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THE VALUE OF AND DEMAND FOR DIVERSE NEWS SOURCES

EVAN M. CALFORD∗ AND ANUJIT CHAKRABORTY∗∗

Abstract. We study the value of and the demand for instrumentally-

valuable information in a simple decision environment where signals are

transparently polarized. We find that in both information aggregation and

acquisition, subjects use sophisticated heuristics to counter the polariza-

tion in signals. Even though the number of precise Bayesian reports are

small, most subjects (64%) generate unpolarized reports even when faced

with polarized signals. Subjects placed in a market place of information

rarely end up buying polarized signals and instead overwhelmingly opt for

diverse information. The demand for diverse information increases as di-

verse information becomes more valuable and decreases as it becomes more

expensive.
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Media sources with contradictory biases can create completely different im-

pressions of what actually happened through the selective omission of details

and the choice of words. As an example of media bias, Gentzkow and Shapiro

[2006] discuss the media coverage of the firefight in the Iraqi city of Samarra

on December 2, 2003. Fox News, a conservative US based news channel, began

its story with the following paragraph:

In one of the deadliest reported firefights in Iraq since the fall

of Saddam Hussein’s regime, US forces killed at least 54 Iraqis

and captured eight others while fending off simultaneous convoy

ambushes Sunday in the northern city of Samarra.

And the English-language website of the Qatar-based Al Jazeera (AlJazeera.net)

began its report on the same incident with:

The US military has vowed to continue aggressive tactics after

saying it killed 54 Iraqis following an ambush, but commanders

admitted they had no proof to back up their claims. The only

corpses at Samarra’s hospital were those of civilians, including

two elderly Iranian visitors and a child.

Similarly, the narrative of who is winning the war in Ukraine depends on who

is doing the talking. Predictably, Russian media says that it is winning an

easy war, while the United States insists that bolstered by Western support,

Ukraine might be staging a surprise win. Investors following geopolitical events

to predict financial markets or future fuel prices might get very different im-

pressions of the same event from international news sources with opposing

bias. Media bias also extends to financial news, which determines the quality

of financial decisions a news-reader makes: Niessner and So [2018] find that a

financial news story is approximately 22 percent more likely to be covered if it

is negative, creating an overall negative media bias in financial news coverage.

Investors who exclusively access media sources that share identical polar-

ization would only observe an incomplete account of the whole reality. As

creatures that often make quick judgments based on heuristic-driven biases,

for example hot hand bias (Marquis de Laplace, 1840), Gambler’s Fallacy

(Chen et al., 2016a), law of small numbers (Rabin, 2002) and base rate neglect

(Kahneman and Tversky, 1973), how do we aggregate instrumental information
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when information sources are transparently polarized? 1 Do polarized sources

lead to severe and systematic errors? This is our first line of inquiry.

Further, a world where investors are self-aware that polarized sources might

lead to systematic errors and hence actively diversify their news sources, is

vastly different to a world where they lack such awareness and hence naively

end up with polarized news sources. For example, any policy that subsidizes

and simplifies acquiring diverse news sources would be impactful in the former

world, but have no impact in the latter. Previous experiments (e.g. Enke,

2020) that insert subjects in a world of exclusively polarized news sources help

us measure polarization in the counterfactual latter world, but don’t reveal

which of the two worlds is a better approximation of the world we live in.

Overcoming this limitation motivates our second line of inquiry: How often do

individuals with access to a market-place for information, end up with polarized

information sources? How does their demand for diverse news sources react to

its value and costs? This paper uses experimental methods to address these

questions.

To study the first question, we immerse subjects in a controlled environment

of selective information-omission to compare the accuracy of their opinions

under diverse versus polarized information sources. Every round, subjects are

asked to guess an objective state, the average of seven i.i.d random draws

from the simple uniform distribution {1,2,3,..100}. To incentivize subjects,

more accurate guesses earned a higher expected payment. In our first two

treatments, subjects were randomly shown only three of the seven random

draws as signals beforehand. The polarization in observed signals is extreme

when all three observed signals are high (between 51-100), thus creating a

high-polarity, or when all three observed signals are low (1-50), creating a

low-polarity. This is similar to being exclusively exposed to media sources

that share the same reporting polarization on an issue. Instead, if the three

observed signals are a mix of high and low, then we will describe the signals

as diverse.

1Psychology studies have long proposed a dual-process model for two modes of information-
processing: a “fast, associative” one “based on low-effort heuristics” (System 1), and a “slow,
rule based” one (System 2) that relies on “high-effort systematic reasoning” (Kunda, 1990).
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In the Baseline treatment (called the No Colors treatment), the subjects do

not have any information about the unobserved signals, other than knowing

that they are equally likely to be any number between {1,2,3,..100}. Given the

observed three signals were randomly chosen from the seven draws, subjects

might assume that their observed sample is“representative”of the seven draws.

An intuitive way to estimate of the average of all seven signals would be to

calculate the average of the three observed signals. Unfortunately, despite the

intuitive appeal, such a sample-average rule ignores the information available

about the unobserved signals, that they are equally likely to be any number in

{1,2,...100}. Consequently, the sample-average would be high-polarized when

all observed signals were high, and low-polarized when all observed signals

were low. Another intuitive but incorrect estimation rule, one that falls prey

to the Gambler’s fallacy, is to that mistakenly infer that observing three low

(or high) signals increases the likelihood of the unobserved signals being of the

opposite polarity, causing reports to be biased in the opposite direction of the

extremity of observed signals. Finally, the correct Bayesian rule would add

the three observed signals with four times 50.5 (as the four unobserved signals

are uniformly distributed between 1 and 100), and then divide the sum by 7.

Contrary to our prior expectations, subjects are remarkably unbiased in ad-

justing their opinions for extreme signal bias: only 16% of subjects exhibited

a consistent bias towards the sample-average heuristic and only 20% exhib-

ited a consistent bias towards the Gambler’s fallacy. The majority (64%)

of subjects are able to counteract the effect of polarized information. Even

though the number of precise Bayesian reports are quite small, we find no

evidence for subjects over-weighting the information of the observed signals or

under-weighting/ignoring the prior information available about the unobserved

signals.

Next, as a benchmark for an easier decision environment, we designed the

Colors treatment, where the subjects are also informed how many of the four

unobserved signals lie between 1-50 (called Blue signals) or 51-100 (called Red

signals). The correct Bayesian rule here would add the three observed signals

with 25.5 times the number of Blue signals and 75.5 times the number of Red
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signals. At a minimum, the Colors treatment alerts the subjects that the ob-

served signals might not be informative about the unobserved signals (thus

moving them away from Gambler’s fallacy), and at a maximum, helps sub-

jects account for the unobserved signals. Reduced form estimates suggest that

this extra information improves report quality for inexperienced subjects who

observe extreme signals, but otherwise has a limited impact on report quality.

In addition, we find that playing the more informative Colors treatment before

the Baseline (No Colors) treatment does not improve the report-accuracy in

the Baseline treatment.

We perform a structural estimation exercise, in part motivated by the dual-

process cognitive model (see footnote 1), to further unpack how subjects ag-

gregated information. We assume that reports were generated either from a

precise mental model that uses the Bayesian rule (System 2 thinking) or from

an imprecise mental model that heuristically aggregates all the available infor-

mation (System 1 thinking). For each treatment (Colors and No Colors) and

each signal type (diverse and extreme), we separately estimate the likelihood

that the reports are generated through each of the two mental models, and

the parameters of the imprecise heuristic rule. We find that more than 70%

of all reports, under all conditions, are estimated to have originated from the

imprecise heuristic. In rounds where subjects observe diverse signals, there are

only minor differences in the estimated relative frequency of each rule and the

heuristic used, across the No Colors and Colors treatments. For extreme sig-

nals, however, we observe a marked difference in behavior across the Colors and

No Colors treatments: reports are more likely to have come from the precise

Bayesian model in Color treatments. Further, the estimated heuristic-models

produce noisy but unbiased reports under all treatment-signal combinations,

except when subjects receive extreme signals in the Colors treatment.

Next, we study if subjects in a market-place for instrumental information

are unlikely to end up with extreme signals, as they realize that extreme signals

might lead to worse decisions. In our Active Choice and Average treatments,

subjects are only assigned their first signal, and then can buy two more sig-

nals. They can choose to buy two, one or zero signals with the same polarity
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of their first signal. Signals of the same or opposite polarity are priced dif-

ferently. Buying two signals of the same polarity would result in an extreme

information source. Buying one or zero signals with the same polarity would

result in a diverse information source, but would come at different costs. Ob-

serving what information subjects buy, allows us to investigate how subjects

facing polarized information, opt into or opt out of particular informational

environments. When diverse and extreme signals are equally costly, we find

that approximately 95% of subjects choose a diverse portfolio of signals. The

demand for diverse signals persists as the cost of diverse information increases.

As the price for diverse signals increases, subjects become less likely to buy

them, but even at the most extreme price differentials 20% of subjects con-

tinue to purchase diverse signals. Thus, subjects who are not constrained by

experimental rules, seldom face extreme signals.2

In our Average treatment, we impose the rule that after subjects choose a

signal portfolio, a sample-average heuristic would calculate the report on their

behalf. This intervention significantly and exogenously increases the value

of diverse information as the sample-average heuristic is severely inaccurate

under extreme information. As accurate reports pay more, subjects should

select signals that preserve accuracy under the imposed sample-average rule.

In our experiments, most of the subjects realize that the accuracy premium

from diverse signals is even higher under the sample-average rule and it is

reflected in their signal choices. The demand for diverse signals is higher in

the Average treatment than the Active Choice treatment, increasing by more

than 50% at intermediate information costs.

On aggregate, we find that in both information aggregation and acquisition,

subjects use sophisticated heuristics to counter the polarization in signals.

Our results advocate for greater transparency in media bias, as we show that

consumers who wish to make an informed choice, actively seek diverse news

sources in such a world. For example, websites like Allside.com or Adfontes-

media.com that explain and measure various dimensions of media polarization

can be extremely useful in the quest for transparency. In particular, All Sides

2Notably, we also find evidence of metacognition in signal choice: subjects who were worse
at aggregating information were also more likely to purchase diverse signals, perhaps in an
attempt to make their inference problem easier.
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is a news website that presents multiple sources side by side in order to pro-

vide the full scope of news reporting. It also provides a Bias Ratings page

that allows a visitor to filter a list of news sources by the polarization on

the political spectrum (left, center, right).3 Even though we do find a strong

preference for diversity of information, our structural model does suggest that

increased availability of information could increase ex-post polarization among

some consumers who continue to consume polarized media sources.

