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Abstract 

In this study, we employ the pairwise stochastic convergence approach to identify the pairs of NUTS2 regions for 

all 28 EU Member States that exhibit co-movement in their growth dynamics, over the period 1980-2018. We then 

use the observed stochastic convergence trajectories to assess the role of first nature geography, which is defined 

by variations in physical geography, locations and proximities, and second nature geography, corresponding to the 

economic interactions between partners, in causing economic growth convergence patterns. We find that western 

and northern parts of Europe have higher pairwise stochastic convergence (and lower intra-country convergence) 

rates than regions in East and Southeast Europe. Focusing on the converging NUTS2 regions, we find strong 

evidence that first and second nature geography drive cluster-like convergence dynamics. Regions with common 

locational characteristics (metropolitan, coastal, islands, and mountainous) tend to converge to each other, while 

they do not converge with dissimilar regions. Regardless of national borders, contiguity and accessibility are 

significant drivers of convergence. Congruence in sectoral specialisation results in divergence that could be driven 

by competing economic interests within the common market. The opposite holds for dissimilarities in specialisation, 

which could be explained by complementarity in the production process. Overall, we find strong evidence for 

stochastic club convergence at the top of the EU. In contrast, bottom regions with low market dynamism and poor 

economic development, do not converge to each other, and collectively lag significantly behind top European 

regions. Finally, we find evidence of EU Cohesion Fund payments facilitating the observed convergence dynamics 

across the EU, which highlights the importance of targeted regional policy interventions in reducing persistent 

structural regional disparities within the EU. 

Keywords: Stochastic convergence, economic geography, pairwise approach, EU Member States, NUTS2 

regions, EU Cohesion Fund.  
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Introduction 

The corpus of economic growth literature has been built on the neoclassical notion of beta-

convergence, which pertains to low-income countries growing faster that high-income ones 

and thus eventually catching up with them in the long run. Although intuitive from a 

technological point of view (diminishing returns of capital), beta-convergence has been often 

criticised in the literature. These critiques focus on various conceptual issues such as the 

existence of a common steady-state (Durlauf, 1996) and the underlying notion of equilibrium 

(Fingleton & McCombie, 1999), the absence of distributional dynamics (Quah, 1993) and the 

lack of focus on local characteristics (Martin & Sunley, 1998). In general, most of the empirical 

studies in the economic growth literature tend to focus mainly on documenting convergence, 

rather than explaining the underlying factors that drive this economic phenomenon. 

During the last decade, there has been a new stream of empirical studies that tries to connect 

the incidence of regional convergence to specific locational characteristics (e.g., Mello (2011), 

Heckelman (2013), Holmes et al. (2011); and Holmes et al. (2013)). The methodological basis 

for this type of empirical analyses is the notion of stochastic convergence, first introduced by 

Carlino & Mills (1993; 1996), more formally introduced by Bernard & Durlauf (1995), and later 

econometrically formalised by Pesaran (2007). Stochastic convergence occurs when pairs of 

regions experience co-moving income trajectories, or in other words the output gap between 

the pair of regions is a stationary process with constant mean. This type of convergence 

relaxes the neoclassical notion of convergence by allowing for absence of steady-state 

dynamics, non-convergence or, equivalently divergence, in cases of diminishing returns, and 

existence of endogenously driven club convergence. Out of the related studies, 

Arvanitopoulos et al. (2021) is the first study to develop a systematic methodological approach 

to robustly identify the incidence of pairwise stochastic convergence and use this information 

to thoroughly examine the first and second nature drivers of the observed convergence 

process. Using this methodology at the prefectural level of Greece, Arvanitopoulos et al. 

(2021) find significant evidence of cluster-like convergence. 

So far, all related studies mainly focus on specific countries and more specifically they analyse 

convergence patterns between specific pairs of regions often called “benchmarks”. However, 

there are no studies that examine regional convergence dynamics at a larger geographical 

scale, and for all possible pairs of disaggregated regions within those geographical areas. This 

type of analysis can open the way for a more generalised identification of convergence drivers 

beyond national borders. The EU is an excellent example for such an analysis considering the 

increased variation in first and nature geography characteristics across and within Member 

States, and the existence of available historical data at a fine spatial unit. In addition, the 
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existence of a common market across EU Member States lead to higher trade integration 

across regions, thus removing trade related regional specific institutional barriers. Hence 

potential concerns about institutional heterogeneity arising from uneven trade barriers across 

regions that could hinder the robustness of the proposed methodology are not observed. 

Although Próchniak & Witkowski (2015) examine stochastic convergence within the EU, they 

focus on the country level (NUTS1) and only test for convergence against the EU15 

benchmark. Therefore, this is the first study to empirically examine the incidence of pairwise 

stochastic convergence across all 28 EU Member States (including the UK as our analysis is 

historical) for the longest period (1980-2018) and at the granular level of NUTS2 regional 

classification. We further use the observed pairwise convergence trajectories to identify the 

first and second nature drivers of this process. Our proposed methodological approach can 

be distinguished in two parts. 

The first part of this analysis employs historical data at the NUTS2 level regions of the EU to 

test for the incidence of bilateral stochastic convergence during the past 40 year. We test all 

37,950 bilateral pairs of NUTS2 regions within the EU for stochastic convergence. This allows 

us to identify the NUTS2 areas that experience common growth trajectories. We then examine 

the identified convergence patterns both at an aggregate level (EU), and in a more spatially 

disaggregated level, so that we thoroughly analyse the observed convergence patterns both 

within and across countries.  

The second part of the analysis specifically focuses on the areas that exhibit stochastic 

convergence in their growth dynamics and examines the covariates that yield such positive 

test outcomes. To do that, we use covariates that control for the role of first nature (location, 

proximity, physical geography) and second nature geography (economic structure, 

agglomeration, economic potential) geography. We finally investigate the role European 

cohesion policy in facilitating the identified convergence trajectories across EU regions. This 

is particularly policy relevant as it can provide evidence on whether targeted policy intervention 

can help reduce regional disparities in the long-term period. 

We find evidence that stochastic convergence within the EU follows a cluster-like pattern in 

terms of both geographical and economic determinants. From a geographical perspective 

western and northern parts of Europe have higher convergence rates than eastern and 

southeastern ones. We find strong evidence of club stochastic convergence among NUTS2 

regions within the 15 EU Member States, which diverge from regions in countries that joined 

the EU after 1995. Focusing on locational characteristics, we find substantial evidence that 

first nature geography is significant driver of convergence. Regions sharing common locational 

characteristics such as being metropolitan, mountainous, islands, and coastal, converge, 
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while they diverge from regions with dissimilar characteristics. Contiguity and accessibility are 

both significant determinants of convergence, regardless of national borders. 

