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Abstract

We document that European banks charge higher interest rates on loans granted to
small and medium-sized firms located in areas at high risk of flooding. At 6 basis
points, the average risk premium does not adequately reflect the deterioration of loan
performance in the aftermath of flood episodes, however. Firms in flooded counties
are more likely to default on their loans than non-disaster firms. Floods reduce
securitised credit in the local markets, suggesting that physical risks associated with
climate change are borne within the banking sector.
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Non-technical summary

Extreme weather events and climate-related natural hazards are becoming more frequent and

severe with the rise in global temperatures. Floods are already among the most damaging

hazards in Europe, where the economic and social costs of physical damage and relocation of

people and businesses have been material. While the increase in flood risk at the European

scale is substantial, its financial implications are still far from being fully understood.

Using a large cross-country data set of securitised loans, we study the impact of flooding

on credit to European small and medium-sized enterprises. First, exploiting detailed inform-

ation on loans at origination, we explore to what extent physical risk from flooding is priced

into small business loans. We find that banks charge higher interest rates on loans to firms

in counties that are exposed to a high risk of flooding. Moreover, flood risk appears already

salient for lenders, as we do not find evidence that recent flood events change the perception

and assessment of flood risk, and, hence, the extent of the risk premium.

In the second part of the paper, we investigate whether the occurrence of flood events has

a bearing on the deterioration of loan performance. Our findings point to a sizeable impact

of flooding on loan delinquency. Moreover, we uncover also an indirect effect of flooding

on the worsening of loan performance. Loans originated in the aftermath of flood events

are more likely to enter default than other loans. This intrinsic fragility is suggestive of

risk-taking behaviour by banks in granting post-disaster recovery lending.

All in all, the intensification of climate disasters due to climate change may become an

important source of financial vulnerability for European small and medium-sized businesses

and, consequently, for the banks financing them. We show that the estimated average flood

risk premium does not accurately reflect the increased credit risk that banks face on the loans

granted to borrowers impacted by natural disasters. Moreover, we find that floods decrease

the amount of securitised credit in the local markets. This result points to reduced risk-

sharing possibilities for lenders exposed to firms in counties hit by natural hazards. Coupled

with the finding that flood risk is inadequately priced into new loans, these results suggest

that a large part of physical climate risk may still be borne within the banking sector.
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1 Introduction

With the rise in global temperatures extreme weather events and climate-related natural haz-

ards are becoming more frequent and severe. Floods are already among the most damaging

hazards in Europe, where the economic and social costs of physical damage and relocation of

people and businesses have been material (European Environment Agency, 2022). While the

increase in flood risk at the European scale is substantial, its financial implications are still

far from being fully understood. In addition to the direct economic losses, flooding may en-

tail indirect financial costs stemming, for instance, from the reduction in the value of at-risk

assets. Moreover, damage to physical capital and business disruptions jeopardise the ability

of borrowers to meet their debt obligations. This induced financial fragility may act as an

important propagation mechanism to the financial sector, eventually forcing banks to fire

sale assets and ration credit (Financial Stability Board, 2020). Both physical damage and

the deterioration of financing conditions are likely to turn out particularly costly for smaller

firms, given the localised nature of their operations and their high reliance on domestic bank

credit as a source of finance (Hoffmann et al., 2022).

Using a large cross-country data set of securitised loans, we study the impact of flooding

on credit to European small and medium-sized enterprises (SMEs). First, exploiting local

variation in the exposure and vulnerability to flooding, we explore to what extent physical

risk is priced into new small business loans. We document that banks charge higher interest

rates on loans to firms in counties at high risk of flooding. At 6 basis points, the magnitude

of the average risk premium appears rather small. However, it turns sizeable for smaller

borrowers, and in the case of local specialised lenders, that is, cooperative and savings

banks. Moreover, we do not find evidence that recent flood events change the perception

and assessment of flood risk, and, hence, the extent of the risk premium. Thus, if not to the

full extent of its implications for credit risk, flood risk appears already salient for lenders.

Next, as our data allows us to track loans during their lifetime, we use survival analysis

to investigate whether the occurrence of flood events has a bearing on the deterioration of
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loan performance, and, potentially, default. Our findings point to a significant impact of

flooding on loan delinquency. Firms exposed to a flood are more likely to fail to repay their

existing loans than firms in non-disaster areas by up to 1.5 times in the second year after the

water hazard. Moreover, we uncover an indirect effect of flooding on the worsening of loan

performance. For given financial characteristics, loans originated in the aftermath of flood

events are more likely to enter default status than other loans. The result holds even as we

account for the occurrence of floods during the loan lifetime. This intrinsic fragility suggests

that banks tend to take on more risk when they grant post-disaster recovery lending.

Our results indicate that flooding affects businesses not only through direct physical

damage, but also by worsening their financial conditions, notably by jeopardising their ability

to service debt and, partly, by increasing their cost of capital. Hence, while the full impact

of climate change is expected to materialise in the long run (Pörtner et al., 2022), climate-

related disasters and extreme weather events may have disruptive consequences on firm

operations in the short and medium term, not only in a direct way (Fatica et al., 2022a), but

also through the financial channel. This effect is exacerbated by the high reliance of SMEs

on bank funding, and their limited access to capital markets, which reduces the possibility of

substituting away from bank credit for alternative sources of finance (Cingano et al., 2016;

Iyer et al., 2013).

All in all, our findings suggest that the intensification of climate disasters due to climate

change may become an important source of financial vulnerability for European small and

medium-sized businesses and, consequently, for the banks financing them. In a simple setup,

we show that the estimated average flood risk premium does not accurately reflect the

increased credit risk that banks face on the loans granted to borrowers impacted by natural

disasters. Moreover, when considering aggregate quantities at the county level, we find that

flood events decrease the amount of securitised credit in the local markets. Hence, there

appear to be reduced risk-sharing possibilities for lenders exposed to firms in counties hit

by natural hazards. Coupled with the fact that flood risk is inadequately priced into new
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loans, these results suggest that a large part of physical climate risk is still borne within the

banking sector.

Our paper relates and contributes to two main strands of the literature. First, we add

to the fast-growing literature on the pricing of climate risk into financial assets (Giglio

et al., 2021). When it comes to physical risk in particular, so far the attention has focused

mainly on real estate valuation and, through this channel, on the mortgage market and the

implications thereon of long-term risks, such as sea level rise (Baldauf et al., 2020; Bernstein

et al., 2019; Nguyen et al., 2022). As for other assets, Acharya et al. (2022) explore the pricing

of heat stress in municipal and corporate bond as well as equity markets. The literature on

physical risk and corporate lending is also expanding, with analyses that focus exclusively on

syndicated loans (Correa et al., 2022; Jiang et al., 2023). Against this background, the extent

to which physical climate risk is accounted for in the pricing of loans to smaller businesses

is still practically unexplored. To the best of our knowledge, we are the first to fill this gap

with evidence for Europe. In this respect, our work complements recent evidence on the

pricing of transition risk by Euro area banks (Altavilla et al., 2023) to provide a full picture

of how climate-related risks affect business credit conditions in Europe.

Second, our paper relates to the literature on the impact of climate-related natural dis-

asters (Skouloudis et al., 2020), and, in this context, on the role of financial variables as an

amplifying mechanism for real economy vulnerabilities (Campiglio et al., 2022). There is a

large number of studies on bank lending and bank behaviour in the aftermath of natural

disasters. This literature documents that, as a result of the need to rebuild destroyed or

damaged physical capital, natural hazards bring about an increase in the demand for credit

in affected areas (Berg and Schrader, 2012; Cortés and Strahan, 2017; Koetter et al., 2020;

Chavaz, 2016; Celil et al., 2022). Importantly, to meet increased credit demand for recon-

struction purposes, banks may change the geographic composition of their lending, diverting

credit away from non-disaster areas (Rehbein and Ongena, 2022). While these studies ex-

tensively characterise natural disasters as a demand shock from the lender’s perspective,
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there is still limited evidence on the existence of a supply channel stemming from negative

post-disaster loan performance (Noth and Schuewer, 2018; Barth and Zhang, 2019).

Our paper contributes to this literature by providing novel evidence in this direction for

climate-related disasters. First and foremost, our results that floods are a significant risk

factor for loan defaults indicate that an important supply effect is at play in recovery lending.

Hence, banks may have to write off or incur losses on existing loans to businesses located

in areas impacted by natural disasters, while at the same time they appear to be taking on

more risk when extending new loans to disaster firms. Second, our analysis points to the

implications that projected and realised flood risks have on financial outcomes. While we

find that loan spreads are not affected by realised risk, we also show that projected physical

risk is incorporated into the pricing of small business credit, albeit to an extent that does not

adequately reflect the actual deterioration in credit risk in the aftermath of flood episodes.

Fully characterising these supply effects is important to shed light on bank credit as an

amplification mechanism for the transmission of climate-related shocks to the real economy,

and on the potential financial stability implications (Noth and Schuewer, 2018).

The remainder of the paper is structured as follows. Section 2 introduces the data.

Section 3 presents the analysis of loan pricing alongside descriptive evidence on the sample

of loans at origination. Loan default is investigated in Section 4. In Section 5 we discuss to

what extent risk pricing adequately reflects the observed deterioration in loan performance.

Section 6 studies how flooding affect the securitisation of bank lending in local credit markets

using a staggered difference-in-differences model. Finally, Section 7 concludes.