Our paper is related to information acquisition and to a large literature,

pioneered by Tversky and Kahneman [1971, 1974], that studies the prevalence

of biases and heuristics in probabilistic decisions. For clean identification, our

experimental environment excludes the scope for motivated reasoning (Kunda

[1990]), the tendency of people to conform assessments of information to some

goal or end extrinsic to accuracy. Similarly, it also excludes mistakes origi-

nating in the failure of hypothetical or contingent reasoning; any event that

subjects should condition on is clearly and explicitly displayed. We discuss

the related literature in detail in Section 1.

1. Related Literature

The sample-average rule, that subjects might find naturally attractive in our

decision environment, belongs to the class of simplistic heuristics that over-

weight one type of information over other available information.4 For example,

experimental subjects frequently discard or under-weight base-rate information

because it is not relevant to judgements of representativeness (Kahneman and

Tversky, 1973), or because likelihood information is more “vivid, salient, and

concrete” (Nisbett and Ross, 1980). Subjects in our treatments might similarly

overweight the information from the three signals that they observe, thinking it

is representative of the seven signals, or because the information it provides is

more salient and concrete. A recent literature in cognitive psychology connects

such behavior to people behaving like “naive intuitive statisticians” who de-

spite being skilled in making judgements based on memory-stored frequencies,

often naively assume that their information samples are representative and

3See their media bias chart here.
4Benjamin [2019] provides a detailed literature review.
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that sample properties can be directly used to estimate population analogs

(Fiedler and Juslin, 2006).

The Gambler’s Fallacy (GF in short) is one of the oldest documented prob-

abilistic biases. Marquis de Laplace [1840] described people’s belief that the

fraction of boys and girls born each month must be roughly balanced, so that if

more of one sex has been born, the other sex becomes more likely. Rabin [2002]

and Oskarsson et al. [2009] review the extensive literature that documents the

GF in surveys and experiments. Chen et al. [2016a] finds consistent evidence of

negative autocorrelation in decision making that is unrelated to the merits of

the cases considered in three separate high-stakes field settings: refugee asylum

court decisions, loan application reviews, and Major League Baseball umpire

pitch calls. They link it to people underestimating the likelihood of sequential

streaks occurring by chance—leading to negatively autocorrelated decisions

that result in errors. Similarly, experimental participants playing a game with

a unique mixed-strategy Nash Equilibrium or tennis players making a serve

switch their actions too often (Rapoport and Budescu, 1997, Gauriot et al.,

2016), and this excessive switching could reflect the mistaken GF intuition for

what random sequences look like.

Studies on information extraction are also closely related to the growing

literature on contingent reasoning or hypothetical thinking. For example, to

avoid the winner’s curse, bidders in a common value auction should extract

information from their private signal, while conditioning on the hypotheti-

cal event of winning the auction. Similarly, voters should extract information

from their private signal, while conditioning on the hypothetical event of being

pivotal to the outcome. Esponda and Vespa [2019], Araujo et al. [2021] find

that experimental subjects routinely fail to perform such contingent reasoning

while processing their private information. Enke [2020] finds that when sub-

jects are exclusively shown information consistent with their initially reported

prior, they often behave as if the sample selection does not even come to their

mind.5 Enke [2020] provides further causal evidence that the frequency of

5Enke’s Random treatment is similar to our NoColors treatment, with one important differ-
ence in the user interface that critically reflects the different behaviors we seek to capture. In
our user interface, subjects are visually prompted about the missing signals (although they
get no further information about these in the NoColors treatment), while Enke deliberately
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such incorrect mental models is a function of the computational complexity

of the decision problem. To disentangle the value of and demand for diverse

information from these other behavioral forces, we offer subjects a simple de-

cision problem where the difference between extreme and diverse signals is

transparent, even to subjects who cannot reason through hypothetical events.

Our Active Choice and Sample Average treatments are novel and connect

to the nascent literature on the value of instrumental information. Reshidi

et al. [2021] contrast information acquisition in groups versus individual treat-

ments, and in static versus dynamic contexts. Duffy et al. [2019, 2021] study

how subjects choose between social and private information sources that vary

in relative quality. Charness et al. [2021] and Montanari and Nunnari [2019]

study how subjects update their beliefs about a payoff-relevant state of the

world while choosing exactly one of two information sources (signals) which

have mutually opposite biases, and thus are the closely related. In both stud-

ies, subjects had to guess the probability that a single ball drawn randomly

from an urn would be of a particular color, and also guess the color of the

ball. To inform their guesses, subjects first chose one of a pair of comput-

erized advisors, from which to receive an informative signal about the ball

drawn. Subjects were fully informed of the probabilities with which each advi-

sor would provide each signal as a function of the true color of the ball drawn

from the urn. Charness et al. [2021] find that the fraction who choose infor-

mation optimally and the fraction who use a mistaken confirmation-seeking

rule are roughly equal. In Montanari and Nunnari [2019], when the two in-

formation sources are equally reliable, subjects select information optimally.

But, when the source less supportive of the prior belief is more informative,

subjects display a dis-confirmatory pattern of information acquisition that is

not always consistent with the theoretical predictions. Even in cases where in-

formation is not instrumentally valuable, subjects might have preferences over

how information is disclosed (Zimmermann, 2015, Ganguly and Tasoff, 2017,

does not prompt about the missing signals on the decision page. Enke [2020]’s design asks
the eponymous question: is what you see all there is? While Enke studies whether people
ignore signals that are not visually presented, we study how people process signals where
the realization of (rather than the existence of) the signal is shrouded. The difference also
extends to our findings: while Enke [2020] finds systematic evidence of sample-average bias,
we find more subjects with the opposite (Gambler’s fallacy) bias.
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Masatlioglu et al., 2017, Nielsen, 2020). An emerging literature on motivated

reasoning addresses how we often seek particular information and stay will-

fully ignorant of other information, because we wish to arrive at our desired

conclusion (Festinger, 1962). Here, we deliberately frame our experimental

tasks to remove the scope for motivated reasoning, as we want to to study to

the demand for information with purely instrumental value.

Acquisition of instrumental information has also been studied in applied

settings. Fuster et al. [Forthcoming] use an experimental survey instrument

to determine which pieces of economic data subjects prefer to consult when

predicting house price movements. Burke and Manz [2014] asked subjects to

forecast inflation in a simulated laboratory economy, and provided subjects

with a choice of viewing historical information on inflation, interest rates,

unemployment, population growth, or price changes of specific commodities,

before making their forecast. In both environments choices of more informative

sources were correlated with measures of economic sophistication. Mikosch

et al. [2021] study how information acquisition about the future development of

the exchange rate is related to the exposure to and uncertainty about exchange

rate risk, and the perceived information acquisition costs. Roth et al. [2022]

find that a higher personal exposure to unemployment risk during recessions

increase the demand for an expert forecast about the likelihood of a recession.

Capozza et al. [2021] provide a detailed review the emerging literature on

information acquisition in field settings.

Most of the lab-experimental literature on information-acquisition compares

empirical information choice to a theoretical optimal calculated for the Bayesian

subjects. This allows for sharp theoretical predictions, but the test for opti-

mal signal choice becomes a joint test of optimal choice and subjects updating

using Bayes Rule. The information-choice data can only reject optimal choice

when information-updating behavior is consistent with Bayes Rule. There are,

however, some exceptions in the literature. Charness et al. [2021] use a treat-

ment with exogenously assigned signals to show that the Bayesian optimal

information choice was also optimal for the behavioral non-Bayesian types in

their subject pool (i.e. the optimality of information choices is not dependent

on an assumption of Bayesian updating). Ambuehl and Li [2018] measure
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the value of information against both a Bayesian benchmark and an empirical

updating benchmark and find that subject’s value for information is higher,

but still lower than optimal, when measured against the empirical benchmark.

We instead test if subjects react optimally to an increase in the value of di-

verse signal choice and we do not require subjects to be Bayesian. All we

require is that diversification is more valuable under the sample-average rule

than whatever updating rule subjects actually use. As we show later in Figure

A.2, this is indeed true for all individual participants in our study. Further,

in our Average treatment we exogenously impose a sub-optimal updating rule

on subjects which allows us to measure, unconfounded by updating ability,

subject propensity to select information that offsets updating biases.

2. Experimental Design

To study the acquisition and aggregation of extreme information, we

implement 4 treatments: No Colors (NC), Colors (C), Active Choice (AC)

and Average (Avg). The first two treatments randomly allocate signals

(information) to study information aggregation in isolation. The last

treatment fixes the information aggregation procedure exogenously to study

information acquisition in isolation, and the AC treatment combines both

information aggregation and information acquisition tasks.

2.1. Baseline/ No Colors treatment (NC):. The first treatment is No Colors

(NC henceforth). Each round in the NC treatment has the following structure:

(1) Signal realization stage: A set of seven signals are independently drawn

from the numbers 1 to 100. Each signal, si for i ∈ {1, . . . , 7} is assigned

a color based on its realization: Blue if si ≤ 50 and Red if si ≥ 51.

(2) Information stage: In the experiment, we framed s1 as the subject’s

own signal and each other signal {s2, .., s7} as belonging to a pas-

sive computer “player”. Subjects see the realization of s1, and two

other randomly chosen signals (say s2 and s3).
6 We use this fram-

ing to imitate information flow in the subject’s information network.

6Given the signals are ordered randomly, this is equivalent to showing subjects any three
signals randomly.
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Subjects are not informed about the colors of the remaining 4 sig-

nals. For example, in a particular round, if the signal realization were

{ 10︸︷︷︸
s1

, 20︸︷︷︸
s2

, 30︸︷︷︸
s3

, 40, 50, 60, 70}, and s2 and s3 were shown to the sub-

ject, then the subject would observe {10, 20, 30} and they would not

know the color composition of the unobserved 4 signals. Thus the name

No Colors treatment.

(3) Updating/ aggregation stage: Subjects state their best estimate of the

average value s =
∑7

i=1 si
7

given the information above.

