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HIGHER-ORDER BELIEFS IN A SEQUENTIAL SOCIAL DILEMMA

EVAN M. CALFORD∗ AND ANUJIT CHAKRABORTY∗∗

Abstract. Do experimental subjects have consistent first and higher-order beliefs

about others? How does any inconsistency affect strategic decisions? We introduce

a simple four-player sequential social dilemma where actions reveal first and higher-

order beliefs. The unique sub-game perfect Nash equilibrium (SPNE) is observed

less than 5% of the time, even though our diagnostic treatments show that a majority

of our subjects are self-interested, higher-order rational and have accurate first-order

beliefs. In our data, strategic play deviates substantially from Nash predictions

because first-order and higher-order beliefs are inconsistent for most subjects. We

construct and operationalize an epistemic model of belief hierarchies to estimate

that less than 10% of subjects have consistent first and higher-order beliefs.
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“If you know the enemy and know yourself you need not fear the results

of a hundred battles.” ∼ Sun Tzu

Everyday strategic decisions are inherently risky: we know little about how our oppo-

nents would act. Knowing the “enemy”, as recommended by Sun Tzu, is both difficult

and a source of considerable uncertainty. This uncertainty also gives rise to a meta-

uncertainty: Are strategic agents themselves aware that they might mutually disagree

about a third agent’s actions? If they are aware, then how does their understanding

of this disagreement influence their strategic behavior?

We refer to what i believes about the distribution of other’s actions as i ’s first-

order beliefs, and refer to what i believes j believes about the distribution of other’s

actions as i ’s second-order beliefs. The collection of all such multiple iterations (e.g.,

what i believes j believes k 6= j believes...) are referred to as i’s higher-order beliefs,

in contrast to i’s first-order beliefs. First and higher-order beliefs are fundamental

determinants of all strategic behavior and they can provide a potential explanation for

why behavior observed in experiments could depart from equilibrium predictions, or

why in games with multiple equilibria, some equilibria are more likely to be observed

than others. We introduce a four-player sequential game of perfect information,

called the Sequential Social Dilemma game (SSD henceforth). The SSD independently

identifies the first- and higher-order beliefs through revealed preference and illustrates

their role in shaping strategic behavior.

In the baseline SSD, four players, P1 to P4 (see Figure 1) sequentially choose

between forming a single link to either an outside blue node or to another player. P1

moves first, followed by P2, P3 and P4 respectively, and this is commonly known.

Linking to blue is the safe action as it earns a guaranteed return of 24. For example,

in Example 1 from Figure 1, P3 linked to blue and guaranteed themselves a payoff of

24. Linking to another player is the (potentially) risky action, as the resultant payoff

depends on the linked player’s action, who might not have moved yet. It pays 30

and 10 if the linked player themselves linked to the blue node or to another player,

respectively. Continuing with Example 1 from Figure 1, P1 and P4 both linked to

another player, but P1 received 10 as her linked player (P4) linked to another player,

and P4 received 30 as her linked player (P2) linked to blue. In the Subgame Perfect

Nash Equilibrium (SPNE), P1, P2 and P3 all link to P4 who then links to blue.

Players 1, 2 and 3 each earn 30, and Player 4 earns 24, the lowest in the group

(Example 2 from Figure 1). If P4 unilaterally deviates from the SPNE path to any

other action, everyone earns 10.
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P1 P4

P3P2

π = 10 π = 30

π = 30π = 24

(a) Example 1

P1 P4

P3P2

π = 30 π = 24

π = 30π = 30

(b) Example 2 (SPNE outcome)

Figure 1. Payoffs in the SSD for two action profiles. P1 to P4 take
turns sequentially to form a single link, shown as directed arrows. The
right-hand diagram demonstrates the unique SPNE of the game.

As the lowest paid player in the SPNE outcome, P4 has the least to lose if she

deviates from the SPNE path. P4’s deviation might be motivated by avoiding the

disadvantageously unequal SPNE outcome in favor of the equality in payoffs a devia-

tion guarantees (everyone gets 10), or by spite. Thus, players in P1, P2, and P3 roles

might be uncertain about P4’s actions on the SPNE path. To measure this uncer-

tainty in isolation from other factors we fix the counterfactual where P1 is certain

that, conditional on her linking to P4, both P2 and P3 will also link to P4: we then

define P1 to be first-order optimistic about P4 if, given this counterfactual, P1 prefers

linking to P4 over taking the safe action. Conversely if P1 still prefers the safe action,

given the counterfactual, then they are revealed to be first-order pessimistic about

P4.In a simple variation of the baseline SSD game, that we call the 2D treatment,

we provide P1 this assurance by announcing that if P1 links to P4, then P2 and P3

would indeed be forced to link to P4.1 Our results, from this and other diagnostic

treatments discussed below, show that the majority of subjects when playing the role

of P1, are optimistic about P4’s behavior: 72% of subjects are first-order optimistic,

10% are pessimistic, and the remaining 18% cannot be classified.

In the baseline SSD, even if P1 is first-order optimistic about P4, she might worry

about the possibility of P2 or P3 being pessimistic and hence taking the safe action.

For example, P1 might worry about the scenario shown in Example 1 from Figure

1: After P1 and P2 link to P4, a P3 who is pessimistic about P4’s action plays the

1We adopt a simple mnenomic naming convention for our diagnostic treatments: the 2D treatment
has two (2) active Decision makers along the equilibrium path. Similarly, our 1D and 3D treatments
(to be introduced later) have one and three active decision makers along the equilibrium path.

3



safe action of linking to Blue, following which P4 links to P3 to earn 30. P1 ends

up earning only 10 in this case. A similar situation could arise if P2 was pessimistic

about P4’s action instead. Thus, the higher order uncertainty for P1, “Are P2 and

P3 first-order optimistic?”, might deter P1 from linking to P4.

This feature of the SSD game allows us to pitch our central research question:

What percentage of first-order optimistic P1s also believe that others (i.e. P2 and

P3) are first-order optimistic? Alternatively, are P1’s first-order beliefs (what P1

thinks about P4’s action) and higher-order beliefs (what P1 thinks P2 thinks about

P4’s action, and so on) consistent? Our treatment variations identify a surprisingly

stark result: Only 7% of our subjects are both first-order and high-order optimistic

about P4’s behavior. That is, conditional on being first-order optimistic, more than

90% of subjects are not higher-order optimistic.

In Section II, we construct an epistemic model of belief hierarchies specifying the

first and higher-order beliefs that all players in SSD game can hold. Within the

epistemic model we formally define first-order optimism and pessimism, as well as

higher-order optimism, pessimism and uncertainty. Further, we introduce two addi-

tional diagnostic treatments which allow us to categorize subjects by their first-order

and higher-order belief structure.

Our identification of first and higher-order beliefs relies on four critical properties

of the SSD. First, by offering P1 a choice between a safe outcome (payoff = 24)

and uncertain outcome (payoff = 30 or 10), the SSD reveals P1’s beliefs about the

likelihood of the high outcome (payoff = 30) occurring. Second, the SSD is sequential.

This sequential design breaks the typical circular chain of higher-order reasoning

present in simultaneous move games. Third, in the SSD, each player moves once as

opposed to the canonical experiments on backward induction where all players move

multiple times (e.g. centipede games [Rosenthal, 1981]) or where the same player

moves multiple times (e.g. chain store paradox games [Selten, 1978]). Backward

induction in multi-move games requires strong assumptions about how players revise

their beliefs about the expected behavior of someone who has previously deviated

from the equilibrium path. For example, if j sees i deviate from the equilibrium path

what should she assume about i’s conformity to backward induction in her future

moves? Similar to Dufwenberg and Van Essen [2018], we bypass this controversy

by only allowing players to move once. Fourth, the SSD game tree can be easily

modified in additional treatments to disentangle first and higher-order beliefs about

the behavior of P4.
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Beliefs in a game are unobservable, hence, unless inferred through actions, they

must be separately elicited. First and higher-order beliefs are difficult to separately

elicit without influencing the underlying interaction (Rutström and Wilcox [2009],

Gächter and Renner [2010]) and incentives offered by elicitation mechanisms can

drive false reporting even in simple elicitation tasks (Danz et al. [2022]). We solve

this identification problem by identifying higher-order beliefs directly through actions

in a game. Most of the previous experimental literature on beliefs in a game has fo-

cused almost exclusively on first-order beliefs: for example, reputation-building under

uncertainty about partner’s selfish versus reciprocal utility-type has been investigated

thoroughly (Andreoni [1993], Cooper et al. [1992]). Notable exceptions are Bosworth

[2017] and the literature on guilt aversion (Charness and Dufwenberg [2006], Ellingsen

et al. [2010], Khalmetski et al. [2015]), that have studied the impact of higher-order

beliefs in two-player games (what i thinks j thinks i would do).

We propose and quantify a new mechanism, uncertainty about other’s beliefs, as

a potential explanation for why observed behavior in interactions without preplay

communication often depart from equilibrium predictions. For example, take the in-

fluential Baron and Ferejohn [1989] model of multilateral bargaining used by both

economists and political scientists. According to the Baron-Ferejohn bargaining pro-

cedure, one member of the group is re-picked at random to propose a budget split

until a majority agrees with the split. Bargaining theory predicts that, in a stylized

world, the first proposer would enjoy high bargaining power (just as SPNE predicts

that first-mover, P1, in the SSD should earn the highest possible payoff of 30) and it

successfully explains the real-life advantages of leading a bill to the legislative floor.2

But in experimental settings [Frechette et al., 2003, 2005] with inexperienced play-

ers who additionally cannot communicate, one routinely finds under-exploitation of

proposal power. This could be partly explained by the uncertainty in higher-order

beliefs. Both the Baron and Ferejohn [1989] model and real-life bargaining scenarios

operate in a world with knowledge and agreement about other’s potential actions: the

former by assumption, and the latter through pre-negotiation dialogue between all

participants. Experimental subjects, thrust into a multilateral bargaining experiment,

don’t enjoy those privileges, and respond by deviating to a fairer and safer allocation

2Agranov and Tergiman [2014] mention that in legislative bargaining, the chairman of the appropri-
ations committee, one of the most powerful committees in the Senate, has often been able to steer a
disproportionate amount of funds to his district. For example, NYT reported that when Ted Stevens
from Alaska held the position, per capita federal spending in Alaska grew by more than 50 percent,
by far the highest in the country and almost double the national average.
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of resources, thus failing to take advantage of proposal power. In fact, Agranov and

Tergiman [2014] show that once subjects can communicate (cheap-talk), the share of

resources extracted by proposers rises to become more aligned with the theory. It

is plausible that in games with more than 2 players, communication has a special

role of aligning first and higher-order beliefs and, therefore, restores the first-mover

advantage. Supporting evidence for this is provided by the fact that, in two-player

environments where the mutual disagreement about a third player is irrelevant, com-

munication has the opposite effect: it decreases the proposer/ dictator’s share in both

two-player bargaining games (Roth [2020]) and dictator games (Andreoni and Rao

[2011]).

