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Abstract In stochastic lot sizing subject to dynamic and random demand, the min-
imization of operational costs is not the only conceivable objective. Minimizing the
tardiness in customer demand satisfaction is no less important. Furthermore, the de-
cision maker is interested in production plan stability. Therefore, we consider those
three objectives simultaneously and propose a multi-objective model formulation and
decision-making framework of the stochastic capacitated lot sizing problem (MO-
SCLSP).

Demand is modeled via the Martingale Model of Forecast Evolution to allow
gradual adaptations of the demand forecasts due to sequential market observations.
We propose an interactive multi-objective optimization algorithm for solving the
MO-SCLSP, that systematically takes prior demand realization information into ac-
count. In multiple decision stages, periodic re-optimizations are carried out, allowing
to adjust the production plan to the actual demand realizations.

In each decision stage, methods from multi-objective optimization are applied to
derive a set of Pareto-optimal solutions. These Pareto-optimal solutions outline the
attainable objective space, thus supporting the decision maker in taking an informed
and economically profound position between prioritizing low operational costs, high
delivery reliability and low production plan nervousness.
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1 Motivation

Make-to-stock production environments are usually affected by random influ-
ences arising from uncertain customer demand. Deciding on production times
and lot sizes in uncertain production environments requires a systematic con-
sideration of this uncertainty. In the presence of demand uncertainty, it is not
reasonable (and, in practice, even impossible) to warrant on-time delivery for
all customer demands, as it is usually assumed in deterministic problem set-
tings. Safety stocks are produced, which, on the one hand, buffer against un-
expectedly high demands and therefore limit average tardiness in demand sat-
isfaction (implying high delivery reliability), but on the other hand, their pro-
duction and storage lead to increased operational costs. This causes a trade-off
between low operational costs and high delivery reliability.

A production plan determined based on uncertain information can turn
out to be deficient for a particular realization of random parameters, e.g., de-
mand. This can motivate adjustments of the production plans after demand
realization for a certain timespan. With production plan adjustments both the
operational costs (e.g. holding costs, in the case of low demand realizations)
and the tardiness (in the case of high demand) can be reduced. However, pro-
duction plan adjustments also induce system nervousness, which can prop-
agate to upstream process steps and induce the undesirable bullwhip-effect
(see e.g. Lee et al. (1997)).

Low costs

Low
tardiness

Low
planning-
nervousness

Adjustments in case
of high demand

Sa
fe

ty
sto

ck
s

A
djustm

ents in
case

of low
dem

and

low

high

are
carried out

are not
carried out

are
carried out

are not
carried out

Fig. 1: Triangle of tension of stochastic lot sizing

Figure 1 illustrates the conflicting relationships between the three objec-
tives of low operational costs, low tardiness in customer demand satisfaction
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and low system nervousness explained above. The precise connections be-
tween those objectives strongly depend on the parameters of the planning sit-
uation. Seeking a compromise between these conflicting objectives requires a
statement of preferences.

The literature discusses many single-objective special cases of this prob-
lem. Usually a decision maker is required to decide a priori on an aspired level
of delivery reliability (often expressed by relative service level formulations)
and an accepted level of system nervousness (often selected from the seminal
categorization scheme proposed by Bookbinder and Tan (1988)). Given this
specific set of preferences, the remaining objective function of minimizing the
operational costs is optimized.

Solving a single problem instance of a single-objective stochastic lot sizing
problem with set aspiration levels for two of the three objective functions
only reveals a single Pareto-optimal point of the attainable objective space.
There might exist different Pareto-optimal solutions with substantially better
values for some of the objective functions and only slightly poorer values for
the worsening objective functions. Particularly good compromise solutions
cannot be guaranteed by solving a single-objective lot sizing problem in which
the other objectives have been transformed into constraints.

In practice, defining an aspired delivery reliability level and deciding how
much nervousness to accept is difficult, to say the least. The economic con-
sequences of selecting a specific set of aspiration levels are hard to predict.
It takes a comprehensive overview of the objective space to take an informed
and economically profound decision on a favourable compromise solution. In
addition, the decision maker may not even be able to formally describe his or
her complete preference functions. However, a multi-objective approach re-
veals multiple Pareto-optimal solutions on the Pareto front. Thus, the precise
connections between the objective function metrics can be analysed and the
favourite Pareto-optimal production plan can be found. Preferences among
the objectives usually depend on the decision makers domain knowledge and
can usually not be externalized as mathematical functions. Only by comparing
different solutions is the decision maker able to reveal his or her preference
order and to identify his or her favored compromise solution.

To the best of the authors’ knowledge, there does not exist an approach that
systematically evinces the relationships among the three aforementioned ob-
jectives in the literature. This research hence provides a multi-objective gener-
alization with multiple decision stages of the stochastic capacitated lot-sizing
problem (MO-SCLSP), which treats the three conceptional objectives as co-
equal objective functions. In each decision stage, the proposed approach for
solving the MO-SCLSP takes the newly observed demand realization infor-
mation into account to derive a set of Pareto-optimal solutions for different
levels of system nervousness and different levels of delivery reliability. In an
interactive approach, Pareto-optimal solutions are generated by determining
the ideal-points (see Miettinen (1999)) and applying the augmented multidi-
mensional ε-constraint method (see Chankong and Haimes (1983), Haimes
et al. (1971) and Mavrotas (2009)).
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The decision maker iteratively analyses the subset of the objective space
outlined by the solutions determined so far and chooses which solutions to de-
termine next until he or she has enough information to select a final solution.
The contribution of the proposed methodology is threefold:

– It enables the decision maker to decide on an informed positioning be-
tween the conflicting objectives by giving a clear impression of the objec-
tive space.

– It ensures favourable solutions for each demand realization trajectory by
allowing for adaptations of the production plan to make use of the ob-
served demand realization information.

– It supports the decision maker in ascertaining his or her own preferences
between the conflicting objectives.

The remainder of this paper is structured as follows: Section 2 discusses
relevant literature. In Section 3, the problem setting is presented in detail and a
conceptional model formulation for the MO-SCLSP for arbitrary demand dis-
tribution and unspecific objective function metrics is introduced. Applications
for problems with discrete demand and with normally distributed demand are
presented as well. In Section 4, re-optimizations of the production plans in
multiple decision stages are discussed. Section 5 presents a multi-objective
optimization model with specific objective functions, which is solved in each
decision stage. An interactive approach to determine Pareto-optimal solutions
for this model over multiple decision stages is presented in Section 6. Numer-
ical studies are shown in Section 7. Section 8 concludes and outlines future
research topics.

2 Relevant literature

2.1 Handling multiple objectives in stochastic lot sizing

Dynamic lot-sizing problems have been studied under a broad variety of dif-
fering assumptions. One stream of research assumes deterministic demand.
Recent reviews on deterministic dynamic lot sizing can be found in Karimi
et al. (2003), Jans and Degraeve (2008), Robinson et al. (2009) and Buschkühl
et al. (2010).

With increasing interest, research on the stochastic counterpart of the dy-
namic lot sizing problem is carried out. A particular emphasis is put on models
with uncertain demand. Reviews of lot sizing subject to stochastic demand can
be found in Tempelmeier (2013), Winands et al. (2011) and Sox et al. (1999).

The literature on lot sizing considering multiple objectives is limited. Some
studies on deterministic lot sizing consider different additional objectives.
Azadnia et al. (2015) take environmental and social objectives into account,
Hajipour et al. (2015) add the objectives to level the production volume in dif-
ferent production periods and to produce as close to a just-in-time level as pos-
sible, and Mehdizadeh et al. (2016) seek compromise solutions between costs
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and required storage space. Multi-objective formulations are also found in
the literature on lot-sizing problems with integrated supplier selection: Rezaei
and Davoodi (2011) and Rezaei et al. (2016) aim at finding balanced solutions
leading to low costs, high product quality and high service levels.

Studies on stochastic lot sizing are limited to single-objective models, usu-
ally with a focus on optimizing operational costs. Tardiness is usually con-
trolled with different service level constraints, thus treating it as “satisficing”
objective rather than as optimizing objective (see Simon (1956)). Similarly, a
rigid decision on how much system nervousness to accept is assumed.

In an influential publication, Bookbinder and Tan (1988) introduce three
basic strategies to restrict system nervousness: static uncertainty, static-dynamic
uncertainty, and dynamic uncertainty. In the following, this concept is applied
to classify relevant publications.

According to the static uncertainty strategy, nervousness is fully elimi-
nated by freezing the production plans at the beginning of the planning hori-
zon, thus executing the frozen production plans irrespective of the realiza-
tions of uncertain demand. The static approach is applied by Tempelmeier
and Herpers (2011) to an uncapacitated stochastic lot sizing problem with
β -service-level constraints and solved with a solution procedure based on
a modified shortest-path problem. In Tempelmeier (2011a) the capacitated
counterpart of the stochastic lot sizing problem with β -service-level con-
straints is studied. Due to the increasing computational effort, he solves the
problem heuristically by a combination of column generation and the ABCβ -
heuristic established in Tempelmeier (2010). Recent publications discussing
static approaches include Helber et al. (2013) and Tempelmeier and Hilger
(2015), who apply piecewise linearization to solve the stochastic optimization
problem with δ - or β -service-level constraints, respectively. Moreover, rel-
evant extensions of the capacitated lot sizing problem are also transferred to
the stochastic counterpart applying the static uncertainty strategy. Li and Song
(2015) solve the multi-level capacitated lot sizing problem with stochastic de-
mand. Sequence-dependent changeovers, originally proposed for a determin-
istic setting by Gopalakrishnan et al. (1995), were studied by De Smet et al.
(2020) for a stochastic planning environment.