2 Data

2.1 Loan-level data

We obtain data on loans to SMEs from the European DataWarehouse (EDW), a centralised

securitisation repository part of the European Central Bank (ECB) loan-level initiative to
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collect, validate, and distribute standardised data for European countries. Through this

program, banks provide asset-backed securities as collateral in the ECB repurchase (repo)

financing operations. As from January 2013, financial institutions that access the repo

borrowing facility are mandated to report information on their securitised portfolios on a

quarterly basis according to a standardised format. We consider securitised loans in four

European countries, namely Belgium, France, Italy and Spain, which are among the most

active in the securitisation of SME loans in Europe (see Ertan et al., 2017 and Van Bekkum

et al., 2018 for a detailed description of the EDW data and the securitisation process for

SME loans in this framework). For each securitised credit facility, the data set provides a

number of loan characteristics, as well as information on the borrower and on the lending

institution.1 In particular, among the loan-level variables, the original loan balance and the

final maturity date are reported, together with other credit terms, such as the type and the

purpose of the loan, its amortisation profile, and the presence of collateral. This information

is recorded at the exact date of origination, which is also reported. Information on the lender

is limited to the bank name. As for the borrower, mandatory reporting is foreseen about the

legal form or business type, the economic sector of the activity , and its geographic location,

according to the Nomenclature of Territorial Units for Statistics (NUTS) classification. In

particular, we have information on borrowers’ location the NUTS3 level, which identifies

local units corresponding approximately to counties in the United States.2 We exploit the

information on the geographic area where the borrower is located to match the loan-level

data with the data on flooding described hereinafter.3

In addition to the ‘static’ information recorded at origination, the EDW database contains

a number of variables that allow us to assess loan performance over time. This ‘dynamic’

1The SME loan level reporting requirements include mandatory and optional variables, broadly covering
loan, asset-backed security pool and bank identifiers, borrower information and financials, loan characterist-
ics, loan interest rate details and loan performance information.

2NUTS3 local entities correspond to different administrative units across European countries, i.e.
provinces in Italy, or departments in France. We refer to them as counties throughout the paper.

3Moreover, we augment the data set with macroeconomic variables, namely yearly Gross Domestic
Product (GDP) and employment growth rates at NUTS3 level.
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information is updated on a quarterly basis at the different cut-off dates when the periodic

reporting for each pool of securitised loans occurs. Time-varying loan characteristics include

the loan balance and, potentially, the interest rate, as well as the loan status, notably also

whether the credit facility is in delinquency. In that case, other relevant information is

provided, such as the delinquent amount and number of days in arrears. In our analysis,

we select loans originated from 2008 until the end of 2019, relying on information reported

from 2015 onward. We refer to Appendix A for a description of the several cleaning steps

performed on the loan-level data.

2.2 Data on flooding

We draw data on flooding from the Risk Data Hub (RDH) of the European Commission’s

Joint Research Centre (Faiella et al., 2020). The RDH is a web-based geographical informa-

tion system platform that contains harmonised risk data and methodologies for disaster risk

assessment in Europe.4 In the context of the new EU Strategy on adaptation to climate

change, the RDH is set to become the reference platform for standardising of the recording

and collection of comprehensive and granular climate-related losses and physical climate risk

data at the EU level.5 It also provides input to the analysis of climate risks from a macro-

prudential perspective and to the development of climate stress tests by European financial

supervisors (European Central Bank and European Systemic Risk Board, 2021). The in-

formation in the RDH is structured into two modules covering risk analysis and historical

events, respectively. We describe these in turn.

Flood risk. The Risk Analysis Module of the RDH provides indicators that allow for

multi-sector assessment of potential risks and losses from natural hazards at the European

level (Antofie et al., 2019). The risk indicator (R) captures the potential impact of a hazard

4More details are available at https://drmkc.jrc.ec.europa.eu/risk-data-hub/#/methodologies.
5See European Commission (2021) “Forging a climate-resilient Europe - the new EU strategy on adapt-

ation to climate change”, COM(2021) 82 final, 24 February.
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(H ) for a specific area or community in a given period of time (t). As such, it compounds

two different metrics associated to the occurrence of a natural hazard, namely exposure (E )

and vulnerability (V ), as in:

R = f(t,H,E, V ). (1)

The exposure component combines geolocalised information on relevant flood metrics, such

as frequencies and intensities, with layers for physical assets. Flood frequency is assessed

starting from data measuring the area at risk of being inundated by floods with different

return periods. The simulated return periods are for 10, 50, 100, 200 and 500 years.6 Then,

the associated potential impacts are determined, accounting for land use at the local level.

Specifically, within each territorial unit, the indicator uses information on the share of indus-

trial/commercial, residential and agricultural area at risk of being flooded by a flood with

a specific return period. The average expected impacts are assessed at different projection

horizons, namely for 1, 2, 5, 10, 15 and 25 years, computing the probabilities of occurrence

associated to floods with the specified return periods. As events are assumed independent,

the expected exposure is defined as the sum of the exposure level weighted by corresponding

probabilities (Antofie et al., 2020).

By construction, the exposure indicator captures the maximum potential impact of flood-

ing in a given location. As such, it is not, in itself, a sufficient metric to determine flood

risk, since it is possible to be exposed but not vulnerable to a particular hazard.7 The

vulnerability component aims at assessing precisely the predisposition, deficiencies or lack

of capacity of the exposed elements to withstand the natural hazards. It is conceived as

a multidimensional indicator comprising a social, economic, political, environmental, and

physical dimension.

Thus, the overall risk indicator provides a measure of the potential impacts of hazards

6The simulated inundation maps as a measure of the areal extent of the flood-prone areas are derived
from the hydraulic model LISFLOOD (Dottori et al., 2022).

7Flood protection measures, such as water-proofing of buildings, for instance, reduce the vulnerability of
flood-exposed areas, making them not necessarily at risk.
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on different assets, after combining exposures and vulnerabilities. As the paper analyses

business lending, we employ the risk indicator for commercial buildings, defined at county

level and averaged across the different projection periods.8 The values of the risk indicator at

the local level are normalised within country, on a scale ranging from 0 to 10, which indicate,

respectively, minimum and maximum risk. Figure 1 provides a graphical representation of

flood risk for commercial buildings across counties, with darker shades corresponding to

higher levels of flood risk. In the empirical analysis, we classify as high-risk those counties

for which the value of the flood risk indicators is above the median value of the distribution

of the normalised risk scores.9

Flood events. Data on flood events is drawn from the historical module of the RDH.

This is an EU-wide disaster loss database that provides information on past events with

records on the impact (quantified as human losses and economic damage) and geographical

location of the hazard. The module collects information from multiple databases, including

the International Disasters Database (EM-DAT), and other sources of metadata.10 Available

information includes the type of hazard, the date of the event, and the affected local areas,

classified at NUTS3 level. Additional variables that further qualify the event – such as the

size of the flooded area, the number of injured and dead people, as well as the economic

losses associated with the event – are provided for roughly half of the recorded events in our

8Other available assets are residential real estate and agricultural areas.
9An alternative indicator of flood risk is the one constructed by Four Twenty Seven, an affiliate of Moody’s,

which is increasingly used for the climate risk assessment. Although the JRC RDH flood risk indicator and
the Four Twenty Seven are broadly similar, in our analysis we privilege the JRC RDH one for three reasons.
The Four Twenty Seven indicator is built at the firm-level, but SME borrowers in our sample are anonimised,
so we cannot match the Four Twenty Seven flood risk indicator with our firm-level data. Moreover, the Four
Twenty-Seven indicator covers only partially the universe of EU firms, and calculating an average score at
NUTS3 level may produce some bias, given the unequal distribution of firms in each NUTS3 unit. For these
reasons we prefer to use an index already aggregated at the level of Local Administrative Units. Finally,
we prefer to use a single data provider for flood data: we extract from the RDH also historical flood data
that are not published by Four Twenty Seven. We refer to European Central Bank and European Systemic
Risk Board (2021) for further discussion and a thorough comparison of the two indicators.

10Faiella et al. (2020) discuss in detail the criteria for inclusion of natural disasters in the RDH database.
They are generally based on the number of fatalities or of people affected by the natural disaster, and/or
a declaration of a state of emergency, and/or a call for international assistance. The exact criteria slightly
vary, depending on the specific source, as the database is constructed using multiple sources.
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Figure 1: Flood risk. The figure shows the map of flood risk across counties (NUTS3 units). The
flood risk indicator is averaged across the projections years (i.e., 1, 2, 5, 10, 15 and 25 years) and normalised
within country over the [0, 10] scale. Low (high) values indicate low (high) flood risk, i.e. potential impact
of flooding. For counties in grey the indicator is not available.

sample.11 We retain information on events classified as river floods, flash floods and coastal

floods, while we disregard flooding connected to other major disasters, such as avalanches and

landslides. Figure 2 reports the number of floods by NUTS3 observed over the period from

January 2007 to December 2018. On average, the counties in our sample are hit by 3 floods.

There is no significant difference in flood frequency among coastal counties - potentially

subject to coastal and fiver floods - and land-locked areas, exposed only to river floods.

With 2 floods on average per county, Belgium and France are the least affected countries,

while Spain is the most impacted, with 4 floods on average. The Spanish county of Valencia

is the one recording the highest number of flood events - 9 over the period under analysis.

We use the records of flood events to create measures of realised flood risk at the local

level. We combine the information about the localisation and dating of flood events with the

11As detailed in Faiella et al. (2020), information about the precise amount of damage from natural
disasters is scarce, and direct economic losses may be reported ex-post with measurement error. Hence, we
do not consider the distribution of losses in our analysis, but we make only the distinction between flood
events with and without economic losses. The former can be considered as a proxy for more severe hazards.
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Figure 2: Flood events. The figure maps the number of flood events across counties (NUTS3 units)
over the 2007-2018 period. Counties in grey reported no floods in the indicated period.

loan-level data set to characterise the impact of flooding on local credit market conditions.

For that, we create a set of binary variables that indicate whether in the q months before the

observation date there has been at least one flood event in the county where the borrower

is located. In the baseline case, we consider q = 6. However, where appropriate, we also

experiment with alternative time ranges, namely 12 and 24 months. These extended time

frames are particularly relevant for the analysis of loan performance.

Importantly, in the loan-level analysis, we account for the realisation of flood risk that

occurs before loan origination as well as during the lifetime of the credit facility. Hence, for

each loan, we can disentangle whether it was originated in the aftermath of a flood episode,

and, in case it entered delinquency, whether that happened following a flood episode. In the

former case, the reference date with respect to the flood is the date of loan origination. In

the latter case, the reference time is the date(s) after origination when the loan is observed,

namely the reporting dates where we draw relevant information on the performance and the

status of the credit facility.
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3 Loan pricing

This section studies whether flood-related physical risk affects the pricing of SME loans,

focusing on the interest rate applied at loan origination.12

3.1 Descriptive evidence

Table 1 reports the descriptive statistics on the main loan-level characteristics recorded at

the time of loan origination. Our final estimating sample contains approximately 1 million

unique credit facilities. The interest rate applied at origination is 234 basis points (bps) on

average, and ranges from 55 to 592 bps moving from the 5th to the 95th percentile of the

distribution. The average loan term is 68.5 months, that is slightly less than 6 years. The

average loan balance is around EUR 94,000. The lower panel of Table 1 reports summary

statistics for the sub-sample of loans extended in high-risk counties, i.e. those with a flood

risk measure that is above the median of risk scores. At 249 bps, the average interest rate

on credit facilities to borrowers facing a high risk of flooding is higher than the one in the

full sample. The average loan amount is also higher (around EUR 102,420), whereas the

average loan term and the fraction of highly collateralised credit lines in the two samples are

comparable.

