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Abstract 

We model an environment in which individuals prefer to be in a space in which their rank 

is higher, be it a social space, a geographical space, a work environment, or any other 

comparison sphere which we refer to in this paper, and without loss of generality, as a 

region. When the individuals can choose between more than two regions, we inquire: (i) 

whether a steady-state distribution of the population is reached; (ii) how long it will take to 

reach a steady state; and (iii) if a steady state obtains, whether at the steady state social 

welfare is maximized. Despite the fact that when there are three or more regions the 

mobility paths are more intricate than when there are only two regions, we prove that a 

steady-state distribution of the population across the regions is reached; we identify the 

upper bound of the number of time periods that it will take to reach the steady-state 

distribution; and we show that the steady-state distribution maximizes social welfare. This 

last result is surprising: even though the individuals act of their own accord, they achieve 

the socially preferred outcome.  

 

Keywords: Inter-space mobility; Three or more spaces; Ordinal preferences; Distaste for 

low rank; Steady-state population distribution; Social welfare 
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“The desire of . . . obtaining rank among our equals, is, perhaps, the strongest of all our 

desires” (Smith 1759, Part VI, Section I, Paragraph 4). 

 

1. Introduction 

A large number of empirical works demonstrate that when people are ranked low, they 

take action to improve their rank. Studies showing this are, for example, of workers (Falk 

and Ichino, 2006; Mas and Moretti, 2009; Bandiera et al., 2010; Cohn et al., 2014), and of 

students (Sacerdote, 2001; Hanushek et al., 2003; Azmat and Iriberri, 2010; Bursztyn and 

Jensen 2015; Garlick, 2018, Dobrescu et al., 2021). Heffetz and Frank (2011) review the 

significance of social status (rank) in economic affairs. Noy and Sin (2021) document the 

importance of rank for happiness, whether the reference group consists of neighbors or of 

co-workers. Drawing on data from New Zealand, Noy and Sin find that while ordinal 

(rank) comparisons matter for subjective wellbeing, cardinal (absolute income) 

comparisons do not. (Noy and Sin provide many references to studies that establish the 

importance of rank in the determination of wellbeing.) It is not difficult to conceptualize 

the choice of a comparison sphere as a response to dislike of being ranked low. Other 

things being equal, people will prefer to be in a space in which their rank is higher, be it a 

social space, a geographical space, a work environment, or any other comparison sphere 

which we refer to henceforth in this paper, and without loss of generality, as a region. 

Relocation can take them there. 

In “Migration when social preferences are ordinal: Steady-state population 

distribution and social welfare” Stark (2017) studies the decisions of individuals as to 

which of two regions to locate to when the choice is governed by ordinal social 

preferences, specifically by a distaste for low rank in the hierarchy of incomes. What is 

meant by rank is the rung occupied by an individual in the hierarchy of the incomes in the 

region in which the individual is located. Thus, in a given region, the individual whose 

income is the highest occupies the top rank, namely his rank is first, the rank of the 

individual whose income is the second highest is second, namely he occupies a rung that is 

just below the top rung, and so on.  

javascript:;
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There are three core claims of Stark’s (2017) model. These claims pertain to issues 

of the steady-state distribution of the population between the regions, and to social welfare.  

Claim 1 considers rational but not sophisticated individuals in the sense that they 

do not form expectations as to how other individuals will behave; the individuals optimize 

their own utility, but they do not take into consideration that other individuals do likewise. 

We refer to these individuals as “near-sighted.” There are 4n   (n is a finite natural 

number) individuals who are initially all located in the same region. Claim 1 establishes 

that a steady-state distribution is reached by time period 
2

n
 if n is even, or by time period 

1

2

n −
 if n is odd. At the steady state, the individuals are distributed between the two 

regions evenly or evenly but for one.  

Claim 4 in Stark’s model refers to an alternative setting in which the individuals are 

“far-sighted:” in considering a move between regions, individuals who are “far-sighted” 

figure out and take into account the decisions that will be taken by other individuals who 

are higher up in the hierarchy of the income distribution. The claim states that in that 

setting, a steady-state distribution is reached in just one time period, and that at the steady 

state, the individuals are distributed evenly, or evenly but for one, between the two regions. 

In both cases, namely when the individuals are “near-sighted,” and when the individuals 

are “far-sighted,” it is shown that the steady-state distribution maximizes social welfare, 

where social welfare is defined as the negative of the sum of the ranks of the individuals. 

(For example, when two individuals with different incomes are located in the same region 

with ranks first and second, social welfare is ( 3)− ; if they locate in different regions so that 

each is ranked first, social welfare is higher at ( 2).− ) 

In Claim 5 in Stark’s model it is stated that any allocation of the individuals in 

which they are distributed evenly (or evenly but for one) between the two regions 
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constitutes the social optimum. This claim is intriguing because although the individuals 

act of their own accord,1 they achieve the socially preferred outcome.  

The aim of the current paper is to inquire whether the core claims of Stark’s 2017 

model are robust to settings of more than two regions. A setting of three or more regions is 

closer to reality than a setting of two regions, but is more difficult to handle.2 The main 

outcome of the current paper’s analysis is robustness of the core claims of Stark’s 2017 

model, that the paths leading to the steady-state distributions are harder to chart 

notwithstanding. To demonstrate this robustness, we proceed as follows. In Sub-section 2.1 

we list our modeling assumptions and several key concepts. In Sub-section 2.2 we 

comment briefly, first, on a setting in which there are three or more regions and two 

individuals and, second, on a setting in which there are three or more regions and three 

individuals. In these two settings, it does not matter whether the individuals are “near-

sighted” or “far-sighted:” steady-state distributions are obtained, and they are the same for 

both types of individuals. In Sub-section 2.3 we study the case of more than three “near-

sighted” individuals, and in Sub-section 2.4 we study the case of more than three “far-

sighted” individuals. In both cases we find that the individuals’ behavior adds up to steady-

state distributions, and we characterize both the processes that lead to the steady-state 

distributions, and the steady-state distributions themselves. Whereas in these two respects 

the two cases differ, in terms of reaching a steady-state distribution, the cases do not differ. 

In Section 3 we analyze social welfare. In Section 4 we address complementary reflections. 

In Section 5 we present concluding remarks.  

 

 

                                                      

1 After all, by their location choices, the individuals create negative externalities in that the very nature of the 

dynamics of their movement is to decrease the rank-utility of every lower-ranked individual in the region to 

which they move.  

2 An early example of modeling location choice when there are three locations to choose from is a study by 

Shukla and Stark (1986). 
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2. An economy of three or more regions: Steady-state distributions 

2.1 Assumptions and concepts 

We let n individuals (numbered 1, 2, ..., n) move between k regions where n and k are finite 

natural numbers, 2n  , and 3.k  3 The regions are not arranged in a spatial structure, and 

in all relevant aspects they are identical. Thus, the results obtained in this paper are 

invariant to arbitrary permutation of the labels (names) of the regions. The individuals have 

given incomes (individual 1 with income 
1x , individual 2 with income 

2x , and so on, 

where 
1 20 ... nx x x    ). The individuals are concerned about their rank, namely their 

position in the hierarchy of incomes: the rank of individual {1,2, , }ni   in a region is the 

number of individuals in the region whose incomes are higher than the income of 

individual i  plus one. For example, the rank of the individual with the highest income in a 

region is first, and if among the individuals residing in the same region as individual i  

there are exactly four individuals whose income exceeds his income, then the rank of 

individual i  is 5. Improvement in rank is the sole reason for considering moving from one 

region to another. The individuals can move between regions at no cost. (In Section 4 we 

provide conditions under which the reported results are invariant to a relaxation of the no-

cost assumption.) When residing in any other region is not more appealing than residing in 

a given region, the individuals do not move. The region in which an individual is located is 

the individual’s exclusive sphere of comparison. Using a slightly different terminology, the 

region where an individual resides is the individual’s “isolated” environment in which rank 

comparisons take place. Disutility arises when an individual’s rank is any but the top one, 

and is proportional to the number of individuals who occupy higher ranks in the 

individual’s region. An individual can move from one region to another as many times as 

he wishes. A move from one region to another region takes one time period. Because, as 

already noted, movement between the regions is cost free, if an individual finds that a 

move results in a worse outcome, he can correct for that by moving back, or by moving to 

                                                      
3 The case of 2k =  is studied thoroughly in Stark (2017). 
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a different region. Reallocation to another region implies an association with a different 

hierarchy of incomes, but involves no rise in income; improving rank is the sole motive. In 

any time period, the individuals know the incomes and the locations of all the other 

individuals, but they are not informed about each other’s moving plans.  