The paper is organized as follows. Section I presents an overview of the exper-

imental design and procedures. Section II provides the main epistemic model. In

Subsection II.6 we compare the predictions of our model to those from the level-k

[Costa-Gomes and Crawford, 2006, Costa-Gomes et al., 2001, Crawford and Iriberri,

2007a,b] model, and we discuss how our model provides a more coherent explanation

for the empirical findings from the SSD. In Section III we report the main results.

Section IV summarizes the results and Section V concludes.

I. Experimental Design and Hypotheses

The experiment consists of 4 treatments in total: a Baseline treatment and three

diagnostic treatments.

I.1. Baseline treatment. Every round, subjects are matched in groups of 4. Subjects

of a group, P1, P2, P3, P4 are represented by a red node, labelled Red 1 through Red

4.3 There is also an inert Blue node with no associated player. Figure 2 displays a

screenshot from the experimental interface.

Every round, each player must form a link to another node. Linking to the Blue

node is the safe action that guarantees 24 points. Linking to a Red node is a risky

action for early players: If Pi links to Pj (j 6= i), then Pi earns 30 points if Pj

links to the Blue node and 10 points if Pj links to a Red node.4 Decisions are made

sequentially, with P1 moving first, followed by P2, P3 and P4, and all prior decisions

are displayed to subjects when making a decision. In the example screenshot in figure

3Player P1 is represented by the node Red 1, and so on. We can refer to the player and the node
interchangeably.
4Linking to a red node is always a risky action for P1, even though it can be non-risky along some
paths for other players. Our analysis and identification focuses on the behavior of P1, supporting
the use of the term risky for such an action.
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Figure 2. A screenshot from the experimental interface, from the per-
spective of P3 (Red 3).

2 it is P3’s move, and P3 can observe that P1 and P2 each linked to P4. At the

end of each round, subjects were shown a screen that summarized the decisions and

outcomes made during that round (Figure 5). Thus, every round subjects received

detailed and immediate feedback about the game.

Given the payoff structure, playing the safe action of linking to the Blue node may

be interpreted as providing a local public good: anyone directly linked to her can

enjoy the benefits from her choice. This is why we call the game a Sequential Social

Dilemma.

With standard assumptions and players who maximize expected utility, the SPNE

outcome in the Baseline treatment has each of the first 3 players link to P4, and P4

playing the safe action. P1, P2, P3 earn 30, P4 earns 24 and is the lowest paid player.

Our first hypothesis documents the SPNE prediction regarding P1’s behavior in the

Baseline treatment. The SPNE outcome is formally derived in Appendix C.

Hypothesis 1 (SPNE). In the baseline treatment P1 links to P4.
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I.2. Diagnostic treatments: For our experimental design, we focus on three funda-

mental reasons for which P1 might want to deviate from the SPNE action. First,

P1 might worry that P4 would deviate from the equilibrium path. Second, P1 might

be worried that either of P2 or P3 deviate from the equilibrium path by linking to

Blue themselves. Third, P1 might voluntarily deviate simply because she enjoys the

altruistic act of providing a public good. We design three diagnostic treatments, each

of which introduces additional rules to the Baseline treatment to eliminate one or

more of the three reasons above.

3D treatment: In the 3D treatment, if any three players link to the same player

then the linked player is forced to play the safe action. If the linked player has already

moved, then the linked player’s action is revised to be the safe action. For example,

if P1, P2 and P3 all link to P4, then P4 is required to play the safe action. Thus,

the 3D treatment removes P1’s concern about P4’s actions on the equilibrium path.

Symmetrically, if P1, P2 and P4 all link to P3, then P3’s originally chosen action is

revised to be the safe action. The 3D treatment has a larger set of SPNE than the

Baseline treatment, that we characterize in Appendix C.

2D treatment: In the 2D treatment, if P1 plays the safe action then there are no

restrictions and the round proceeds as in the Baseline treatment. But, if P1 links

to Pj then the other two players, Pk for k /∈ {1, j}, are required to link to Pj. For

example, if P1 links to P4, then it becomes a 2-player game between P1 and P4,

as both P2 and P3 are automatically also linked to P4. Thus, 2D removes the two

middlemen between P1 and P4 on the equilibrium path, and hence removes P1’s

worry about P2 and P3’s action on the equilibrium path.

1D treatment: This treatment combines the interventions in the 3D and 2D treat-

ments. If P1 links to Pj then all others are required to link to Pj, and Pj is required

to play the safe action. If P1 plays the safe action, then the 3 remaining players

are automatically linked to P1. Thus, P1 alone determines which player receives 24

points, while all remaining players earn 30 points. This treatment removes P1’s worry

about every other player’s actions. Any self interested P1 would always take a risky

action. Playing a safe action would reveal P1’s altruistic motives.

Our naming convention identifies each treatment by the number of subjects who

make active decisions along the equilibrium path (i.e. the treatment with three Deci-

sion makers along the path is referred to as the 3D treatment). Given each diagnostic

treatment removes one or multiple mechanisms that may cause P1 to choose the safe

action in the Baseline treatment, we arrive at the following qualitative hypothesis:
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Hypothesis 2 (Behavioral Channels). P1 takes the safe action in the Baseline treat-

ment more frequently than in any of the 3D, 2D or 1D treatments. 1D has the fewest

instances of P1 taking the safe action.

In contrast, the set of P1 actions that are consistent with SPNE is larger in each

of the diagnostic treatments than in the Baseline treatment (see Appendix C). For

example, in the Baseline treatment there is a unique SPNE where P1 links to P4. In

comparison, as we formally show in Proposition 4, in the 2D treatment there exist

SPNE where P1 links to P2, P3 or P4. Propositions 2 and 3 demonstrate that in the

3D treatment any P1 action can be played as part of a SPNE equilibrium, though

the equilibrium where P1 plays the safe action is rather unintuitive and not trem-

bling hand perfect. Therefore, equilibrium behavior implies the following alternative

hypothesis.

Hypothesis 3 (Equilibrium). P1 links to P4 in the Baseline treatment (weakly) more

frequently than in any of the 3D, 2D or 1D treatments.

I.3. Sessions. Each session contained 12 subjects. Sessions lasted 48 rounds, grouped

into 6 blocks of 8 rounds each. Each round, subjects were randomly and anonymously

re-matched into three groups of 4. Every session contained two out of the four treat-

ments and the two treatments were alternated after every block. Thus, the first, third,

fifth blocks ran the first treatment and second, fourth, sixth blocks ran the second

treatment. Among two treatments run in the same session the one that generated

the smallest game tree was run second. For example, the 1D was always the second

treatment, Baseline was always the first treatment, and 3D came before 2D.

We discard the data from the first two blocks (16 rounds) and report only the data

from the final 4 blocks to reduce any learning effects that might be caused by subjects

seeing a particular treatment first.5 Subjects were paid for the sum of points earned

during one randomly selected block of rounds. Points were converted to Australian

Dollars at an exchange rate of $0.15 per point. This implies that payoffs were $4.50,

$3.60 and $1.50 per round for the three feasible outcomes. In addition, subjects

received a $5 show-up fee and a bonus of up to $3 for comprehension quizzes (up to

$1.50 per quiz) that were conducted immediately prior to the start of rounds 1 and

5The data confirms that there was learning over time when including all blocks, but that behavior was
stable once the first two blocks were dropped. Nevertheless, the results of our maximum likelihood
model in Section III.1 remain qualitatively unchanged when estimated using the full sample instead
of only the final four blocks. See footnote 19 for details.
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3D 2D 1D

Baseline 3 3 1

3D 3 1

2D 1

Table 1. Number of sessions conducted with each pairwise combina-
tion of treatments. For any entry, the row-treatment was run first.

9. Average payments were $40.12 Australian Dollars for sessions that typically lasted

between 60 and 90 minutes.6

We conducted 12 sessions in total, with a total of 144 subjects. The Baseline,

3D and 2D treatments appeared in 7 sessions each, while the simpler 1D treatment

appeared in 3 sessions. We balanced the composition of treatments within sessions,

and exploit the overlapping nature of the between-subject portion of the design in

our empirical analysis (Table 1).

Our experiments were conducted at the Australian National University (ANU), us-

ing student subjects, during Semester 2, 2020 and Semester 1, 2021. Because of both

Government and University restrictions on in-person gatherings, we conducted the

experiments online. In Appendix A we describe the deviations from standard labo-

ratory protocols that were necessary to facilitate the online sessions. Because of the

online delivery, the instructions were presented to subjects via an online-lecture style

slideshow rather than as traditional text instructions. Pilot sessions found that sub-

jects were more attentive when the slideshow instructions were used. The instruction

presentations are available via a supplementary document.7

An earlier, unpublished, working paper from the same authors [Calford and Chakraborty,

2020] conducted a related set of experiments. Instead of using the SSD as a diag-

nostic game to identify higher-order beliefs, Calford and Chakraborty [2020] used the

SSD, and simultaneous variants, with repeated matching to study network formation

(linking) under free-riding and uncertainty. The current paper supersedes the earlier

paper. The two papers used differing experimental protocols and a different set of

6Sessions that contained the 1D treatment were substantially quicker than others, given that only
one subject makes a decision in each round of that treatment. The Baseline treatment was the
slowest, as every subject was required to make a decision in every round.
7If not already attached to this manuscript, the instruction slides can be found here or on the first
author’s research homepage.
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treatment-variations yet produced similar results for the comparable treatments. The

protocols and results from the earlier paper are discussed in Appendix D.