Focusing on second nature geography, we find evidence that congruence in sectoral 

specialisation results in non-convergence, probably driven by competition dynamics within the 

common market. The opposite holds for dissimilarity in sectoral specialisation. We find strong 

evidence of club convergence at the top of the EU. The bottom regions, characterised by poor 

economic development and low market dynamism, do not converge to each other while 

collectively lag significantly behind of the top European regions. Finally, we find significant 

evidence that pairs of regions with higher inputs of EU Cohesion Fund payments tend to 

converge, compared to regions that receive less Cohesion Fund payments. This finding 

supports the role of targeted regional policy interventions in facilitating convergence dynamics 

within the EU. 

 

1. Data 

We derive data on regional income, employment, and demographics from Cambridge 

Econometrics’ European Regional Database (ERD). The primary source of the ERD dataset 

is Eurostat’s REGIO database and secondary sources include the AMECO dataset (European 

Commission’s Directorate General Economic and Financial Affairs). The ERD contains the 

longest time series on the abovementioned indicators that date back to 1980 for NUTS2 

regions for the first 15 EU Member States3, and from 1990 onwards for the countries that have 

joined the EU after 1995. More specifically, we use data on Gross Value Added and 

employment both at the aggregate level for NUTS2 regions, and at the sectoral level for 

agriculture, industry, and services sectors. Data on population report the number of people 

that reside at least one year within a NUTS2 region. Overall, we use regional historical data 

(when available) from 1980 till 2018. Although there is available data till 2020, we choose to 

use data till 2018, so that we avoid any potential structural breaks in our series due to the 

Covid pandemic and (to a lesser extent) the withdrawal of the United Kingdom from the EU.  

As a proxy for human capital, we use data on the share of working age population that 

attended tertiary education. We derive regional data for tertiary education attainment for 2000 

to 2018, at the NUTS2 level, from the QoG EU Regional dataset (Charron et al., 2020). 

Regarding historical data on EU Cohesion Fund (CF) payments for NUTS2 regions, we obtain 

data, spanning from 1994 to 2018, from the European Commission (DG Regional Policy). 

                                                           
3 NUTS2 regions of East Germany are exception as there is available data from 1991 onwards (in 

contrast to rest of Germany). 
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More specifically, we use data on CF real expenditure payments modelled by the European 

Commission to reflect the actual (or “real”) expenditure rather than the reported cycle of 

payments of the European Commission to Member States. Given that data on EU CF 

payments are reported based on the 2013 NUTS2 boundaries, we use the EU NUTS converter 

– which is a web-based tool developed by the European Commission – to convert the 

boundaries from 2013 nomenclature to the corresponding 2016 boundaries. 

We proxy for the role of first nature geography by controlling for specific locational and 

geographical characteristics, such as whether a region is metropolitan, urban, rural, 

mountainous, coastal, island, following the territorial typology developed and used by the 

Eurostat authority (European Commission (EU), 2018). More specifically, metropolitan areas 

are classified as those that represent agglomeration of at least 250 thousand inhabitants and 

are identified using the Urban Audit's Functional Urban Area (FUA). In case that there is an 

adjustment NUTS3 region that has more than 50% of the population living within this 

agglomeration, then this NUTS3 regions is also classified as metropolitan. NUTS3 areas are 

defined as urban areas if more than 80% of the population lives in clusters with population 

density of at least 300 inhabitants per square kilometre and minimum population 5000. In 

contrast, NUTS3 areas are defined as rural areas if at least 50 of the population lives in 

clusters with population density less than 300 inhabitants per square kilometre and maximum 

population 5000. Mountainous NUTS3 areas are considered those in which more than 50 % 

of their surface is covered by topographic mountain areas. Coastal NUTS3 regions are the 

regions with a sea border, and islands are those located on an island. 

Regarding travel time and distance between EU NUTS2 regions within EU, we use a dataset 

developed by the EU Joint Research Centre (Persyn et al., 2020). The distance between 

NUTS2 regions is estimated by measuring the time and distance covered by a representative 

truck that uses optimal transport route to travel between regions (Persyn et al., 2020). We use 

this dataset to generate an accessibility measure for all EU NUTS2 areas that is constructed 

by taking the inverse of the sum of log-distances for each NUTS2 region from all other regions 

within the EU. Further details on the construction of all the corresponding first and second 

nature variables used in this study, can be found in the following section that outlines in detail 

the proposed methodological approach. 

 

2. Empirical methodology 

According to Pesaran (2007), the stochastic version of convergence is consistent with a more 

general form of the neoclassical endogenous growth model. To test for the existence of 
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convergence, Pesaran (2007) employs a unit-root test on the output gap of a pair of economies 

(𝑔𝑖𝑗,𝑡 = |𝑦𝑖,𝑡 − 𝑦𝑗,𝑡|). Following Arvanitopoulos et al. (2021), we use complementary unit-root 

tests, beyond the traditional linear models (Augmented Dickey Fuller – ADF; GLS-detrended 

Dickey-Fuller – DFGLS), that are able to account for nonlinear (Kapetanios et al., 2003) and 

asymmetric nonlinear (Sollis, 2009) processes. We use the specified unit-root tests to examine 

for the incidence of stochastic convergence on all bilateral pairs of NUTS2 areas for the 28 

EU member states4. Given we have 276 NUTS2 areas (based on 2016 EU boundaries), the 

total number of pairwise combinations is 37,950.5 More specifically, our analysis builds on the 

econometric methodology developed and employed in Arvanitopoulos et al. (2021) which can 

be distinguished in the following two parts:  

(i) we test for the incidence of stochastic convergence between all bilateral pairs of 

NUTS2 regions using linear, nonlinear, and asymmetric nonlinear unit-root tests, 

(ii) we examine the role of first nature (or locational) characteristics and second nature 

(or economic geography) characteristics in driving the incidence of pairwise 

stochastic convergence across EU. 

