

A Service of

ZBW

Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre for Economics

Conwell, Lucas; Eckert, Fabian; Mobarak, Ahmed Mushfiq

Working Paper More roads or public transit? Insights from measuring city-center accessibility

EGC Discussion Papers, No. 1096

Provided in Cooperation with: Yale University, Economic Growth Center (EGC)

Suggested Citation: Conwell, Lucas; Eckert, Fabian; Mobarak, Ahmed Mushfiq (2022) : More roads or public transit? Insights from measuring city-center accessibility, EGC Discussion Papers, No. 1096, Yale University, Economic Growth Center, New Haven, CT

This Version is available at: https://hdl.handle.net/10419/283230

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

WWW.ECONSTOR.EU

Yale University

EliScholar – A Digital Platform for Scholarly Publishing at Yale

Discussion Papers

Economic Growth Center

Fall 11-2022

More Roads or Public Transit? Insights from Measuring City-Center Accessibility

Lucas Conwell Yale University, lucas.conwell@yale.edu

Fabian Eckert University of California - San Diego, fpe@ucsd.edu

Ahmed Mushfiq Mobarak Yale University, ahmed.mobarak@yale.edu

Follow this and additional works at: https://elischolar.library.yale.edu/egcenter-discussion-paper-series

Part of the Growth and Development Commons, Transportation Commons, and the Urban Studies Commons

Recommended Citation

Conwell, Lucas; Eckert, Fabian; and Mobarak, Ahmed Mushfiq, "More Roads or Public Transit? Insights from Measuring City-Center Accessibility" (2022). EGC Discussion Paper 1096.https://elischolar.library.yale.edu/egcenter-discussion-paper-series/1096

This Discussion Paper is brought to you for free and open access by the Economic Growth Center at EliScholar – A Digital Platform for Scholarly Publishing at Yale. It has been accepted for inclusion in Discussion Papers by an authorized administrator of EliScholar – A Digital Platform for Scholarly Publishing at Yale. For more information, please contact elischolar@yale.edu.

More Roads or Public Transit? Insights from Measuring City-Center Accessibility*

Lucas Conwell[†] Fabian Eckert[‡] Ahmed Mushfiq Mobarak[§]

First Version: September 2020 This Version: November 2022

Abstract

We propose a theory-inspired measure of the accessibility of a city's center: the size of the surrounding area from which it can be reached within a specific time. Using publicly-available optimal routing software, we compute these "accessibility zones" for the 109 largest American and European cities, separately for cars and public transit commutes. Compared to European cities, US cities are half as accessible via public transit and twice as accessible via cars. Car accessibility zones are always larger than public transit zones, making US cities more accessible overall. However, US cities' car orientation comes at the cost of less green space, more congestion, and worse health and pollution externalities.

^{*}We thank Nishi Felton, Matthew Murillo, and Ephraim Sutherland for outstanding research assistance. We also thank the audience at the NBER working group meeting on "Transportation Economics in the 21st Century" for insightful comments.

[†]Department of Economics, Yale University; lucas.conwell@yale.edu

[‡]Department of Economics, University of California, San Diego; fpe@ucsd.edu

[§]Department of Economics and School of Management, Yale University; ahmed.mobarak@yale.edu

1. INTRODUCTION

The productive central business districts of the largest U.S. cities account for an outsized share of U.S. economic growth (Moretti, 2012; Ahlfeldt et al., 2020; Eckert et al., 2022). Broadening commuting access to these areas is an important policy objective and requires either housing investments near the CBD or improved transportation infrastructure to allow workers from farther afield to commute in. Expanding housing supply near CBDs has proven difficult due to political resistance, regulations, and land use restrictions (Hsieh and Moretti, 2019; Ganong and Shoag, 2017). This raises the stakes for designing effective transportation policies.

The fact that much of the U.S. highway infrastructure constructed after World War II is now approaching its expiration date (New York Times, Feb. 11, 2022) also opens a rare political window to change the *type* of transportation systems US cities rely on. Should the U.S. repair crumbling roads and highways to enhance car-based mobility or replace them with new public transit infrastructure that re-orients U.S. commuting systems away from their current car dependence?

This paper proposes new measures of CBD accessibility by cars and by public transit, discusses their construction and interpretation, and uses them to inform this transportation debate. We define "accessibility zones" as the size of the surrounding areas from which the CBD can be accessed within a given time window by either car or public transit. We show how our measures are related to commuting efficiency, when interpreted through the lens of the canonical quantitative model of commuting (Monte et al., 2018; Ahlfeldt et al., 2015; Redding and Rossi-Hansberg, 2017). In that framework, larger accessibility zones are associated with higher overall city productivity, for any given distribution of location, destination and mode choices of workers.

Accessibility zones are easy to construct for most cities worldwide using standard travel-routing software. Using Google-maps-style route-planning software, we compute the accessibility zone areas of the 109 largest American and European cities. In particular, we separately compute the areas around cities' CBDs accessible within 0-15, 15-30, 30-45, and 45-60 minutes for public transit and car-based commutes during Wednesday morning rush hour. We use the resulting data set to establish a set of facts about the accessibility of those cities' CBDs. First, public transit accessibility zones are almost twice as large in European cities relative to comparably-sized American cities for any specific time distance. For example, the average size of the area from which CBDs of US cities can be reached within 15-30 minutes by public transit is 34 square kilometers, compared to almost 63 square kilometers in the average European city in our sample.

Second, car accessibility zones are 2.7 times larger in American cities compared to Europe for commutes between 15 and 30 minutes, and that gap is even larger for commutes within 15 minutes. The average US city in our sample boasts 1160 square kilometers from which the CBD can be reached within 15-30 minutes by car; the same area is only 430 square kilometers in Europe.

Third, American cities' public transit accessibility disadvantage appears less severe than what informal public discourse often suggests. While public transit is faster and more widespread in Europe, the average area accessible through a 15-30-minute public transit commute is only about 50-60% larger in European cities. Even when US cities lack trains and subways, their bus-based public transit provision is often relatively effective since it uses the superior road infrastructure that serve cars. The European public transit advantage is more pronounced when comparing across small cities.

Fourth, on average, car accessibility zones are almost an order of magnitude larger than public transit accessibility zones in both Europe and the US. As a result, American cities outperform Europe in terms of *overall accessibility*, given their comparative advantage in cars. The significant investments made in infrastructure to support car-based mobility allow American commuters to have smaller losses in time and productivity than their European counterparts.

Fifth, we show that supporting car commutes forces American cities to allocate more space to car-related infrastructure resulting in a loss in amenities to residents: American cities offer much less green space within city boundaries than European cities.

Sixth, American cities' car-oriented urban design is associated with additional negative externalities. A comparison of the accessibility zone areas during weekday rush hour and Sunday evening shows that heavy car usage slows down everyone's commutes due to congestion. Conversely, broad transit usage during rush hour *speeds up* commutes, which is likely related to the economies of scale in public transit provision. Car orientation of cities is also associated

with worse air pollution, less walking and biking, a larger share of physically inactive people, obesity, cardiovascular and respiratory diseases, and lower life expectancy.

We also combine our accessibility measures with the structure of a quantitative commuting model to conduct a set of partial equilibrium counterfactuals. We use that framework to ask, "What would be the increase in city productivity if a city's accessibility zone area increased by 10%, holding location and mode choices of agents fixed at their values observed in the data?"

We find that enlarging accessibility zone areas is subject to decreasing returns. Since population density falls off from city centers in most cities, each additional accessible square kilometer tends to contain fewer additional commuters. Increasing public transit accessibility zone areas is more ineffective than increasing car areas since public transit usage declines at the expense of car usage as you move further away from the CBD. Increasing the size of transit accessibility zones has minimal effects on city productivity in all but the largest US cities, given the generally low transit usage in most cities.

In the long run, general equilibrium adjustments in mode and location choices could change these predictions. In particular, policies that enlarge accessibility zones would be more effective if workers' location, mode, and destination choices respond.

Overall, our empirical results highlight a crucial tradeoff. US transportation systems are generally more effective at bringing workers from city outskirts into the CBD than most systems in European cities. However, this (car-based) commuting efficiency advantage of American cities comes at a cost to public health and the environment. Our accessibility measure provides a valuable empirical tool for researchers and policymakers to analyze these tradeoffs quantitatively to inform future transportation policy choices.

Related Literature. Our main contribution is a new measure of infrastructureenabled CBD accessibility. A closely related literature in urban planning has studied various notions of urban access beginning with Hansen (1959) and Ingram (1971). The most widely-used measure of "access" in this literature is the average commuting time between workers' residences and their job locations in a city (Wu and Levinson, 2020; Bento et al., 2005). These measures combine (a) the location choices of firms and workers, (b) travel mode choices of workers, and (c) the efficacy of the transportation system to facilitate commutes for each mode. In contrast, our "accessibility zones" conceptually separate the efficiency of the commuting system from the *choices* of firms and workers.

Our approach relies on information on the estimated travel times between arbitrary points using all available transportation infrastructure. An emerging literature in urban economics imports software companies' navigation and routefinding tools to study urban mobility. In pioneering work, Akbar et al. (2021) and Couture et al. (2018) use Google maps' route-finding feature to measure car travel speeds at different times of the day in the US and in India. Kreindler (2022) measures traffic density using GPS records of trips collected via a smartphone app. Our approach is related but different: we combine optimal route planning with an algorithm to aggregate points into areas that fall below a certain travel time threshold.

A broad class of quantitative spatial models of commuting combines commuting costs, mode choices, and the spatial distribution of workers and firms into one "sufficient statistic measure of realized equilibrium commuting access" (e.g., Monte et al., 2018; Tsivanidis, 2022). We show how to decompose this "commuting access" measure into an easy-to-compute statistic on the efficiency of the commuting system – independent of the commuting and residential choices of workers.

The paper has the following structure. In Section 2, we provide a theoretical framework that motivates our accessibility measure and clarifies its interpretation. In Section 3, we describe the construction of accessibility zone areas in the data and present descriptive statistics of driving versus public transit in the US versus Europe. Section 4 discusses the relationship between accessibility zone areas and land use, health, and environmental outcomes.

2. THEORY

In this section, we motivate our accessibility zone measure using a version of the canonical theoretical framework of commuting developed in Ahlfeldt et al. (2015), Monte et al. (2018), and Redding and Rossi-Hansberg (2017).

2.1 A Quantitative Model of Commuting

Setup. We consider a closed city economy inhabited by a mass \overline{L} of agents. The city consists of i = 1, ..., N neighborhoods. Neighborhoods differ in their residential amenities, B_i , labor productivity, Z_i , and mode-specific commuting times to other locations. Each agent chooses a residential location, a work location, and a commuting mode between the two.

Labor Demand. In each neighborhood, a representative firm produces the homogeneous final good using a labor-only technology, $Y_i = Z_i H_i$, where H_i is the total units of labor used in location *i*. Input and output markets are competitive; trade is free. As a result, the final good's price is constant across locations; we choose it as the numeraire. The wage per unit of labor in neighborhood *i* is then $w_i = Z_i$.

Labor Supply. Workers spend their entire income on the final good, enjoy amenities in their residential location, and earn income in their work location. Agents can supply a maximum of 1 unit of labor time in their workplace. Commuting between locations *i* and *j* via mode *m* costs a fraction $\tau_{ij}^m \in (0, 1)$ of that time. The utility of a worker ω who lives in location *i*, works in location *j*, and commutes using mode *m* transportation is given by:

$$V_{ij}^m(\omega) = w_j(1 - \tau_{ij}^m)B_i\eta_{ijm}^\omega,$$

where η_{ijm}^{ω} is a worker-specific preference shifter.

Aggregation. To facilitate aggregation, we assume that agents draw their preference shifters for each location independently from identical Fréchet distributions, $F(\eta) = \exp\{-\eta^{-\kappa}\}$, where $\kappa > 0$ indexes the heterogeneity of tastes for a given workplace-residence-mode combination among agents. With this standard assumption, we can write the fraction of agents that live in location *i* and work in *j* and commute via mode *m* by ϕ_{ij}^m , so that:

(1)
$$\phi_{ij}^{m} = \frac{(B_{i}(1-\tau_{ij}^{m})Z_{j})^{\kappa}}{\sum_{i,j,m}(B_{i}(1-\tau_{ij}^{m})Z_{j})^{\kappa}}$$

We can then solve for the number of workers living in neighborhood i, L_i , and the units of labor supplied to work in location j, H_i :

$$L_i = \sum_{j,m} \phi_{ij}^m \bar{L}$$
 and $H_j = \sum_{i,m} (1 - \tau_{ij}^m) \phi_{ij}^m \bar{L}.$

2.2 Commuting to Central Business Districts

We define the city's central business district as the location with the highest productivity. We index the CBD location with $j^* = \arg \max\{Z_j\}$. Equilibrium labor supply to the CBD can be written as follows:

(2)
$$H_{j^*} = \bar{L} \sum_m \sum_i \phi_{ij^*}^m (1 - \tau_{ij^*}^m) = \bar{L} \sum_m \Theta_{j^*}^m = \bar{L} \Theta_{j^*}$$

where the term $\Theta_{j^*} \in (0,1)$ measures the fraction of labor supply employed in the CBD in equilibrium, and $\Theta_{j^*}^m \in (0,1)$ is the fraction of labor supplied to the CBD via mode m. We refer to $\Theta_{j^*} \in (0,1)$ as the commuting efficiency of the city, and to $\Theta_{j^*}^m$ as the contribution of mode m to overall commuting efficiency. The term Θ_{j^*} also has an intuitive interpretation as the fraction of potential labor supply that is allocated to the most productive location, the CBD, in equilibrium; as a result we also refer to it as CBD labor supply.

