal monetary policy with commitment, output starts to decline and

prices begin to rise in response to the anticipation of a future increase in the production

costs. Both variables respond in a hump-shaped fashion, peaking at the date of realization.

The increase in prices causes inflation to jump at the time of anticipation, peaking at the

date of realization and then returning in a hump-shaped fashion to its initial steady state

4Note that our results hold for all α1 > 0 and α2 > 0. We choose these often used, but not fully microfounded
values, only for the purpose of illustration.

5We could think about this cost-push shock as an exogenous rise in wage mark-ups (see, for example, Gaĺı
(2008)).
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level.

In the case of low price rigidity, an unanticipated cost shock causes an instantaneous

rise in prices and drop in output. Subsequently, both variables converge monotonically to

their initial steady state levels. After the initial jump, inflation falls sharply and converges

from below to its pre-shock level. The announcement of a future rise in costs has negligible

anticipation effects when prices are highly flexible. The reason is that the price setting

problem of firms becomes more of an atemporal (static) nature when the Calvo parameter

ω is decreased. In this case firms know that they will be able – with a high degree of prob-

ability – to raise their price when the anticipated shock eventually materializes in period

T . Thus both, output and prices change only slightly in response to an announcement or

anticipation of future cost-push shocks.

Regardless of the degree of price rigidity, Figure 1 illustrates that the initial jumps of

inflation, output gap and price level are greater in the case of unanticipated (T = 0) than

in the case of anticipated shocks (T = 2). On the other hand, anticipated shocks amplify

the persistence of pt, xt, and πt when compared to unanticipated shocks.6

Figure 2 illustrates the welfare loss V = V (T ) in the case β = 1. Without time

discounting in the intertemporal loss function, the persistence effect always dominates the

anticipation effect so that Proposition 1 holds. In Figure 2, the total loss V = V (T ) is an

overall increasing function in T if β = 1.

– Figure 2 about here –

If future deviations of the state variables from their initial steady state levels are dis-

counted, the contribution of the initial jumps of output and inflation for the determination

of the total loss becomes more important. The same holds for an increasing degree of price

flexibility 1−ω, since the persistence of prices, output and inflation is a decreasing function

of 1−ω. If the degree of price flexibility is high, the value of the total loss is almost com-

pletely determined by the size of the initial jumps of xt and πt which in turn is inversely

proportional to the lead time T . With a sufficiently high degree of price flexibility, the

6This result also holds in the special case ϕ = 0, i.e. if the shock exhibits no serial correlation. It is well-
known that even in this case the optimal precommitment policy introduces inertia in the impulse response
functions.
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total loss under unanticipated cost-push shocks is greater than the loss under anticipated

shocks so that Proposition 3 holds. This result is also illustrated in Figure 3, where V (T )

is a monotonically decreasing function in the lead time T if the degree of price rigidity ω

is very small.

– Figure 3 about here –

From an empirical point of view, the parameter ω is not that small so that the devel-

opment of the impulse response functions shows inertia or strong serial correlation. Then,

if the time span between the anticipation and the implementation of the cost-push shock

is not too large, the persistence effect dominates and the value of the total loss V (T ) is

greater than V (0). This is illustrated in Figure 3, where the loss function V (T ) evolves in

a hump-shaped manner and is monotonically increasing for small values of T .

Propositions 1 to 3 are independent of the chosen optimal monetary policy regime.

They hold under timeless perspective commitment as well as under discretion (see Figure

4 and 5 for a numerical visualization). They also hold under simple monetary policy rules

(such as Taylor-type rules or a money growth peg).

– Figure 4 and 5 about here –

In order to check whether the welfare-reducing effects of anticipations hold for empiri-

cally plausible degrees of nominal rigidity, we compute the critical anticipation values T ∗

c

(commitment) and T ∗

d (discretion). Table 1 depicts the values of T ∗

c and T ∗

d for a persistent

cost-push shock (ϕ = 0.5) and a one-off cost-push shock (ϕ = 0).

– Table 1 about here –

Table 1 shows that the anticipation of cost-push shocks dampens the welfare loss

induced by such shocks but only for empirically unrealistic degrees of nominal rigidity.