 

2.1. Testing for pairwise stochastic convergence  

We start by testing the stationarity of the output gap 𝑔ijt i.e., the difference in the real log per 

capita gross value added of regions i and j, employing the Augmented Dickey Fuller (ADF) 

unit-root test: 

𝛥𝑔𝑖𝑗𝑡 = 𝛼𝑖𝑗 + 𝛽𝑖𝑗𝑔𝑖𝑗,𝑡−1 + ∑ 𝛿𝑖𝑗𝑠𝛥𝑔𝑖𝑗,𝑡−𝑠 
𝑝𝑖𝑗

𝑠=1 +  𝜀𝑖𝑗𝑡 ,   (1) 

To reject the null of non-stationarity, the t-statistic has to exceed the ADF critical value.6 In the 

case that the null hypothesis is rejected, there is evidence of existence of output convergence 

between NUTS2 areas i and j. This means that there is a common long-run stochastic trend 

between the NUTS2 regions which by extension indicates the existence of common growth 

trajectories. We further implement the DF-GLS unit-root test. This unit-root applies as a prior 

step a GLS detrending before the ADF regression is estimated.  

                                                           
4 Although UK has withdrawn from the EU on 31 December 2020, we incorporate it in our analysis as 
we use historical data spanning from 1980 (when available) to 2018. 
5 We use the formula N*(N-1)/2 to calculate the total number of pairwise combinations among NUTS2 
regions within the 28 EU Member States. 
6 We estimate the ADF test with intercept and use the critical values -2.625, -2.971, and -3.689 at the 

10%, 5%, and 1% significance levels, respectively. To determine the optimum lag number, we employ 
the Schwarz Information Criterion (SIC) with p-max=6. 
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Although appealing due their simplicity, the literature argues that the ADF and the DFGLS 

unit-root tests are characterised by reduced power in rejecting the null. In cases of highly 

persistent processes, Kapetanios et al. (2003) proves that an Exponential Smooth Transition 

Autoregressive process (ESTAR model) is more consistent under globally stationary 

conditions, and thus more powerful than the ADF unit-root test. The proposed nonlinear 

specification, known as the KSS unit-root test, can be specified as follows: 

𝛥𝑔𝑖𝑗𝑡 = ∑ 𝜌𝑖𝑗𝑠𝛥𝑔𝑖𝑗,𝑡−𝑠 
𝑝𝑖𝑗

𝑠=1 + 𝛿𝑔𝑖𝑗𝑠,𝑡−1
3 + 𝜀𝑖𝑗𝑡,    (2) 

where the null hypothesis is 𝛨0: δ=0.7 Finally, if one cannot a priory rule out the existence of 

asymmetries in the equilibrium adjustment process, then an additional extension of this 

nonlinear unit-root test is necessary. This is known in the literature as the asymmetric ESTAR 

(or AESTAR) unit-root test (Sollis, 2009) and can be specified as follows: 

𝛥𝑔𝑖𝑗𝑡 = ∑ 𝜌𝑖𝑗𝑠𝛥𝑔𝑖𝑗,𝑡−𝑠 
𝑝𝑖𝑗

𝑠=1 + 𝜑1𝑔𝑖𝑗𝑠,𝑡−1
3 + 𝜑2𝑔𝑖𝑗𝑠,𝑡−1

4 +𝜂𝑖𝑗𝑡   (3) 

where the null hypothesis is 𝛨0: 𝜑1=𝜑2=0.8 Given the AESTAR is a standard F-test, it allows 

the autoregressive parameters to take simultaneously proportional positive and negative 

deviations from the series' attractor. An additional function of this nonlinear test beyond testing 

for the presence of stationarity, it can identify whether nonlinearity is symmetric or asymmetric 

to positive and negative deviations of the output gap.  

Finally, we compute the total fraction of unit-root rejections of the null hypothesis for each one 

of the four unit-root tests (ADF, DFGLS, KSS, and AESTAR) separately, for all pairwise EU 

NUTS2 pairs. In other words, we calculate the percentage of cases for which we obtain 

empirical evidence that supports the existence of long-term stochastic convergence 

trajectories among EU NUTS2 areas. We use this to assess the overall extent of cross-

sectional stochastic convergence across EU areas.  

 

                                                           
7 According to Kapetanios et al. (2003), there are three cases for raw, de-meaned and de-trended data. 
In this study, we present empirical findings only for the first case, being the most appropriate for our 
data. In similar fashion to the ADF and DF-GLS unit-root tests, we employ a KSS unit-root test with 
intercept and use the critical values -1.92, -2.22 and -2.82, at the 10%, 5% and 1% significance level, 
respectively. To determine the optimal lag length, we use the Schwarz Information Criterion (SIC) with 
p-max=6. 
8 In similar fashion to ADF, DGFLS and KSS unit-root tests, we employ the ESTAR test with intercept 
and use the critical values 4.16, 5.02, 6.97 for 10%, 5%, and 1% significance level, respectively (Cook, 
2016). To determine the optimum lag number, we use the Schwarz Information Criterion (SIC) with p-
max=6. 
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2.2. Drivers of stochastic convergence: the role of congruence and 

dissimilarity  

Having identified the pairs of NUTS2 regions for which we have sufficient evidence that they 

stochastically converge, the next step involves analysing the underlying factors that drive this 

process. To do that we use the information derived from all four unit-root tests, as each 

provides us with alternative cross-section estimates of pairwise convergence. More 

specifically, we generate a dummy variable for each of the unit-root tests that takes the value 

of 1 if the unit-root test rejects the null hypothesis of non-convergence at the 10% significance 

level, otherwise is equal to 0. Thus, we transform the unit-root test statistics to binary form and 

use this as our dependent variable in a cross-sectional probit model estimated by maximum 

likelihood, that takes the following form: 

𝑃𝑟(𝐶𝑖𝑗 = 1) = 𝛷(𝛼 + 𝑋𝑖𝑗𝛽 + 𝜅𝑖 + 𝜆𝑗 + 𝑢𝑖𝑗)   (4) 

where C stands for the binary variable for convergence between NUTS2 i and j (with i≠j); Φ 

stands for the cumulative normal distribution function; X stands for the vector of pairwise 

locational characteristics, described more in depth below; κ and λ represent the “origin” and 

“destination” dummies (i.e., each pair of NUTS2 regions has one “origin” and one “destination” 

control); α and β stands for the model parameters; and finally u represents the vector of 

independent identically distributed (iid) random errors. Given the null of non-stationarity is 

rejected more strongly when the corresponding test statistic obtains a higher value in absolute 

terms, we use this feature to introduce importance weights in our probit model. To generate 

those importance weights, we use the absolute value of the corresponding unit-root test 

statistic, and thus a higher absolute value is given more weight than one that is closer to the 

critical value for rejecting the null hypothesis at the 10% statistical significance level. Below 

we focus more extensively on the first and second nature characteristics and discuss on the 

proxies used to control for their effect on pairwise stochastic convergence. 

