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Estimation and Testing in a Perturbed Multivariate Long
Memory Framework

Vivien Lessa Philipp Sibbertsena∗

aWirtschaftswissenschaftliche Fakultät, Leibniz University Hannover, Hannover, Germany

December 12, 2022

Abstract

We propose a semiparametric multivariate estimator and a multivariate score-type testing
procedure under a perturbed multivariate fractional process. The estimator is based on the
periodogram and uses a local Whittle criterion function which is generalised by an addi-
tional constant to capture the perturbation given in the long memory process. Explicitly
addressing the noise term when approximating the spectral density near the origin results in
a bias reduction, but at the cost of an increase in the asymptotic variance of the estimator.
Further, we introduce a multivariate testing procedure to detect spurious long memory under
a perturbed fractional framework. The test statistic is based on the weighted sum of the
partial derivatives of the multivariate local Whittle with noise estimator. We show consis-
tency of the test against the alternatives of smooth trend and random level shift processes.
In addition, we prove consistency and asymptotic normality of the local Whittle estimator
and we derive the limiting distribution of the test. An empirical example on the squared
returns and the realised volatilities from the BEL 20, S&P BSE SENSEX, and the Spanish
IBEX is conducted, and shows the usefulness of the procedures.

Keywords: Signal-plus-noise · Multivariate local Whittle · Perturbation · Spurious long memory · Semi-
parametric estimation · Stochastic volatility.

JEL classification:C12, C13, C32

1 Introduction

Analysing the behaviour of the volatility of financial returns is among the most relevant topics
in the literature when dealing with financial time series. When using log squared returns as an
approximation for the underlying volatility process of the time series they show a strong per-
sistence, which could be an indicator that the volatility process possesses long-range behaviour.
In order to estimate the long memory parameter d the literature suggests using semiparametric

∗Corresponding Author. Leibniz University Hannover, School of Economics and Management, Institute of
Statistics, Königsworther Platz 1, D-30167 Hannover, Germany. E-Mail: sibbertsen@statistik.uni-hannover.de.
Phone: +49-511-762-3783

1



procedures such as the local Whittle estimator of Robinson (1995a) or the GPH estimator of
Geweke and Porter-Hudak (1983). However, recent results find that the usual procedures suffer
from a severe downward bias when applied to squared returns (e.g. Deo and Hurvich (2001) and
Arteche (2004)). The reason for this might be an inappropriate approximation of the spectral
density near the zero frequency. For example, Hurvich and Ray (2003), Hurvich et al. (2005),
and Frederiksen et al. (2012) assume that the squared returns might be better represented by
a perturbed fractional process instead of the usual plain fractional process. The idea comes
from the theoretical perspective that the squared returns are an unbiased but inconsistent es-
timator for the latent volatility process. This has an influence on the asymptotic behaviour of
the spectrum. They suggest directly accounting for the perturbation, while approximating the
spectral density near the origin. The inclusion of the perturbation leads to a decrease in the
bias, especially when the memory and the noise parameter are high. Typically, this is the case in
empirical applications. In general, a couple of univariate noise robust semiparametric estimators
have been developed. For example, Sun and Phillips (2003), Hurvich and Ray (2003), Hurvich
et al. (2005), Arteche (2006), and Frederiksen et al. (2012) have proposed estimators which can
handle perturbed fractional processes. To our knowledge, there exist no multivariate estimator
which takes the perturbation into account.
However, the same patterns which indicate a long memory process could also be induced by
so-called low frequency contaminations, for example structural breaks, leading to spurious long-
memory behaviour. As it is crucial to know what kind of a nature a process is following testing
for spurious long memory is an important topic. There already exist multiple testing procedures
in order to distinguish true long memory from spurious long memory processes in an univari-
ate framework. Some examples are given by Dolado et al. (2005), Shimotsu (2006), Ohanissian
et al. (2008), Perron and Qu (2010), Qu (2011), Haldrup and Kruse (2014), and Davidson and
Rambaccussing (2015). Unfortunately, the literature regarding multivariate testing procedures
is rather sparse. Sibbertsen et al. (2018) introduce a multivariate test based on the score of the
multivariate Gaussian semiparametric estimator (GSE) of Shimotsu (2007).
A typical empirical example when testing for spurious long memory is the log squared returns
of stock market indices. There exists a huge literature in favour of a spurious long memory
process when investigating these squared returns (e.g. Granger and Ding (1996), Granger and
Hyung (2004), Dolado et al. (2005), Lu and Perron (2010), Xu and Perron (2014), and Var-
neskov and Perron (2018)). However, when applying the same testing procedure to the realised
variance the null hypothesis of a true long memory process cannot be rejected (see Qu (2011)
and Sibbertsen et al. (2018)). Since both should be an unbiased estimator for the underlying
volatility process, these contradictory results are of importance. We assume that those con-
tradictions might arise from an imprecise approximation of the spectral density of the squared
returns process near the origin of the spectrum. This presumption is coming from the fact that
the properties of semiparametric estimators heavily depend on an accurate approximation of
the periodogram to the local spectrum. The testing procedures of Qu (2011) and Sibbertsen
et al. (2018) depend on the weighted sum of the partial derivatives of the local Whittle log likeli-
hood and, therefore, on the appropriate approximation of the spectrum. As a consequence, this
can lead to a false rejection of the null as the testing procedures heavily depend on the accuracy
of the approximation of the periodogram.
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All in all, this gives us the motivation to propose, on the one hand, a multivariate local Whittle
estimator which explicitly accounts for the additional source of noise given in the log squared
returns. It is a generalisation of the GSE of Shimotsu (2007) and a multivariate extension of the
local Whittle with noise (LWN) estimator of Hurvich and Ray (2003) and Hurvich et al. (2005).
On the other hand, we generalise the multivariate score-type test introduced by Sibbertsen et
al. (2018) to make it robust against perturbation which might be given, for example, in the daily
log squared returns.
Based on recent findings, we consider the estimation of the long memory parameter in a per-
turbed multivariate fractional process Zt = (z1t, ..., zqt)

′, i.e. a multivariate signal-plus-noise
process of the form

Zt = Yt +Wt. (1)

The signal process Yt = (y1t, ..., yqt)
′ is assumed to be a real-valued covariance stationary q-

vector process which is able to capture long-range behaviour. The signal process is perturbed
by a short-memory q-vector noise process Wt = (w1t, ..., wqt)

′. We assume independence of the
signal and the noise processes.
Another motivation for considering this signal-plus-noise process is the special case of a long
memory stochastic volatility model (LMSV) used for financial returns. A multivariate extension
of the LMSV model of Breidt et al. (1998) is given by So and Kwok (2006), where the returns
rt = (r1t, ..., rqt)

′ are modelled as

rit = κie
yit/2uit, i = 1, ..., q,

such that taking a logarithmic transformation of the squared return time series, with log r2
it =

yit+ log κ2
i + log u2

it leads to the signal-plus-noise time series with yit being the multivariate long
memory component of the volatility process with memory parameters 0 < d1, ..., dq < 1/2, and
the noise is given by wit = log κ2

i + log u2
it.

We aim to analyse the behaviour of Eq. (1) in the frequency domain so that we have the spectral
density of the signal process as fy(λ) and let fw(λ) represent the spectral density of the noise
process. Under the assumption of independence between the signal and the noise process, the
spectrum of Zt is given by fz(λ) = fy(λ) + fw(λ). This independence assumption excludes
the possibility of allowing for a leverage effect in the return series. However, it can be easily
generalised towards it.
Assume that the spectral density of a multivariate short memory process u satisfies the local
condition fu(λ) ∼ G, as λ → 0, with G being a real, symmetric, finite, and positive definite
matrix; Shimotsu (2007) suggests locally approximating the spectral density for non-perturbed
multivariate fractional processes by

fy(λ) ∼ diag(λ−daei(π−λ)da/2)Gdiag(λ−dae−i(π−λ)da/2)[1 +O(λmin{βy ,2})], λ→ 0. (2)
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In contrast, we suggest the following generalisation of the local approximation

fz(λ) ∼ diag(λ−daei(π−λ)da/2(1 + θaλ
2da)1/2)Gdiag(λ−dae−i(π−λ)da/2(1 + θaλ

2da)1/2)

× [1 +O(λmin{βy ,2}) + λ2daO(λmin{βw,2})], λ→ 0, (3)

in order to capture the behaviour of a perturbed fractional process. We propose to model the
noise component in Zt by an additional constant θ = (θa, ..., θq)

′. Note that the assumption on
G rules out the possibility of cointegration.
The rest of the paper is structured as follows: Section 2 introduces the multivariate local Whittle
with noise estimator and its asymptotic properties. In Section 3, we propose a modified score-
type test. In Section 4, we investigate the finite sample performance in an extensive Monte
Carlo study of the estimator and the test compared to the procedures of Shimotsu (2007) and
Sibbertsen et al. (2018). An empirical application is presented in Section 5. Section 6 concludes.
The proofs of our theorems can be found in the Appendix.

2 Local Whittle estimation under perturbation

In this section we introduce the MLWN estimator and present the necessary assumptions in
order to establish asymptotic normality and consistency under a perturbed fractional process.
We present the main results in two theorems.

2.1 MLWN estimator

We are interested in the semiparametric estimation of the memory parameter d = (d1, ..., dq)
′

in a perturbed fractional setup as given in Eq. (1) by using only the Fourier frequencies in
the vicinity of the origin. This results in an estimator which is non-parametric with respect to
the short-run dynamics of the time series. Hence, the local Whittle estimator enjoys robustness
towards them.
The multivariate GSE of Shimotsu (2007) generalises the univariate estimation method of Robin-
son (1995a). The log likelihood is formulated with respect to the assumption of the behaviour
of the spectral density given in Eq. (2), yielding the following objective function

R(d) = log det Ĝ(d)− 2

m

q∑
a=1

da

m∑
j=1

log λj ,

Ĝ(d) =
1

m

m∑
j=1

Re
[
Λj(d)−1Iz(λj)Λ

∗
j (d)−1

]
,

where m = m(n) equals the bandwidth with m(n) → ∞ and m/n → 0, Iz(λ) = wz(λ)w∗z(λ)

is the periodogram of Zt and wz(λ) = (2πn)−1/2
∑n

t=1 Zte
itλ is defined as the discrete Fourier

transform of the Fourier frequencies λj = 2πj/n. The conjugate transpose is defined by x∗.
Under this notation, we get for Eq. (2) fy(λ) ∼ Λj(d)GΛ∗j (d), Λj(d) = diag(Λja(d)), so that
Λja(d) = λ−daj ei(π−λj)da/2, as λj → 0.
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The estimator is given as the minimiser of the local Whittle log likelihood contrast function

d̂ = arg min
d

R(d).

Shimotsu (2007) shows asymptotic normality and consistency of the estimator over the space
of the true parameter values d0 ∈ [∆1,∆2]q, with −1/2 < ∆1 < ∆2 < 1/2. Nielsen (2011)
generalises the results of Shimotsu (2007), and shows that the estimator is still consistent and
asymptotically normal for d ∈ (−1/2,∞) with

m1/2(d̂GSE − d0)
d−→ N(0,Ω−1), Ω = 2

[
G0 � (G0)−1 + Iq +

π2

4
(G0 � (G0)−1 − Iq)

]
,

Ĝ(d̂)
p−→ G0,

with � denoting the Hadamard product. Under a perturbed fractional process, we assume that
the spectral density is better described by Eq. (3) rather than Eq. (2). Therefore, we propose
to redefine Λj(d) = diag(Λja(d)) as follows

Λja(d, θ) = (λ−daj ei(π−λj)da/2(1 + θaλ
2da
j )1/2),

where θa = fa,w(0)/fa,y(0) is defined as the long-run noise-to-signal ratio, capturing the pertur-
bation near the zero frequency. We assume that θa > 0 for a = 1, ..., q.
It follows that the Gaussian log likelihood function near the origin is given by

Q(G, d, θ) =
1

m

m∑
j=1

{
log det Λj(d, θ)GΛ∗j (d, θ) + tr

[
(Λj(d, θ)GΛ∗j (d, θ))

−1I(λj)
]}

=
1

m

m∑
j=1

{
log det Λj(d, θ)GΛ∗j (d, θ) + tr

[
G−1Re

[
Λj(d, θ)

−1Iz(λj)Λ
∗
j (d, θ)

−1
]]}

,

the second line follows from Q(G, d, θ) and G both being real. By the same argument as in
Shimotsu (2007), we get

G =
1

m

m∑
j=1

Re
[
Λj(d, θ)

−1Iz(λj)Λ
∗
j (d, θ)

−1
]
.

Substituting G into Q(G, d, θ) together with

log det Λj(d, θ) + log det Λ∗j (d, θ) = log det Λj(d, θ)Λ
∗
j (d, θ) = −2

q∑
a=1

dalog λj +

q∑
a=1

log(1 + θaλ
2da
j ),

yields the following objective function

R(d, θ) = log det Ĝ(d, θ)− 2

m

q∑
a=1

da

m∑
j=1

log λj +

q∑
a=1

m∑
j=1

log(1 + θaλ
2da
j ),

Ĝ(d, θ) =
1

m

m∑
j=1

Re
[
Λj(d, θ)

−1Iz(λj)Λ
∗
j (d, θ)

−1
]
.
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In the following, we will denote the true parameter values by a zero in the superscript. Our
MLWN estimator is defined as

(d̂, θ̂) = arg min
(d,θ)∈D×Θ

R(d, θ),

over the parameter space D = [∆1,∆2]q, with 0 < ∆1 < ∆2 < 1/2 and Θ is a compact and
convex set in Rq.

2.2 Asymptotic properties

Following Frederiksen et al. (2012) for the sake of conciseness, we give only one set of assumptions
for the proof of consistency and asymptotic normality for the MLWN estimator. For the proof of
the MLWNS test we need the same set of assumptions as stated here. However, the assumptions
for consistency could be further relaxed (see Hurvich et al. (2005) and Shimotsu (2007)). In the
following, fab(λ) and G0

ab represent the (a, b)-th element of F (λ) and G0.

Assumption 1. The noise process Wt = (w1t, ..., wqt)
′ and the signal process Yt = (y1t, ..., yqt)

′

are independent.

