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Abstract
Technological change co-determines agri-environmental 
performance and farm structural transformation. 
Meaningful impact assessment of related policies can be 
derived from farm-level models that are rich in technol-
ogy details and environmental indicators, integrated with 
agent-based models capturing dynamic farm interaction. 
However, such integration faces considerable challenges 
affecting model development, debugging and computa-
tional demands in application. Surrogate modelling using 
deep learning techniques can facilitate such integration 
for simulations with broad regional coverage. We develop 
surrogates of the farm model FarmDyn using different ar-
chitectures of neural networks. Our specifically designed 
evaluation metrics allow practitioners to assess trade-offs 
among model fit, inference time and data requirements. 
All tested neural networks achieve a high fit but differ 
substantially in inference time. The Multilayer Perceptron 
shows almost top performance in all criteria but saves 
strongly on inference time compared to a Bi-directional 
Long Short Term Memory.
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1  |   INTRODUCTION

Modelling the impacts of agri-environmental policies increasingly requires accounting for 
detailed farm-level decision-making, heterogeneous local conditions, and interaction among 
farmers. Policies that are relatively homogeneous across regions (such as tariffs and export 
subsidies at the EU level or decoupled income support) are continuously substituted or 
complemented with more targeted farm-level policies—for example, the newly introduced 
eco-schemes or collective agri-environmental payments that require coordination and partic-
ipation of local communities (Kuhfuss et al., 2016; Šumrada et al., 2022). Detailed farm-level 
models (Richardson et al., 2014; Weersink et al., 2002), usually implemented as optimisation 
models, are capable of representing individual decision-making with a rich representation of 
input choices, investments and environmental indicators. However, those farm-level mod-
els usually do not account for interaction among farmers, market feedback, or environmen-
tal feedback on larger scales (Heckelei,  2013; Shang et al.,  2021). Here, agent-based models 
(ABMs) (Gilbert,  2007) can be used to model endogenous market feedback and to capture 
the dynamic interaction of heterogeneous farms (Kremmydas et al., 2018; Müller et al., 2020; 
Rasch et al., 2017). However, computational demands limit the complexity of farm decision-
making models within an ABM or the number of agents and hence the regional coverage of 
those models (Bradhurst et al., 2016; Murray-Rust et al., 2014; Sun et al., 2016). Integrating 
detailed farm-level models as individual decision-making models into ABMs—while still cov-
ering a larger region—is desirable for policy analysis but usually causes high computational 
costs in application, difficulties in data exchange, and challenges in model update/debugging. 
We address this issue by training and evaluating computationally efficient surrogates that can 
be integrated into ABMs in place of the original farm models without any relevant losses in 
accuracy and detail of model outcomes.

We demonstrate the training and evaluation of surrogate models of the farm-level model 
FarmDyn (Britz et al., 2016), which could be integrated into ABMs. To make the discussion 
more concrete, we consider the ABM Agricultural Policy Simulator (AgriPoliS) (Appel & 
Balmann, 2019; Happe et al., 2006) as an example, but surrogate models could equally be used 
in other ABMs. FarmDyn is an economic simulation tool that is used ex-ante to assess agricul-
tural policy reforms and the adoption of new technologies. It simulates farm production and 
investment decisions under changes in prices of inputs/outputs, technology and policy instru-
ments for different farming branches in Germany and other countries (Britz et al., 2021). The 
linkage of biophysical parameters to highly detailed farming activities enables users to assess 
both economic and environmental policies with a wide range of social, economic and environ-
mental indicators at the farm level. It has been applied, for example, to assess the impact of 
the revised German fertilisation ordinance (Kuhn et al., 2020), the impact of changes in water 
levels of peat soils on farm income (Poppe et al., 2021), the impact of European fertiliser laws 
on legume production (Heinrichs et al., 2021) and the potential adoption of a new pesticide ad-
ditive (Kuhn et al., 2022). The profit-maximising solution of a farm is solved by Mixed-Integer 
Programming (MIP), which is time-consuming when many variables and constraints of differ-
ent types are involved (Seidel & Britz, 2019).

AgriPoliS is a spatial and dynamic ABM that explicitly models farmers' interaction on the 
land market. It has been used to study the impact on agricultural structural change of different 
policies, such as decoupling direct payment (Happe et al., 2008) and Germany's biogas policy 
(Appel et al., 2016). In AgriPoliS, farmer agents maximise household income/profit, which is 
also solved by MIP. Compared to FarmDyn, the MIP in AgriPoliS is simpler because it models 
less detailed technology choices and faces fewer constraints (e.g., environmental constraints). 
Direct integration of the MIP in FarmDyn and AgriPoliS to combine the strengths of both is 
computationally demanding and quickly becomes prohibitive as the spatial coverage expands 
(Bradhurst et al., 2016; Huber et al., 2022; Sun et al., 2016). Besides, the two models running 
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together render model updates/debugging very challenging. However, combining the advan-
tages of both types of models becomes increasingly necessary for agri-environmental policy 
analysis (Huber et al., 2018).