Average income per capita in the city is $\overline{W} = \Theta_{j^*} Z_{j^*} + (1 - \Theta_{j^*}) \overline{Z}_{j \neq j^*}$, where $\overline{Z}_{j \neq j^*}$ is a weighted average of the productivity in non-CBD locations. Whenever all agents work in the CBD ($\sum_{i,m} \phi_{ij^*}^m = 1$) and commuting into the CBD is costless ($\tau_{ij^*}^m = 0 \forall i, m$), labor supply to the CBD achieves its full potential, i.e., $\Theta_{j^*} = 1$ so that $H_{j^*} = \overline{L}$, and average income per capita is maximized at Z_{j^*} .

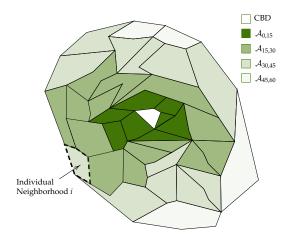
In our theory, indidvidual-specific preferences for workplace-residence-mode combinations imply that even if commuting is costless, some workers choose to work in less productive locations than the CBD so that $\Theta_{j^*} < 1$. When personal preferences vanish ($\kappa \to \infty$), all agents work where the wage net of commuting costs and amenities is highest. In this limit case, Θ_{j^*} is a strictly declining function of commuting costs into the CBD from any origin; welfare is maximized when these costs are zero so that $\Theta_{j^*} = 1$. The economy without personal route preferences provides a natural theoretical benchmark.

2.3 A New Measure of CBD Accessibility

Equations 1 and 2 highlight that equilibrium labor supply into the CBD depends on commuting infrastructure (τ_{ij}^m), commuting mode choices, and the residential locations of workers. In reality, transportation infrastructure improvements require very different policy approaches from attempts to alter mode choices or the residential location decisions of workers. As a result, we focus on transportation infrastructure and propose an empirically tractable measure of the effectiveness of a transportation system independent of workers' choices of residential locations and modes.

To move towards such a measure, we group neighborhoods together on the basis of how long it takes to reach the CBD from them, separately for each mode. In particular, we create sets of locations, $\mathcal{I}_{t,t+\Delta}$, for which the commuting time lies between t and $t + \Delta$ units of time: $\mathcal{I}_{t,t+\Delta} \equiv \{i : \tau_{ij^*} \in \{t, t + \Delta\}\}$. We refer to the collection of locations $\mathcal{I}_{t,t+\Delta}^m$ as $(t, t + \Delta)$ -minute mode-m accessibility zones. We aggregate our expression for commuting efficiency to the level of $(t, t + \Delta)$ mode-m accessibility zones as follows:

$$H_{j^*} = \bar{L} \sum_{m,t} \phi_{tj^*}^m (1 - \bar{\tau}_{t,t+\Delta}^m) \text{ s.t. } \phi_{t,t+\Delta}^m = \sum_{i \in \mathcal{I}_{t,t+\Delta}} \phi_{ij^*}^m; \ \bar{\tau}_{t,t+\Delta}^m = \sum_{i \in \mathcal{I}_{t,t+\Delta}} \frac{\phi_{ij^*}^m}{\phi_{t,t+\Delta}^m} \tau_{ij^*}^m$$


Our measures of CBD accessibility are the total areas of all locations in the $(t, t + \Delta)$ mode-*m* accessibility zone, which we denote $\mathcal{A}_{t,t+\Delta}^m$. Accessibility zones are an intuitive measure of the transportation system's contribution to commuting efficiency. To see this, we decompose our measure of commuting efficiency, Θ_{j^*} , defined in equation 2 as follows:

(3)
$$\Theta_{j^*} = \sum_{m,t} \mathcal{A}_{t,t+\Delta}^m \frac{\phi_{t,t+\Delta}^m}{\mathcal{A}_{t,t+\Delta}^m} (1 - \bar{\tau}_{t,t+\Delta}^m) = \sum_m \underbrace{\sum_{t} \mathcal{A}_{t,t+\Delta}^m \omega_{t,t+\Delta}^m (1 - \bar{\tau}_{t,t+\Delta}^m)}_{\Theta_{j^*}^m}$$

where *t* indexes the accessibility zones. The term $\omega_{t,t+\Delta}^m$ is the population density of agents within the accessibility zone that use mode *m* to commute to the CBD.¹ Note that accessibility zones are additive, e.g., $\mathcal{A}_{0,30}^m = \mathcal{A}_{0,15}^m + \mathcal{A}_{15,30}^m$.

Figure 1 shows an example of a city composed of neighborhoods grouped into

¹Note that a location may be in accessibility zone *t* for mode *m* commutes but in accessibility zone *t'* for mode *m'* commutes because *m'* is slower or faster than *m*.

Notes: The figure shows an example city. Each black-lined polygon corresponds to a neighborhood *i*. The central white neighborhood is the most productive and hence referred to as CBD. A neighborhood's shade of green indicates its associated accessibility zone. Accessibility zones are defined as the set of neighborhoods for which commuting times to the CBD are between *t* and $t + \Delta$ minutes.

different accessibility zones for a single mode. The black-lined polygons are neighborhoods which we indexed by *i* in our model, each associated with an average commuting time of τ_{ij^*} to the CBD. The central neighborhood is the CBD, which is the highest-productivity work location. The green shading indicates which neighborhood belongs to which accessibility zone given its commuting time to the CBD.

We opt for the decomposition in equation 3 for several reasons. First, accessibility zone areas, $\mathcal{A}_{t,t+\Delta}^m$, provide an objective measure of the efficiency of the city's commuting system *independent* of workers' decision where to live and which mode to use - which are instead captured by $\omega_{t,t+\Delta}^m$.² Second, $\mathcal{A}_{t,t+\Delta}^m$ can be computed using publicly available software for almost all cities in the world. Third, the decomposition in equation 3 maps neatly into the different development strategies that policymakers can pursue to improve the CBD's total commuting access: (1) Improve transportation infrastructure to move workers from high-time-distance to low-time-distance accessibility zones, (2) Improve transportation infrastructure to lower average transportation cost within a given accessibility zone, $\bar{\tau}_{tj^*}^m$, (3) Build housing in low-time-distance accessibility zones ($\omega_{0,15}^m$), or (4) Incentivize substitution towards modes with larger accessibility zones (also represented in $\omega_{t,t+\Delta}^m$).

²In other words, $\mathcal{A}_{i,t+\Delta}^m$ is invariant to changes in agents' choices of modes or residence locations; it is only a function of $\tau_{ij^*}^m \forall i$.

Our paper focuses on measuring and describing $\mathcal{A}_{t,t+\Delta}^m$ for actual cities to generate insights that can inform critical transportation policy choice questions. Have some US cities been more successful than others at creating large accessibility zones for their workers? How do accessibility zones compare across different modes of transport? Are US cities systematically worse at creating large accessibility zones compared to cities elsewhere? What can we learn from the cross-section of US cities about the societal implications of enlarging the accessibility zones for cars versus for public transit?

The size of accessibility zones for a given city depends not only on the quality of the physical infrastructure (e.g., streets and rail tracks) but also on the utilization of these routes (e.g., through congestion) and the frequency and interoperability of different transit options. In the next section, we describe how we overcome these measurement challenges and present the accessibility zone areas for a large sample of cities.

3. ACCESSIBILITY ZONES AREAS IN THE DATA

This section describes our process for constructing accessibility zones for 109 large cities in the U.S. and Europe. Tables C.3 and C.4 in the Appendix provide the complete list of cities. We use the accessibility zone areas to derive a set of new facts about the efficiency of commuting systems in the U.S. and Europe.

3.1 From Theory to Measurement

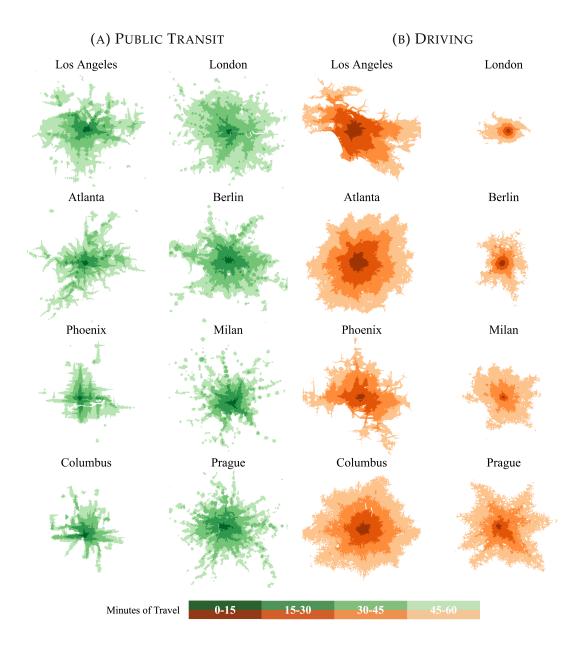
The vast majority of commutes in the cities in our sample occur via either public transit or car, and take less than 60 minutes.³ Accordingly, we focus our measurement on car (m = C) or public transit (m = P) commutes that take less than 60 minutes. We split the 60 minutes into four 15 minute intervals, so that the empirical exercise implements $t = 0, 15, 30, 45, 60, \text{ and } \Delta = 15$ in equation 3. As a result, the empirical counterpart ($\tilde{\Theta}_{j^*}$) to the commuting efficiency measure (Θ_{j^*}) in equation 3 can be written:

(4)
$$\tilde{\Theta}_{j^*} = \sum_{t \in \{0,15,30,45\}} \mathcal{A}_{t,t+15}^C \omega_{t,t+15}^C (1 - \bar{\tau}_{t,t+15}^C) + \mathcal{A}_{t,t+15}^P \omega_{t,t+15}^P (1 - \bar{\tau}_{t,t+15}^P)$$

³Across all the US cities in our sample, 96% of commuters into the CBD use car or public transit; of those only 12% have commutes above 60 minutes.

where $\Theta_{j^*} = \tilde{\Theta}_{j^*} + \xi$ and ξ captures CBD labor supply provided by modes other than cars and public transit, labor supply provided by commutes beyond 60 minutes via any mode, and measurement error.

3.2 Constructing Accessibility Zones


Our model defines the CBD as the location with the highest labor productivity. Data on location-specific productivity is generally not available for cities in the US or around the world. Statistical agencies also generally do not provide a ready-to-use definition of the location of a city's CBD. We follow existing papers and define the center of the CBD as the latitude and longitude coordinates generated by feeding the city's name into Google's Geocoding Application Programming Interface (API) (see Holian and Kahn, 2012; Couture and Handbury, 2020; Couture et al., 2021).⁴ We refer to the area that falls within a one-kilometer radius around these coordinates as the CBD. The median US CBD in our sample accounts for 28% of all employment within a 20km radius around the CBD. 77% of CBDs defined in this way include one of the top-3 highest average income ZIP codes in the respective city.

The ubiquity of modern travel routing software makes computing accessibility zones feasible for most major cities worldwide. Setting the destination to any point within the CBD, software like Google Maps allows users to quickly find the fastest mode-specific route from any origin at any point in the day. An essential feature of such software for public transit is that it uses the actual schedules of all buses, trains, subways, and trams in making route-time predictions. For cars, it takes into account the actual traffic situation.

We first describe how one would use Google maps to construct accessibility zones, given most readers' familiarity with the tool. First, divide the city into parcels of land. The smaller the parcels, the more accurate the geographic delineations of each zone. Use Google Maps to compute the travel time between the centroid of each parcel and the closest point in the CBD, separately for car and public transit commutes. Then group parcels into accessibility zones, $\mathcal{I}_{t,t+\Delta}^m$, depending on the time it takes to commute to the CBD, within 0-15, 15-30, 30-45, or 45-60 minutes, separately for the two modes. Summing the area of all parcels within each time zone (e.g., 0-15) yields the total accessibility zone area, $\mathcal{A}_{t,t+\Lambda}^m$,

⁴Holian and Kahn (2012) report that "although this method of identifying CBDs places considerable trust in Google's potentially ad-hoc definitions of central places, we found them to be quite reasonable in all cases."

Notes: The figure shows the area reachable from a city's central business district within 0-15, 15-30, 30-45, and 45-60 minutes ("accessibility zones") for four US and four European cities, with comparably-sized cities placed next to each other. The left panel shows the accessibility zones for public transit commutes (green), and the right panel shows the accessibility zones for car-based commutes (orange) that arrive in the CBD at 8.45 am on a Wednesday. The (0,15)-minute accessibility zone area has the darkest, and the (45,60)-minute accessibility zone area has the lightest hue. All accessibility zones appear on the same scale.

defined in equation 4.⁵

⁵Each parcel belongs to only one (mutually exclusive) accessibility zone within a mode. However, a parcel could be in the 30-minute zone for car commutes and the 15-minute zone for public transit commutes. Accessibility zones are not necessarily contiguous. For example, workers who live near subway stations can often reach the CBD faster than from other areas

In practice, we use the interface of a software company called "Traveltime, Inc" which automates the process described above.⁶ Traveltime's calculations use publicly-available schedule data for public transit. All major cities' transit networks have public APIs that provide real-time information about arrival and departure times at any given hour of the day. The Traveltime algorithm accounts for waiting times, walking time to and from transit, and time spent traversing stations, using historic walking speed data accounting for intersections and traffic signals. The algorithm also uses "OpenStreetMap," an open-source API that provides data on the complete road infrastructure and street-specific speed profiles for most countries. Our calculations account for traffic congestion patterns using TravelTime's algorithm and data, traffic lights, and the time it takes to park the car at the destination.

We use the Traveltime API to obtain the area from which the CBD of a given city can be reached within 15, 30, 45, and 60 minutes on Wednesday at 8 AM, separately for public transit users and drivers. We then subtract the (0,15)-minute area from the (0,30)-minute area to obtain the (15,30) accessibility zone area and so on, to create the $\mathcal{A}_{t,t+\Delta}^m$ for all cities in our sample. An advantage of using Traveltime over Google Maps is that the former creates "smooth zones," i.e., there is no need to create a grid of locations and compute centroids.