One crucial feature of our design is that we did not provide any feedback to

the subjects in between the rounds, in any of our treatments. Subjects were

provided with a hand-held calculator, although few subjects elected to use

the calculators; we did not want to test the ability of subjects to do basic

arithmetic.

At the end of the experiment, one of the rounds was randomly chosen as

the round for which subjects were paid. For the chosen round, the guessing

error was calculated as the absolute difference between the reported guess and

the realized s =
∑7

i=1 si
7

. Each subject won a large prize worth 200 points with

max(100− 6× error,0)% chance, and a small prize worth 50 points with the

complementary probability. This payment function ensures that reports are

unaffected by the curvature of the subject’s utility function over money. The

linear loss function was chosen as it is simple and it incentives reporting the

expected value of s̄ truthfully under an assumption that the belief about s̄ is

symmetric and single peaked.7

2.2. Colors treatment (C):. The Colors treatment is identical to the No Colors

treatment, except, in the Information stage, subjects are also shown the colors

of the remaining 4 remaining signals. For example, in a particular round,

suppose the signal realizations were { 10︸︷︷︸
s1

, 20︸︷︷︸
s2

, 30︸︷︷︸
s3

, 40︸︷︷︸
≤50

, 50︸︷︷︸
≤50

, 60︸︷︷︸
>50

, 70︸︷︷︸
>50

}. If

the realizations s2 and s3 were shown to the subject, then the subject observed

{10, 20, 30} and additionally they would know that among the unobserved 4,

7This assumption obviously holds for Bayesian subjects, but can hold more generally.
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there are 2 Blue (<= 50) and 2 Red (> 50) signals. The Colors treatment

makes the importance of unobserved signals salient.

2.3. Active choice treatment (AC):. The AC treatment is identical to the

Colors treatment, except, in the Information stage, subjects make an active

choice about the signals they observe. Subjects observe s1 by default, and

they can choose to observe the realizations of two Blue signals or two Red

signals or one signal of each color. For example, in a particular round, if the

signal realization were { 10︸︷︷︸
s1

, 20, 30, 40, 50︸ ︷︷ ︸
Blue

, 60, 70︸ ︷︷ ︸
Red

}, then the subject only sees

{10} by default. If she chooses to see 2 Blue signals, then she is randomly

shown exactly two signals from {20, 30, 40, 50︸ ︷︷ ︸
Blue

} and she is told that among the

unobserved 4, there are 2 Blue and 2 Red signals. If she instead chooses to

see 2 Red signals, then she is shown both {60, 70} and she is told that all the

unobserved 4 signals are Blue. If she instead chooses to see 1 signal of each

color, then she is shown one of {20, 30, 40, 50}, one of {60, 70} and she is told

that among the unobserved 4, there are 3 Blue and 1 Red signals.

The subjects made their signal selection without knowing if their choice were

available. In the improbable event that the selected signals are not available

(for example, all but one of {s2, s3, .., s7} are Blue but the subject requests

two Red signals), then the subject is shown a combination of signals that is as

close as possible to matching the subjects requested combination of colors (in

this example, the subject would be shown one each of Red and Blue signals).

The subject is always informed of the colors of any unobserved signals (in this

example, there are 4 unobserved Blue signals).

Further, each round, subjects are paid p1 for each signal they observe that

is the same color (Blue/ Red) as s1 and p2 for each observed signal that is of

the opposite color from s1. We vary p1 and p2 to generate the price-differences

∆p = (p1 − p2) ∈ {−6,−2, 0, 2, 4, 6, 8, 10, 14, 20}

When ∆p > 0, subjects have an explicit monetary incentive for choosing more

signals that are of the same color as s1. When ∆p < 0, they have the opposite

incentive, and when ∆p = 0, there is no explicit incentive and subjects should

choose the set of signals that they subjectively view as the most informative.
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Features Treatments

Color (C) No Color (NC) Active Choice (AC) Average (Avg)

Signal
Random Random Active choice Active choice

acquisition

Information
Active choice Active choice Active choice Sample-Avg

Aggregation

Colors of
Available Unavailable Available Not Applicable

unobserved balls

Table 1. Features of different treatments.

2.4. Average treatment (Avg): The Average treatment is identical to the Ac-

tive Choice treatment in the Information stage: subjects choose the colors of

the signals, subject to the available price-difference ∆p. But, subjects know

that their report in the updating/aggregation stage is exogenously constrained

to be the sample average of their three observed signals. Thus, if a subject ob-

serves {10, 20, 30}, then the software would report 20 on their behalf. Similarly,

if they observe {10, 20, 60}, then the software would report 30 on their behalf.

Thus the name Average treatment. This treatment manipulation increases

the value of diversified signals for all subjects, given that the sample-average

updating rule suffers a large bias when all observed signals are extreme. As

before, we vary p1 and p2 to generate the price-differences

∆p = (p1 − p2) ∈ {−6,−2, 0, 2, 4, 6, 8, 10, 14, 20}

In the Appendix, we report on a fifth treatment. We do not include this

treatment in the main text because, as discussed in the Appendix, there is evi-

dence of substantial subject confusion in the novel part of the extra treatment.

The sessions that included the fifth treatment also included some rounds of the

Colors and Avg treatments as well. We exclude all sessions that included the

fifth treatment from the main text, but include the data from those sessions

in the Appendix. All our results are robust to including the fifth treatment

sessions.

2.5. Sessions. Each session was run with around 15 subjects. Sessions lasted

40 rounds, grouped into 2 treatment-blocks of 20 rounds each. In the table

below we summarize the treatment composition of the sessions
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Session name
Treatment(s) run

#Sessions
Rounds 1-20 Rounds 21-40

C1+NC2 Colors No Colors 2
NC1+C2 No Colors Colors 2
AC+Avg Active Choice Average 2

Table 2. Number of sessions conducted with each pairwise combina-
tion of treatments. C1 and C2 mean Colors treatment were run in the
first and second half of the session respectively. Similarly, NC1 and
NC2.

Subjects were paid for the sum of points earned during one randomly selected

round. At the end of the experiment, points were converted to US Dollars at

an exchange rate of $0.07 per point. Thus, the larger prize (200 points) was

worth $14 and the smaller prize (50 points) was worth $3.50. They were also

paid a $5.00 show up fee in addition to any money they earned during the

experiment. We conducted 6 sessions in total, with a total of 89 subjects. Our

experiments were conducted in-person at the Purdue University, using student

subjects drawn from Purdue’s implementation of the ORSEE subject database

[Greiner, 2015], during 2018. The experiments were programmed using oTree

[Chen et al., 2016b].

3. Hypotheses

3.1. Information aggregation.

Given the information subjects have while making a guess, the Bayesian

report for both Color and No Color rounds can be calculated as follows. For

the Color treatment the Bayesian report is given by

R∗
C =

s1 + s2 + s3 + 25.5× (#Blue) + 75.5× (#Red)

7

where #Blue and #Red are the number of unobserved Blue and Red signals,

respectively, the subscript C denotes the Colors treatment, and the

superscript ∗ denotes the optimal Bayesian report. In the No Colors
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treatment the Bayesian report is

R∗
NC =

s1 + s2 + s3 + 50.5× 4

7

where the subscript NC denotes the No Colors treatment. The Color

treatment provides subjects with more information about the unobserved

signals and will, on average, lead to better performing reports in the Color

treatment than the No Colors treatment. Our first set of hypotheses concern

the effects of the distribution of the three observed signals on the quality of

reports. We call a set of three signals extreme if they are all Red (51 or

above) or all Blue (50 or below). If a set of signals is not extreme then it is

diversified. For example, {10, 20, 30} would be a set of extreme signals, and

so would {95, 60, 70}. We initially focus on two behavioral biases that are

ex-ante plausible in the NoColor rounds.

1) Sample average bias: An intuitive but incorrect decision rule would be to

completely disregard any information present in the unobserved signals and

simply report the sample average of the three observable signals. That is, a

naive, sample-average report would be to report

RSA
NC =

s1 + s2 + s3
3︸ ︷︷ ︸

sample average

where the subscript SA stands for sample-average. Given the observed three

signals were randomly chosen from the seven draws in the NC treatment,

subjects might assume that their observed sample is “representative” of the

seven draws and be attracted to such a heuristic. In this case, when the

signals are extreme, the guess would be more inaccurate on average and

would be polarized towards the signal-extremity. For example, when all the

three observed signals are Blue, subjects would, on average, under-report by

a large margin

RSA
NC |(0R, 3B) = 25.5 < R∗

NC |(0R, 3B) =
25.5× 3 + 50.5× 4

7
= 39.79

Similarly, when all the signals are Red, subjects would over-report by a large

margin. Instead when the observed signals are mixed, for example two Blue
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and one Red, the margin of error is much smaller:

RSA
NC |(1R, 2B) = 42.2 < R∗

NC |(1R, 2B) =
51 + 75.5 + 50.5× 4

7
= 46.92

2) Gambler’s Fallacy: The gambler’s fallacy (GF) is the common, but

mistaken, belief that that i.i.d. random variables are “self-correcting towards

the mean” and hence exhibit negative serial correlation.8 In our setting, the

gambler’s fallacy implies that subjects mistakenly believe that each observed

Red (or Blue) signal reduces the likelihood of the unobserved signals being

that color. For simplicity, one can think of this as the rule

RGF
NC =

s1 + s2 + s3 + 4× (75.5p+ 25.5(1− p))

7

where p depends on the colors of the signals s1, s2, s3. Thus, if k is the

number of Red balls among s1, s2, s3, then, according to the GF,

p(k = 0) > p(k = 1) > .5︸︷︷︸
under Bayes

> p(k = 2) > p(k = 3)

Thus, when the signals are extreme, the guess would be further from the

Bayesian estimate on average and would be polarized in the opposite direction

of the signal-extremity. One could construct hybrid rules by taking the

following convex combinations of the non-Bayesian heuristics with the

Bayesian rule, that is, αR∗
NC + (1− α)RSA

NC and αR∗
NC + (1− α)RGF

NC . For

any value of α ∈ [0, 1) these hybrid rules would inherit the directional bias of

their parent non-Bayesian rule. In particular, the former rule would

over-weight the information in the observed signals, and the latter would

under-weight the same. We construct our first hypothesis under the

generalized sample-average rule αR∗
NC + (1− α)RSA

NC for α ∈ [0, 1).