II. Epistemic Model, Behavioral Categorization, and Comparison with

Level-k

This section first presents an epistemic model of behavior in the SSD, as an alterna-

tive hypothesis to the SPNE predictions mentioned previously. Based on three simple

assumptions described in subsection II.1, subsections II.2-II.5 organize the epistemic

types into behavioral categories that can be indentified from behavior across all four

treatments of the experimental design. In subsection II.6, we characterize a third

model, the level-k model, and identify a key behavioral regularity that distinguishes

it from the epistemic or SPNE predictions: it uniquely predicts that the proportion

of P1 subjects who select the safe action should be constant across the Baseline, 3D

and 2D treatments.

II.1. Assumptions. In a fully rational model, all agents are rational, believe that

others are rational, believe that others believe that others are rational, and so on.

Conceptually, our model is intended to be the minimal deviation from the fully ra-

tional benchmark that can justify P1 playing any of her 4 actions in the Baseline

treatment. Consequently, our epistemic model maintains the standard assumption of

rationality, and only relaxes beliefs about other’s rationality where needed.8 We do

not need to assume risk-neutrality, and we model risk preferences non-parametrically.

In particular, we assume that each player Pi has a utility function ui that maps their

material payoffs to their utility and that expresses their attitude towards risk.

Assumption 1 (A1). All players are rational, that is, their actions maximize their

expected utility with respect to their beliefs and their selfish utility function ui.

Our next assumption is about beliefs. We use the following definition.

Definition 1. Pj believes in event E when she assigns probability 1 to the event E.

Thus, we say “Pj believes Pi is rational” when Pj assigns probability 1 to the event

of Pi making a rational choice at every information set where Pi moves. Similarly,

we say “Pk believes Pj believes Pi is rational” when Pk assigns probability 1 to the

event “Pi believes Pj is rational”.

8We classify subjects who violate rationality separately.
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For i = 1, 2, 3, 4, we define Ii to be the set of Pi’s information sets. We use the

following definition to limit the beliefs about P4’s deviations from rationality.

Definition 2. Let I∗4 ⊂ I4 be the set of P4’s information sets where no previous player

has linked to Blue but at least one previous player has connected to P4.

Our epistemic model deviates from the standard model only through relaxing the

first and higher order beliefs about P4’s rationality at I∗4 9:

Assumption 2 (A2). i) At every information set I3 ∈ I3, P3 believes that P4 will

choose rationally at any I4 ∈ I4\I∗4 .

ii) At every information set I2 ∈ I2, P2 believes that P3 and P4 will choose rationally

at any I3 ∈ I3 and I4 ∈ I4\I∗4 respectively, and believes (i).

iii) P1 believes that P2, P3, P4 will choose rationally at any I2 ∈ I2, I3 ∈ I3 and

I4 ∈ I4\I∗4 respectively, and believes (ii), and believes (i).

In other words, the model is constructed under the assumption that the focal source

of deviation from the canonical model is the first and higher-order uncertainty about

P4’s rationality on the SPNE path, and more generally at I∗4 ⊂ I4. Such a model

allows us to study belief in higher-order rationality while maintaining as much of the

standard structure as possible.10

In dynamic games, any player’s first and higher order beliefs have to be described

conditionally for all information sets they can reach. Three things simplify the de-

scription of beliefs in our setup. First, because the game has perfect information and

no player moves twice, each information set trivially reveals the actions taken by all

previous players: thus beliefs about previous players need not be separately listed.

Second, upon reaching an information set where a previous mover k has played Blue,

all subsequent players take the rational action of linking to k (from A1) and this is

mutually known (from A2). Thus, if any player links to Blue, the first and higher-

order beliefs at every subsequent information set are also implicitly specified: those

beliefs also need not be separately listed. Hence, we can focus exclusively on listing

the beliefs at the residual information sets where no one has previously linked to Blue.

We additionally impose a third simplifying assumption about these information sets:

9It would be possible to define I∗4 to be a broader set, but this would not be consistent with our
stated goal to construct a model which is the minimal informative deviation from the standard
model.
10An earlier version of the paper took an alternative, but closely related, approach of modelling the
Baseline treatment as a Bayesian game where P4 either had standard or spiteful preferences.
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Assumption 3 (A3). Each player i > 1, holds the same first and higher-order beliefs

about future players (Pj for j > i) at all information sets where none of the previous

players played Blue.

Assumption 3 states that, as long as no one has linked to Blue yet, i’s beliefs are

independent of the particular information set she is at, and thus the belief at any

such information set is sufficiently informative for beliefs at all such information sets.

This assumption also implies that players do not update their first or higher-order

beliefs about future players after observing previous movers take a non-Blue action.

II.2. The model in the Baseline treatment. To characterize the beliefs of P1, we

begin by working backwards from P4, and list the types, beliefs, and actions of each

player, and later tabulate them in Table 2. Given Assumptions 1, 2, and 3, each

type for a player is associated with a single belief, at a representative information

set where no previous player selected the Blue action, regarding subsequent player’s

actions . We use the notation tik to refer to the k-th epistemic type of Pi and write

P (tik, X) = p to denote the belief that Pi is of the k-th and plays action X with

probability p. Next we define optimism and pessimism at first and higher orders.

Definition 3. A player is Optimistic if she would prefer linking to P4 over linking to

Blue, conditional on believing that none of the other players link to Blue. When a

player is not optimistic, we call her Pessimistic.

Thus a player’s optimism/ pessimism is defined in terms of and revealed from her

preference between link-to-P4 versus safe action, while holding a belief that is logically

equivalent to stating that P4 will move at a node contained in I∗4 . By design, Player

P1 in the 2D treatment always believes that P4 will move at a node contained in I∗4 .

Fix a player and her utility function u. As u(30) > u(24) > u(10), the Intermediate

Value Theorem implies that there must exist a unique cutoff belief α(u) ∈ (0, 1)

about P4 linking to Blue, such that at all beliefs β ≥ α(u), linking to P4 is preferred:

βu(30) + (1 − β)u(10) ≥ u(24), i.e, the player is optimistic according to Definition

3. The cutoff would depend on the risk-attitude of a player (u), and hence should

be interpreted as a player-specific parameter. For example, for a risk-neutral player

this personal cutoff is α = .7. As she gets more risk-averse, the personal cutoff α

increases. We assume that α > 0.5, which is equivalent to placing an upper bound

on the degree of risk seeking that a player may exhibit. One could use this personal

cutoff of a player to provide an equivalent notion of optimism for her under A1-A3.
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Remark 1. A player is Optimistic if and only if she believes that at I∗4 , P4 links to

Blue with a probability of at least α, where α is her personal cutoff.

To simplify notation, we will use this equivalence and use a player i’s personal

cutoff α(·) to define her higher-order optimism. Note that we have defined optimism

as beliefs that are close enough to 1 (β ≥ α(u)), instead of defining as them as the

case where the belief is exactly equal to 1. This is because, for any belief β ≥ α(u) the

player takes the same action (link P4), and thus her actions cannot reveal certainty

separately from any other belief β ≥ α(u). The connection between actions in the

SSD game and the set of beliefs they can reveal also guides how we define second-order

optimism.

Definition 4. A player with personal cutoff α is second-order Optimistic about Pj if

they assign a probability of at least α to Pj being Optimistic according to Definition

3 and a player is second-order Pessimistic about Pj if they assign a probability of at

least α to Pj being Pessimistic according to Definition 3.

Suppose P1 believes that if she links to P4, then so will P2, and also believes that if

all of herself, P2 and P3 link to P4 then P4 will play the safe action. Such a P1 will link

to P4 if and only if she is second-order optimistic about P3, as it guarantees that the

situation (P3’s deviation) shown in Example 1 from Figure 1 is sufficiently unlikely.

Thus, a risk-neutral P1 is second-order optimistic about P2 (or P3), if she believes

that with probability of at least .7, P2 (or P3) is optimistic according to Definition 3.

If a player is neither second-order Pessimistic nor second-order Optimistic then they

are second-order Uncertain.

Definition 5. Aplayer is second-order Uncertain if they hold only weak or uncertain

beliefs about the Optimism or Pessimism of others.

Next, we describe epistemic beliefs for all players, using assumptions A1 (ratio-

nality), A2 (higher-order rationality except for beliefs regarding P4 at I∗4 ), and A3

(identical beliefs at all information sets where no one has linked to blue yet). For

each epistemic type, we provide a textual description before tabulating it in Table

2. To denote optimism and pessimism in terms of the probability assigned to other’s

actions, we will use personal cutoffs αi for player Pi.

P4: As the final mover of the game, P4’s beliefs are empty. Hence she cannot

have more than one epistemic type: we call her unique type t41. If no previous player

has played the Blue action, then given Assumption A1, P4 must rationally play Blue

herself.
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P3: P3 holds beliefs about P4’s actions and such beliefs can be partitioned into two

types using her personal cutoff α3. Type t31 holds Optimistic beliefs (P (t41, B) ≥ α3)

about the likelihood that P4 will play Blue and, therefore, links to P4. On the other

hand, type t32 holds Pessimistic beliefs (P (t41, B) < α3) about the likelihood that P4

will play Blue and, therefore, links to Blue immediately.

P2: P2 must form beliefs about the actions of both P3 and P4. By A2, all types of

P2 believe that P3 is rational (i.e. P2 holds beliefs that satisfy P ((t31, P4)
⋃

(t32, B)) =

1). Given this assumption it is natural to partition P2’s beliefs into three. Type t21 is

Optimistic that play will continue along the SPNE path, believing that P ((t41, B)
⋂

(t31, P4)) ≥
α2. This implies that t21 is both personally Optimistic about P4 playing Blue (i.e.

P (t41, B)) ≥ α2) and is Optimistic that P3 believes P4 to be Optimistic (i.e P (t31, P4) ≥
α2). In contrast, type t22 believes that P3 is most likely to be Pessimistic (i.e.

P (t32, B) ≥ α2) and, therefore, best responds by linking to P3.11 The residual and

final type of P2, t23, holds beliefs that reflects her uncertainty about the behavior of

the remaining players. She believes neither that P3 is sufficiently likely to be Pes-

simistic, nor is she Optimistic about P4 being Optimistic and P3 believing P4 to be

Optimistic, and she responds to this uncertainty by linking to the Blue node.