We explore the robustness of the resulting accessibility zones to alternative construction procedures. First, we re-do our exercise using a different software provider, https://www.targomo.com/, which provides the same service. Second, instead of relying on the proprietary software of a company, we construct accessibility zones using the GoogleMaps API and Python.⁷ Table A.1 in the Appendix shows the high correlation between the areas of accessibility zones constructed using the different approaches.

closer to the CBD in terms of their straight-line distance.

⁶See https://app.traveltime.com/ for the web app to use this data product. The app works for any country for which online mapping services are available.

⁷We use GoogleMaps API to obtain mode-specific travel times between any two points to perform a grid search over a given number of rays radiating outward from the destination. One starts at some given distance and then moves inward or outward along each ray until reaching the given time threshold, say 60 minutes. The envelope of the final 60-minute points along each ray delineates one of our accessibility zones. This approach misses spatial discontinuities in access that are important for public transit, captured by the Traveltime algorithm.

3.3 Comparing Accessibility Across Modes and Countries

Figure 2 shows accessibility zones $\{\mathcal{A}_{t,t+\Delta}^m\}_{t=0,15,30,45}^{m=C,T}$ for a sample of cities. Public transit zones are shown in green in the two columns on the left, and car zones in orange on the right. Darker hues indicate shorter travel times. Comparable population-sized American and European cities are next to each other in the same row.

Figure 2 highlights four important patterns that generalize to the full sample of cities. First, American cities' car accessibility zones are generally larger than those of European cities with comparable population sizes. Second, the opposite is true for public transit zones. The European advantage in public transit is especially pronounced for short-distance commutes. Third, car accessibility zones in American cities are much larger than their corresponding public transit zones. In Europe, this is not necessarily true, especially for longer commuting distances. Fourth, comparing across all four columns in a row shows that car accessibility zones in the US are the largest overall. The infrastructure supporting car travel in American cities affords the greatest "overall accessibility."

Insights from the Full Sample. Table 1 shows that the insights from Figure 2 generalize to the full sample of cities. The table shows the average accessibility zone areas in square kilometers, separately by mode, region, and time distance. The "Car" panel on the left shows that, depending on the time distance, car accessibility zones are 1.4-5.2 times larger in the US compared to Europe. The US car advantage is most pronounced for short commutes between 15 and 30 minutes, perhaps reflecting that the dense cores of old European cities are difficult to navigate by car. The "Public Transit" panel in the middle shows that transit zones in US cities are only approximately 0.6 times the size of those of European cities, regardless of the commuting distance.

Table 1 also shows that car travel offers larger overall accessibility across all time distances in both Europe and the United States, i.e., $\mathcal{A}_{t,t+15}^C > \mathcal{A}_{t,t+15}^P \forall t \in \{0, 15, 30, 45\}$. A corollary of this finding is that American cities enjoy greater accessibility overall because they have a comparative advantage in car-based commutes.

Figure 2 highlights one reason why public transit systems provide less access to CBDs than cars. Especially at longer distances from the CBD, public transit provides only "patchy" access. Only people who live very close to the sparse

	Car			Public Transit			Car/Public Transit		
Min.	US	Europe	Ratio	US	Europe	Ratio	US	Europe	Ratio
0-15	213.17	40.67	5.24	4.01	6.83	0.59	62.19	7.88	7.89*
15-30	1159.94	428.23	2.71*	33.74	62.83	0.54***	47.49	8.77	5.41*
30-45	2292.72	1408.76	1.63***	102.68	170.07	0.60***	27.07	10.16	2.66
45-60	4302.56	3173.93	1.36***	167.06	287.44	0.58***	36.16	13.34	2.71**

TABLE 1: AVERAGE ACCESSIBILITY ZONE AREAS BY REGION AND MODE IN SQUARE KILOMETERS

Notes: This figure shows average accessibility zone areas for various time intervals and modes in the US and Europe. The third column in the "Car" and "Public Transit" panels shows the ratio of the preceding two numbers in the respective row. The "Car/Public Transit" panel shows the ratio of the car relative to public transit accessibility zone areas ("car orientation") for each time interval and region. The last panel's third column shows the ratio of US cities' car orientation relative to European cities' car orientation. We conducted Wald tests in all columns with a "Ratio" header for the null hypothesis that the ratio equals 1. The number of stars indicates the p-value with the following interpretation: *** p < 0.01, ** p < 0.05, * p < 0.1.

network of transit stops in outlying parts of cities can quickly access the CBD. In contrast, car-based access is spatially more continuous. Note that our accessibility zones focus on physical areas, not population. Housing and population may endogenously respond to densify near transit stations (which is captured in ω in equations 3 and 4). Our accessibility measure tracks the physical space available to accommodate such responses.

Variation Across Cities. The two panels in the top row of Figure 3 show the relationship between accessibility and city size. We graph the areas of the (0,60)-minute car accessibility zones, $\mathcal{A}_{0,60}^C$, and the (0,60)-minute public transit accessibility zones, $\mathcal{A}_{0,60}^P$, against city size, separately for US and Europe. In the US, the size of car accessibility zones does not vary with city population. In contrast, car accessibility zones are smaller in larger European cities, maybe because those larger cities are older, and their historical urban cores are dense, congestion-prone, and difficult for cars to navigate.

Public transit accessibility zone areas are increasing in city size on both continents, reflecting the economies of scale inherent in mass public transit, which has high fixed setup costs and low marginal costs for cities. A more extensive ridership base permits investments in larger transit systems, higher station density, and train frequency.

The other four panels show the distribution of $\{\mathcal{A}_{0,15}^{C}, \mathcal{A}_{0,15}^{P}, \mathcal{A}_{45,60}^{C}, \mathcal{A}_{45,60}^{P}\}$ across our samples of US and European cities. American and European cities are most dis-similar when focusing on (0,15)-minute accessibility zones. Most European

cities have very small $\mathcal{A}_{0,15}^{C}$, and there is not much heterogeneity. US cities differ widely in their (0,15) car accessibility areas, and almost all US cities have larger zones than European cities. Conversely, most European cities outperform every American city in terms of (0,15)-minute public transit accessibility. Several European cities have substantially larger zones than even the most public transit-oriented US city, New York City, which is the single US outlier in the $\mathcal{A}_{0,15}^{P}$ panel.

European and American cities are more similar in terms of their (45,60)-minute accessibility zones, but American comparative advantage remains in cars and Europe's in public transit. This is the result of offsetting factors that only come into play at further distances from the CBD. The "patchiness" of public transit access makes it difficult to cover large areas far away from the CBD, and European rail-based transit becomes less efficient as we move to the outskirts of cities. At the same time, bus-based transit in the US, which leverages existing road infrastructure, helps make long-distance transit more comparable to that of European cities. Conversely, the relative disadvantage of cars in the dense urban cores of European cities becomes less of an issue in city outskirts.

3.4 Are Driving and Transit Infrastructure Substitutes?

Do the evident American specialization in cars and European specialization in public transit imply that car- and transit-based development strategies are substitutes? Table 2 shows how the sizes of the driving and transit accessibility zone areas co-vary in the cross-section of cities, within regions, and in the pooled sample. The table presents conditional correlations between accessibility zone areas for cars and transit, controlling for the population size of a city and a Europe fixed effect in the pooled specification.

Table 2 suggests that there may be a trade-off between transit orientation and car orientation at short time distances close to city centers ($\mathcal{A}_{0,15}^C$ and $\mathcal{A}_{0,15}^P$). On average, cities with larger (0,15)-minute car accessibility zones have smaller public transit zones. In and around the city centers, transit and car infrastructure act like substitutes.

At longer distances, the sizes of car and transit accessibility zones correlate positively. This complementarity is probably due to the widespread use of public buses as public transit, especially in American cities. Better road infrastructure for cars also aids bus-based mobility.

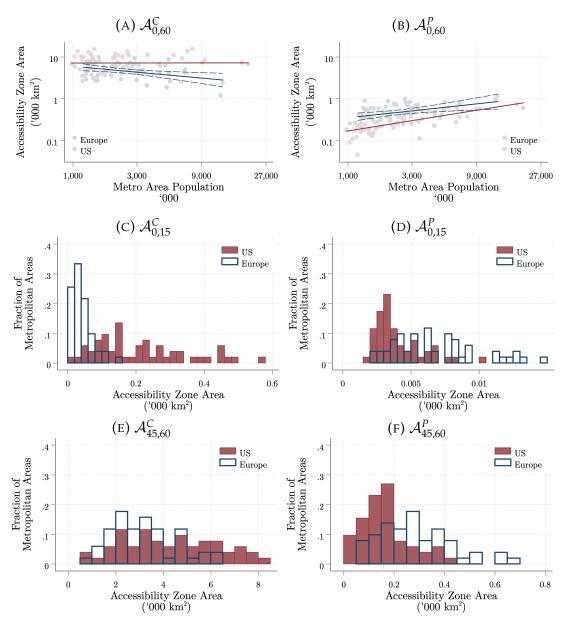


FIGURE 3: ACCESSIBILITY ZONES ACROSS CITIES

Notes: Panel (A) shows a scatter plot of a metro area's population size against its (0,60)-minute accessibility zone area for cars, separately for the US (red) and Europe (blue); it also shows linear fit lines and 95% confidence intervals for the Europe fit line. Panel (B) shows the replicates Panel (A) but instead shows (0,60)-minute public transit accessibility zone areas. Panels (C)-(D) show histograms of the (0,15)-minute accessibility zone areas for all cities in our samples for cars (left) and public transit (right), separately for the US and Europe. Panel (E)-(F) replicates Panels (C)-(D) show but for the (45,60)-minute accessibility zone areas. All accessibility zone areas in the figure are for commutes that arrive in the CBD at 8.45 am on a Wednesday.

Accessibility, Infrastructure, and Mode Choices. Appendix B explores how the accessibility zone areas correlate with direct measures of road and public transit infrastructure and commuter mode choices.

The variable "miles of rail lines" is significantly positively correlated with $\mathcal{A}_{0.60}^{P}$

	US		Eu	ırope	Pooled		
Correlation	Value	Std. Error	Value	Std. Error	Value	Std. Error	
$(\mathcal{A}_{0.15}^{C}, \mathcal{A}_{0.15}^{P})$	-0.0412	0.273	-0.326	0.236	-0.219	0.181	
$ \begin{array}{c} (\mathcal{A}_{0,15}^{C},\mathcal{A}_{0,15}^{P}) \\ (\mathcal{A}_{15,30}^{C},\mathcal{A}_{15,30}^{P}) \\ (\mathcal{A}_{30,45}^{C},\mathcal{A}_{30,45}^{P}) \end{array} $	0.0659	0.124	-0.164	0.213	0.0104	0.124	
$(\mathcal{A}_{30,45}^{C}, \mathcal{A}_{30,45}^{P})$	0.464***	0.124	0.196	0.121	0.350***	0.109	
$(\mathcal{A}_{45,60}^{C}, \mathcal{A}_{45,60}^{P})$	0.282	0.205	0.456***	0.0944	0.408***	0.0900	

TABLE 2: DRIVING VERSUS PUBLIC TRANSIT ACCESSIBILITY ZONE AREAS

Notes: The table reports the coefficients from a regression of the log of the $(t, t + \Delta)$ -minute driving accessibility zone area on the log of the $(t, t + \Delta)$ -minute public transit accessibility zone area, run separately for $t = 0, 15, 30, 45, \Delta = 15$, and various samples. The "US" panel reports these coefficient estimates for a regression run with 52 US cities; the "Europe" panel reports the same coefficients for regressions run in our European sample of cities. The "Pooled" panel reports coefficients from running the regression in the pooled Europe and US samples controlling for a Europe fixed effect. All regressions control for log metro population from OECD data and include a constant. Robust standard errors in parentheses: *** p<0.01, ** p<0.05, * p<0.1.

in both Europe and the United States, but not with $\mathcal{A}_{0,60}^{C}$, as expected (Table B.1). Conversely, the length of the road network is more positively correlated with $\mathcal{A}_{0,60}^{C}$ than $\mathcal{A}_{0,60}^{P}$. Accessibility zone areas are therefore likely to respond to commuting infrastructure investments.

Table B.2 shows that commuter mode choices are correlated with the size of the accessibility area for that mode in the cross-section of cities. Car accessibility zone areas are associated with increases in the share of commuters who drive and decreases in the share walking or biking to work. Transit accessibility zones $\mathcal{A}_{0,60}^{P}$ are associated with a reduction in the share of commuters driving and increases in both public transit users and walkers/bikers. Commuters will likely react to any future changes in the accessibility zones through their mode choices, which highlights the appropriate use (and limits) of our measures for policy analysis.

3.5 Partial Equilibrium Effects of Increasing Accessibility

US cities lag in public transit accessibility relative to their European counterparts. Equation 3 highlights two strategies American policymakers could pursue to address the low accessibility via public transit: change the size of accessibility zones or change the population density within existing zones. These two categories of changes correspond to distinct policy actions. Investments in the quality of public transit would increase public transit accessibility areas $\mathcal{A}_{t,t+\Delta}^{P}$, while investments in roads would increase car accessibility areas $\mathcal{A}_{t,t+\Delta}^{C}$. Investments in housing and relaxing zoning restrictions are likely to increase the density of commuters within accessibility zones, $\omega_{t,t+\Delta}^{m}$.

We use our model to conduct partial equilibrium counterfactuals to study the effects of such policies on overall commuting efficiency, $\hat{\Theta}_{j^*}$. We consider two policy interventions, first increasing the size of a particular accessibility zones by 10%, second increasing the population density within a given accessibility zone by 10%. Our outcome of interest is the overall CBD labor supply. We write variables before the intervention as *x* and variables after the intervention as *x'*. We also define $\hat{x} = x'/x$, the factor of change in a given variable before and after the intervention. We can use equation 4 to express changes in commuting efficiency as a function of changes in accessibility and population density as follows:

(5)
$$\hat{\Theta}_{j^*} = \sum_{t,m} \hat{\mathcal{A}}^m_{t,t+\Delta} \hat{\omega}^m_{t,t+\Delta} \psi^m_{t,t+\Delta} \quad \text{s.t.} \quad \psi^m_{t,t+\Delta} = \frac{\mathcal{A}^m_{t,t+\Delta} \omega^m_{t,t+\Delta} (1 - \bar{\tau}^m_{t,t+\Delta})}{\Theta_{j^*}},$$

where $\psi_{t,t+\Delta}^m$ is the initial contribution of mode *m* commutes from accessibility zone $(t, t + \Delta)$ to overall CBD labor supply.