Assumption 2. The spectral density of Zt = (z1t, ..., zqt)
′ satisfies the smoothness condition

fz,ab(λ)−ei(π−λ)(d0a−d0b)/2λ−d
0
a−d0b (1+θ0

aλ
2d0a
j )1/2(1+θ0

bλ
2d0b
j )1/2G0

ab = O(λ−d
0
a−d0b+β)+O(λ−d

0
a+d0b )

for β ∈ (0, 2] and a, b = 1, ..., q.

Assumption 3. The signal has a linear representation Yt − EYt = A(L)εt =
∑∞

j=0Ajεt−j ,

where
∑∞

j=0||Aj ||2<∞, with ||·|| denoting the supremum norm and εt satisfies for t = 0,±1, ...,

E(εt|Ft−1) = 0, E(εtε
′
t|Ft−1) = Iq a.s. and for a, b, c, d = 1, 2, E(εatεbtεct|Ft−1) = µabc <∞ a.s.,

E(εatεbtεctεdt|Ft−1) = µabcd <∞ a.s., where Ft is the σ-field generated by εs, s ≤ t.
There exists a scalar random variable ε with E(ε2) < ∞ such that ∀τ > 0 and some K > 0,
P (||εt||2> τ) ≤ KP (ε2 > τ).

For A(λ) =
∑∞

j=0Aje
ijλ, the derivative in the neighbourhood (0, δ) of the origin satisfies ∂

∂λAa(λ) =

O(λ−1||Aa(λ)||) as λ −→ 0+, where Aa(λ) is the a-th row of A(λ).

Assumption 4. The noise term has a linear representationWt−EWt = B(L)ξt =
∑∞

j=0Bjξt−j,
where

∑∞
j=0||Bj ||2<∞. Further ξt satisfies for t = 0,±1, ..., E(ξt|Ft−1) = 0, E(ξtξ

′
t|Ft−1) = Iq

a.s. and for a, b, c, d = 1, 2, E(ξatξbtξct|Ft−1) = µabc <∞ a.s., E(ξatξbtξctξdt|Ft−1) = µabcd <∞
a.s., where Ft is the σ-field generated by ξs, s ≤ t.
There exists a scalar random variable ξ with E(ξ2) < ∞ such that ∀τ > 0 and some K > 0,
P (||ξt||2> τ) ≤ KP (ξ2 > τ).

For A(λ) =
∑∞

j=0Aje
ijλ, the derivative in the neighbourhood (0, δ) of the origin satisfies ∂

∂λAa(λ) =

O(λ−1||Aa(λ)||) as λ −→ 0+, where Ba(λ) is the a-th row of B(λ).

Assumption 5. The bandwidthm fulfils lim
n→∞

(m−4max(d)−1n4max(d)+n−2βm2β+1log2(m)+log(n)m−γ) =

0 for any γ > 0.

Assumption 6. There exists a finite real matrix L for which Λj(d
0, θ0)−1A(λj) = L+ o(1), as

λj −→ 0.
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Assumption 1 makes it possible to represent the spectral density of a signal-plus-noise process
as the sum of the individual noise and signal components of the spectral density. Assumption
2 introduces a smoothness condition and is similar to the ones introduced by Robinson (1995b)
and Hurvich et al. (2005). Assumptions 3 and 4 are multivariate extensions of the assumptions
made in Hurvich et al. (2005) and Shimotsu (2007). The assumption on the bandwidth is given
in Assumption 5 and is slightly stronger than the assumption given in Hurvich et al. (2005).
The additional term is necessary in order to guarantee the convergence of the Hessian. Our last
assumption is the same as in Shimotsu (2007).
Based on these assumptions, we are ready to establish the consistency of d̂.

Theorem 1. Let Assumptions 1–6 hold. Then d̂ p−→ d0 as n −→∞.

Note that our theorem proves consistency for the estimator of the memory parameter only. We
do not prove the consistency for the estimator of the nsr. Our proof orientates on the method of
proof used by Andrews and Sun (2004) and Frederiksen et al. (2012) which circumvents a separate
consistency proof of θ̂ and rather includes it in the proof of asymptotic normality. Hence, we
can proceed with a joint asymptotic normality and consistency result for d̂ and θ̂.

Theorem 2. Let Assumptions 1–6 hold. Then, for d0 in the interior of D = [∆1,∆2]q, where 0 <

∆1 < ∆2 < 1/2, d̂ and θ̂ are both consistent and

Bn

d̂− d0

θ̂ − θ0

 d−→ N(0,Ω−1),

Ω =

Ω11 Ω12

Ω21 Ω22

 ,

where Bn = diag(m1/2,m1/2λ2da
m ),

Ω11 = 2

[
G0 � (G0)−1 + Iq +

π2

4
(G0 � (G0)−1 − Iq)

]
,

Ω12 = Ω21 = ω1

[
G0 � (G0)−1 + Iq

]
ω1 + 2

[
π2

4
(G0 � (G0)−1 − Iq)

]
,

Ω22 = 2
(
ω2

[
G0 � (G0)−1 + Iq

]
ω2

)
,

with ω being some q × q diagonal matrix depending on d0, where the a-th element is given for
ω1,a by −d0a

1+2d0a
and for ω2,a by (d0a)2

((1+2d0a)(1+4d0a))1/2
.

The first thing to notice is that the submatrix Ω11 is exactly the same as the asymptotic variance
of the GSE from Shimotsu (2007). Secondly, the asymptotic variance of the estimation procedure
does not depend on the unknown nsr values. However, introducing an additional constant in the
estimation procedure results in a bias reduction but inflates the asymptotic variance. Further,
the asymptotic variance depends on the true memory parameter d0 and decreases as d0 increases
as our signal gets stronger and easier to estimate.
We show asymptotic normality and consistency of the MLWN estimator in the stationary case
only. However, we expect the estimator to be still consistent and asymptotic normal in the
non-stationary region by the same arguments as in Nielsen (2011) and Frederiksen et al. (2012).
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3 A testing procedure under perturbation

In this section we propose a perturbation robust score-type test against spurious long memory.
We derive the limiting distribution and show consistency of the procedure. The main results are
stated in two theorems.

We propose testing the null of a true perturbed long memory process or, equivalently, we assume
under the null that the spectral density follows the local approximation defined in Eq. (3). The
alternative states that the process contains low frequency contaminations. The hypotheses can
be stated as follows

H0 : fz(λj) ∼ Λj(d, θ)GΛ∗j (d, θ) vs. H1 : fz(λj) � Λj(d, θ)GΛ∗j (d, θ).

Our testing procedure is based on the score of the MLWN estimator presented already. Following
Sibbertsen et al. (2018), the test statistic is based on an approximation of the first derivative of
the local Whittle objective function. It is given by:

MLWNS =
1

2
sup
r∈[ε,1]

∣∣∣∣∣∣
∣∣∣∣∣∣ 2√
m

q∑
a=1

1
√
q

[mr]∑
j=1

ζja

(
g(d̂, θ̂)a

{
Re
[
Λ(d̂, θ̂)−1IzjΛ

∗(d̂, θ̂)−1
]
a

}
− 1
)
ζja

+
1√
m

q∑
a=1

1
√
q
g(d̂, θ̂)a

[mr]∑
j=1

LjIm
[
Λ(d̂, θ̂)−1IzjΛ

∗(d̂, θ̂)−1
]
a

∣∣∣∣∣∣
∣∣∣∣∣∣ , (4)

where ζja = (X̃ja− 1
m

∑m
k=1 X̃ka) with X̃ja = (log λj/(1+θaλ

2da
j )1/2,−(j/m)da/(2(1+θaλ

2da
j ))1/2)′

and Lj = ((λj − π)/2, 0)′.
Our test statistic includes in the absence of noise as special cases the testing procedures of Sib-
bertsen et al. (2018) and in the univariate case the one proposed by Qu (2011). It is also possible
to use the perturbation robust test we are presenting in a univariate context.
The limiting distribution of the test statistic in Eq. (4) can be derived by using the same argu-
ments as in Sibbertsen et al. (2018), generalised for the case of perturbation.
Let B(s) be a Brownian motion defined on [0, 1] and "=⇒" symbolises weak convergence in the
Skorokhod space, then our limiting distribution is given by

Theorem 3. Given our Assumptions 1–6 hold we have for n→∞

MLWNS =⇒ sup
r∈[ε,1]

∣∣∣∣∣∣∣∣∫ r

0
Ψ0(r)dB(s)−B(1)

∫ r

0
Ψ0(r)ds− F (r)

∫ 1

0
Ψ0(r)dB(s)

∣∣∣∣∣∣∣∣ ,
with F (r) =

∫ r
0 Ψ2,0(r)ds and Ψ0(r) = (Ψ0

1(r),Ψ0
2(r))′, where the single entries are given as

Ψ0
1,a =

∫ r

0

log s
1 + θ0

as
2d0a

ds− r
∫ 1

0

log s
1 + θ0

as
2d0a

ds,

Ψ0
2,a =

∫ r

0

s2d0a

1 + θ0
as

2d0a
ds− r

∫ 1

0

s2d0a

1 + θ0
as

2d0a
ds.

The limiting distribution of our test statistic is not pivotal because it depends on the unknown
values of the memory parameter d0 and the noise-to-signal ratio θ0. The critical values of the
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limiting distribution are obtained numerically for different values of the long memory parameter
and the noise-to-signal ratio.
Under the alternative of low frequency contaminations, we orientate for the data generating
processes (DGPs) on the processes selected by Sibbertsen et al. (2018). The first one is a
multivariate random level shift process defined as

Xt = µt + κt with (5)

µt = (Iq − φΠt)µt−1 + Πtet.

We assume mutual independence between κt, Πt = diag(π1t, ..., πqt) and et. Further, we define
the correlation matrix Σπ in order to allow the Bernoulli variables πit and πjt for i, j = 1, ..., q to
be correlated over the different q-dimensions of the process Xt. The probability of the occurrence
of a shift in the time series is regulated by p = p̃/n, with p̃ being the expectation of the number of
shifts that appear in the sample. The magnitude of those shifts is determined by et ∼ N(0,Σe),
which is a q-column vector. Furthermore, we define the pairwise correlation coefficients of πit
and πjt, eit and ejt, and uit and ujt by ρπ,ij , ρe,ij , and ρu,ij , ∀i, j = 1, ..., q. The persistence
of the process is controlled by the autoregressive coefficient φ so that we are able to investigate
non-stationary as well as stationary processes.
Another possible DGP under the alternative is given by the smooth trend model as

Xt = H

(
t

n

)
+ κt, (6)

where H(t/n) = ha(t/n) is a q-dimensional column vector with a = 1, ..., q and ha(t/n) being a
Lipschitz continuous function defined on [0, 1]. The noise κt is the same as in Eq. (5).
Based on the findings of Perron and Qu (2010) and McCloskey and Perron (2013) for the uni-
variate and Sibbertsen et al. (2018) for the multivariate case, we know that the level shifts in
the processes described in Eq. (5) and (6) only affect the periodogram up to j = O(n1/2). These
stochastic orders hold for the described processes, as well as for deterministic level shifts and
fractional trends. The orders are exact under level shifts and approximate for slowly varying
trends. The next theorem establishes consistency of the MLWNS test.

Theorem 4. Assume that the DGP of Xt is either given by Eq. (5) or (6), further let n → ∞
which gives m

n1/2 → ∞, P (d̂a − d0
a ≥ 0) → 1 ∀a ∈ {1, ..., q}, with Ĝ(d̂, θ̂) being positive definite

and Assumptions 1–6 hold will yield MLWNS
p→∞ as n→∞.

Note that Theorem 4 does not require low frequency contamination in every single trajectory
since the DGPs presented in Eq. (5) and Eq. (6) allow for low frequency contamination in the
subvectors of Xt as well.

4 Finite sample results

In this section, we provide some simulation results in order to examine the finite sample per-
formance of the MLWN estimator compared to the GSE estimator of Shimotsu (2007) in a
multivariate perturbed fractional setup. Further, we compare the finite sample performance of
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the MLWS test of Sibbertsen et al. (2018) with our noise robust alternative.
For the simulations, we use the following DGP in order to have a model in line with Eq. (1),
e.g.:

Zt = Yt +Wt, (7)

where we select the order of q = 2 so that Zt = (z1t, z2t)
′ is a bivariate system. We model the

multivariate signal process by using a VARFIMA(0,d,0) representation, where the long range
behaviour of the time series is modelled by (1 − L)d, where d gives the order of fractional
integration. The relationship between the persistence of the shocks and the memory parameter
can be expressed by the binomial expansion of (1 − L)d =

∑∞
j=0

Γ(j−d)
Γ(−d)Γ(j+1)L

j , with Γ being
the gamma function and L given as the Backshift operator. The noise process is modelled
by a multivariate white noise and has short memory. The noise-to-signal ratio is defined as
nsra =

σ2
κ,a

σ2
u,a

. The Monte Carlo simulation conducts 10,000 replications of time series with 2,500
observations each, where we select for the nsr ∈ {5, 15}, which is chosen to reflect empirical
findings of the volatility in the squared returns series. It should be noted that we used smaller
and larger sample sizes as well, but we did not receive different results.
We want to analyse the behaviour of the estimator and the score-type test for different kinds
of correlations ρ between the single signal processes, and choose ρ ∈ {0, 0.4, 0.8}. It follows
that we have no, medium, and high dependence between the single elements of the time series.

nsr=5, ρ = 0 nsr=15, ρ = 0

d0 MLWN GSE MLWN GSE
0.2 0.2240 (0.1488) 0.0637 (0.0341) 0.2142 (0.1728) 0.0251 (0.0342)

0.2254 (0.1505) 0.0629 (0.0341) 0.2175 (0.1784) 0.0254 (0.0341)
0.3 0.3164 (0.1378) 0.1304 (0.0345) 0.3164 (0.1872) 0.0649 (0.0345)

0.3151 (0.1342) 0.1307 (0.0350) 0.2997 (0.1831) 0.0652 (0.0347)
0.4 0.4092 (0.1170) 0.2185 (0.0356) 0.4078 (0.1693) 0.1291 (0.0363)

0.4074 (0.1169) 0.2185 (0.0355) 0.3908 (0.1632) 0.1300 (0.0359)

Table 1: Simulation results applied to a multivariate perturbed ARFIMA process. The single
trajectories have the same degree of persistence. The standard deviation is given in parentheses

These parameter settings are the same for all of the different kinds of simulations if not stated
otherwise.
To investigate the performance of the estimators and the tests, we select da ∈ {0.2, 0.3, 0.4} and
allow for the same degree of memory in the time series. To examine the performance when the
memories are different, we select d = (0.4, 0.2)′, as it is done by Shimotsu (2007). The bandwidth
is set to be m = n0.7 to guarantee comparability between the two estimators. However, it is
possible to select a higher bandwidth for the MLWN estimator, e.g. m = n0.8, reasoned by
accounting for the additional noise term and under sufficient smoothness of the spectrum of the
noise process near the origin. In unreported simulation, we find that selecting m = n0.8 leads to
a significant improvement of the MLWN estimator and we recommend using this in practice.