We consider two possible mechanisms or procedures by which individuals assess 

whether to move, and where to move to in any given time period. In the base model (Sub-

section 2.3), the individuals are rational but not sophisticated; they do not form 

expectations as to how other individuals will behave, and they move to the region in which 

they would have the best rank if no one else moves. We refer to these individuals as “near-

sighted,” and to the associated dynamics as “near-sightedness.” In a subsequent model 

(Sub-section 2.4), the “near-sightedness” assumption is replaced by the assumption of “far-

sightedness:” in considering a move between regions, individuals who are “far-sighted” 

figure out and take into account the decisions that will be taken by other individuals who 

are positioned higher up in the hierarchy of the income distribution. These individuals 

move to a region in which they can improve their rank after figuring out the anticipated 

movement of other individuals. The nature of the information processed by the individuals 

differs between the two settings. In the “near-sighted” setting the individuals respond ex-

post to information that they obtain from observing the whereabouts of individuals who are 

higher up in the hierarchy of the income distribution. In the “far-sighted” setting the 

individuals anticipate the whereabouts of individuals who are higher up in the hierarchy of 

the income distribution; they respond to that information ex ante. In both settings the 

individuals’ decision to move is based on the location of individuals higher up in the 

hierarchy, whether this location is observed or anticipated. Detailed explanations of the 

decision-making mechanisms are presented in the respective sub-sections. 

Additionally, we assume that, to begin with, all the individuals are in the same 

region, which we label as A  in the case of three regions, and as 
1A  in the general case of 

multiple (three or more) regions. We make this assumption for two reasons: it happens to 

yield the most complex case, so once we deal with that case, the analysis of other cases 

follows smoothly; and drawing on this assumption simplifies the notation considerably. 
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However, the reported results are invariant to the initial distribution of the individuals 

between the regions: the assumption that at the outset all the individuals reside in the same 

region is not necessary for obtaining our results. In Section 4 we discuss the implication of 

relaxing this assumption. We show that when the assumption is discarded, the only change 

is that the final distribution is reached faster.  

2.2 Two or three individuals: The cases of “near-sighted” individuals, and of “far-

sighted” individuals  

We let 2n =  or 3n =  individuals be in region A . Then two or more other regions that in 

all relevant respects are identical to region A  become available.  

If 2n = , then a steady state is reached in just one time period (henceforth we label 

the stages of the process as time periods): individual 1 whose rank is second in region A  

moves to any of the other regions. Individual 2 who has nothing to gain from moving does 

not move. This result obtains regardless of whether the individuals are “near-sighted” or 

“far-sighted.” 

If 3n = , then in the first time period, individuals 2 and 1 move. Individual 3 who 

has nothing to gain from moving to another region does not move and remains in region 

A . When individuals 2 and 1 move, they either locate to different regions, in which case a 

steady-state distribution is reached with one individual located in each of three regions, or 

individuals 2 and 1 happen to move to the same region, say region B . In this second case, 

individual 1 will subsequently move to yet another region, say region C  (individual 1 will 

not move back to region A  because whereas in region C  - meaning any region other than 

regions A  and B  - he will occupy the top rank, in region A  he will be ranked second), at 

which time a steady-state distribution of the three individuals is reached, again with one 

individual in each of the populated regions, and with the other regions remaining 

uninhabited. In this second case, reaching the steady state takes longer, however: two time 

periods rather than one. In this 3n =  case, as in the 2n =  case, the result obtains 

regardless of whether the individuals are “near-sighted” or “far-sighted.” 
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Naturally, the really interesting and quite challenging cases to study are those in 

which there are more individuals than regions. We examine these cases next. We separate 

our treatment of the “near-sighted” case from that of the “far-sighted” case because in 

terms of the number of time periods that it takes to reach a steady-state distribution and in 

terms of the steady-state distribution itself, the two cases differ. 

2.3 Four or more individuals: The case of “near-sighted” individuals 

Let {1,2, , }n  be a set of 4n   “near-sighted” individuals, and let there be 3k   regions: 

1 2, , , kA A A . In proceeding, we illustrate our considerations by means of examples of 

3k =  regions, in which case we use the notation 
1A A= , 

2A B= , and 
3A C= . We term 

1 2( , , ), kX X X  a distribution if 
1 2, , , kX X X  are the sets of individuals who reside, 

respectively, in regions 
1 2, , , kA A A . In particular, 

1 2 {1,2, , }kX X X n  =  . When 

i X , we denote by ( , )R i X  the rank of individual i  in the set X . 

Definition 1. A “near-sighted” mobility trajectory is a sequence of distributions 

( ) 1 2 00
, , ,( )m m m

m k mmT X X X
 

==
=   such that: 

(i) 
0 {1,2, , }, , , )( nT  =   namely in time period 0 all the individuals reside in 

region 
1A . 

(ii)  If 1mi X

+  for {1,2, , }k    and 0m  , then 

{1,2, , }
( , ) ( , ){ } min { }

j

m

j
k

mR X i X ii R i
 

=  .  

(iii) If mi X  for {1,2, , }k   , 0m   and 
{1,2, , }

( , ) ( , )min { }m m

j
j k

R Xi i XR i
 

=  , then 

1mi X

+ . 

Definition 1 lists three attributes of the dynamics of mobility. Attribute (i) states 

that to begin with, all the individuals are in the same region 
1A . Attribute (ii) states that 

each individual in each time period chooses a region in which he can obtain his best 

possible rank (conditional on him assuming - recalling that he is “near-sighted” - that no 
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one else moves). Attribute (iii) states that in each time period an individual who resides in 

the region where he already obtains his best possible rank does not move. Given the 

opening distribution of the individuals as per (i), a mobility trajectory has to follow 

attributes (ii) and (iii).   

Definition 2. A mobility trajectory ( )
0m m

T


=
 reaches a steady state in l  time periods ( l )  

if 
1l lT T−   and 

liT T=  for i l . (Although it is quite obvious that when i l= , 
liT T= , 

resorting to a weak inequality is more accommodating, as can be seen in the next 

example.)  

Example 1 

Let 4n =  and 3k = . Then there exist eight possible mobility trajectories. In each of these 

cases, the initial distribution is one in which the four “near-sighted” individuals reside in 

region A , namely condition (i) above, 
0 {1,2,3,4}, , )(T =  , holds. Then:  

(i) 
1 ({4},{3,2,1}, )T =   and ({4},{3},{2,1})iT =  for 2i  . 

(ii) 
1 ({4},{3,2},{1})T =  and ({4},{3},{2,1})iT =  for 2i  . 

(iii) ({4},{3,1},{2})iT =  for 1i  . 

(iv) ({4},{2,1},{3})iT =  for 1i  . 

(v) 
1 ({4}, ,{3,2,1})T =   and ({4},{2,1},{3})iT =  for 2i  . 

(vi) 
1 ({4},{1},{3,2})T =  and ({4},{2,1},{3})iT =  for 2i  . 

(vii) ({4},{2},{3,1})iT =  for 1i  . 

(viii) ({4},{3},{2,1})iT =  for 1i  . 

Three characteristics stand out. First, each of the eight trajectories of the mobility 

dynamics reaches a steady state. Second, the number of time periods that it takes to reach a 

steady state is one or two. Third, there are multiple steady states. Naturally, the following 

questions arise: do the mobility trajectories for any 4n   and 3k   reach a steady state? 
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And if they do, what will be the maximal number (the upper bound) of the time periods 

that it will take to reach a steady-state distribution of the individuals across the regions? In 

the case of 4n =  and 3k =  of Example 1 we have seen that the maximal number is two. 