According to the static-dynamic uncertainty strategy, the decisions on the
production times and the order-up-to-levels are taken at the beginning of the
planning horizon as well. The actual lot sizes, however, are determined after
the respective demand realizations have been observed. This strategy is ap-
plied to an uncapacitated lot sizing problem by Tarim and Kingsman (2004).
While they consider α-service-level constraints, the research of Tempelmeier
(2007) widens the scope by also considering β -service-level constraints. Rossi
et al. (2015) developed a MIP modeling approach based on piecewise linear
approximation for stochastic lot sizing using the static-dynamic uncertainty
strategy. They study various service level constraints as well as backorder
penalty costs.

The dynamic uncertainty strategy allows for adaptations of both the pro-
duction times and the production quantities after the demand realizations have
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been observed. According to Bookbinder and Tan (1988), the dynamic uncer-
tainty strategy is usually not desired in practical applications, as it can cause
exceptional high costs if the setup cost rate is considerably higher than the
inventory cost rate. However, Tunc et al. (2013) present a simple approach
to assess the costs induced by nervousness by comparing optimal solutions
determined with the three different uncertainty strategies.

Other publications deal with different special cases that do not fit in the
classification scheme proposed by Bookbinder and Tan (1988). Meistering
and Stadtler (2017) propose the stabilized-cycle strategy. In contrast to static
approaches, it takes realizations of uncertain demand into account. Low tar-
diness is prioritized over low nervousness, thus allowing for production plan
adjustments only if an aspired service level cannot be met without adjust-
ments. Adjustments of the production plans just to reduce operational costs
are not allowed. Operational costs are thereby implicitly considered to be less
important than the nervousness or tardiness. They are optimized, given that
the aspired service level is satisfied. A focus on the trade-off between oper-
ational costs and quantity-oriented nervousness can be found in Koca et al.
(2018). Nervousness is penalized in the objective function, thus optimizing
a scalarized formulation of a bi-objective optimization problem considering
operational costs and penalty costs for quantity-oriented system nervousness.
Tavaghof-Gigloo and Minner (2021) compare models for stochastic lot siz-
ing with cyclic β -service level constraints with and without re-optimization
options with a sequential approach, where in a first step safety stocks are de-
termined and in a second step a deterministic model considering those safety
stocks is solved.

In the context of the publications discussed above, our main contribution
is a multi-objective approach for a stochastic capacitated lot-sizing problem
simultaneously considering the objectives of low operational costs, low tar-
diness in customer demand satisfaction, and low system nervousness, which
can be considered a generalization of the aforementioned special cases.

2.2 Adaptation of production plans to updated demand information

Adaptations of production plans to newly observed demand information are
studied in various fields of application. Bookbinder and H’ng (1986) and
Bookbinder and Tan (1988) study the single-product uncapacitated proba-
bilistic lot sizing problem with α-service-level constraints in a rolling horizon
approach. Oezer and Wei (2004) divide demand into an already observed and
an unobserved part and call this concept advance demand information. Albey
et al. (2015) apply the framework of the Martingale Model of Forecast Evolu-
tion (MMFE) proposed by Heath and Jackson (1994) to a production planning
problem in semiconductor manufacturing. The same framework is applied in
a context of stochastic dynamic programming for a single level, single item
production planning problem by Claisse et al. (2016). The influence of condi-
tional covariances in the MMFE is studied in Norouzi and Uzsoy (2014) with
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an application to inventory planning. Ziarnetzky et al. (2018) investigate the
multiplicative variant of the MMFE incorporated into production planning of
semiconductor wafers and show that forecast updates can lead to an increase
in terms of both profit and service level. In a subsequent publication, Ziar-
netzky et al. (2020) examine the nervousness of updated production plans. In
a study on chance-constrained programs for a production planning problem
with demand forecast evolution under rolling horizon planning, Albey et al.
(2016) emphasize that forecast evolution is particularly advantageous in pro-
duction systems with low capacity utilization. An application to lot sizing can
be found in Rehman et al. (2019), who apply the MMFE framework to an au-
toregressive process to model demand for a multi-level, multi-stage lot-sizing
problem. Forel and Grunow (2022) integrate the additive and multiplicative
MMFE into stochastic lot sizing with backlog costs and rolling horizons.

We contribute to this stream of the literature by combining the Martin-
gale Model of Forecast Evolution with multi-objective stochastic lot sizing
with multiple decision stages, systematically controlling tardiness and ner-
vousness. Based on updated demand forecasts, the production plans can be
adjusted if a solution with a favorable combination of objective function val-
ues is found.

3 Conceptional model for the multi-objective stochastic capacitated lot sizing
problem (MO-SCLSP)

3.1 Problem setting and the role of the decision maker

To keep the presentation as simple as possible and without loss of general-
ity, we consider a single level production process with a single production re-
source producing multiple products to satisfy dynamic and random customer
demand with arbitrary demand distribution function. Demand information is
revealed continuously, gradually reducing the uncertainty over time. The fi-
nal demand realization can be observed at the end of the respective period.
Costly setup activities have to be performed prior to production in any pe-
riod. The capacity available for production and setup activities is limited. It
can be extended by (costly) overcapacity, which is limited as well. Processed
products can be stored at a fixed holding cost rate. Due to the stochasticity of
demand, a limited amount of backorders and backlogs is accepted. We refer
to the backorders in a period as the quantity of unmet demand in this period,
while the backlogs constitute the cumulative backorders that have not caught
up yet (see Gade and Küçükyavuz (2013)). Over the long run, the average pro-
duction shall suffice to meet (at least) the average demand, thereby preventing
systematic underproduction.

The planning task is to decide on the production plan in terms of the pro-
duction times (setup pattern) and production quantities (lot sizes). Deciding
on a production plan also implies a decision on the consumed overcapacity.
The tentative production plan is revisited periodically, allowing for adapta-
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tions based on new demand information. The production plan should repre-
sent a compromise between low operational (setup and holding) costs1, low
tardiness in customer demand satisfaction, and a high level of long term pro-
duction predictability.

Multiple competing solutions are evaluated based on a vector of multiple
objective function values, rather than computing a single value of a common
objective function, and several Pareto-optimal solutions exist. A solution is
Pareto-optimal if one objective function value can only be improved at the
cost of another one. The set of Pareto-optimal solutions constitutes the Pareto
front. Selecting a solution from the Pareto front as the final solution reveals ad-
ditional (non-explicit) information about preferences between the objectives.
This selection is made by a decision maker, based on the objective space and
according to preferences between the objective functions. These preferences
depend on the decision makers domain knowledge and are assumed to be im-
plicit. This means, that a priori, the decision maker is not able to externalize
how to select a solution from a set of Pareto-optimal solutions. Only by in-
specting a set of Pareto-optimal solutions can he or she identify the preferred
final solution.

3.2 Conceptional optimization model for the MO-SCLSP

Respecting the problem setting described in the previous subsection, we now
present the conceptional model (1) - (13) for the multi-objective stochastic
capacitated lot sizing problem (MO-SCLSP) for arbitrary objective function
metrics and arbitrary demand distribution functions based on the notation de-
picted in Table 1.

1 In the following, we refer to the decision-relevant setup, holding and overtime costs as operational
costs.
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Table 1: Notation for the MO-SCLSP

Indices and index sets:
t ∈ T periods
k ∈ K products

Parameters:
bt capacity in period t
hck holding cost rate of product k
M big-M parameter
omax

t maximum overtime in period t
oc overtime cost rate
sck setup cost rate of product k
t pk processing time of product k
tsk setup time of product k
Qkt selected lot sizes from the previous decision stage
Xkt selected setup pattern from the previous decision stage

Random variables:
BLkt backlog of product k in period t
Dkt demand of product k due in period t
Ykt net inventory of product k in period t
YPkt physical inventory of product k in period t

Decision variables:
Ot ≥ 0 utilized overtime in period t
Qkt ≥ 0 production quantity (lot size) of product k in period t
Xkt ∈ {0,1} binary setup variable of product k in period t

Abstract functions:
fC abstract function for a cost metric
fT abstract function for a tardiness metric
fN abstract function for a nervousness metric

MO-SCLSP

min costs = fC (Xkt , YPkt , Ot ; t = 1, ...,T ;k = 1, ...,K) (1)
min tardiness = fT (BLkt ; t = 1, ...,T ;k = 1, ...,K) (2)

min nervousness = fN (Xkt −Xkt , Qkt −Qkt ; t = 1, ...,T ;k = 1, ...,K) (3)
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s.t.