To conduct our counterfactuals, we then have to construct the accessibility zone weights, $\psi_{t,t+\Delta}^m$. While we already discussed how to construct the accessibility zones, the population density terms, $\omega_{t,t+\Delta}^m$, require extra work. We use data from the Longitudinal Employer-Household Dynamics (LEHD) program of the US Census to compute the number of residents in each accessibility zone that commute into the CBD using a particular mode. We are dividing these headcounts by the corresponding accessibility zone area to obtain $\omega_{t,t+\Delta}^m$ for all American cities in our sample.⁸ Table C.5 in the Appendix presents the overall commuting efficiency, Θ_{j^*} , as well as the mode-specific commuting efficiencies, $\Theta_{j^*}^p$ and $\Theta_{j^*}^C$ for all US cities in our sample.

Our first counterfactual is an increase in the accessibility zone areas. We set $\hat{\mathcal{A}}_{0,15}^C = \hat{\mathcal{A}}_{0,15}^P = 1.1$ in equation 5. When increasing the accessibility zone area, we recompute the population density in that zone. For example, an extension of $\mathcal{A}_{0,15}^C$ necessarily incorporates territory previously in $\mathcal{A}_{15,30}^C$, so we adjust $\omega_{0,15}^C$ to be an area-weighted average of the prior densities in $\mathcal{A}_{0,15}^C$ and $\mathcal{A}_{15,30}^C$. As a result, $\hat{\omega}_{0,15}^C \neq 0$ in our accessibility zone enlargement counterfactuals.

⁸Unfortunately, LEHD-type commuting data is unavailable for European cities.

		$100 imes (\hat{\Theta}_{j^*} - 1)$									
	$\hat{\mathcal{A}}^n_{t}$	$a_{t+\Delta}^{i} = 1$	$.1, \hat{\omega}^m_{t,t+\Delta}$	< 1	$\hat{\omega}^m_{t,t+\Delta} = 1.1$						
m	C,P	P	C,P	P	C,P	C,P	C,P	C,P			
$(t, t + \Delta)$	(0,15)	(0,15)	(30,45)	(30,45)	(0,15)	(15,30)	(30,45)	(45,60)			
Largest Cities	.023	.004	.025	.015	1.776	4.361	2.607	1.257			
↓	.022	.001	.020	.00	1.739	4.755	2.554	.952			
to Smallest	.028	.001	.013	.004	2.209	5.079	2.057	.656			
↓	.031	.000	.014	.003	2.681	4.749	1.849	.721			
Cities	.030	.001	.011	.002	3.557	4.28	1.575	.588			
Average	.027	.001	.017	.006	2.411	4.646	2.116	.826			

TABLE 3: COUNTERFACTUAL POLICIES TO ENHANCE COMMUTING EFFICIENCY

Notes: This table shows the average effect increase in the commuting access term across cities, Θ , resulting from a 10% increase in commuter density, $\omega_{t,t+\Delta}^m$, or accessibility zone area, $\mathcal{A}_{t,t+\Delta}^m$ from their baseline, separately for five city-size quintiles. Quintile 1 contains the 20% of cities in our sample that are the largest in terms of OECD metro area population numbers, Quintile 2 contains the 20% largest in the remaining sample, and so forth. Columns 6-9 show the percentage increase in commuting efficiency (Θ) that results from increasing the population density in the (0,15)-, (15,30)-, (30,45)-, and (45,60)-minute accessibility zones by 10% relative to their baseline value in the data for all modes of transport. Columns 2-5 show the percentage increase in commuting efficiency (Θ) that results from increasing the (0,15)- and (30,45)-minute accessibility zone areas by 10% relative to their baseline value in the data. Columns 2 and 4 show the results from increasing the areas for both modes, Columns 3 and 5 from just increasing the public transit area.

Our second counterfactual increases the population density within various accessibility zone areas. We set $\hat{\omega}_{t,t+\Delta}^{p} = 1.1$ in equation 5 while holding fixed the size of accessibility zones so that $\hat{\mathcal{A}}_{t,t+\Delta}^{m} = 1 \forall m, t$ and the density in all other accessibility zones. The underlying assumption is that areas closer to the center draw additional workers from outside of the (0, 60) minute accessibility zone, i.e., workers previously captured by the ξ residual, so that population density in other areas within the (0, 60)-minute zone are unaffected. If densification of the (0,15)-minute accessibility zone, this would reduce the positive impact of densification on increasing CBD labor supply, $\hat{\Theta}_{i^*}$.

Table C.6 in the Appendix shows the increase in commuting efficiency from both policies for every city in our sample. Table 3 summarizes the effects within quintiles of cities ordered by size. Quintile 1 contains the largest cities, e.g., New York City; Quintile 2, the next group, e.g., Phoenix, and so on. These exercises generate several insights.

First, any housing and zoning policy changes that densify cities (i.e., increase $\omega_{t,t+\Delta}^{P}$ by 10%) would increase commuting efficiency $\hat{\Theta}_{j^{*}}$ by a lot more than increasing $\mathcal{A}_{t,t+\Delta}^{P}$ by 10% and adjusting $\omega_{t,t+\Delta}^{P}$ accordingly. This was not necessarily apparent ex-ante, but the mathematical intuition is clear. Expanding infrastructure to enlarge $\mathcal{A}_{t,t+\Delta}^{p}$, moves out the boundary of a given accessibility zone radially - away from the CBD into less dense areas - which produces smaller marginal gains because there are fewer commuters out there so that the associated density decreases $\hat{\omega}_{t,t+\Delta}^m < 0$. Furthermore, workers who switch from $\mathcal{A}_{15,30}^{p}$ to $\mathcal{A}_{0,15}^{p}$ only experience marginal time savings, because they were already living relatively close to the CBD. This prediction might change in general equilibrium if workers from the city outskirts move into the enlarged accessibility zone in response to the improved transit conditions so that $\hat{\omega}_{t,t+\Delta}^m > 0$. Such relocation forces would enhance the total benefits of increasing $\mathcal{A}_{t,t+\Lambda}^{P}$. However, even then, those additional general equilibrium benefits are only realized if the city makes complementary investments in housing in the areas better served by transit to allow those new workers to take advantage.

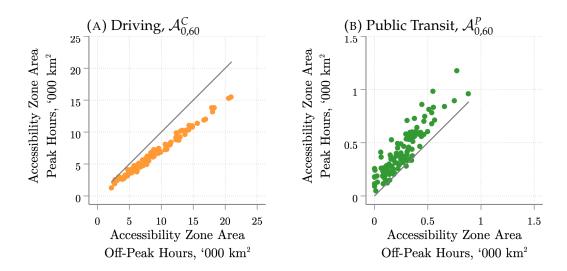
Second, increasing car accessibility zones $(\mathcal{A}_{t,t+\Delta}^C)$ in U.S. cities is more effective in increasing aggregate commuting efficiency Θ_{j^*} than increasing transit accessibility areas $(\mathcal{A}_{t,t+\Delta}^P)$. The reason is that car users dominate most American cities. In terms of equation 5, $\psi_{t,t+\Delta}^C > \psi_{t,t+\Delta}^P \forall t$ in almost all cities and almost all time distances. As a result, changes in public transit accessibility areas have lower weights, $\psi_{t,t+\Delta}^m$ attached to them and lead to only minor increase in CBD accessibility. If pre-existing mode preferences are immutable, then the straightforward implication is that American cities should focus on improving road infrastructure to maximize city productivity. However, this insight may again be attenuated in general equilibrium if workers' mode choices respond endogenously to infrastructure improvements.

Third, the effect of raising public transit accessibility is larger in big cities than in small cities because there are significant differences in public transit ridership across those two groups. In terms of equation 5, the weights $\psi_{t,t+\Delta}^{P} \forall t$ are larger in bigger cities than in smaller ones, since in big cities public transit commuting accounts for a larger fraction of commutes into the CBD.

Fourth, the effects of densification differ widely across accessibility zone areas. Densifying the (15,30)-minute accessibility zone ($\omega_{15,30}^m$) produces the largest gains in Θ_{j^*} . Increasing the (0,15)-minute accessibility zone is less effective due to its small size, which means it contributes few workers to the CBD, i.e.,

 $\psi_{15,30}^m > \psi_{0,15}^m$. Increasing density in the (45,60)-minute zone is less effective since fewer residents commute into the CBD from there, i.e., $\psi_{15,30}^m > \psi_{45,60}^m$. This result may again get attenuated in general equilibrium if it becomes easier to remove zoning restrictions to build vertically in the areas surrounding a CBD in response to citizen and firm demand. In other, the political economy is also not immutable in general equilibrium.

Fifth, the effects of densification differ widely across cities of different size. Densifying the (45,60)-minute zone is more effective in large cities like New York compared to smaller cities like Raleigh since they contributed more to total CBD labor supply ($\psi_{45,60}^m$ is much larger in New York than Raleigh). This finding reflects that large cities attract workers from far away, whereas CBDs of small cities mainly serve workers living close by. Conversely, densifying the (0,15)-minute zone is more effective for smaller towns than larger cities.


4. THE EXTERNALITY COST OF AMERICAN CITIES' CAR ORIENTATION

Whether to prioritize car or public transit infrastructure investments to increase CBD accessibility also has to consider that these approaches are likely associated with very different externalities on the environment and public health. The transportation policy literature has highlighted several different categories of externalities commonly associated with commuting systems (see Appendix Figure C.1 from Khreis et al., 2017), among them congestion, land use, health, and pollution. We use these categories to organize our discussion of the externalities associated with car versus public transit accessibility.

4.1 Congestion Externalities

Our theoretical framework did not explicitly model the dependence of commuting costs on the number of commuters using a given mode-route combination. In reality, commuting costs are often affected by the number of commuters using a particular route-mode combination. In terms of our model, this suggests that $\tau_{i,j}^m = \tilde{\tau}_{i,j}^m (\bar{L}\phi_{i,j}^m)^{\xi^m}$ where $\xi^m > 0$ indicates that usage slows down travel. When commuting costs are a function of the intensity of use, the size of an accessibility zone depends on the time of the day.

FIGURE 4: HOW ACCESSIBILITY ZONE AREAS CHANGE WITH USAGE

Notes: This figure shows a scatter plot of cities' accessibility zone areas during peak (Wednesday 8 am) and off-peak (Sunday 11 pm) hours. The left panel is for car-based commutes, and the right is for public-transit-based commutes. Both panels also include a 45-degree line for reference.

We use our accessibility measure to construct a straightforward test for the direction of such usage externalities. We re-compute our (0,60)-minute accessibility zones for each mode ($\mathcal{A}_{0,60}^m$) for commutes to the CBD that arrive on Sunday at 11 pm ("Off-peak Hours"). At that time, traffic on routes into the CBD, ϕ_{i,j^*}^m , should be much lower than on Wednesday at 8.45 am ("Peak Hours") when we computed the accessibility zone areas thus far in the paper. The change in $\mathcal{A}_{0,60}^m$ between peak and off-peak hours gives us a sense of the direction and size of congestion on each mode.

The left panel of Figure 4 graphs peak-hour car accessibility zone areas against off-peak areas. Each point represents a city in our sample. All points fall below the 45-degree line, which implies that the size of the 60-minute area reachable from the CBD within 60 minutes expands during off-peak (i.e., a negative congestion externality, $\xi^C > 0$). About 27% of the land area that falls within 60 minutes of the CBD during off-peak hours is no longer accessible within 60 minutes during rush hour in the average city.

The right panel of Figure 4 conducts the same exercise for public transit accessibility zones with opposite results: on average, public transit accessibility is 56% *larger* during peak than off-peak hours ($\xi_P < 0$). These findings likely reflect the economies of scale in public transit provision. Because of the shared nature of travel, it becomes profitable to run buses and trains more frequently when

more people use the system simultaneously.

The different sign of the usage externalities of the car- versus transit-based commuting systems complicates the policy advice on improving a city's commuting access $\hat{\Theta}_{j^*}$. Building more roads could slow car commutes if it induced mode-switching and increased congestion. On the other hand, building better public transit could improve the overall performance of the transit system via increased train frequency and station density, generating additional commuting access gains via general equilibrium forces.

4.2 Correlations with Land Use, Health, and Pollution

Next, we report a set of conditional correlations by regressing land use, health, and pollution outcomes on $\mathcal{A}_{0,60}^C$ and $\mathcal{A}_{0,60}^p$, controlling for other observable determinants of those outcomes as suggested by the relevant literature. We restrict our analysis to the US cities in our sample due to lack of consistent data for European cities.

Methodology. Since the land use, health, and pollution outcomes are available at the county level, we employ a two-step procedure to make the most use of the available county-level variation and maximize the statistical power of our analysis. In the first step, we run county-level regressions of each outcome (e.g., road density or PM2.5 pollution) on a set of control variables, such as a county's average socioeconomic, demographic, and geographic characteristics and its manufacturing orientation. We aggregate the residuals of that regression up to the city level in a second step and regress those residuals on our city-level measures of $\mathcal{A}_{0,60}^C$ and $\mathcal{A}_{0,60}^p$, along with a control for city population size. Our two-step procedure allows us to report the correlations that condition on the more-disaggregated county-level determinants of each outcome variable.