As will be shown in our first claim, it is also possible, albeit more challenging, to identify 

the maximal number of time periods that it will take to reach a steady-state distribution in 

the case of any 4n   and 3k  . 

Claim 1. Let there be 4n   “near-sighted” individuals, and let there be 3k   

regions. Then a steady state is reached. In the steady state, the difference between the 

numbers of individuals in the regions is at most one. The biggest (maximal) number of 

time periods that it takes to reach a steady state is 
1k

n
k

− 
  

. 

Proof. The proof is in the appendix. 

In the remainder of this sub-section we show how the formula 
1k

n
k

− 
  

 can be 

obtained heuristically. A consideration to bear in mind is that in order to “hit” the largest 

number of time periods that it will take to reach a steady state, when individuals face 

multiple, equally-attractive mobility possibilities, the individuals elect to move to the same 

region all in the same time period. 

In time period 1, individual n , who has nothing to gain from moving, stays in 

region 
1A , whereas all the other individuals move to another region, say to region 

2A  so as 

to obtain a higher rank. Next, each of the individuals 2,  3,  4,  . . . ,  1n n n− − −  reasons 

that he can obtain a higher rank if he moves to yet another region, that is, to a region other 

than 
1A  and 

2A . Thus, in time period 2, individuals 2,  3,  4,  . . . ,  1n n n− − −  move to the 

same region, say to region 
3A , so that in time period 2 the distribution of the individuals is 

n  in region 
1A , 1n−  in region 

2A , and the remainder of the individuals are in region 
3A .  

(i) If 1
n

k
 , then in time period 1n− , all the individuals are evenly distributed 

between the regions such that every individual has rank 1. A steady-state distribution is 
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reached in 1n−  time periods because in each time period one individual ceases moving, 

and because individual n  never moves.  

(ii) If 1 2
n

k
  , then in time period k  all the regions will be inhabited by one 

individual each, and individual n k−  will elect to stay in region 
kA . The remainder of the 

individuals will continue moving from one region to another in “a herd” fashion as 

described above, until the difference between the numbers of individuals in the regions is 

at most one. However, because exactly one individual ceases moving in every time period 

other than time period k , because in time period k  two individuals cease moving, and 

because individual n  never moves, a steady-state distribution is achieved in 2n−  time 

periods. 

(iii) If 2 3
n

k
  , then the same procedure as before is in place: one individual 

ceases moving in every time period other than k  and 2 1k − , two individuals cease moving 

in time periods k  and 2 1k − , and individual n  never moves. As a result, a steady-state 

distribution is achieved in 3n−  time periods. 

We thus see a pattern: when individuals move in the manner described above and 

n

k
 is an integer, then the general formula of the maximal number of time periods that it 

takes to reach a steady state is 
n

n
k

− . Clearly, n need not be a multiple of k. But then 

(namely when 
n

k
 is not an integer), we can easily adjust the 

n
n

k
−  formula by applying the 

floor function to 
n

n
k

−  so that the maximal number of time periods that it takes to reach a 

steady state is 
n

n
k

 
− 

 
. An example is in (the caption of) Figure 1. By a simple 

transformation we get that 
1n kn n k

n n
k k k

− −     
− = =     

     
, where the last term is as stated 

in the claim. 
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In Figure 1, the preceding account is illustrated by means of an example of a 

“maximal” trajectory. 
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Figure 1. “Near-sighted” individuals: An example of a “maximal near-sighted” mobility 

trajectory ( )
5

0m mT =  for 8n =  and 3k = . A steady-state distribution is reached in 

1 2
5

3

k
n n

k

−   
= =   

   
 time periods, and 5kT T=  for 5k  . 

2.4 Four or more individuals: The case of “far-sighted” individuals 

In the “near-sighted” setting, individuals do not take into account the actions of others; 

they assume that in a subsequent time period all the other individuals will stay in the 

region in which they happen to be located. In this sub-section we consider instead 

individuals who are “far-sighted:” as already noted in Sub-section 2.1, in contemplating 

their mobility behavior, these individuals figure out and take into account the decisions 

that will be taken by other individuals who are higher up in the hierarchy of the income 

distribution. In other words, the assumption that the individuals base their mobility 

decisions on the observed current state without forming expectations as to how other 

individuals will behave simultaneously can also be relaxed.  
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When individuals do form such expectations, we characterize them as “far-

sighted.”4 In terms of the number of time periods it takes to reach a steady-state 

distribution and in terms of the steady-state distribution itself, it is easy to see the 

differences between “near-sightedness” and “far-sightedness” by looking at the simple case 

of four individuals and three regions.  

Example 2 

We use here the same notation that we used in Sub-section 2.3. Let 4n =  and 3k = . In 

time period 0, the four “far-sighted” individuals reside in region A . Because individual 4 

knows that in any region he will be ranked top, he has no reason to move from region A . 

Individual 3, being “far-sighted,” is aware of individual 4’s reasoning and, hence, knows 

that by moving to either region B  or region C  he will definitely raise his rank. Therefore, 

in time period 1 he moves to one of these regions and stays there. Individual 2, being “far-

sighted,” is aware of the reasoning of individuals 4 and 3, and thus he knows that if he 

moves away from region A  and manages to avoid being in the same region as individual 

3, he will be ranked top in his region. Otherwise, he will be ranked second in his region. 

Therefore, in time period 1 he moves either to region B  or to region C , and in time period 

2 he moves to the other of these two regions if he finds out that he happens to be in the 

same region as individual 3; otherwise, he stays in his region. After time period 2, he is 

ranked top in his region, so he does not move again. Individual 1 can reason similarly to 

individuals 4, 3, and 2 and thus knows that in the “long term” (namely after two time 

periods or later on), there will be exactly one higher ranked individual in each of regions 

A , B , and C , so he will be ranked second in any region. Therefore, he cannot improve 

his rank by moving from region A , so he stays there. 

                                                      
4 A formal definition of the “far-sighed” mobility dynamics turns out to be long and tedious, while not 

conferring additional insight. We have therefore elected not to include this definition in the paper. However, 

we have constructed such a definition, and it is available on request. 
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Summing up: from the initial distribution 
0 {1,2,3,4}, , )( =  , four “far-sighted” 

mobility trajectories ( ) 1 2 00
, , )( ,m

k mm

m m

m X X X
 

==
=  can emerge:  

(i) 
1 ({4,1},{3,2}, ) =   and ({4,1},{3},{2})i =  for 2i  . 

(ii) 
1 ({4,1}, ,{3,2}) =   and ({4,1},{2},{3})i =  for 2i  . 

(iii) ({4,1},{3},{2})i =  for 1i  . 

(iv) ({4,1},{2},{3})i =  for 1i  . 

The basic characteristics are the same as in the case of the “near-sighted” dynamics of 

Example 1: each of the trajectories of the mobility dynamics reaches a steady state in one 

or two time periods. However, we can also see the features that distinguish between the 

“far-sighted” setting and the “near-sighted” setting. First, in the “far-sighted” setting there 

are fewer possible trajectories: four rather than eight. Second, in the “far-sighted” setting 

individuals are more likely to stay where they are: for example, whereas in time period 1 of 

the “near-sighted” dynamics every individual other than individual 4 moves from region 

A , in the “far-sighted” dynamics individual 1 stays in region A . As a consequence, the 

steady states differ: individual 1 is in region A  in every steady state if he is “far-sighted” 

whereas he does not end up in region A  if he is “near-sighted.” 

A “near-sighted” individual experiences, so to speak, the whereabouts of higher 

ranked individuals and then adjusts to that. A “far-sighted” individual anticipates the 

movement of higher ranked individuals and then adjusts to that. As a result of this 

difference, convergence to a steady-state distribution of “far-sighted” individuals between 

the regions requires fewer time periods than convergence to a steady-state distribution of 

the “near-sighted” individuals. Intuitively, if we could prove convergence to a steady-state 

distribution in the case of “near-sightedness” - a distribution that individuals with a limited 

capacity to figure out what is best for them still manage to reach - then it is quite 

reasonable to expect that convergence to a steady-state distribution will be reached when 

individuals have a greater capacity for this. These considerations simplify considerably the 

treatment of a general “far-sightedness” case, to which we attend next.    
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 To begin with, and as before, we assume that all the individuals know that 

individual n will not move, so other than him, all of them move. We show that in this “far-

sightedness” setting, a steady state is reached in no more than 1k −  time periods. 