Qkt ≤ M ·Xkt ∀ k, t (4)
K

∑
k=1

t pk ·Qkt + tsk ·Xkt ≤ bt +Ot ∀ t (5)

Ot ≤ Omax
t ∀ t (6)

Yk,t−1 +Qkt −Ykt = Dkt ∀ k, t (7)
YPkt = max(0,Ykt) ∀ k, t (8)
BLkt = max(0,−Ykt) ∀ k, t (9)

T

∑
t=1

Qkt ≥
T

∑
t=1

E[Dkt ] ∀ k (10)

Qkt ≥ 0 ∀ k, t (11)
Ot ≥ 0 ∀ t (12)
Xkt ∈ {0,1} ∀ k, t (13)

Equations (1) - (3) denote the different objective functions. In the gen-
eral conceptional model, abstract functions are given, as different metrics for
each objective can be evaluated for different fields of application. Specific op-
tions are discussed in Section 5. The first objective function (1) strives for the
minimization of a metric of the operational costs comprising setup costs, in-
ventory holding costs and costs for overcapacity. To comply with the aspired
target tardiness level, dynamic and implicit safety stocks are planned.2 Since
demand Dkt is uncertain, so is physical inventory YPkt . Hence, the inventory
holding costs and, therefore, the total operational costs are random variables.
Equation (2) specifies the objective to minimize tardiness in demand satis-
faction. The degree to which this objective is achieved can be measured by
a function of the backlogs BLkt , which are also random variables depending
on the demand. Finally, equation (3) models the minimization of system ner-
vousness. A function to assess system nervousness has to take into account
the deviations from the selected production plan from the last decision stage.
The deviations can be quantified in terms of the setup pattern (Xkt −Xkt) and
in terms of the production quantities (Qkt −Qkt).

Constraints (4) - (13) ensure feasible solutions in accordance with the
problem setting. Setup constraints (4) force setup operations for each product k
produced in period t.3 Capacity constraints (5) limit the capacity available for
setup operations and production. It can be extended by overcapacity, which

2 The production of safety stocks directly influences the expected backlogs (and therefore also the
expected tardiness). The model does not directly output safety stocks. However, they can be derived from
the production quantities. The safety stocks of a product k in a specific period t is the difference between
the cumulated production quantities and the cumulated expected demand for this product k up to period t
(see Helber et al. (2013), p. 83).

3 In the implementation of the MO-SCLSP, we replace this constraint by computationally more efficient
indicator constraints, which add the same mechanisms to the model formulation.



A framework for multi-objective stochastic lot sizing 11

is in turn limited by (6). The inventories for each product in each period are
computed with (7). Positive values of the net inventories Ykt are assigned to
physical inventories YPkt by (8), and negative values to backlogs BLkt by (9).
Constraints (10) preclude systematic underproduction. The domains of the
decision variables are defined by (11), (12) and (13).

This conceptual model is universally applicable for arbitrary demand dis-
tribution functions and objective function metrics. In the following subsec-
tion we present modelling techniques for discrete and normally distributed
demand. In Section 5, we develop a model formulation for minimizing the ex-
pected value of the operational costs, the expected mean tardiness and discrete
nervousness levels.

3.3 Determining expected inventories and backlogs for different demand
distribution functions

3.3.1 Impact of the demand distribution function

As demand is uncertain, also the physical inventories and backlogs depend-
ing on the uncertain demand are uncertain. Therefore, model formulations
for stochastic lot sizing with uncertain demand often take into account the
expected values for the physical inventories and the expected values for the
backlogs. These values depend on the underlying distribution function of the
demand. The conceptional model (1) - (13) is able to deal with arbitrary de-
mand distribution functions. In the following subsections we present examples
for discrete demand and for normally distributed demand. Applying sampling
approaches, arbitrary distribution functions can be represented by a discrete
distribution.

3.3.2 Stochastic lot sizing with discrete demand

Considering discrete scenarios is a common approach to model uncertain pa-
rameters in stochastic optimization models. Applications on stochastic lot siz-
ing with uncertain demand can be found, e.g., in Brandimarte (2006) and Hel-
ber et al. (2013). Uncertainty can be modeled by demand scenarios if demand
is inherently discrete. This can be the case if the demand of each customer
order is certain but the realization of the whole customer order is uncertain.
With sampling strategies, an arbitrary demand distribution can be represented
by discrete demand scenarios (see, e.g., Saliby (1990)). The representation is
more accurate as more scenarios are taken into account. Each demand sce-
nario represents a trajectory of demand realizations and all scenarios occur
with identical probabilities.

Helber et al. (2013) describe an application of a scenario approach on
stochastic lot sizing models. Applying the scenario approach, the stochastic
demand variable Dkt can be replaced by a set of deterministic demand parame-
ters ds

kt describing the demand for product k in period t in demand scenario s.
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The expected value of demand can then be approximated by the mean over
all demand scenarios (see Equation (14)) and the variance of demand with
Equation (15).

E[Dkt ] =
S

∑
s=1

ds
kt
|S|

(14)

VAR[Dkt ] =
S

∑
s=1

(ds
kt −E[Dkt ])

2

|S|
(15)

The inventory variables depend on the demand scenario and the expected
values for the physical inventories and backlogs can be approximated by the
mean values over all demand scenarios. With the notation in Table 2, con-
straints (16) - (18) can replace (7) - (9) in the MO-SCLSP.

Table 2: Additional notation for the scenario approximation

Indices and index sets:
s ∈ S scenarios

Parameters:
ds

kt demand of product k due in period t in demand scenario s
Decision variables:

BLs
kt backlog of product k in period t in demand scenario s

Y s
kt net inventory of product k in period t in demand scenario s

Y Ps
kt physical inventory of product k in period t in demand scenario s

Y s
k,t−1 +Qkt −Y s

kt = ds
kt ∀ k, t,s (16)

E[YPkt ] =
S

∑
s=1

max(0,Y s
kt)

|S|
∀ k, t (17)

E[BLkt ] =
S

∑
s=1

max(0,−Y s
kt)

|S|
∀ k, t (18)

3.3.3 Stochastic lot sizing with normally distributed demand

In the case of normally distributed demand, determining the expected val-
ues of physical inventories E[YPkt ] and backlogs E[BLkt ] requires to evaluate
the first order loss function (see Tempelmeier (2011b), p. 292). Helber et al.
(2013) (p. 84) show, that the SCLSP is non-linear in the case of normally dis-
tributed demand. Therefore, they propose a piecewise linearization approach
to approximate the expected values for physical inventories and backlogs.
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Supporting points are defined for linear segments l and for the cumulated pro-
duction cpktl at these supporting points, the corresponding physical invento-
ries eypktl and the corresponding expected backlogs eblktl are determined in a
preprocessing step. Between the supporting points, piecewise linear functions
of the expected physical inventories and the expected backlogs are assumed.
With the additional notation from Table 3, the expected values can be com-
puted with constraints (19) - (22) replacing the non-linear set of constraints
(7) - (9) in the conceptual version of the MO-SCLSP.

Table 3: Additional notation for the piecewise linearization

Indices and index sets:
l ∈ L linear segments

Parameters:
cpktl cumulated production of product k in period t

at the supporting point at the end of linear segment l
eypktl expected physical inventories of product k in period t

at the supporting point at the end of linear segment l
eblktl expected backlogs of product k in period t

at the supporting point at the end of linear segment l
Decision variables:
Wktl cumulated production quantities of product k in period t assigned to linear segment l

Qkt ≥
L

∑
l=1

Wktl −
L

∑
l=1

Wk,t−1,l ∀ k, t (19)

Wktl ≤ cpktl − cpkt,l−1 ∀ k, t, l (20)

E[YPkt ] = eypkt0 +
L

∑
l=1

eypktl − eypkt,l−1

cpktl − cpkt,l−1
·Wktl ∀ k, t (21)

E[BLkt ] = eblkt0 +
L

∑
l=1

eblktl − eblkt,l−1

cpktl − cpkt,l−1
·Wktl ∀ k, t (22)

Constraints (19) link the difference in the cumulated production quanti-
ties Wktl between two periods t and t − 1 with the production quantities in
period t, Qkt . Constraints (20) limit the production quantities that can be as-
signed to each linear segment l. Based on the parameters eypktl representing
the expected physical inventories at the supporting points, the expected physi-
cal inventories for the respective production quantities are determined by (21)
applying piecewise linear functions with the cumulated production quantities
Wktl as variable. Analogously, the expected backlogs are determined with (22).
Note that as we determine backlogs, and not backorders, we do not need to
add additional binary auxiliary variables assuring the correct assignment of
the production quantities to Wktl (see van Pelt and Fransoo (2017)).
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4 Solving the multi-objective stochastic lot sizing problem in multiple decision
stages

4.1 Adapting production plans in multiple decision stages

As time passes, more accurate demand information is revealed. On the one
hand, in the meantime the demand for some periods has been realized. Addi-
tionally, the demand realizations may indicate a changed customer behaviour
resulting in updated demand forecasts. Based on the evolved demand infor-
mation the tentative production plan might turn out to be inadequate and the
decision maker might want to make production plan adjustments.

Therefore, we propose solving the multi-objective stochastic lot sizing
problem in multiple decision stages, i.e., revisiting the production plan af-
ter some periods, taking newly observed demand realizations into account. In
each decision stage, only a subset of decisions is fixed, while other parts of
the production plan can be altered.

Decision
stage
in period
t1

Decision
stage
in period
t1+∆

Decision
stage
in period
t1+2∆

determi-
nistic
para-

meters

forecast
demand
Initial

(Xkt / Qkt )
solution
selected

(Xkt / Qkt )
solution
selected

. . . . . . . . .

...

adaptations

demand
forecast

adaptations

demand
forecast

∆ periods ∆ periods

Fig. 2: Solving the MO-SCLSP in multiple decision stages

Figure 2 illustrates the process of solving the problem in multiple deci-
sion stages. It is modeled as a series of multi-objective problems, one for each
decision stage. For each multi-objective problem, several Pareto-optimal so-
lutions are determined from which one is selected by the decision maker. The
corresponding production plan is executed until the next decision stage. The
production plan also determines parameters of the problem for the subsequent
decision stage. In the next decision stage after ∆ periods, more accurate in-
formation on demand is available, and production plans can be adapted to this
new demand information. In a similiar manner, the effect of uncertain produc-
tion capacities or yield outcomes could be considered.
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The following subsection explains how demand forecasts can evolve to
make use of this additional demand information.