 

2.2.1. First nature geography 

We control for various locational characteristics for which we are interested in examining 

whether they can explain historical convergence dynamics across NUTS2 regions in the EU. 

Given the information of these characteristics is provided at the more granular spatial level of 

NUTS3 regional classification, we construct the corresponding variables by computing the 

percentage of NUTS3 areas within each NUTS2 region that share the same characteristic. 

This means that a higher proxy value indicates that the corresponding locational characteristic 
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(metropolitan, urban, rural, mountainous, coastal, islands) is more prevalent within a NUTS2 

region, with maximum possible value being 1 and minimum 0. Given stochastic convergence 

is pairwise by nature as it indicates whether two regions converge (or diverge), we model our 

first nature variables in relational terms using two types of measures. The first captures the 

dissimilarity between two regions (computed as the absolute difference between two local 

values that are standardised by the range of values of these variables) and the second 

captures the congruence (computed as the product of two local values, similarly standardised).  

To test for club convergence among the first 15 EU Member States (fourth EU enlargement), 

we construct a dummy variable that takes the value of 1 if the NUTS2 region is part of those 

Member States. Given this is a dichotomous variable, we construct the corresponding 

dissimilarity index by giving the value of 1 to pairs of regions only if one of the two regions is 

part of the first 15 EU Member States (otherwise 0). Similarly, we construct the corresponding 

congruence index by giving the value of 1 to pairs of regions that both satisfy the above-

mentioned conditions (otherwise 0). Finally, we further examine on whether i) neighbourliness 

i.e., contiguity of administrative borders, and ii) being within the same country, are significant 

drivers of stochastic convergence. Both variables are by nature congruent, and thus we do 

not incorporate those two variables in the dissimilarity regression models. 

 

2.2.2. Second nature geography 

We move on to the set of variables that control for the role of second nature geography on the 

incidence of stochastic pairwise convergence. We examine three main groups of second 

nature characteristics i.e., economic geography, sectoral specialisation, and economic 

potential. Given the cross-sectional nature of our probit model (equation 4), we transform all 

time-varying variables outlined below to cross-section observations by taking their regional 

average over time. Then, we construct congruence and dissimilarity measures (all variables 

specified below are continuous in nature), similar to first nature variables.  

We use as proxies for economic geography the accessibility index (already defined in Section 

2), and population density which is defined as the total population per NUTS2 divided by the 

area coverage. For sectoral specialisation, we have constructed a Herfindahl-Hirschman index 

(HHI) that measures the level of specialisation diversity within a NUTS2 area. To do that we 

use GVA data for three economic sectors namely, agriculture, industry, and services. A lower 

HHI value is associated with higher sectoral diversification, and the opposite. We further focus 

on services, for which we proxy using the share of regional GVA on services sector compared 

to the total regional GVA. Regarding economic potential, we account for the role of education 
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by controlling for the share of working population that attainted tertiary education. As a proxy 

for regional economic development, we use the regional GVA per capita. As an inverse proxy 

for labour dynamism, we use the regional inactivity rate that is defined as the share of 

population that is not part of the regional labour force. Finally, to control for the role of EU 

Cohesion Fund payments on driving the incidence of stochastic convergence, we use the 

regional share of EU Cohesion payments to the total regional GVA. 

 

3. Results  

3.1. Incidence of regional pairwise stochastic convergence  

We start our empirical analysis by assessing the incidence of pairwise stochastic convergence 

across NUTS2 regions within the EU on the aggregate level. In total, we have 37,950 bilateral 

pairs of regions, for each one of which we examine whether the null hypothesis of non-

stationarity (and thus non-convergence) is rejected. We perform this analysis to all four test-

statistics outlined in Section 3 and compare the total fraction (or percentage) of rejections of 

the null hypothesis for each unit-root test at the 10%, 5%, and 1% statistical significance level. 

Focusing first on the 10% statistical significance level, we can observe in Table 1 that the ADF, 

DFGLS and AESTAR have very similar fractions of rejections, equal to 14%, 15% and 15%, 

respectively. KSS in the only unit-root test with substantially higher fraction of rejections 

compared to other three test.  

Table 1. Total factions of rejections using pairwise stochastic convergence tests for EU 

NUTS2 areas 

Unit-root test Pairwise fraction of rejections of the null hypothesis 

 
Fractions of rejections at 

 𝛼 = 10%   𝛼 = 5%   𝛼 = 1%  

ADF 0.14 0.09 0.04 

DF-GLS 0.15 0.07 0.02 

KSS 0.28 0.20 0.10 

AESTAR 0.15 0.11 0.06 

Notes: 𝛼 indicates the statistical significance thresholds. The optimum lag number is determined using 

the SIC Criterion with 𝑝𝑚𝑎𝑥 = 6.  

 

Moving on to higher levels of statistical significance i.e., 5% and 1%, we can observe that the 

overall fraction of rejections drops proportionally for all unit-root tests, with KSS remaining the 

best performing test with the highest fraction of null hypothesis rejections equal to 20% at 5% 

significance level, and 10% at 1% significance level. This outcome is reasonable given the 

KSS test has increased power in rejecting the null compared to other three tests, especially in 
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cases of persistent time series processes (Kapetanios et al., 2003). Overall, we find that 28% 

(or about 1 in 4) regions converges to another region at 10% significance level (focusing on 

the KSS test). It is important to look beyond the aggregate picture and analyse the incidence 

of convergence at a more granular spatial level. Given the KSS test has increased power in 

rejecting the null, we choose the KSS test statistics to map the fraction of rejections, and thus 

the rate of stochastic convergence, for every NUTS2 region.9 Figure 1 allows us to visually 

observe and untangle the geography of stochastic convergence within Europe. NUTS2 

regions with deeper blue colour are characterised by higher rates of pairwise convergence, 

while those with lighter blue colour by lower rates of pairwise convergence. To obtain a more 

spherical understanding of intra-country and inter-country stochastic convergence dynamics, 

we also present in Table 2 the average rate of pairwise convergence at the country level, and 

the rate of intra-country stochastic convergence (converge between regions within the same 

country). Thus, Figure 1 in conjunction to Table 2 allow us to draw a more detailed 

understanding of historical pairwise stochastic convergence dynamics across and within EU 

Member States. In general, Figure 1 shows that NUTS2 areas in western and northern parts 

of Europe are the ones historically experiencing the highest rates of pairwise stochastic 

convergence. In contrast, east and southeast NUTS2 areas are the ones with the lowest rates 

of pairwise stochastic convergence in Europe. 