Claim 2. Let there be 4n   individuals who are “far-sighted,” and let there be 

3k   regions. Then a steady state is reached as follows. Individuals n kl−  for any l  

do not move, while all the other individuals move. These other individuals are distributed 

between regions 
2 3, , , kA A A  in such a way that each of the individuals ( 1)n kl k− − − , 

( 2)n kl k− − −  up to 1n kl− −  ends up in a different region. This steady state is obtained 

after no more than 1k −  time periods. In the steady state, the difference between the 

numbers of individuals in the regions is at most one. 

Proof. The proof is in the appendix.  

Example 3  

Let 3k = . Then in steady state, the number of individuals in regions A , B , and C  are, 

respectively, as follows. 

When 3n q= , q : q , q , and q .  

When 3 1n q= + , q : 1,  ,  and  q q q+ . 

And when 3 2n q= + , q : either 1,  ,  and  1;q q q+ +  or 1,  1,  and  .q q q+ +   

3. An economy of three or more regions: Social welfare  

As noted in the Introduction, in assessing social welfare we follow the measure introduced 

in Stark (2017). 

Definition 3. Social welfare under rank preferences is the negative of the sum of the ranks 

of the individuals. 

For example, and as illustrated in the Introduction, when two individuals with 

different incomes are in region A , then the sum of the first rank of one of the individuals 

and of the second rank of the other individual is 1 2 3+ = ; when the lower-ranked 
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individual moves to empty region B , then the sum of the ranks is 1 1 2+ = . Social welfare 

in the latter case at ( 2− ) is higher than social welfare in the former case at ( 3− ).  

Claim 3. The objective of bringing social welfare under ordinal preferences 

(rankings) to a maximum is achieved upon any distribution of the individuals in which 

they are arranged evenly or evenly but for one between the regions. Both steady-state 

outcomes (for “near-sighted” individuals and for “far-sighted” individuals) yield the social 

optimum. 

Proof. The proof is in the appendix.  

We note that the socially optimal distributions are also Pareto-efficient: under a 

socially optimal distribution, no individual can improve his rank without lowering the rank 

of at least one other individual. Otherwise it would be possible to improve the level of 

social welfare of a distribution by improving the rank of an individual, which contradicts 

the notion of optimality. Therefore, by Claim 3, all steady-state outcomes for both types of 

dynamics are Pareto-efficient. 

However, a Pareto-efficiency of a distribution does not imply that the distribution is 

socially optimal, nor that it is a steady-state distribution. For example, when there are three 

regions then the distribution of 8n =  individuals {{8,1},{7,2},{6,5,4,3}}  is Pareto-

efficient (if any individual moves and thereby improves his rank, the rank of at least one 

other individual deteriorates), but this distribution is neither socially optimal nor a steady 

state for any of our representations of dynamics. (Recall Figure 1.) Therefore, the results 

that we obtain are “stronger” than a mere Pareto-efficiency of steady states. 

Example 4  

Let 3k = . Then in a steady state, the level of social welfare is as follows.  

When 3n q= , q : 

2) ( )
3

( , ,
2

A B Cs qX X qX = +− . 

When 3 1n q= + , q : 
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2 2 23 5
( ( ) 1

2 2

1
( , , ) 3 2

2
)A B C q q qs X X X qq q+ + = − −+−= − − . 

And when 3 2n q= + , q : 

2 2 21 3 7
( ( ) 2.

2 2
( , , ) 3 2

2
)A B Cs X X X qq q q q q+ + − −= − + = − −  

4. Complementary reflections 

To discover that the sum total of the behavior of individuals whose actions are guided by a 

desire to improve their own wellbeing yields the optimal social outcome is an intriguing 

result. When individuals act in such a manner so as to improve their wellbeing without 

taking into consideration the consequences of their actions for the wellbeing of others, 

social welfare is not expected to be maximal. After all, and typically, selfish behavior is the 

source of negative externalities, such that the gains of some are the pain of others. We 

showed that regardless of whether the choice of region is by “near-sighted” individuals or 

by “far-sighted” individuals, the choice results in a steady-state distribution of the 

population, and that this distribution maximizes social welfare. These findings align with 

results reported in Stark’s (2017) model of two regions. The analysis conducted in the 

current paper informs us that the earlier results are not the outcome of a relatively simple 

choice of location between two regions. In short, the main results obtained in the current 

paper are that as in the original analysis of two regions, a steady-state distribution is 

reached, and that the steady-state distribution maximizes social welfare.  

Reaching a steady-state distribution and obtaining optimal social welfare can occur 

even when mobility is not cost-free. We show this by means of a simple example. Suppose 

that the cost, c, of every move is 0 1c  , and that the benefit from gaining one rank is 1, 

that the benefit from gaining two ranks is 2, and so on. Suppose that there are four “far-

sighted” individuals whose incomes, and hence ranks, are 4, 3, 2, and 1, and that there are 

three regions: A , B , and C . To begin with, if moving is costless, then in the first time 

period individual 4 stays in region A , and the other three individuals move to empty 

regions B  and C . Suppose that they move in such a way that individuals 3 and 1 are in 

region B , and individual 2 is in region C . No one then has an incentive to move any 
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further; a steady-state distribution is reached in which two regions are inhabited by one 

individual each, and one region is inhabited by two individuals. The three moving 

individuals gained: individual 3 gained one rank, individual 2 gained two ranks, and 

individual 1 gained two ranks. If, however, the cost of move is 0 1c  , then the same 

moves will occur; the gain to each of the three individuals is bigger than the cost. A 

positive yet relatively small cost of a move can leave the prediction of the cost-free setting 

as is. 

Reaching a steady-state distribution need not occur when absolute income matters 

too, yet a rank consideration matters more. Let there be two individuals: n and 1n −  (n is 

always wealthier than 1n − ), let there be two regions, A  and B , and let it be the case that 

because of a synergy effect, both individuals will be more productive (and, thus, wealthier) 

when they are in the same region (working together) than when they are in separate regions 

(operating alone). In such a setting, individual n will prefer to be in the same region as 

individual 1n − , say in region A . However, if for individual 1n −  the displeasure from 

having a worse wealth rank (when he is in the same region as individual n rather than when 

he is in a region all by himself) outweighs the pleasure gained from having a higher level 

of wealth, then individual 1n −  will prefer to be in region B . Individual n will then prefer 

to move to region B  himself. But then, individual 1n −  will be better off by moving to 

region A . And so on. While individual 1n −  “runs away” from individual n, individual n 

“runs after” individual 1n − ; a never-ending chase results, with no convergence to a steady 

state.  

The essential results reported in the preceding sections do not depend on the 

attribute that, to begin with, all the individuals reside in the same region. Even when we 

discard part (i) of Definition 1, then every “near-sighted” trajectory reaches a steady state 

such that the difference between the numbers of the individuals in the regions is at most 

one.5 Also, Claims 2 and 3 and their proofs are the same for different starting 

                                                      
5 The reasoning that leads to this conclusion is the same as the one presented in the proof of Claim 1 for the 

case in which, to begin with, all the individuals are in region 
1

A .  
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distributions.6 Quite intuitively, the only difference is that the maximal number of time 

periods needed to reach a steady state might be smaller when to begin with, not all the 

individuals reside in the same region. We know that at a steady state the individuals are 

distributed between the regions as equally as possible. Therefore, there is no initial 

distribution that is farther from a steady state than the one we considered in the preceding 

sections; under more “favorable” initial conditions, convergence to a steady state can only 

be faster. We end this section with 3k =  and 8n =  configurations that help seeing this 

result.  