Figure 3 displays the distribution of the balance at origination and the term of the loans

in our sample. The distributions are skewed towards small amounts and short maturities,

which is not surprising since borrowers are small and medium enterprises. We do not have

information about firm characteristics, including the specific firm dimension (medium, small

or micro enterprises). The data set contains some information about the firm’s legal form

though. Roughly 84% of the firms in our sample are classified as limited companies, 8.3% are

individual companies, and 2.2% are reported as partnerships. We may consider individual

12The EDW data set does not explicitly include such information, while it provides the interest rate type
and the current interest rate observed at the different reporting dates. Hence, we consider all loans with a
fixed interest rate. Then, among the loans with a floating interest rate, we consider only those for which the
current interest rate has been observed within 12 months from the date of origination.
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Table 1: Descriptive statistics at loan origination.
Mean, standard deviation (std. dev.) and selected percentiles for the interest rate, loan term, loan balance

and the fraction of highly collateralised loans. All variables are as observed at origination. Summary statistics

are provided for the full sample of loans, and for the sub-sample of loans originated in high-risk counties.

Mean Std. dev. p5 p25 p50 p75 p95
Full sample
Interest rate (bps) 233.96 167.01 55 115 180 310 592.30
Loan term (months) 68.47 41.03 13.02 48.03 60.03 83.11 179.11
Loan balance (’000 EUR) 93.78 269.91 5 14.80 28.66 60 320
Collateralised 0.59 0.49 0 0 1 1 1
High-risk counties
Interest rate (bps) 249.38 177.38 54.30 120 197 340 600
Loan term (months) 67.7 41.08 13.02 48.03 60.03 83.01 179.11
Loan balance (’000 EUR) 102.42 296.74 5 14.90 29 62.13 365
Collateralised 0.61 0.49 0 0 1 1 1

companies and partnerships as a proxy for smaller and micro-enterprises.13

Table 2 details the number of loans originated after flood episodes, in the full sample (top

panel) and in the sub-sample that includes only counties at high risk of flooding (bottom

panel). As explained in Section 2, we consider the time windows of 6, 12, and 24 months

following a flood episode. Although floods are not frequent, we observe a sizeable absolute

number of loans that are originated in the aftermath of water hazards. Approximately

114,000 individual loans, or almost 11% of the total number of loans in our estimating

sample, are originated within two quarters following a flood episode. When we consider

a two-year window after flooding, the share reaches 40%. Conditional on being originated

in the aftermath of flood episodes, about 40% of loans are extended after disasters with

reported economic losses. Floods, even if not severe enough to cause economic losses, are

relatively rare events within the very short time windows we consider: almost all the post-

disaster loans are originated after a single flood rather than after multiple flood events.

The fraction of post-disaster loans originated after multiple floods ranges from 2% when we

focus on the half-year time span, to 13% in the 2-year period. At 3% and 14% respectively,

13Small and especially micro-enterprises may be under-represented in our sample of securitised loans
because of their higher riskiness.
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Figure 3: Distribution of loan balance at origination and loan term. The left panel
reports the distribution of the loan balance (thousands of EUR). The right panel reports the distribution of
the loan term (months).

the shares are practically unchanged when we consider only the high-risk counties. Flood

frequency becomes compelling when we take a medium-term perspective, however. For each

month-year when we observe new loans, we calculate the cumulated number of floods in

each county from the beginning of the sample period. Then, we define as flood-prone those

counties exposed to a number of floods above the median value of the distributions of flood

episodes. Around 36% of loans are originated in flood-prone counties.

3.2 The empirical model

The baseline regression model for loan pricing takes the following form:

iribj,t = α + βHighriskj + γXij,t + φbl,y + εibj,t. (2)

The dependent variable, iribj,t is the interest rate on loan i granted at time t to firm b,

located in county j. Our main variable of interest is High riskj is an indicator variable that

takes value 1 if the normalised flood risk indicator for the county where the loan is extended

15



Table 2: Number of loans originated after a flood.
Number of loans originated 6, 12, and 24 months after at least one flood (first row), a flood with reported
economic losses, multiple flood episodes, and in flood-prone counties, for the full sample (top panel) and
for high-risk counties (bottom panel). The total number of loans in the full sample is 1,045,110, of which
585,276 in high-risk counties, and 376,978 in flood-prone counties.

6 months 12 months 24 months
Full sample
At least one flood 113,742 231,522 413,559
Flood with reported losses 41,176 84,757 157,559
Multiple floods 2,174 7,911 56,649
Flood in flood-prone county 71,816 142,654 250,012
High-risk counties
At least one flood 62,871 127,899 230,881
Flood with reported losses 23,066 47,526 92,234
Multiple floods 1,789 5,620 34,268
Flood in flood-prone county 42,116 83,771 147,654

is above the median of the empirical distribution of risk scores. Hence, counties with risk

scores below the median are considered at low risk of flooding (i.e., High riskj = 0). In

Equation (2), the estimate of β measures the average interest rate premium for high flood

risk. Xij,t is a vector of covariates defined at the loan and at the county levels. As loan-level

information, we include the loan term (expressed in months), and the amount borrowed (in

million euros), both taken in the logarithmic scale. We also control for non-price lending

conditions by including a dummy variable that takes value 1 for highly collateralised loans,

and 0 otherwise.14 Growth rates for the county GDP and employment are included to

account for the general macroeconomic conditions at the local level. Further, φbl,y denote

sets of fixed effects defined at the borrower (b), lender (l) and year (y) levels, as specified

below, aimed at tightening our identification strategy. In practice, with the borrower fixed

effects we control for unobserved firm-level heterogeneity in direct exposure and vulnerability

to flooding. Fixed effects defined at the lender and the year level account for unobserved

heterogeneity on the supply side and time varying shocks that could affect loan pricing.

Finally, εibj,t is the stochastic disturbance term.

14We consider a loan as highly collateralised if the value of pledged collateral is above 50% of the loan
amount.
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3.3 Results

3.3.1 Baseline results

Table 3 reports the results from estimating different versions of Equation (2).15 The spe-

cification in column (1) includes borrower fixed effects, in addition to variables for loan

characteristics and macroeconomic controls. The coefficient of the High riskj indicator is

positive and statistically significant at 10%. The point estimate indicates an average flood

risk premium of around 6 bps. The coefficient on the loan term is positive and highly stat-

istically significant, suggesting that the term structure of interest rates on loans to SMEs

is positively sloped. Similarly, there is a positive and statistically significant correlation

between the loan amount and its cost at origination. Finally, highly collateralised loans bear

on average a lower interest rate, in line with their perceived lower riskiness, ceteris paribus.

Column (2) adds lender fixed effects, which take care of unobserved heterogeneity on

the supply side of credit. The estimates of the flood risk premium increase to 8.4 bps,

and is statistically significant. The coefficients of the control variables are qualitatively and

quantitatively unchanged. In column (3) we add year fixed effects. Controlling for time-

varying unobserved shocks that affect loan pricing slightly reduces the flood risk premium,

estimated at 7.4 bps, without altering its high statistical significance. Finally, in column

(4), we interact the lender fixed effects with the year dummies. This allows us to take care

of time-varying supply factors that may drive loan interest rates, and ensures that we are

identifying the impact of floods on the cost of credit based on multiple loans originated from

the same bank. The point estimate for the flood risk premium is around 5.8 bps, which

is around 2.5% of the average value of the interest rate at loan origination in the sample.

It appears rather small in magnitude, also in comparison with evidence on the pricing of

physical climate risk into financial assets. For instance, Correa et al. (2022) document that,

in the case of hurricanes, syndicated loans bear a risk premium for at-risk but unaffected

borrowers in the range of 19 bps. When it comes to debt capital markets, Acharya et al.

15We implement the estimation using the reghdfe command by Correia (2014).
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(2022) find that exposure to local heat stress leads to municipal bond yield spreads that are

higher by around 15 basis points per annum.

Table 3: Flood risk and loan pricing.
The table reports estimation results for different variants of Equation (2). The dependent variable is the
interest rate at loan origination (in bps). High risk is an indicator variable equal to one for counties at high
risk of flooding, and zero otherwise. The regressions include loan-level controls, macroeconomic controls,
and sets of fixed effects as specified. Standard errors, robust for heteroskedasticity and clustered at the
county level, are reported in parentheses. ***, **, and * indicate that the parameter estimate is significantly
different from zero at the 1%, 5%, and 10% level, respectively.

(1) (2) (3) (4)

High risk 6.181* 8.407*** 7.323*** 5.689***
(3.738) (2.225) (2.228) (1.674)

Loan term 45.055*** 45.233*** 25.589*** 26.372***
(2.849) (2.852) (1.912) (1.990)

Loan balance 4.739** 4.782** 4.319** 3.930**
(2.311) (2.309) (2.025) (1.992)

Collateralised -47.466*** -47.454*** -5.589*** -4.790***
(4.232) (4.242) (1.189) (0.972)

Macroeconomic controls Yes Yes Yes Yes
Borrower FE Yes Yes Yes Yes
Lender FE No Yes Yes No
Time FE No No Yes No
Lender X Time FE No No No Yes
Adjusted R-squared 0.731 0.732 0.809 0.823
Observations 1,045,110 1,045,110 1,045,110 1,045,110

3.3.2 Robustness

In this section, we provide several robustness checks for the baseline estimates presented in

column (4) of Table 3. Specifically, we test the definition of our dependent variable, the

granularity of the fixed effects and the adequacy of our main explanatory variable measure

to capture localised risk. The results are reported in Table 4.