The memory estimates of the GSE and the MLWN estimator for a bivariate uncorrelated time
series where each component obtains the same memory are stored in Table 1. Focusing first on
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d0 = (0.4, 0.2)′

nsr=5 nsr=15
ρ = 0 ρ = 0.4 ρ = 0.8 ρ = 0 ρ = 0.4 ρ = 0.8

GSE 0.1964 0.2164 0.2076 0.1126 0.1293 0.1261
(0.0293) (0.0350) (0.0334) (0.0299) (0.0352) (0.0348)

GSE 0.0601 0.0595 0.0462 0.0243 0.0241 0.0195
(0.0276) (0.0336) (0.0319) (0.0280) (0.0338) (0.0338)

MLWN 0.4042 0.4066 0.4037 0.4087 0.4091 0.4066
(0.1096) (0.1222) (0.1091) (0.1621) (0.1703) (0.1629)

MLWN 0.2257 0.2187 0.1844 0.1775 0.1944 0.1820
(0.1489) (0.1450) (0.1291) (0.1731) (0.1755) (0.1775)

Table 2: Simulation results of the GSE and the MLWN estimator for different amounts of
correlation and different degrees of persistence for each of the perturbed ARFIMA processes.
The standard deviation is given in parentheses.

the results of the GSE, we immediately see the heavily downward biased estimates of the memory
parameter. In the low perturbation setup we already receive a downward bias of around 50%. If
we increase the disturbance, the bias gets even more severe. Since in practice, the nsr found in
financial time series is typically high, this is a huge drawback when using the GSE.
Focusing now on the performance of the MLWN estimator, we see that adding a constant in
order to explicitly account for the additional source of noise obtained in the series significantly
increases the precision of the estimator. Only when the nsr and the memory parameter are low,
do we have a slightly upward biased estimate of the memory parameter. However, this is of minor
interest since financial time series are typically rather persistent, with the memory parameter
being in the higher stationary region up to the boundary case of 0.5. Another explanation is that
we use a non-optimal bandwidth in this setting. We find that the MLWN estimator improves if
the memory parameter, the bandwidth, the nsr, and/or the sample size increases.
The results given in Table 2 show that our estimator achieves consistent estimates when the
time series have differing memory parameters for the single components over different kinds of
nsr. We also allow for different kinds of correlations between the individual components. This
results in an improvement of the estimators reasoned by the additional coherence information.
However, the GSE still suffers from a severe bias which cannot be eliminated by the additional
information caused by the correlation. When we allow for the same degree of persistence the
results do not change. We get more precise estimates as the correlation increases. Therefore,
the respective results are omitted. These results confirm the already mentioned problems in the
univariate setting for the multivariate case. Even the additional information that we receive
through the cross-periodogram is not sufficient to offset the influence of the perturbation on the
estimation of the memory parameter.
Next, we consider the finite sample properties of the MLWNS test compared to the MLWS test.
In order to scrutinise the size of the different testing procedures under a true long memory with
noise process we select the same values for d, the nsr, and ρ as previously. In addition, we set
d0 = (0.49, 0.49)′ in order to analyse the performance of our testing procedure for the boundary
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nsr=5
d0 ρ = 0 ρ = 0.4 ρ = 0.8

MLWS MLWNS MLWS MLWNS MLWS MLWNS
0.2 0.074 0.083 0.0823 0.0844 0.0812 0.0954
0.3 0.2335 0.1229 0.2323 0.1182 0.237 0.089
0.4 0.5253 0.078 0.5309 0.0816 0.5582 0.073
0.49 0.7564 0.0354 0.7676 0.0346 0.8107 0.0406

nsr=15
0.2 0.0569 0.0636 0.059 0.0667 0.054 0.0742
0.3 0.1565 0.0742 0.1521 0.0688 0.1607 0.0752
0.4 0.495 0.0809 0.4894 0.0697 0.4765 0.0612
0.49 0.8358 0.0316 0.8385 0.028 0.8144 0.0241

Table 3: Size comparison of the MLWS and MLWNS tests for a perturbed bivariate ARFIMA
process. The degree of persistence is the same for all trajectories. The significance level is
selected to be α = 5%.

size power
nsr=5

ρ = 0 ρ = 0.4 ρ = 0.8 ρ = 0 ρ = 0.4 ρ = 0.8

φ = 1 φ = 0 φ = 1 φ = 0 φ = 1 φ = 0

MLWS 0.2542 0.251 0.2604 0.9774 0.975 0.9776 0.9727 0.9753 0.9754
MLWNS 0.0206 0.024 0.0405 0.8337 0.8115 0.8533 0.8769 0.8312 0.876

nsr=15
MLWS 0.2082 0.2187 0.2069 0.9836 0.9808 0.9797 0.9826 0.9815 0.9833
MLWNS 0.0567 0.06 0.0748 0.8363 0.7896 0.8416 0.8426 0.7979 0.8084

Table 4: Size and power comparison of the MLWS and MLWNS tests for a perturbed bivariate
ARFIMA process with D = (0.4, 0.2)′. The significance level is selected to be α = 5%.

case. For the significance level we select 5%. It should be noted that the bandwidth is again set
to m = n0.7 to ensure comparability between both approaches.
Table 3 contains the size results of the MLWS and the MLWNS tests for different degrees of
correlation given in the signal process and the same degree of memory in the bivariate system.
As expected the MLWS test does not hold its nominal size any longer if the persistence is high.
The only exception is given for a rather low memory parameter of 0.2. Hence, the testing
procedure suffers from heavy size distortions when the time series do have long memory but are
(heavily) perturbed.
However, for our testing procedure, the size improves with an increasing nsr and with increasing
correlation. Only for the boundary case where d0 = (0.49, 0.49)′ we see that the MLWNS is
slightly undersized. When the nsr is low, our testing procedure tends to be slightly liberal.
When we allow for different persistences upon the individual elements, the results do not change
(cf. Table 4). The MLWS test is not able to hold the size, while for the MLWNS test the
size improves with increasing nsr and correlation again. However, for some reason our testing
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nsr=5 nsr=15
d0 φ = 1 φ = 0 φ = 1 φ = 0

MLWS MLWNS MLWS MLWNS MLWS MLWNS MLWS MLWNS
0.2 0.9748 0.9108 0.9747 0.9142 0.9776 0.93 0.9803 0.9363
0.3 0.9724 0.8931 0.9717 0.893 0.9788 0.9271 0.9789 0.9293
0.4 0.9754 0.8228 0.9789 0.8352 0.9852 0.9207 0.987 0.9204
0.49 0.9788 0.687 0.9771 0.7176 0.9944 0.9084 0.9939 0.9137

Table 5: Power comparison of the MLWS and MLWNS tests for a stationary (left) and a non-
stationary perturbed long memory level shift process for the same degree of persistence among
the time series. The shifts occur simultaneously. The significance level is selected to be α = 5%.

procedure appears to be conservative under a low nsr.
The power properties of the testing procedures are analysed under a perturbed long memory
random level shift process and a multivariate smooth trend model. For the random level shift
process we use the DGP for the size simulation to get the long memory-plus-noise component
Zt = (z1t, ..., zqt)

′, while the multivariate random level shift process is given by µt. This gives us
the following DGP for our power analysis

Xt = µt + Zt, (8)

µt = (Iq − φΠt)µt−1 + Πtet, (9)

where we assume mutual independence between the single noise processes included in Zt, Πt =

diag(π1t, ..., πqt) and et. The process µt is defined as in Eq. (5). Hence, we allow for correlation
between two signal processes in our DGP, but we do not allow for correlation in our noise
component or correlation between the signal and noise components.
In order to scrutinise the power properties of our testing procedure for stationary as well as for
non-stationary random level shift processes, we allow the autoregressive coefficient to be in the
range of (0, 1). As a result, φ represents the persistence of our multivariate system.
In our simulation study, we inspect the performance of our testing procedure with a shift

probability fixed at p = 5/n, which gives five shifts in expectations with a standard deviation
of σe = 1. The multivariate level shift process described in Eq. (8) and (9) is examined for
φ = 1, which represents a stationary and φ = 0 a non-stationary system, respectively. In order
to address the possibility of different kinds of information regarding the coherence reasoned by
distinct behaviours of the breaks, we analyse a variety of values for ρπ and ρe. For brevity, we
only focus on ρπ = ρe. As a result, we have the cases where the shifts occur independently in
the single components of the system for ρπ = ρe = 0, while for ρπ = ρe = 1 the occurrence of
the shifts will match in time and size.
For the multivariate smooth trend process we select, similar to Qu (2011), a non-monotonic
deterministic trend for H(t/n) and a white noise process for κt. All in all we get a multivariate
perturbed long memory non-monotonic deterministic trend model of the form

Xt = Zt + sin(4πt/n) + εt, εt
iid∼ N(0, 1). (10)
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ρπ = ρe = 1

φ = 1

nsr=5 nsr=15
ρ d0 0.2 0.3 0.4 0.49 0.2 0.3 0.4 0.49
0 MLWS 0.9696 0.9659 0.9688 0.9689 0.9742 0.9780 0.9840 0.9922
0 MLWNS 0.9676 0.9545 0.9421 0.9457 0.9750 0.9719 0.9643 0.9701

0.4 MLWS 0.9681 0.9658 0.9659 0.9688 0.9733 0.9753 0.9820 0.9911
0.4 MLWNS 0.9697 0.9610 0.9546 0.9597 0.9750 0.9719 0.9697 0.9728
0.8 MLWS 0.9666 0.9664 0.9668 0.9742 0.9772 0.9737 0.9824 0.9916
0.8 MLWNS 0.9781 0.9740 0.9748 0.9760 0.9802 0.9768 0.9784 0.9814

φ = 0

0 MLWS 0.9693 0.9662 0.9712 0.9725 0.9734 0.9761 0.9829 0.9929
0 MLWNS 0.9620 0.9508 0.9448 0.9513 0.9745 0.9695 0.9647 0.9678

0.4 MLWS 0.9685 0.9657 0.9708 0.9709 0.9724 0.9739 0.9826 0.9902
0.4 MLWNS 0.9709 0.9618 0.9626 0.9638 0.9743 0.9730 0.9707 0.9714
0.8 MLWS 0.9675 0.9678 0.9649 0.9737 0.9726 0.9733 0.9820 0.9903
0.8 MLWNS 0.9774 0.9733 0.9738 0.9758 0.9762 0.9752 0.9782 0.9842

ρπ = ρe = 0

φ = 1

nsr=5 nsr=15
ρ d0 0.2 0.3 0.4 0.49 0.2 0.3 0.4 0.49
0 MLWS 0.9964 0.9939 0.9915 0.9856 0.9973 0.9985 0.9988 0.9985
0 MLWNS 0.9576 0.9339 0.7383 0.9209 0.9670 0.9473 0.7672 0.9641

0.4 MLWS 0.9954 0.9949 0.9920 0.9872 0.9979 0.9980 0.9980 0.9981
0.4 MLWNS 0.9539 0.9287 0.7703 0.9244 0.9647 0.9465 0.7768 0.9663
0.8 MLWS 0.9958 0.9945 0.9946 0.9947 0.9968 0.9976 0.9985 0.9988
0.8 MLWNS 0.9653 0.9531 0.8583 0.9477 0.9680 0.9521 0.7963 0.9683

φ = 0

0 MLWS 0.9963 0.9956 0.9933 0.9878 0.9973 0.9975 0.9979 0.9987
0 MLWNS 0.9713 0.9657 0.9546 0.9295 0.9789 0.9784 0.9814 0.9664

0.4 MLWS 0.9972 0.9947 0.9920 0.9899 0.9968 0.9982 0.9986 0.9993
0.4 MLWNS 0.9730 0.9652 0.9576 0.9324 0.9783 0.9753 0.9791 0.9685
0.8 MLWS 0.9976 0.9964 0.9966 0.9959 0.9969 0.9975 0.9982 0.9991
0.8 MLWNS 0.9732 0.9660 0.9578 0.9524 0.9765 0.9760 0.9773 0.9705

Table 6: Size-adjusted power comparison of the MLWS and MLWNS tests for a stationary and
a non-stationary perturbed long memory level shift process for the same degree of persistence
among the time series. The correlation ρ is given in the signal processes. The significance level
is selected to be α = 5%.