For the widely used values of ω = 0.75 or ω = 0.66, the anticipation period or lead time T

must be extremely large to obtain a welfare gain from anticipation. Under commitment

and a value for ω = 0.75, the loss under an anticipated shock is smaller than the loss

under an unanticipated shock of same magnitude when the shock is anticipated to take
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place in T ∗

c = 54 (for ϕ = 0.5) or T ∗

c = 66 (for ϕ = 0) quarters. Even larger values

are obtained under optimal discretionary policy. A Calvo parameter of 0.5 represents the

lower bound in the range of values that are reported in the literature. In this case and

under the monetary policy regime commitment, the anticipation of future cost shocks has

a welfare-enhancing effect if the lead time is larger or equal to two quarters for persistent

and three quarters for one-off shocks, respectively. Under discretionary monetary policy,

these critical values are three and four quarters.

Our simulations illustrate that for a wide range of empirically realistic degrees of

nominal rigidities (i.e., ω ≥ 0.5) in conjunction with a plausible length for the anticipation

period, the welfare loss of anticipated cost shocks exceeds the welfare loss of unanticipated

cost shocks.

4 Conclusion

In this paper we investigated the welfare effects resulting from the anticipation of future

shocks. In particular, we analyzed the welfare loss for different lengths of the time span

between the anticipation and the realization of cost-push shocks. This includes the fre-

quently used case of unanticipated cost-push shocks. Our analysis is based on the canonical

New Keynesian model with a monetary authority that seeks to minimize a quadratic loss

function in inflation and the output gap.

We emphasize the role of nominal rigidities for the welfare effects of anticipations.

We have shown that for empirically plausible degrees of nominal rigidity, anticipated

cost shocks entail higher welfare losses than unanticipated cost shocks. The anticipation

of a future cost-push shock dampens the volatility of output and inflation only under

the assumption that prices are highly flexible. These results hold independently of the

monetary policy regime (timeless perspective commitment, discretion, or (optimal) simple

rules).

Our results imply that the knowledge about the realization of future cost shocks is in

general welfare-reducing. The question remains why rational agents do not simply ignore

this information. However, this would be inconsistent with the profit-maximizing behavior
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of individual firms and the utility-maximizing behavior of individual households on which

our model is based. In fact, the firm’s optimality condition necessitates an increase in the

prices in response to the anticipation of a future rise in costs. By simply ignoring this

information, the firm would make a loss.

Hence, our results reveal a contradiction between the optimal behavior of individuals

and the optimum from a social point of view.
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Mathematical Appendix

Optimal timeless perspective precommitment policy

The solution time path of the price level pt under the optimal timeless perspective pre-

commitment policy can be derived from the solution of πt due to

pt =
t
∑

k=0

πk (A1)

We then obtain for t ≤ T :

pt =
1

β

1

r1 − ϕ

1

r1 − r2
r−T
1

t
∑

k=0

[

(r1 − 1)rk
1 − (r2 − 1)rk

2

]

(A2)

=
1

β

1

r1 − ϕ

1

r1 − r2
r−T
1

[

rt+1
1 − rt+1

2

]

and for t ≥ T

pt =
T−1
∑

k=0

πk +
t
∑

k=T

πk (A3)

=
1

β

1

r1 − ϕ

1

r1 − r2
r−T
1

[

rT
1 − rT

2

]

+
1

β

1

r1 − ϕ

1

r2 − ϕ
·

·
t
∑

k=T

{

(1 − ϕ)ϕk−T −
(r1 − ϕ)r−T

2 − (r2 − ϕ)r−T
1

r1 − r2
(1 − r2)r

k
2

}

=
1

β

1

r2 − ϕ

1

r1 − r2
rt+1−T
2 −

1

β

1

r1 − ϕ

1

r1 − r2
r−T
1 rt+1

2 −
1

β

1

r1 − ϕ

1

r2 − ϕ
ϕt+1−T

Obviously,

lim
t→∞

pt = 0 for all T ≥ 0 (A4)

and

p0 =
1

β

1

r1 − ϕ
r−T
1 = π0 > 0 (A5)

so that the size of the initial jump in p is inversely proportional to the lead time T .
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Similar results hold for the state variables xt and πt. Since

t
∑

k=0

(xk − xk−1) = xt (A6)

equation (6) implies

pt =
t
∑

k=0

πk = −
α2

α1κ

t
∑

k=0

(xk − xk−1) = −
α2

α1κ
xt (A7)

so that pt > 0 if and only if xt < 0. The optimal policy under timeless perspective implies

pt > 0 for all 0 ≤ t <∞ so that xt < 0 for all t <∞.