P1: P1’s beliefs are, necessarily, more complicated and we identify six types of P1

whose beliefs, again, partition the belief space. By A2, every type of P1 believes that

both P2 and P3 are rational (i.e. P ((t21, P4)∪ (t22, P3)∪ (t23, B)) = 1 and P ((t31, P4)∪
(t32, B)) = 1 for all types of P1), and also believes that P2 believes that P3 is rational.

Of our six types of P1, three link to another player and three link to the Blue node

immediately. While the three types who link to the Blue node could be consolidated,

it is meaningful to separate them for two, related, reasons. First, the motivation for

each of the three types linking to the Blue nodes differs and, secondly, the types may

exhibit differing behavior across our diagnostic treatments. In addition to identifying

each type of P1, we also associate each type with a category that we will use to classify

subjects below.

The first type of P1, t11, plays the SPNE action of linking to P4. We label this

type the OOO category (Optimistic Optimistic Optimistic) because their beliefs,

P ((t41, B)∩ (t31, P4)∩ ((t21, P4)∪ (t22, P3))) ≥ α1, imply that they are Optimistic about

P4 linking to the Blue node, P (t41, B) ≥ α1, and that they are higher-order Opti-

mistic, being Optimistic that both P2 and P3 are Optimistic, P ((t31, P4)∩ ((t21, P4)∪

11The type t22’s action are independent of her belief about P4’s action at I∗4 .
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(t22, P3))) ≥ α1. Type t13 believes, with sufficiently high probability that P2 is Pes-

simistic, P (t23, B) ≥ α1, and type t12 believes with sufficiently high probability that

P3 is Pessimistic, P ((t32, B) ∩ ((t21, P4) ∪ (t22, P3))) ≥ α1 ⇒ P (t32, B) ≥ α1. We group

these two types together and categorize them as higher-order Pessimists and, recog-

nizing that they may be either first-order Optimists or Pessimists, use the shorthand

OP/PP.

The fourth type of P1, t14, links to the Blue node and is identified as the PO category:

first order Pessimistic but higher-order Optimistic. This type of P1 is Optimistic

that P3 is Optimistic about P4’s behavior (P ((t31, P4)∩ ((t21, P4)∪ (t22, P3))) ≥ α1 ⇒
P (t31, P4) ≥ α1) while simultaneously holding Pessimistic beliefs about P4’s behavior

(i.e P (t41, B) < α1). This type believes that the most likely path of play reaches I∗4
(P2 links to either P3 or P4, then P3 links to P4) and then P4 does not play Blue.

Therefore, t14 rationally plays B.

The fifth type of P1, t15, links to the Blue node and is categorized as being second-

order Uncertain: they do not have sufficiently strong beliefs about P2 and P3’s op-

timism/pessimism to be able to justify any course of action other than immediately

linking to the Blue node and securing the safe payoff. Specifically, this type as-

signs a belief of less than α1 to the outcome where P2 links to Blue immediately

(P (t23, B) < α1), to the outcome where P2 links to P3 or P4 and then P3 links to

Blue (P ((t32, B) ∩ ((t21, P4) ∪ (t22, P3))) < α1), and to the outcome where P2 links to

P3 or P4 and then P3 links to P4 (P ((t31, P4) ∩ ((t21, P4) ∪ (t22, P3))) < α1). This

type can be either first order Optimistic or Pessimistic about P4’s behavior and we

therefore categorize the type as OU/PU.

The final type of P1, t16, exhibits a more subtle form of higher order uncertainty.

This type of P1 is Optimistic about the likelihood of P4 connecting to the Blue node

at I∗4 (P (t41, B) ≥ α1), and also believes that the most likely outcome would be to

reach I∗4 (P ((t31, P4) ∩ ((t21, P4) ∪ (t22, P3))) ≥ α1). That is, this type of P1 is both

Optimistic, and second order Optimistic, but not jointly Optimistic about the SPNE

outcome occurring. In other words, this type of P4 exhibits enough second-order

uncertainty about the beliefs of P2 and P3 that they are uncertain about the final

outcome of the continuation game, despite being independently optimistic that each

subsequent mover will play their SPNE component. For this reason, we categorize

this type as the OOU type, and emphasize that this type does not exhibit sufficiently

strong belief in the event that others share their own Optimism about the behavior

of P4 to play the SPNE action.
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Player Category Type Belief Action

P4 t41 B

P3
t31 P (t41, B) ≥ α3 P4

t32 P (t41, B) < α3 B

P2

t21 P ((t41, B) ∩ (t31, P4)) ≥ α2,
P ((t31, P4) ∪ (t32, B)) = 1

P4

t22 P (t32, B) ≥ α2,
P ((t31, P4) ∪ (t32, B)) = 1

P3

t23 P ((t41, B) ∩ (t31, P4)) < α2,
P (t32, B) < α2,

P ((t31, P4) ∪ (t32, B)) = 1

B

P1

OO t11 P ((t41, B) ∩ (t31, P4) ∩ ((t21, P4) ∪ (t22, P3))) ≥ α1,
P ((t31, P4) ∪ (t32, B)) = 1,

P ((t21, P4) ∪ (t22, P3) ∪ (t23, B)) = 1

P4

OP/PP
t12 P ((t32, B) ∩ ((t21, P4) ∪ (t22, P3))) ≥ α1,

P ((t31, P4) ∪ (t32, B)) = 1,
P ((t21, P4) ∪ (t22, P3) ∪ (t23, B)) = 1

P3

t13 P (t23, B) ≥ α1,
P ((t31, P4) ∪ (t32, B)) = 1,

P ((t21, P4) ∪ (t22, P3) ∪ (t23, B)) = 1

P2

PO t14 P (t41, B) < α1,
P ((t31, P4) ∩ ((t21, P4) ∪ (t22, P3))) ≥ α1,

P ((t31, P4) ∪ (t32, B)) = 1,
P ((t21, P4) ∪ (t22, P3) ∪ (t23, B)) = 1

B

OU/PU t15 P ((t31, P4) ∩ ((t21, P4) ∪ (t22, P3))) < α1,
P ((t32, B) ∩ ((t21, P4) ∪ (t22, P3))) < α1,

P (t23, B) < α1,
P ((t31, P4) ∪ (t32, B)) = 1,

P ((t21, P4) ∪ (t22, P3) ∪ (t23, B)) = 1

B

OOU t16 P (t41, B) ≥ α1,
P ((t31, P4) ∩ ((t21, P4) ∪ (t22, P3))) ≥ α1,

P ((t41, B) ∩ (t31, P4) ∩ ((t21, P4) ∪ (t22, P3))) < α1,
P ((t31, P4) ∪ (t32, B)) = 1,

P ((t21, P4) ∪ (t22, P3) ∪ (t23, B)) = 1

B

Table 2. Types, beliefs and actions for each player at decision nodes
where no previous player has played the Blue action.
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Primary categories Auxiliary categories

(First/ Higher order beliefs not identifiable)

OOO OU/ OOU OP PP/ PO/ PU NBI V

(First and higher-order beliefs identifiable.)

Non-selfish Volunteers

Players in P1 role

First-order
optimistic,
higher-
order
uncertain

First-order
optimistic,
higher-
order
optimistic

First-order
optimistic,
higher-
order
pessimistic

First-order
pessimistic

First-order optimistic

Unable/
unwilling
to com-
pute three
rounds of
backwards
inductions

Figure 3. Classification for P1 categories.

II.3. The auxiliary categories. Our epistemic model assumes that all players are ra-

tional and that P1 holds a coherent belief hierarchy. While these assumptions are

necessary to formulate a coherent epistemic model, we recognize that not all subjects

will satisfy these strong assumptions. We therefore define two additional, auxiliary,

categories that exist outside the epistemic model. The V (for Volunteering) category

contains subjects who exhibit a preference for volunteering. These subjects prefer

to be the player who provides the public good to the group, possibly because of a

warm-glow altruism effect. Subjects in the V category maximize a non-selfish utility

function (violating A1). The NBI (for Non-Backwards Induction) category contains

subjects who are unable, or unwilling, to compute three rounds of backwards induc-

tions. Subjects in the NBI category exhibit behavior that is not consistent with the

joint assumption of rationality and coherent higher beliefs. We assume that when

an NBI subject plays as P1 they are, in effect, simply unable to formulate reason-

able beliefs about the behavior of subsequent movers. These subjects are faced with

uncertain and, from their perspective, unknowable, future behavior, and we assume

that they default to selecting the safe and certain payoff of 24 that is associated with

playing Blue. Figure 3 summarizes the categorization structure.

II.4. The Epistemic model in the diagnostic treatments. We use the diagnostic treat-

ments to allow the separation and identification of categories of subjects that play

the same action in the Baseline treatment. Notably, each of the PO, OU, PU, OOU,
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V and NBI categories are predicted to link to the Blue node as P1 in the Baseline

game.

Recall that in the 1D treatment, P1’s behavior determines the payoffs of the game.

P1 can choose to either provide the public good themselves and have everyone else

free ride or P1 can “nominate” someone else to provide the public good and then

free ride off that person. P1 faces no uncertainty, and P1 does not need to perform

backwards induction. Therefore, in the 1D treatment only category V links to the

Blue node, and all other categories link to (any of the) red nodes.

Recall that in the 2D treatment, whenever P1 links to another player the two

remaining players are automatically linked to the same player that P1 linked to. For

example, if P1 links to P4 then P2 and P3 are both automatically linked to P4. Thus,

if P1 links to another player, the game is effectively transformed into a two-player

game that requires significantly lower strategic sophistication. It is optimal, for a

rational P1, to link to another player if P1 is Optimistic according to Definition 3.

On the other hand, if P1 is Pessimistic, then it is optimal for P1 to link to the Blue

node. Thus, the categories OO, OP, OU and OOU link to another player and the

categories PP, PO and PU link to Blue. The V category, who prefers volunteering,

also links to Blue while the NBI category links to another player by assumption.