In column (1) we adopt an alternative definition of the dependent variable using the

spread of the loan interest rate over the 3-month monthly Euribor. This allows us to account
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Table 4: Flood risk and loan pricing: robustness of the baseline results.
The table reports estimation results for different variants of Equation (2). Highrisk is an indicator variable
equal to one for counties at high risk of flooding, and zero otherwise. The dependent variable in column (1)
is the spread of the interest rate at loan origination over the 3-month EURIBOR (in bps). In columns (2)
and (3), the dependent variable is the loan interest rate at origination (in bps). In column (2), interaction
time fixed effects are defined at year-month level. In column (3), the high risk indicator is defined based
on the highest riskiness quartile of the counties bordering the NUTS3 unit where the loan is extended.
The regressions include loan-level controls, macroeconomic controls, and sets of fixed effects as specified.
Standard errors, robust for heteroskedasticity and clustered at the county level, are reported in parentheses.
***, **, and * indicate that the parameter estimate is significantly different from zero at the 1%, 5%, and
10% level, respectively.

(1) (2) (3)
Interest rate spread Year-month FE Bordering counties’ risk

High risk 6.176*** 5.454*** 2.062
(1.620) (1.681) (4.254)

Loan term 26.662*** 26.375*** 26.375***
(1.955) (2.088) (1.991)

Loan balance 3.453* 3.865* 3.938**
(1.878) (1.984) (1.992)

Collateralised -4.049*** -2.376** -4.798***
(0.954) (0.931) (0.973)

Macroeconomic controls Yes Yes Yes
Borrower FE Yes Yes Yes
Lender X Time FE Yes Yes Yes
Adjusted R-squared 0.762 0.832 0.823
Observations 1,045,110 1,044,009 1,044,222

for money market conditions at the time the loan is extended that may affect its pricing. At

6.2 bps, the estimated risk premium is in line with the baseline estimates. The specification in

column (2) considers more granular fixed effects to address the concern of confounding factors

on the supply side of credit. Specifically, we introduce year-month fixed effects interacted

with lender fixed effects to allow for supply-side shocks occurring at a higher frequency than

in the baseline specification. Again, the coefficient estimate for the flood risk premium is

quantitatively and qualitatively unchanged with respect to the baseline model in column (4)

of Table 3 .

Finally, we test the validity of our risk measure. Specifically, we address the concern
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that it may capture other unobserved characteristics in the broad geographic area. To rule

out the possibility that our main results are driven by spurious correlation, we consider

the riskiness of the counties bordering the ones where each loan is extended. Hence, in

column (3) the High risk indicator for above-median flood risk is defined on the basis of the

highest value of the flood risk indicator among all the counties bordering the one when the

loan is originated. This variable should not affect the pricing of bank credit extended in

counties exposed to a different level of flood risk. The coefficient estimate is not statistically

significant, which indirectly confirms the relevance of the local flood risk measure in the

pricing of small business loans.

3.3.3 Mechanisms

In this section, we focus on the factors driving heterogeneity in the flood risk premium to

get a better understanding of the mechanisms through which flood risk is priced into small

business credit. We consider relevant features on the demand as well as on the supply side

of credit.

Specifically, we first gauge the extent of the risk premium across different types of bor-

rowers, based on characteristics that are indicative of their broad financial vulnerability and,

hence, arguably, of their capacity to cope with the localised impact of climate change. The

results are reported in Table 5. In column (1), we consider only borrowers that have legal

form as partnerships or individual firms. These, presumably smaller, borrowers do not be-

nefit from limited liability legal provisions. At around 10.5 bps, the estimated risk premium

is larger than the average one in the full sample. It is statistically significant at the 5% level.

To formally test the implications of firm size, in column (2) we estimate the pricing model

only on firms classified as small or micro, according to the official definition of the European

Commission.16 This reduces the sample to roughly 126,000 observations. The estimated flood

risk premium for small and micro firms is in the range of 38 bps, and highly statistically

16The classification is available at https://ec.europa.eu/growth/smes/sme-definition and is based
on average values of total assets, turnover and employees.
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significant. The much larger magnitude of the interest rate mark-up presumably reflects

considerations on credit worthiness and financial fragility of small and micro businesses

(Fatica et al., 2022b), which arguably contributes to making them particularly vulnerable

also to the impact of physical climate risks.

Next, we explore the implications of banks’ valuation of borrowers’ creditworthiness for

regulatory purposes by retaining only firms classified as retail borrowers under Basel III. The

classification implies an ad hoc valuation of credit risk compared to corporate asset classes.

In column (3), the flood risk premium is estimated at 6.8 bps, only marginally higher than

the value for the full sample. Hence, regulatory credit risk considerations do not significantly

alter the assessment of prospective climate risk exposure.

We further verify the bearing of the economic features of the borrower on the flood

risk premium. Specifically, we focus on firms’ reliance on intangible assets as indicative of

their potential vulnerability to the manifestation of physical risk. Hence, we drop from the

estimating sample firms belonging to knowledge-intensive sectors, as a proxy for the intensity

of intangibles in the production process. The estimates in column (4) do not provide strong

evidence of the existence of sectoral differences in the risk premium driven by the potential

damage to fixed assets caused by flooding.

Next, we turn to the supply side of credit to test whether the magnitude of the risk

premium changes across bank types. Based on the reported bank names, we retrieve the

banks’ specialisation, distinguishing among commercial, savings, cooperative banks and spe-

cialised governmental credit institutions.17 Then, we retain only savings and cooperative

banks in the estimating sample. The results reported in column (5) point to a higher risk

premium charged by these banks compared to the full sample that includes also commer-

cial banks, which may be indicative of smaller lenders’ awareness of climate risk or of their

need to price it given their presumably limited capacity to geographically diversify their loan

portfolio.

17We draw information on bank specialisation from Moody’s ORBIS Bank Focus.
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Finally, we turn to considerations about loan duration. It is held that since the most

disruptive consequences of climate change will fully materialise at longer horizons, pricing

climate risk should be particularly compelling for loans with longer maturities. The argument

is especially relevant for mortgage lending, whose duration usually extends for several decades

(Nguyen et al., 2022). Nonetheless, as the nature of flood risk makes it relevant also in the

short and medium term, the long-run aspects are surrounded by more uncertainty. Hence,

it is still an open question whether its pricing changes with loan maturity. Business loans,

particularly those extended to SMEs, have much shorter maturities, however (Chodorow-

Reich et al., 2021). The median loan term in our sample is 5 years, with maturities ranging

from 1 year to slightly less than 15 years moving from the 5th to the 95th percentile of

the empirical distribution. To shed light on the role of loan term, we run the baseline

regression model on two sub-samples having duration below and above the sample median,

respectively. The results are reported in columns (6) and (7) of Table 5. Loans with shorter

maturities display a lower risk premium than loans with longer duration (3.7 vs 6 bps), which

corroborates the view that climate risk considerations are taken into account, particularly

at longer horizons.18

3.4 Projected or realised risk?

The results from the pricing analysis highlight that physical risk related to flooding is in-

corporated into the cost of loans to SMEs, although the magnitude of the average premium

appears modest. As it is based on probabilistic scenarios and modelling simulations, our

measure of flood risk captures projected risks and impacts. Hence, our empirical results

should ideally capture expectations on the prospective impact of flooding. However, it may

well be that the interest rate mark-up estimated in our pricing empirical model reflects

lenders’ considerations on the short-term damage from realised risk rather than concerns for

18Another option banks have is to shorten duration of loans in order to have the right to reprice more
frequently and be less exposed to the flooding risk overall. We do not find that flood risk significantly affect
contractual loan maturity. Results are available upon request.
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Table 5: Flood risk and loan pricing: mechanisms.
The table reports estimation results for Equation (2) on different subsamples. The dependent variable is the
interest rate at loan origination (in bps). High risk is an indicator variable equal to one for counties at high
risk of flooding, and zero otherwise. Column (1) considers only borrowers having legal form as partnerships
and individual firms. Column (2) considers only borrowers classified as small and micro firms. Column (3)
restricts the estimating sample to borrowers classified as retail under Basel III. Column (4) excludes from
the estimating sample borrowers from knowledge-intensive sectors. Column (5) uses only loans extended
by cooperative and savings banks. Columns (6)-(7) split the sample into loans with short and with long
duration, respectively, using the median loan term at origination as threshold. The regressions include loan
level controls, macroeconomic controls, and sets of fixed effects as specified. Standard errors, robust for
heteroskedasticity and clustered at the county level, are reported in parentheses. ***, **, and * indicate
that the parameter estimate is significantly different from zero at the 1%, 5%, and 10% level, respectively.

(1) (2) (3) (4) (5) (6) (7)

High risk 10.469** 38.215*** 6.830*** 6.250*** 9.780*** 3.707* 5.967**
(4.241) (13.499) (2.239) (1.714) (3.366) (2.082) (2.348)

Loan term 23.357*** 10.765* 19.592*** 27.549*** 35.772*** 15.045*** 44.693***
(4.164) (5.843) (2.483) (2.205) (5.314) (2.602) (2.871)

Loan balance 12.170*** 24.100*** 8.171** 3.756** -0.928 10.090** -5.084***
(4.514) (4.192) (3.763) (1.840) (1.070) (4.301) (0.388)

Collateralised -10.844*** -14.154*** -8.402*** -4.512*** -1.672** -3.706* -7.941***
(4.029) (3.644) (1.270) (0.989) (0.782) (1.935) (0.666)

Macroeconomic controls Yes Yes Yes Yes Yes Yes Yes
Borrower FE Yes Yes Yes Yes Yes Yes Yes
Lender X Time FE Yes Yes Yes Yes Yes Yes Yes
Adjusted R-squared 0.703 0.622 0.776 0.825 0.779 0.806 0.870
Observations 154,528 125,629 599,271 918,625 442,563 317,814 577,712

current and prospective climate risk development. In this section, we test this hypothesis

making use of the information on flood events as a measure of realised risk.

The results are reported in Table 6. First, we use a time-varying measure of flood

frequency over the medium term to gauge the influence of realised risk on loan pricing.