4.2 Demand forecast evolution in stochastic lot sizing with multiple decision stages

Demand is modeled as an independent random variable with neither cross-
correlation between different products nor autocorrelation between different
demand periods for the same product. Demand information is revealed gradu-
ally over the course of multiple periods, continuously reducing uncertainty as
time advances. These demand forecast updates can be modeled in the frame-
work of the additive Martingale Model of Forecast Evolution (MMFE) (see
Heath and Jackson (1994)). Uncertainty is modeled by random adjustment
steps of the expected values over the course of multiple periods. Starting with
an initial forecast d̂kt of the demand for product k in period t, forecasts are
updated over the course of θ periods. Thus, the first observation is made in
period τ = t −θ +1. The adjustment of the forecast of the demand for prod-
uct k in period t made in period τ is modeled by the random step ψψψτ

kt with
expected value E[ψψψτ

kt ] = 0 and variance VAR[ψψψτ
kt ]. Figure 3 exemplarily illus-

trates the demand forecast evolution.
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0
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Demand forecast E[Dτ
kt ]

95% confidence range

Fig. 3: Demand forecast adjustments over the course of 5 periods

In this example, the initial forecast for the demand in period 14 for a
specific product is assumed to be d̂k,14 = 100. Additional demand informa-
tion is observed over the course of θ = 5 periods, beginning with period
τ = t14−4 = t10. In each period, the demand forecast is adjusted by a ran-
dom step ψψψτ

kt to account for the newly observed demand information. These
steps of demand forecast evolution are modeled as random variables with ex-
pected values of E[ψψψτ

kt ] = 0 and a variance of VAR[ψψψτ
kt ] = 180, t −θ < τ ≤ t.

Therefore, the closer to the respective demand period they are, the more pre-
cise are the forecasts for the demand based on the information in period τ ,
Dτ

kt . As time advances, expected value E[Dτ
kt ] approaches the actual demand
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realization dkt . Total variance VAR[Dτ
kt ] = ∑

t
τ=t−θ+1 VAR[ψψψτ

kt ] reduces over
time, as the steps from fewer periods contribute to the uncertainty.

The random variables describing the forecasts of demand for product k in
period t over the course of the forecast periods τ follow an AR(1) process,
also known as a random walk (see Spitzer (1976)). The distribution of each
step ψψψτ

kt depends on the distribution of the total demand Dkt . In the case of
discrete demand distributions, the steps ψψψτ

kt are discretely distributed as well.
Analogously, the steps are normally distributed if the total demand is normally
distributed.

Demand forecasts Dkt can be expressed as the sum of initial forecast d̂kt
and random steps ψψψτ

kt , as shown in Equation (23).

Dkt = d̂kt +
t

∑
τ=t−θ+1

ψψψ
τ
kt (23)

As the expected values of all steps ψψψτ
kt are E[ψψψτ

kt ] = 0, the expected value
E[Dkt ] equals d̂kt , as shown in Equation (24). The variance VAR[Dkt ] can be
computed following Equation (25).

E[Dkt ] = d̂kt +
t

∑
τ=t−θ+1

E[ψψψτ
kt ] = d̂kt (24)

VAR[Dkt ] =
t

∑
τ=t−θ+1

VAR[ψψψτ
kt ] (25)

Assuming the final demand realizations are revealed at the end of the re-
spective period, in a decision stage in period p the demand realization for all
periods t < p are already known. Furthermore, based on the increased market
observations, the demand forecast can be adjusted. In the current period p, the
realizations ψ

τ
kt for the steps in periods τ < p are already known. Based on

this information, the forecasts can be updated. The current demand forecast in
period p is denoted by Dp

kt . Equation (26) shows that expected value E[Dp
kt ] is

shifted by the already realized steps ψ
τ
kt , and Equation (27) shows how vari-

ance VAR[Dp
kt ] reduces as the number of steps contributing to the uncertainty

reduces.

E[Dp
kt ] = d̂kt +

p−1

∑
τ=t−θ+1

ψ
τ
kt︸ ︷︷ ︸

observed part

+
t

∑
τ=p

E[ψψψτ
kt ]︸ ︷︷ ︸

unknown part

= d̂kt +
p−1

∑
τ=t−θ+1

ψ
τ
kt (26)

VAR[Dp
kt ] =

t

∑
τ=p

VAR[ψψψτ
kt ] (27)

Modeling demand forecast updates allows for utilizing the already ob-
served realization information for updates of the production plans and for



A framework for multi-objective stochastic lot sizing 17

making the final decision under a lower level of uncertainty. This reduces the
need for safety stocks. As a result, the production plans are better adapted to
the actual demand situation. The proposed modeling approach is quite flex-
ible. The number of periods in which forecast adjustments are made can be
chosen according to the requirements of a specific application based on the
nature of the demand realization process.

5 A model formulation for re-optimizing the production plan in multiple
decision stages

5.1 Modeling tardiness by computing the disaggregated mean expected tardiness

High delivery reliability is achieved by satisfying customer demand as close
to the demand period as possible, thus limiting backlogs and ensuring low
tardiness. Although the minimization of total backlogs would lead to minimal
tardiness, often, relative service level formulations are evaluated, which allow
for an interpretation of the results (see for example Gruson et al. (2018) for an
overview). To avoid the disadvantages of those service level formulations, as
pointed out in, for example, Tempelmeier (2011b), in this research, the mean
expected tardiness is determined instead, as this criterion portrays a clear and
comparable interpretation of the results. The mean expected tardiness E[MT ]
equals the mean expected waiting time of demand to be satisfied. Assuming
that long-run production meets long-run demand, the mean expected demand
has to equal the mean throughput of the production system. Applying Little’s
Law (see Little (1961)) the mean tardiness can then be determined as the
quotient of the total expected backlogs and the total expected demand. With
the additional notation in Table 4, Equation (28) defines the mean expected
tardiness for a given product k.4

Table 4: Additional notation for calculating mean expected tardiness

Random variables:
MTk product-specific mean tardiness of demand satisfaction

Decision variables:
MT agg aggregated mean tardiness of demand satisfaction
MT dis disaggregated mean tardiness of demand satisfaction

Parameters:
ζ period lenght

E[MTk] =
∑

T
τ=1 E[BLkτ ]

∑
T
τ=1 E[Dkτ ]

·ζ (28)

4 Section 3.3 provides examples of determining E[BLkτ ] for different demand distribution functions
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In multi-product problem instances, either the aggregated mean tardiness
MT agg or the disaggregated mean tardiness MT dis can be taken into account.
In an aggregated formulation, the mean tardiness is averaged over all consid-
ered products (see Sereshti et al. (2020)). This allows for the compensation
of a particularly bad mean tardiness of a specific product with a particularly
good mean tardiness of another product. In a disaggregated formulation, in
contrast, the goal to reach an aspired mean tardiness is formulated for each
product individually.

MT dis ≥ E[MTk] ∀ k (29)

To implement the disaggregated mean tardiness MT dis, it is necessary to
determine the product-specific expected value of the mean tardiness E[MTk]
with Constraints (28) as a first step. Constraints (29) couple MT dis with the
largest product-specific expected value of mean tardiness E[MTk], thus allow-
ing for the direct minimization of MT dis.

5.2 Modeling system nervousness via discrete nervousness levels

Nervousness occurs when an already decided production plan is altered after
demand realizations have been observed. Nervousness can stem from adjust-
ments of the setup pattern or the lot sizes (see Tunc et al. (2013)). Particularly
in supply chains, those adjustments should be limited to avoid the propagation
of nervousness to upstream production resources.

While operational costs and mean tardiness can be measured, interpreted
and compared on a ratio scale (see Stevens (1946)), nervousness caused by
different adjustments of the production plans is more difficult to assess. Mea-
suring system nervousness on a ratio scale would require the definition of
weights to assess the significance of nervousness caused by different adjust-
ments of the production plans to calculate some kind of nervousness met-
ric. This would allow for flexible adjustments, but defining those weights can
hardly be done in practice.

Therefore, we propose the modeling of different discrete nervousness lev-
els n on an ordinal scale. These nervousness levels define characteristics de-
scribing to which extend the production plan can be adjusted and therefore
represent both the accepted nervousness and the production plan flexibility.
The nervousness level may restrict the following criteria:

– frozen horizon for the setup pattern fixation
– frozen horizon for the lot size fixation
– maximum allowed relative/absolute adjustment of planned lot sizes
– maximum allowed additional/cancelled/shifted setups per product
– maximum postponement/preponement of a scheduled setup activity
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Which criteria the nervousness level restrict should be decided based on
the specific field of application and on the economic consequences of the re-
spective criteria. For this study we assume that the nervousness levels deter-
mine the frozen horizons for both the setup pattern fixation and the lot size
fixation. These nervousness levels are chosen in such a way, that the lower the
nervousness level is, the higher is the number of periods for which the deci-
sions regarding the production plan are preserved. With the notation presented
in Table 5, this kind of nervousness levels can be integrated in a linear model
formulation with Constraints (30) - (34), forcing production plan fixations de-
pending on the chosen nervousness level N∗.