Recall that in the 3D treatment, whenever 3 players all link to the same fourth

player then the fourth player is required to link to the Blue node. This removes,

along the equilibrium path, all uncertainty about the behavior of the final mover and,

critically, also removes higher-order uncertainty. Understanding this still requires

considerable strategic sophistication, and three steps of backwards induction, and

hence both of the V and NBI categories will link to the Blue node. All other categories

will play a risky action.

II.5. Discussion and Empirical content. This model is not the unique epistemic

model of behavior in the SSD. But, our model is the minimum deviation from the

standard model that allows us to map observed actions to belief-hierarchies, and study

the consistency between first and higher-order beliefs in a meaningful way through

our experimental design.12 As we discard more of the standard assumptions, our

model would become more permissive and, potentially, describe a broader array of

behavior. At the most basic level, our identification strategy is a mapping from

12Relaxing the belief about rational action by P4 at I∗4 is necessary to explain P1’s deviation in
the 2D treatment. Similarly, relaxing the relevant higher order beliefs is necessary to explain P1’s
deviation in the 3D treatment.

19



Baseline 3D 2D 1D

Primary categories

OO link to P4 Risky Risky Risky

OP link to P2 or P3 Risky Risky Risky

PP link to P2 or P3 Risky Safe Risky

PO
Safe Risky Safe Risky

PU

OU
Safe Risky Risky Risky

OOU

Auxiliary categories
NBI Safe Safe Risky Risky

V Safe Safe Safe Safe

Table 3. The set of P1 actions that are feasible for each category of
subject, by treatment.

strategies across treatments to categories, and the epistemic model provides us with

a meaningful terminology to discuss and interpret these categories.

The empirical content of our epistemic model, and the two auxiliary categories, is

summarized in Table 3. There are a few features of the identification strategy that

are worth highlighting. First, the PO and PU categories are not separately identified,

and are only collectively identified as a type who are first-order pessimistic but not

higher-order pessimistic. Second, the OU and OOU categories are not separately

identified. In each case, this implies that the associated pattern of behavior has two,

closely associated, justifications and we shall return to this point in the discussion.

Third, the V category is primarily identified from behavior in the 1D treatment: in

this treatment, the V category is the only category to link to the Blue node. Fourth,

the NBI category is primarily identified from behavior in the 3D treatment. This is a

natural identification given that, by assumption, the NBI category cannot undertake

the backwards induction reasoning that is required to calculate the optimal behavior

in the 3D treatment. Finally, the consistency, or otherwise, of higher-order beliefs

among the rational categories is primarily identified from behavior in the Baseline

treatment. The three diagnostic treatments are primarily used to rule out alternative

plausible behavioral explanations, and not as a primary source of identification.
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Player Type Belief Action

P4 T 4
1 B

P3
T 3
k≥2 P (P4 7→ B) = 1 P4

T 3
1 P (P4 7→ a) = .25 ∀a ∈ {B,P1, P2, P3} B

P2

T 2
k≥3 P ((P4 7→ B) ∩ (P3 7→ P4)) = 1 P4

T 2
2 P (P3 7→ B) = 1 P3

T 2
1 P (P4 7→ a) = .25 ∀a ∈ {B,P1, P2, P3},

P (P3 7→ a) = .25 ∀a ∈ {B,P1, P2, P4}
B

P1

T 1
k≥4 P ((P4 7→ B) ∩ (P3 7→ P4) ∩ (P2 7→ P4)) = 1 P4

T 1
3 P ((P2 7→ P3) ∩ (P3 7→ P4) ∩ (P4 7→ B)) = 1 P4

T 1
2 P (P2 7→ B) = 1 P2

T 1
1 P (P4 7→ a) = .25 ∀a ∈ {B,P1, P2, P3},

P (P3 7→ a) = .25 ∀a ∈ {B,P1, P2, P4},
P (P2 7→ a) = .25 ∀a ∈ {B,P1, P3, P4}

B

Table 4. Exhaustive list of types, beliefs and actions for each player,
at nodes where no previous player has linked to the Blue node, in the
baseline treatment under the level-k model. T j

k denotes a level-k agent
playing role Pj.

II.6. Comparison with level-k model. The level-k [Costa-Gomes and Crawford, 2006,

Costa-Gomes et al., 2001, Crawford and Iriberri, 2007a,b] and cognitive hierarchy

[Camerer et al., 2004] models are the most frequently applied models in which an agent

can have divergent first-order and higher-order beliefs (see Crawford et al. [2013] for

a detailed survey). These models categorize agents by the degree of rationality that

they exhibit: a rational agent best responds to some belief, a second-order rational

agent best responds to those best responses, and so on.

For comparison between our model and the level-k model, in Table 4 we provide

an exhaustive list of types and beliefs under a level-k model. Following our epistemic

model, above, we only define beliefs at nodes where no previous player has linked to

the Blue node, and all beliefs take it as given that all players of level 1 or higher will

rationally link to an earlier Blue-linking player. We write Pj 7→ X to denote “Player

j links to X”, and P (P4 7→ B) = q to denote the belief that P4 will link to Blue

with probability q. As is standard in this literature, we assume that a level-0 player

plays each available action with equal probability and we construct beliefs as a simple
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map from players to actions, rather than construct a full epistemic model.13 As a

restriction on preferences, and consistent with out assumption that α > 0.5 in the

epistemic model, we also assume that players aren’t so risk-loving that they would

prefer the lottery (30, .25; 10, .75) , with an expected value of 15, over the certain

prize of 24. There are some immediate differences between the two typologies: Level-

k proposes fewer epistemic types of P1 than our model, 4 versus 6, and in particular

predicts that P1 should never link to P3 unless it is one of the random actions taken

by a level-0 type P1.

For every k ≥ 1, we specify the beliefs and actions of a level-k individual in the

role of Pi in Table 4. We do not specify beliefs or actions for a level-0 player, who

plays each available action with equal probability.

P4: We label P4’s unique type T 4
1 , with the subscript denoting the level of ratio-

nality of the player. If no previous player has played the Blue action then a rational

P4 must play Blue herself.

P3: Type T 3
1 believes that P4 plays each of the four actions with .25 probability,

therefore, T 3
1 links to Blue. On the other hand, types T 3

k≥2 believe that P4 is at least

level-k ≥ 1 who avoids the dominated action of linking to any other player, therefore,

types T 3
k≥2 link to P4.

The types for P1 and P2 follow similarly. For T 2
2 , we only specify the belief about

P3, keeping with our convention of not specifying the belief about the action of players

who move after someone linked to Blue. For the same reason, we only specify the

belief of T 1
2 over P2, given that she believes that P2 will link to Blue. T 2

1 and T 1
1 both

believe that all subsequent movers will select actions uniformly at random.

Importantly, for P1, the level-k model implies that linking to B is exclusively the

action of a level-1 P1. But, a level-1 P1 would also link to B in the 2D and 3D

treatments, given that they always believe others to choose uniformly at random.

Thus, the level-k model provides the testable prediction that the relative frequency of

linking to B should be equal across Baseline, 3D and 2D treatments.

Hypothesis 4 (Level-k). P1 takes the safe action equally frequently across the Baseline,

2D and 3D treatments.

13It is possible to recast the level-k model as an epistemic model, at the cost of additional notation.
See Friedenberg et al. 2021 for an example.
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(a) P1 action by treatment. (b) P1 action by treatment
(simplified categories).

Figure 4. Behavior across Baseline, 3D, 2D, 1D (Left to Right)

III. Results

Our subjects understood the game and were attentive throughout.14 We confirm

this using both a comprehension quiz and ongoing attention checks as discussed in

Appendix B. As another simple test of comprehension and rationality, we can focus

on the occasions where a previous mover has already chosen the safe action. In this

case, a subject should link to the player who chose the safe action and guarantee the

maximum feasible payoff of 30 points for herself. There are 1144 observations where

we can test for this type of ordinal rationality, and in 1125 of those observations

(98.3%) the subject made the rational choice.15

Now, focusing on our main hypotheses, Hypothesis 1 states that, in the SPNE, P1

in the baseline treatment would link to P4. This hypothesis is rejected: As shown in

Figure 4a, the modal action was, instead, P1 playing the safe action. We also plot

the frequency of Safe, Equilibrium risky and Non-equilibrium risky actions, for each

of our four treatments, in Figure 4b.16

Hypothesis 2 states that P1 chooses the safe option most often in the Baseline treat-

ment and least often in the 1D treatment. Figures 4a and 4b show that P1’s behavior

14Maintaining the attention of subjects is a particular challenge for online experiments, in comparison
to traditional laboratory experiments where external distractions are more easily controlled. We
discuss the techniques we used to maintain subject attention online in Appendix A.
15Of the remaining observations 11 subjects chose the safe action (earning a guaranteed 24 points), 6
subjects linked to a player that had already chosen a risky action (earning 10 points), and 2 subjects
linked to a player who had yet to move (generating a possibility of receiving either 10 or 30 points).
16The equilibrium risk actions for P1 are linking to the P4 in the Baseline treatment, or playing any
risky action in the 3D, 2D or 1D treatments. See C for details.
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indeed shifts away from the safe action in the Baseline treatment towards the risky

actions in the diagnostic treatments, and that P1 chooses the safe action least often

in the 1D treatment, in concordance with the hypothesis. Thus the observed behav-

ior contradicts the alternative prediction from standard equilibrium concepts that P1

should link to P4 more often in the Baseline than any other treatment (Hypothesis

3).

The difference in P1 behavior between the Baseline and each of the three diag-

nostic treatments is statistically significant at the 5% level (p = 0.002 for Baseline

vs 3D; p < 0.001 for Baseline vs 2D; p = 0.0167 for Baseline vs 1D), treating each

session-treatment pair as on observation.17 The difference in behavior between the 1D

treatment and the other diagnostic treatments is under-powered and not statistically

significant (p = 0.2167 for 1D vs 3D; p = 0.5167 for 1D vs 2D), although this is un-

surprising given that we only observe the 1D treatment in three sessions.18 Therefore,

we find data that is broadly supportive of Hypothesis 2.

Level-k model: The level-k model, which implies that the proportion of P1 subjects

choosing the safe option should be constant across treatments (Hypothesis 4), is

clearly rejected by the pattern of data in Figure 4.