In the following, we show that the persistence or total variation of pt is positive corre-

lated with T , i.e.

∞
∑

t=0

pt

∣

∣

∣

T=0
<

∞
∑

t=0

pt

∣

∣

∣

T>0
for all T > 0 (A8)

where the infinite sum
∑

∞

t=0 pt

∣

∣

∣

T>0
is an increasing function in T .

The persistence measure used here is based on the deviation of pt from its initial

steady state level p0, where the deviation |pt − p0| is calculated both for t < T and t ≥ T .

Thereafter the differences |pt − p0| are summed up. Since p0 = 0 and pt > 0 for all t we

must determine the infinite sum
∑

∞

t=0 pt.

Inequality (A8) holds although the initial jump of pt is a negative function in T . To

prove the inequality note that

∞
∑

t=0

pt

∣

∣

∣

T=0
=

1

β(r1 − ϕ)(1 − r2)(1 − ϕ)
(A9)

T
∑

t=0

pt

∣

∣

∣

T>0
=

1

β(r1 − ϕ)(r1 − r2)
r−T
1

[

r1
1 − rT+1

1

1 − r1
− r2

1 − rT+1
2

1 − r2

]

(A10)
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and

∞
∑

t=T+1

pt

∣

∣

∣

T>0
=

1

β(r2 − ϕ)(r1 − r2)
r1−T
2

rT+1
2

1 − r2
−

1

β(r1 − ϕ)(r1 − r2)
r−T
1 r2

rT+1
2

1 − r2
(A11)

−
1

β(r1 − ϕ)(r2 − ϕ)
ϕ1−T ϕ

T+1

1 − ϕ

so that

∞
∑

t=0

pt

∣

∣

∣

T>0
=

1

β(r1 − ϕ)(r1 − r2)

[

r1
1 − r1

(

r−T
1 − r1

)

−
r2r

−T
1

1 − r2

]

(A12)

+
1

β(r2 − ϕ)

[

1

r1 − r2

r22
1 − r2

−
1

r1 − ϕ

ϕ2

1 − ϕ

]

After some tedious manipulations, we obtain

∞
∑

t=0

pt

∣

∣

∣

T>0
>

∞
∑

t=0

pt

∣

∣

∣

T=0
⇔ 1 − r−T

1 > 0 (A13)

Since r1 > 1, the last inequality is fulfilled. Note that the total variation of pt, i.e.

∑

∞

t=0 pt

∣

∣

∣

T>0
is an increasing function in T . This follows from equation (A12), since the

derivative of r1

1−r1
r−T
1 − r2

1−r2
r−T
1 with respect to T is positive. An implication of inequality

(A13) is

∞
∑

t=0

|xt|
∣

∣

∣

T=0
<

∞
∑

t=0

|xt|
∣

∣

∣

T>0
(A14)

since

|xt| =
α1κ

α2
pt (A15)

The persistence of output in the case of anticipated cost-push shocks is therefore stronger

than in the case of unanticipated shocks.

A similar result can be shown for the inflation rate πt if the limiting case ϕ = 0 is
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considered. We then obtain for T = 0

πt =















1 − (1 − r2) = r2 if t = 0

−(1 − r2)r
t
2 < 0 if t > 0

(A16)

implying

∞
∑

t=0

πt = π0 +
∞
∑

t=1

πt = r2 − (1 − r2)
∞
∑

t=1

rt
2 (A17)

= r2 − (1 − r2)

[

1

1 − r2
− 1

]

= r2 − r2 = 0

and

∞
∑

t=0

|πt|
∣

∣

∣

T=ϕ=0
= r2 + (1 − r2)

∞
∑

t=1

rt
2 = 2r2 (A18)

In the case T > 0 and ϕ = 0, we obtain

- for t ≤ T :

πt =
r2

r1 − r2
r−T
1

[

(r1 − 1)rt
1 − (r2 − 1)rt

2

]

> 0 (A19)

- for t > T :

πt = −
r1r

−T
2 − r2r

−T
1

r1 − r2
(1 − r2)r

t
2 < 0 (A20)