Hypothesis 1 (Error and Bias, Sample Average). In the No Colors and Col-

ors treatments, extreme signals create reports that are further away from the

Bayesian report and polarized towards the corresponding extremity.

8The fallacy earns its name from the story of a gambler who, after observing a run of black
numbers at a roulette table, exclaims “We are due for a red number next!”
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An alternative hypothesis, using the Gambler’s Fallacy and its generalized

aggregation rule, would suggest a bias towards the opposite direction under

extreme signals.

The Gambler’s Fallacy, as described above, is ruled out in the Colors

treatment. A heuristic like sample-average is also unlikely when subjects are

explicitly informed about the colors of the unobserved realizations. Thus,

subjects are more likely to make mistakes in the No Colors rounds, which is

our next hypothesis.

Hypothesis 2 (Colors vs No Colors). Polarization is higher when the color

information of unobserved balls is unavailable (No Colors treatment).

3.2. Learning: Subjects get no feedback between rounds. But, consider a sub-

population of subjects who use the Sample average rule RSA
NC in the No Color

treatment. They completely disregard any information that might be present

in the unobserved signals. Their play might be influenced by the order in

which they play both the Color and No Color treatments. In particular, any

prior experience in the Color treatment might make it salient for them that the

unobserved signals play a significant role in determining the target s =
∑7

i=1 si
7

.9

This experience might move them away from a naive sample-average rule to

some rule that accounts for the unobserved signals (e.g, αR∗
NC + (1− α)RSA

NC)

and thus improve their quality of information aggregation when they get to the

No Color treatment. To test this, we could compare the data from subjects who

experienced Colors before the NoColors treatment (i.e. using the data from

the C1+NC2 sessions) to those who did not (from the NC1+C2 sessions).

Hypothesis 3 (Learning). Compared to the NC1 condition, subjects in the NC2

condition aggregate information more accurately.

3.3. Information choice. For any subject i who uses an aggregation strategy

R̂i
C in the Active Choice rounds, the optimal choice of signal depends jointly

on the signal-prices and i’s beliefs about how R̂i
C interacts with signal choice.

The variation in signal prices ∆p helps us measure the demand for signals

without assuming any structure on R̂i
C . When ∆p = 0, all signal compositions

9Recall that subjects were never provided feedback, so this learning can only occur if subjects
realize the connection between colors and the sample average introspectively.
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are equally expensive. Thus, any subject i from the Active Choice treatment

should choose a signal combination that she believes would deliver the most

accurate report, given R̂i
C . If they believe that extreme signals might result

in more a more inaccurate report, then they would prefer diverse signals. It is

important to note that, i’s choices are guided by her beliefs about which signal

choices lead to more accuracy, i.e, the perceived value of information, which

might not be equal to the actual value of information. In the range ∆p > 0,

as ∆p increases, diversification gets increasingly expensive, while its perceived

value stays the same. Thus, they should choose diverse signals less often.

Hypothesis 4 (Demand for diversity (Price response)). In the AC treatment,

subjects prefer diverse signals over extreme signals for ∆p = 0. As ∆p in-

creases, subjects choose diverse signals less often.

The sample-average rule imposed in the Average treatment, disregards all in-

formation about the unobserved signals. Thus, unless the subjects themselves

are using the sample-average rule in the Colors treatment, which is unlikely,

the actual value of diversification increases significantly when the sample aver-

age rule is imposed.10 Does the perceived value of diversification react to this

change? Our next hypothesis is about how the perceived value of diversifica-

tion, as measured through the demand for diverse signals, changes when the

sample-average rule is imposed:

Hypothesis 5 (Demand for diversity (Avg vs AC)). Compared to the AC treat-

ment, subjects in the Avg treatment are more likely to choose diverse signals

over extreme signals for all ∆p > 0.

To summarize, hypotheses 1, 2, and 3 presume that subjects use a naive

aggregation rule (for e.g, sample-average or Gambler’s fallacy) to predict

comparative statics over signal diversity, experience, or informativeness of

treatments (C versus NC treatments). Sophisticated aggregation behavior

would result in their rejection. Our last two hypotheses (4 and 5) posit

sophisticated signal choice favoring diverse signals, and would be rejected if

subjects respond only to the signal prices, p1 and p2.
10Recall that we expect the sample-average rule to be more prevalent in the NoColors
treatment, rather than the Colors treatment.

19



4. Results

In this section, we use all the data from our four main treatments to test our

hypotheses. Most of the effects are identified through the variation of the

treatments within the same subject. We begin with a reduced-form analysis

of the deviation from Bayesian estimates across treatments. Following this,

we confirm the basic insights of the reduced form regressions by estimating a

structural model of the updating process. The third subsection provides a

subject-level analysis and broadly confirms the underlying pattern of the

data: there is only limited evidence of systemic polarization in subject

reports. The final subsection presents the results on subject willingness to

pay for diverse information.

4.1. Reduced form analysis.

We address Hypotheses 1, 2 and 3 using the data from all rounds of C1+NC2

and NC1+C2 sessions.11 For ease of exposition, we define a subject to be

inexperienced during rounds 1-20, and experienced when they are in rounds

21-40, having played a different treatment previously in rounds 1-20. To

isolate the effects of diverse signals, the observation of colors, and experience,

we regress the absolute deviation from the Bayesian report (y) on indicator

variables for extreme signals, the C treatment, and Experience, plus all

interaction terms, clustering standard errors at the subject level. In equation

4.1, the baseline observations are the NC1 rounds where inexperienced

subjects observed diverse signals.

y =β0 + β11Extreme + β21Color + β31Extreme × 1Color + β41Experienced + β51Extreme × 1Experienced+

(4.1)

β61Color × 1Experienced + β71Extreme × 1Color × 1Experienced + ϵ

11In the Appendix, we repeat the analysis while including the Colors and Avg rounds from
the fifth treatment, increasing our data set further. We do not include this treatment in the
main text because, as discussed in the Appendix, there is evidence of substantial subject
confusion in the novel part of the fifth treatment. All our results are robust to including the
fifth treatment sessions.

20



In Table 3, we present the the estimated marginal effects (ME) of each of the

three factors of interest: Extreme signals (top left), Experience (top right)

and Colors (Bottom), for the 2× 2 values taken by the other two factors.12

For example, the top left table measures the marginal effect of moving from

diverse signals to extreme signals, at each level of Colors (along the rows)

and Experience (along the columns). It shows that observing extreme signals

significantly increases the average absolute reporting error, for both

experienced and inexperienced subjects, but only in the NC rounds. The size

of the effect is 2.08 units (p < 0.001) for inexperienced NC subjects, and 1.71

units (p < 0.01) for experienced NC subjects. Given the incentive structure

of the experiment, this increases expected earnings by approximately $1.26 or

$1.07 for experienced or inexperienced subjects, respectively. Further, the

standard errors indicate that the effects of extreme signals are estimated with

high precision. The standard errors, of around half a unit on the 100 point

scale used in the experiment, are approximately 28 times smaller than the

expected absolute difference between the Bayesian estimate and the Sample

Average heuristic when extreme signals are observed.

The bottom left panel of Table 3 shows the marginal effect of observing Col-

ors on the average absolute deviation from Bayesian reports. A statistically

significant effect is only found for inexperienced subjects who observe extreme

signals: the improvement in reports, when observing extreme signals, for sub-

jects who are participating in the C treatment (relative to those participating

in the NC treatment) and have not yet experienced the other treatment is 2.40

units (p < 0.05).13 The effects of Experience are shown in the top right panel.

There is an improvement in reports in the NC treatment for subjects who have

already had experience in the C treatment (relative to those who play the NC

treatment first), but the effects are not significant at the 5% level.

Result 1. (a): Diverse signals improve reports, relative to the Bayesian bench-

mark, only when color information is not available. (Qualified support for

Hypothesis 1.)

12The main regression is presented in Table A.1 in the appendix.
13That is, this statistic is a between subject measure of the effect of observing the colors of
unobserved signals among inexperienced subjects.
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ME of Extreme signals Rounds 1-20 Rounds 21-40 ME of Experience Diverse signals Extreme signals

Under Colors 0.75 0.54 Under Colors 0.61 0.41

(0.59) (0.56) (0.82) (1.20)

Under NoColors 2.08 1.71 Under NoColors -1.48 -1.85

(0.51) (0.49) (0.77) (1.06)

ME of Colors Rounds 1-20 Rounds 21-40

Under Diverse signals -1.06 1.04

(0.74) (0.84)

Under Extreme signals -2.40 -0.14

(1.11) (1.14)

Table 3. We report the marginal effects (ME) of three factors: Ex-
treme signals (top left), Experience (top right) and Colors (Bottom)
from regression-equation (4.1). The marginal effect of each factor is re-
ported for all 2×2 values taken by the other two factors. For example,
the top left table measures the effect of moving from diverse signals to
extreme signals, at each level of Colors (along the rows) and Experi-
ence (along the columns). All values are calculated from a regression
of the absolute deviation from the Bayesian report on indicators for
Extreme signals, Colors, and Experience, plus all interaction terms,
with standard errors clustered at the subject level. Standard errors
are in parenthesis.

(b): Observing colors improves reports, relative to the Bayesian benchmark,

only when signals are extreme and subjects are inexperienced. (Qualified sup-

port for Hypothesis 2.)

(c): Prior experience with the Colors treatment does not cause a statistically

significant improvement in reports in the NoColors treatment. (Fails to sup-

port Hypothesis 3.)

Result 1 documented the effects of extreme signals and observing colors on

the absolute error of subject reports, but is silent on whether errors are

generated by biased reports or are generated by unbiased variance in reports.

We define polarization towards the extremity as instances where the report

was lower than (Bayesian estimate− 1) when all signals were low, or the

report was higher than (Bayesian estimate + 1) when all signals were high.
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Conversely, we define polarization against the extremity as in the report was

higher than (Bayesian estimate + 1) when all signals were low, and lower

than (Bayesian estimate− 1) when all signals were high. We allow the ±1

tolerance band around the Bayesian estimate to allow for inconsistencies

between how the computer and subjects rounded fractions, and our results

are robust to alternative tolerance bands, for example, ±1.5 or ±2.