Example 5  

From Claim 1 and Figure 1, we know that the trajectory of “herd movement to the next 

available region” in the case of “near-sighted” individuals for 3k =  and 8n =  reaches a 

steady state after five time periods. In general, when we discard the attribute that to begin 

with, all the individuals reside in the same region, we may just as well end up lowering the 

number of time periods needed to reach a steady state, possibly all the way down to 0. For 

example, if the starting distribution of the eight individuals in the three regions is 

0 0 0, , ) ({7,4,2},{8,3,1},{6,5})( A B CX XX = , then no individual has an incentive to move, so 

we are in a steady state right from the start. 

Another possibility is illustrated in Figure 2 where we assume that to begin with, 

even-numbered individuals are in region A  and that odd-numbered individuals are in 

region B . Then, in time period 1, all the individuals other than 8  and 7  move to region 

C , so the resulting distribution is the same as the one that we obtained after two time 

periods of a “maximal” trajectory when the starting distribution was of all the individuals 

residing in region A  (recalling Figure 1). When the initial distribution of the individuals is 

as per Figure 2, the time that it takes to reach a steady state is shorter by one time period 

compared to when the initial distribution is as portrayed in Figure 1. 

 

                                                      
6 With regard to Claim 2 we need merely to add the assumption (which we can make without any loss of 

generality) that to begin with, individual n  resides in region 
1

A . 
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Figure 2. “Near-sighted” individuals: An example of a “maximal near-sighted” mobility 

trajectory for 8n =  and 3k =  when the initial distribution of the individuals is 

000 , , ) ({8,6,4,2},{7,5,3,1}, )( A CBX XX =  . A steady-state distribution is reached in four time 

periods.   

 That being said, we hasten to add that for some initial distributions, the maximal 

number of time periods needed to reach a steady state can remain the same as when the 

initial distribution is such that all the individuals reside in the same region. Considering 

once again 3k =  and 8n = , we illustrate this possibility in Figure 3. 
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Figure 3. “Near-sighted” individuals: An example of a “maximal near-sighted” mobility 

trajectory for 8n =  and 3k =  when the initial distribution of the individuals is 

000 , , ) ({8,7,6,5,4,3,2},{1}, )( A CBX XX =  . A steady-state distribution is reached in five time 

periods.  
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 In Figure 3, we assume that to begin with, all the individuals but for individual 1 

reside in region A , and that individual 1 resides in region B . If we follow the rules of 

“herd mobility to the next region,” then in time period 1, all the individuals from region A  

other than individual 8 move to region B  so that the resulting distribution is the same as 

the one that we obtained after one time period of the “maximal” trajectory when the 

starting distribution was of all the individuals residing in region A  (recalling Figure 1). 

When the initial distribution of the individuals is as per Figure 3, the time that it takes to 

reach a steady state is the same as when the initial distribution is as portrayed in Figure 1.  

The assumption that the regions are identical is the last assumption that we might 

consider revoking. Suppose that in selecting the region to which to move, randomness is 

replaced by a “convention:” the individual who assesses the prospect of having the same 

rank in different regions chooses to move to the region with the lowest label, namely he 

prefers residing in 
1A  over 

2A , in 
2A  over 

3A , and so on, as long as the rank that he will 

obtain is the same. In the example of four “far-sighted” individuals and three regions, A , 

B  and C , while individuals 4 and 1 do not move, individual 3 will be known to move to 

region B . Aware of the convention that leads individual 3 to move to region B , individual 

2 will move to region C . In such a case, a steady-state distribution will be reached in one 

time period with, to recapitulate, individual 3 residing in region B , and individual 2 

residing in region C . In general, for any number of individuals and regions, “far-sighted” 

individuals will reach a steady-state distribution in one time period because from the very 

beginning they will be able to predict where everyone else will end up residing, so they can 

choose their optimal region right at the outset. 

In the case of four “near-sighted” individuals and three regions, in time period 1 

individuals 3, 2, and 1 will move to region B  (according to the “convention” they will 

prefer it to region C ), leaving individual 4 in region 1. Then, in time period 2, individuals 

2 and 1 will move to region C  (while individuals 4 and 3 do not move), and in time period 

3 individual 1 will move to region A . Then, the “near-sighted” dynamics reaches a steady 

state {{4,1},{3},{2}}  after three time periods. In general, for any number of individuals n  

and any number of regions k , in time period 1l n −  individuals , 1, , 1n ln n − +−  
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remain in the regions in which they currently reside, while individuals 1 ,1, ,n l n l − − −  

move to the next region in a circular order 
1 2 1... ...kA A A A→ → → → → →  . 

Therefore, the steady state will be reached after 1n−  time periods, when individual 1 

ceases to move. 

A “convention” scenario is not, however, in the spirit of our perception that regions 

are identical in all relevant respects, and are equally close by or are equally distant so that 

none can be prioritized.  

5. Concluding remarks 

We can think of three interesting ways to obtain additional insights from our analysis. 

First, we have an input into migration theory. Replacing move with migrate and 

mobility trajectory with migration trajectory takes us to a theory of rank-seeking migration 

when the region of choice is one of many. As already shown a long time ago (Stark, 1993), 

the motives for migration are not only cardinal; they are ordinal too: comparisons with 

others influence location choices. Rank-seeking belongs to the ordinal category. The 

approach undertaken in this paper is to develop a pure theory (improvement of rank is all 

that matters), as doing this serves to flesh out key features. In less abstract settings, a utility 

representation will incorporate terms of both types, say income and rank, allowing for 

tradeoffs and different weighing across individuals and cultures. 7  

                                                      
7 Starting with Stark and Taylor (1991) all the way through to Kafle et al. (2020), a large number of empirical 

studies have shown that relative deprivation, defined as the aggregate of the income excesses that individuals 

experience within their reference group divided by the size of the group, exerts an independent and 

significant impact on their migration from the reference group. This empirical record can serve as a 

constructive hint that a novel theory of migration as rank-seeking behavior could successfully be taken to the 

data. A bridge between the theory and an empirical implementation is not difficult to construct. For example: 

an individual likes absolute income and dislikes rank deprivation, and assigns to these two terms in his utility 

function the weights of   and (1 )− − , respectively, where ( )0,1  . Thus, the individual’s utility 

function can be represented by ( ) ), (1xu x R DD R −= − , where x denotes the individual’s income, and RD 

denotes his rank deprivation. One testable hypothesis will be that the higher the (absolute value of the) 
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Second, suppose that we were to define an index of ordinal inequality, an “ordinal 

Gini coefficient” of sorts, and endow that index with maximal and minimal values. For 

example, if there are three individuals and three regions, and when, to begin with, the three 

individuals are in the same region, then the negative of the sum of the levels of their rank 

deprivation is ( 3)− . This sum can be normalized as value 1 of the index of ordinal 

inequality. When the individuals reach the steady-state distribution in which they reside 

one individual per region, then rank deprivation, and thereby the value of the index of 

ordinal inequality, are nil. These two numbers are, respectively, the maximal and the 

minimal values of that ordinal inequality index. When there are more individuals than 

regions, we have shown that the steady state obtained at which the individuals are arranged 

evenly or evenly but for one between the regions confers the highest level of social 

welfare. This level of social welfare is the flip side of the minimal level of the inequality 

index - it yields the lowest achievable level of ordinal inequality. The route from initial 

maximal inequality to steady-state minimal inequality is not monotonic (there can be 

intervening time periods in which ordinal inequality increases), but the final state always 

yields the lowest inequality. For students of inequality, an appealing feature of the 

dynamics of our analysis is that the sum total of the behavior of the individuals yields not 

only the maximal level of social welfare but also the minimal level of rank inequality. 

A third interesting way of obtaining additional insight from our analysis would be 

to use it “upside down;” in a way, we could learn about the capacity of people’s brains by 

watching where their legs take them: in order to differentiate between “near-sightedness” 

and “far-sightedness,” we do not need to detect neural responses using functional magnetic 

resonance imaging (fMRI). Instead, we can look at the steady-state distribution of the 

individuals between regions. Because the patterns of the equilibria distributions differ, we 

can draw on the one-to-one relationship between a pattern and the type of “sightedness” to 

                                                                                                                                                            

weight accorded to RD, the closer will be the observed steady-state distribution to the steady-state 

distribution predicted by the theory. 
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form judgment about the individuals’ mental capacities. To illustrate, recalling the simple 

case of four individuals and three regions, if we observe a steady-state distribution in 

which individual 1 resides in region B  or in region C  (for example, {{4},{3},{2,1}}), 

then we will infer “near-sightedness;” and if we observe a steady-state distribution such 

that individual 1 resides in region A  (for example, {{4,1},{3},{2}}), then we will infer 

“far-sightedness.” 
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Appendix: Proofs of Claims 1, 2, and 3 

Proof of Claim 1. For ease of reference, we replicate here the claim.  