Table 5 includes the results of the power simulation for the random level shift process where both
trajectories share the same degree of persistence. We would already expect that the power of the
MLWS test is higher compared to the MLWNS test. In general, we can see that the power in-
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nsr=5 nsr=15

ρ d0 0.2 0.3 0.4 0.49 0.2 0.3 0.4 0.49

0 0.9996 0.9991 0.9954 0.9921 0.9992 0.9996 0.9990 0.9965
0.4 0.9984 0.9986 0.9909 0.9792 0.9992 0.9996 0.9992 0.9983
0.8 0.9982 0.9953 0.9622 0.9423 0.9993 0.9997 0.9994 0.9975

Table 7: Size-adjusted power properties of the MLWNS test for a perturbed bivariate long mem-
ory deterministic smooth trend model. The memory parameter is the same for both trajectories.
The significance level is selected to be α = 5%.

creases for increasing nsr and decreasing memory parameter values. This result is not surprising,
since it gets harder to detect the level shift if the persistence of the process gets stronger. Also,
we achieve better power results under a non-stationary process as well as for an increasing sample
size. We find the same results when allowing for differing persistences in the single time series.
In addition, we investigated the power properties of the testing procedures under a size-adjusted
setting to ensure comparability among these. The results are given in Table 6. We are able to

nsr=5 nsr=15

ρ d0 0.2 0.3 0.4 0.49 0.2 0.3 0.4 0.49

0 0.0755 0.2263 0.3921 0.4337 0.0566 0.1481 0.4339 0.5505
0.4 0.0800 0.2268 0.3988 0.4462 0.0580 0.1599 0.4307 0.5504
0.8 0.0846 0.2278 0.4166 0.5245 0.0582 0.1501 0.4203 0.5528

Table 8: Size results of the MLWS test after applying a pre-whitening procedure on the raw time
series for different degrees of correlation. The memory parameter is the same among the single
trajectories.

see a massive increase in the power results of the test. Now, the MLWNS test is very close to the
performance of the MLWS test, giving a satisfactory power under the alternative. Apart from
that, the table also consists of the size-adjusted power results for the case when ρπ = ρe = 0,
so that the shifts and the size of the shifts do not match. We observe that the power is slightly
higher under a non-stationary random level shift process. The power increases if we allow for
additional correlation in the signal processes, and hence increase the information given in the
phase of the spectra. In addition, we observe a slightly higher power for processes with a lower
memory parameter.
Further, we investigate in unreported simulations the performances of the tests when reducing
the shift probability to three and to two shifts in expectation, as under a random level shift
model the null can be true as well. Under this scenario we observe a decrease in the power of
both testing procedures as the probability of observing the null gets higher with a decreasing
shift probability.
The results of the size-adjusted power performance of the MLWNS test under a multivariate
smooth trend model are given in Table 7. We observe a small power loss for an increase in the
memory parameter and an increase in the correlation given in the long memory signal processes.
Further, we see that the power is higher for the higher noise-to-signal ratios. These findings are
due to the stronger signal compared to the low frequency contamination.
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Next, we need to investigate the performance of the MLWS test in terms of size when applying
a pre-whitening on the time series beforehand. Therefore, we follow the procedures of Qu (2011)
and Sibbertsen et al. (2018) in order to account for the short run dynamics given in the time
series of interest in finite samples. Instead of using a multivariate pre-whitening we are sticking
to the univariate method as the multivariate fitting of a FIVARMA process suffers from conver-
gence issues in the numerical optimization while doing the maximum likelihood estimation of the
model in our setting, especially when the memory parameter and the correlation are high. As
mentioned in Sibbertsen et al. (2018), the size is well controlled irrelevant of the used procedure.
Hence, we can use the univariate method without any drawbacks. The simulation results are
given in Table 8 for the MLWS test. We see an improvement in size especially for the higher
nsr ratio. However, with an increasing persistence we still obtain a greatly size distorted testing
procedure. As a result, the pre-whitening does not improve the performance of the MLWS test
in such a way that it can be applied to a time series following a rather persistent perturbed
fractional process.

5 Empirical example

We already know by the empirical applications of Qu (2011) and Sibbertsen et al. (2018), among
others, that it is doubtful that the squared returns follow a true long memory process. In con-
trast, realised volatilities from the same stock or index seem to be generated by a true long
memory process, as the null cannot be rejected. To shed some light on those contradictory re-
sults, we propose to re-investigate the daily log squared returns with a procedure that is able to
accommodate for possible perturbation. Here, we are using the returns and realised volatilities
of the BEL 20 (BFX), S&P BSE SENSEX (BSESN), and the Spanish IBEX (IBEX) starting
in 2000 and ending in 2018 with a total of 4,687 observations. The data is obtained from the
realised library of the Oxford-Man Institute of quantitative finance.
Our procedure, as it stands so far, is not able to handle fractionally cointegrated time series. As a
consequence, our first step is to make sure that our analysed time series are not fractionally coin-
tegrated. Therefore, we are using the rank estimation procedure of Nielsen and Shimotsu (2007)
and the fractional cointegration test proposed by Robinson (2008). According to Leschinski
et al. (2021) these procedures should be appropriate in our setup to detect possible fractional
cointegrating relationships. Neither in the squared returns nor in the realised volatility are we
able to detect any kind of fractional cointegrating relation. Hence, we can proceed with our
multivariate procedures.
The results are given in Table 9. For all of the scenarios we use a bandwidth equal to m = n0.7.
We find that changing the bandwidth does not change the overall result. In general, we have
slightly higher memory estimates in the realised volatility time series compared to the squared
returns. They are close to the boundary case of 0.5 where the process gets non-stationary. How-
ever, the higher memory estimates are not surprising, as we have a closer approximation of the
true underlying process when using tick data. When comparing the memory estimates of the
GSE with the ones obtained by using the noise robust version, we see huge downward biased
estimates for the squared return time series. This is what we expect if we face indeed a perturbed
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log squared returns RV
BFX BSESN IBEX BFX BSESN IBEX

MLWN 0.4989 0.4099 0.4249 0.5671 0.4237 0.4992
GSE 0.3948 0.3080 0.3311 0.5071 0.2779 0.4458
MLWNS 1.14628 1.8783
MLWS 1.4458** 0.5448

Table 9: Memory estimates of the GSE and the MLWN estimator and test statistic values of
the MLWS and the MLWNS test. Two asteriks indicate statistically significant results at the 5%
level.

fractional process. Turning to the realised volatilities, we see slightly smaller memory estimates
when using the GSE in contrast to the MLWN estimator. This could be caused by microstruc-
ture noise in the realised volatilites. However, for the cases of the BFX and the IBEX the bias
is not really severe and can be neglected, as it could be caused by the inflation of the variance
of the MLWN estimator as well. In contrast, we observe a memory estimate of the GSE for the
BSESN time series which is half as high as that of the MLWN estimator. This could be caused
by an inappropriate sampling frequency for the RV, which might be perturbed by microstructure
noise.
The results of the MLWS and the MLWNS tests are given in Table 9. The MLWS procedure
rejects the null of a true long memory process in the squared returns at a significance level of
5% in favour of spurious long memory. In contrast to that the testing procedure is not able to
reject the null when using the realised volatility as a proxy. If we use the perturbation robust
testing procedure, we do not face the struggle of contradictory results regarding the nature of
the process any longer. For the realised volatilities as well as for the squared returns we are not
able to reject the null of a true long memory or a true long memory with noise process. From
this perspective, the differing results regarding the nature of the volatility could be explained as
arising from an inadequate approximation of the spectral density near the zero frequencies.

6 Conclusion

This paper contains a multivariate extension to the local Whittle with noise estimator of Hurvich
and Ray (2003) and a multivariate testing procedure for detecting spurious long memory in a
perturbed fractional framework based on the first derivative of the estimator. We suggest ap-
proximating the multivariate spectrum of a perturbed fractional process near the zero frequency
by adding additional constants. This results in a bias reduction when estimating the memory
parameter in a signal-plus-noise setting. However, adding an additional constant results in an
increase of the asymptotic variance of the memory estimator d̂ which depends on the true long
memory parameter d0. We show that the estimator is consistent and asymptotically normal.
Based on the first derivative of the MLWN estimator, we additionally propose a (multivariate)
perturbation robust testing procedure to differentiate between true and spurious long memory
using the same technique as Qu (2011) and Sibbertsen et al. (2018). Reasoned by the poor ap-
proximation of the periodogram to the spectral density in a perturbed fractional context, these
testing procedures suffer from poor size properties. Our results show that accounting for the
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additional noise term in the log squared returns leads to a non-rejection of the null and, there-
fore, to the non-rejection of a true long memory process. This confirms the results of the testing
procedures of Qu (2011) and Sibbertsen et al. (2018) when applied to the realised variance.
We derive the limiting distribution and show consistency of the procedure against multivariate
random level shift and smooth trend processes. However, the limiting distribution of the test
statistic is not pivotal.
A comprehensive Monte Carlo Study shows that the MLWS estimator achieves considerable bias
reduction compared to the GSE of Shimotsu (2007), especially when the memory parameter and
the nsr are high. We show that our modified score type test has improved size properties while
having appropriate power in a setting where the time series of interest are contaminated by low
frequencies.
In our empirical application we utilised the procedures to the daily log squared returns and re-
alised volatilities of the BEL 20, S&P BSE SENSEX, and the Spanish IBEX and were not able
to reject the null of a true perturbed long memory process for the squared returns and a true
long memory process (potentially perturbed by microstructure noise) for the realised volatilities.
All in all, we conclude that contradictory results regarding the nature of the volatility process
could arise from an inadequate approximation of the spectral density near the zero frequency.

Acknowledgements

The financial support of Deutsche Forschungsgemeinschaft (DFG) is gratefully acknowledged.
We are also grateful to Bent Jesper Christensen, Tomas del Barrio Castro, Morten Nielsen, the
participants of the SNDE 2022, the DAGStat in Hamburg 2022, the NSF-NBER Time Series
Conference in Boston 2022, the Econometrics Research Seminar at University of Rostock and
the University of the Balearic Islands for helpful comments and discussions.

- 18 -



Appendix

Proof of Theorem 1

The proof of consistency mainly follows the proof of Shimotsu (2007). In order to prove con-
sistency of d̂ we need to prove that lim

n→∞
P (d̂ ∈ D1) = 0 and (d̂ − d0)1{d̂ ∈ D2}

p−→ 0,

with D1 = (−∞, d0 − 1/2 + ε)q ∩D, D2 = [d0 − 1/2 + ε,+∞)q ∩D with D = [∆1,∆2]q, with
0 < ∆1 < ∆2 < 1/2, 0 < ε < 1/4, Θ is a compact and convex set in Rq, and 1{} is defined
as the indicator function of the respective event. In the case where d0

a ∈ (0, 1/2), ∀a = 1, ..., q,
and ε is chosen small enough, the parameter space D1 is empty. If it is not empty, the proof is
a straightforward adaption of the proof given by Shimotsu (2007). We start with the proof of
(d̂− d0)1{d̂ ∈ D2}

p−→ 0 and therefore define

E(d, θ) = R(d, θ)−R(d0, θ0)

= log det Ĝ(d, θ)− 2

m

q∑
a=1

da

m∑
j=1

log λj +

q∑
a=1

m∑
j=1

log(1 + θaλ
2da
j )

−

log det Ĝ(d0, θ0)− 2

m

q∑
a=1

d0
a

m∑
j=1

log λj +

q∑
a=1

m∑
j=1

log(1 + θ0
aλ

2d0a
j )


= log det Ĝ(d, θ)− log det Ĝ(d0, θ0)− 2

m

q∑
a=1

(da − d0
a)

m∑
j=1

log λj +

q∑
a=1

m∑
j=1

log αj(da, θa)

= log det Ĝ(d, θ) + log
(

2πm

n

)−2((d1−d01)+...+(dq−d0q))
− log det Ĝ(d0, θ0)

− 2

m

q∑
a=1

(da − d0
a)

m∑
j=1

(log j − log m) +

q∑
a=1

m∑
j=1

log αj(da, θa)

= log A(d, θ)− log B(d, θ)− log A(d0, θ0) + log B(d0, θ0) + S2(d) + Sα(d, θ),

with

A(d, θ) =

(
2πm

n

)−2((d1−d01)+...+(dq−d0q))
det Ĝ(d, θ),

B(d, θ) =

q∏
a=1

(2(da − d0
a) + 1)−1det G0,

S2(d) = −2

q∑
a=1

(da − d0
a)

 1

m

m∑
j=1

log j − log m

− q∑
a=1

log(2(da − d0
a) + 1), (11)

Sα(d, θ) =

q∑
a=1

m∑
j=1

log αj(da, θa) =

q∑
a=1

m∑
j=1

log

1 + θaλ
2da
j

1 + θ0
aλ

2d0a
j

 . (12)
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The upper bound for Eq. (11) is directly given by the results from Shimotsu (2007). Further,
note that there exist constants C > 0 and c such that for each a = 1, ..., q we obtain for Eq. (12)

sup
(da,θa)∈D×Θ,k=1,...,m

|αk(da, θa)− 1|≤ C log(n/m)2e−
√
c log(n/m) = o(1)

as n→∞.
For the remaining parts A(d, θ) and B(d, θ), we need to show that there exists a non-random
matrix Ξ(d, θ) such that we get

sup
D2×Θ

|A(d, θ)− Ξ(d, θ)| = op(1), (13)

Ξ(d, θ) ≥ B(d, θ), (14)

Ξ(d0, θ0) = B(d0, θ0). (15)

In order to show that (d̂− d0)1{d̂ ∈ D2}
p−→ 0 as n→∞ it needs to hold that

log A(d, θ)− log B(d, θ) ≥ log A(d, θ)− log Ξ(d, θ)

= log ([Ξ(d, θ) + op(1)] /Ξ(d, θ)) = op(1),

log A(d0, θ0)− log B(d0, θ0) = log
([

Ξ(d0, θ0) + op(1)
]
/Ξ(d0, θ0)

)
= op(1),

uniformly in D2.
We begin with proving Eq. (13). We start the proof by re-expressing Λj(d, θ)

−1 by

Λj(d, θ)
−1 = Λj(d− d0, θ − θ0)−1Λj(d

0, θ0)−1

= diag(λ
(da−d0a)
j ei(λj−π)(da−d0a)/2αj(da, θa)

−1/2)diag(λ
d0a
j e

i(λj−π)d0a/2(1 + θ0
aλ

2d0a
j )−1/2)

= Λj(d̄, θ̄)
−1Λj(d

0, θ0)−1.