How often did P4 deviate along the equilibrium path? In the 13 Baseline rounds

where P1, P2 and P3 all link to P4, we observe P4 playing the safe action 100% of

the time. Further, in the 2D treatment, P1 links to another player, Pj, 256 times.

In each case the decision of Pj is equivalent to the decision facing P4 in the Baseline

treatment, and we observe Pj choose the safe action on 248 occasions (96.9% of the

time).

The proportion of safe actions across treatments already provides broad direction

on why P1 might be deviating from the equilibrium path. For example, more than

60% of P1s take the safe action in the Baseline treatment. Volunteering or pessimism

about the last moving player can only explain a small part of this, given that P1

17For these p-value calculations we, conservatively, treat each session-treatment pair as an obser-
vation. When testing Baseline against F1 or F2, we therefore have 3 sets of paired observations
(the three sessions which contained both treatments) and 8 independent observations (four for each
treatment). We implement a non-parametric test, without an assumption of equal variances, as
outlined in Derrick et al. [2020]. The underlying intuition is that the test statistic is similar to a
Mann-Whitney-Wilcoxon statistic, assuming independent samples, that is then adjusted to account
for the correlation across the paired observations. For the test of Baseline against F3, we instead
implement a Mann-Whitney-Wilcoxon test given that there is only one paired observation.
18If we, instead, run a regression analysis that treats the group-round, or the subject, as the level of
observation then we do find that the proportion of safe actions is statistically significantly lower in
the 1D treatment than either the 2D or 3D treatments.
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takes the safe action relatively rarely in the 1D and 2D treatments. We disentangle

the relative contribution of each channel formally through a maximum likelihood

estimation of our epistemic categories in the next section.

III.1. Maximum likelihood estimation. In this section, we formally estimate the pro-

portion of subjects in each category using Maximum Likelihood Estimation (MLE).

Before conducting the estimation, however, there are already some clear patterns ap-

parent in Figure 4. From the Baseline treatment, relatively few subjects link to P4

which implies a low proportion of OO category subjects. From the 1D treatments, it

is clear that there is also a low proportion of V category subjects. Finally, the modal

response is to play safe in the Baseline treatment but risky in the three diagnostic

treatments, suggesting that a substantial proportion of subjects may fall into the

OU/OOU category.

Note, however, that directly estimating the proportions of categories in our sample

by comparing the raw data on the distribution of P1 actions to the classification

provided in Table 3 throws away a substantial amount of information. First, the

raw data fails to control for the between-subject aspect of the design wherein each

subject participated in exactly two of the four treatments (see Table 1). Second,

because groups are randomly rematched each round we do not observe a balanced

panel of subject-level observations in the role of P1, and the raw data might, by

chance, over (or under) sample some types of subjects. Third, this naive approach

may fail to appropriately handle behavior that does not directly coincide with one of

the categories. We instead estimate the proportion of categories in our data with a

mixture model using maximum likelihood estimation, which performs better on all

three dimensions.

As the PO and PU categories are not separately identified, we collectively identify

them as a category P who are first-order pessimistic but not higher-order pessimistic.

Our estimation procedure returns estimates of the proportion of each category in our

population (πOO,πOP , πOU , πPP , πP , πNBI and πV ) and an estimate of the error rate

(ε). The error rate is defined as the propensity of a category t subject to make a

“mistake” and play an action that is inconsistent with category t behavior. For each

subject, and each category, we aggregate two values from the raw data: Ci,t is the

number of observations where subject i, playing as P1, chose an action that was

consistent, as outlined in Table 3, with category t; Ii,t is the number of observations

where subject i, playing as P1, chose an action that was inconsistent with category t.
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MLE 95% CI

πOO 0.068 [0.021, 0.113]

πOP 0.201 [0.128, 0.275]

πOU/OOU 0.450 [0.356, 0.580]

πPP 0.000 [0.000, 0.000]

πP 0.101 [0.000, 0.168]

πNBI 0.129 [0.057, 0.189]

πV 0.052 [0.000, 0.124]

ε 0.093 [0.075, 0.117]

Table 5. Maximum likelihood estimates and 95% confidence intervals
for the proportions of categories and the error rate.

The likelihood of observing Ci,t and Ii,t for subject i, conditional on the distribution

of categories, is given by

li =
∑

t∈{OO,OP,OU,PP,P,NBI,V }

πt(1− ε)Ci,tεIi,t

and the aggregate log likelihood function is then given by

LL =
∑
i

log(li).

The maximum likelihood estimates of the proportions of each category, and the

error rate, are presented in Table 5, along with bootstrapped 95% confidence inter-

vals. The confidence intervals are calculated using the bias-corrected and accelerated

bootstrap method of Efron [1987], and bootstraps are sampled at the subject level.19

The results presented in Table 5 are stark. We estimate that only 18% of subjects

fail to satisfy our key identifying assumptions, and are therefore classified as one of

19Recall that we estimate the model using only the data from the final 4 blocks. Including all
6 blocks leads to similar conclusions. In the full sample we find 5 percentage points more NBI
category subjects, 4 percentage points more P category subjects, and 9 percentage points fewer
OOU category subjects, although none of the deviations lie outside the 95% confidence interval
of our original estimates. The estimated rate of errors also rises from 9% to 13% (a statistically
significant increase), suggesting that the model is slightly less well specified in the full sample.
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two auxiliary categories V and NBI.20 Strikingly, only 7% of subjects have consistent,

optimistic, first-order and higher-order beliefs (the OO category) while almost two-

thirds of subjects have optimistic first-order beliefs but do not hold optimistic higher-

order beliefs (the OP and OU/OOU categories). This is remarkably strong evidence of

a systematic inconsistency between first-order and higher-order beliefs. Similarly, of

those subjects who are first order pessimistic (the PP, and the PO+PU=P categories)

we find that precisely zero have consistent first-order and higher-order beliefs.

IV. Discussion

Standard game theory is based on the assumption that players are perfect maxi-

mizers of expected payoffs. An equilibrium is reached when there are no incentives

for learning or change. Of course, people are not perfect maximizers, and behavior

observed in controlled experiments is often sharply at odds with those theoretical pre-

dictions. This paper proposes that inconsistent higher-order beliefs is one mechanism

through which behavior can deviate from equilibrium and, critically, identifies this

mechanism using a bespoke game, the Sequential Social Dilemma. We designed and

tested the SSD precisely because it is an environment where we expected first-order

and higher-order beliefs to diverge. In other environments, there are likely other

mechanisms that explain deviations from equilibrium play.

The identification of our suggested mechanism is strengthened by the fact that

a divergence of first-order and higher-order beliefs does a better job of explaining

behavior in the SSD than other leading theories. We discuss the level-k model in

Section II.6, and find that it cannot explain the cross treatment variation in behavior

that we document in Section III.

Another natural alternative is to model behavior as being a probabilistic best-

response to beliefs, with subjects being more likely to choose actions that lead to

higher payoffs. A prominent example of this class of models is Quantal Response

Equilibrium (QRE; [McKelvey and Palfrey, 1995, Goeree et al., 2002]), where beliefs

are assumed to be equal to the true empirical distribution of other’s strategies.21

In its most common formulation, QRE relies on a logit choice structure to model

individual player decisions, with a precision parameter λ that determines how closely

20The estimated error rate is ε = 0.093, indicating that subjects are expected to behave consistent
with the categorical predictions approximately 91% of the time.
21For extensive form games like the sequential SSD, McKelvey and Palfrey [1998] extend the QRE
framework to Agent Quantal Response Equilibrium (AQRE). It inherits the same consistency prop-
erty between beliefs and actions.
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the probabilistic choices follow perfect maximization of expected utility. Typically,

QRE is disciplined by assuming that λ is constant across player roles. Without this

disciplining assumption, QRE could justify almost any pattern of behavior in the

SSD. In our data, however, λ varies substantially with both player role and whether

the player faces payoff uncertainty (i.e. P1, or P2 and P3 when no previous player

has linked to the Blue node) or payoff certainty (i.e. P4, or P2 and P3 when at least

one previous player has linked to the Blue node).22

We use three diagnostic treatments alongside the baseline SSD game to study the

consistency of first and higher-order beliefs. We find that a tiny fraction of groups

play the equilibrium strategy in the baseline SSD, and the majority of subjects are

deviating from SPNE play because of their inconsistent first-order and higher-beliefs.

We estimate that, conditional on being able to perform backwards induction and not

having altruistic preferences, 88% of our sample believe that P4 will play the safe

action with a sufficiently high probability to justify linking to P4 in a 2D treatment.23

Further, we find evidence that 91% of this subsample do not hold consistent first-order

and higher-order beliefs.24

The largest category of subjects that we identify is the OU/OOU category, com-

prising 45% of our sample (with a 95% CI of [36%, 58%]). As suggested by the name,

we can reject relatively simplistic hypotheses of first-order or higher-order pessimism

for these subjects. Rather, both categories are optimistic about the behavior of P4

at I∗4 , but are still uncertain about linking to P4. Our epistemic typology identifies

exactly two explanations for the uncertainty: subjects categorized as OU, believe P2

or P3 link to Blue too often for I∗4 to be reached reliably (but not often enough to

make linking to P2 or P3 an independently attractive option). On the other hand,

subjects categorized as OOU, are optimistic about both the individual events that P2

and P3’s actions lead to I∗4 and P4 links to Blue at I∗4 , but not sufficiently confident

22For P1, who always faces maximal uncertainty, we estimate λ = 0.32 with a bootstrapped 95%
CI of [0.28, 0.36]. In contrast, in the case where no previous player has linked to the Blue node, P4
always plays the payoff maximizing action implying that λ is unbounded above. For players who
have observed that a previous player has linked to the Blue node, and can therefore guarantee a
payoff of 30 with certainty, we estimate λ = 0.54 for P2 (95% CI [0.42, 0.76]), λ = 0.71 for P3 (95%
CI [0.52,∞]) and λ = 0.48 for P4 (95% CI [0.39, 0.65]), with each estimate being significantly higher
than that for P1.
23This figure is the proportion of subjects, conditional on not being in the V or NBI categories, who
are first order optimistic. These subjects can perform backwards induction: they do not play the
safe action in the 3D treatment. They also believe that P4 will provide the public good: they do
not play the safe action in the 2D treatment.
24That is, of the first order optimistic subjects only the OO category, which is 9% of all optimistic
subjects, has consistent first-order and higher-order beliefs.
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in the joint outcome (thus lack confidence about the coincidence of those events). A

subject in either category who, by definition, knows her own beliefs with certainty,

exhibits sufficient uncertainty about the beliefs of others or the correlation of other’s

beliefs to choose an off-equilibrium action.