Specifically, we calculate the cumulative sum of flood events for each county and month-year

since the beginning of our sample period. Then, we define an indicator variable (Flood prone)

that equals 1 for the counties above the median value of the cumulative flood events, and 0

otherwise. Column (1) in Table 6 reports the coefficient estimates from the empirical pricing

model in Equation (2), augmented with the indicator for flood-prone counties. While the

estimated coefficient for flood risk is qualitatively and quantitatively similar to the baseline

case, the time-varying measure of flood frequency is not estimated with precision. Hence,
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the occurrence of flood events in itself does not influence loan pricing. Moreover, controlling

for this backwards-looking measure of realised risk over the medium term does not affect the

explanatory power of our measure of high prospective risk.

Next, we test several alternative backwards-looking measures of risk, with a focus on the

short term, that is, on the occurrence of flood episodes in the months before the date of

loan origination. In particular, using the information on dates for both loan origination and

flood events, for each loan in our sample we consider whether it was originated during the

6 months following at least one flood episode. Then, we define an indicator variable Flood

that takes the value of 1 for loans extended in the semester after flooding, and 0 otherwise.

The results are reported in column (2) of Table 6 - panel a. The coefficient on the indicator

for recent flooding is positive, but not statistically significant. Hence, loans extended in

the aftermath of the disaster are not priced differently than loans originated in non-flooded

areas. This evidence is in line with the results in Koetter et al. (2020) who find that recovery

lending extended to firms exposed to the 2013 flooding in Germany was not accompanied by

higher lending margins. Importantly, the estimated flood risk premium remains unchanged

compared to the baseline model specification without realised risk.

The indicator for loans originated after flooding in column (3) considers only flood epis-

odes with reported economic losses, and redefines the Flood dummy accordingly. Since the

economic impact of floods on firms differs across contexts and events (Fatica et al., 2022a),

so might also their potential implications for bank lending. Arguably, reported economic

losses are indicative of more severe disasters (Roth Tran and Wilson, 2020), which in turn

might translate into significantly different pricing strategies for bank loans. The estimates in

column (3) corroborate the previous findings that loan pricing is unrelated to recent flood-

ing. Moreover, the size and significance of the premium estimated on prospective risk remain

stable.

Finally, we consider also the occurrence of multiple disasters in the semester before loan

origination. Repeated flood episodes in such a short time frame provide relevant information
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Table 6: Realised flood risk and loan pricing.
The table reports estimation results for different variants of Equation (2). The dependent variable is the
interest rate at loan origination (in bps). High risk is an indicator variable equal to one for counties at high
risk of flooding, and zero otherwise. Flood prone is an indicator variable equal to one in counties above the
median of the empirical distribution of cumulated flood events in the sample, and zero otherwise. Flood
is an indicator variable equal to one if there has been at least one flood episode in the six months before
loan origination, and zero otherwise. Column (3) considers only floods with reported economic losses for
the definition of the Flood indicator. Column (4) considers only multiple floods for the definition of the
Flood indicator. Panel b adds the effect of a flood occurring in a high-risk county. The regressions include
loan level controls, macroeconomic controls, and sets of fixed effects as specified. Standard errors, robust
for heteroskedasticity and clustered at the county level, are reported in parentheses. ***, **, and * indicate
that the parameter estimate is significantly different from zero at the 1%, 5%, and 10% level, respectively.

(1) (2) (3) (4)
Panel a

High risk 5.797*** 5.687*** 5.700*** 5.689***
(1.678) (1.672) (1.676) (1.674)

Flood prone -1.349
(1.251)

Flood 1.038 1.424 1.654
(1.146) (1.654) (6.406)

Loan term 26.374*** 26.372*** 26.372*** 26.372***
(1.989) (1.989) (1.989) (1.990)

Loan balance 3.927** 3.932** 3.932** 3.930**
(1.991) (1.991) (1.992) (1.992)

Collateralised -4.785*** -4.786*** -4.788*** -4.789***
(0.971) (0.972) (0.972) (0.972)

Macroeconomic controls Yes Yes Yes Yes
Borrower FE Yes Yes Yes Yes
Lender X Time FE No No No Yes
Adjusted R-squared 0.731 0.732 0.809 0.823
Observations 1,045,110 1,045,110 1,045,110 1,045,110

Panel b

High risk 5.778*** 5.640*** 5.714***
(1.695) (1.668) (1.677)

Flood 1.498 0.487 6.424
(1.421) (2.340) (13.730)

High risk x Flood -0.850 1.728 -6.696
(2.105) (3.286) (15.281)

Loan term 26.373*** 26.370*** 26.373***
(1.988) (1.989) (1.990)

Loan balance 3.931** 3.932** 3.930**
(1.991) (1.992) (1.992)

Collateralised -4.787*** -4.786*** -4.789***
(0.971) (0.972) (0.972)

Macroeconomic controls Yes Yes Yes
Borrower FE Yes Yes Yes
Lender X Time FE Yes Yes Yes
Adjusted R-squared 0.823 0.823 0.823
Observations 1,045,110 1,045,110 1,045,110

25



on the frequency of climate-related disasters and, hence, in our framework, they may affect

loan pricing. Therefore, we redefine the indicator for Flood as taking unit value only for

loans originated in the 6 months after multiple flood events, and 0 otherwise. The results

are in column (4). The coefficient for the flood indicator is not estimated with precision,

thus lending support to the notion that realised risk over the short term does not affect

loan pricing. Moreover, the inclusion of this alternative measure of realised risk leaves the

estimated premium for prospective flood risk unaffected.

While the actual occurrence of flood damage in itself is not incorporated into the price

of small business loans, it may in principle alter the perception of the associated prospective

flood risk. Chen et al. (2012) highlight the ‘latent’ nature of disaster risk, and predict

its surge in the aftermath of actual disasters, which reduces agency problems, as well as

disagreement by facilitating inference on both the likelihood and severity of hazards. Along

the same line of reasoning, in our framework, recent flood episodes may indeed increase the

salience of physical climate risk (Correa et al., 2022), as, arguably, they reduce uncertainty

over the frequency of disasters. We test this hypothesis by introducing an interaction term

between the high risk indicator and the dummies for recent floods in the model already

augmented with the former variable. The estimates are reported in panel b of Table 6. In

all cases considered, the interaction term is not statistically significant. This indicates that

recent flooding does not change the perception of prospective flood risk (column (2)), even

when only severe floods (i.e., floods with economic losses) as in column (3), or multiple flood

episodes are considered, as in column (4). Overall, these findings suggest that the interest

rate mark-up charged to borrowers in counties at high risk of flooding reflects considerations

unrelated to the short-term cost of realised water damage. As such, this is suggestive of

physical climate risk being already salient for lenders exposed to at-risk borrowers.
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4 Flooding and loan performance

In this section, we study the effects of flooding on loan performance. Specifically, we aim

to assess whether realised flood risk has a bearing on the occurrence of late payments and,

eventually, of loan default. We consider two different instances when flooding can impair

loan performance. First and foremost, there is a direct effect, whereby firms’ capacity to

service debt obligations deteriorates in the aftermath of the disaster (Noth and Schuewer,

2018). In this case, the analysis focuses on loan impairment occurring after flooding. Second,

we consider also an indirect effect that may materialise for loans originated after a disaster.

Here we capture risk-taking by banks or potential loosening of lending standards in the wake

of increased loan demand for reconstruction purposes in the aftermath of the hazard (Bos

et al., 2022).

We employ survival analysis, which models the likelihood of loan i to default before

it reaches its final maturity or the observation period ends. Compared to standard binary

models, such as the logit, a time-varying duration model allows us to account also for implicit

measures of risk-taking. The hazard rate in a duration model has the intuitive interpretation

as the probability of default in each period, conditional on surviving until that period.19

As such, the hazard rate can be considered a per-period measure of risk and, hence, it is

comparable between loans with different maturities.

Formally, let S(t) = Pr(T > t) be the probability of survival beyond time t, also known

as survival function. We define the hazard function, also known as hazard rate, as:

h(t) = lim
∆t−→0

Pr(t < T < t+∆t|T > t)

∆t
. (3)

Given a p-dimensional vector of covariates x, we can model the survival time as h(t|x) =

exp(ϕo + ϕ′x), where the exponent imposes the non-negativity of h(·). In the Cox’s propor-

19We refer to Gupta et al., 2018 for an overview of the application of hazard models in predicting SMEs
failures and to Dirick et al., 2017 for an introduction to survival analysis.
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tional hazard model (Cox, 1972) the hazard function is:

h(t|x) = h0(t) exp(ϕ
′x), (4)

where h0(t) is an unknown non-negative function that incorporates the baseline hazard when

the vector of covariates xi1 = . . . = xip = 0. The associated survival function is:

S(t|x) = exp

(
− exp(ϕ′x)

∫ t

0

ho(u)du

)
= exp(− exp(ϕ′x)H0(t)), (5)

where H0(t) is the cumulative of the baseline hazard function h0(t).

Let yit be a binary variable indicating whether the ith loan in time t is defaulted or not.

For each loan i, we define the survival time T as the time at which the default (i.e., yiT = 1)

occurs, and the censoring time C as the end of the observation period or the loan’s final

maturity. We compute the time variable t as the difference in months between the cut-off

date (i.e., the date when the updated information about the loan is observed) and the loan’s

origination date.

The vector x includes a binary variable that indicates whether the county where loan

i was extended experienced at least a flood in the previous q months. This allows us to

test the impact of recent flood events on the deterioration of performance. As disasters

and their economic consequences may have a delayed effect on firms’ financial fragility, we

estimate variants of the proportional hazard model for different time horizons, that is, we

consider, alternatively, q = 6, 12, and 24 months. As a second test, we verify whether

flooding at origination matters for loan performance. We do so by augmenting the model

with a binary variable that indicates the occurrence of at least a flood event in the q months

before loan origination. As before, we consider, alternatively, q = 6, 12, 24. As an additional

flood-related variable, we control for projected risk by using the dummy High risk, which

equals 1 for the counties that have a normalised risk indicator above the median value of

the empirical distribution of food risk, and 0 otherwise. In addition, the vector x includes
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loan-level regressors, namely the current interest rate, as well as the logs of the loan balance

(in euros), the residual loan term (in months), and a dummy variable for highly collateralised

loans.20 We also include fixed effects specific to the lender and to the sector of the borrower,

as well as controls for local macroeconomic conditions, namely the growth rates of GDP

and employment. The choice of variables follows Barbaglia et al. (2023), who investigate

the delinquency of residential mortgages in Europe using data from the EDW. Their results

indicate that interest rates and local economic conditions as the most important drivers of

mortgage default.