Land Use. Supporting car versus public transit-based commutes requires different types of physical infrastructure. Their relative importance in a city's transportation policy likely affects urban land-use decisions. We explore this in the top panel of Table 4.⁹ The second-step associations between (the unexplained variation in) land-use outcomes and $\mathcal{A}_{0.60}^C$, $\mathcal{A}_{0.60}^p$ indicate that cities with

⁹Controls in the first stage of our land-use regressions: the fraction of owner-occupied housing, log population density, log income per capita, the share of black and Hispanic residents, mean democratic vote share, log mean temperature in January, the agricultural+mining share of employment.

$\log \mathcal{A}^{P}_{0,60}$ $\log \mathcal{A}^{C}_{0,60}$	Log Aotorway	Total km per	km ²	Green-space	Walking	
$\log \mathcal{A}^{P}_{0,60}$	Motorway		Log Total km per km ²			
		Streets	Bike Lanes	per km ²	Index	
	0.0107	-0.117	0.682	-0.00566	0.568	
$\log \mathcal{A}^{C}_{0,60}$	(0.166)	(0.0982)	(0.748)	(0.0345)	(0.375)	
	0.440***	0.291***	-0.0356	-0.139***	-0.864***	
	(0.114)	(0.107)	(0.462)	(0.0424)	(0.281)	
<i>R</i> ²	0.239	0.232	0.195	0.340	0.138	
	Pa	nel B: Direct	Health Exter	nalities		
	Share	Sh. Poor				
I	Physically	+ Far from	Share	Deaths p	er 1000	
	Inactive	Groceries	Obese	Traffic	Obesity	
$\log \mathcal{A}^{P}_{0,60}$	-0.0195**	-0.00473	-0.00940	-0.189	-0.111	
0 0,00	(0.00763)	(0.00684)	(0.00626)	(0.220)	(0.219)	
$\log \mathcal{A}_{0,60}^C$	$g \mathcal{A}_{0,60}^C = 0.0118^* = 0.0269^{**}$		0.0290***	0.0356	0.424**	
	(0.00651)	(0.00801)	(0.00591)	(0.130)	(0.160)	
<i>R</i> ²	0.144	0.276	0.376	0.020	0.131	
	I	Panel C: Poll	ution Externa	lities		
		tC/km2/yr		log Mean	Aug. Temp	
_	$\log CO_2$	log NOx	log PM2.5	Noise	p90/p10	
$\log \mathcal{A}^{P}_{0.60}$	0.0112	-0.146	-0.0636	0.00360	0.00441	
$\log \mathcal{A}^P_{0,60}$ $\log \mathcal{A}^C_{0,60}$	(0.101)	(0.135)	(0.170)	(0.00461)	(0.0322)	
$\log \mathcal{A}_{0.60}^C$	0.334***	0.384***	0.331**	9.21e-05	-0.0510	
0 0,00	(0.0702)	(0.108)	(0.124)	(0.00309)	(0.0312)	
<i>R</i> ²	0.311	0.230	0.127	0.021	0.040	
	Pan	el D: Indirec	t Health Exte	rnalities		
	D	eaths per 100	00	Premature	log Life	
	Asthma	COPD	Total	Deaths/100k	Expectancy	
$\log \mathcal{A}^P_{0,60}$ $\log \mathcal{A}^C_{0,60}$	0.0124	-0.205	5.672	0.0349	-0.00621	
.,	(0.0517)	(0.674)	(4.050)	(0.0357)	(0.00435)	
$\log \mathcal{A}_{0.60}^C$	0.123**	2.030***	6.682*	0.0962**	-0.0115**	
- 0,00	(0.0568)	(0.588)	(3.776)	(0.0389)	(0.00449)	
<i>R</i> ²	0.188	0.232	0.195	0.277	0.324	

TABLE 4: THE COSTS OF ACCESSIBILITY

Notes: All regressions control for city population in the second stage. Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1. We add 1e-6 to the bike lanes to avoid zeros. All regressions are run on our sample of the 52 largest US cities. We present a complete list of data sources in Table C.1 in the Appendix; Table C.2 presents summary statistics including mean and median for every outcome variable.

larger car accessibility zones have significantly more space allocated to streets and motorways per square kilometer of city land. Given car accessibility, public transit accessibility and road density do not exhibit a significant association. Larger transit accessibility zones positively correlate with bike lane density, but this is not statistically significant.

Next, we see that the road density that improves car accessibility takes land away from other uses. A 10% increase in the car accessibility area ($\mathcal{A}_{0,60}^{C}$) is associated with a 1.4 percentage point decrease in the share of green space. Green space only accounts for about 9% of the total land area of the average American city in our sample, making this a sizable effect. A 10% increase in the car accessibility area is also associated with an 0.09-point decrease in the city's 20-point "walkability index."¹⁰ In contrast, a 10% in the public transit accessibility area is associated with an 0.6-point *improvement* in the city's walkability index, but this is not statistically significant.

Health. Panel B of Table 4 examines some health outcomes commonly associated with car usage.¹¹ A 10% increase in $\mathcal{A}_{0,60}^{C}$ is associated with a 0.12 percentage point increase in the share of the population that is physically inactive. In contrast, a 10% increase in the public transit accessibility zone $\mathcal{A}_{0,60}^{P}$ has the opposite association: a 0.2 percentage point *decrease* in the physically inactive share. Likewise, a 10% increase in car accessibility is associated with a 0.27 percentage point increase in the share of the population in the city that is both poor and lacks easy access to groceries.¹² In other words, car accessibility is a positive predictor of "food deserts" (Allcott et al., 2019). Car accessibility is also associated with a larger share of the population that is obese.

Next, we use administrative cause-of-death data from the US Center for Disease Control and find a positive correlation between traffic deaths and $\mathcal{A}_{0,60}^{C}$ as well as a large negative correlation between traffic deaths and $\mathcal{A}_{0,60}^{T}$, but these are not statistically significant. Obesity deaths, however, are statistically larger when cities are designed for CBDs to be more car-accessible.

¹⁰The EPA's National Walkability Index is a composite score of Census block groups' relative amenability to pedestrian trips on a 1-20 scale and accounts for street intersection density, proximity to transit stops, and land use diversity.

¹¹First-stage controls: the shares of black residents, Hispanic residents, residents above 65, residents with heavy drinking habits, smokers, log population density.

¹²"Poor" are residents with incomes below twice the poverty line. "Lack of easy access" refers to living more than one mile from the nearest grocery store.

Pollution. Panel C shows that car accessibility also displays a strong positive association with air pollutants commonly associated with the burning of fossil fuels, CO_2 , NOx, and PM2.5, with elasticities of 0.33-0.38, but that this is not true for transit accessibility.¹³ The public transit accessibility zone area, $\mathcal{A}_{0,60}^{P}$, generally has a negative (but insignificant) coefficient in these pollution regressions. There is no correlation between car accessibility and noise pollution emitted by transportation sources or heat islands.

Mortality. Increased pollution, physical inactivity, obesity, and food deserts may affect downstream health outcomes such as mortality and life expectancy. Our regressions provide suggestive evidence of such effects. More car-accessible cities have higher deaths from asthma, chronic pulmonary diseases (COPD), and a higher total and premature death rate, holding constant the county-level demographic variables that predict these outcomes. A 10% increase in $\mathcal{A}_{0,60}^C$ is associated with a 0.12% decrease in life expectancy among residents (elasticity of 0.01). Transit accessibility zone areas do not significantly correlate with any mortality outcome.

In summary, greater car accessibility is associated with larger negative externalities in pollution, health, and land use within the sample of U.S. cities. These insights are generally consistent with prior literature that has studied the effects of transportation on land use (Glaeser and Kahn, 2010; Duranton and Puga, 2015), pollution (Parry et al., 2007; Gendron-Carrier et al., 2022; Schlenker and Walker, 2016) and health (Knittel et al., 2016; Currie and Walker, 2011). Adler and van Ommeren (2016) studies trade-offs between modes and finds consistent results. Khreis et al. (2017) provides an excellent summary of the public health literature on how urban transport policy and planning affect the built environment, transport infrastructure provision, mode choices, and health outcomes.

5. CONCLUSION

Our research highlights a fundamental trade-off in the design of commuter systems. Cars are generally more effective at providing city-center access to far larger surrounding land areas (and therefore, a larger potential population)

¹³First-stage controls: log income per capita, log population density, the urban share of the population, the share of employment in manufacturing (CBP), and log county centroid latitude.

than public transit in both the United States and Europe. But car-based commuting imposes larger negative externalities and health costs on society. When cities are designed to provide greater car accessibility to CBDs, this type of access appears to be associated with lifestyle choices that produce worse health, environmental, and land-use outcomes than public transit access would. Caraccessible cities are more polluted and less walkable, residents are more physically inactive, obese, and unhealthy, and all of this combines to produce greater mortality rates and lower life expectancy for residents. In contrast, transit accessibility is not associated with these negative externalities.

The current car orientation of the United States is a result of policy choices after World War II to invest heavily in roads and highways. That highway infrastructure – designed to last 50-70 years – is now approaching their expiration dates (New York Times, Feb. 11, 2022), and cities need to consider alternative policy directions.¹⁴ Many cities, such as Syracuse and Detroit, have committed to replacing stretches of the interstate with more connected, walkable neighborhoods.¹⁵ Other cities like Houston are expanding their highway systems in an attempt to make CBDs more accessible (Los Angeles Times, November 11, 2021).

The transportation infrastructure investments now made will determine the future orientation of US transportation infrastructure and affect how Americans live, work, and commute over the next 50 years. As a result, city planners need to consider not only the productivity and efficiency effects of focusing on roads versus public transit infrastructure, but also the social, environmental, congestion, and health consequences of their choices. The CBD accessibility measures we propose are easy for policymakers to compute for any city, for time of day, or even repeatedly over time, and can aid such policy evaluations.

Study Limitations and Directions for Future work. Our study is descriptive by design, and our goal was to construct theory-consistent measures of CBD accessibility to aid policy analysis. The partial equilibrium results we report in section 3.5 should not be read as "predictive" because they might change as people and firms adjust their mode choices, workplace, and residential location choices, or as politicians respond to citizen demands and alter zoning restrictions. To properly account for those general equilibrium changes, the measures

¹⁴The Biden administration's infrastructure plan reflects some potential changes in the focus of transportation policy, see New York Times, April 1 (2021).

¹⁵New Orleans and Dallas face pressure from residents and activists to address the pollution, noise, and safety hazards associated with its mega-roads (New York Times, May 27, 2021).

we have developed will need to be paired with theoretical frameworks where mode and location choices adjust, and the negative externalities stemming from those choices are accounted for. There are now many examples of quantitative spatial models of commuting that could serve as a natural point of departure for developing such holistic frameworks (e.g. Allen et al., 2015; Ahlfeldt et al., 2015; Monte et al., 2018).¹⁶

Similarly, the associations between car and transit accessibility zones and various health and pollution outcomes we report in section **4** are correlations, not causal effects of commuting infrastructure changes. Policy shocks, natural experiments, or historical or geographic instruments that extract exogenous components of the variation in accessibility zones are necessary to make causal statements. While many studies estimate the causal effects of a particular type of transportation infrastructure on a specific health outcome (e.g., Gendron-Carrier et al., 2022; Currie and Walker, 2011), no study has attempted a comprehensive assessment of the wide range of costs and benefits of transport infrastructure interventions. The Marginal Value of Public Funds approach (Hendren and Sprung-Keyser, 2020) provides an exciting framework to combine different causal estimates and map them into a dollar-denominated cost-benefit analysis.

Lastly, our approach does not account for the monetary costs of alternative mode choices - e.g., the costs of parking in the CBD, car maintenance, insurance, or the cost of tickets for public transit. Such costs are significant drivers of mode choices, and are also natural policy levers to design car- or transit-oriented commuting systems.

¹⁶Applications include an evaluation of the Los Angeles Metro Rail extension (Severen, 2022), measuring the effects of the world's largest Bus Rapid Transit system in Bogotá (Tsivanidis, 2022), and optimal transit system design in general equilibrium (Fajgelbaum and Schaal, 2020; Allen and Arkolakis, 2022). Redding and Rossi-Hansberg (2017) provides a general summary of this literature.

REFERENCES

- ADLER, M. W. AND J. N. VAN OMMEREN (2016): "Does Public Transit Reduce Car Travel Externalities? Quasi-natural Experiments' Evidence from Transit Strikes," *Journal of Urban Economics*, 92, 106–119.
- AHLFELDT, G. M., T. ALBERS, AND K. BEHRENS (2020): "Prime Locations," *Available at SSRN 3751858*.
- AHLFELDT, G. M., S. J. REDDING, D. M. STURM, AND N. WOLF (2015): "The Economics of Density: Evidence from the Berlin Wall," *Econometrica*, 83, 2127– 2189.
- AKBAR, P. A., V. COUTURE, G. DURANTON, AND A. STOREYGARD (2021): "Mobility and Congestion in Urban India," Tech. rep., Wharton mimeo.
- ALLCOTT, H., R. DIAMOND, J.-P. DUBÉ, J. HANDBURY, I. RAHKOVSKY, AND M. SCHNELL (2019): "Food Deserts and the Causes of Nutritional Inequality," *The Quarterly Journal of Economics*, 134, 1793–1844.
- ALLEN, T. AND C. ARKOLAKIS (2022): "The Welfare Effects of Transportation Infrastructure Improvements," *The Review of Economic Studies*, 89, 2911–2957.
- ALLEN, T., C. ARKOLAKIS, AND X. LI (2015): "Optimal City Structure,".
- BENTO, A. M., M. L. CROPPER, A. M. MOBARAK, AND K. VINHA (2005): "The effects of urban spatial structure on travel demand in the United States," *Review of Economics and Statistics*, 87, 466–478.
- COUTURE, V., G. DURANTON, AND M. A. TURNER (2018): "Speed," Review of *Economics and Statistics*, 100, 725–739.
- COUTURE, V., C. GAUBERT, J. HANDBURY, AND E. HURST (2021): "Income Growth and the Distributional Effects of Urban Spatial Sorting," Tech. rep.
- COUTURE, V. AND J. HANDBURY (2020): "Urban revival in America," *Journal of Urban Economics*, 119, 103267.
- CURRIE, J. AND R. WALKER (2011): "Traffic Congestion and Infant Health: Evidence from E-ZPass," *American Economic Journal: Applied Economics*, 3, 65–90.
- DURANTON, G. AND D. PUGA (2015): "Urban Land Use," in *Handbook of Re*gional and Urban Economics, Elsevier, vol. 5, 467–560.