Claim 1. Let there be 4n   “near-sighted” individuals, and let there be 3k   

regions. Then a steady state is reached. In the steady state, the difference between the 

numbers of individuals in the regions is at most one. The biggest (maximal) number of 

time periods that it takes to reach a steady state is
1k

n
k

− 
 
 

. 

Prior to presenting the proof itself, we introduce two definitions, present an 

example, and state and prove a supportive lemma. 

Definition A1. Let 4n  , 3k   and ( )
0m m

T


=
 be a “near-sighted” mobility trajectory. We 

say that individual i  is settled in time period m  if for each individual j i  there exists 

( ) {1,2, , }j k    such that ( )

t

jj X  for t m . We then denote the smallest number m  

such that individual i  is settled in time period m  by ( )st i , and we say that individual i  

becomes settled in time period ( )st i . 

It may seem that individual i  is settled when he no longer moves, namely in time 

period m  for which there exists {1,2, , }k    such that ti X  for t m , regardless of 

the behavior of any other individual. However, as long as all the individuals who are 

initially ranked higher than individual i  keep moving, individual i  cannot be sure about 

his rank and, thus, whether or not he finds it desirable to move, meaning that he cannot as 

yet be settled. We illustrate this observation with the help of Figure A1. 
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Figure A1. “Near-sighted” individuals: A “near-sighted” trajectory for 6n =  and 3k =  

(the path taken until the individuals reach their steady-state regions).  

By Definition A1, in the trajectory depicted in Figure A1, individual 1 is not yet 

settled in time period 1, even though subsequently he does not move away from the region 

to which he moved in time period 1. The reason is that while he will not be moving 

himself, he needs to pay attention to the mobility behavior of individual 2 who has not as 

yet ceased moving. It is still possible that in time period 2 individual 2 will move to region 

B , which will prompt individual 1 to move again. Only in time period 2 when individual 2 

is settled in region A  can individual 1 be confident that he will not need to move further 

and, thus, we will be able to say that he is settled. In this case then, (1) 2st = . 

Definition A2. For 0m  , we denote by ( )ST m  the set of individuals who are settled in 

time period m , and we denote by 
mST  the number of individuals who are settled in time 

period m , namely:  

 { {1,2, , }: ( ) }( )S i n s iT m t m     

and 

 | ( ) | .mST ST m 8 

Naturally, when j i  and ( )i ST m , then ( )j ST m . Consequently,  

 ( ) 1, 2,{ , }m mn ST nT m STS n +− +− . 

                                                      
8 | |X  denotes the number of elements in a set .X   
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Thus, a trajectory reaches a steady state in m  time periods when m  is the smallest number 

such that .mST n=   

Example A1  

In the trajectory depicted in Figure A1: (6) 0st = , (5) (4) (3) 1st st st= = = , and 

(2) (1) 2st st= = . Thus: }(0) {6ST =  and 
0 1ST = ; (1) {3,4,5,6}ST =  and 

1 4ST = ; and 

{1,2,3,4,5,6}( )ST m =  and 6mST =  for 2m  . We see that this trajectory reaches a steady 

state in two time periods because 2m =  is the smallest number for which 6mST = . 

The following lemma lists properties of the sequences ( )
0

( )
m

ST m


=
 and ( )

0m m
ST



=
. 

Lemma A1.  

Let 4n  , 3k   and ( )
0m m

T


=
 be a “near-sighted” mobility trajectory, 

0 0a ST=  and 

1m m ma ST ST −= −  for 1m   (namely 
ma  is the number of individuals who become settled in 

time period m ). Then: 

(i) }(0) {ST n= . 

(ii) If 
mST n , then 

1m mTST S+  . 

(iii) 1| ( ) | | ( ) |m mST SX Xm T m   −  for every , {1,2, , }k     and every 0m  . 

(iv) If 
mST n , then 

mST  is not a multiple of k  for any 0m  . 

(v) If 
1mST n−  , then 

 1
1

m

m
m ST

k

 
+  


+

−
.  (1) 

Proof. We prove separately each of the five parts of the lemma. 

(i) Naturally, individual n  never moves because he already occupies rank 1 in region 
1A , 

so (0)n ST . All the other individuals move in the first time period because rank 1 in 
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regions 
2 3, , , kA A A  is vacant while their rank in 

1A  is lower than 1. Thus, if j n , then 

(0)j ST . Therefore, }(0) {ST n= .  

(ii) By definition, 1)( () ST Tm mS  +  (and 
1m mTST S+  ), so we only need to show that 

1)( () ST Tm mS  +  (and, thus, 
1m mTST S+  ).  

We assume that 
mST nl=  . Then individual ( )Sl mTn − . However, all the 

individuals numbered higher than n l−  are settled in time period m , so that in time period 

1m+  individual n l−  chooses the region where he is ranked highest and moves there. 

After that, he cannot improve his rank by moving further, so he is settled in time period 

1m+ , namely ( 1)STn l m− + . Hence, 1)( () ST Tm mS  + , and 
1.m mST ST +  

(iii) We assume, by contradiction, that there exist 0m   and regions , {1,2, , }k     

such that 

 | ( ) | | ( ) 1|m mST m X XST m −   .  

Let ( ) )min( mx ST m X=   and | ( ) |mST m lX  = . In particular, 2( , )mX lR x   + . 

Moreover, ( )x ST m , thus x j  for every ( )mj mX ST , so that 

{ } 1( , )mR x X x l   + . Therefore, x  will gain rank by moving from region   to region   

in time period 1m+ , which contradicts the presumption that ( )x ST m . Thus, assuming 

that 1| ( ) | | ( ) |m mST SX Xm T m   −  is false. 

(iv) We assume, again by contradiction, that 
mST n  and 

mST kl=  for some l . Then 

, }( ,) { 1n kST m l n= − +  . By the preceding part (iii) of this lemma 

1 2 .| ( ) | | ( ) | | ( ) |m m

k

mSXST m ST lm TX m X  ==  ==  Thus, if 3p n l= − , then 

1 2{ } { } { } 1(( , ) ( , ) , )M M M

kX p X p X pR p R p lR p  = = =  = +  for every M m . 

Therefore, no matter in which of the regions 
1 2 , ,, kA A A  individual p  is located in time 

period m , he will have no incentive to move away from that region. Moreover, all the 
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individuals who are numbered higher than p  belong to ( )ST m , thus also ( )p ST m , 

which contradicts the assumption 
mST kl= . Therefore, 

mST  is not a multiple of k . 

(v) By definition, 
0

m

m i

i

S aT
=

=  for 0m  . We assume that 0m   is such that 
1mST n−  . By 

part (i) of the lemma, 
0 1a = . By part (ii) of the lemma, ( )

0

m

i i
ST

=
 is an increasing sequence 

of integers, thus 1ia   for 1m  . We assume that there exists 0i   such that 

1 2 1 1i i i ka a a+ + + −= = == . Then, 
1 1, , ,i i kiST S STT + + −  are k  consecutive integers, so one of 

them is a multiple of k , which contradicts point (iv) of the lemma. Therefore, for 0i  , 

among 1k −  consecutive elements of the sequence 
1 2 1( , , ),i i i ka aa + + + −  there exists at least 

one which is not smaller than 2. Thus, at least 
1

m

k

 
 − 

 elements of the sequence ( )
0i i

m
a

=
 are 

not smaller than 2, and the remainder elements are not smaller than 1 (by point (ii) of the 

lemma). Therefore: 

 
0

1 1 2 1
1 1 1

m

m i

i

m m m
ST

k k k
a m m

=

     
     

 
=  + −  +  = +

− − −
+

     
  .  

Q.E.D. 