Misreporting towards the extremity is consistent with subjects employing the

generalized sample-average (αR∗
NC + (1− α)RSA

NC), and misreporting against

the extremity is consistent with the generalized Gambler’s fallacy

(αR∗
NC + (1− α)RGF

NC).

Under systematic misreporting towards the extremity, subjects would be

more likely to over-report under all-high signals. Similarly, subjects would be

more likely to under-report under all-low signals. In columns [1] and [2] of

Table 4, we report a multinomial probit regression of whether the subjects

under or over-reported, on whether the signals were all-high or all-low. We

find that extreme signals increase the probability of both under and over

reporting, implying noisier reports rather than systematic under/over

reporting, although the effect is stronger and significant for high signals

causing under reporting (and vice versa). Importantly, there is no significant

difference in the proportion of under (or over) reporting when signals are

all-high as compared to all-low. If extreme signals caused polarized reports,

we would expect the rate of under reporting to be substantially different, and

also to differ in sign, when facing all-high as compared to all-low signals.

In the Appendix we include an alternative analysis that focuses on the

magnitude, rather than the probability, of misreporting. The conclusions are

the same: there is no evidence of systemic polarization towards, or away

from, the extremity in our sample.

Result 2: In the baseline (non-color rounds), aggregate behavior is

inconsistent with systematic misreporting polarized towards the extremity.

(Fails to support Hypothesis 1.)
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1Underreport 1Overreport

[1] [2]

NC1,NC2 NC1,NC2

1Red 0.43 0.36

(.21) (.20)

1Blue 0.25 0.52

(.20) (.22)

Constant -0.06 -0.07

(0.16) (0.16)

N 1180 1180

Table 4. Multinomial probit regression of the probability of under-
reporting (column [1]), correctly reporting (base group, not shown),
and overreporting (column [2]) on indicator variables for observing all
Red signals or all Blue signals (with diverse signals as the base group).
Standard errors clustered at subject level are reported in parentheses.
There were 59 clusters.

4.2. Structural model. Figure 4.1 plots the histogram of deviations from the

Bayesian response across the four choice environments: Colors or No Colors

treatment crossed with Diverse or Extreme signals. In all four cases, we find

that the deviations are approximately unimodal and symmetrically distributed

with a substantial mode at the Bayesian response. As previously reported in

Table 3, Color rounds have a lower absolute deviation from Bayes reports, but

Figure 4.1 shows that the Colors rounds also show evidence of polarization

towards the extremity (or sample average behavior) under extreme signals:

the distribution of deviations under all-high signals line-up slightly to the left

of that of all-low signals.14 Despite the familiar shape of the distribution, the

deviations are not well-approximated by a normal distribution: any normal

distribution that fits the mode of the distribution substantially underestimates

the tail mass of the guess distribution, and any normal distribution that fits

the tails substantially undershoots the mode.

Instead, the data appears to be approximated by the convex combination

of two normal distributions, one with very small variance and one with large

variance. Such a convolution is not entirely arbitrary, and can be motivated

14This and the results in Table 4 reject Hypothesis 2: Contrary to the hypothesis, polariza-
tion is only present in the Colors rounds.
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from the psychology literature on Type 1 and Type 2 thinking processes. Re-

sponses that are tightly clustered around the Bayesian response are likely to

be the outcome of careful consideration (Type 2 deliberation) by people who

know how to calculate the exact Bayesian formula.15 Responses that are more

widely dispersed are likely to be the outcome of decisions made by people who

were unaware of the Bayesian formula or were unable to use it. Such responses

are often attributed to quick Type 1 thinking or heuristic-based decision mak-

ing.16 For illustrative purposes, for the Color rounds and diverse signals, we

plot the N(0, 2) and N(0, 7) distributions on top of the histogram. The plot

is suggestive that the histogram of subject decisions could be presented as a

mixture of those two distributions: N(0, 2) and N(0, 7).

Motivated by the observations above, we model subject reports with the

following simple modeling assumptions:

i) In treatment t ∈ {C,NC} and with signal-type s ∈ {e, d}, where e

stand for extreme and d for diverse, we assume that reports are approximately

Bayesian with probability ps,t. In this case, the report is generated from the

structural equation

Rs,t = Bayes+ ϵ (4.2)

where ϵ ∈ N(0, 2) is i.i.d noise irrespective of the treatment and signals. Note

that we have fixed the variance exogenously at 2 and this implies that, with

95% probability, the reports are within ±2
√
2 of the Bayes report. Reduc-

ing this exogenous variance, to say 1.5 or 1, does not substantively alter the

conclusion of the model. We fix the variance of the error term exogenously,

because the model is not identified otherwise. We allow ps,t to depend on the

15Relatively few of these responses correspond to the exact Bayesian response, for at least
two reasons. First, there appears to be a substantial number of subjects who calculate the
Bayesian update while assigning unobserved Blue signals a value of 25, and unobserved Red
signals a value of 75. The correct calculations would assign a value of 25.5 and 75.5 to Blue
and Red signals, respectively. Second, some subject responses appear to be rounded, and
some are reasoned approximations rather than calculations of the Bayesian update.
16Instead of calculating (or perhaps carefully approximating) the Bayesian update, such
Type 1 subjects might make a quick judgment (i.e. estimate the average of the three observed
signals, and then arbitrarily adjust up or down depending on the color of unobserved signals)
and move on.
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(b) Color rounds Extreme.
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(c) No Color rounds Diverse.
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(d) Color rounds Diverse.

Figure 4.1. Distribution of (Bayes Update-Guess) from all guesses
when all three observed signals were high or were low. Bin width =2.

treatment t and signal-type s to accommodate the variation in the frequency

of accurate reports across response conditions.

ii) With the complementary probability, 1− ps,t, reports are provided by a

heuristic decision pattern which is, potentially, biased. Bias could originate
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from over or under-weighting of the observed signals {s1, s2, s3} or from mis-

weighting the “base rate” of unobserved signals. In this case, the report is

generated from the structural equations

Rs, t=C = αs,C(s1 + s2 + s3) + βs,C (25.5× (#Blue) + 75.5× (#Red)) + ϵs,C

(4.3)

and

Rs, t=NC = αs,NC(s1 + s2 + s3) + βs,NC (50.5× 4) + ϵs,NC (4.4)

for the Color and No Color treatments, respectively, where #Blue and #Red

are the number of unobserved Blue and Red signals. Bayesian decision making,

with noise, corresponds to α = β = 1/7 ≃ .14 and lower or higher estimated

values indicate under or overweighting of either the observed, or unobserved,

signals, respectively. Finally, we assume that the noise in reporting is Gaussian

ϵs,t ∈ N (0, σs,t
2) with variance that can depend on the treatment and the

diversity or extremity of signals.

We estimate (ps,t, σs,t, αs,t, βs,t)t∈{C,NC},s∈{e,d} using Maximum Likelihood

Estimation over the observed reports from all the C and NC rounds, and

report the results in Table 5.

The estimates help us explicitly model the mental models used by subjects

in forming reports. They also clarify and explain our reduced-form results.

For example, consider the marginal effect of extreme signals. In Color rounds,

extreme signals don’t increase absolute deviations. As one explanation, note

that the proportion of observations that are consistent with the more accurate

Type 2 decision making is slightly, but not statistically significantly, higher

in the case of extreme signals than diverse signals (.27 vs .24). On the other

hand, the variance of the heuristic Type 1 decision making system is slightly,

but not statistically significantly, higher in the case of diverse signals (8.49 vs

7.41). These two small effects are essentially offsetting each other in aggregate.

Next, consider the No Colors rounds. In this case, the proportion of signals

that are consistent with the more accurate Type 2 system is substantially

larger (0.19 > 0.05, p-value .003) in the case of diverse signals. In addition,
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t = No Colors t = Colors

pe,t 0.05 0.27

(0.04) (0.04)

σe,t 8.33 8.41

Extreme (0.39) (0.45)

signals αe,t 0.13 0.17

(0.01) (0.01)

βe,t 0.15 0.12

(0.01) (0.01)

pd,t 0.19 0.24

(.03) (.03)

σd,t 7.12 7.49

Diverse (.21) (.23)

signals αd,t 0.15 0.16

(0.01) (0.01)

βd,t 0.14 0.13

(0.01) (0.01)

Table 5. Maximum likelihood estimate of the model parameters from
Equations 4.3 and 4.4.

the variance of the Type 1 heuristic system is larger (8.33 > 7.12, p-value

.007) in the case of extreme signals. These two effects reinforce each other,

and generate substantially worse reports in the case of extreme signals, thus

confirming the reduced form regression presented in Table 3.

Deviations from the Bayesian update are also explained by subjects marginally

over-weighting their signals in the Colors rounds: We estimate α coefficients of

.17 from extreme and .16 from diverse signal rounds, which are both marginally

higher than the benchmark value of .14 (the differences are statistically sig-

nificant at conventional levels). Similarly, the estimated β coefficients show

that they marginally underweight the base-rate information contained in the

unobserved signals. In contrast, in the No Colors rounds, these coefficients

are not significantly different from .14, indicating that there is no evidence for

over-weighting of signals in the NC rounds.

Result 3: Under both extreme and diverse signals, subjects update with unbi-

ased noise in the NC rounds. In C rounds, reports are slightly polarized under

extreme signals, but are less noisy than those from the NC rounds.
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4.3. Subject level bias. Could the lack of substantial polarization at the ag-

gregate level in the NC rounds be attributed to two different and opposite

subject-level biases canceling each other out in aggregate? To dig deeper, we

conduct a subject-level analysis. For each subject who faced extreme signals in

the No Colors rounds 3 or more times, we calculate how frequently they mis-

reported towards and against the extremity of their observed signals. To allow

for rounding errors, reports that are within ±1 of the true Bayesian report

are not accounted as a misreport.17 In Figure 4.2, we bubble-plot these frac-

tions of misreports that were towards or against the extremity, for these same

subjects. There are 9 (out of 5418) subjects who misreport in the direction of

the sample-average heuristic at least once but never misreport in the direction

of the Gambler’s fallacy, and 11 subjects who do the opposite. Thus, 9 and

11 subjects are, respectively, consistent with sample-average and Gambler’s

fallacy, and the remaining 34/54 (64%) subjects do not show a systematic po-

larization under extreme signals.19 The data overall is slightly biased towards

the lower right of the figure, suggesting that mistakes a la Gambler’s fallacy

were marginally more prevalent than Sample average rule. 10 subjects showed

no bias in either direction whatsoever.