Table 5: Additional notation for modeling discrete nervousness levels

Indices and index sets:
n ∈ N Discrete nervousness levels
p ∈ T Current period in respective decision stage
∆ Re-optimization interval

Parameters:
h

f ixQ
n frozen horizon for the lot size fixation

in nervousness level n
h f ixX

n frozen horizon for the setup pattern fixation
in nervousness level n

Decision variables:
N∗ ∈ N0 Chosen nervousness level
Vn ∈ {0,1} Binary auxiliary variable: 1 if N∗ ≥ n

Xkt ≤ Xkt +Vn ∀ k,n, t < p−∆ +h f ixX
n (30)

Xkt ≥ Xkt −Vn ∀ k,n, t < p−∆ +h f ixX
n (31)

Qkt ≤ Qkt +Vn ·M ∀ k,n, t < p−∆ +h f ixQ
n (32)

Qkt ≥ Qkt −Vn ·M ∀ k,n, t < p−∆ +h f ixQ
n (33)

N∗ =
N

∑
n=1

Vn (34)

The fixation of the setup pattern is implemented with Constraints (30) and
(31). The production times are fixed according to the corresponding nervous-
ness level n for h f ixX

n periods on the values from the selected production plan
from the last decision stage Xkt . In a decision stage at the beginning of period
p, the previous decision was made in period p−∆ . Thus, the frozen horizon
begins with period p−∆ and ends with p−∆ + h f ixX

n − 1. If the setup deci-
sion Xkt deviates from the decision from the last decision stage Xkt in a period
controlled by nervousness level n, then the auxiliary variable Vn has to be 1 to
obtain a feasible solution.
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Analogously, Constraints (32) and (33) fix the production quantities Qkt

for h f ixQ
n periods on the values from the selected production plan from the

previous decision stage Qkt , unless auxiliary variable Vn is set to 1. Provided
that Vn is set to 1, Constraints (32) and (33) do not restrict possible values of
Qkt due to the multiplication of Vn with a sufficiently large number M. Finally,
Constraint (34) determines the chosen nervousness level N∗ as the sum of the
auxiliary variables Vn.

n = 0

n = 1

n = 2

n = 3

n = 4

t3
p−∆

t4 t5
p

t6 t7 t8 t9 t10 t11 t12 t13 t14

V0 = 1

V1 = 1

V2 = 1

V3 = 0

V4 = 0 X̄k,8 ̸= Xk,8

N∗ = ∑
N
n=0 Vn = 3

Fig. 4: Example of how the selected nervousness level N∗ is computed with Con-
straints (30) - (34)

Figure 4 illustrates the principle of Constraint (34). For the sake of sim-
plicity the presented example is limited to adjustments of the setup pattern. In
this example, in the decision stage at the beginning of period 5 an additional
setup in period 8 shall be added. In the figure, gray bars depict the fixation
of the setup pattern starting in period p−∆ = 3 for different nervousness
levels n. The grey bars show that nervousness levels 0, 1 and 2 force fixa-
tions in this period. Therefore, the corresponding auxiliary variables Vn have
to be set to 1. However, nervousness levels 3 and 4 allow for adjustments in
this period. Thus, for those nervousness levels, V3 = V4 = 0 is feasible. The
chosen nervousness level can be determined according to Constraint (34) as
N∗ = ∑

N
n=0Vn = 3. Thus, nervousness level 3 corresponds to this adjustments.

Special cases of the proposed nervousness levels include the well-known
uncertainty strategies proposed by Bookbinder and Tan (1988). By fixing both
the setup pattern and the production quantities for the whole planning horizon
(h f ixQ = h f ixX = T ) after the first decision stage, the static uncertainty strat-
egy can be depicted. Fixing the setup pattern for the whole planning horizon
(h f ixX = T ) but the production quantities only until the next decision stage
(h f ixQ = ∆ ) represents the static-dynamic uncertainty strategy. Finally, the dy-
namic uncertainty strategy can be rebuild by fixing all decision variables only
until the next decision stage (h f ixQ = h f ixX = ∆ ). Therefore, the proposed dis-
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crete nervousness levels can be understood as a generalization of the classifi-
cation proposed by Bookbinder and Tan (1988).

5.3 Model formulation for re-optimizing production plans in a specific decision
stage

Based on the modeling concepts presented in the previous subsections, we
now present the model formulation for the re-optimization of the production
plan in a specific decision stage. Tardiness is modeled by the disaggregated
mean expected tardiness and nervousness levels by discrete nervousness lev-
els. We therefore refer to this model as MO-SCLSPstage

MT,N∗ . The setup pattern
and the production quantities are fixed according to the selected nervousness
level. Beginning with the current period p, the look-ahead in each optimiza-
tion stage is limited to the next hlook periods, as the cumulated uncertainty for
later periods is still high and decisions for those periods are not yet necessary.
Limiting the number of periods to hlook therefore reduces the problem size
and therefore the computational effort. Figure 5 illustrates the sub-horizons in
each decision stage.

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16

re-optimization
interval
(∆ = 3 periods)

look-ahead
(hlook = 8 periods)

fixed production quantities
(h f ixQ = 4 periods)

fixed setup pattern
(h f ixX = 8 periods)

beginning of
current
period
(p = t7)

past periods

considered in optimization

not yet considered

Fig. 5: Dividing the planning horizon in subhorizons

MO-SCLSPstage
MT,N∗

min {E[COST ], MT dis, N∗} (35)

s.t.

E[COST ] =
K

∑
k=1

p+hlook−1

∑
t=1

[
sck ·Xkt +hck ·E[YPkt ]

]
+

p+hlook−1

∑
t=1

oc ·Ot (36)
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E[MTk] =
∑

p+hlook−1
t=1 E[BLkt ]

∑
p+hlook−1
t=1 E[Dkt ]

·ζ ∀ k (37)

MT dis ≥ E[MTk] ∀ k (38)

N∗ =
N

∑
n=1

Vn (39)

Qkt ≤ M ·Xkt ∀ k, t < p+hlook (40)
K

∑
k=1

[
t pk ·Qkt + tsk ·Xkt

]
≤ bt +Ot ∀ t < p+hlook (41)

Ot ≤ omax
t ∀ t < p+hlook (42)

p+hlook−1

∑
t=1

Qkt ≥
p+hlook−1

∑
t=1

E[Dkt ] ∀ k (43)

Yk,t−1 +Qkt −Ykt = Dkt ∀ k, t (44)
YPkt = max(0,Ykt) ∀ k, t (45)
BLkt = max(0,−Ykt) ∀ k, t (46)

Xkt ≤ Xkt +Vn ∀ k,n, t < p−∆ +h f ixX
n (47)

Xkt ≥ Xkt −Vn ∀ k,n, t < p−∆ +h f ixX
n (48)

Qkt ≤ Qkt +Vn ·M ∀ k,n, t < p−∆ +h f ixQ
n (49)

Qkt ≥ Qkt −Vn ·M ∀ k,n, t < p−∆ +h f ixQ
n (50)

Qkt ,Wktl,Ot ≥ 0 ∀ k, t < p+hlook, l (51)

Xkt ∈ {0;1} ∀ k, t < p+hlook (52)

The multi-criteria objective function (35) aims at minimizing the expected
operational costs, the disaggregate mean tardiness and the discrete nervous-
ness level. The expected operational costs, comprising holding costs, setup
costs and overcapacity costs, are determined in (36) while limiting the look-
ahead to periods t < p+hlook. The determined value incorporates already re-
alized costs for periods t < p and expected costs for periods p ≤ t < p+hlook.
The product-specific expected mean tardiness is derived in (37) from the ex-
pected backlogs and the expected demand. Constraints (38) couple the highest
product-specific expected mean tardiness with the disaggregate mean tardi-
ness MT dis to prevent balancing effects between different products. Finally,
(39) determines the discrete nervousness level N∗ as the sum of the auxiliary
variables Vn.

Constraints (40) - (43) ensure feasible solutions with respect to the prob-
lem setting described in Subsection 3.1. Setup operations are forced for each
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product k produced in period t with positive production Qkt via constraint (40).
The production capacity available for production and setup activities is lim-
ited by capacity constraint (41). Overcapacity is limited by (42). Constraints
(43) prevent systematic underproduction. Net inventories are calculated with
(44) and assigned to the corresponding variables for the physical inventories
and backlogs by (45) and (46), respectively.

Finally, Constraints (47) - (50) control the accepted system nervousness
depending on the accepted nervousness level N∗, as presented in Subsection
5.2. The constraints ensure production plan stability in compliance with the
nervousness levels n ≥ N∗.

The presented model is linear and has tangible objective functions. In the
following section, an interactive approach for deriving Pareto-optimal solu-
tion vectors for the multi-objective problem is proposed.

6 An interactive framework for determining Pareto-optimal solutions for a
specific decision stage of the MO-SCLSP

6.1 Advantages of an interactive approach for multi-objective lot-sizing

The multi-objective optimization problems in each decision stage are solved
with an interactive approach (see Luque et al. (2011)): The decision maker in-
teractively specifies areas of the objective space that he or she wants to explore
and decides how new Pareto-optimal solutions shall be determined. With each
additional computed set of solutions, the boundaries of the objective space be-
come clearer. The decision maker makes use of this information to iteratively
refine his or her search for Pareto-optimal solutions until he or she is even-
tually able to select a final solution. Compared to defining aspiration levels
a priori, the proposed interactive approach has three major advantages:

– The Pareto front gives a clear outline of the objective space. Thus, the de-
cision maker recognizes which combinations of objective function values
are attainable.

– The Pareto front describes details of the conflicting relationships between
the objective functions, giving a clear understanding of the consequences
of claiming a certain aspiration level.