Using this, we have

A(d, θ) =

(
2πm

n

)−2((d1−d01)+...+(dq−d0q))

× det

 1

m

m∑
j=1

Re
[
Λj(d̄, θ̄)

−1Λj(d
0, θ0)−1Iz(λj)Λ

∗
j (d

0, θ0)−1Λ∗j (d̄, θ̄)
−1
]

= det

 1

m

m∑
j=1

Re
[
Mj(d̄, θ̄)Λj(d

0, θ0)−1Iz(λj)Λ
∗
j (d

,θ0)−1M∗j (d̄, θ̄)
] , (16)

with Mj(d̄, θ̄) = diag(ei(λj−π)(da−d0a)/2(j/m)da−d
0
aαj(da, θa)

−1/2). In the following, let Izj =

Iz(λj) and waj = wa(λj) denote the a-th element of w(λj) in order to ease the notation. Taking
a closer look at the (ab)-th element of Eq. (16) yields

1

m

m∑
j=1

Re

[
ei(λj−π)(d̄a−d̄b)/2

(
j

m

)d̄a+d̄b

αj(da, θa)
−1/2αj(db, θb)

−1/2
wajw

∗
bj

Λja(d0, θ0)Λ∗jb(d
0, θ0)

]
.
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By Lemma 2 and summation by parts we have uniformly in (a, b)

sup
D2×Θ

∣∣∣∣∣∣ 1

m

m∑
j=1

ei(λj−π)(d̄a−d̄b)/2
(
j

m

)d̄a+d̄b

αj(da, θa)
−1/2αj(db, θb)

−1/2

(
wajw

∗
bj

Λja(d0, θ0)Λ∗jb(d
0, θ0)

−G0
ab

)∣∣∣∣∣∣
≤ 1

m

m−1∑
r=1

sup
D2×Θ

∣∣∣∣( rm)d̄a+d̄b
ei(λr−π)(d̄a−d̄b)/2αr(da, θa)

−1/2αr(db, θb)
−1/2

−
(
r + 1

m

)d̄a+d̄b

ei(λr+1−π)(d̄a−d̄b)/2αr+1(da, θa)
−1/2αr+1(db, θb)

−1/2

∣∣∣∣∣
×

∣∣∣∣∣∣
r∑
j=1

(
wajw

∗
bj

Λja(d0, θ0)Λ∗jb(d
0, θ0)

−G0
ab

)∣∣∣∣∣∣+

∣∣∣∣∣∣ 1

m

m∑
j=1

(
wajw

∗
jb

Λja(d0, θ0)Λ∗jb(d
0, θ0)

−G0
ab

)∣∣∣∣∣∣
≤ c

m−1∑
r=1

( r
m

)2ε 1

r2

∣∣∣∣∣∣
r∑
j=1

(
wajw

∗
bj

Λja(d0, θ0)Λ∗jb(d
0, θ0)

−G0
ab

)∣∣∣∣∣∣
+

1

m

∣∣∣∣∣∣
m∑
j=1

(
wajw

∗
bj

Λja(d0, θ0)Λ∗jb(d
0, θ0)

−G0
ab

)∣∣∣∣∣∣ (17)

= op(1).

Uniformly over D2 ×Θ we have

1

m

m∑
j=1

Re
[
Mj(d̄, θ̄)Λj(d

0, θ0)−1IzjΛ
∗
j (d

0, θ0)−1M∗j (d̄, θ̄)
]

=
1

m

m∑
j=1

Re
[
Mj(d̄, θ̄)G

0M∗j (d̄, θ̄)
]

+ op(1).

In order to derive an approximation of the right hand side we use the results from Robin-
son (1995a) and Shimotsu (2007) that sup

c≥γ≥∆

∣∣∣γm−1
∑m

j=1(j/m)γ−1 − 1
∣∣∣ = O(m−∆) for 0 <

∆ < c < ∞ and ei(λ−π)(d̄a−d̄b)/2 = e−iπ(d̄a−d̄b)/2 + O(λ). Based on that we define e−iπ(d̄a−d̄b)/2

to be the (a, b)-th element of the matrix E(d̄) and (1 + d̄a + d̄b)
−1α(da, θa)

−1/2α(db, θb)
−1/2 =∫ 1

0 x
d̄a+d̄bdxα(da, θa)

−1/2α(db, θb)
−1/2 to be the (a, b)-th element of the matrix M∞(d̄, θ̄). Now

we get

1

m

m∑
j=1

[
Mj(d̄, θ̄)G

0M∗j (d̄, θ̄)
]

= E(d̄)�M∞(d̄, θ̄)�G0 +O(mn)−1 +O(m−2ε),

with � symbolising the Hadamard product. By the same arguments as in Shimotsu (2007) Eq.
(13) follows with

Ξ(d, θ) = det(Re[E(d̄)]�M∞(d̄, θ̄)�G0).

The proof for Eq. (14) and Eq. (15) follows as in Shimotsu (2007) by using Oppenheim’s
inequality and the fact that αj(d0, θ0) = 1 for all entries in M∞(0). This proves the first part.
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Now consider the proof of lim
n→∞

P (d̂ ∈ D1) = 0. We have

log det Ĝ(d, θ)− log det Ĝ(d0, θ0)− 2

m

q∑
a=1

(da − d0
a)

m∑
j=1

log λj −
1

m

q∑
a=1

m∑
j=1

log(αj(da, θa))

= log det
1

m

m∑
j=1

Re
[
Λj(d− d0, θ − θ0)−1Λj(d

0, θ0)−1IzjΛ
∗
j (d

0, θ0)−1Λ∗j (d− d0, θ − θ0)−1
]

− 2

m

q∑
a=1

(da − d0
a)

m∑
j=1

log λj − log det Ĝ(d0, θ0)− 1

m

q∑
a=1

m∑
j=1

log(αj(da, θa))

= log det D̂(d, θ)− log det D̂(d0, θ0)− 1

m

q∑
a=1

m∑
j=1

log(αj(da, θa))

with

D̂(d, θ) =
1

m

m∑
j=1

Re
[
Pj(d− d0, θ − θ0)Λj(d

0, θ0)−1IzjΛ
∗
j (d

0, θ0)−1P ∗j (d− d0, θ − θ0)
]

Pj(d− d0, θ − θ0) = diag(ei(λj−π)(d−d0)/2(j/p)d−d
0
αj(d, θ)

−1/2), p = (m! )1/m.

Because of the fact that the logarithm is a monotone increasing function of its argument it is
sufficient to show

P ( inf
(d,θ)∈D1×Θ

det D̂(d, θ)− det D̂(d0, θ0) ≤ 0) −→ 0 as n −→∞. (18)

Lets define for each summand of D̂(d, θ) a q-vector Υj as

Re
[
Pj(d− d0, θ − θ0)Λj(d

0, θ0)−1IzjΛ
∗
j (d

0, θ0)−1P ∗j (d− d0, θ − θ0)
]

= Re
[
ΥjΥ

∗
j

]
= Re[Υj ](Re[Υj ])

′ + Im[Υj ](Im[Υj ])
′,

which is positive semidefinite. Hence, we get a sum of m positive semidefinite matrices for
D̂(d, θ). Lets further define for a fixed κ ∈ (0, 1)

D̂κ(d, θ) =
1

m

m∑
j=[κm]

Re
[
Pj(d− d0, θ − θ0)Λj(d

0, θ0)−1IzjΛ
∗
j (d

0, θ0)−1P ∗j (d− d0, θ − θ0)
]

Kκ(d, θ) =
1

m

m∑
j=[κm]

Re
[
Pj(d− d0, θ − θ0)G0P ∗j (d− d0, θ − θ0)

]
.

Following Lütkepohl (1996) we know that

det D̂(d, θ) ≥ det D̂κ(d, θ).
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We can use Kκ(d, θ) in order to uniformly approximate D̂κ(d, θ). Let the (a, b)-th element of the
difference between D̂κ(d, θ) and Kκ(d, θ) be defined as

1

m

m∑
j=[κm]

Re

[
ei(λj−π)((da−d0a)−(db−d0b))/2

(
j

p

)(da−d0a)+(db−d0b)
αj(da, θa)

−1/2αj(db, θb)
−1/2

×

(
wajw

∗
bj

Λja(d0, θ0)Λ∗jb(d
0, θ0)

−G0
ab

)]

=

(
m

p

)(da−d0a)+(db−d0b)
Re

 1

m

m∑
j=[κm]

ei(λj−π)((da−d0a)−(db−d0b))/2
(
j

m

)(da−d0a)+(db−d0b)

×αj(da, θa)−1/2αj(db, θb)
−1/2

(
wajw

∗
bj

Λja(d0, θ0)Λ∗jb(d
0, θ0)

−G0
ab

)]
.

This difference is op(1) uniformly over (d − d0, θ − θ0) ∈ D1 × Θ. This result is derived in a
similar way as Eq. (17) from summation by parts, Lemma 2, Lemma 5.4. of Shimotsu and
Phillips (2005), and the upper bound of αj(d, θ). With this result, we have for any κ ∈ (0, 1)

sup
D1×Θ

∣∣∣det D̂κ(d, θ)− det Kκ(d, θ)
∣∣∣ = op(1) as n −→∞.

Now we only need to derive a lower bound for Kκ(d, θ) for d̂ ∈ D1 in order to complete the proof.
Therefore, we rewrite Kκ(d, θ) as

Kκ(d, θ) = Mκ
m(d− d0, θ − θ0)�G0,

with Mκ
m(d− d0, θ − θ0) being a positive semidefinite matrix given by

Mκ
m =

1

m

m∑
j=[κm]

Re
[
ZjZ

∗
j

]
,

Zj =

(
ei(λj−π)(d1−d01)/2

(
j

p

)(d1−d01)

αj(d1, θ1)−1/2, ..., ei(λj−π)(dq−d0q)/2
(
j

p

)(dq−d0q)
αj(dq, θq)

−1/2

)
.

By Oppenheim’s inequality, Lemma 5.5 of Shimotsu and Phillips (2005), and Lemma 2 of Shi-
motsu (2006), there exists an ε ∈ (0, 0.1) and κ̄ ∈ (0, 1/4) such that we get, for a sufficiently
large m and all κ ∈ (0, κ̄),

inf
(d,θ)∈D1×Θ

det Kκ(d, θ) ≥ det G0 inf
d∈D1

q∏
a=1

1

m

m∑
j=[κm]

(
j

p

)2(da−d0a)

≥ det G0(1 + 2ε)(1− κ2ε)q−1 + o(1).

If we choose κ small enough then we get (1 + 2ε)(1− κ2ε)q−1 ≥ 1 + ε. Hence, we get

inf
(d,θ)∈D1×Θ

det D̂κ(d, θ) = inf
(d,θ)∈D1×Θ

det Kκ(d, θ) + op(1) ≥ det G0(1 + ε) + op(1).
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We already now that det D̂(d0, θ0) = det Ĝ(d0, θ0)
p→ det G0 as n → ∞. This gives us the

desired result of

P ( inf
(d,θ)∈D1×Θ

det D̂κ(d, θ)− det D̂(d0, θ0) ≤ 0) −→ 0 as n −→∞

and Eq. (18) follows which completes the proof.
We strengthen this result by showing that da − d0

a = op((log n)−6) for all a = 1, ..., q. We
achieve a faster convergence rate compared to Shimotsu (2007) caused by the more appropriate
approximation of the spectral density near the zero frequency. Therefore, we can use the proof
of Hurvich et al. (2005) with slight adaptions of the logarithmic rate to (log n)−6 and use the
maximum value of the long memory parameter in order to adapt for the multivariate version.

Proof of Theorem 2

This proof mainly uses the approach of Andrews and Sun (2004), and extends it to the multi-
variate case, combining it with the method of Shimotsu (2007). We start with the score and
the Hessian of the objective function. In addition, we define ia to be a q × q matrix where the
off-diagonal elements are zero and the a-th diagonal element is equal to one, Λj(d, θ)

−1 = Λ−1
j =

diag(λdaj e
i(λj−π)da/2(1 + θaλ

2da
j )−1/2), and Iz(λj) = Izj . Let the score m∇R(d, θ) = S(d, θ),

where ∇ is the gradient of the respective function, given by

S(da, θa) =− 2

m

m∑
j=1

Xja + tr

Ĝ(da, θa)
−1

 1

m

m∑
j=1

XjaRe
[
(Λ0

j )
−1(iaIzj + Izjia)(Λ

0∗
j )−1

]
Xja


+ tr

Ĝ(da, θa)
−1

 1

m

m∑
j=1

LjIm
[
(Λ0

j )
−1(−iaIzj + Izjia)(Λ

0∗
j )−1

]
=− 2

m

m∑
j=1

Xja + tr
[
Ĝ(da, θa)

−1Q1a

]
+ tr

[
Ĝ(da, θa)

−1Q2a

]
, (19)

withQ1a = 1
m

∑m
j=1XjaRe

[
(Λ0

j )
−1(iaIzj + Izjia)(Λ

0∗
j )−1

]
Xja, Q2a = 1

m

∑m
j=1 LjIm

[
(Λ0

j )
−1(−iaIzj + Izjia)

(Λ0∗
j )−1

]
, Lj = ((λj − π)/2, 0)′, and Xja = (log λj/(1 + θaλ

2da
j )1/2,−λdaj /(2(1 + θaλ

2da
j )1/2)′.

The Hessian m∇2R(d, θ) = H(d, θ) is given by the following terms

H(d, θ) = H1(d, θ) +H2(d, θ), (20)

H1(d, θ) = tr
[
−Ĝ−1(d, θ)∇Ĝ(da, θa)Ĝ

−1(d, θ)∇Ĝ(db, θb) + Ĝ−1(d, θ)∇2Ĝ(da,b, θa,b)
]
,

H2(d, θ) = − 2

m

m∑
j=1

∇Xj .
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The derivatives of Ĝ(d, θ) are given by

∇Ĝ(da, θa) =
1

m

m∑
j=1

Re


 log λj

1+θaλ
2da
j

+
λj−π

2 i

− λ2daj

2(1+θaλ
2da
j )

 iaΛj(d, θ)
−1IzjΛ

∗
j (d, θ)

−1



+
1

m

m∑
j=1

Re


 log λj

1+θaλ
2da
j

+
λj−π

2 i

− λ2daj

2(1+θaλ
2da
j )

Λj(d, θ)
−1IzjΛ

∗
j (d, θ)

−1ia


and

∇2Ĝ(da,b, θa,b) =
1

m

m∑
j=1

Re




log λj√
1+θaλ

2da
j

+
λj−π

2 i

− λdaj

2(
√

1+θaλ
2da
j )




log λj√
1+θbλ

2db
j

+
λj−π

2 i

− λ
db
j

2(
√

1+θbλ
2db
j )

 iaibΛj(d, θ)
−1IzjΛ

∗
j (d, θ)

−1



+
1

m

m∑
j=1

Re




log λj√
1+θaλ

2da
j

+
λj−π

2 i

− λdaj

2(
√

1+θaλ
2da
j )

 iaΛj(d, θ)
−1IzjΛ

∗
j (d, θ)

−1ib


log λj√
1+θbλ

2db
j

+
λj−π

2 i

− λ
db
j

2(
√

1+θbλ
2db
j )




+
1

m

m∑
j=1

Re




log λj√
1+θbλ

2db
j

+
λj−π

2 i

− λ
db
j

2(
√

1+θbλ
2db
j )

 ibΛj(d, θ)
−1IzjΛ

∗
j (d, θ)

−1ia


log λj√
1+θaλ

2da
j

+
λj−π

2 i

− λdaj

2(
√

1+θaλ
2da
j )




+
1

m

m∑
j=1

Re




log λj√
1+θaλ

2da
j

+
λj−π

2 i

− λdaj

2(
√

1+θaλ
2da
j )




log λj√
1+θbλ

2db
j

+
λj−π

2 i

− λ
db
j

2(
√

1+θbλ
2db
j )

Λj(d, θ)
−1IzjΛ

∗
j (d, θ)

−1iaib

 .
Further, we have

Jna =
m∑
j=1

(
Xja −

1

m

m∑
k=1

Xka

)(
Xja −

1

m

m∑
k=1

Xka

)′
.