To define the dependent variable, we exploit the information on the loan payments sched-

ule in the EDW database. We classify a loan as defaulted if it is in arrears for more than

90 consecutive days. If a loan is labelled as defaulted, we discard all updates of the loan

status following the date when it first appears in prolonged delinquency. Hence, we do not

consider the possibility of defaulted loans returning to a performing status. While the focus

of this section is on loan default, we also estimate the duration model for late payments,

considering as dependent variable a binary variable that indicates when the loan first enters

arrears status (see Appendix B).21 In our sample, the fraction of loans in arrears is 4.9%, and

the average default rate is 1.5%. Thus, even compared to temporary delays in payments,

defaulting is a rare event in our sample. This is consistent with the overall good quality of

the securitised loans in the EDW database (Ertan et al., 2017).

Table 7 reports the results of the Cox’s proportional hazard model. To simplify the

discussion, Table 7 displays the estimated hazard rates, instead of the underlying coefficients.

A hazard ratio higher than 1 for a covariate indicates that loans with that feature or risk

factor have a shorter survival than loans without that feature. If the hazard ratio is lower

than 1, it would mean that the hazard was less in loans with the potential risk factor.

Columns (1)-(3) in the table focus on the direct impact of flooding on loan default using the

20The indicator takes the value of 1 if the value of pledged collateral is above 50% of the loan amount,
and 0 otherwise.

21We consider arrears on principal or interest payments.

29



Table 7: Flooding and loan default.
The table reports the hazard ratios from a Cox’s proportional hazard model for loan survival. Flood is an
indicator variable equal to one if there has been at least one flood episode in the 6, 12, or 24 months before
loan default, and zero otherwise. High risk is an indicator variable equal to one for counties belonging
to the top two quartiles of the country-specific distributions of the flood risk measure, and zero otherwise.
Flood before origination is an indicator variable equal to one if there has been at least one flood episode
in the 6, 12, or 24 months before loan origination, and zero otherwise. Columns (1)-(3) focus on the direct
impact of flooding on loan default using the occurrence of flood events before the observation date. Columns
(4)-(6) focus on the impact of flooding on loan default using flood events occurred before the origination date
of the loan. All regressions control for industry, lender, region (NUTS2) and business type fixed effects, as
well as growth rates of GDP and employment. ***, **, and * indicate that the hazard estimate is significantly
different from zero at the 1%, 5%, and 10% level, respectively.

(1) (2) (3) (4) (5) (6)
Realised flood risk before default Realised flood risk at loan origination

6 months 12 months 24 months 6 months 12 months 24 months

Flood 0.898*** 1.203*** 1.544*** 0.898*** 1.201*** 1.538***
(0.024) (0.023) (0.026) (0.024) (0.023) (0.026)

High risk 1.039** 1.040** 1.046** 1.040** 1.041** 1.046**
(0.019) (0.019) (0.019) (0.019) (0.019) (0.019)

Flood before origination 1.173*** 1.228*** 1.042**
(0.025) (0.021) (0.017)

Interest rate 1.110*** 1.113*** 1.116*** 1.111*** 1.113*** 1.116***
(0.006) (0.006) (0.006) (0.006) (0.006) (0.006)

Loan balance 0.868*** 0.870*** 0.874*** 0.869*** 0.871*** 0.874***
(0.007) (0.007) (0.007) (0.007) (0.007) (0.007)

Residual loan term 1.044*** 1.040*** 1.036*** 1.045*** 1.042*** 1.037***
(0.009) (0.009) (0.009) (0.009) (0.009) (0.009)

Collateralised 1.941*** 1.943*** 1.905*** 1.928*** 1.919*** 1.901***
(0.052) (0.052) (0.052) (0.052) (0.052) (0.052)

Macro controls Yes Yes Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes Yes Yes
Lender FE Yes Yes Yes Yes Yes Yes
Region (NUTS2) FE Yes Yes Yes Yes Yes Yes
Observations 13,516,457 13,516,457 13,516,457 13,516,457 13,516,457 13,516,457
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occurrence of flood events before the observation date. The results in column (1) indicate

that, if any, the impact of flooding on loan default does not significantly materialise in the

6 months after the disaster. The hazard ratio associated with the occurrence of flooding in

the previous 6 months is 0.898, which suggests a protective effect of flood on outstanding

loans, ceteris paribus . This counter-intuitive effect might be due to the short time span

considered, in comparison with the definition of default. Indeed, we define a default as 3

consecutive delinquent months, thus making the 6-month window arguably too short to assess

the impact of the natural disaster on the SME financial performance.22 The estimated hazard

for the flood risk variable is larger than 1, but rather small from an economic perspective,

and significant at 5% level. This suggests that loans in high-risk counties have a shorter

survival probability than loans extended to firms that do not face a high risk of flooding.

As for the other explanatory variables in the survival model, all the estimated effects are

highly statistically significant and economically meaningful. A 1-basis point rise in the

interest rate increases the hazard rate by one-tenth. A higher residual balance decreases the

probability of loan default. By contrast, loans that have higher residual duration and are

highly collateralised are more likely to enter default status than other loans, ceteris paribus.

With an estimated hazard of 1.94, the effect of collateralisation is sizeable.

The second and third columns of Table 7 consider the occurrence of at least one flood

in, respectively, the 12 and 24 months before the observation date. Focusing on the longer

horizons, the estimated hazards associated with the Flood variable are larger in magnitude

and highly statistically significant. Loans to flooded borrowers are 1.2 times more likely to

default in the 12 months following the disaster than credit facilities to firms that did not

experience water damage in the previous year (column(2)). Considering the 2-year window

(column (3)), the estimated hazard reaches 1.5. As the loans in our sample are of relatively

high quality (Ertan et al., 2017), our estimates are likely conservative with respect to the

impact of flooding on the performance of the universe of credit extended to SMEs in Europe.

22The estimates for entering into arrears show that late payments on outstanding loans materialise already
in the 6 months after a flood event. See Appendix B.
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Moreover, our results indicate that the impact of flooding on loans’ probability of default

is more pronounced at longer horizons. While in the first months after the flood exposed

firms may still rely on their cash holdings and other financial buffers to cushion the negative

shock (Joseph et al., 2022), they are likely to encounter liquidity and solvency issues in the

medium term, as water damage disrupt firm operations in a significant and persistent way

(Fatica et al., 2022a). In fact, the results on loan arrears show that flooding increases the

probability of late payments on outstanding loans already in the first six months after the

event, with these signs of financial fragility persisting for our two-year observation period

(see Appendix B).

There is a second, indirect way through which flooding may have a bearing on loan

performance. The need to rebuild in the aftermath of climate hazards brings about an

expansion of credit on the back of increased demand (Berg and Schrader, 2012; Koetter

et al., 2020). However, in a context where the timely availability of funds is crucial for

firms’ operations, banks might increase risk-taking when they provide recovery lending to

disaster-stricken SMEs. To test whether banks incur systematically more credit risk in their

recovery loans than in other credit, we introduce an indicator variable for post-disaster

credit in the survival model. Specifically, following the approach taken in the analysis of

pricing at origination, we use a dummy (Flood before origination) that takes value 1 for

loans originated in the q months after flooding, and 0 otherwise. As before, we consider,

alternatively, q = 6, 12, 24. The results are reported in columns (4)-(6) of Table 7. As the

hazard ratios of the other explanatory variables are practically unchanged with respect to the

baseline specification, we focus our comment on the variable of flooding at origination. Loans

originated up to 1 year after a flood event are on average 1.2 times more likely to default

than other loans, all other factors being equal. Hence, the hazard rate increases by one-fifth

for post-disaster loans. Importantly, the result holds while keeping other observable loan

characteristics, such as the interest rate, the residual duration, the balance and the fraction

of the loan that is collateralised, constant. The fragility of recovery loans materialises also
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for credit extend 2 years after the disaster, although is expectedly much more muted (column

(6)). Overall, these findings indicate that the cohorts of loans extended in the aftermath of

flooding perform worse than other credit facilities, pointing to an additional vulnerability

factor arising from realised physical climate risk for the default of loans to SMEs.23

5 Risk pricing and loan default: a discussion

The results in Section 3 indicate that banks price flood-related climate risk into new loans

to small and medium-sized firms. While there is substantial heterogeneity across borrower

and lender types, the average risk premium appears rather small in size. Section 4 shows

that flood episodes are an important risk factor for firms’ ability to service their debt as they

significantly increase the relative likelihood of loan default. Hence, the question of whether

projected risk is adequately priced against realised risk naturally arises.

In this section, we attempt to provide a first answer to this question resorting to a very

stylised framework inspired by the valuation of Credit Default Swaps with a constant hazard

rate model (Hirsa and Neftci, 2014). The standard equation takes the form:

S = PD(1−R), (6)

where S is the interest rate spread, PD is the loan default probability, and R is the recovery

rate in case of loan default, so that (1 − R) is the loss given default (LGD) associated to

the loan, or LGD = (1 − R). Defining S0 the average loan spread observed in the sample

(233.96 bps, as in Table 1), and with Ŝf the spread in the case the realised flood risk is fully

priced, we can retrieve the corresponding risk premium by plugging the relevant observed

23The results in Appendix B show that recovery loans are also more likely to enter into arrears than loans
not originated in the aftermath of flood events. The effects are milder than in the case of default, presumably
reflecting the fact that short-term late payments are relatively more likely to occur than prolonged arrears.
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variables and the estimated parameters into the ratio Ŝf/S0, or:

Ŝf/S0 = ĥ( ˆLGDf/LGD0). (7)

In equation 7, ĥ is the estimated hazard ratio obtained from the survival model estimated

in Section 4.24

As for the calibration of the loss given default, we exploit the information available in the

EDW database, which reflects banks’ internal assessment of the LGD on the loans in their

portfolios. Also in this case, we need values for the LGD in the different scenarios with and

without flood risk accounted for. To this purpose, we formally test whether the estimated

loss given default that the banks report on each loan is affected by disaster risk and flooding

occurrence both during the lifetime of the loan and when it is originated. We find that banks

adjust their estimated LGD on existing loans upwards in the 6 months following flooding, but

not at longer time horizons, notwithstanding the deterioration of loan performance uncovered

in the survival model. By contrast, the occurrence of floods before loan origination increases

the ex-ante assessment of the LGD, although the adjustment rather small in size .25 The

empirical model and the full set of results are reported in Appendix C,

In line with the analysis of loan default, we assess loan pricing against flood risk that is

realised at different points in time, that is both during the lifetime of the loan and before its

origination. We refer to them as ex-post realised risk and ex-ante realised risk, respectively.