We are interested in analysing separately the convergence rate for all EU countries, as this 

can help us understand better the underlying patterns that drive the incidence of stochastic 

convergence. To do that, we start our analysis focusing on the countries with the highest rates 

of regional pairwise convergence and then gradually moving on, in descending order of 

convergence rates, to the worst performing ones. The top three performing countries are 

Luxemburg (69% convergence rate), Finland (60%), Portugal (51%). Within Portugal, areas 

such Alendejo (PT18) and Norte (PT11) are among the highest converging NUTS2 regions in 

Europe. Βoth Finland and Portugal have very low shares of intra-country convergence, equal 

to 2% in both cases. One could argue that larger countries with a higher number of NUTS2 

areas might naturally tend to have larger intra-country rate of convergence than smaller ones 

(see for example Finland or Portugal). However, we find that this is not the case, as for 

example the country with the highest rate of intra-country convergence is Greece (similar size 

                                                           
9 Similarly, we have produced the corresponding Figure 1 and Table 2 for the rate of convergence 
estimated using the ADF, DFGL, and Sollis unit-root tests. Results across unit-root tests are very similar 
for the majority of NUTS2 regions, and thus we refrain from presenting these for brevity purposes. 
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to Portugal) while larger countries such as France are characterised by only 8% of intra-

country convergence.10  

Cyprus and United Kingdom have 42% and 39% pairwise convergence rates, respectively. 

Among the best performing countries on pairwise convergence, the UK is the only country to 

also have a substantially high share of intra-country convergence (22%), being the second 

largest only after Greece (25%). This means that approximately about 1 in 5 converging 

NUTS2 areas in the UK converges to another NUTS2 region within the same country. 

Focusing more on the British Isles, the overall picture is more complicated as there is large 

variation in the pairwise convergence rates across the country. For example, one can observe 

in Figure 1 that Lancashire (UKF3) experiences a very low rate of convergence while the 

neighbouring region of East Anglia (UKH1) is among the highest converging areas within the 

country. 

Figure 1. Share of pairwise stochastic convergence per NUT2 area across the EU from 1980-
2018 

 

Notes: NUTS2 regions with deeper blue colour are characterised by higher rates of pairwise 
stochastic convergence, while those with lighter blue colour by lower rates of pairwise stochastic 
convergence. 

                                                           
10 Small EU Member States such as Cyprus, Estonia, Latvia, Luxembourg and Malta are only 

characterised by one NUTS2 region. In this case it is not possible to infer outcomes about intra-country 
convergence.  
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Sweden and Netherlands perform similarly well in terms of pairwise convergence rates (36% 

and 34%, respectively), while both have very low intra-country convergence rate (5%). Spain 

and Germany are next with 32% and 30% of average pairwise convergence rates, 

respectively, and intra-country convergence rates equal to 12% and 15%, respectively. 

Focusing specifically on Spain (Figure 1), we observe that areas such as Castilla-La Mancha 

(ES42), Cantabria (ES13), Principado de Asturias (ES12), and Región de Murcia (ES62), are 

the areas with the highest rates of pairwise convergence within the country. NUTS2 regions 

that incorporate the major metropolitan areas within Spain, such as Comunidad de Madrid 

(ES30), Cataluña (ES51), and País Vasco (ES21), have relatively lower rates of convergence 

compared to other Spanish NUTS2 areas. Moving on to Germany, we observe in Figure 1 that 

eastern NUTS2 areas within the country, such as Brandenburg (DE40), Berlin (DE30), and 

Mecklenburg-Vorpommern (DE80), tend to have higher rates of pairwise convergence 

compared to their western counterparts. 

The rest of the western and northern EU Member States complete the picture of high pairwise 

convergence rates (i.e., Belgium 29%, Austria 28%, Denmark 26%) with only exceptions 

Bulgaria and Estonia that score 29% and 27% of convergence rates, respectively. Within 

Bulgaria there is large variation in convergence rates as northern regions – these include the 

major metropolitan areas and are contiguous to Romania – experience significantly higher 

pairwise convergence rates than those in the south of the country that are contiguous to 

Greece. France is the largest western EU country with the lowest share of pairwise 

convergence rate (26%). Within France, one can observe in Figure 1 that NUTS2 areas in the 

north and east of the country (those contiguous to Belgium, Luxemburg, and Germany) have 

lower rates of convergence, compared to southern and western NUTS2 areas. The only 

exceptions in the north of France are the regions of Nord-Pas de Calais (FRE1) and Ile-de-

France (FR10) which experience higher convergence rates. The former is an important trade 

hub, and the latter incorporates the largest metropolitan area in France. 

Moving on to East and Southeast Europe, convergence rates are significantly lower than the 

ones discussed so far. Croatia and Czech Republic score 26% and 25% on average pairwise 

convergence rates. Within Czech Republic, we can observe in Figure 1 that the highest 

converging NUTS2 regions are the ones contiguous to neighbouring countries such as 

Severozápad (CZ04) and Jihozápad (CZ03) both neighbouring Germany, and 

Moravskoslezsko (CZ08) neighbouring Poland. Romania scores 20% of pairwise convergence 

rate, mainly driven by the highly performing southern part of the country that incorporates the 

metropolitan region of Bucharest. Slovenia scores 19% pairwise convergence, a value very 

similar to that for Ireland (18%) which is the only western EU country to score so low on 

average rate of pairwise convergence. Italy scores 17% both for pairwise convergence rate, 
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and for intra-country convergence rate. Focusing more on Italy, we can observe in Figure 1 

that the southern NUTS2 regions of the country experience very low pairwise rate of 

convergence, with only exceptions the regions of Basilicata (ITF5) and Calabria (ITF5). In 

contrast, the northern regions of Italy experience substantially higher rates of convergence, 

with the regions of Toscana (ITI1) and Emilia-Romagna (ITH5) being the southernmost most 

highly performing regions in the north of the country. 