When we recreate the same figure for the Colors rounds, the data shows

a distinct shift, which is consistent with the above result that αe,t > 0.14,

towards the top left of the figure. There are 11 (out of 54) subjects who

misreport in the direction of the sample-average heuristic at least once but

never misreport in the direction of the Gambler’s fallacy, and 8 subjects who

do the opposite. 10 subjects showed no bias in either direction whatsoever.

Result 4: We find little evidence of systemic polarization at the subject level.

17Our analysis is robust to using an alternative tolerance level of ±.5.
18There were 54 subjects who faced extreme signals in the No Colors rounds 3 or more times.
19Alternative classification procedures lead to similar conclusions. For example, we could
classify a subject as exhibiting the Gambler’s fallacy if 80% of their choices are polarized
in the direction of the fallacy (and similarly for the sample-average heuristic). In this case,
we would classify 8 subjects as exhibiting the Gambler’s fallacy, 6 subjects as exhibiting the
sample-average heuristic, and 40 subjects as being unpolarized.
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Figure 4.2. Proportion of choices, by subject, that are consistent
with either the gambler’s fallacy or the sample average bias for extreme
signals in the NC (left) and C (right) treatments. Restricted to subjects
who observed extreme signals at least three times. The size of each
bubble represents the number of subjects at each point.

4.4. Demand for signals. In the Active Choice and Average treatments, sig-

nals not only influence the precision of reports but also pay subjects directly:

subjects receive p1 and p2 for each signal that is of same or opposite polarity

to s1, respectively. In this subsection, we analyze whether subjects exhibit a

preference for diverse signals (or, perhaps, a preference for extreme signals) or

whether they prefer to only maximize the signal acquisition payoffs.

An unfortunate programming constraint, which was not noticed until after

the experiments were run, allows us to only observe the signals finally received

by the subjects and not the chosen or requested signals. The received signals

can differ from the requested signals when, for example, the subject requests

two Blue signals but only one Blue signal is available in {s2, s3, .., s7}. In the

rounds where {s2, s3, .., s7} contained at least two signals of either color, the

signals requested and received are guaranteed to be identical. We use only data

from these rounds for our following results on signal choice. Given subjects
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made their signal choice without knowing the composition of {s2, s3, ..s7}, con-
ditioning on the composition does not bias the analysis of the signal choice.20

For comparison, we repeat the analysis with the full data set, containing all

rounds, in Appendix A. The results are similar.

In Figure 4.3, we plot the proportion of extreme signal choices against ∆p,

the difference between the price of own signal and the price of the other sig-

nal. We do this separately for when subjects aggregate on their own (Active

Choice rounds) versus when they aggregate under sample-average rule (Aver-

age rounds), pooling similar price differences to simplify the figure.

When ∆p = 0, approximately 10% of signal choices are extreme as most

subjects prefer a diverse portfolio of signals. As the price-difference increases,

subjects become more likely to choose extreme signals. In the Active Choice

treatment, even at the highest price-difference group (∆p ∈ {14, 20}), approx-
imately 20% of decisions are in favor of diverse signals and this figure is higher

still in the Average treatment (approximately 35%).

Result 5: Subjects rarely choose extreme signals when ∆p = 0 . (Support for

Hypothesis 4.)

Next we ask if subjects were aware that diverse signals are more “valuable”

in the Average treatment, and if it was reflected in their demand for signals

(Hypothesis 5). Note that this hypothesis relies on the implicit assumption

that diverse signals are actually more valuable in the Avg treatment than in

the AC treatment: an assumption that is testable in our data. As we establish

in Appendix A.3,not only is the assumption supported on average, across the

subject population, we find that that it holds individually for all subjects.

As already seen in Figure 4.3, at every ∆p > 0, subjects are less likely to

choose extreme signals under Average than under Active Choice. Table 4.3

presents two regressions designed to study the determinants of extreme signal

choices.21 In column [1], which controls for ∆p and the treatment (Average or

Active Choice) we observe a negative coefficient on the dummy for Average.

20{s2, s3, ..s7} are drawn independently of s1, and hence s1 is uninformative about the other
6 signals.
21In the Appendix, we report the same regressions while including the Colors and Avg
rounds from the fifth treatment, increasing our data set further. We do not include this
treatment in the main text because, as discussed in the Appendix, there is evidence of

31



0
.1

.2
.3

.4
.5

.6
.7

.8
.9

Pr
op

or
tio

n 
of

 e
xt

re
m

e 
si

gn
al

 c
ho

ic
es

∆p∈{-6,-2} =0 ∈{2,4} ∈{6,8,10} ∈{14,20}
Pooled ∆p

95% CI for Active Choice
95% CI for Sample Avg
mean for Active Choice
mean for Sample Avg

Probit (Active choice + Avg)

Dependent variable
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Extreme, 0 otherwise

[1] [2]

∆p 0.10 0.10

(0.02) (0.02)

∆p×1SmplAvg -0.00 -0.01

(0.01) (0.02)

1SmplAvg -0.61 -0.92

(0.20) (0.28)

Dev -0.11

(0.03)

Dev×1SmplAvg 0.08

(0.04)

Constant -0.65 -0.19

(0.14) (0.19)

N 909 909

Figure 4.3. The left hand panel plots the proportion of extreme sig-
nal choices against ∆p, the difference between the price of an own
colored signal and an other colored signal, separately for when sub-
jects update on their own (Active Choice rounds) versus when they
update under sample-average rule (Average rounds) with 95% confi-
dence intervals. The right hand panel presents a probit regression of
extreme choice on ∆p, with a dummy variable for the Average rounds
with standard errors clustered at the subject level (30 subjects). In
regression [2], we additionally control for “Dev”, which is calculated at
the subject level as the average deviation from the Bayesian update
across the first 20 Active Choice rounds and restricted to rounds with
diverse signals. Both panels restrict the data to only include rounds
where there were at least two red signals and at least two blue signals
in {s2, s3, s4, s5, s6, s7}

In column [2] we add a control, Dev, which captures subject-level guess accu-

racy in the Active Choice rounds when the subject observed diverse signals.

substantial subject confusion in the novel part of the extra treatment. All our results are
robust to including the fifth treatment sessions.
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Thus, the higher the value of Dev, the worse was the quality of information

aggregation by the subject.22

From column [2] of Table 4.3 we conclude, given the negative coefficient on

Dev, that subjects who are worse at aggregating information are more likely to

select diverse signals in the AC treatment. To provide some context for the es-

timated value of −0.11, in the Active Choice treatment, at the sample average

∆(p) and average value of Dev, a one unit improvement in signal aggregation

ability leads to a 4 percentage point decrease in the likelihood of choosing

extreme signals. That is, subjects who are worse at aggregating exhibit some

self-awareness of this and respond by giving themselves an easier updating

problem. For the Avg treatment, the effect of Dev is −0.11 + 0.08 = 0.03 and

statistically insignificant, suggesting that the choice of signals is independent

of aggregating ability in the Avg treatment. This forms our final result, and

suggests that subjects are able to separate information acquisition from infor-

mation processing. The estimates of ∆(p) and Dev in Table 4.3 are also rather

precise, with standard errors of only 0.02 and 0.03, respectively.

Result 6: Subjects choose extreme signals less frequently (i) in the Average

treatment and (ii) when they are poor at aggregating information in the Active

Choice treatment. (Support for Hypothesis 5.)

Result 7: Signal choices in the Average treatment are independent of guess

accuracy in the Active Choice treatment.

Our results suggest, overall, that subjects were aware that extreme signals

might reduce the quality of reports, and they were therefore willing to pay

a cost to buy diverse signals. The results also suggest a mechanism that led

to this preference for diversity. In the AC rounds, subjects observed s1 by

default, and then chose to observe the realizations of two Blue signals, or two

Red signals, or one signal of each color. Let n be the number of signals chosen

that are of the same color as s1. Thus, n = 2 is the only choice that results in

extreme signals. When ∆p = 0, the two ways of forming diverse signals, n = 0

22If the Dev variable was calculated using all rounds, then there would be a potential
endogeneity problem: some subjects might choose diverse signals more often and if diverse
signals have lower deviations, that would systematically effect the total deviation across
all observations. We checked the robustness of column [2] by recalculating Dev using only
rounds with extreme signals, finding that the results are qualitatively unchanged.
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and n = 1 were equally affordable, and empirically resulted in approximately

similar precision in the Colors treatment when signals were randomly assigned.

In the Active Choice (AC) rounds, subjects chose the former in 84% of all

∆p = 0 rounds, and the latter in only 9% of all ∆p = 0 rounds. This feature

of the data hints that, perhaps, not all signal-combinations were perceived to

be equally valuable by subjects, and hints at their signal-choices being guided

by a diversity-seeking heuristic.

5. Conclusion

In this paper we study the value of and the demand for diverse information

sources in a simple decision environment where information-processing does

not require contingent reasoning. We find that most subjects are unable to

make perfect Bayesian updates but instead utilize heuristics that are remark-

ably resistant to making mistakes when receiving news with transparent bias.

Heuristics used for aggregation are not systematically polarized even when sig-

nals are extreme. We find little evidence for subjects following a naive sample-

average rule or committing the Gambler’s fallacy, or over/ under-weighting any

of the available information. Previous research (e.g. Enke, 2020) has identified

conditions under which information polarization can lead to ex-post polariza-

tion. Our results, conversely, demonstrate that when information polarization

is transparent, and motivated reasoning is not present, subjects are surpris-

ingly good at constructing a balanced portfolio of signals and then constructing

unpolarized estimates of the true state of the world.

Further, our results show that when it comes to instrumental information,

few fail to appreciate the value of diverse information sources. The resultant

demand for diverse information reacts “rationally” to the value and cost of

diverse information, increasing in the Avg rounds when extreme signals lead

to lower quality reports. Remarkably, subjects who perform poorly when ag-

gregating information appear to be cognizant of their limitations and exhibit

a stronger demand for diversified information in the AC rounds. Finally, when

we exogenously impose a naive sample-average aggregation rule the subject

level demand for diversified information sources is, rationally, not dependent

on subject level aggregation ability. Our results advocate for subsidizing and
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simplifying the acquisition of diverse news sources, for example through en-

suring greater transparency in media bias, so that individuals can choose the

right portfolio of information and make better choices.
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Appendix A. Appendix [For Online Publication Only]

A.1. Regression table of Equation 4.1.