In the case of ex-post realised risk, our back-of-the-envelope calculations give an hypothetical

optimal risk premium of roughly 50.5 bps.26 This is almost 9 times the size of the average

risk premium estimated in Section 3. To evaluate the pricing of ex-ante realised risk, we

24We calculate the optimal risk premium as Ŝf − S0, where Ŝf is obtained from the formula in Equation
(7).

25Interestingly, estimates of the LGD are not significantly affected by the projected flood-related physical
risk in the county where the loan is granted (see Appendix C).

26We have 284.47-233.96=50.5, where we obtain 233.96*1.21*1.00=284.47 from Equation (7), with 1.21
the average estimated hazard ratio on the Flood indicator (see columns 1-3 in Table 7), and 1.00 the ratio
in LGD obtained applying the average of the estimated coefficient on the Flood indicator (see columns 1-3
in Table C.1).
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use the estimated parameters associated with the dummy variables defined considering the

occurrence of flood episodes before loan origination. The average ex-ante risk premium is in

the range of 36 bps, or 6 times the estimated risk premium in our pricing model in Equation

(2).27 All in all, even in this very simple setup, it appears that the pricing of projected flood

risk does not adequately reflect the increased credit risk associated with water hazards.

6 Floods and loan securitisation

The analysis in Section 4 shows that small and medium-sized firms in flooded areas are

more likely to incur delays in debt-servicing and to eventually default on their loans in

the aftermath of the disasters than borrowers not exposed to flooding, ceteris paribus. Such

increased financial fragility is also persistent, as substantially higher loan default probabilities

materialise even 2 years after flooding. The surge in impaired loans in banks’ portfolios and

the higher risk of credit extended in flooded areas may affect banks’ lending behaviour

(Chavaz, 2016; Schuewer et al., 2018), depending on their ability to transfer risk through

securitisation. For instance, Ouazad and Kahn (2022) find evidence of a pass-through of

climate risk in the initiation of mortgages that can be securitised in areas hit by natural

disasters. In a similar vein, in this section we consider the volume of newly originated loans at

the county level, and ask whether it is impacted by recent flooding. This aggregate analysis

sheds light on who ultimately bears localised climate-related risks. Moreover, in a setup

where we only observe securitised loans, it gives indications of the potential geographic re-

composition of securitisation activities as climate hazards intensify in frequency and severity.

We use a staggered difference-in-differences methodology to study the average effect of

flooding on the aggregate amount of new securitised small business lending in the local

areas, that is, at the NUTS3 level. As before, time periods are indexed by t and counties

27We obtain 270.10-233.96=36.1. From Equation (7), we get 233.96*1.15*1.00=270.10, with 1.15 the
average estimated hazard ratio on the Flood before origination indicator (see columns 1-3 in Table 7),
and 1.00 the ratio in LGD obtained applying the average of the estimated coefficient on the Flood before
origination dummy (see columns 1-3 in Table C.1).
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by j ∈ T,C, where T and C identify the sets of flooded and non-disaster counties, which

constitute the treated and the control group, respectively. Let Dj,t = 1{j ∈ T} denote the

treatment status, which equals 1 for flooded counties. Furthermore, let the actual outcome

be yj,t = Yj,t(Dj,t), depending on the treatment state. The county-time average treatment

effect (ATT ) is then defined as follows:

ATTt = E[yj,t(1)− yj,t(0)|Dj,t = 1;Zj,t], (8)

where Zj,t is a set of control variables on which the ATT is also conditioned. We perform

the analysis at the quarterly frequency, and calculate aggregate new lending at the county

level in each quarter t.28 We use both the total volume of newly extended credit and the

number of new credit lines at the county level. To account for the potential effects of few

large loans on total lending volumes, we also consider the average amount of new credit. In

equation 8, the treatment dummy Dj,t takes the value 1 in the quarter where the county

has been flooded. The vector Zj,t contains GDP per capita, and the growth of GDP and

of employment, defined at county-quarter level.29 We use the ATT estimator proposed by

de Chaisemartin and D’Haultfœuille (2020).

Figure 4 reports the estimated ATTs, for up to 8 quarters after the floods, alongside

their 95% bootstrap-based confidence bands. A few interesting patterns emerge. First, no

pre-trends are apparent in the half-year before the hazard. Second, the volume of new

securitised lending to small businesses steadily decreases in the aftermath of flooding (panel

a of Figure 4). The negative evolution is persistent and statistically significant over the

observation horizon of 2 years. The same downward dynamic is apparent for the total number

of loans (panel b), although the large standard errors do not make the effect statistically

significant. The average loan balance is also declining, while turning statistically insignificant

28In practice, we obtain quarterly aggregates by summing up the monthly observations for loans at ori-
gination that we use for the pricing analysis in Section 3.

29We obtain quarterly values applying the Denton method (Di Fonzo and Marini, 2012) to the annual
accounts for NUTS3 counties available from Eurostat.
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at the longer time horizons. Overall, these results point to reduced risk sharing through

securitisation in the aftermath of flood events, suggesting that physical climate risk is, at

least partly, borne by banks lending to borrowers more exposed to natural hazards. Given

the overall high quality of securitised loans that comprise our sample (Ertan et al., 2017),

the decrease in volumes of securitised lending in flooded counties may also indicate a general

deterioration of the quality of the loans in these areas.
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Figure 4: Average treatment effect of flooding. Plot of the average treatment effect of
floods on new credit for up to 8 quarters, alongside the 95% confidence bands. Panel (a) shows the impact
on the total new lending, panel (b) the average loan balance, and panel (c) the number of new loans.

7 Conclusion

Extreme weather events and climate-related natural hazards are becoming more frequent

and severe with the rise in global temperatures. While floods are already among the most

damaging hazards at the European scale and the increase in the associated risk is substantial,

their financial implications are still far from being fully understood. In this paper, we use

a large cross-country data set of securitised loans to study the impact of flooding on small

business lending in Europe.

First, using detailed information on interest rates at origination, we find that banks

charge higher interest rates on new loans originated in counties that are at high risk of

flooding. The risk premium, rather small on average, turns sizeable for smaller borrowers,

and in the case of local specialised lenders, i.e. cooperative and savings banks. Moreover,
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flood risk appears already salient for lenders, as we do not find evidence of pricing being

affected by recent flood events.

Second, we find that flood events are an important risk factor for loan performance.

Using survival analysis, we uncover two distinct channels through which realised risk affects

loan default. First, firms exposed to a flood are more likely to default on their loans than

firms in non-disaster areas, by up to 1.5 times in the second year after the water hazard.

Second, loans originated in the aftermath of flooding are also more likely to enter delinquency

status than loans with otherwise similar financial characteristics. Using a stylised version of

a standard credit model, we show that the average climate risk premium estimated in our

pricing analysis does not adequately account for the deterioration in loan performance that

occurs once flood risk is realised, either before origination or during the lifetime of the loan.

Finally, through a staggered difference-in-differences model we document that floods

decrease the volumes of securitised small business lending in local markets. This points to

reduced risk sharing possibilities, and supports the notion that physical risks are still borne

within the banking sector.

Taken together, our results suggest that the intensification of natural disasters due to

climate change may become an important source of financial vulnerability for European

small and medium-sized businesses, and for the banks that finance them. From a financial

stability perspective, the fact that climate-related developments impact standard financial

risk suggests that they need to be addressed by prudential policies, ideally in a framework

that accounts for their specificity in terms of systemic effects. More broadly, our findings

point to the importance of policies that mitigate the disruptive effects of physical risks on

the real economy, including by adequately addressing adaptation to climate change.

In this perspective, future research might investigate whether physical risk similarly im-

pacts other loan terms, such as collateral and covenants (Mabille and Wang, 2023). The

study of non-price terms could bring further insights on the financial implications of climate

change for bank finance to smaller businesses.
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Appendix

A Data cleaning

This section illustrates the data cleaning steps performed on the loan-level data from the

European DataWarehouse (EDW) more in detail, as a complement to the data description

provided in the main text. (i) Consistent with the time period for which we have information

of flood events, we select only loans originated in between January 1st 2008 and December

31st 2019. (ii) We exclude all items with a pool-cut-off date prior to January 1st 2015, on

the grounds of better overall reporting quality thereafter. (iii) We drop all observations

with no geographic indication at NUTS3 level, and convert all entries following the 2013

NUTS classification30. (iv) We exclude all loans with non-positive values for the relevant

loan characteristics. (v) To ensure that only loans to profit-maximizing entities are included

in our sample, we drop all credit lines extended to borrowers with a Nomenclature of Eco-

nomic Activities (NACE) in sectors beginning with “S” (Other services activities, including

of membership organization), “T” (Activities of households as employers; undifferentiated

goods - and services - producing activities of households for own use) or “U” (Activities of

extraterritorial organisations and bodies). Moreover, we do not consider inter-banking finan-

cing operations by excluding borrowers in the NACE 2-digit sector “64” (Financial service

activities). (vi) To filter out outliers, we winsorize the interest rate, loan balance and loan

term variables at the 1.5 and 98.5 percentiles.