V. Conclusion

We introduce a novel experimental design to identify the divergence of first-order

and higher-order beliefs. Our design uses, as a Baseline, a four player sequential social

dilemma. We then introduce three variants of the game by restricting actions, that

is, pruning the game tree of the Baseline game. The pruning in each variant restricts

the beliefs that a player might hold about how others will behave at later nodes in

the tree. By comparing behavior across variants, we can make inferences about the

structure of beliefs in the Baseline game. Our results show that a common assumption

about beliefs, that first-order and higher-order beliefs are consistent, holds for only

a small minority of our subjects. First- and higher-order beliefs are fundamental

determinants of all strategic behavior, and our findings provide a novel explanation

for why observed behavior might deviate from theoretical predictions in a wide variety

of games. In particular, the inconsistency of first-order and higher-order beliefs helps

to organize previous experimental results on structured bargaining games with n ≥ 3

players.

29



Appendix A. Protocol for Online experiment:

Ten minutes prior to the scheduled session start time our subject management

software, provided by Sona Systems, distributed a Zoom link to all registered partici-

pants. We requested that subjects join the call via a computer, rather than a mobile

device. Once subjects joined the Zoom call, we sent each subject a personalized URL

via which they could access the experiment. The experiment was programmed using

oTree and hosted via oTreeHub, which facilitated this method of delivery [Chen et al.,

2016]. Once all subjects had completed the online consent forms, the session began

with the experimenter presenting the instructions by sharing his screen and presenting

a slideshow to the subjects.25 Subjects were placed on mute for the duration of the ex-

periment, and Zoom’s inbuilt chat function was restricted so that subjects could only

message the experimenter (and not each other). Subjects were able to type questions

to the experimenter (but could not communicate with each other), who then read

the questions out loud to the entire session and provided an answer to the question;

the experimenter declined to read or answer the handful of questions that asked for

advice about how to best play the game. We tested for subject comprehension with

an incentivized quiz, and quiz performance indicated a strong level of understanding

of the experimental interface and structure (see Section III for details).

Given that our experimental design required sessions of 12 subjects to advance

through the experiment synchronously the possibility of disconnections, or subjects

trying to simultaneously complete other tasks, had the potential to slow down, dis-

rupt, or invalidate an entire session of data. We used a four stage mechanism to

guarantee the integrity of our data. First, all decision making rounds had a timer.

The timer was chosen to be long enough that subjects could make a reasoned de-

cision, but short enough that they were required to maintain attention in order to

25We used pilot sessions to fine tune the method of delivery for the instructions. In the initial pilot
sessions, we used text instructions that were formatted in a similar fashion to typical instructions
used in an in-person experiment. The instructions were then read aloud by the experimenter over
the Zoom call, in the standard manner. We found that this method of delivery generated a poor level
of attention from our subjects, and thus switched to a more dynamic “online lecture” style format
by using a slide deck. After the initial pilot sessions we also sought a change in protocols from the
ANU human ethics committee to allow us to request that subjects turn their cameras on during the
experiment. While not all subjects were able to comply with the request, the change in protocol did
appear to improve engagement with the instructions.
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respond before the timer expired.26 We used a timer length of 60 seconds for the first

5 periods (while subjects were getting used to the interface and game structure), and

then shortened the timer to 30 seconds for the remaining rounds. Second, if the timer

elapsed before the subject made a decision then the computer would automatically

make a decision on behalf of the subject. The computer was programmed to play

the Baseline treatment’s SPNE strategy in all situations, but subjects were not in-

formed what decision the computer would make (only that the computer would make

a decision). Third, if a subject timed out in round n then the three opponents of

that subject in round n+ 1 were informed of the timeout in the previous round. The

instructions clearly explained this to subjects, and emphasized that if they did not

receive a message then the three other members of their group were actively partic-

ipating (and had not been replaced by a computer player). Fourth, we remove from

the data set any group-round observations where a member of the group timed out

in either the current or previous rounds. Therefore, in every data point we use, every

subject in the group made an active decision and knew that every subject in the

group had made an active decision in the previous round. The low rate of timeouts

observed provides further confidence in the validity of the data set.27

Finally, for the first batch of experiments payments were sent electronically to

bank accounts that were already held on file by ANU. University processes meant

that some payments were delayed, and some subjects were required to update their

details with the university prior to payment.28 In response to these delays, payments

for the second batch of sessions were made via PayPal.

Appendix B. Subject comprehension and attention

There were two, incentivized, comprehension quizzes conducted, immediately prior

to rounds 1 and 9.29 For each quiz, subjects began with 10 points and were penalized

26We elected not to include a notification alert or sound when it was the subject’s turn to make
a decision, reasoning that doing so would encourage subjects to pursue other activities in between
rounds. By not having an alert, subjects needed to continue to pay close attention to the experimental
page to avoid missing their turn.
27We observed 144 subjects make 48 decisions each, for a total of 6912 decisions. Of those 6912
decisions we observed only 119 timeouts (i.e. less than 2% of decisions timed out). For 77 of the
118 timeouts that were not in the final round of a session, the subject did not timeout again in the
following round.
28Subjects were informed of the need to have up-to-date bank account details on file prior to reg-
istering for the experiment. Three subjects did not respond to emails requesting that they update
their details, and payments were currently unable to be processed for those three subjects.
29Recall that each session contained two treatments. Round 9 was the first round in which the
subjects played the second treatment.
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Figure 5. A screenshot of the feedback screen, from the perspective
of P4 (Red 4).

one point per mistake made.30 Subjects had to answer all questions correctly before

the experiment continues.31 The questions asked about the payoffs to players from

an already formed network, payoffs to a player who made a hypothetical move in

a partially formed network, and whether given networks were feasible or infeasible

under particular treatments. Overall, subjects displayed an excellent understanding

with three-quarters of subjects making one or fewer mistakes across the two quizzes.

Figure 6a shows the histogram of aggregate performance across the two quizzes.

We also track the attention subjects paid to the experiment by examining the

proportion of time outs. The timer was 60 seconds for the first 5 rounds, reduced

to 30 seconds for the remaining rounds – short enough that an inattentive subject

(e.g. checking emails on another web page) was unlikely to respond in time, but

long enough that an attentive subject would comfortably make a decision within

the allotted time.32 The proportion of time outs by round is displayed in figure 6b.

Overall, the proportion of time outs is low. There are small spikes in rounds 1, 9, 17

30The score for each quiz had a floor of 0 points, so that subjects could not lose money during the
quizzes. The points were valued at the same rate as points earned playing the game: $0.15 per point.
31If a subject made a mistake, they were prompted to try again until they found the correct answer.
32Some timeouts appear to be caused by genuine technical difficulties. For example, one subject
dropped out for several rounds while searching for a power point at which to recharge his laptop
(which had run out of batteries).
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(a) Histogram of quiz-
performance (out of 20) across
the two comprehension quizzes.

(b) Proportion of subject time
outs per round.

Figure 6. Subject comprehension and time-outs.

and 33. Rounds 1 and 9 immediately followed the quizzes, and some subjects might

have navigated away from the experiment page while waiting for others to complete

the quiz. There were also short breaks between each block of 8 rounds (usually less

than 30 seconds) which coincides with the increased time outs in rounds 17 and 33.

In the subsequent analysis we remove from the data all groups in which any subject

timed out, and all groups in which any subject timed out in the previous round.33

Appendix C. SPNE Results

In this appendix we outline the P1 actions that are consistent with SPNE behavior

across all four treatments. SPNE assumes Nash Equilibrium being played in every

subgame, in contrast to our epistemic model in Section II which relaxes first-and

higher-order beliefs about P4’s actions. In the Baseline treatment, P1 must link to

P4 in equilibrium. In the 2D and 1D treatments any of the three risky actions are

equilibrium actions for P1. In the 3D treatment any P1 action can be played as part

of a SPNE equilibrium, but the equilibrium where P1 plays the safe action is rather

unintuitive and not trembling hand perfect.

33As discussed in detail in Appendix A, if a subject times out then the computer automatically
makes a decision on the subject’s behalf (and continues to do so for future rounds until the subject
returns to the experiment). Subjects are informed if any members of their 4-person matching group
failed to make a decision in the previous round. Thus, if a subject times out in round t then the
behavior of the subject’s opponents may be affected in rounds t and t+ 1.
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Proposition 1. In the Baseline treatment the unique Subgame Perfect Nash Equilib-

rium outcome is for P1 to link to P4, P2 to link to P4, P3 to link to P4, and P4 to

take the safe action.

Proof. Let IAk ⊂ Ik be the set of Pk’s information sets where a A is the collection of

previous players who have linked to Blue. For example, if players 1 and 2 link to Blue,

but P3 did not, then now P4 moves at an information set I4 ∈ I{1,2}k . By extension,

I∅k ⊂ Ik is the set of Pk’s information sets where no previous player has linked to

Blue. In the following, we first derive best (equivalently equilibrium) responses for

P4 at each maximal subgame.34 We then solve the game via backwards induction.

Step 1: At any subgame starting at I4 ∈ IA4 , P4’s best response is to link to a

player in A. At any subgame starting at I4 ∈ I∅4 , P4’s best response is to play the

safe action, earning 24. Any other action earns 10.

Step 2: Next, consider P3. At any subgame starting at I3 ∈ IA3 where A 6= ∅, P3’s

best response is to link to a player who played the safe action. In this case P3 earns

30 points, rather than 24 if P3 plays the safe action or 10 if P3 links to any player not

in A (they lead to subgames where P4 moves at I4 ∈ IA4 and links to some player in

A). At any subgame starting at I3 ∈ I∅3 , “link to blue” earns 24. Any other P3 action

leads to I∅4 where P4 links to Blue (see Step 1). Thus, P3’s unique best response is

to link to P4 and earn 30.