Proof of Claim 1. The fact that a steady state is reached is an immediate 

consequence of parts (i) and (ii) of Lemma A1, of 
0 1ST = , and of the attribute that the 

sequence ( )
0m m

ST


=
 is strictly increasing as long as its elements are smaller than n . Also, 

the elements of ( )
0m m

ST


=
 are integers, thus 1mST m +  as long as 

1mST n−  . Therefore, 

1nST n− = , namely all the individuals are settled after at most 1n−  time periods, so a 

steady state is reached. 

The fact that in a steady state the difference between the numbers of individuals in 

the regions is at most one follows immediately from part (iii) of Lemma A1: if a steady 

state 
1 2 ), , ,( kXX X  is reached in time period m , then 
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1 2 1 2( ) ( , , ), , , ,m m m

k kX X XX X X = , and {1,2, , }( ) nST m =  . In particular, 

( )m m

i iX ST m X =  for 2 ,1, , ki = . Thus, and by part (iii) of Lemma A1, 

1| | | | | | | ( ) | | (| ) || m m m mX STX X X X Xm ST m     −  == − −  for every 

, {1,2, , }k    . 

 We next attend to the third component of the claim, namely to the maximal number 

of time periods that it takes to reach a steady state. We need to show that there is no “near-

sighted” mobility trajectory that requires more than 
1k

n
k

− 
 
 

 time periods to reach a 

steady state.  

To this aim, we assume the contrary. We know that each trajectory reaches a steady 

state, so there exists 
1k

m n
k

− 
  
 

 (and 
1k

m n
k

−
 , because m  is an integer) such that 

1mST n−   and 
mST n= . However, by part (v) of Lemma A1 

1 1 1 1
1 1

m

m km
ST m n n

k k

   
+ + + + = +     −

 
 

=
− 

.9 

Therefore, by contradiction, there exists no “near-sighted” mobility trajectory that requires 

more than 
1k

n
k

− 
 
 

 time periods to reach a steady state. 

 It remains to be shown that the upper bound of the number of time periods that are 

needed to reach a steady state cannot be bigger than 
1k

n
k

− 
 
 

. To this end, following the 

                                                      
9 The first equality in this line holds because there exist ,q r   such that 2r k −  and ( 1)m k q r= − + , 

and then 
( 1) ( 1

1 11

)( 1) ( 1)

1
( 1)

1

k k q k r k

kk

mr

k

k k q k r

k

m
m k q r q kq r

k

− + −

− −

= =

−

− + −

−
+ − + + = + = + =

−

     
         

. 
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approach and logic of the heuristic proof in the main text, we construct a “near-sighted” 

mobility trajectory ( )
0m mT



=  which reaches a steady state in exactly 
1k

n
k

− 
 
 

 time periods.  

 Prior to the said construction, we configure a cyclical ordering of the regions: 

1 2 1... ...kA A A A→ → → → → →  . The basic rule of mobility for ( )
0m mT



=  is as follows. 

In every time period, in accordance with the notion of “near-sighted” mobility, as many 

individuals as possible move from the most populous region, denoted by  , to the 

adjacent region on the right of region   in this cyclical order, denoted by 1 + . We chart 

the mobility path governed by this rule.10 

In time period 1, individual n  who has nothing to gain from moving, stays in 

region 
1A , whereas all the other individuals who seek to obtain a higher rank move to 

region 
2A . 

In time period 2, individuals 2,  3,  4,  . . . ,  1n n n− − −  move to region 
3A , so that 

in this time period the distribution of the individuals is n  in region 
1A , 1n−  in region 

2A , 

and the remainder of the individuals are in region 
3A . 

In general, in each time period m  such that min{ , }1 m k n  , one individual 

( 1n m− + ) stays in region 
mA  while individuals ,  3,  4,  . . . ,  1n m n n− − −  move to region 

1mA +
. 

If n k , then in time period 1n− , which is when individual 1 moves to region nA , 

all the individuals are distributed between the regions such that every individual has rank 

1. A steady-state distribution is reached in 1n−  time periods. The number 1n−  is derived 

from the fact that one individual stops moving in every time period, individual n  never 

                                                      
10 In conjunction with the remainder of this proof, it can be helpful to consult the example in Figure 1, 

presented at the end of Sub-section 2.3 of the main text. 
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moves, and a steady state is reached as soon as all the individuals cease moving.  

Moreover, 
1 1 1

1
k k n

n n n n n
k k n

− − −   
 = −   

   
  , thus, 1n−  is the largest integer that is 

not bigger than 
1k

n
k

− 
 
 

, namely 
1

1
k

n n
k

− 
= − 

 
, and a steady state is reached in 

1k
n

k

− 
 
 

 time periods. In conclusion, the upper bound of the number of time periods that 

are needed to reach a steady state cannot be bigger than 
1k

n
k

− 
 
 

 for n k . 

If 1n k + , then before time period k , in each of regions 
1 2 1, , , kA A A −  there is 

one individual who is not moving any more, and individuals 1,  ,  . . . ,  1n k n k− + −  are in 

region 
kA . In time period k , two individuals, 1n k− +  and n k− , elect to stay in region 

kA  and they will not move again, while the remainder of the individuals from region 
kA  

move to region 
1A . Then, in each time period m  such that min{2 1, 2}1k k nm − −+  , 

one individual ( n m− ) stays in region 
1mA −
, while individuals 

1,  3,  4,  . . . ,  1n m n n− − − −  move to region 
mA . 

If 1 2k n k+   , then in time period 2n− , which is when individual 1 moves for 

the last time, all the individuals are distributed between the regions such that every 

individual 1i n k − +  has rank 1, and each individual i n k −  has rank 2. A steady-state 

distribution is reached in 2n−  time periods. The number 2n−  is derived from the fact 

that one individual ceases moving in every time period other than 1 ( 1)k k= + − , in time 

period k  two individuals cease moving, and individual n  never moves. Moreover, 

1 1 2n k n

n k n

− − −
  , therefore, 

1 1 2
1 2

k k n
n n n n n

k k n

− − −   
−  = −   

   
 , thus, 2n−  is 

the largest integer that is not bigger than 
1k

n
k

− 
 
 

, namely 
1

2
k

n n
k

− 
= − 

 
, and a steady 

state is reached in 
1k

n
k

− 
 
 

 time periods. In conclusion, the upper bound of the number of 



32 

time periods that are needed to reach a steady state cannot be bigger than 
1k

n
k

− 
 
 

 for 

1 2k n k+   . 

If 2n k , then before time period 2 1k − , two individuals who are not moving any 

more reside in each of the regions other than 
1kA −
, and individuals 

2 1,  2 ,  . . . ,  1n k n k− + −  reside in region 
1kA −
. In time period 2 1k −  two individuals, 

2 1n k− +  and 2n k− , elect to stay in region 
1kA −
 and they will not move any further, 

while the remainder of the individuals from region 
1kA −
 move to region 

kA .  

In general, in each time period m  such that 1 ( 1)m q k= + −  for some q + , two 

individuals ( 1n qk− +  and n qk− ) cease moving while individuals numbered lower than 

n qk−  move to the next region in the cyclical ordering. In each time period m  such that 

}2 min{1 ( 1)( 1) )( 1) , ( 1q qk m k n q  + + − −− ++ , one individual ( 1n m q− − + ) ceases 

moving, having been located in some region  , while individuals numbered lower than 

1n m q− − +  move to region 1 + . 

Therefore, if 1 ( 1)qk n q k++   for some q + , then in time period ( 1)n q− + , 

which is when individual 1 moves for the last time, all the individuals are distributed 

between the regions such that the rank of individual i  in his region is 1
n i

k

 
+  

−
. A steady-

state distribution is reached in ( 1)n q− +  time periods. The number ( 1)n q− +  is derived 

from the fact that one individual ceases moving in every time period other than 

1 ( 1)m l k= + −  for 2 ,1, , ql = , in q  time periods of the form 1 ( 1)m l k= + −  for 

2 ,1, , ql =  two individuals stop moving, and individual n  never moves. Moreover,  

 
( 1) 1 1 ( 1)( 1) ( 1

( 1

)

1 )

n q q k k q k n q

n qk k nq k

− − + − + − − +
  = 

+ +
 , 
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therefore, 
1 1 ( 1)

( 1)
k k n q

n q n n n n q
k k n

− − − +   
−  = − +   

   
, thus ( 1)n q− +  is the 

largest integer that is not bigger than 
1k

n
k

− 
 
 

, namely 
1

( 1)
k

n n q
k

− 
= − + 

 
, and a steady 

state is reached in 
1k

n
k

− 
 
 

 time periods. In conclusion, the upper bound of the number of 

time periods that are needed to reach a steady state in the general case cannot be bigger 

than 
1k

n
k

− 
 
 

. Q.E.D. 