Table 2. Country average stochastic convergence rate across EU and within country 

Country 
code 

Country 

Number of 
NUT2 

areas per 
country 

Average pairwise 
(across EU) 
stochastic 

convergence rate 
per country 

Average intra-country 
stochastic 

convergence rate per 
country 

AT Austria 9 0.28 0.04 

BE Belgium 11 0.29 0.04 

BG Bulgaria 6 0.29 0.02 

CY Cyprus 1 0.42 NA 

CZ 
Czech 

Republic 
8 0.25 0.06 

DE Germany 38 0.30 0.15 

DK Denmark 5 0.26 0.01^ 

EE Estonia 1 0.27 NA 

EL Greece 13 0.10^ 0.25~ 

ES Spain 19 0.32 0.12 

FI Finland 5 0.60~ 0.02 

FR France 22 0.26 0.08 

HR Croatia 2 0.26 0.00^ 

HU Hungary 8 0.16 0.13 

IE Ireland 3 0.18 0.00^ 

IT Italy 21 0.17 0.17~ 

LT Lithuania 2 0.07^ 0.05 

LU Luxembourg 1 0.69~ NA 

LV Latvia 1 0.10^ NA 

MT Malta 1 0.15 NA 

NL Netherlands 12 0.34 0.05 

PL Poland 17 0.16 0.18~ 

PT Portugal 7 0.51~ 0.02 

RO Romania 8 0.20 0.01^ 

SE Sweden 8 0.36 0.05 

SI Slovenia 2 0.19 0.02 

SK Slovakia 4 0.16 0.04 

UK 
United 

Kingdom 
41 0.39 0.22~ 

Notes: Although UK has withdrawn from the EU on 31 December 2020, we incorporate it in our 

analysis as we use historical data spanning from 1980 (when available) to 2018. “~” Indicates that 

three top shares of average pairwise stochastic convergence across EU and within country, while 
“^”indicates the three bottom ones. 
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Slovakia, Poland, and Hungary share the same share of pairwise convergence (16%), while 

Poland and Hungary also have relatively high rates of intra-country convergence (18% and 

13%, respectively). Within Poland, only exceptions in the overall low performance are the 

NUTS2 regions of Opolskie (PL52) that is contiguous to Czech Republic, Lubuskie (PL43) and 

Zachodniopomorskie (PL42) that are contiguous to Germany, and Pomorskie (PL63) and 

Warszawski stołeczny (PL61) that both incorporate significant metropolitan clusters (the 

former also being coastal). Finally, the worst performing countries on average pairwise 

stochastic convergence rates are Malta (15%), Greece (10%), Latvia (10%), and Lithuania 

(7%). An interesting observation is that Greece is among the worst performing countries 

regarding average convergence rate (10%) and the best performing country regarding intra-

country convergence rate in Europe (25%). The latter effectively means that 1 in 4 converging 

regions in Greece converges to another NUTS2 area within the country.  

 

3.2. First nature geography and pairwise stochastic convergence 

Focusing on first nature geography, Table 3 presents the results on the effect of locational 

characteristics on the incidence of convergence drawing on two types of comparison. The first 

four models specify on the dissimilarity of those characteristics and their effect on pairwise 

convergence, while the next four models specify on the congruence of the location 

characteristics for each pair of regions. In both cases, we use alternative dependent variables 

based on the four different types of test-statistics used in this analysis (i.e., ADF, DF-GLS, 

KSS, and AESTAR). We get highly consistent results across all test-statistics in Table 3, which 

supports the robustness of our empirical findings (presented below). 

In general, we find strong and consistent evidence of club formation across EU NUTS2 areas 

that share similar locational characteristics such as being metropolitan, coastal, and 

mountainous. Starting with metropolitan areas, we find statistically significant evidence in 

three model specifications (ADF, DFGLS, and KSS) that congruence results in convergence, 

while exactly the opposite result holds for dissimilarity. Similarly, mountainous and coastal 

areas strongly converge to congruent regions, while they diverge from areas with different 

locational characteristics (dissimilarity). Islands regions also converge to congruent regions, 

and diverge from dissimilar, although we find only statistically significant results for this 

locational characteristic only in the ADF model specification (both for congruence and 

dissimilarity models). Results for urban and rural are mixed. Focusing on dissimilarity models, 

we observe in Table 3 that urban areas converge to non-urban regions in the DFGLS model, 

while they diverge in the AESTAR model. In contrast, congruence in the degree of urbanity 
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results in divergence (DFGLS test). Similarly, dissimilarity in rural areas results in divergence 

(AESTAR test), a result that also holds for congruence (DFGLS test). 

Table 3. The role of locational characteristics on the incidence of pairwise stochastic 
convergence in the EU 

 
Dissimilarity Congruence 

 ADF DF-GLS KSS AESTAR ADF DF-GLS KSS AESTAR 

 (1) (2) (3) (4) (5) (6) (7) (8) 

Metropolitan -0.017** -0.042*** -0.037*** 0.00013 0.055*** 0.110*** 0.086*** -0.008 

 (0.008) (0.008) (0.008) (0.009) (0.017) (0.018) (0.016) (0.019) 

Urban -0.008 0.038*** -0.006 -0.014* 0.0014 -0.074*** 0.0069 0.014 

 (0.007) (0.008) (0.007) (0.008) (0.0128) (0.0143) (0.0123) (0.014) 

Rural -0.0074 -0.0017 -0.011 -0.027*** 0.0143 -0.034** 0.015 0.031* 

 (0.009) (0.009) (0.008) (0.009) (0.015) (0.015) (0.014) (0.016) 

Coastal -0.044*** -0.053*** -0.038*** -0.047*** 0.076*** 0.088*** 0.061*** 0.067*** 

 (0.005) (0.006) (0.005) (0.006) (0.01) (0.01) (0.01) (0.011) 

Islands -0.048*** -0.029 -0.013 -0.017 0.091*** 0.044 0.024 0.040 

 (0.0185) (0.0185) (0.0186) (0.022) (0.035) (0.035) (0.035) (0.041) 

Mountainous -0.039*** -0.046*** -0.056*** -0.043*** 0.056*** 0.042*** 0.067*** 0.052*** 

 (0.007) (0.007) (0.007) (0.008) (0.012) (0.013) (0.012) (0.014) 