Absolute deviation from Bayesian report

1Extreme 2.08

(0.51)

1Colors -1.06

(0.74)

1Extreme × 1Color -1.33

(0.78)

1Experienced -1.48

(0.77)

1Extreme × 1Experienced -0.37

(0.71)

1Color × 1Experienced 2.10

(1.47)

1Extreme × 1Colors × 1Experienced 0.16

(1.19)

Constant 4.87

(0.50)

N 2360

Table A.1. The effects of Extreme signals, the observability of Col-
ors, and subject experience, on the absolute deviation of subject re-
ports from the Bayesian report. The omitted category is observations
from the No Colors rounds 1-20 where subjects observed diverse sig-
nals. Standard errors clustered at subject level are reported in paren-
theses (59 clusters). Data includes all rounds of C1+NC2 and NC1+C2
sessions.

A.2. Magnitude of bias. In the main text, we evaluate polarization in reports

by evaluating the probability that a subject over or under reports as a function

of observing all high or all low signals. Here, we provide a robustness check

by examining the magnitude of polarization as a function of observing all

high or all low signal in Table A.2. The first column of Table A.2 presents a

restricted version of the regression contained in Table A.1, while the second

and third tables estimate the polarization of reports. The second column

38



uses only rounds where the sample average heuristic lies above the Bayesian

estimate, and the third column uses rounds where the sample average heuristic

lies below the Bayesian estimate. If reports are polarized, for either extreme

or diverse signal observations, then either the constant or the coefficient on

Extreme must be different from zero. As the Table shows, all coefficients in

both regressions are close to zero and not statistically significant, indicating

that there is no evidence of polarization in our sample. Note that the second

and third column use only data from the NC treatment, given that the sample

average heuristic is unnatural in the C treatment.

|deviation| deviation deviation

Sample
Full avg>Bayes avg<Bayes

C+NC NC only NC only
1Extreme 1.83 0.53 -0.78

(0.37) (1.00) (0.86)

1Colors -0.07

(0.30)

1Extreme × 1Colors -1.19

(0.48)

Constant 4.21 -0.24 0.06

(0.39) (0.46) (0.37)

N 2360 615 565

Table A.2. The first column regresses the absolute deviation of sub-
ject reports from the Bayesian benchmark on an indicator for Extreme
signals and a Color treatment indicator, using the full sample (all
rounds of C1+NC2 and NC1+C2 sessions). The second and third
columns regress the deviation of subject reports from the Bayesian
benchmark on an indicator for Extreme signals, using only data from
the NC treatment, using samples restricted to upwards and down-
wards polarized signals. Standard errors clustered at subject level are
reported in parentheses (59 clusters).

We also calculate, at the subject level, the average absolute deviation from

the Bayesian report and the naive sample-average report across each of the

Colors and No Colors rounds, and then plot this data in Figure A.1a. We

plot the average absolute distance from the Bayesian report on the x-axis, and

the distance from the sample-average report on the y-axis. Subjects who are

positioned above the 45-degree line are closer to the Bayesian average, and
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subjects below the 45-degree are closer to the sample-average report, with

distance from the 45-degree line giving an indication of the size of the advan-

tage of one rule over the other. It is immediately visually apparent that (i)

most subjects are above the 45-degree line and, therefore, on average, closer

to the Bayesian report than the sample-average report (ii) there is no strong

relationship between the observability of Colors and average deviations from

either rule. In fact, more than 60% of subjects were, on average, within 5

points of the Bayesian update for both treatments.

In figure A.1b we drill further down into the distinction between the C

and NC treatments. In this panel, we plot the subject-level average absolute

deviation from Bayes rule in the No Colors and Colors rounds on the x and

y axis, respectively. Here, subjects above the 45-degree line provide better

reports in the NC treatment, and subjects below the 45-degree line provide

better reports in the C treatment, relative to the Bayesian optimal report.

Reports are substantially closer to the Bayesian paradigm than to the naive

sample-average paradigm, for both the C and NC treatments.

A.3. Relative value of diverse signals across Active Choice and Average

treatments. In this subsection, we establish that, for every subject in our

sample, the improvement in guess accuracy from diverse signals, relative to

extreme signals, is larger in the Active Choice treatment than the Average

treatment. For each subject we calculate the average absolute difference of

their guesses from the true s̄ for all Active choice rounds, separately for diverse

and extreme signals, and interpret the difference between these two measures

as the loss from choosing extreme signals. In Figure A.2 we plot the CDF of

the subject specific losses from extreme signals. It is clear from the figure that,

while the aggregation rule used by the median subject experiences essentially

no gain from diversity, there is substantial heterogeneity across subjects. We

also calculate and plot the average loss from extreme signals in the Average

rounds (under the sample-average aggregation) as the vertical line at, approx-

imately, 8.4. Despite the heterogeneity, the gain from diverse signals in the

AC treatment is less than 8.4 units for all subjects.

Observation: Diverse signals improve reports (relative to s̄) in the Average

rounds more than they do in the Active Choice rounds.
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∆p∈{-6,-2} =0 ∈{2,4} ∈{6,8,10} ∈{14,20}

Pooled ∆p

95% CI for Active Choice 95% CI for Sample Avg
mean for Active Choice mean for Sample Avg

Probit (Active choice + Avg)

Dependent variable

1 if signal choice was

Extreme, 0 otherwise

[1] [2]

∆p 0.09 0.09

(0.01) (0.01)

∆p×1SmplAvg -0.01 -0.01

(0.01) (0.01)

1SmplAvg -0.45 -0.79

(0.16) (0.24)

Dev -0.08

(.03)

Dev×1SmplAvg 0.08

(0.04)

Constant -0.71 -0.32

(0.12) (0.17)

N 1200 1200

Figure A.3. Robustness check for the information selection results
from Figure 4.3, including data from all rounds.

A.4. Robustness of the information selection results. As described in the

main text, our data only allows us to observe the signals received by the

subjects (and not the signals requested by the subjects). In the main text

we restrict attention to a subset of rounds for which we know that requested

and received signals must be the same. Here, we provide a robustness test by

including data from all rounds. Figure A.3 is a robustness check on Figure 4.3.

A.5. The fifth treatment. In a fifth treatment, we gave subjects the opportu-

nity to construct an algorithm that would calculate the subject’s report of s̄ au-

tomatically given the signals and colors that the subject observed. Despite our

attempts to design an interface that would be intuitive and easy for subjects

to understand, the algorithms that subjects constructed demonstrated that

subjects did not understand the algorithm construction process sufficiently.

Sessions that contained the algorithm treatment consisted of 20 rounds of the

Colors treatment, followed by 10 rounds of the algorithm treatment, followed
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Absolute deviation from Bayesian report

1Extreme 2.08

(0.51)

1Color -0.53

(0.79)

1Extreme × 1Colors -1.49

(0.70)

1Experienced -1.48

(0.77)

1Extreme × 1Experienced -0.37

(0.71)

1Colors × 1Experienced 1.57

(1.43)

1Extreme × 1Colors × 1Experienced 0.32

(1.12)

Constant 4.87

(0.50)

N 2900

Table A.3. (Robustness check on Table A.1 when we add the Col-
ors rounds from the fifth treatment.) The effects of Extreme signals,
the observability of colors, and subject experience, on the absolute
deviation of subject reports from the Bayesian report. The omitted
category is observations from the No Colors rounds 1-20 where sub-
jects observed diverse signals. Standard errors clustered at subject
level, including subjects from the Algorithm sessions, are reported in
parentheses (86 clusters).

by 10 rounds of the Sample Average treatment. In the remainder of this sub-

section, we repeat some of the analysis from the main text with the inclusion

of data from Colors and Sample Average treatments in these sessions. The

results are similar to those presented in the main text.

Table A.3 is a robustness check on Table A.1, and Table A.4 is a robustness

check on the right hand panel of Figure 4.3.
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Probit (Active choice + Avg)

Dependent variable

1 if signal choice was

Extreme, 0 otherwise

[1] [2]

∆p 0.10 0.10

(0.02) (0.02)

∆p×1SmplAvg -0.00 -0.01

(0.01) (0.02)

1SmplAvg -0.55 -1.03

(0.17) (0.23)

Dev -0.12

(0.03)

Dev×1SmplAvg 0.13

(0.04)

Constant -0.65 -0.13

(0.14) (0.19)

N 1116 1116

Table A.4. (Robustness check on the right hand panel of Figure 4.3
when we add the AC rounds from the fifth treatment.) Probit regres-
sion of extreme choice on ∆p, with a dummy variable for the Average
rounds with standard errors clustered at the subject level, including
subjects from the Algorithm sessions (57 subjects). In regression [2],
we additionally control for “Dev”, which is calculated at the subject
level as the average deviation from the Bayes rule across the first 20
Active Choice rounds.
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A Instructions for the Colors and NoColors treatment

Immediately following this page are the Instructions for the Colors and NoColors treatment.
There were two types of sessions that contained these two treatments. In the C1NC2 sessions
the Colors treatment was followed by the NoColors treatment. In the NC1C2 sessions the
NoColors treatment was followed by the Colors treatment.

Text common to both treatments is shown in black. Text specific to the NC1N2 sessions
is shown in Red. Text specific to the C1NC2 sessions is shown in Blue. Figures 1 and 2 are
shown as displayed in the NC1C2 sessions. For the C1NC2 sessions the order of the figures
was reversed.
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Instructions

You are about to participate in an experiment in the economics of decision-making. If you
follow these instructions carefully and make considered decisions you can earn a considerable
amount of money, which will be paid to you in cash at the end of the experiment.

Your computer screen will display useful information. Remember that the information
on your computer screen is private. Please do not communicate with the other participants
at any point during the experiment. If you have any questions, or need assistance of any
kind, raise your hand and the experimenter will come and help you.

Please switch your phones off and place them away. The only materials you will need for
this experiment are the computer and the calculator in front of you. We will also provide
you with some paper if you wish to take notes.