The EDW reports loan-level information including static (i.e., features observed at loan

origination, for instance, the loan origination date or the NUTS3 county where the borrowing

SME is located) and dynamic variables (i.e., updated information about the loan as observed

at the latest pool-cut-off-date, for instance, the current interest rate or the loan status). In

the main paper, we assess the impact of flood risk on the cost of borrowing by analyzing

a data set of unique loans with information at their origination. It might be that the

information at the loan origination provided by EDW differs across pool cut-off dates due to

30Conversion tables are available at https://ec.europa.eu/eurostat/web/nuts/

correspondence-tables/postcodes-and-nuts.
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reporting errors. To address the concern of potential measurement error in the variables due

to misreporting, we consider information at loan origination as reported in the most recent

pool cut-off date. Finally, the interest rate at loan origination is not a mandatory variable

to be reported in the securitisation disclosure, and therefore is not normally provided by the

EDW. There is a mandatory requirement for disclosing the current interest rate, which is

therefore observed at the different pool-cut-off dates. In the main paper, we are interested

in studying the interest rate when the loan is issued. Therefore, we first select only loans

with a fixed interest rate. Then, we add floating-rate credit lines that have been observed

within one year after their origination.
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B Flooding and loan arrears

Section 4 in the main paper documents a significant and persistent effect of flooding on

loan default probabilities. Here we complement that evidence by considering more broadly

arrears on loan payments as a first indication of the deterioration of firms’ ability to servicing

their debt. Hence, we estimate the Cox’s proportional hazard model in Section 4 using an

alternative definition of the dependent variable that captures the occurrence of loan entering

into arrears for either interest payments or principal repayment. As before, we investigate

both the direct and the indirect effect of flooding on loan performance. In other words, we

consider the impact of flood events occurring during the lifetime of the loan as well as that

of floods taking place before loan origination.

The results are reported in Table B.1. Columns (1)-(3) focus on the direct impact of

flooding on loan default using the occurrence of flood events during the loan lifetime. The

hazard ratios associated with recent flooding indicate a sizeable and statistically significant

direct impact of realised flood risk on SMEs’ financial fragility in terms of late payments

on their debt obligations. Firms in flooded areas are more likely to experience delays in

loan payments even two years after the disaster: the relevant hazard ratios are in the range

of 1.1 at the shorter time horizons and increase to 1.2 in the second year. The indirect

effect of flooding, while still highly statistically significant, is milder. Being originated in the

aftermath of flood events is itself a risk factor for loans. The estimated hazard ratios imply

that loans granted 6 or 12 months after a flood are almost 1.1 times more likely to experience

late payments than other loans. The effect fades away at the longer time horizon. As for

the analysis of loan default, the estimated hazard for the flood risk variable is larger than 1,

but rather small from an economic perspective, and significant at 5% level. All in all, these

results are not surprising since temporary late payments are relatively more frequent than

episodes of prolonged delinquency, and hence potentially less influenced by flooding.
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Table B.1: Flooding and loan arrears.
The table reports the hazard ratios from a Cox’s proportional hazard model for loan survival. The dependent
variable is the number of months in arrears. Flood is an indicator variable equal to one if there has been at
least one flood episode in the months before the date the loan first enters into arrears, and zero otherwise.
Highrisk is an indicator variable equal to one for counties belonging to the top two quartiles of the country-
specific distributions of the flood risk measure, and zero otherwise. Flood before origination is an indicator
variable equal to one if there has been at least one flood episode in the months before loan origination, and
zero otherwise. Columns (1)-(3) focus on the direct impact of flooding on loan entering into arrears using the
occurrence of flood events before the observation date. Columns (4)-(6) focus on the impact of flooding on
loan entering into arrears using flood events occurred before the origination date of the loan. All regressions
control for industry, lender, region (NUTS2) and business type fixed effects, as well as growth rates of GDP
and employment. ***, **, and * indicate that the hazard estimate is significantly different from zero at the
1%, 5%, and 10% level, respectively.

(1) (2) (3) (4) (5) (6)
Realised flood risk before arrears Realised flood risk at loan origination

6 months 12 months 24 months 6 months 12 months 24 months

Flood 1.100*** 1.098*** 1.190*** 1.100*** 1.097*** 1.186***
(0.015) (0.012) (0.012) (0.015) (0.011) (0.012)

High risk 1.023** 1.023** 1.022** 1.023** 1.022** 1.022**
(0.010) (0.010) (0.010) (0.010) (0.010) (0.010)

Flood before origination 1.075*** 1.079*** 1.030***
(0.012) (0.010) (0.009)

Interest rate 1.148*** 1.148*** 1.149*** 1.148*** 1.149*** 1.149***
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

Loan balance 0.947*** 0.947*** 0.948*** 0.947*** 0.948*** 0.949***
(0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

Residual loan term 1.014*** 1.013*** 1.013*** 1.014*** 1.014*** 1.013***
(0.005) (0.005) (0.005) (0.005) (0.005) (0.005)

Collateralised 1.039*** 1.040*** 1.036*** 1.035*** 1.034*** 1.035***
(0.013) (0.013) (0.013) (0.013) (0.013) (0.013)

Macroeconomic controls Yes Yes Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes Yes Yes
Lender FE Yes Yes Yes Yes Yes Yes
Region (NUTS2) FE Yes Yes Yes Yes Yes Yes
Observations 13,395,676 13,395,676 13,395,676 13,395,676 13,395,676 13,395,676
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C Banks’ expected losses from loan default

Section 4 in the main paper documents a significant and persistent effect of flooding on loan

default probabilities. On average, flooded firms are more likely to default on their loans in

the aftermath of the disaster. The higher default probabilities recorded after flooding open

the way for a negative supply channel, as banks facing higher credit risk need to write off

impaired loan facilities. This entails that banks are incurring losses on their loan portfolios,

which, in turn, could hamper their capacity to expand lending to meet demand for recovery

financing in flooded areas. In this section, we study the implications of loan default for

banks’ balance sheets. In particular, we model the linear relationship between risk, flooding

and the estimated loss given default reported by banks on their credit lines, as follows:

lgdibj,t = α + βF loodj,t−q + γXij,t + µbl,t + εibj,t. (9)

The dependent variable, lgdibj ,t , is the loss given default, that is the fraction of loan i that

the bank estimates will not be recovered if borrower b defaults on the loan, expressed as a

percentage of the current loan balance. As before, Floodj,t−q is a dummy variable equal to

1 if there has been at least one flood episode in county j in the q months before the time of

observation t, and 0 otherwise. The time variable t is defined at the year-quarter level. Xij,t

is a vector that includes loan-level variables, i.e., the loan term, expressed in (log) months,

the (log) loan balance, and the portion of securitised loan, and county-level controls, such

as the growth rates of GDP and employment. Further, µbl,t denotes sets of fixed effects.

In particular, we use borrower fixed effects to control for unobserved heterogeneity in the

demand for credit. In addition, we interact lender fixed effects with the year-quarter dummies

to take care of time-varying supply factors that may be correlated with the banks’ estimates

of the loss given default on their loans. Finally, εibj,t is the remainder stochastic disturbance.

In the estimation, we cluster standard errors at the county level.

The results are reported in Table C.1. The coefficient for the flood dummy at the 6-

month horizon is positive and highly statistically significant (column (1)). The economic

magnitudes are negligible, though. The point estimate implies that the recent occurrence

of flooding increases the estimated loss given default of loans in the flooded counties by
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Table C.1: Floods and losses from loan default.
The table reports the hazard ratios from a Cox’s proportional hazard model for loan survival. The dependent
variable is the loss given default, expressed as a percentage of the current loan balance. Flood is an indicator
variable equal to one if there has been at least one flood episode in the months before the date the loan first
enters into arrears, and zero otherwise. Highrisk is an indicator variable equal to one for counties belonging
to the top two quartiles of the country-specific distributions of the flood risk measure, and zero otherwise.
Flood before origination is an indicator variable equal to one if there has been at least one flood episode
in the months before loan origination, and zero otherwise. Columns (1)-(3) focus on the direct impact of
flooding on loan default using the occurrence of flood events before the observation date. Columns (4)-(6)
focus on the impact of flooding on loan default using flood events occurred before the origination date of the
loan. The regressions include loan-level variables - the interest rate, residual loan term, loan balance and a
dummy for highly collateralised loans -, macroeconomic controls, and borrower and reporting quarter fixed
effects interacted with lender fixed effects. Standard errors, robust for heteroskedasticity and clustered at the
county level, are reported in parentheses. ***, **, and * indicate that the coefficient estimate is significantly
different from zero at the 1%, 5%, and 10% level, respectively.

(1) (2) (3) (4) (5) (6)
Realised flood risk before default Realised flood risk at loan origination

6 months 12 months 24 months 6 months 12 months 24 months

Flood 0.098*** 0.054 0.039 0.099*** 0.057 0.038
(0.030) (0.037) (0.049) (0.030) (0.037) (0.049)

High risk -0.419 -0.419 -0.419 -0.418 -0.420 -0.416
(0.500) (0.500) (0.500) (0.500) (0.500) (0.501)

Flood before origination 0.116** 0.176*** 0.109***
(0.045) (0.052) (0.041)

Interest rate -0.143*** -0.143*** -0.143*** -0.142*** -0.140*** -0.138***
(0.039) (0.039) (0.039) (0.039) (0.039) (0.039)

Residual loan term 0.043 0.043 0.043 0.043 0.042 0.042
(0.029) (0.029) (0.029) (0.029) (0.028) (0.029)

Loan balance -0.592*** -0.592*** -0.592*** -0.592*** -0.592*** -0.592***
(0.100) (0.100) (0.100) (0.100) (0.100) (0.100)

Collateralised 0.292*** 0.292*** 0.292*** 0.292*** 0.289*** 0.286***
(0.085) (0.085) (0.085) (0.085) (0.084) (0.084)

Macroeconomic controls Yes Yes Yes Yes Yes Yes
Lender X Reporting quarter FE Yes Yes Yes Yes Yes Yes
Borrower FE Yes Yes Yes Yes Yes Yes
Adjusted R-squared 0.905 0.905 0.905 0.905 0.905 0.905
Observations 15,233,921 15,233,921 15,233,921 15,233,921 15,233,921 15,233,921
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around 0.1 percentage points, that is approximately 0.5% of the sample average value of

the loss given default (22.5% of the current loan balance). When longer time horizons are

considered, as in columns (2) and (3), the coefficients on the flood variable are not estimated

with precision, indicating that past disasters do not significantly alter banks’ valuation of

the potential losses on their loan portfolios. Moreover, the coefficient on the variable for

high risk counties is not statistically significant throughout. Hence, seemingly banks do not

account for prospective physical risks in the estimation of the losses they may incur on loans

to borrowers more exposed to such risks.
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