Step 3: Next, consider P2. At any subgame starting at I2 ∈ I{1}2 , P2’s unique best

response is to link to P1. In this case P2 earns 30, rather than 24 if P2 plays the safe

action or 10 if P2 links to P3 or P4 (in both cases P3 will move at I{1}3 and link to

P1 and thence P4 will move at I{1}4 and also link to P1). At any subgame starting at

I2 ∈ I∅2 , “link to blue” earns 24. Any other P2 action leads to I∅3 where P3 links to

P4 (see Step 2), which thence leads to I∅4 where P4 links to Blue (see Step 1). Thus,

P2’s unique best response is to link to P4 and earn 30.

Step 4: Finally, consider P1. At any subgame starting at I1 ∈ I1, “link to blue”

earns P1 24. Any other P1 action leads to I∅2 where P2 links to P4 (see Step 3),

which leads to I∅3 where P3 links to P4 (see Step 2), which thence leads to I∅4 where

P4 links to Blue (see Step 1). Thus, P1’s unique best response is to link to P4 and

earn 30. �

Proposition 2. In the 3D treatment, all P1 actions can be supported in a SPNE.

34Subgames that have no further proper subgames.
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Proof. We modify the proof from the previous proposition and highlight the modifi-

cations in italics.

Step 1: At I4 ∈ IA4 , P4’s best response is to link to a player in A. At any I4 ∈ I∅4 ,

P4’s unique best response is to play the safe action if there does not exist a player,

Pk, who has been linked to by two other players and, otherwise, if such a Pk does

exist then P4’s unique best response is to link to Pk.

Step 2: Next, consider P3. At any subgame starting at I3 ∈ IA3 where A 6= ∅,
P3’s unique best response is to link to a player who played the safe action. For any

subgame starting at I3 ∈ I∅3 such that P1 or P2 have already been linked to, there

exists two best responses: One where P3 links to P4 (leading to P4 playing safe in

the ensuing subgame), another where P3 links to whoever among P1/ P2 has been

linked to (leading to P4 linking to that same player in the ensuing subgame). For any

subgame starting at I3 ∈ I∅3 such that P1 and P2 have both linked to P3, then any

action is a best response (as P4 links to P3 under all situations, making P3’s actions

irrelevant to P3’s outcome). For any other subgame starting at I3 ∈ I∅3 , P3’s unique

best response is to link to P4.

Step 3: Next, consider P2. At any subgame starting at I2 ∈ I{1}2 , P2’s unique best

response is to link to P1. At any subgame starting at I2 ∈ I∅2 where P1 has linked to

P2, any P2 action is a best response (take the continuation where P3 and P4 link back

to P2 making P2’s actions irrelevant). At any subgame starting at I2 ∈ I∅2 where P1

has linked to P3 or P4, there are two best responses: linking to the same player (take

the continuation where one of P3/ P4 also link to the same player) or linking back to

P1 (take the continuation where P3 and P4 also link to P1).

Step 4: Finally, consider P1. Any action (including linking to Blue) can be a best

response, based on the following continuation: P2 links back to P1, then P3 links back

to P1, then P4 links back to P1.Thus, the SPNE outcome from the last proposition

is still an SPNE outcome, but there are many other SPNE outcomes. �

The equilibrium in the 3D treatment, where P1 links to Blue immediately is not

entirely intuitive. In this equilibrium P1 believes that P2, P3 and P4 will all “gang

up” on her no matter what she does. But, consider the case where P1 links to P4.

Now, P2 has a choice to make. Should he follow the proposed equilibrium and link

to P1, or should he follow P1 and link to P4? If P2 links to P1, he requires both P3

and P4 to follow the equilibrium in order to earn his 30 points. However, if P2 links

to P4 then he only requires P3 to also link to P4 to earn his 30 points. And, in the

subgame where P2 does link to P4 it is subgame perfect for P3 to also link to P4.
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That is, P2 must trust in two others to follow the equilibrium where everyone links

to P1, but must trust only one other to deviate to the equilibrium where everyone

links to P4.

If we allow for trembles, in the style of trembling hand perfection, P2 should prefer

the continuation game after he links to P4. And, in a trembling hand equilibrium, P1

must know this. Thus, P1 is no longer indifferent between linking to Blue or linking

to P4: P1 strictly prefers linking to P4.

Proposition 3. In the 3D treatment, the SPNE where P1 links to Blue is not trembling

hand perfect.

Proof. Suppose that at every decision node actions are constrained such that every

pure action must be played with probability at least ε for some small ε. Thus, indi-

viduals decide the probability p ∈ [ε, 1 − 3ε] they assign to each of the four possible

actions, and then their actions are realized before the next player moves. We seek to

show that, for sufficiently small ε, there does not exist an equilibrium where P1 links

to Blue with probability p > ε.

Consider the continuation game after P1 and P2’s realized actions are “link to P4”.

As the realized action of “linking to P4” results in the highest ex-post payoff, it is

optimal for P3 to link to P4 with probability 1− 3ε.

Next, consider any continuation game after P2 and P3’s realized actions are “link

to P1” for any P1 action. It is clearly optimal for P4 to link to P1 with probability

1− 3ε.

Next, consider the continuation game after the realized actions are: P1 links to P4,

P2 links to P1 and P3 links to P4. It is clearly optimal for P4 to link to Blue with

probability 1− 3ε.

Now, consider the continuation game after P1 has linked to P4 and P2 has linked

to P1. If P3 links to P2 he earns 10 for sure, and if he links to Blue he earns 24 for

sure. If his realized action is “link to P1” or “link to P4” he will earn 30(1− 3ε) + 30ε,

given P4’s optimal behavior is to link to P1 and Blue with probability of 1 − 3ε for

those two cases respectively. Suppose, in order to support a candidate equilibrium

where P2, P3 and P4 all link to P1, that P3 will link to P1 with probability 1− 3ε in

this continuation game.

Now, consider P2’s choice at the critical continuation game after P1’s realized action

is “link to P4”. If P2’s realized action is “link to Blue”, he earns 24. (For ε close to

zero linking to P3 is worse as P3 will, with high probability, link to P4 and P4 will,

with high probability, link to Blue in the sequel.) If P2’s realized action is “link to
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P1”, then he will earn 30 with probability (1− 3ε)2 and 10 otherwise. Finally, if P2’s

realized action is “link to P4” then he will earn 30 with probability at least 1 − 3ε

(when P3’s realized action is also “link to P4”). Thus, P2’s optimal action involves

placing a weight of no more than ε on linking to P1.

Therefore, if P1’s realized action is “link to P4”, P1 cannot reasonably hold the

belief that the remaining three players will link back to P1. In this case, P1 must

expect to earn 30 with a probability of at least (1− 3ε)2.35 Thus, as long as

(1− 3ε)230 + (1− (1− 3ε)2)10 ≥ 24

holds in this constrained game, there does not exist an equilibrium where P1 links to

the Blue node.

Because there is no such equilibrium in the constrained game, there also cannot

exist a trembling hand perfect equilibrium where P1 links to the Blue node in the

original game. �

The 2D and 1D treatments introduce an element of symmetry to the game from

the perspective of P1, in the sense that linking to any of P2, P3 or P4 generate

continuation games that are isomorphic up to a relabeling of players. Thus, there are

three equilibrium actions for P1 in each of these two treatments: linking to anyone

that is not the Blue node.

Proposition 4. In the 2D treatment, the only P1 actions that are consistent with

SPNE play are linking to P2, P3 or P4.

Proof. Suppose that P1 links to Pj for some j >= 2. Then, in the continuation game

only Pj has an active move. If Pj links to Blue then she earns 24, but if she plays

any other action she earns 10. Therefore, in any subgame where P1 links to Pj, Pj

links to Blue and P1 earns 30. If P1 links to Blue, then P1 only earns 24. �

Proposition 5. In the 1D treatment, the only P1 actions that are consistent with

SPNE play are linking to P2, P3 or P4.

Proof. P1’s action fully determines payoffs in the 1D treatment. If P1 links to Blue,

she earns 24. If P1 links to P2, P3 or P4, she earns 30. �

35As long as P2 and P3’s realized actions are “link to P4”, P4’s actions are forced.
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Appendix D. Experimental protocols and results from an earlier set

of experiments

This section outlines the experimental protocols and results from the older Cal-

ford and Chakraborty [2020] working paper, focusing on deviations from the current

experiments described in the main text. The older experiments (henceforth referred

to as the ND experiments) were conducted in-person at Purdue University. Given

that they were run in-person, they did not make use of the timers and comprehension

questions described in Appendix A. The biggest design difference between the ND

experiments and the current experiments is that the former used a matching protocol

that fixed groups and player identifiers (P1, P2, P3 and P4) for 25 round blocks. This

allowed for reputation-building and contingent rewarding/ punishment actions.

There was no equivalent of the current paper’s 2D or 1D treatments in the ND

experiments. Conversely, the ND experiments contained two additional treatment

variations that were not included in the current paper. First, to understand the

importance of coordination in network formation, the ND experiments included a

treatment where all players moved simultaneously. Second, to understand the role

of other-regarding preferences, the ND experiments varied payoffs along two dimen-

sions: subjects received β ∈ {12, 24} points for playing the safe action, and subjects

received α ∈ {0, 4} points for each link made to them by another player. The pro-

tocols, actions, and payoffs in the β = 24 and α = 0 rounds of the ND experiments

are comparable to the Baseline treatment in the current experiment. Similarly, the

“Forced Linking” treatment in the ND experiments is comparable to the 3D treatment

in the current paper.

Despite the design-differences (online vs in-person; random re-matching vs fixed

groupings), the comparable treatments from ND experiments yield results that are

qualitatively similar to the current experiments. In the Baseline-comparable ND

treatment, P1 plays the safe action 49.5% of the time and links to P4 23.0% of

the time (n = 400). In the 3D-comparable ND treatment, P1 plays the safe action

24.5% of the time and links to P4 53.5% of the time (n = 200). The difference in

P1-behavior across the Baseline and 3D-comparable treatments is significant, in the

same direction, but smaller in magnitude than that in the current paper’s Baseline

and 3D treatments. We speculate that reputation-building and within-group learning

explain the magnitude-difference.
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