Also we need to define

Ja =

 1 − 2d0a
2(1+2d0a)2

− 2d0a
2(1+2d0a)2

2(d0a)2

2(1+2d0a)2(1+4d0a)


Next we establish a multivariate version of the lemma used by Frederiksen et al. (2012) in order
to be able to show joint asymptotic normality of d̂ and θ̂. Therefore, we introduce the notation
D(τ) = {d ∈ D : log6(n)||d− d0||< τ} for τ > 0. The proof is given in the next Section.

Lemma 1. Given the assumptions of Theorem 2 together with Bn = diag(m1/2,m1/2λ2da
m ) we

have, as n −→∞

(a) B−1
n JnB

−1
n −→ J ,

(b) sup
d∈D(τ),θ∈Θ

||B−1
n H1(d, θ)B−1

n ||−→ Ω and sup
d∈D(τ),θ∈Θ

||B−1
n H2(d, θ)B−1

n ||= op(1), for all se-
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quences of constants τ for which n > 1 and τ = o(1)

(c) B−1
n S(d0, θ0)B−1

n
d−→N(0,Ω).

By the same argument as in Frederiksen et al. (2012) we know that the MLWN estimator exists
because the MLWN likelihood is a continuous function on a compact set. We know by Lemma
1 and by Lemma 1 of Andrews and Sun (2004) that there is a unique solution to the first
order conditions with probability tending to one which is satisfied by the results of Theorem
2. Additionally, we only need to prove positive definiteness of our Hessian to prove convexity
of our log likelihood function. For the first part of the Hessian, H1(d, θ), we have the positive
definiteness directly given by the assumption that our matrix G(d, θ) is positive definite. Since
H1(d, θ) contains the Hadamard product of two positive definite matrices positive definiteness
for the first part of the Hessian follows immediately.
For the second part of the Hessian, H2(d, θ), we know by Lemma 1 that ||B−1

n H2(d, θ)B−1
n ||=

op(1) uniformly over the set (d, θ) ∈ D(τ) × Θ. Using this together with the result of Theorem
1 that d̂ ∈ D(τ) with probability tending to one shows that our Hessian is positive definite with
probability tending to one. This concludes the proof.
It should be noted that we omit part (c) and (d) of Lemma 1 as given in Frederiksen et al. (2012)
as they do not depend on the univariate structure of the model.

Proof of Lemma 1

Proof of (a)

The convergence result directly follows from Lemma 2 in Andrews and Guggenberger (2003) by
approximating sums by integrals and holds in our multivariate case as well. We only need to
replace the single d values by the vector d = (d1, ..., dq)

′.

Proof of (b)

Let’s define for k1 = 0, 1, 2 and k2 = 0, d1, ..., dq the following expressions

Ĝk1,k2(d, θ) =
1

m

m∑
j=1

(log λj)k1(j/m)2k2Re
[
Λj(d, θ)

−1IzjΛ
∗
j (d, θ)

−1
]
,

Ḡk1(d, θ) =
1

m

m∑
j=1

(log λj)k1Im
[
Λj(d, θ)

−1IzjΛ
∗
j (d, θ)

−1
]
,

Jk1,k2(d, θ) =
1

m

m∑
j=1

(log λj)k1(j/m)2k2Λj(d− d0, θ − θ0)−1G0Λ∗j (d− d0, θ − θ0)−1.

We start with the proof of the first part of the Hessian H1(d, θ), respectively. The proof is similar
to the proof of Shimotsu (2007). Given the expression stated above we can express the elements
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in B−1
n H1(d, θ)B−1

n as

∇Ĝ(d, θ) = iaĜ1,da(d, θ) + Ĝ1,da(d, θ)ia + (π/2, 0)′ iaḠ0(d, θ)− (π/2, 0)′ Ḡ0(d, θ)ia + op((log (m))−1)

∇2Ĝ(d, θ) = iaibĜ2,da+db(d, θ) + iaĜ2,da+db(d, θ)ib + ibĜ2,da+db(d, θ)ia + Ĝ2,da+db(d, θ)iaib

+
(

(π/2)2 , 0
)′ [
−iaibĜ0,0(d, θ) + iaĜ0,0(d, θ)ib + ibĜ0,0(d, θ)ia − Ĝ0,0(d, θ)iaib

]
+ (π, 0)′ iaibḠ1(d, θ)− (π, 0)′ Ḡ1(d, θ)iaib + op(1).

We need to show that

sup
d∈D(τ),θ∈Θ

∣∣∣∣∣∣
∣∣∣∣∣∣ 1

m

m∑
j=1

(log λj)k1
(
j

m

)2k2

Λj(d, θ)
−1IzjΛ

∗
j (d, θ)

−1 − Jk1,k2(d, θ)

∣∣∣∣∣∣
∣∣∣∣∣∣ = op((log m)−2),

(21)

sup
d∈D(τ),θ∈Θ

∣∣∣∣∣∣
∣∣∣∣∣∣Jk1,k2(d, θ)−G0 1

m

m∑
j=1

(log λj)k1
(
j

m

)2k2

∣∣∣∣∣∣
∣∣∣∣∣∣ = o((log m)−2)

(22)

in order to get the results

Ĝk1,k2(d, θ) = G0 1

m

m∑
j=1

(log λj)k1
(
j

m

)2k2

+ op((log m)−2), Ḡk1(d, θ) = op((log m)−2)

uniformly on (d, θ) ∈ D(τ)×Θ. Given these results, we can rewrite the expressions of our Hessian
as (apart from smaller order terms)

Ĝ−1(d, θ) = (G0)−1,

∇Ĝ(d, θ) =
1

m

m∑
j=1

X̃jaG
0
1a,

∇2Ĝ(d, θ) =
1

m

m∑
j=1

X̃jaX̃
′
jbG

0
2ab +

(
(π/2)2, 0

)′
G0

3ab,

where X̃ja = (log λj/(1 + θaλ
2da
j ),−(j/m)2da/2(1 + θaλ

2da
j ))′, G0

1a = iaG
0 + G0ia, G0

2ab =

iaibG
0 + iaG

0ib + ibG
0ia +G0iaib, and G0

3ab = −iaibG0 + iaG
0ib + ibG

0ia−G0iaib. This gives us

Ĝ−1(d, θ)∇Ĝ(da, θa)Ĝ
−1(d, θ)∇Ĝ(db, θb) = (G0)−1

 1

m

m∑
j=1

X̃jaG
0
1a

 (G0)−1

 1

m

m∑
j=1

X̃jbG
0
1b


=

 1

m

m∑
j=1

X̃ja

 1

m

m∑
j=1

X̃jb

 [(G0)−1G0
1a(G

0)−1G0
1b

]

- 27 -



and

Ĝ−1(d, θ)∇2Ĝ(d, θ) = (G0)−1

 1

m

m∑
j=1

X̃jaX̃
′
jbG

0
2ab +

(
(π/2)2, 0

)′
G0

3ab


=

1

m

m∑
j=1

X̃jaX̃
′
jb(G

0)−1G0
2ab +

(
(π/2)2, 0

)′
(G0)−1G0

3ab.

Caused by the fact that tr
[
(G0)−1G0

1a(G
0)−1G0

1b

]
= tr

[
(G0)−1G0

2ab

]
we receive for the first part

of the normalised Hessian

B−1
n H1(d, θ)B−1

n =
1

m

m∑
j=1

X̃ja −
1

m

m∑
j=1

X̃ja

X̃jb −
1

m

m∑
j=1

X̃jb

′ tr [(G0)−1G0
2ab

]
+ tr

[(
(π/2)2

)′
(G0)−1G0

3ab

]
.

Combining this with the result given in Lemma 1 (a) proves the first part of Lemma 1 (b).
Now, the only thing we need to show are the arguments given in Eq. (21) and Eq. (22).
Writing the left hand side of Eq. (21) as

1

m

m∑
j=1

gj(d− d0, θ − θ0)
[
ei(λj−π)(d0a−d0b)/2λ

d0a+d0b
j hab,j(d

0, θ0)wajw
∗
bj −G0

ab

]
.

We define gj(d−d0, θ− θ0) = (log λj)k1
(
j
m

)2k2
ei(λjπ)((da−d0a)−(db−d0b))/2λ

(da−d0a)+(db−d0b)
j hab,j(d−

d0, θ − θ0) where hab,j(d0, θ0) = 1/
√

1 + θ0
aλ
−2d0a
j

√
1 + θ0

bλ
−2d0b . Applying summation by parts

yields

1

m

m−1∑
k=1

[
gk(d− d0, θ − θ0)− gk+1(d− d0, θ − θ0)

] k∑
j=1

[
ei(λj−π)(d0a−d0b)/2λ

d0a+d0b
j hab,j(d

0, θ0)wajw
∗
bj −G0

ab

]
+
gm(d− d0, θ − θ0)

m

m∑
j=1

[
ei(λj−π)(d0a−d0b)/2λ

d0a+d0b
j hab,j(d

0, θ0)wajw
∗
bj −G0

ab

]
.

Given that (log λk)k1 = Op((log m)k1), (log λk)k1 − (log λk+1)k1 = O(k−1), hab,k(d − d0, θ −
θ0) = O(1), hab,k(d − d0, θ − θ0) − hab,k+1(d − d0, θ − θ0) = O(k−1), λ(da−d0a)+(db−d0b)

k = O(1),

λ
(da−d0a)+(db−d0b)
k − λ(da−d0a)+(db−d0b)

k+1 = O(k−1), (k/m)2k2 = O(1), (k/m)2k2 − ((k + 1)/m)2k2 =

O(k−1), ei(λk−π)((da−d0a)−(db−d0b))/2 = O(1), and ei(λk−π)((da−d0a)−(db−d0b))/2−ei(λk+1−π)((da−d0a)−(db−d0b))/2 =

O(k−1) we get for gk(d−d0, θ−θ0)−gk+1(d−d0, θ−θ0) = O((logm)k1k−1) and gm(d−d0, θ−θ0) =

O((log m)k1). Together with Lemma 3 we get for Eq. (21)

Op

((
(log m)k1

1

m

m∑
k=1

(kβn−β + k−1/2log k + kd
0
a+d0bn−(d0a+d0b))

))
= Op((log m)k1mβn−β + (log m)k1m−1/2log m+ (log m)k1md0a+d0bn−(d0a+d0b)) = op((log m)−2).
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Next we need to prove the result for Eq. (22). We have the (a, b)-th element of the argument
given in Eq. (22) by

1

m

m∑
j=1

(log λj)k1
(
j

m

)2k2 [
ei(λj−π)((da−d0a)−(db−d0b))/2λ

(da−d0a)+(db−d0b)
j hab,j(d− d0, θ − θ0)− 1

]
G0
ab,

where we receive an upper bound for

ei(λj−π)((da−d0a)−(db−d0b))/2λ
(da−d0a)+(db−d0b)
j hab,j(d− d0, θ − θ0)− 1

≤ ei(λj−π)((da−d0a)−(db−d0b))/2λ
(da−d0a)+(db−d0b)
j − 1

= (ei(λj−π)((da−d0a)−(db−d0b))/2 − 1)λ
(da−d0a)+(db−d0b)
j + (λ

(da−d0a)+(db−d0b)
j − 1)

≤ C(|da − d0
a|+|db − d0

b |) + C(|da − d0
a|+|db − d0

b |)log m

= O((log m)−5).

The first inequality uses the fact that hab,j(d, θ) < ∞ because Θ is compact. The second

inequality is caused by |λ(da−d0a)+(db−d0b)
j − 1|/|(da − d0

a) + (db − d0
b)|≤ |log λj |m|da−d

0
a|+|db−d0b | ≤

|log j|m1/log m ≤ C log j for some constant C <∞.
Therefore, we have

1

m

m∑
j=1

(log λj)k1
(
j

m

)2k2 [
ei(λj−π)((da−d0a)−(db−d0b))/2λ

(da−d0a)+(db−d0b)
j − 1

]
G0
ab = op((log m)−2)

which completes the first part of the proof.

Turning now to the second part B−1
n H2(d, θ)B−1

n = op(1). Lets define qj(d0
a, θ

0
a) as in Frederiksen

et al. (2012) then we can express the a-th element in B−1
n H2(d, θ)B−1

n as

1

m

m∑
j=1

(j/m)2da

2
√

1 + θaλ
2da
j

qj(da, θa),

where qj(da, θa) = O((log n)2) and qj(d, θ) − qj−1(d, θ) = O(j−1(log n)). In order to prove the
second part, we need to show

sup
d∈D(τ),θ∈Θ

∣∣∣∣∣∣
∣∣∣∣∣∣ 1

m

m∑
j=1

(j/m)da+dbhab,j(d, θ)qab,j(d, θ)− (j/m)d
0
a+d0bhab,j(d

0, θ0)qab,j(d
0, θ0)

∣∣∣∣∣∣
∣∣∣∣∣∣ = op(1).