EU 15 -0.223*** -0.231*** -0.316*** -0.182*** 0.434*** 0.439*** 0.614*** 0.334*** 

 (0.006) (0.006) (0.006) (0.007) (0.013) (0.013) (0.012) (0.014) 

Contiguous     0.036** 0.017 0.022 0.029* 

     (0.015) (0.016) (0.015) (0.016) 

Same 
country     0.033*** 0.094*** 0.064*** 0.088*** 

     (0.007) (0.008) (0.007) (0.008) 

         

Pseudo-R2 0.27 0.15 0.21 0.27 0.27 0.15 0.21 0.27 

Observations 74,802 75,900 75,900 75,350 74,802 75,900 75,900 75,350 

Notes: This table shows the marginal effects from weighted maximum likelihood probit estimates. 
Dummies for ‘origin’ and ‘destination’ are introduced in the model to control for fixed effects. 
Dissimilarity and congruence have been defined in Section 2. Robust standard errors reported in 
parentheses. *, ** and *** indicate statistical significance level at the 10%, 5% and 1% level, 
respectively.  

 

We further test for club convergence between NUTS2 areas located within the first 15 EU 

Member States, compared to those entered the EU after 1995 (fourth EU enlargement). We 

find strong and consistent evidence that areas within the first 15 EU Member States converge 

to each other, while they diverge from regions located in the rest of the EU countries. We find 

strong and consistent evidence of convergence between pairs of regions located within the 

same country. Similarly, we find that contiguous NUTS2 regions tend to converge. Given we 

already control for the same country effect, the contiguity variable effectively controls for 

converging regions that are neighbours but are not located within the same country. To test 
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whether this holds, we re-estimate all models without the same country variable, for which we 

indeed find that contiguity coefficient becomes statistically significant across all models 

(compared to only the ADF and AESTER models in Table 3). Therefore, we are confident that 

contiguity is a significant driver of stochastic convergence within the EU, regardless of national 

administrative borders. 

3.3. Second nature geography and pairwise stochastic convergence 

Having identified the first nature characteristics that can influence the incidence of pairwise 

convergence across NUTS2 regions, we move on to second nature geography. We examine 

the effect on incidence of convergence of characteristics associated to economic geography 

(accessibility, density), sectoral structure (specialisation, services share), and economic 

potential (education, development, inactivity rate, and Cohesion Fund payments). Once again, 

we construct dissimilarity and congruence indices for our independent variables and estimate 

the probit model (specified in Equation 5) using all four test-statistics as alternative dependent 

variables. 

We start our analysis with the economic geography variables (see Table 4). We find strong 

and consistent evidence across all models that congruence in accessibility levels results in 

stochastic convergence, while dissimilarity results in divergence. The opposite pattern can be 

observed for population density. Regions with higher population density tend to converge to 

those with lower density, while those with congruent degrees of population density diverge. 

Therefore, our results indicates that although geographical accessibility facilitates 

convergence, areas with higher density tend to diverge, a result that probably reflect our 

previous finding that areas with higher share of urban clusters tend to diverge from each other. 

Moving on to sectoral structure, we find strong and consistent evidence for the effect of 

sectoral specialisation on convergence dynamics. In all congruent models, sectoral 

specialisation results to divergence, while the opposite holds for dissimilarity models. This 

essentially means that regions with congruent sectoral specialisation, and probably competing 

economic interests within the common EU market, tend to diverge from each other. In contrast, 

regions with dissimilar specialisation, and most probably producing complementary goods 

and/or services, tend to converge to each other. Focusing specifically on the effect of 

specialisation on the services sector, we get statistically significant results in two congruent 

models (ADF and KSS) and one dissimilarity model (KSS). Similar to the overall sectoral 

specialisation results, congruence in services specialisation leads to divergence, that could 

be explained by competition dynamics, while the opposite result holds for congruence.  



18 
 

The effect of economic potential on stochastic convergence is proxied by the third set of 

variables in Table 4. Starting with university education, areas with dissimilar human capital 

diverge as indicated by the statistically significant and negative coefficient in three dissimilarity 

models (ADF, DFGLS, and KSS). Congruence in university education does not seem to play 

a statistically significant role in stochastic convergence (weak evidence only for the AESTAR 

test). The coefficient of development in all congruent models is positive and statistically 

significant, while exactly the opposite result holds for dissimilarity models. This indicates 

strong and consistent evidence of club-convergence at the top, as regions with congruent 

degree of development tend to converge to each other. Regions with dissimilar level of 

development diverge. Thus, we do not find any supportive evidence of beta-convergence 

dynamics across the EU. We further use the inactivity rate as an inverse proxy of labour market 

dynamism. Results indicate that regions with low market dynamism tend to diverge from each 

while a clear conclusion for dissimilar regions cannot be drawn. Finally, we find strong and 

consistent evidence that increased shares of EU Cohesion Fund payments (compared to 

regional GVA) boost convergence dynamics across the EU. The opposite result holds for pairs 

of regions with lower inputs of EU Cohesion Fund payments, which tend to diverge. Thus, our 

results support the argument that EU Cohesion Fund payments have historically facilitated the 

formation of convergence dynamics across the EU.  
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Table 4. The role of second-nature geography on the incidence of pairwise stochastic convergence in the EU 

  Dissimilarity Congruence 

 ADF DFGLS KSS AESTER ADF DFGLS KSS AESTER 

 (1) (2) (3) (4) (5) (6) (7) (8) 
Economic geography          

Accessibility  -0.121*** -0.110*** -0.030** -0.128*** 0.379*** 0.717*** 0.029 0.305*** 
  (0.013) (0.013) (0.012) (0.015) (0.079) (0.093) (0.081) (0.093) 

Density  0.170*** 0.412*** 0.083 0.068 -0.293*** -0.629*** -0.187* -0.176 
  (0.057) (0.085) (0.055) (0.06) (0.105) (0.132) (0.101) (0.116) 

Sectoral structure          

Sectoral specialisation  0.0909*** 0.112*** 0.164*** 0.147*** -0.937*** -0.657*** -1.214*** -1.041*** 
  (0.029) (0.031) (0.028) (0.032) (0.194) (0.187) (0.208) (0.199) 

Services  -0.0024 0.0173 0.034* -0.002 -0.303** -0.081 -0.286** -0.243 
  (0.02) (0.021) (0.019) (0.022) (0.151) (0.135) (0.138) (0.148) 