– The interactive approach allows to quickly find the area of the objective
space in which the decision maker is interested, thus concentrating the
computational effort on the relevant area.

In the proposed interactive approach, the determination of Pareto-optimal
ideal-points is combined with the determination of further Pareto-optimal so-
lutions with the augmented ε-constraint method and controlled by the deci-
sion maker according to his or her preferences. Figure 6 gives an overview
of the proposed interactive approach for multi-objective lot sizing in multiple
decision stages.
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Beginning of current de-
cision stage in period p

Observe demand realizations

Evolve demand forecasts

Determine Pareto-
optimal ideal-points

Configure ε-constraint-method

Determine Pareto-
optimal solutions with
ε-constraint method

Present solutions

Does decison maker want to de-
termine additional solutions?

Select solution

Execute production plan until next
decision stage, set p = p + ∆

no

yes

Fig. 6: An interactive approach for selecting a Pareto-optimal solution in a specific
decision stage of the MO-SCLSP

In each decision stage, at the beginning of the respective period p new
demand information is observed. Based on this new information the demand
forecasts are updated. Then, bounds of the Pareto-optimal space are deter-
mined by determining Pareto-optimal ideal-points (see Subsection 6.2). Based
on the ideal-points the decision maker can configure the ε-constraint-method
to determine further Pareto-optimal solutions based on his or her preferences
(see Subsection 6.3). The determined objective vectors, constituting an outline
of the Pareto front, are presented to the decision maker. With this impression
of the objective space and the dependencies between the objectives, the deci-
sion maker can refine the search for Pareto-optimal solutions. This process is
applied iteratively until the decision maker decides to select a final solution.
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6.2 Determining Pareto-optimal ideal-points

The idea behind determining ideal-points is to find lower bounds of the ob-
jective space and upper bounds for the objective function values of potential
Pareto-optimal solutions. Figure 7 illustrates the following explanations.

Cost

MT

Costnadir
nasp

MT nadir
naspMT ideal

nasp

Cost ideal
nasp

space of infeasible solutions

space of potentially Pareto-optimal solutions

space of feasible but not Pareto-optimal solutions

Fig. 7: ideal-points framing the bounds of the objective function values of Pareto-
optimal solutions

In general, an ideal objective function value Zideal is defined as the optimal
value of an objective function Z of a single-objective counterpart of a multi-
objective problem, neglecting all other objective functions except for Z (see
Miettinen (1999)). Therefore, no solution can exist with any value for Z better
than Zideal , and the corresponding area of the objective space does not contain
feasible solutions.

The optimal objective function value for an objective function Y of a bi-
objective problem that can be obtained under the condition that the other ob-
jective function Z attains its ideal value Zideal is called nadir value Y nadir (see
Deb (2001)). Thus, any solution containing a value of Y worse than Y nadir can
not be Pareto-optimal, as Y can be improved without any deterioration of the
other objective function values.
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In multi-objective stochastic lot sizing, keeping the current production
plan from the previous stage of sequential decision-making is always feasi-
ble (this solution might incur particularly bad values for the operational costs
and the mean tardiness, though). Thus, a feasible solution without nervous-
ness can always be found, and the ideal nervousness level is always nideal = 0.
Therefore, we rather compute the ideal-points for bi-objective cross-sections
of the objective space with defined aspired nervousness level nasp.

The ideal-points of the remaining bi-objective problem can be determined
with lexicographic optimization (see Isermann (1982), pp. 223 and Ehrgott
(2005), pp. 128). To determine COST ideal

nasp , in a first step, the operational costs
are optimized accepting arbitrary values of mean tardiness. MT nadir

nasp is deter-
mined in a second step by solving the model again, subject to the condition
that the operational costs take their ideal value (E[COST ] = COST ideal

nasp ). In
(53), the lexicographic optimization is expressed by the operator lexmin, and
the order of the arguments expresses the hierarchy of the objective functions
(see Ehrgott (2005), p. 129).

MO-SCLSPCOSTideal,nasp

lexmin(E[COST ], MT dis) (53)

s.t. (36) - (38), (40) - (46), (51), (52) and

Xkt = Xkt ∀ k, t < p−∆ +h f ixX
nasp (54)

Qkt = Qkt ∀ k, t < p−∆ +h f ixQ
nasp (55)

Analogously, solving the following bi-objective problem with lexicographic
optimization and inverse hierarchical order obtains a Pareto-optimal solution
with objective function values MT ideal

nasp and COST nadir
nasp .

MO-SCLSPMTideal,nasp

lexmin(MT dis, E[COST ]) (56)

s.t. (36) - (38), (40) - (46), (51), (52), (54) and (55)

As the nadir-values for the non-prioritized objective functions usually are
unacceptably bad, the ideal-points probably do not contain desired compro-
mise solutions. However, determining the ideal-values and nadir-values re-
veals the bounds of the space containing potentially Pareto-optimal solutions.
Only solutions with objective functions values of Z better than Znadir and
worse than Zideal are candidates for further Pareto-optimal solutions (see Fig-
ure 7). This information can be applied to narrow down the search for Pareto-
optimal solutions with the multidimensional ε-constraint method, which is
presented in the following subsection.
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6.3 Determining Pareto-optimal solutions with an augmented multidimensional
ε-constraint method

The augmented ε-constraint method (see Chankong and Haimes (1983), Haimes
et al. (1971) and Mavrotas (2009)) can be applied to determine a set of Pareto-
optimal solutions for a multi-objective optimization problem by solving a se-
quence of constrained single-objective problems. All objective functions but
one are transferred into constraints, assuring aspiration levels specified by the
decision maker. Different combinations of aspiration levels are systematically
inspected and the resulting single-objective problem is solved. Then the aspi-
ration level is adjusted by a fixed increment ε . The combination of the opti-
mized objective function value and the set aspiration levels for the objective
functions transferred into constraints constitutes a Pareto-optimal solution.

For the application in multi-objective stochastic lot sizing, we choose to
minimize expected operational costs, limiting both mean expected tardiness
and nervousness with constraints. The expected operational costs are opti-
mized under the condition that the mean expected tardiness does not exceed
the aspiration level MT asp and that nervousness does not exceed the aspired
level nasp. Applying the notation in Table 6, this results in the following
model:

Table 6: Additional notation for the augmented ε-constraint method

Parameters:
ε step size for determining Pareto-optimal solutions with the ε-constraint method
ρMT small value

Decision variables:
SMT slack of the constraint limiting MT dis

MO-SCLSPε−aug

min E[COST ] =
K

∑
k=1

p+hlook−1

∑
t=1

[
sck ·Xkt +hck ·E[YPkt ]

]
+

p+hlook−1

∑
t=1

oc ·Ot

−ρMT ·SMT (57)

s.t. (37), (38), (40) - (46), (51), (52) and

MT dis ≤ MT asp −SMT (58)

Xkt = Xkt ∀ k, t < p−∆ +h f ixX
nasp (59)

Qkt = Qkt ∀ k, t < p−∆ +h f ixQ
nasp (60)

SMT ≥ 0 (61)
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Fig. 8: Finding Pareto-optimal solutions in a bi-objective cross-section with the ε-
constraint method

In Constraint (58), variable SMT is the slack measuring by how much the
expected mean tardiness MT dis remains under the aspired mean tardiness vari-
able MT asp. The augmentation term (see Mavrotas (2009)) ρMT ·SMT is sub-
tracted from the objective function value. If an aspired level of mean tardiness
MT asp can be undercut without an increase of expected operational costs, then
this term leads to the highest possible value of SMT , thus ensuring Pareto-
optimality of the found solution. The parameter ρMT should be chosen small
enough not to influence the operational costs in the optimal solution.

Algorithm 1 shows how Pareto-optimal solutions can be generated by
solving this model for different values of MT asp and nasp. An example of
solutions generated for a bi-objective cross-section with given nervousness
level nasp is presented in Figure 8.

The decision maker chooses a list of aspiration levels of nervousness N̂ ∈
N , a range of values of aspired mean expected tardiness defined by MT min

nasp

and MT max
nasp for each aspiration level of nervousness and an increment ε . If the

ideal-points are known, then MT min
nasp = MT ideal

nasp and MT max
nasp = MT nadir

nasp consti-
tute an appropriate choice for the inspected range, as it covers the whole space
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Algorithm 1: Augmented ε-constraint method for multi-objective stochastic
lot sizing

Let Cost(MT asp,nasp) be the optimal operational costs of the single-objective problem with
mean expected tardiness bound MT asp and limiting nervousness to level nasp;

Choose increment ε;
Set objective space ω = /0;
for each n ∈ N̂ do

set nasp = n;
set MT asp = MT max

nasp ;
while MT asp > MT min

nasp do
determine x =Cost(MT asp,nasp);
set ω = ω ∪{x};
set MT asp = MT asp − ε;

return ω

of potentially Pareto-optimal solutions, and for any given aspiration level in
this range, a feasible solution can be found. For each chosen aspiration level of
nervousness nasp ∈ N̂, the following loop is executed (see Algorithm 1): The
first single-objective problem for each nasp is solved calling for an aspired
mean expected tardiness of MT asp = MT max

nasp . Iteratively, MT asp is reduced by
ε , and the corresponding single-objective optimization problem is solved. As
soon as the adjusted MT asp falls below MT min

nasp , the iteration ends, and the next
iteration for the next nasp ∈ N̂ begins.