- ECKERT, F., S. GANAPATI, AND C. WALSH (2022): "Urban-Biased Growth: A Macroeconomic Analysis," Tech. rep., National Bureau of Economic Research.
- FAJGELBAUM, P. D. AND E. SCHAAL (2020): "Optimal Transport Networks in Spatial Equilibrium," *Econometrica*, 88, 1411–1452.
- GANONG, P. AND D. SHOAG (2017): "Why Has Regional Income Convergence in the US Declined?" *Journal of Urban Economics*, 102, 76–90.
- GENDRON-CARRIER, N., M. GONZALEZ-NAVARRO, S. POLLONI, AND M. A. TURNER (2022): "Subways and Urban Air Pollution," *American Economic Journal: Applied Economics*, 14, 164–96.
- GLAESER, E. L. AND M. E. KAHN (2010): "The Greenness of Cities: Carbon Dioxide Emissions and Urban Development," *Journal of Urban Economics*, 67, 404–418.
- HANSEN, W. G. (1959): "How Accessibility Shapes Land Use," Journal of the American Institute of Planners, 25, 73–76.
- HENDREN, N. AND B. SPRUNG-KEYSER (2020): "A Unified Welfare Analysis of Government Policies," *The Quarterly Journal of Economics*, 135, 1209–1318.
- HOLIAN, M. J. AND M. E. KAHN (2012): "The Impact of Center City Economic and Cultural Vibrancy on Greenhouse Gas Emissions from Transportation." Tech. rep., Mineta Transportation Institute.
- HSIEH, C.-T. AND E. MORETTI (2019): "Housing Constraints and Spatial Misallocation," *American Economic Journal: Macroeconomics*, 11, 1–39.
- INGRAM, D. R. (1971): "The Concept of Accessibility: A Search for an Operational Form," *Regional Studies*, 5, 101–107.
- KHREIS, H., A. D. MAY, AND M. J. NIEUWENHUIJSEN (2017): "Health Impacts of Urban transport Policy Measures: A Guidance Note for Practice," *Journal of Transport & Health*, 6, 209–227.
- KNITTEL, C. R., D. L. MILLER, AND N. J. SANDERS (2016): "Caution, Drivers! Children Present: Traffic, Pollution, and Infant Health," *Review of Economics* and Statistics, 98, 350–366.

- KREINDLER, G. (2022): "Peak-hour Road Congestion Pricing: Experimental Evidence and Equilibrium Implications," .
- LOS ANGELES TIMES, NOVEMBER 11 (2021): "Freeways Force Out Residents in Communities of Color — Again," https://www.latimes.com/projects/ us-freeway-highway-expansion-black-latino-communities, [Online Only; accessed 26-October-2022].
- MONTE, F., S. J. REDDING, AND E. ROSSI-HANSBERG (2018): "Commuting, Migration, and Local Employment Elasticities," *American Economic Review*, 108, 3855–90.
- MORETTI, E. (2012): The New Geography of Jobs, Houghton Mifflin Harcourt.
- NEW YORK TIMES, APRIL 1 (2021): "Biden Details \$2 Trillion Plan to Rebuild Infrastructure and Reshape the Economy," https://www.nytimes.com/2021/ 03/31/business/economy/biden-infrastructure-plan.html, [Online; accessed 26-October-2022].
- NEW YORK TIMES, FEB. 11 (2022): "How Billions in Infrastructure Funding Could Worsen Global Warming," https://www.nytimes.com/2022/02/10/ climate/highways-climate-change-traffic.html, [Online; accessed 26-October-2022].
- NEW YORK TIMES, MAY 27 (2021): "Can Removing Highways Fix America's Cities?" https://www.nytimes.com/interactive/2021/05/27/ climate/us-cities-highway-removal.html, [Online Only; accessed 26-October-2022].
- PARRY, I. W., M. WALLS, AND W. HARRINGTON (2007): "Automobile Externalities and Policies," *Journal of Economic Literature*, 45, 373–399.
- REDDING, S. J. AND E. ROSSI-HANSBERG (2017): "Quantitative Spatial Economics," *Annual Review of Economics*, 9, 21–58.
- SCHLENKER, W. AND W. R. WALKER (2016): "Airports, Air Pollution, and Contemporaneous Health," *The Review of Economic Studies*, 83, 768–809.
- SEVEREN, C. (2022): "Commuting, Labor, and Housing Market Effects of Mass Transportation: Welfare and Identification," *The Review of Economics and Statistics*, 1–99.

- TSIVANIDIS, J. N. (2022): "Evaluating the Impact of Urban Transit Infrastructure: Evidence from Bogotá's TransMilenio," Tech. rep., University of Chicago.
- WU, H. AND D. LEVINSON (2020): "Unifying Access," Transportation Research Part D: Transport and Environment, 83, 102355.

ONLINE APPENDIX

A. ALTERNATIVE MEASUREMENT APPROACHES

There are different approaches to constructing accessibility zones in the data. In the body of the paper, we rely on proprietary software by a company called "Traveltime, Inc" (https://app.traveltime.com/), which automates the construction process. Other companies offer the same service, and it is possible to construct accessibility zones from first principles using any route-finding API.

Source	Traveltime	Targomo	Google Maps
Traveltime	1.00	-	-
Targomo	0.76	1.00	-
Google Maps	0.85	0.74	1.00

TABLE A.1: PAIRWISE CORRELATIONS AMONG ACCESSIBILITY ZONE AREAS

Notes: The table compares the (0,60)-minute car accessibility zone areas computed using three different approaches. All accessibility zone areas are for commutes that arrive in the CBD at 8:45 am on a Wednesday. The different computing approaches are: using the proprietary software of TravelTime Inc (row 1) or Targomo (row 2) and using Python and the GoogleMaps API to construct the zones ourselves (row 3).

Table A.1 shows the correlations between the (0,60)-minute car accessibility zone areas from "Traveltime, Inc" and the same areas computed using an alternative software provider, Targomo (https://www.targomo.com), and an approach that uses Python combined with optimal routes obtained from Google Maps. The correlations are high: all three sources deliver comparable estimates of the accessibility zone areas.

B. ACCESSIBILITY, INFRASTRUCTURE, AND MODE CHOICES

In this section we examine the correlations between our accessibility zone areas and traditional measures of infrastructure (e.g., road length), and mode choices of commuters.

A - 1

Accessibility and Infrastructure. Table B.1 shows coefficient estimates from a regression of (0,60)-minute accessibility zone areas in the US and Europe on traditional measures of transportation infrastructure, separately for public transit and cars. We include a constant and a control for city population size in all regressions. The pooled regression also includes a Europe dummy.

As expected, the public transit accessibility zone area and the number of rail miles positively correlate in the US and in Europe. Similarly, car accessibility and total street miles are strongly positively correlated in the US. The same correlation is less strong and insignificant in Europe, maybe reflecting that large street networks in old European city centers were not designed for cars. Road length in the US also correlates positively with the size of public transit accessibility zones, maybe because US transit systems in many cities rely on buses. European public transit systems rely much more on trams, subways, and railroads.

	United States		Eur	ope	Pooled		
log of	$\mathcal{A}^P_{0,60}$	$\mathcal{A}^{C}_{0,60}$	$\mathcal{A}^P_{0,60}$	$\mathcal{A}^{C}_{0,60}$	$\mathcal{A}^P_{0,60}$	$\mathcal{A}^{C}_{0,60}$	
Rail Miles	0.0656**	-0.0460	0.191***	0.0929*	0.122***	0.0312	
	(0.0292)	(0.0470)	(0.0666)	(0.0497)	(0.0283)	(0.0343)	
Street Miles	0.797**	0.992***	0.0681	0.268	0.473*	0.615**	
	(0.307)	(0.268)	(0.326)	(0.344)	(0.255)	(0.244)	
Observations	52	52	51	51	103	103	
R-squared	0.658	0.237	0.334	0.200	0.582	0.268	

TABLE B.1: ACCESSIBILITY ZONES AND INFRASTRUCTURE

Notes: All regressions regress log accessibility zone areas on log measures of transportation infrastructure. All regressions include a constant term and a control for population which we do not report. The pooled regressions include a Europe Dummy which we do not report. We add a 1 to the total rail miles in cities with a rail mile count of 0. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. We present a complete list of data sources in Table C.1.

Accessibility and Transportation Mode Choice. Table B.2 regresses mode shares for driving, public transit, and non-motorized commutes on our accessibility measures. The mode shares are the fraction of workers commuting into the CBD using a particular mode. As expected, in cities with larger driving accessibility zones, more people use the car to get to work, and fewer people use public transit. Likewise, in cities with larger public transit accessibility zones, more people use public transit for their commute, and fewer people use cars.

Interestingly, public transit accessibility areas are also positively correlated with the walk/bike mode share. In contrast, larger car accessibility areas negatively correlate with the use of these modes, even after holding fixed the population size of the city. These differences in correlations suggest that cities that have more public transit and fewer cars are more walkable, which helps to explain some of the externality costs of car orientation we observe in section **4**.

The Europe fixed effect indicates that European workers are substantially less likely to use cars compared to Americans, and that lower driving propensity is equally split between the increased likelihood of taking public transit, and walking/biking to work. Workers in large cities are more likely to use public transit and less likely to drive.

	Share of CBD Commutes via						
	Driving	Transit	Walk+Bike				
$\log \mathcal{A}^P_{0,60}$	-0.157***	0.118***	0.0326**				
	(0.0306)	(0.0311)	(0.0163)				
$\log \mathcal{A}_{0,60}^C$	0.0993***	-0.0438	-0.0517**				
,	(0.0278)	(0.0284)	(0.0246)				
log Population	-0.0621*	0.0689**	-0.00417				
	(0.0340)	(0.0339)	(0.0123)				
Europe Dummy	-0.200***	0.101***	0.105***				
	(0.0342)	(0.0293)	(0.0155)				
Observations	96	96	98				
R-squared	0.751	0.616	0.608				

TABLE B.2: ACCESSIBILITY ZONES AND MODE SHARES

Notes: All regressions include a constant term which we do not report. Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1. We present a complete list of data sources in Table C.1. Note that the mode shares across Drivig, Transit and Walk+Bike do not sum to 1, due to the "Other" category in data.

C. Additional Figures and Tables

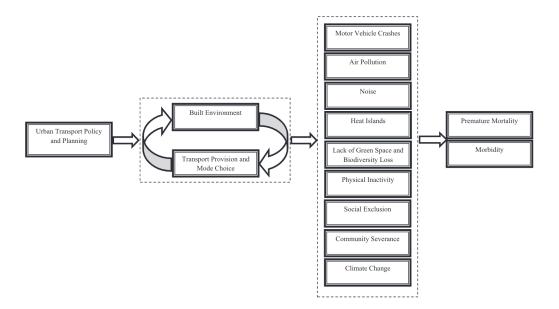

In this section, we present additional Figures and Tables.

Figure C.1 presents a graphic taken from Khreis et al. (2017), which shows the linkages between urban transport policy and planning, and adverse health impacts diagrammatically. The figure helped us focus on what variables to analyze in Section 4 above.

Table C.1 provides the data source and unit of measurement of every variable used in the paper. Similarly, Table C.2 provides summary statistics of all the variables used throughout the paper. Tables C.3 and Table C.4 presents all the measures we constructed, to make those available to other researchers: the (0,15)-, (15,30)-, (30,45)-, and (45,60)-minute accessibility zone areas for every US and European city in our sample, separately for driving and public transit. Table C.5 presents our estimates for CBD labor supply for every US city in our sample, overall and by mode.

Table C.6 presents the predicted changes in CBD labor supply, $\hat{\Theta}_{j^*}$, resulting from the partial equilibrium counterfactual exercises in Section 3.5, for each US city in our sample.

Notes: This figure shows Figure 1 from Khreis et al. (2017), which in their paper was entitled "Linkages between Urban Transport and Adverse Health Impacts."