Proof of Claim 2. For ease of reference, we replicate here the claim. 

Claim 2. Let there be 4n   individuals who are “far-sighted,” and let there be 

3k   regions. Then a steady state is reached as follows. Individuals n kl−  for any l  

do not move, while all the other individuals move. These other individuals are distributed 

between regions 
2 3, , , kA A A  in such a way that each of the individuals ( 1)n kl k− − − , 

( 2)n kl k− − −  up to 1n kl− −  ends up in a different region. This steady state is obtained 

after no more than 1k −  time periods. In the steady state, the difference between the 

numbers of individuals in the regions is at most one. 

Proof of Claim 2. To recall, the “fortune” of any individual does not depend on the 

location of individuals who occupy lower rungs in the incomes hierarchy. The mobility 

decision taken by individual 1n −  depends only on the mobility decision taken by 

individual n, the mobility decision taken by individual 2n −  depends only on the mobility 

decisions taken by individuals n and 1n − , and so on.  

In the first period, individual 1n−  moves from region 
1A  to one of the regions 

2 3,, , kA A A  and never moves again. Individual 2n −  moves either to the same region as 

individual 1n−  or to one of the other regions, as he does not know to which region 

individual 1n −  chose to move. In the second time period, individual 2n −  moves away if 

he had chosen the same region as individual 1n−  in the first time period, or he stays in the 

region he resides in if he had chosen any other region in the first time period. We can 



34 

similarly analyze the behavior of individuals 1)3, , (4,n n n k− − −−  , and conclude that 

after no more than 1k −  time periods, each of them will reside in one of the regions 

2 3, , , kA A A . Therefore, we know that individual n k−  stays in region 
1A  because in all 

other regions there will eventually be one individual ahead of him, so being the second in 

region 
1A  cannot be improved upon by moving to any of the other regions. 

The reasoning for individuals ), ( 1), , ( 1n nkl n k ll k k− −  − + −+  for any l  is 

similar: individual n kl−  stays in region 
1A  because his rank there is 1l + , and because in 

any of the other regions there will eventually be l  individuals ahead of him, so he has 

nothing to gain from moving. Individual ( 1)n kl− +  moves and stays in the region that he 

chose in the first time period. Individual ( 2)n kl− +  moves in the first time period and 

either stays or moves in the second time period (depending on whether he chose the same 

region that ( 1)n kl− +  chose in the first time period), and so on. The steady-state 

distribution is reached in just one time period if, for every 0l  , individuals 

), ( 1), , ( 1n nkl n k ll k k− −  − + −+  have chosen different regions, and it is reached in up to 

1k −  time periods otherwise. 

If n kq=  for some q , then in the steady state the number of individuals in all 

k  regions is the same (namely, q ); the regions are equally populated. If n kq r= +  for 

some ,q r  and 1 1kr  − , then there are 1k +  individuals in region 
1A  and in ( 1)r −  

regions among 
2 3, ,..., kA A A , and k  individuals in the rest of these regions (namely, ( )k r−  

of them). Q.E.D. 

Proof of Claim 3. For ease of reference, we replicate here the claim. 

Claim 3. The objective of bringing social welfare under ordinal preferences 

(rankings) to a maximum is achieved upon any distribution of the individuals in which 

they are arranged evenly or evenly but for one between the regions. Both steady-state 

outcomes (for “near-sighted” individuals and for “far-sighted” individuals) yield the social 

optimum. 
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Proof of Claim 3. There exist finitely many distributions, thus there exists at least 

one distribution for which the maximal social welfare is achieved. As before, we let 4n   

be the number of the individuals, and we let 
1 2, , , kA A A  be the names of the k  regions. 

We recall from Sub-section 2.3 that 
1 2( , , ), kX X X  is a distribution if 

1 2, , , kX X X  are 

the sets of individuals who reside, respectively, in regions 
1 2, , , kA A A . We denote the 

level of social welfare that corresponds to such a distribution by 
1 2( , , ), ks X X X . In 

addition, we denote | |j jX a=  for {1,2, , }j k  , where | |S  is the number of elements in a 

set S . The sum of the ranks of the 
ja  individuals in 

jX  is 
2

1 2
( 1)j j

j

a a
a++

+
 =+  for 

{1,2, , }j k  . Therefore, the corresponding level of social welfare is  

 2

2

1

1

1

( 1) 1
, ( .

2
, )

2
( , )

k k
j j

j j

j j

k as aX
a a

X X
= =

+
 = − = − +    

First, we show that any distribution in which the individuals are not arranged 

evenly or evenly but for one between the regions does not maximize social welfare. We 

assume that 
1 2( , , ), kX X X  is a distribution in which the individuals are not distributed 

evenly or evenly but for one between the regions. Without loss of generality, we assume 

that 
1 2 ka a a  . Then, 

1 1 ka a−   (because otherwise, the individuals will be 

distributed evenly or evenly but for one between the regions). 

Let 
1i X . We consider the distribution 

1 2 )( ,{ } , { }, kX Xi X i  , namely we 

modify 
1 2( , , ), kX X X  by moving individual i  from region 

1A  to region 
kA . Then the 

level of social welfare for distribution 
1 2 )( ,{ } , { }, kX Xi X i   is: 
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1
2

1 1

2

1 1
2 2 2 2

1 1 1 1

2 1

2

2

2

1

1

2

1

1
{ } , { }) ( 1) ( ( 1)( 2)

2

1 1
( 3 2 2( 1) 2

2 2

1
( , .

( , , )

)

) ( ,
2

, )

k

j j k k

j

k k k

j j k k j j k

j j j

k

j

j

k

kj

i i a a a a a a

a a a a a a a a a

s X X X

s X X

a

a X

a

a

−

=

− −

= = =

=

 
  = − + + + + + 

 

   
= − + + + + +  − + − + +   

   

= − + =

−



− + −



  



 

Therefore, 
1 2( , , ), ks X X X  is not a maximal value of social welfare and, consequently, if 

1 2( , , ), kX X X  is a distribution such that the individuals are not distributed evenly or 

evenly but for one between the regions, then that distribution does not maximize social 

welfare. 

Second, we show that every distribution 
1 2( , , ), kX X X  in which the individuals 

are arranged evenly or evenly but for one yields the same level of social welfare. To this 

end, we assume that 
1 2( , , ), kX X X  is a distribution in which the individuals are arranged 

evenly or evenly but for one between the regions.  

There exists a unique pair ( , )q r +  such that n kq r= +  and 1r k − . Then there 

are 1q +  individuals in r  regions and q  individuals in k r−  regions (otherwise the 

individuals are not distributed evenly or evenly but for one). Therefore: 

 2

2 2 2

1

1

1
, ( ( ( ).( , , ) ) 3 2

2
)

2 2

k

j j

j

k

r
s

r
X X X q

k
a a q q q

=

+ + −=
−

 − + = − +   

In particular, when the individuals are distributed evenly or evenly but for one between the 

regions, the value of the social welfare function depends only on the numbers k , r  and q . 

In turn, the values of r  and q  depend only on the number of individuals n , and on the 

number of regions k . In conclusion: for fixed n  and k , every distribution in which the 

individuals are arranged evenly or evenly but for one between regions yields the same level 

of social welfare. Simultaneously, the yielded social welfare has to be maximal because no 

distribution in which the individuals are not arranged evenly or evenly but for one between 
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regions can maximize social welfare. From Claims 1 and 2 we know that all the steady-

state distributions are among the socially optimal distributions. Q.E.D. 
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