Then

T
∑

t=0

πt =
r2

r1 − r2
r−T
1

T
∑

t=0

[

(r1 − 1)rt
1 − (r2 − 1)rt

2

]

=
r2

r1 − r2
r−T
1

[

rT+1
1 − rT+1

2

]

(A21)

and

∞
∑

t=T+1

πt = −
1 − r2
r1 − r2

[

r1r
−T
2 − r2r

−T
1

] rT+1
2

1 − r2
= −

r2
r1 − r2

r−T
1

[

rT+1
1 − rT+1

2

]

(A22)
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so that

∞
∑

t=0

πt = 0 (A23)

and

∞
∑

t=0

|πt|
∣

∣

∣

T>0

ϕ=0

= 2
r2

r1 − r2
r−T
1

[

rT+1
1 − rT+1

2

]

(A24)

Now

r2
r1 − r2

r−T
1

[

rT+1
1 − rT+1

2

]

> r2 ⇔ r2
[

rT
1 − rT

2

]

> 0 (A25)

Due to r1 > 1 > r2 > 0 the last inequality is met so that

∞
∑

t=0

|πt|
∣

∣

∣

T=ϕ=0
<

∞
∑

t=0

|πt|
∣

∣

∣

T>0

ϕ=0

(A26)

The case ϕ > 0 is more difficult to analyze since πt can take both positive and negative

values for t > T > 0. If T = 0, πt changes sign immediately after the initial jump. Since

πt =
1

β(r1 − ϕ)(r2 − ϕ)

[

(1 − ϕ)ϕt − (1 − r2)r
t
2

]

(if T = 0) (A27)

we obtain

π0 =
1

β(r1 − ϕ)
> 0 (A28)

and

∞
∑

t=1

πt

∣

∣

∣

T=0
=

1

β(r1 − ϕ)(r2 − ϕ)

[

(1 − ϕ)
∞
∑

t=1

ϕt − (1 − r2)
∞
∑

t=1

rt
2

]

(A29)

=
1

β(r1 − ϕ)(r2 − ϕ)
(ϕ− r2) = −

1

β(r1 − ϕ)
= −π0
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so that

∞
∑

t=0

|πt|
∣

∣

∣

T=0
= 2

1

β(r1 − ϕ)
(A30)

In the case T > 0, πt is positive for 0 ≤ t ≤ T and due to (13) we obtain

T
∑

t=0

πt =
1

β(r1 − ϕ)(r1 − r2)
r−T
1

[

(r1 − 1)
1 − rT+1

1

1 − r1
− (r2 − 1)

1 − rT+1
2

1 − r2

]

(A31)

=
r1

β(r1 − ϕ)(r1 − r2)

[

1 −

(

r2
r1

)T+1
]

> 0

(since r1 > 1 > r2 > 0). If t > T , πt is negative for sufficiently large values of t. For small

values of t > T , πt may be positive. Due to

lim
t→∞

pt = 0 and pt =
t
∑

k=0

πk (A32)

we must have

∞
∑

t=0

πt = 0 (A33)

so that

∞
∑

t=T+1

πt = −
T
∑

t=0

πt < 0 (A34)

The last equation also follows from (15). With

ψ = −
(r1 − ϕ)r−T

2 − (r2 − ϕ)r−T
1

r1 − r2
(A35)
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we obtain

∞
∑

t=T+1

πt =
1

β(r1 − ϕ)(r2 − ϕ)

[

(1 − ϕ)ϕ−T
∞
∑

t=T+1

ϕt + ψ(1 − r2)

∞
∑

t=T+1

rt
2

]

(A36)

=
1

β(r1 − ϕ)(r2 − ϕ)

[

(1 − ϕ)ϕ−T ϕ
T+1

1 − ϕ
+ ψ(1 − r2)

rT+1
2

1 − r2

]

= −
r1

β(r1 − ϕ)(r1 − r2)

[

1 −

(

r2
r1

)T+1
]

= −
T
∑

t=0

πt < 0

Therefore,

T
∑

t=0

πt

∣

∣

∣

T>0
−

∞
∑

t=T+1

πt

∣

∣

∣

T>0
= 2

T
∑

t=0

πt

∣

∣

∣

T>0
>

∞
∑

t=0

|πt|
∣

∣

∣

T=0
= 2π0

∣

∣

∣

T=0
⇔ (A37)