TABLE C.1: DATA SOURCES

Variable	Unit	Description	Source
		····· 1 ····	
Demographics and Economic Metro Area population Urban share of the population Share of employment in manufacturing 65+-year-olds Owner-occupied fraction Population Density Income per capita Share of black residents Share of hispanic residents Mean democratic vote share	Count Proportion Proportion Proportion Persons per km ² \$ Proportion Proportion	Population of corresponding OECD metro area Share of population living in urban areas, 2010 Share of employment in NAICS codes 31-33, 2015 Share of population aged 65+ Share of occupied housing units owner-occupied, 2006-2010 Population per square kilometer, 2010 Per capita income in the past 12 months, 2006-2010 Share of population Black or African American alone Share of population Hispanic or Latino Mean vote share of democratic presidential candidates, 2000-2016	OECD NHGIS Table H7W (Census 2010) County Business Patterns NHGIS Table H76 (Census 2010) NHGIS Table H7K (Census 2010) NHGIS Table H7X (Census 2010) NHGIS Table H7X (Census 2010) NHGIS Table H7X (Census 2010) NHGIS Table H7Y (Census 2010) MHT Election Data + Science Lab
Agricultural share of employment Commuters by Mode from Tract to Tract	Proportion	Share of employment in NAICS code 11, 2015	County Business Patterns
Infrastructure and Land Use			
Total street length Total motorway length Total Bike Lanes length Greenspace area	kilometer kilometer kilometer Proportion	Used OpenStreetMap API to count total street length within each metro area Used OpenStreetMap API to count total motorway length within each metro area Used OpenStreetMap API to count total bike lane length within each metro area Share area covered by parks	OpenStreetMap OpenStreetMap OpenStreetMap OpenStreetMap
Pollution			
CO2 NOX PM 2.5 Noise 90th/10th percentile August temperature Mean January temperature	Tons Tons Tons Decibels Ratio Degrees Celsius	Total annual on-road CO2 emissions Total annual on-road NOX emissions Total annual on-road PM 2.5 emissions Noise energy emitted from transportation sources over a 24-hour period, averaged over receptor locations within grid cell Ratio of 90th to 10th percentile grid-cell-level August temperature (2019) Mean grid-cell-level January temperature (2019)	EPA National Emissions Inventory (2017) EPA National Emissions Inventory (2017) EPA National Emissions Inventory (2017) National Transportation Noise Mapping Tool MODIS Land Surface Temperature and Emissivity (MOD11) MODIS Land Surface Temperature and Emissivity (MOD11)
Health			
Residents with heavy drinking habits Residents who are smokers smokers Walking Index Share Physically Inactive Share poor and far from groceries Share obese	Proportion Proportion Index (1-20) Proportion Proportion Proportion	Share of adults reporting binge or heavy drinking. Share of adults who are current smokers. Composite index of street intersection density, proximity to transit stops, and diversity of land uses Share of adults age 20 and over reporting no leisure-time physical activity Share of population with income $< 2 \times$ poverty line and live > 1 mi. from grocery store Share of (age 20+) population with BMI¿30 kg/m2	2020 County Health Rankings 2020 County Health Rankings EPA National Walkability Index 2020 County Health Rankings 2020 County Health Rankings 2020 County Health Rankings
Death			
Total Deaths Traffic Deaths Obesity Deaths Asthma Deaths COPD Deaths Premature Deaths Life Expectancy	Deaths/1000 residents Deaths/1000 residents Deaths/1000 residents Deaths/1000 residents Deaths/1000 residents Years/100k population Years	All deaths Transport accident deaths according to International Classification of Diseases Obesity-caused deaths according to International Classification of Diseases Asthma-caused deaths according to International Classification of Diseases Chronic obstructive pulmonary disease-caused deaths according to International Classification of Diseases Years of potential life lost before age 75 per 100,000 population Average number of years a person can expect to live	CDC Multiple Cause of Death 1999-2019 CDC Multiple Cause of Death 1999-2019 2020 County Health Rankings 2020 County Health Rankings

Notes: This table presents a description, the unit of measurement, and the source for every empirical variable used in the paper.

TABLE C.2	2: Summar	Y STATISTICS
-----------	-----------	--------------

Variable	Aggregation	Unit	Mean	Standard Deviation	Min	Max
Demographics and Economic						
(Total) Metro Area population	County	Persons	3016273	4335979	251446	19961045
Urban share of the population	County	Proportion	0.41	0.31	0	1
Share of employment in manufacturing	County	Proportion	0.15	0.12	0	0.75
65+-year-olds	County	Proportion	0.16	0.04	0.04	0.43
Owner-occupied fraction	County	Proportion	0.73	0.08	0.21	0.91
Population Density	County	Persons per km ²	98.66	661.70	0.05	26544.42
Income per capita	County	\$	22452.07	5370.60	7772.00	64381.00
Share of black residents	County	Proportion	0.09	0.15	0.00	0.86
Share of hispanic residents	County	Proportion	0.08	0.13	0.00	0.96
Mean democratic vote share	County	Proportion	0.38	0.13	0.07	0.90
Agricultural share of employment	County	Proportion	0.01	0.02	0	0.35
Commuters by Mode from Tract to Tract	2	1				
Infrastructure and Land Use						
Total street length	County	kilometers	2611.85	2174.43	0.00	37046.48
Total motorway length	County	kilometers	85.75	159.39	0.00	2650.58
Total Bike Lanes length	County	kilometers	16.82	106.99	0.00	3734.72
Greenspace area	County	Proportion	0.09	0.17	0	1
Pollution						
CO2	County	Tons	465.38	1440.33	1.39	42337.96
NOX	County	Tons	0.84	1.91	0.01	45.55
PM 2.5	County	Tons	0.04	0.12	0.00	3.86
Noise	County	Decibels	53.57	1.63	45.32	56.96
90th/10th percentile August temperature	County	Ratio	1.13	0.14	1.00	2.17
Mean January temperature	County	Degrees Celsius	2.64	8.21	-20.42	23.19
Health						
Residents with heavy drinking habits	County	Proportion	0.17	0.03	0.08	0.29
Residents who are smokers smokers	County	Proportion	0.17	0.04	0.06	0.41
Walking Index	County	Index (1-20)	6.49	1.92	2.86	16.00
Share Physically Inactive	County	Proportion	0.27	0.06	0.10	0.50
Share poor and far from groceries	County	Proportion	0.09	0.08	0.00	0.72
Share obese	County	Proportion	0.33	0.05	0.12	0.58
Death						
COPD Deaths per 1000	County	Deaths/1000 residents	23.74	8.99	1.04	64.08
Total Deaths	County	Deaths/1000 residents	216.89	53.40	40.33	440.01
Traffic Deaths per 1000	County	Deaths/1000 residents	2.43	1.26	0.30	13.06
Obesity Deaths per 1000	County	Deaths/1000 residents	2.30	1.08	0.30	9.68
Asthma Deaths per 1000	County	Deaths/1000 residents	0.76	0.45	0.14	8.46
Premature Deaths	County	Years/100k population	8525.83	2765.87	2730.60	43939.07
Life Expectancy	County	Years	77.45	3.01	61.63	104.74

Notes: This table presents summary statistics and the spatial unit of measurement for every empirical variable used in the paper.

TABLE C.3: ACCESSIBILITY AREAS IN THE US

City	$\mathcal{A}_{0,15}^{C}$	$A_{15,30}^{C}$	${\cal A}^{C}_{30,45}$	${\cal A}^{C}_{45,60}$	$\mathcal{A}^{P}_{0,15}$	${\cal A}^{P}_{15,30}$	$\mathcal{A}^P_{30,45}$	$\mathcal{A}^P_{45,60}$
Albany, NY	97.31	792.1	1921	3885	2.875	20.62	69.74	86.03
Atlanta, GA	362.1	1716	3155	5743	3.949	45.47	175.1	380.9
Austin, TX	225.3	1507	3160	5852	3.046	25.49	71.23	99.79
Birmingham, AL	573.4	1840	3793	7541	3.265	20.13	39.89	46.08
Boston, MA	75.48	727.6	1796	3533	6.132	70.23	177.9	206.8
Buffalo, NY	150.2	794.6	1537	2583	5.538	38.22	100.9	115.2
Charlotte, NC	300.6	1320	2560	5127	6.948	53.32	135.0	165.8
Chicago, IL	286.0	1336	2452	4273	8.044	70.95	201.1	293.7
Cincinnati, OH	100.7	913.8	2407	4199	3.150	25.79	78.80	122.6
Cleveland, OH	107.3	738.2	1892	3419	5.458	39.63	106.3	184.8
Columbus, OH	173.5	1243	2832	6033	4.922	43.60	116.5	166.7
Dallas, TX	313.0	2388	4662	8069	2.645	29.87	125.9	206.0
Denver, CO	17.15	726.7	2066	4123	3.859	35.25	120.2	209.6
Detroit, MI	138.2	1021	2069	3515	3.048	17.62	59.85	142.5
Fresno, CA	456.2	1701	2861	5215	3.435	25.45	62.51	79.29
Hartford, CT	443.9	1582	2852	4956	6.019	60.12	160.9	182.1
Houston, TX	482.4	2532	4051	6673	2.365	32.51	164.2	308.2
Indianapolis, IN	151.8	1170	2856	6175	3.273	36.81	108.4	141.4
Jacksonville, FL	105.7	666.6	1140	2210	2.755	17.76	58.59	110.7
Kansas City, MO	223.7	1429	3296	7018	4.489	26.65	100.0	166.5
Las Vegas, NV	384.8	992.0	745.4	787.4	3.014	24.94	80.35	144.8
Los Angeles, CA	323.9	1800	2068	3018	6.576	63.89	205.7	448.4
Louisville, KY	210.0	1258	2811	5877	2.247	18.74	61.67	101.7
Memphis, TN	417.0	1822	3689	7186	4.606	24.28	54.25	91.47
Miami, FL	93.94	585.2	856.3	951.2	2.684	32.11	69.47	171.8
Milwaukee, WI	145.6	1054	2275	4565	2.491	24.55	98.15	150.2
Minneapolis, MN	185.0	1613	3121	6406	3.603	33.58	137.8	312.3
Nashville, TN	443.9	2168	4617	7997	2.716	21.29	80.02	78.58
New Haven, CT	86.40	693.9	1405	2559	5.289	43.38	76.31	93.87
New Orleans, LA	264.1	463.3	650.9	2334	3.239	12.95	54.20	87.31
New York, NY	56.05	936.0	2094	3489	6.540	46.79	168.8	372.7
Oklahoma City, OK	223.2	1448	3218	6956	2.045	23.18	98.39	116.4
Orlando, FL	127.4	869.8	1639	2247	3.266	22.67	75.42	139.1
Philadelphia, PA	206.5	1240	2721	4981	10.27	90.14	195.0	267.6
Phoenix, AZ	68.80	968.3	2108	3018	2.579	30.86	108.0	202.2
Pittsburgh, PA	230.4	1082	2305	5136	3.988	54.70	144.5	195.0
Portland, OR	34.60	608.0	1685	3262	3.393	42.69	131.7	188.5
Raleigh, NC	48.31	481.0	1497	3308	4.269	31.76	75.03	125.2
Richmond, VA	214.1	1184	2212	4578	2.879	31.08	52.89	32.51
Sacramento, CA	321.2	1398	3351	4987	3.539	27.56	86.59	138.3
Salt Lake City, UT	107.4	799.8	1085	2069	2.918	28.95	89.76	151.4
San Antonio, TX	460.8	2047	3788	7239	2.605	25.83	124.1	187.3
San Diego, CA	278.1	910.6	1134	1684	5.142	23.58	83.09	169.8
San Francisco, CA	58.01	522.3	1161	2454	7.943	50.79	113.6	186.7
Seattle, WA	98.44	687.5	1130	1972	5.003	40.87	147.6	260.5
St. Louis, MO	263.0	1604	2824	6222	3.564	39.14	91.38	171.5
St. Petersburg, FL	148.8	237.8	840.2	1978	3.270	27.64	46.64	49.18
Tampa, FL	140.2	685.4	1539	2442	2.152	12.87	45.37	84.29
Tucson, AZ	249.8	1107	1863	2582	3.110	23.54	109.0	119.5
Tulsa, OK	140.6	1375	2755	5937	2.265	4.047	35.25	47.17
Virginia Beach, VA	119.0	498.7	582.9	1431	1.730	2.993	9.180	30.76
Washington, DC	151.6	1031	2092	3937	4.359	37.82	156.9	356.4
Average	213.2	1160	2293	4303	4.010	33.74	102.7	167.1

Notes: The table presents the size of the area from which the CBD of a given city is accessible within (0,15), (15,30), (30,45), or (45,60) minute commutes via either cars or public transit. The areas have been constructed for Wednesday at 8.30 am. The areas are computed using the service of the "Traveltime, Inc." website. A - 8