(23)

Rewriting yields

sup
d∈D(τ),θ∈Θ

∣∣∣∣∣∣
∣∣∣∣∣∣ 1

m

m∑
j=1

((
j

m

)d0a+d0b
−
(
j

m

)da+db
)
hab,j(d− d0, θ − θ0)qab,j(d− d0, θ − θ0)

∣∣∣∣∣∣
∣∣∣∣∣∣ ,

where we have that hab,j(d− d0, θ− θ0) = O((j/n)da+db) and qj(da, θa) = O((log n)2). We know

- 29 -



from the mean value theorem that

sup
d∈D(τ),j=1,...,m

∣∣∣∣∣
(
j

m

)d0a+d0b
−
(
j

m

)da+db
∣∣∣∣∣ = O( sup

d∈D(τ)
((d0

a + d0
b)− (da + db))log m)

= O((log n)−6τ log m)

with τ = o(1). All in all we get for Eq. (23)

Op

(
(log n)−6τ log m

(m
n

)da+db
(log n)2

)
= Op

(
(log n)−4log m

(m
n

)da+db
)

= op(1)

which concludes the proof.

Proof of (c)

In order to prove part (c) of Lemma 1, we proceed with the score in the same way as Shi-
motsu (2007) and write

1
√
q

q∑
a=1

− 2

m

m∑
j=1

Xja + tr
[
Ĝ(da, θa)

−1Q1a

]+ tr
[
Ĝ(da, θa)

−1Q2a

]
= R1 +R2,

so that we need to find an approximation for R1 and R2. The approximation for R2 is a
straightforward adaption of the proof used by Shimotsu (2007) and is therefore omitted. Focusing
now on the remainder term R1. Define ζja = (X̃ja− 1

m

∑m
k=1 X̃ka), ignoring smaller order terms,

we get

− 2√
m

m∑
j=1

X0
ja + tr

[
Ĝ(d0, θ0)−1Q1a

]

= tr

Ĝ(d0, θ0)−1

Q1a −
2

m

m∑
j=1

XjaĜ(d0, θ0)iaXja


= tr

Ĝ(d0, θ0)−1 2√
m

m∑
j=1

ζ0
jaRe

[
(Λ0

j )
−1Izj(Λ

0∗
j )−1)

]
ia

 ζ0
ja

= ga
2√
m

m∑
j=1

ζ0
ja

{
Re
[
(Λ0

j )
−1Izj(Λ

0∗
j )−1

]}
a
ζ0
ja,

with ga representing the a-th row of (G0)−1 and {·}a gives the a-th column of a matrix. It follows
from summation by parts and Lemma 2

1√
m

m∑
j=1

ζ0
ja(Λ

0
j )
−1Izj(Λ

0∗
j )−1ζ0

ja

=
1√
m

m∑
j=1

ζ0
ja

[
(Λ0

j )
−1A(λj)IεjA

∗(λj)(Λ
0∗
j )−1 −G0

]
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Which leads to

R1 =
2√
m

m∑
j=1

ζ0
ja

(
ga

{
Re
[
(Λ0

j )
−1Izj(Λ

0∗
j )−1

]
a

}
− 1
)
ζ0
ja. (24)

We can further rewrite the right hand side of Eq. (24) as T1a+T2a+T3a+T4a defining the single
elements in the summation as

T1a =
2√
m

m∑
j=1

ζ0
ja

(
ga
{
Re
[
(Λ0

j )
−1Izj(Λ

0∗
j )−1

]
− Re

[
(Λ0

j )
−1A(λj)IεjA(λj)(Λ

0∗
j )−1

]}
a

−E
(
ga
{
Re
[
(Λ0

j )
−1Izj(Λ

0∗
j )−1

]
− Re

[
(Λ0

j )
−1A(λj)IεjA(λj)(Λ

0∗
j )−1

]}
a

))
ζ0
ja,

T2a = ζ0
ja

(
E
[
wajw

∗
aj/fz,aa(λj)

]
− 1
) (
ga
{
Re
[
(Λ0

j )
−1fz(λj)(Λ

0∗
j )−1

]}
a

)
ζ0
ja,

T3a =
2√
m

m∑
j=1

ζ0
ja

(
ga
{
Re
[
(Λ0

j )
−1A(λj)IεjA

∗(λj)(Λ
0∗
j )−1

]}
a
− 1
)
ζ0
ja,

T4a =
2√
m

m∑
j=1

ζ0
ja

(
ga
{
Re
[
(Λ0

j )
−1fz(λj)(Λ

0∗
j )−1)

]}
a
− 1
)
ζ0
ja.

Now, we need to show that T3a
d−→N(0,Ω), while the remaining terms are op(1). The proof for

T3a follows directly from Shimotsu (2007) by replacing νj with ζj and using the result in part
(a) of Lemma 1.
In order to prove the result for T1a we use summation by parts:

T1a =
2√
m

m−1∑
k=1

(
X̃0
k,a − X̃0

k+1,a

) k∑
j=1

(
ga
{
Re
[
(Λ0

j )
−1Izj(Λ

0∗
j )−1

]
− Re

[
(Λ0

j )
−1A(λj)IεjA(λj)(Λ

0∗
j )−1

]}
a

−E
(
ga
{
Re
[
(Λ0

j )
−1Izj(Λ

0∗
j )−1

]
− Re

[
(Λ0

j )
−1A(λj)IεjA(λj)(Λ

0∗
j )−1

]}
a

))m−1∑
k=1

(
X̃0
k,a − X̃0

k+1,a

)
+ ζ0

ma

2√
m

m∑
j=1

(
ga
{
Re
[
(Λ0

j )
−1Izj(Λ

0∗
j )−1

]
− Re

[
(Λ0

j )
−1A(λj)IεjA(λj)(Λ

0∗
j )−1

]}
a

−E
(
ga
{
Re
[
(Λ0

j )
−1Izj(Λ

0∗
j )−1

]
− Re

[
(Λ0

j )
−1A(λj)IεjA(λj)(Λ

0∗
j )−1

]}
a

))
ζ0
ma

=
2√
m

m∑
k=1

O(k−1) +Op(k
1/2log k + kβ+1/2n−β + k1/2+2d0am−2d0a)

+O(1)2m1/2Op(m
1/2log m+mβ+1/2n−β +m1/2+2d0an−2d0a)

= Op((log m)2 + (m/n)min{β,2d0a}).

The proof uses Lemma 2 and that X̃0
k,a − X̃0

k+1,a = O(k−1) uniformly over k = 1, ...,m and
X̃0
m,a − 1

m

∑m
k=1 X̃

0
k,a = O(1), which is a result by approximating sums by integrals, for the

second equation. Caused by the fact that d0
a belongs to the interior of the parameter space, it

follows that T1a = op(1).
Next we show the result for T2a. Therefore, we use Theorem 2 of Robinson (1995b) yielding
EIyj = fyj{1 + O(j−1log(j + 1)} uniformly over j = 1, ...,m and the result of Frederiksen et
al. (2012) thatEIzj = fzj{1+O(j−1log(j+1)} and further that ga

{
Re
[
Λj(d

0, θ0)−1fz(λj)Λ
∗
j (d

0, θ0)−1
]}

a
−

- 31 -



1 = O((j/n)β + (j/n)2d0a) so that T2a can be bounded by the same argument as in Frederiksen
et al. (2012) by T2a = O((log m)3m−1/2) which is o(1) because d0

a < ∆2 < 1/2.
The proof for T4a uses the accuracy of the approximation of fz(λj) by the periodogram and
summation by parts and yields the result

T4a =
2√
m

m−1∑
k=1

(
X̃0
k,a − X̃0

k+1,a

) k∑
j=1

(
ga
{
Re
[
(Λ0

j )
−1fzj(Λ

0∗
j )−1

]}
a
− 1
)m−1∑
k=1

(
X̃0
k,a − X̃0

k+1,a

)
+ ζ0

ma

2√
m

m∑
j=1

(
ga
{
Re
[
(Λ0

j )
−1fzj(Λ

0∗
j )−1

]}
a
− 1
)
ζ0
ma

=
2√
m

m−1∑
k=1

O(k−1)
m∑
j=1

O((j/n)β + (j/n)2d0a) +O(1)
2√
m

m∑
j=1

O((j/n)β + (j/n)2d0a)

= O((m/n)βm1/2 + (m/n)2d0am1/2)

which is op(1) by Assumption 6.

Proof of Theorem 3

Based on the results given above we can contemplate a Taylor expansion

1
√
q
S(d̂, θ̂)r =

1
√
q
S(d0, θ0)r +

1
√
q
H(d̄, θ̄)r((d̂, θ̂)− (d0, θ0))

with ||(d̄, θ̄) − (d0, θ0)||≤ ||(d̂, θ̂) − (d0, θ0)|| and S(d, θ)r and H(d, θ)r being defined as in Eq.
(19) and Eq. (20), but with the summation being executed until bmrc instead of m to prove
Theorem 3.
We can rewrite the first part of the right hand side of the equation as

1
√
q

q∑
a=1

S(d0, θ0)r =
1
√
q
Rr1 + op(1) + tr

Ĝ(d0
a, θ

0
a)
−1

√
m

bmrc∑
j=1

LjIm
[
(Λ0

j )
−1(−iaIzj + Izjia)(Λ

0∗
j )−1

]
(25)

=
2√
m

q∑
a=1

(ga)
−1

√
q

bmrc∑
j=1

ζ0
ja

[
g′aga

{
Re
[(

Λ0
j

)−1
Izj
(
Λ0∗
j

)−1
]}

a
ζ0
ja − 1

]

− 2(ga)
−1

m3/2

bmrc∑
j=1

ζ0
ja

 m∑
j=1

[
g′aga

[
Re
{(

Λ0
j

)−1
A(λj)IεjA

∗(λj)
(
Λ0∗
j

)−1
]}

a
− 1
]

×

bmrc∑
j=1

ζ0
ja

+ op(1) + tr

Ĝ(d0
a, θ

0
a)
−1

√
m

bmrc∑
j=1

LjIm
[(

Λ0
j

)−1
(−iaIzj + Izjia)

(
Λ0∗
j

)−1
] .

We can represent the first part in the equation as before as T r1a+T r2a+T r3a+T r4a. In the same way
it can be shown that T r1a, T r2a and T r4a converge to 0. So we can focus on the remaining term T r3a,
which can be rewritten together with the imaginary unit in the same way as in Shimotsu (2007)
and Sibbertsen et al. (2018) by

∑n
t=1 zt + op(1) with z1 = 0 and zt = ε′t

∑n−1
s=1

[
Φt−s + Φ̃t−s

]
εs.

Let Φs = 1
π
√
mn

∑m
j=1 ζj

[
Re
[
ψj + ψ′j

]
cos(sλj)

]
ζj , Φ̃s = π

2
1

π
√
mn

∑m
j=1 Re

[
ψj − ψ′j

]
sin(sλj), where
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ψj =
∑q

a=1

[
A∗(λj)

(
Λ0∗
j

)−1
]
a

ga

(
Λ0
j

)−1
A(λj), A(λ) =

∑∞
j=0Ajεt−j and Aj is given in As-

sumption 3. The asymptotic normality of zt follows directly from Theorem 2 of Robinson (1995a)
by replacing νj by ζj . We can handle the covariance of zt over 0 ≤ r1 ≤ r2 ≤ 1 in the same way
as in Sibbertsen et al. (2018) where we need to replace

∑bmrc
j=1 νj by

∑bmrc
j=1 ζj again. Therefore,

we have by applying Lemma 3 for 1
m

∑bmr1c
j=1 ζjζ

′
j →

∫ r1
0 Ψ2(r)ds which yields

Cov

(
n∑
t=1

zt,r1 ,
n∑
t=1

zt,r2

)
→
∫ r1

0
Ψ2(r)ds,

with Ψ(r) being defined as in Theorem 3.
Turning now to the second term of the second equality in Eq. (25). Again, we can use the
same arguments as in Sibbertsen et al. (2018) and Qu (2011) but adapting for ζj and the new
asymptotic behaviour of the spectral density near the origin. Together with the results given in
Lemma 2 we achieve

(ga)
−1

√
q

m∑
j=1

[
g′aga

{(
Λ0
j

)−1
Izj
(
Λ∗j
)−1
}
a
− 1
]
⇒ B(1),

with B(s) being a standard Brownian motion. For ζj we have by the use of Lemma 3 the
convergence against

∫ r1
0 Ψ(r1)ds.

Now we have to handle the second part of the Taylor expansion. We need to focus on the Hessian
where the summation is again executed until bmrc rather than m. Based on the foregoing proofs,
we can write it as

Hr(d, θ) = Hr
1(d, θ) +Hr

2(d, θ)

= tr

 q∑
a=1

1

m

bmrc∑
j=1

ζjaζ
′
jbĜ(d, θ)−1Ĝ2ab(d, θ) +

((π
2

)2
, 0

)′
Ĝ(d, θ)−1Ĝ3ab(d, θ)


+

−2

m

bmrc∑
j=1

∇Xj

 .

The second part of the Hessian Hr
2(d, θ) converges to zero. The proof can be done in the same

way as before in Lemma 1. The remaining part of the Hessian is behaving asymptotically as

Hr
1(d, θ) = tr

 q∑
a=1

1

m

bmrc∑
j=1

ζjaζ
′
jbĜ(d, θ)−1Ĝ2ab(d, θ) +

((π
2

)2
, 0

)′
Ĝ(d, θ)−1Ĝ3ab(d, θ)


⇒ tr

[∫ r

0
Ψ2,0(r)ds

(
G0
)−1

G0
2ab +

(
π2

4
, 0

)′ (
G0
)−1

G0
3ab

]
.

We know by Lemma 2 of Sibbertsen et al. (2018) that the single elements of G0 given in the
Hessian collapse in such a way that we are left with the asymptotic convergence result of the
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Hessian by

Hr(d, θ) = Hr
1(d, θ)⇒

∫ r

0
Ψ2,0(r)ds = F (r).