T
∑

t=0

πt

∣

∣

∣

T>0
> π0

∣

∣

∣

T=0
⇔

rT
1 > rT

2

The last inequality is met due to r1 > 1 > r2 > 0. Since

−
∞
∑

t=T+1

πt

∣

∣

∣

T>0
≤

∞
∑

t=T+1

|πt|
∣

∣

∣

T>0
(A38)

the stronger persistence in the case of anticipated shocks follows:

∞
∑

t=0

|πt|
∣

∣

∣

T>0
=

T
∑

t=0

πt +
∞
∑

t=T+1

|πt| ≥
T
∑

t=0

πt −
∞
∑

t=T+1

πt >
∞
∑

t=0

|πt|
∣

∣

∣

T=0
(A39)

Note that for arbitrary T > 0

π0

∣

∣

∣

T=0
<

T
∑

t=0

πt

∣

∣

∣

T>0
(A40)

but

πt

∣

∣

∣

T>0
< π0

∣

∣

∣

T=0
for all 0 ≤ t ≤ T (A41)
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In particular,

πT

∣

∣

∣

T>0
< π0

∣

∣

∣

T=0
(A42)

since

1

β(r1 − ϕ)(r1 − r2)

[

(r1 − 1) − (r2 − 1)

(

r2
r1

)T
]

<
1

β(r1 − ϕ)
⇔ (A43)

(

r2
r1

)T

< 1

Since the last equation holds, the value of the inflation rate at the time of implementation

of the cost-push shock is smaller in the case of anticipated compared to unanticipated

shocks.7

Optimal policy under discretion

For all 0 ≤ ϕ < 1, the adjustment processes of xt and πt in the case of anticipated cost-push

shocks show a stronger persistence than in the case T = 0. With the abbreviation

φ̃ =
α2

α2 + α1κ2 − α2βϕ
> 0 (A44)

we have

∞
∑

t=0

|πt|
∣

∣

∣

T=0
= φ̃

∞
∑

t=0

ϕt =
φ̃

1 − ϕ
(A45)

7This result holds under the optimal timeless perspective precommitment policy. Under the policy regime
discretion we have (cf. (29))

π0

∣

∣

∣

T=0

= πT

∣

∣

∣

T>0

=
α2

α2 + α1κ2 − α2βϕ
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and

∞
∑

t=0

|πt|
∣

∣

∣

T>0
=

T−1
∑

t=0

πt

∣

∣

∣

T>0
+

∞
∑

t=T

πt

∣

∣

∣

T>0
(A46)

= φ̃
1

1 − ϕ
+ φ̃

1 − r−T
D

rD − 1
> φ̃

1

1 − ϕ
=

∞
∑

t=0

|πt|
∣

∣

∣

T=0

since rD > 1 and 0 < r−T
D < 1 if T > 0. An analogous result holds for xt.

The policy regime discretion implies

∞
∑

t=0

πt

∣

∣

∣

T=0
=

∞
∑

t=T

πt

∣

∣

∣

T>0
(A47)

and

∞
∑

t=0

xt

∣

∣

∣

T=0
=

∞
∑

t=T

xt

∣

∣

∣

T>0
(A48)

so that the stronger persistence of πt and xt in the case T > 0 is due to the anticipation

effects
∑T−1

t=0 πt > 0 and
∑T−1

t=0 xt < 0.

The solution time path for the price level pt results from

pt =
t
∑

k=0

πk (A49)

For 0 ≤ t ≤ T we obtain

pt =
α2

α2 + α1κ2 − α2βϕ

t
∑

k=0

rt−T
D =

α2

α2 + α1κ2 − α2βϕ
r−T
D

1 − rt+1
D

1 − rD
(A50)

and for t ≥ T

pt =
T−1
∑

k=0

πk +
∞
∑

k=T

πk =
α2

α2 + α1κ2 − α2βϕ

[

r−T
D

1 − rT
D

1 − rD
− ϕ−T ϕ

t+1 − ϕT

1 − ϕ

]

(A51)
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with

lim
t→∞

pt =
α2

α2 + α1κ2 − α2βϕ

[

1 − r−T
D

rD − 1
+

1

1 − ϕ

]

> 0 (A52)

Note that the limit value of pt is a positive function in T . It is well-known that a tem-

porary cost-push shock yields a permanent rise in the price level under the policy regime

discretion. By contrast, under the optimal timeless perspective precommitment policy

there is only a temporary rise in the price level.