TABLE C.4: ACCESSIBILITY AREAS IN EURO	PE
--	----

	10	10	10	16	, P	1 P	4 P	• P
City	${\cal A}^{C}_{0,15}$	${\cal A}^{C}_{15,30}$	${\cal A}^{C}_{30,45}$	${\cal A}^{C}_{45,60}$	$\mathcal{A}^P_{0,15}$	${\cal A}^{P}_{15,30}$	${\cal A}^{P}_{30,45}$	${\cal A}^{P}_{45,60}$
Amsterdam, Netherlands	109.5	778.1	1803	3441	5.431	50.98	139.3	266.5
Athens, Greece	36.36	312.0	623.0	1084	9.151	70.86	136.7	109.8
Barcelona, Spain	7.603	56.38	449.3	1334	11.57	67.93	106.7	221.1
Berlin, Germany	42.26	181.7	572.2	1771	7.592	103.0	289.6	437.5
Birmingham, UK	62.61	737.0	1857	3745	4.233	51.51	174.2	219.7
Bordeaux, France	8.097	149.4	1044	2971	4.097	38.06	103.9	184.8
Bremen, Germany	66.20	628.3	2113	5103	6.046	50.65	133.9	209.9
Brussels, Belgium	22.74	367.5	1852	4953	7.949	100.3	253.5	619.9
Budapest, Hungary	30.35	311.9	1211	2933	4.193	45.23	147.7	231.6
Cologne, Germany	46.56	671.2	2674	6199	6.341	67.37	240.6	542.0
Copenhagen, Denmark	33.06	197.4	873.1	2466	12.89	83.71	218.8	323.7
Dortmund, Germany	22.77	587.0	2189	5842	7.560	59.76	150.7	363.0
Dresden, Germany	45.10	299.5	1473	3608	3.873	46.94	117.1	169.8
Dublin, Ireland	119.6	800.3	1722	3132	5.168	47.40	129.6	190.0
Duesseldorf, Germany	46.96	874.4	3092	6011	3.530	45.26	152.1	377.4
Frankfurt, Germany	38.91	580.7	2035	4625	12.55	92.92	255.6	450.2
Glasgow, UK	66.01	679.9	1524	2421	3.458	43.28	166.0	274.9
Hamburg, Germany	27.30	254.0	1080	3522	8.495	76.90	199.3	424.7
Hanover, Germany	67.38	632.6	1788	4149	14.90	94.09	175.6	307.8
Helsinki, Finland	10.52	112.6	620.3	1943	8.288	82.64	248.2	261.3
Katowice, Poland	90.61	742.0	1762	3594	2.355	36.09	144.0	254.5
Krakow, Poland	16.77	196.4	788.7	2086	6.432	55.38	123.3	189.5
Leeds, UK	56.87	543.7	1420	2980	4.380	31.48	100.5	246.0
Lille, France	8.409	355.6	2224	4785	3.203	44.16	117.6	178.1
Lisbon, Portugal	31.58	449.3	853.0	1415	6.335	51.80	81.74	108.2
Liverpool, UK	45.64	255.2	693.2	1724	3.957	40.57	120.1	145.5
London, UK	16.62	88.88	237.3	851.6	3.647	50.39	282.6	621.2
Lyon, France	5.122	309.0	1587	3694	6.150	56.80	163.4	221.4
Madrid, Spain	9.469	486.2	1491	3082	13.23	112.2	292.7	358.9
Manchester, UK	57.68	392.0	1180	2688	4.512	36.53	166.5	343.6
Marseille, France	17.37	271.6	975.6	1623	5.434	35.92	82.36	129.2
Milan, Italy	7.578	72.59	846.8	3164	8.680	79.60	146.5	293.0
Munich, Germany	48.12	626.8	2574	5918	5.254	89.25	284.9	448.8
Naples, Italy	157.8	838.8	1062	2017	4.382	16.51	27.60	60.83
Nuremberg, Germany	40.45	510.6	2429	4977	5.077	73.23	179.0	274.1
Oslo, Norway	40.54	363.8	1017	2301	7.999	80.11	203.4	264.4
Paris, France	4.561	66.13	539.6	1742	12.23	110.2	375.1	675.0
Porto, Portugal	72.08	629.2	1441	2323	6.883	45.20	75.31	73.31
Prague, Czech Republic	32.88	442.6	1717	4578	9.105	97.95	243.9	395.2
Rome, Italy	27.41	259.4	1102	2553	11.22	70.87	134.8	165.4
Rotterdam, Netherlands	87.62	767.3	1631	3437	6.953	57.96	194.9	318.4
Seville, Spain	29.95	402.8	1252	2016	2.585	17.84	46.85	80.02
Sheffield, UK	21.09	217.7	995.3	2241	2.814	21.58	40.00 79.77	114.4
Stockholm, Sweden	23.42	429.4	1159	2425	2.480	55.30	232.7	408.2
Stuttgart, Germany	38.40	568.5	1872	3576	9.213	84.14	232.7	392.1
Toulouse, France	5.698	194.8	1871	4642	7.603	68.97	178.8	270.1
Turin, Italy	29.41	368.8	1419	3156	4.836	35.61	93.16	174.8
-	33.44	473.3	1318	1852	4.830 6.131	45.97	74.30	89.12
Valencia, Spain Vienna, Austria	14.61	473.3 221.7	947.2	2845	11.50	45.97	190.2	293.9
Warsaw, Poland	38.83	293.2	1165	2845 3158	8.231	99.27	207.1	293.9 360.6
Zuerich, Switzerland	56.85 54.20	293.2 790.6	1685	3174	8.194	83.02	207.1	500.0 526.1
Average	40.67	428.2	1409	3174	6.829	62.83	170.1	287.4
- in ciuge	10.07	120.2	1107	517 1	0.027	02.00	17 0.1	207.4

Notes: The table presents the size of the area from which the CBD of a given city is accessible within (0,15), (15,30), (30,45), or (45,60) minute commutes via either cars or public transit. The areas have been constructed for Wednesday at 8.30 am. The areas are computed using the service of the "Traveltime, Inc." website.

City	Θ	Θ^C	Θ^P
Albany, NY	0.791	0.748	0.0429
Atlanta, GA	0.786	0.723	0.0635
Austin, TX	0.861	0.824	0.0371
Birmingham, AL	0.891	0.887	0.00400
Boston, MA	0.619	0.317	0.303
Buffalo, NY	0.873	0.790	0.0822
Charlotte, NC	0.818	0.788	0.0299
Chicago, IL	0.607	0.268	0.339
Cincinnati, OH	0.804	0.754	0.0499
Cleveland, OH	0.808	0.729	0.0794
Columbus, OH	0.853	0.823	0.0305
Dallas, TX	0.790	0.761	0.0290
Denver, CO	0.702	0.637	0.0651
Detroit, MI	0.830	0.806	0.0245
Fresno, CA	0.898	0.886	0.0118
Hartford, CT	0.835	0.781	0.0534
Houston, TX	0.833	0.768	0.0255
Indianapolis, IN	0.793	0.768	0.0235
*	0.855	0.842	0.00636
Jacksonville, FL			
Kansas City, MO	0.848	0.820	0.0278
Las Vegas, NV	0.892	0.858	0.0342
Los Angeles, CA	0.766	0.687	0.0792
Louisville, KY	0.870	0.834	0.0368
Memphis, TN	0.891	0.875	0.0161
Miami, FL	0.833	0.798	0.0347
Milwaukee, WI	0.836	0.763	0.0722
Minneapolis, MN	0.696	0.575	0.120
Nashville, TN	0.865	0.851	0.0134
New Haven, CT	0.728	0.677	0.0516
New Orleans, LA	0.762	0.721	0.0410
New York, NY	0.609	0.124	0.485
Oklahoma City, OK	0.882	0.874	0.00809
Orlando, FL	0.805	0.792	0.0126
Philadelphia, PA	0.688	0.404	0.284
Phoenix, AZ	0.800	0.771	0.0287
Pittsburgh, PA	0.767	0.590	0.177
Portland, OR	0.726	0.598	0.128
Raleigh, NC	0.795	0.785	0.00986
Richmond, VA	0.811	0.777	0.0343
Sacramento, CA	0.768	0.731	0.0362
Salt Lake City, UT	0.778	0.734	0.0435
San Antonio, TX	0.891	0.849	0.0413
San Diego, CA	0.807	0.753	0.0546
San Francisco, CA	0.699	0.424	0.275
Seattle, WA	0.648	0.442	0.205
St. Louis, MO	0.811	0.761	0.0502
St. Petersburg, FL	0.852	0.838	0.0145
Tampa, FL	0.851	0.841	0.0103
Tucson, AZ	0.816	0.783	0.0327
Tulsa, OK	0.860	0.854	0.00611
Virginia Beach, VA	0.814	0.814	2.60e-05
Washington, DC	0.655	0.392	0.263
Average	0.794	0.717	0.0772
	0	017	5.0.72

TABLE C.5: CBD LABOR SUPPLY, Θ , Across Cities

Notes: The table shows the CBD labor supply measure derived from the model for each city, overall, Θ_{j^*} , and by mode, $\Theta_{j^*}^C$ and $\Theta_{j^*}^P$.

City	$\omega^{P}_{0,15}, \omega^{C}_{0,15}$	$\omega^{P}_{0,15}$	$\omega^{P}_{15,30}, \omega^{C}_{15,30}$	$\omega^{p}_{15,30}$	$\omega^{P}_{30,45}\omega^{C}_{30,45}$	$\omega^{p}_{30,45}$	$\omega^{p}_{45,60}\omega^{C}_{45,60}$	$\omega^{P}_{45,60}$	$\mathcal{A}^P_{0,15}, \mathcal{A}^C_{0,15}$	$\mathcal{A}^{P}_{0,15}$	$\mathcal{A}^{P}_{30,45}, \mathcal{A}^{C}_{30,45}$	$A^{P}_{30,45}$
Albany, NY	1.02	1.00	1.05	1.00	1.02	1.00	1.01	1.00	1.00	1.00	1.00	1.00
Atlanta, GA	1.02	1.00	1.04	1.00	1.03	1.00	1.01	1.00	1.00	1.00	1.00	1.00
Austin, TX	1.03	1.00	1.04	1.00	1.02	1.00	1.01	1.00	1.00	1.00	1.00	1.00
Birmingham, AL	1.05	1.00	1.04	1.00	1.01	1.00	1.01	1.00	1.00	1.00	1.00	1.00
Boston, MA	1.01	1.00	1.04	1.02	1.04	1.02	1.02	1.01	1.00	1.00	1.00	1.00
Buffalo, NY	1.03	1.00	1.05	1.00	1.02	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Charlotte, NC	1.03	1.00	1.05	1.00	1.02	1.00	1.01	1.00	1.00	1.00	1.00	1.00
Chicago, IL	1.02	1.00	1.03	1.02	1.03	1.02	1.02	1.01	1.00	1.00	1.00	1.00
Cincinnati, OH	1.01	1.00	1.05	1.00	1.03	1.00	1.01	1.00	1.00	1.00	1.00	1.00
Cleveland, OH	1.01	1.00	1.05	1.00	1.03	1.00	1.01	1.00	1.00	1.00	1.00	1.00
Columbus, OH	1.02	1.00	1.06	1.00	1.01	1.00	1.01	1.00	1.00	1.00	1.00	1.00
Dallas, TX	1.02	1.00	1.05	1.00	1.02	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Denver, CO	1.00	1.00	1.05	1.00	1.04	1.00	1.01	1.00	1.00	1.00	1.00	1.00
Detroit, MI	1.01	1.00	1.05	1.00	1.03	1.00	1.01	1.00	1.00	1.00	1.00	1.00
Fresno, CA	1.06	1.00	1.03	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Hartford, CT	1.04	1.00	1.03	1.00	1.02	1.00	1.01	1.00	1.00	1.00	1.00	1.00
Houston, TX	1.03	1.00	1.05	1.00	1.02	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Indianapolis, IN	1.01	1.00	1.06	1.00	1.03	1.00	1.01	1.00	1.00	1.00	1.00	1.00
Jacksonville, FL	1.01	1.00	1.05	1.00	1.03	1.00	1.01	1.00	1.00	1.00	1.00	1.00
AKansas City, MO	1.01	1.00	1.06	1.00	1.02	1.00	1.01	1.00	1.00	1.00	1.00	1.00
Las Vegas, NV	1.05	1.00	1.05	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Los Angeles, CA	1.02	1.00	1.05	1.00	1.02	1.00	1.01	1.00	1.00	1.00	1.00	1.00
Louisville, KY	1.02	1.00	1.06	1.00	1.01	1.00	1.01	1.00	1.00	1.00	1.00	1.00
Memphis, TN	1.04	1.00	1.05	1.00	1.01	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Miami, FL	1.02	1.00	1.04	1.00	1.03	1.00	1.01	1.00	1.00	1.00	1.00	1.00
Milwaukee, WI	1.03	1.00	1.05	1.00	1.01	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Minneapolis, MN	1.02	1.00	1.05	1.00	1.02	1.01	1.01	1.01	1.00	1.00	1.00	1.00
Nashville, TN	1.03	1.00	1.04	1.00	1.02	1.00	1.01	1.00	1.00	1.00	1.00	1.00
New Haven, CT	1.03	1.00	1.05	1.00	1.02	1.00	1.01	1.00	1.00	1.00	1.00	1.00
New Orleans, LA	1.06	1.00	1.03	1.00	1.01	1.00	1.01	1.00	1.00	1.00	1.00	1.00
New York, NY	1.00	1.00	1.03	1.02	1.04	1.03	1.03	1.03	1.00	1.00	1.00	1.00
Oklahoma City, OK	1.02	1.00	1.06	1.00	1.01	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Orlando, FL	1.02	1.00	1.05	1.00	1.02	1.00	1.01	1.00	1.00	1.00	1.00	1.00
Philadelphia, PA	1.02	1.00	1.05	1.02	1.02	1.01	1.01	1.01	1.00	1.00	1.00	1.00
Phoenix, AZ	1.00	1.00	1.05	1.00	1.04	1.00	1.01	1.00	1.00	1.00	1.00	1.00
Pittsburgh, PA	1.02	1.00	1.04	1.01	1.03	1.01	1.01	1.01	1.00	1.00	1.00	1.00
Portland, OR	1.01	1.00	1.05	1.01	1.03	1.01	1.01	1.00	1.00	1.00	1.00	1.00
Raleigh, NC	1.01	1.00	1.04	1.00	1.04	1.00	1.02	1.00	1.00	1.00	1.00	1.00
Richmond, VA	1.03	1.00	1.05	1.00	1.01	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Sacramento, CA	1.04	1.00	1.04	1.00	1.01	1.00	1.01	1.00	1.00	1.00	1.00	1.00
Salt Lake City, UT	1.02	1.00	1.06	1.00	1.01	1.00	1.01	1.00	1.00	1.00	1.00	1.00
San Antonio, TX	1.04	1.00	1.05	1.00	1.01	1.00	1.00	1.00	1.00	1.00	1.00	1.00
San Diego, CA	1.04	1.00	1.04	1.00	1.01	1.00	1.01	1.00	1.00	1.00	1.00	1.00
San Francisco, CA	1.02	1.00	1.01	1.02	1.02	1.00	1.01	1.00	1.00	1.00	1.00	1.00
Seattle, WA	1.02	1.00	1.05	1.02	1.02	1.01	1.01	1.01	1.00	1.00	1.00	1.00
St. Louis, MO	1.02	1.00	1.05	1.00	1.02	1.00	1.01	1.00	1.00	1.00	1.00	1.00
St. Petersburg, FL	1.05	1.00	1.03	1.00	1.02	1.00	1.01	1.00	1.00	1.00	1.00	1.00
Tampa, FL	1.02	1.00	1.03	1.00	1.02	1.00	1.01	1.00	1.00	1.00	1.00	1.00
Tucson, AZ	1.02	1.00	1.04	1.00	1.02	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Tulsa, OK	1.02	1.00	1.05	1.00	1.02	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Virginia Beach, VA	1.02	1.00	1.00	1.00	1.02	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Washington, DC	1.03	1.00	1.03	1.00	1.01	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	1.01	1.00	1.04	1.01	1.02	1.02		1.00	1.00	1.00	1.00	
Average	1.02	1.00	1.05	1.00	1.02	1.00	1.01	1.00	1.00	1.00	1.00	1.00

TABLE C.6: COUNTERFACTUAL CHANGES IN CBD LABOR SUPPLY

Notes: The table shows the counterfactual change in the CBD labor supply measure, Θ_{j^*} , in response to counterfactual 10% increases in population density within various accessibility zone areas (Columns 2-9) and in response to 10% increases in various accessibility zone areas.