The last step is proving tightness. As in Qu (2011) and Sibbertsen et al. (2018) we use Theorem
13.5 of Billingsley (1999). We need to show that for every m and r1 ≤ r ≤ r2

E

∣∣∣∣∣
n∑
t=1

zt,r −
n∑
t=1

zt,r1

∣∣∣∣∣
2 ∣∣∣∣∣

n∑
t=1

zt,r2 −
n∑
t=1

zt,r

∣∣∣∣∣
2
 ≤ K(φm(r2)− φm(r1))2

where φm(·) is a finite, non-decreasing function over [0, 1] that fulfils lim
δ→0

lim sup
m→∞

|φm(s + δ) −

φ(s)|→ 0 uniformly over the set s ∈ [0, 1] and K is some constant. For the sake of conciseness
we write zt(s, r) = zt,r − zt,s, ct(r, s) = ct,r − ct,s and ct = tr

[
Φt + Φ̃t

]
. We can use Lemma B.8.

from Qu (2011) in order to prove that K
(∑n

t=1

∑t−1
s=1 ct−s(r1, r)

2
)(∑n

t=1

∑t−1
h=1 ct−h(r, r2)2

)
is

an upper bound for E
(
|
∑n

t=1 zt,r −
∑n

t=1 zt,r1 |
2 |
∑n

t=1 zt,r2 −
∑n

t=1 zt,r|
2
)

with K being some
positive constant.
Next, we have

n∑
t=1

t−1∑
s=1

ct−s(r1, r)
2 ≤ 1

nm

bmrc∑
j=bmr1c+1

bmrc∑
k 6=j

(
ζjζ
′
j + ζkζ

′
k

)
+

1

m

bmrc∑
j=bmr1c+1

ζjζ
′
j ≤

3

m

bmrc∑
j=bmr1c+1

ζjζ
′
j .

The same holds true for
∑n

t=1

∑t−1
s=1 ct−h(r, r2)2 ≤ 3

m

∑bmr2c
j=bmrc+1 ζjζ

′
j . If φm(s) = 1

m

∑bmsc
j=1 ζjζ

′
j

then we have for

lim
δ→0

lim sup
m→∞

|φm(s+ δ)− φ(s)|= lim
δ→0

∫ s+δ

s
Ψ2(r)dx→ 0.

This completes the proof.

Proof of Theorem 4

In order to prove the consistency of our testing procedure we orientate on the proof of Sibbertsen
et al. (2018). Therefore, to analyse the test statistic we split into two parts accordingly to

MLWNS =
1

2
sup
r∈[ε,1]

∣∣∣∣∣∣
∣∣∣∣∣∣ 2√
m

q∑
a=1

1
√
q

bmrc∑
j=1

ζja

(
ga

{
Re
[(

Λj(d̂, θ̂)
)−1

Izj

(
Λ∗j (d̂, θ̂)

)−1
]
a

}
− 1

)
ζja

+
1√
m

q∑
a=1

ga√
q

bmrc∑
j=1

LjIm
[(

Λj(d̂, θ̂)
)−1

Izj

(
Λ∗j (d̂, θ̂)

)−1
]
a

∣∣∣∣∣∣
∣∣∣∣∣∣

= sup
r∈[ε,1]

||R+ L|| . (26)

Let us focus on the first term R in Eq. (26). Note that ζja is a monotonically increasing function
in j with ζ1a < 0 and ζma > 0 and further define j∗ = min{j : ζja ≥ 0}. This proof uses the fact
that the divergence of the quantity in the MLWNS statistic for at least one r given in the a-th
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time series implies convergence of the supremum over all r. This implies that it is sufficient to
focus only on the special case were r = 1.
From Lemma 3 it follows that j∗ = Km, where K is some constant. To ease the notation we

will write
(

Λj(d̂, θ̂)
)−1

= (Λj)
−1. We proceed with

RI =

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

1
√
q

q∑
a=1

 m∑
j=1

ζjaζ
′
jb

 m∑
j=1

ζjaζ
′
jb

−1/2
m∑

j=j∗

ζja

(
ga

{
Re
[
(Λj)

−1 Izj
(
Λ∗j
)−1
]}

a
− 1
)
ζja

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

(27)

and

RII =

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

1
√
q

q∑
a=1

 m∑
j=1

ζjaζ
′
jb

 m∑
j=1

ζjaζ
′
jb

−1/2
j∗−1∑
j=1

ζja

(
ga

{
Re
[
(Λj)

−1 Izj
(
Λ∗j
)−1
]}

a
− 1
)
ζja

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ .

When applying the reverse triangle inequality together with the results given in Sibbertsen et
al. (2018), we know that it is sufficient to show that RI p→ ∞ if n → ∞ caused by R being
bounded from above by RI/2. Hence, we rewrite Eq. (27) as

RI =

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

1
√
q

q∑
a=1

 m∑
j=1

ζjaζ
′
jb

 m∑
j=1

ζjaζ
′
jb

−1/2
m∑

j=j∗

ζja

(
ga

{
Re
[
(Λj)

−1A(λj)IεjA
∗(λj)

×
(
Λ∗j
)−1
]}

a
− 1 ) ζja||.

Applying the reverse triangle inequality yields

RI ≥ 1
√
q

q∑
a=1

 m∑
j=1

ζjaζ
′
jb

 m∑
j=1

ζjaζ
′
jb

−1/2
m∑

j=j∗

ζja

− 1
√
q

q∑
a=1

m∑
j=j∗

ζja

(
ga

{
Re
[
(Λj)

−1A(λj)IεjA
∗(λj)

(
Λ∗j
)−1
]}

a

)
ζja.

We know from Lemma 3 that the first term has for each component the form m∑
j=1

ζjaζ
′
jb

 m∑
j=1

ζjaζ
′
jb

−1/2
m∑

j=j∗

ζja = m−1/2

∫ 1

K
Ψ(s)ds+ o(m1/2)

which is strictly positive and of order m1/2.
Focusing now on the second term, using that m/n1/2 → ∞ it needs to hold for j∗/n1/2 → ∞.
As a result, I(λj) = Op(1) for every j∗ ≤ j ≤ m. In addition, we have

ζja

(
ga

{
Re
[
(Λj)

−1A(λj)IεjA
∗(λj)

(
Λ∗j
)−1
]}

a

)
ζja = O(log(m))Op

(
λ

min(β,d̂a−d0a+minb(d̂b−d0b))
j

)
= Op(log(m)) ∀a = 1, ..., q and ∀b = 1, ..., q.
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This holds by applying Lemma 2 for j∗ ≤ j ≤ m and in addition it is caused by the positive
definiteness of Ĝ(d, θ), P (d̂a − d0

a ≥ 0) → 1 ∀a and λj = o(1). As a consequence, the second
term is asymptotically dominated by the first one. All in all we have RI p→∞ if n→∞.
Turning now to the second Term L in Eq. (26). It can be treated in the exact same way as R
before. We write

LI =

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

1
√
q

q∑
a=1

ga

 m∑
j=1

ζjaζ
′
jb

 m∑
j=1

ζjaζ
′
jb

−1/2
m∑

j=j∗

LjIm
[
(Λj)

−1 Izj
(
Λ∗j
)−1
]
a

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ (28)

and

LII =

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

1
√
q

q∑
a=1

ga

 m∑
j=1

ζjaζ
′
jb

 m∑
j=1

ζjaζ
′
jb

−1/2
j∗−1∑
j=1

LjIm
[
(Λj)

−1 Izj
(
Λ∗j
)−1
]
a

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ .

Again, we apply the reverse triangle inequality and get as a result that the second term in Eq.
(26) is bounded from above by Eq. (28). Hence, we can proceed in the same way as before,
meaning that the same arguments as before can be applied to Eq. (27). We see that the term L

is of lower order than m1/2. This implies that L is asymptotically dominated by R in the limit.
This proves the theorem.

Technical Lemmas

Lemma 2. Let hab,j(d0, θ0) = 1/(1 + θ0
aλ
−2d0a
j )1/2(1 + θ0

bλ
−2d0b )1/2 and that Aa(λj) defines the

a-th row of A(λj) =
∑∞

k=0Ake
ikλj and A∗b(λj) is the b-th column of the considered matrix. Given

that Assumptions 1-6 hold then as n→∞, for 1 ≤ s < r ≤ m,

max
a,b

r∑
j=s

ei(λj−π)(d0a−d0b)/2λ
d0a+d0b
j hab,j(d

0, θ0)(wajw
∗
bj −Aa(λj)IεjA∗b(λj))

= Op(r
1/3(log r)2/3 + log r + r1/2n−1/4 + rd

0
a+d0bn−1/2(d0a+d0b)log r + r1/2(d0a+d0b)n−1/2(d0a+d0b)),

max
a,b

r∑
j=s

(ei(λj−π)(d0a−d0b)/2λ
d0a+d0b
j hab,j(d

0, θ0)wajw
∗
bj −G0

ab) = Op(r
β+1n−β + r1/2log r + r1+d0a+d0bn−(d0a+d0b)),

and

max
a,b

r∑
j=s

ei(λj−π)(d0a−d0b)/2λ
d0a+d0b
j hab,j(d

0, θ0)(wajw
∗
bj −Aa(λj)IεjA∗b(λj))

− E(ei(λj−π)(d0a−d0b)/2λ
d0a+d0b
j hab,j(d

0, θ0)(wajw
∗
bj −Aa(λj)IεjA∗b(λj)))

= Op(r
1/3(log r)2/3 + log r + r1/2n−1/4),

max
a,b

r∑
j=s

(ei(λj−π)(d0a−d0b)/2λ
d0a+d0b
j hab,j(d

0, θ0)wajw
∗
bj −G0

ab)− E(ei(λj−π)(d0a−d0b)/2λ
d0a+d0b
j hab,j(d

0, θ0)wajw
∗
bj −G0

ab)

= Op(r
β+1/2n−β + r1/2log r + r1/2+d0a+d0bn−(d0a+d0b)).

- 36 -



Proof of Lemma 2

In order to prove the results in Lemma 2 we start by decomposing the single entries inside the
summation similarly as in Shimotsu (2007)

H1j = ei(λj−π)(d0a−d0b)/2λ
d0a+d0b
j hab,j(d0, θ0)[wajw

∗
bj −Aa(λj)IεjA∗b(λj)],

H2j = ei(λj−π)(d0a−d0b)/2λ
d0a+d0b
j hab,j(d0, θ0)[Aa(λj)IεjA

∗
b(λj)− fab(λj)],

H3j = ei(λj−π)(d0a−d0b)/2λ
d0a+d0b
j hab,j(d0, θ0)fab(λj)−G0

ab.

Focusing on the first two results stated in the lemma. The smoothness conditions given in the
assumptions give us directly the result maxa,b|

∑r
j=sH3j |= O(rβ+1n−β + r1+d0a+d0bn−(d0a+d0b)).

Caused by the independence of Iy(λj) and Iw(λj) we can further decompose the terms into
the signal and the noise part, and treat them separately. The results for the signal processes
are directly applicable from Shimotsu (2007) so that maxa,b|

∑r
j=sH1j,y|= Op(r

1/3(log r)2/3 +

log r + r1/2n−1/4) and maxa,b|
∑r

j=sH2j,y|= Op(r
1/2log r). Turning now to the contribution of

the noise part, we know from Lemma 3 of Frederiksen et al. (2012) that the approximation of
the noise part fulfils the bound O((r/n)d

0
a+d0b ) and that caused by the independence assumption

of the signal and the noise term we further get the additional bound Op((r/n)d
0
a+d0b (log r +

r1+min{β,1/2(d0a+d0b)}n−min{β,1/2(d0a,d
0
b)}) giving the contribution to the last missing part in the first

argument of the lemma. This completes the proof.

Lemma 3. 1/m
∑[mr]

j=1 ζj = Ψ(x) and 1/m
∑[mr]

j=1 ζ
2
j = Ψ2(x), where Ψ(x) = (Ψ1(x),Ψ2(x))′

with the single entries being defined as Ψ1,a(x) =
∫ r

0 log x/(1 + θax
2da)dx − r

∫ 1
0 log x/(1 +

θax
2da)dx+O( 1

m1−ε ) and Ψ2,a(x) =
∫ r

0 x
2da/(1+θax

2da)dx−r
∫ 1

0 x
2da/(1+θax

2da)dx+O( 1
m1−ε )

for a = 1, ..., q, uniformly in r ∈ [0, 1] with ε being some arbitrary small positive number.

Proof of Lemma 3

We can prove Lemma 3 in the same way as in Qu (2011) by using the Euler–Maclaurin formula,
which is given by

k∑
j=1

g(j) =

∫ k

1
g(x)dx+

g(1) + g(k)

2
+

1

12
(g′(k)− g′(1)) +R

while R is bounded by |R|≤ 2
(2π)2

∫ k
1 |g
′′(k)|dx. We start the proof with the first expression given

in ζ. Let k = [mr] and apply the Euler–Maclaurin formula to the individual elements with

ga(x) =
log( x

m
)

1+θa( x
m

)2da
, then we get for the a-th element of the first expression in ζ

1

m

[mr]∑
j=1

log( xm)

1 + θa(
x
m)2da

=

∫ r

1/m

log(x)

1 + θax2da
dx+

∫ [mr]/m

r

log(x)

1 + θax2da
dx+

log(r)−log(m)
1+θa(m

r
)2da

− log(m)

1+θa( 1
m

)2da

2m

+
1

12m

(
1

1 + θa(
1
m)2da

−
2daθa(

1
m)2da log( 1

m)

(1 + θa(
1
m)2da)2

−
(

1

[mr](1 + θar2da)
− 2daθar

2da−1log(r)

m(1 + θar2da)2

))
+R,
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with |R|≤ 2
(2π)2

∫ [mr]
1

θ2a( x
m

)4da (2(2da+1)da log( x
m

)−4da−1)−2θa( x
m

)2da ((2da−1)da log( x
m

)+2da+1)−1

x2(θa( x
m

)2da+1)3
dx =

O(1). We have that 1
m

∑[mr]
j=1

log( x
m

)

1+θa( x
m

)2da
=
∫ r

1/m
log(x)

1+θax2da
dx + O(

log(m)
m ) =

∫ r
0

log(x)
1+θax2da

dx +

O( 1
m1−ε ). Thus, we get for the a-th entry

1

m

[rm]∑
j=1

X1,ja −
1

m

m∑
j=1

X1,ja

 =

∫ r

0

log(x)

1 + θax2da
dx− r

∫ 1

0

log(x)

1 + θax2da
dx.

The other arguments can be shown in the same way and are therefore omitted.
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