Total loss under a simple rule

We can also determine the total loss under an ad hoc Taylor rule

it = δππt + δxxt (A53)

with exogenously given coefficients δπ and δx. It is well-known that under the condition

δπ > 1 and δx ≥ 0 the baseline New Keynesian model satisfies the Blanchard/Kahn (1980)

saddlepath condition. The state equations

A







Etxt+1

Etπt+1






= B

(

xt

πt

)

+

(

0

−1

)

kt (A54)

with

A =







1 1
σ

0 β






, B =







1 + δx

σ
δπ

σ

−κ 1






(A55)

have two unstable eigenvalues belonging to the state matrix A−1B. Solving the state

equations forward we obtain with

vt =

(

xt

πt

)

, P = B−1A, q =

(

0

−1

)

(A56)

the solution time paths in the case of anticipated cost-push shocks:
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- For t ≥ T

vt = −

(

∞
∑

s=0

ϕsP s

)

B−1qϕt−T = −[B − ϕA]−1qϕt−T (A57)

- For t < T

vt = −

(

∞
∑

s=T−t

ϕsP s

)

B−1qϕt−T = −[I2×2 − ϕP ]−1P T−t B−1q (A58)

The solution formula for t < T also holds in t = T since

vT = −[B − ϕA]−1q = −[I2×2 − ϕP ]−1B−1 (A59)

The total loss under the simple Taylor rule (VSTR) can be written as

VSTR =
∞
∑

t=0

βtv′t







α2 0

0 α1






vt = V STR

1 + V STR
2 (A60)

where

V STR
1 =

T−1
∑

t=0

βtv′t







α2 0

0 α1






vt (A61)

and

V STR
2 =

∞
∑

t=T

βtv′t







α2 0

0 α1






vt (A62)

Define

M = (B − ϕA)−1 =







m11 m12

m21 m22






(A63)
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Then

V STR
2 =

∞
∑

t=T

βtq′M ′







α2 0

0 α1






Mqϕ2(t−T ) (A64)

= q′M ′







α2 0

0 α1






Mqϕ−2T

(

∞
∑

t=T

βtϕ2t

)

=
(βϕ2)T

1 − βϕ2
ϕ−2T q′M ′







α2 0

0 α1






Mq

=
βT

1 − βϕ2
tr






M ′







α2 0

0 α1






Mqq′







where

M ′







α2 0

0 α1






M =







α2m
2
11 + α1m

2
21 α2m11m12 + α1m21m22

α2m11m12 + α1m21m22 α2m
2
12 + α1m

2
22






(A65)

Since

qq′ =







0 0

0 1






(A66)

we obtain

tr






M ′







α2 0

0 α1






Mqq′






= α2m

2
12 + α1m

2
22 (A67)

The definition of the matrices A and B implies

B − ϕA =







1 + δx

σ
− ϕ δπ

σ
− ϕ

σ

−κ 1 − ϕβ






(A68)

∆ = |B − ϕA| =

(

1 +
δ

σ
− ϕ

)

(1 − ϕβ) + κ

(

δπ
σ

−
ϕ

σ

)

=
1

σ
b (A69)
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where

b = (1 − ϕ)(1 − ϕβ)σ + δx(1 − ϕβ) + κ(δπ − ϕ) > 0 if δπ > 1 and δx > 0 (A70)

Then

M = (B − ϕA)−1 =
1

b







σ(1 − ϕβ) −(δπ − ϕ)

σκ σ(1 − ϕ) + δx






(A71)

so that

m12 = −
1

b
(δπ − ϕ), m22 =

1

b
[σ(1 − ϕ) + δx] (A72)

and

V STR
2 =

βT

1 − βϕ2

1

b2
[

α2(δπ − ϕ)2 + α1(σ(1 − ϕ) + δx)2
]

(A73)

The loss function V STR
2 = V STR

2 (T ) hat the same properties as the corresponding function

under discretion (V D
2 (T )).