By applying the multidimensional ε-constraint method, e.g. iteratively solv-
ing instances of the model MO-SCLSPε−aug, a set of Pareto-optimal solutions
is found for each inspected nervousness level with a fixed distance between
two aspired values of mean expected tardiness. Thereby, the maximum diver-
sity of the found solutions is achieved.

7 Numerical studies

7.1 Interaction between decision maker and planning algorithm in a single
exemplary decision stage

Experimental setup
The following example shall demonstrate how the decision maker could inter-
act with the planning algorithm. A small problem instance with K = 2 prod-
ucts and a look-ahead horizon of hlook = 15 periods is chosen, which allows
for the generation of a large number of Pareto-optimal solutions and for the
thorough studying of the solutions. The instance generator parameters pre-
sented in Table 7 are used to randomly generate problem instances.

Normally distributed demand is assumed and demand information is ob-
served evenly over a time span of θ = 5 periods. Piecewise linearization of
the inventory functions is performed with 11 supporting points resulting in 10
linear segments.
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Table 7: Instance generator parameterization

Expected value of demand E[Dkt ] 100 · U {0.9,1.1} QU
Coefficient of variation of demand VC[Dkt ] 0.3
Holding cost rate hck 1 · U {0.9,1.1} MU / (QU · period)
Setup cost rate sck 450 · U {0.9,1.1} MU / setup
Processing time t pk 1 · U {0.9,1.1} CU
Setup time tsk 40 · U {0.9,1.1} CU
Regular capacity bt 350 · U {0.9,1.1} CU
Maximum overcapacity omax 100 · U {0.9,1.1} CU
Cost rate for overcapacity oc 10 MU / CU

In this example, the decision stage in period p = 5 is considered. A re-
optimization interval of ∆ = 2 is assumed. In the previous decision stage in
period 3, a production plan is assumed to have been selected that results in a
disaggregated mean expected tardiness of 0.3 periods. This production plan is
stored in parameters Xkt and Qkt and revisited in the current decision stage.
Six discrete nervousness levels, according to Table 8, are taken into account.

Table 8: Overview over the nervousness levels in the numerical example

Nervousness level n h f ixX
n h

f ixQ
n

0 hlook hlook

1 9 9
2 9 3
3 3 3
4 3 ∆

5 ∆ ∆

Nervousness level 0 conserves all decisions made in the previous decision
stage. Thus, the production plan can only be decided for the last ∆ periods,
which have not been taken into account in the previous decision stage. As
this approach is usually not reasonable from a economic point of view, these
results can be considered to be a borderline case. In nervousness level 1, the
entire production plan is fixed 9 periods upfront. In this example, this is con-
sidered to be early enough to avoid planning nervousness and therefore treated
as the base nervousness level. The remaining nervousness levels 2 - 5 fix the
decisions for shorter time spans. The higher the nervousness level, the shorter
the time spans of fixed decisions are.

Evolution of demand forecasts and adjustment of the piecewise linearization

The decisions in the previous decision stage at the beginning of period 3
were made based on the demand information available at that time. At the end
of periods 3 and 4, additional demand informations ψψψτ

kt , ∀ k,τ ∈ {3,4}, t <
τ + θ were observed, which shall now be taken into account to adjust the
production plan. Table 9 exemplarily illustrates the adjustments for product 1
for the relevant demand periods.
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Table 9: Demand forecast evolution for product 1 from period 3 to period 5

t E[Dp=3
k=1,t ] ψψψτ=3

k=1,t ψψψτ=4
k=1,t E[Dp=5

k=1,t ] σDp=3
k=1,t

σDp=5
k=1,t

2 126.84 0 0 126.84 0 0
3 153.46 -7.67 0 145.79 13.42 0
4 86.69 8.59 -10.55 84.73 18.97 0
5 89.69 10.12 -9.89 89.92 23.24 13.42
6 98.56 -14.60 -7.72 76.24 26.83 18.97
7 106.74 -23.57 11.33 94.50 30 23.24
8 90.28 0 17.58 107.86 30 26.83
9 90.91 0 0 90.91 30 30

Periods 1 and 2 were already in the past in the previous decision stage in
period 3. Thus, for those demand periods, the demand realizations were al-
ready known. For the demand in period 3, most of the adjustments ψψψτ

k=1,t=3
are already known. The final adjustment step ψψψτ=3

k=1,t=3 is revealed at the end
of period 3. Hence, in the beginning of period 4, the final demand realization
is known. For the following demand periods, additional demand information
is revealed both at the end of period 3 and period 4. For demand period 8,
the first adjustment step is observed at the end of period 4, and for all subse-
quent demand periods, no additional information was observed between the
two periods considered in this example. Based on the adjusted demand fore-
casts (E[Dp=5

kt ] and σDp=5
kt

), parameters cpktl , eblktl and eypklt of the piecewise
linearization are updated.

Generating boundaries of the Pareto-front

To obtain a first impression of the feasible objective space, the ideal values
MT ideal

nasp and COST ideal
nasp as well as the corresponding nadir values MT nadir

nasp and
COST nadir

nasp , respectively, for all considered nervousness levels are determined.
The results are shown in Figure 9 with two markers for each nervousness level
n.

Figure 9 (and the following) portray decision maps (see Meisel (1973)).
Decision maps illustrate three-dimensional data of the multi-objective objec-
tive space as series of bi-objective cross-sections of the Pareto-front: the third
dimension describing the nervousness level is portrayed by choosing different
markers for different values.

In nervousness level 0, decisions can only be made for periods 18 and
19, which had not been considered in the previous decision stage, and the
production plan for the remaining periods is fixed to the values from the pre-
vious decision stage already. As demand was rather overestimated, without
adjustments, relatively high inventories build up, which result in high oper-
ational costs and low mean expected tardiness. The objective space attain-
able with nervousness level 1 is rather small as well: Pareto-optimal solutions
with a mean tardiness MT asp

nasp < 0.1013 or MT asp
nasp > 0.5695 are only attain-

able with nasp ≥ 2. The higher the accepted nervousness, the greater the va-
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Fig. 9: Decision map with Pareto-optimal ideal solutions

riety of attainable Pareto-optimal solutions. The solutions corresponding to
ideal values entail particularly bad objective function values for the nonpri-
oritized objective functions. Therefore, in the next step shown in Figure 10,
Pareto-optimal compromise solutions are determined by applying the aug-
mented ε-constraint method for each nervousness level in the interval from
MT min

nasp = 0.1 to MT max
nasp = 1 with an increment of ε = 0.1. As the ideal values

have been determined before, all problem instances of the MO-SCLSPε with
MT asp

nasp < MT ideal
nasp or MT asp

nasp > MT nadir
nasp are skipped, as it is already known that

they are infeasible (MT asp
nasp < MT ideal

nasp ) or do not generate additional Pareto-
optimal solutions (MT asp

nasp > MT nadir
nasp ). The results from the augmented ε-

constraint method are depicted in Figure 10.

Figure 10 illustrates the conflicts between the operational costs, mean tar-
diness and planning nervousness. Particularly for achieving higher deviations
from the aspired tardiness value from the last decision stage, accepting a
higher level of nervousness can reduce the corresponding operational costs.
In this example, particularly high cost differences can be observed comparing
nervousness levels 1 and 2, while in the case of nervousness levels 4 and 5, the
differences are rather small. In some cases, the aspired level of mean tardiness
MT asp

nasp is undershot in the optimal solution. In this example in Figure 10, this
can be observed, for example, for nervousness level 2 with MT asp

nasp=2 = 0.8,
MT asp

nasp=2 = 0.9 and MT asp
nasp=2 = 1. This happens if no Pareto-optimal solu-

tion with MT asp
nasp exists: a solution with MT < MT asp

nasp dominates the optimal
solution forcing MT = MT asp

nasp .
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Fig. 10: Decision map after applying the ε-constraint method

Generating additional Pareto-optimal solutions based on the preferences of the deci-
sion maker
Based on the Pareto-optimal solutions determined so far, the decision maker
might identify the area of the objective space with a mean tardiness of 0.2 - 0.4
periods as interesting for potential compromise solutions between expected
mean tardiness and operational costs. Cost differences can particularly be ob-
served between nervousness levels 1 and 2. If the cost reduction attainable
when higher nervousness levels would be accepted does not balance out the
increased system nervousness, the decision maker could exclude nervousness
levels 3, 4 and 5 from further investigation. For the remaining nervousness
levels, a detailed analysis by applying the augmented ε-constraint method is
carried out with N̂ = {1,2}, MT min

nasp = 0.2, MT max
nasp = 0.4 and ε = 0.02. The

results are presented in Figure 11. Based on this information, the decision
maker might select a final solution.



34 Fabian Friese, Stefan Helber

0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4

7400

7600

7800

8000

8200

8400

Expected mean tardiness

E
xp

ec
te

d
op

er
at

io
na

lc
os

ts
n = 0 n = 1
n = 2 n = 3
n = 4 n = 5

Fig. 11: Decision map after applying the ε-constraint method with finer step size

7.2 Comparing solutions from the interactive approach with various benchmarks

In Subsection 7.1, we exemplarily showed how a decision maker could select
a Pareto-optimal solution in a single decision stage. This implies a certain de-
gree of manual interaction of the decision maker. To study a larger number
of problem instances with different demand trajectories based on the problem
setting presented in Subsection 7.1, but with a single product, we now replace
the implicit preferences of the decision maker and the individual decisions and
assume that the usage of linear decision rules can mimic the decision-makers
behaviour over time. Linear relationships between the preferences between
the three objective functions are therefore assumed. This allows for the de-
termination of a single scalarized objective function value by assigning some
cost based assessment to each objective function metric. Replacing the deci-
sion maker with a simple linear rule is a substantial simplification, which in
general is not sufficient to account for the complexity of finding compromise
solutions between the conflicting objectives. However, it allows for the sys-
tematic selection of Pareto-optimal solutions and therefore for the analysis of
a large number of problem instances without manual (and subjective) interac-
tion of a decision maker and thus shows how decisions made over time could
determine the system behaviour.