Economic potential          

Tertiary education  -0.076*** -0.108*** -0.071*** -0.034 -0.041 0.005 -0.013 -0.165* 
  (0.021) (0.023) (0.020) (0.024) (0.082) (0.094) (0.081) (0.089) 

Development  -0.507*** -0.430*** -0.821*** -0.395*** 2.598*** 1.883*** 3.638*** 1.977*** 
  (0.026) (0.028) (0.025) (0.029) (0.142) (0.138) (0.160) (0.145) 

Inactivity rate -0.026* -0.072*** 0.007 0.038** -0.058*** -0.091*** -0.034** 0.0109 
  (0.0150) (0.0160) (0.0143) (0.017) (0.015) (0.016) (0.014) (0.016) 

Cohesion Fund payments  -0.065*** -0.147*** -0.058*** -0.085*** 0.318*** 0.397*** 0.365*** 0.319*** 
  (0.020) (0.020) (0.019) (0.023) (0.031) (0.030) (0.030) (0.034) 

          

Pseudo R-squared 0.26 0.14 0.19 0.26 0.26 0.14 0.19 0.27 
Observations 74,802 75,900 75,900 75,350 74,256 75,350 75,350 74,802 
Notes: This table shows the marginal effects from weighted maximum likelihood probit estimates. Dummies for ‘origin’ and ‘destination’ are introduced in 
all model specifications to control for fixed effects. Dissimilarity and congruence have been defined in the text. Robust standard errors reported in 
parentheses. *, ** and *** indicate statistical significance level at the 10%, 5% and 1% level, respectively 
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4. Discussion 
 

This study examines the incidence of stochastic convergence within the EU and uses the 

observed convergence trajectories to identify the determinants of first and second nature 

geography that drive this process. The proposed methodology is based on the notion of 

stochastic convergence. More specifically, our analysis builds on the empirical methodology 

developed and employed in Arvanitopoulos et al. (2021). This is the first study to examine the 

determinants and dynamics of regional pairwise stochastic convergence for all EU Member 

States (including the UK), for the longest time period (1980-2018), and at a fine granular 

spatial level (NUTS2). Overall, we test for convergence all 37,950 pairs of NUTS2 regions 

within the EU. 

In general, we find that countries with higher average rate of pairwise stochastic convergence 

tend to have lower shares of intra-country pairwise convergence. The opposite result holds for 

countries with low average stochastic convergence rates that tend to have higher shares of 

intra-country convergence. This result highlights that open economies, characterised by 

increased trade exposure and reliance on external financing sources, tend to have higher 

convergence rates than closed economies. Least convergent and more closed economies are 

those in the Southeast Europe (e.g., Greece and south Italy) and the East of Europe (e.g., 

Poland). In contrast, western and northern parts of Europe experience higher rates of pairwise 

stochastic convergence (with only exception Ireland). This finding is further supported by the 

fact that we find strong evidence of club convergence among the oldest EU Member States, 

most of them located in the northern and western parts of Europe. Only exceptions are Greece 

and southern parts of Italy that tend to follow similar stochastic convergence patterns to those 

found for eastern European regions. 

Secondly, we identify the first and second nature characteristics that drive the observed 

pairwise stochastic convergence patterns across the EU. Starting with first nature geography, 

our results clearly indicate that stochastic convergence within the EU follows a cluster-like 

pattern. We find strong evidence that metropolitan, coastal, mountainous, and islands areas 

tend to converge to areas with congruent geographical characteristics, while diverging from 

dissimilar regions. Contiguity is a key driver of convergence, regardless of national 

administrative borders. To better understand the observed dynamics, we can use Poland as 

a useful example, given it has overall very low stochastic convergence rates, with only a 

handful of NUTS2 regions breaking this trend. The highly stochastically convergent regions 

within Poland are those neighbouring Germany and Czech Republic, while the only exceptions 

of highly convergent regions within the centre of the country are the two main metropolitan 

areas, one of which is also coastal. Diving deeper on the underlying dynamics that drive the 
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observed stochastic convergence patterns, we find strong evidence that geographical 

accessibility is a key component for shaping common convergence trajectories across the EU. 

On the other hand, congruence in the degree of agglomeration tends to be a key divergence 

characteristic.  

Beyond locational characteristics, we use second nature geography to understand how 

economic geography drives the convergence dynamics within the EU. Focusing on market 

characteristics, we find strong evidence that congruence in sectoral specialisation results in 

divergence, while the opposite result holds for dissimilarity in specialisation. This finding 

illustrates the significant role of competition dynamics within the common market regarding 

convergence trajectories. Areas with competing sectors tend to diverge while complementarity 

in sectoral specialisation generates convergence dynamics between regions. Moving on to 

economic potential, we find strong evidence of club convergence at the top of the EU. 

Similarly, congruence in human capital at the top is not relevant for stochastic convergence, 

while areas with dissimilarities in human capital diverge. The lack of any significant beta-

convergence dynamics is rather striking, as our findings indicate that low performing regions 

diverge from the highly performing ones. In other words, bottom regions are systematically left 

behind in the EU growth process. This may be attributed to the slowing down of convergence 

which is observed after the economic and financial crisis which started in 2008 (Monfort, 

2020). In addition, we find evidence of non-convergence dynamics among areas characterised 

by low market dynamism, and by extension low activity rates. Therefore, regions at the bottom 

– characterised by low market dynamism and poor economic development – do not converge 

to each other, and collectively lag significantly behind of the top European regions which 

converge together at the top. 

Thus, low performing regions are left out of the EU growth dynamics, and given they lack the 

necessary economic potential to step out of this divergence trap, it seems highly unlikely that 

they will be able to converge to top regions without the appropriate exogenous financial 

support. Indeed, we do find strong evidence that regions receiving higher inputs of Cohesion 

Fund (CF) payments tend to converge, while the opposite result holds for regions with which 

receive less CF payments. This finding highlights the historical importance of CF payments in 

facilitating stochastic convergence dynamics within the EU. Given that recipients of CF 

payments are regions with the lowest 10% regional income per capita within the EU, it 

becomes obvious that these payments can become a helpline for regions with poor economic 

development and low market dynamism, as these payments can assist their efforts in stepping 

out of long-term divergence dynamics. Thus, this study provides supportive evidence on the 

role of targeted regional policy interventions in reducing long-term regional disparities within 

the EU. 
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