To calculate the loss V STR
1 , set

Q = [I2×2 − ϕP ]−1 (where P = B−1A) (A74)

and

q̃ = B−1q (A75)

Then

vt = −QP T−tq̃ for t ≤ T (A76)
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and

V STR
1 = q̃′







T−1
∑

t=0

βt(P T−t)′Q′







α2 0

0 α1






QP T−t






q̃ (A77)

= q̃′







T
∑

k=1

βT−k(P k)′Q′







α2 0

0 α1






QP k






q̃

= βT q̃′W̃ q̃ = βT tr(W̃ q̃q̃′)

where

q̃q̃′ = B−1qq′(B−1)′ = B−1







0 0

0 1






(B−1)′ (A78)

=
1

(σ + δx + κδπ)2







δ2π −δπ(σ + δx)

−δπ(σ + δx) (σ + δx)2







and

W̃ =

T
∑

k=1

β−k(P k)′Q′







α2 0

0 α1






QP k (A79)

W̃ satisfies the following matrix equation. Let

D̃ = Q′







α2 0

0 α1






Q (A80)

The definition of W̃ then implies

W̃ = β−1P ′D̃P +
T
∑

k=2

β−k(P k)′D̃P k (A81)

= β−1P ′D̃P +
T−1
∑

k=1

β−(k+1)(P k+1)′D̃P k+1

= β−1P ′D̃P − β−(T+1)(P T+1)′D̃P T+1 + β−1P ′W̃P
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or in compact representation

W̃ = H̃ + β−1P ′W̃P (A82)

where

H̃ = β−1P ′D̃P − β−(T+1)(P T+1)′D̃P T+1 (A83)

To solve for W̃ , use the vectorization of a matrix and the Kronecker product of matrices.

Since

vec (β−1P ′W̃P ) = [β−1P ′ ⊗ P ′]vec W̃ (A84)

we obtain

vec W̃ − [β−1P ′ ⊗ P ′]vec W̃ = vec H̃ (A85)

with the solution

vec W̃ = [I4×4 − β−1P ′ ⊗ P ′]−1vec H̃ (A86)

where

vec H̃ = vec (β−1P ′D̃P ) − vec (β−(T+1)(P T+1)′D̃P T+1) (A87)

=
(

[β−1P ′ ⊗ P ′] − [β−(T+1)(P T+1)′ ⊗ (P T+1)′]
)

vec D̃

and

vec D̃ = Q′ ⊗Q′vec







α2 0

0 α1






(A88)

= ([I2×2 − ϕP ]−1)′ ⊗ ([I2×2 − ϕP ]−1)′
(

α2 0 0 α1

)

′
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Note that vec D̃ equals vec







α2 0

0 α1






in the special case ϕ = 0. The development of

V STR
1 as function in T is analogous to the loss function V D

1 (T ). Therefore, the total loss

function V STR(T ) = V STR
1 (T ) +V STR

2 (T ) has the same properties as the total loss under

discretion.
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Figure 1: Impulse response functions under optimal policy with timeless perspective
commitment.

Notes: Solid lines with stars denote responses to an unanticipated cost-push shock, solid
lines with circles denote responses to an anticipated cost-push shock. In the case of low
price rigidity, the Calvo parameter ω is set to 0.25; in the case of high price rigidity, ω is
set to 0.75.
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Figure 2: Welfare loss for different lengths of the anticipation period under optimal
timeless perspective commitment policy in the case β = 1.
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Figure 3: Welfare loss for different lengths of the anticipation period under optimal
timeless perspective commitment policy in the case β = 0.99.
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Figure 4: Welfare loss for different lengths of the anticipation period under the optimal
discretionary policy in the case β = 1.
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Figure 5: Welfare loss for different lengths of the anticipation period under the optimal
discretionary policy in case β = 0.99.
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Table 1: Values of the critical lead time T ∗

c
and T ∗

d

Degree of price rigidity ω
Monetary policy 0.75 0.66 0.60 0.55 0.50 0.45 0.40 0.25
With ϕ = 0.5
Commitment 53.09 19.82 9.00 4.23 1.82 0.69 0.16 0
Discretion 125.90 40.41 15.61 6.37 2.42 0 0 0

With ϕ = 0
Commitment 65.78 25.57 11.79 5.59 2.41 0.95 0.28 0
Discretion 146.99 50.77 20.25 8.38 3.20 0 0 0

Note: For an anticipation period 0 < T < T ∗

i it is true that V |T > V |T=0, for T > T ∗

i it is true that

V |T < V |T=0 where i = c, d.
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