After Pareto-optimal solutions have been determined in a given decision
stage, a solution can be selected by solving model (62) - (64) with the notation
presented in Table 10.
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Table 10: Notation for the rule-based solution selection

Indices and index sets:
i ∈ {1, ..., I} Pareto-optimal solutions

Parameter:
oci operational costs for solution i
tci cost-based assessment of the mean tardiness for solution i
nci cost-based assessment of the planning nervousness for solution i

Decision variables:
Γi binary selection variable: 1 if solution i is selected

Rule-based solution selection

min Z̃ =
I

∑
i=1

(
oci + tci +nci

)
·Γi (62)

s.t.
I

∑
i=1

Γi = 1 (63)

Γi ∈ {0,1} (64)

A solution shall be selected from the set of Pareto-optimal solutions i (63),
minimizing the sum of operational costs and cost-based assessments of the
mean tardiness and the production plan nervousness (62).

Preliminary numerical studies showed that for the problem setting at hand,
a conversion rate for assessing the mean tardiness of 5500 GE per period of
mean tardiness and a conversion rate for planning nervousness of 120 GE
per nervousness level results in selecting economic compromise solutions, of-
ten dominating the expected values. This information could have been derived
from comparing the selected final solution with other Pareto-optimal solutions
over the course of many decision stages, as this gives an insight into the in-
herent internal preferences of the decision maker. By analyzing the decisions
over a longer horizon, some explicit understanding of the implicit preferences
can be derived.

To generate Pareto-optimal solutions, the augmented ε-constraint-method
is applied twice with different parameters: a broad overview is generated with
N̂ = {0,1,2,3,4,5}, MT min

nasp = 0.1, MT max
nasp = 1 and ε = 0.1. A more detailed

search is conducted for all nervousness levels for the range between MT min
nasp =

0.2 and MT max
nasp = 0.4 with an increment of ε = 0.02. The production plan is

revisited every ∆ = 2 periods.
The final realized objective function values derived with the interactive

approach with rule-based solution selection are compared with the objective
function values resulting from executing the ex ante optimal (static) produc-
tion plan without any adjustments and the static-dynamic and the dynamic
approach proposed by Bookbinder and Tan (1988). Additionally, for a theo-
retical benchmark of the solution quality, the ex post optimal solution is deter-
mined as well. Note that the ex post optimal solution could only be attained if
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all the uncertain demand realizations were known at the beginning of the plan-
ning horizon and thus deviations from the ex-post optimum are expected even
in high quality solutions. One thousand random demand trajectories are drawn
from the demand distribution functions. For each problem instance, the inter-
active approach with rule-based solution selection is applied and compared to
the three approaches proposed by Bookbinder and Tan (1988) as well as the ex
post optimum. Figure 12 shows the scatterplots of the resulting combinations
of the realized objective function values.
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Fig. 12: Comparison of results from the interactive approach and various benchmarks
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Figure 12 (a) shows results derived with the static approach without any
adjustments of the production plan. The results clearly show that applying the
static approach, the resulting objective function values are random with high
variance. In many realizations they deviate from the expected values by more
than 100 %. With the static-dynamic approach depicted in Figure 12 (b) the
deviations from the expected values can be reduced as frequent adjustments
of the production quantities are allowed. Additionally, allowing adjustments
of the setup pattern results in further reduction of the range of the realized
values, as Figure 12 (c) portrays. As a theoretical benchmark, the ex-post-
optima of the 1000 studied problem instances are depicted in Figure 12 (d).
Each ex-post-optimal production plan exactly leads to the target value of mean
tardiness.

The final results derived with the suggested interactive approach with rule
based solution selection applying model (62) - (64) are shown in Figure 12 (e).
The objective function realizations appear quite similar to those derived with
the dynamic approach (Figure 12 (c)). However, potentially the results are of
higher solution quality in terms of production plan nervousness. Figure 13
explores the production plan nervousness induced by applying the interactive
approach.
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Fig. 13: Histogram of selected nervousness levels

Figure 13 shows the relative frequency of the nervousness levels of the
solutions selected by the selection rules. Each of the 1000 studied problem
instances involved 14 decision stages with possible adjustments of the pro-
duction plan. In 29.31 % of these decisions (4103 out of 14000), a solution
complying with nervousness level N∗= 1 was selected. This nervousness level
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is interpreted as basis level, and it implies production plan fixations for the
next 9 periods. In 7813 decisions (55.81 %), nervousness level N∗ = 0 was
selected, fixing each decision from the last production plan. A nervousness
level N∗ = 2 was accepted in 9.3 % of the decisions and N∗ = 3 in 5.16 %
of the decision stages. Summarizing the results so far, in 85.12 % of the deci-
sions the whole production plan remained unchanged for at least the following
9 periods and in 99.58 % of the decisions for at least the following 3 periods.
Nervousness levels N∗ = 4 and N∗ = 5 were only selected sporadically. In the
vast majority of the decisions, the production plan could be retained for (at
least) the next nine periods. Production plan adjustments in one of the nine
next periods were on average made about twice per problem instance with a
planning horizon of 30 periods. Planning nervousness was therefore accepted
systematically in those cases, in which accepting nervousness meant substan-
tially better objective function values for the other objective functions.

Table 11: Comparison of statistical characteristics of the objective function values
applying the interactive approach and different benchmarks

Static Stat-dyn Dynamic Ex-Post Interactive

Mean [operational costs] [MU] 6806.0 6640.6 6650.7 5836.7 6626.5
Coeff. of variation [operational costs] 0.311 0.089 0.080 0.022 0.080

Mean [tardiness] [periods] 0.507 0.321 0.260 0.3 0.257
Coeff. of variation [tardiness] 1.059 0.522 0.445 0 0.436

Table 11 compares the means and coefficients of variation of both opera-
tional costs and mean tardiness for the five planning approaches. The disper-
sion of the objective function values can be considerably reduced by applying
the proposed interactive approach. The sample coefficient of variation of the
mean tardiness applying the interactive approach is only about one-quarter of
the sample coefficient of variation applying the static approach. Similarly, the
sample mean of the mean tardiness could be reduced from 1.059 to 0.436 by
applying the interactive approach. The interactive approach leads to slightly
better mean values of operational costs and tardiness compared to the static-
dynamic and the dynamic approach. As this also comes with a reduced level
of nervousness (see Figure 13), the interactive approach dominates the other
approaches in terms of the mean values of all three considered objectives.

It should be highlighted that a selection of Pareto-optimal solutions based
on simple linear decision rules does not suffice to account for the complex-
ity of finding an economically profound compromise solution. However, the
study shows that the static approach can already be outperformed with simple
rules. By manual decision based on the domain knowledge of the decision
maker, the adjustments to production plans can be customized even better to
the actual demand situation, which eventually results in a better solution qual-
ity and reduced dispersion of the objective function values.
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8 Conclusions, managerial insights and outlook

In this paper, we proposed an interactive framework for multi-objective stochas-
tic lot sizing and demonstrated its utility. The approach explicitly addresses
the conflicting relationships between low operational costs, low tardiness, and
low system nervousness. In multiple decision stages, the production plans are
revisited periodically to adapt to demand realizations. Demand forecasts are
updated periodically as demand information is revealed gradually over time.
Demand is modeled as a linear combination of independent random variables
for different observation periods. To facilitate solving the problem as mixed-
integer problem, the expected values of the random variables for physical
inventories and backlogs are approximated with piecewise linear functions.
In an interactive optimization approach, a set of Pareto-optimal solutions is
generated by determining ideal-points and applying a multidimensional aug-
mented ε-constraint method with different aspiration levels according to spec-
ifications made by a decision maker. Numerical examples show that the rela-
tionships between the analyzed objective metrics depend considerably on the
planning situation and demand realizations observed so far. In many situa-
tions, a significantly better objective function value can be achieved for one
objective function if slightly poorer objective function values are accepted for
the other objective functions.

Different important managerial insights can be derived from our numer-
ical studies: specifying objective bounds for the delivery reliability and sys-
tem nervousness unaware of the objective space does not in general lead to
good compromise solutions. A multi-objective approach evinces the relation-
ship of the objectives, thus allowing for a reasoned positioning according to
the preferences of the decision maker. Our numerical studies also show that
focusing on expected values in a static approach, without taking demand re-
alizations into account, leads to random outcomes. Multiple decision stages
allow for adaptations to production plans and give the decision maker control
over the advancement of the objective value metrics. The proposed interactive
approach can finally be used to derive some explicit insight into the implicit
preferences of the decision maker between the objectives. By analyzing selec-
tions over the course of many optimizations, this information can be used to
improve the multi-objective approach by focusing on the relevant area of the
objective space.

Future research should consider the application of heuristics to approx-
imate the Pareto front to tackle larger problem instances. Another research
direction should address alternative metrics for the objectives. Finally, a more
sophisticated approach to externalize the preferences of the decision maker
could be developed, as this would allow for the selection of a Pareto-optimal
solution based on the preferences of the decision maker, without manual in-
teraction.
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