In the experiment you will make many sets of decisions; each set of decisions will be called
a round. At the end of the experiment you will be paid for one, randomly selected, round.
Each round has an equal chance of being chosen as the round that you would be paid for, so,
you should treat each round with equal importance. As you proceed through the experiment
your potential earnings will be displayed in points. At the end of the experiment we will
convert points to dollars at an exchange rate of 1 point = $0.07. You will also be paid a
$5.00 show up fee in addition to any money you earn during the experiment.

The basic idea

In each round, you will be placed in a set of 7 players.1 Each of the seven of you will receive
a private signal, that will be a randomly drawn integer between 1 and 100. You will have to
guess the average of these seven numbers. In order to make this decision you will be able to
see the signals that two other those linked players received. Therefore, you will know three
of the seven signals in your set when you guess the average of those seven signals. In any
round, the more accurate your guess is the more points you can expect to earn.

Groups

Within your set of 7 players, you will be formed into two groups: a red group and a blue
group. If a player has a signal that lies between 1 and 50, then they will be placed in the
blue group. If a player has a signal between 51 and 100, then they will be placed in the red
group. Thus, a player with a high signal is in the red group, and a player with a low signal
is in the blue group.

Guessing the average signal

1Note that the other ‘players’ in Part 1 do not make any decisions that affect you. Because of this, and
in order to speed up the experiment, the players are computers.
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Figure 1: Screen shot of the guess page, first 20 rounds

For the first 20 rounds you will be able to see your own signal and color and the signals and
colors of two other players, as displayed in Figure 1.

For the first 20 rounds you will be able to see your own signal and color and the signals
and colors of two other players and the colors of all players, as displayed in Figure 1.

From round 21 to 40 you will be able to see your own signal and color and the signals
and colors of two other players and the colors of all players, as displayed in Figure 2.

From round 21 to 40 you will be able to see your own signal and color and the signals
and colors of two other players, as displayed in Figure 2.

For each round there is a large prize, worth 200 points, and a small prize, worth 50 points.
The more accurate your guess is, the higher are the chances of you winning the
large prize.

If your guess is exactly accurate then you will win the large prize with certainty. If your
guess is more than 162

3
points away from the true average you will earn the small prize. If
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Figure 2: Screen shot of the guess page, rounds 21 to 40

your guess is between 0 and 162
3

of the true average, the probability that you will win the
large prize is given by following formula:

1 − 6 ∗ error

100

where “error” is the difference between your guess and the true average. The probability
of winning the large prize is equivalently displayed in the graph below. Notice that improving
your guess accuracy by 1 unit increases your chances of winning the large prize (worth 200
points) by 6 percentage points, and improving your accuracy by 5 units increases your
chances of winning the large prize by 30 percentage points.

Payment

Determining which round will be paid

When you arrived, you were given a sealed envelope. DO NOT OPEN THE ENVELOPE
UNTIL YOU ARE INSTRUCTED TO. The envelope contains a randomly generated number
between 1 and 40, with each number having an equal chance of being in the envelope. The
number that is inside the envelope will determine which of the 40 rounds you will be paid
for.
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Calculating your payment

You will receive the points you earned from your linking choice in the appropriate round
plus either the large or small prize.

Your guess in the appropriate round will determine your probability of winning the large
prize. After you have completed all 40 rounds, a randomly generated number (uniformly
distributed between 0% and 100%) will appear on your screen. You will win the large prize
if your percentage chance of winning is larger than the randomly drawn number, otherwise
you will win the small prize. This procedure ensures that you will win the large prize with
the correct probability.

Survey

At the end of the experiment there will be a short demographics survey. Please fill this in
accurately. If you would prefer not to answer any of the questions you may do so, and there
will be no penalty for not filling it in.

Frequently Asked Questions

Q1. Is this some kind of psychology experiment with an agenda you haven’t told us?

Answer: No. It is an economics experiment. If we do anything deceptive, or don’t pay you
cash as described, then you can complain to the campus Human Subjects Committee
and we will be in serious trouble. These instructions are meant to clarify how you

6



earn money in the experiment, and our interest is in seeing how people make economic
decisions.

Q2. Do I have to enter integer (whole) numbers for my guesses?

Answer: No, you may use decimal places if you wish, but you cannot use fractions.

Q3. In part 2, does my guess of my counterpart’s linking choice affect the signals I see on
the next screen?

Answer: No, the signals you see on the next screen are exactly the same as what your
counterpart saw when making their original decision, and are only determined by your
counterpart’s linking choice.
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B Instructions for the Active Choice and Sample Av-

erage treatments

Immediately following this page are the Instructions for the Active Choice and Sample
Average treatments.

The instructions handed out to subjects at the beginning of the session are reproduced
in black text. After 20 rounds, subjects saw a short notification on their screens informing
them of a change in procedures. This notification is included in the following as red text
enclosed within brackets.
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Instructions

You are about to participate in an experiment in the economics of decision-making. If you
follow these instructions carefully and make considered decisions you can earn a considerable
amount of money, which will be paid to you in cash at the end of the experiment.

Your computer screen will display useful information. Remember that the information
on your computer screen is private. Please do not communicate with the other participants
at any point during the experiment. If you have any questions, or need assistance of any
kind, raise your hand and the experimenter will come and help you.

Please switch your phones off and place them away. The only materials you will need for
this experiment are the computer and the calculator in front of you. We will also provide
you with some paper if you wish to take notes.

In the experiment you will make many sets of decisions; each set of decisions will be called
a round. At the end of the experiment you will be paid for one, randomly selected, round.
Each round has an equal chance of being chosen as the round that you would be paid for, so,
you should treat each round with equal importance. As you proceed through the experiment
your potential earnings will be displayed in points. At the end of the experiment we will
convert points to dollars at an exchange rate of 1 point = $0.07. You will also be paid a
$5.00 show up fee in addition to any money you earn during the experiment.

The basic idea

In each round, you will be placed in a set of 7 players.2 Each of the seven of you will receive
a private signal, that will be a randomly drawn integer between 1 and 100. You will have to
guess the average of these seven numbers. In order to make this decision, you can choose to
be linked to up to two out of the six other players, and you will be able to see the signals
that those linked players received. Therefore, you will know three of the seven signals in
your set when you guess the average of those seven signals. In any round, the more accurate
your guess is the more points you can expect to earn.

Groups

Within your set of 7 players, you will be formed into two groups: a red group and a blue
group. If a player has a signal that lies between 1 and 50, then they will be placed in the
blue group. If a player has a signal between 51 and 100, then they will be placed in the red
group. Thus, a player with a high signal is in the red group, and a player with a low signal
is in the blue group.

2Note that the other ‘players’ do not make any decisions that affect you. Because of this, and in order to
speed up the experiment, the players are computers.
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Forming links

In each period, you shall form up to 2 links to other players. You may choose whether you
wish to form two links with players within the same color group as you (either red or blue),
one link with a red group player and one link with a blue group player, or two links with
players from the differing color group. You will earn points for each link you form, and the
number of points you earn may vary depending on whether you form the link with a player
from your own group or the other group. When you are making your decisions, the number
of points that you will earn from each choice will be clearly displayed on your screen, as in
the example below.

Figure 3: Screen shot of the link choice screen

If there are not enough players available for you to link with in a particular group (e.g.
you request to link with two players in the same group as you, but you are the only player in
your color group) then you will not be able to form those links. In this case, the computer
will automatically allocate you two links that are available. For example, in the sample
screen above if you elect to form two links with players from your own group, but there is
only one other player in your group, then you would form 1 link with each group.
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Figure 4: Screen shot of the guess page

Guessing the average signal

After you have formed the links, for a given round, you will be required to guess the average
signal value across all seven players.

For each round there is a large prize, worth 200 points, and a small prize, worth 50 points.
The more accurate your guess is, the higher are the chances of you winning the
large prize.

If your guess is exactly accurate then you will win the large prize with certainty. If your
guess is more than 162

3
points away from the true average you will earn the small prize. If

your guess is between 0 and 162
3

of the true average, the probability that you will win the
large prize is given by following formula:

1 − 6 ∗ error

100

where “error” is the difference between your guess and the true average. The probability
of winning the large prize is equivalently displayed in the graph below. Notice that improving
your guess accuracy by 1 unit increases your chances of winning the large prize (worth 200
points) by 6 percentage points, and improving your accuracy by 5 units increases your
chances of winning the large prize by 30 percentage points.
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Rounds

There will be 40 rounds in total. After 20 rounds, there will be a slight change in procedures
for rounds 21 through 40. Your computer screen will indicate when the change in procedure
will occur, and it will disclose what the change is.

[For the remaining rounds the computer will calculate your ”guess” automatically. Your
”guess” will be the average of the three signals that you observe.]

Payment

Determining which round will be paid

When you arrived, you were given a sealed envelope. DO NOT OPEN THE ENVELOPE
UNTIL YOU ARE INSTRUCTED TO. The envelope contains a randomly generated number
between 1 and 40, with each number having an equal chance of being in the envelope. The
number that is inside the envelope will determine which of the 40 rounds you will be paid
for.

Calculating your payment

You will receive the points you earned from your linking choice in the appropriate round
plus either the large or small prize.

Your guess in the appropriate round will determine your probability of winning the large
prize. After you have completed all 40 rounds, a randomly generated number (uniformly
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distributed between 0% and 100%) will appear on your screen. You will win the large prize
if your percentage chance of winning is larger than the randomly drawn number, otherwise
you will win the small prize. This procedure ensures that you will win the large prize with
the correct probability.

Survey

At the end of the experiment there will be a short demographics survey. Please fill this in
accurately. If you would prefer not to answer any of the questions you may do so, and there
will be no penalty for not filling it in.

Frequently Asked Questions

Q1. Is this some kind of psychology experiment with an agenda you haven’t told us?

Answer: No. It is an economics experiment. If we do anything deceptive, or don’t pay you
cash as described, then you can complain to the campus Human Subjects Committee
and we will be in serious trouble. These instructions are meant to clarify how you
earn money in the experiment, and our interest is in seeing how people make economic
decisions.

Q2. Do I have to enter integer (whole) numbers for my guesses?

Answer: No, you may use decimal places if you wish, but you cannot use fractions.
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