Surrogate models, also known as metamodels or emulators, may solve this problem (Jiang 
et al., 2020; Ratto et al., 2012). They approximate computationally costly simulation models 
by mapping the relationship between inputs and outputs while being much cheaper to run. 
The availability of highly flexible machine learning tools such as neural networks (NNs) 
(Goodfellow et al., 2016) offers the opportunity to build surrogates of complex and computa-
tionally demanding simulation models (Razavi, 2021; Storm et al., 2020). In this way, a surro-
gate model functions as a bridge between detailed farm-level models and large-scale ABMs to 
efficiently utilise the advantages of both types of models. Although parallel simulation on a 
high-performance computer (see An et al., 2021) can also save computational time, surrogate 
models provide several advantages: (1) High-performance computing is not always available 
or access might be limited, which can be a bottleneck, particularly during development; (2) 
Having a computationally more efficient surrogate model allows a larger number of experi-
ments to be performed in a short time with the same computational resources; (3) Surrogate 
models allow a more natural separation of the development of the farm-level model and the 
ABM. This allows us to modularise the integrated modelling system, which can in the long run 
simplify model update/debugging and foster model reusability for the benefit of other research-
ers (Britz et al., 2021). It can also simplify collaboration between different research groups in 
terms of software licensing and data access issues. For example, the farm-level model might be 
run in a proprietary software environment that might not be available for the group running 
the ABM, while the surrogate model is trained in Python with all parts being open-access.

Surrogate modelling has been applied in various fields, such as water resource modelling 
(Razavi et al., 2012), engineering (Jiang et al., 2020), weather forecasting (Chen et al., 2020), 
and agricultural economics (Troost et al., 2022). Troost et al. (2022) develop different types of 
surrogate models to approximate a farm-level model using multinomial-logistic regression, 
multivariate adaptive regression splines, random forest regression and extreme gradient boost-
ing. Their surrogate models capture the underlying relationship between 22 inputs (prices and 
model uncertainty parameters) and 9 outputs (crop areas). However, to our knowledge, the 
application of surrogate modelling using NNs in agricultural economics does not yet exist. In a 
broader sense, there are only two studies—Audsley et al. (2008) and Nguyen et al. (2019)—that 
use NNs to approximate a crop model and biogeochemical model to predict crop yields and 
soil organic carbon, which are further used in economic models. However, both studies use a 
classical type of NN, multilayer perceptron (MLP). To the best of our knowledge, surrogate 
models of a detailed farm optimisation model with different architectures of NNs is unex-
plored in agricultural economics. We develop surrogate models for FarmDyn as a first step 
such that it can be integrated into ABMs like AgriPoliS.

We see four main contributions. First, we show it is possible to build well-fitted surrogates of 
detailed farm-level models using NNs. Second, we systematically compare the performances of 
different architectures of NNs. Third, we develop a set of evaluation metrics to assess the qual-
ity of surrogate models. Here, we go beyond criteria such as R2 or mean squared error (MSE) 
and develop generic metrics that can also be applied to evaluate other surrogate models. They 
help judge if the trained surrogate provides the required accuracy for the intended purposes. 
This is essential because different NN architectures deviate substantially in inference time 
(i.e., the time to make one prediction) with only minor differences in R2 or MSE. Thus, more 
detailed and practically relevant evaluation metrics are required to judge if those differences 
in R2 or MSE are of practical importance and justify the increased inference time. Fourth, we 
investigate the performance of surrogate models given different amounts of training data to 
provide practical guidance for modellers. While it is possible to increase the amount of data by 
running the underlying model deliberately, it is often computationally expensive. Hence, for 
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238  |      SHANG ET AL.

practical purposes, it is crucial to determine how much data is required for different architec-
tures of NNs to achieve the desired performance on the defined evaluation metrics.

This rest of the paper is organised as follows. Section 2 reviews existing surrogate models to 
identify the common architectures of NNs currently used in the literature. Section 3 introduces 
the overall research design. In Section 4, we analyse the results and assess the performance of 
NNs given different amounts of training data. Section 5 provides a conceptual discussion on 
using surrogate models in ABMs for agricultural policy simulation. The last section concludes 
and points out directions for future research.

2  |   N NS AS SU RROGATE MODELS IN TH E LITERATURE

Surrogate models in the literature are based on a large variety of model types, including poly-
nomial regression (Hussain et al., 2002), radial basis functions (Amouzgar & Strömberg, 2017), 
kriging (Kleijnen, 2009), Gaussian processes (Picheny, 2015), support vector machines (Xiang 
et al., 2017), genetic programming (Fallah-Mehdipour et al., 2013), Bayesian networks (Gruber 
et al., 2013) and NNs (Sun & Wang, 2019). Throughout this paper, we focus on NNs as they bring 
new promise for surrogate models that require lower computational cost (Chen et al., 2021). 
This section introduces basic concepts of NNs and identifies the common architectures of 
NNs used as surrogates in the literature. Note that the approach of replacing agents' decision-
making with NN-based surrogate models is different from the approach that uses NNs as 
underlying structure in ABM (e.g., Jäger, 2021).

2.1  |  Basic concepts of NNs

NNs are capable of representing highly non-linear relationships and are well placed to deal 
with high dimensions in the input and the output space. Figure 1a depicts the most commonly 
used architecture of NN: MLP. It consists of an input layer, an output layer, and at least one 
hidden layer between the two. Each layer contains a certain number of neurons. Like a bio-
logical neuron, an artificial neuron processes the information from the inputs in the previous 
layer and transfers the signal to the next neuron, as shown in Figure 1b. An artificial neuron 
performs two steps of computation. First, a weighted sum of all inputs is computed as shown 
in Equation (1):

F I G U R E  1   The architecture of an MLP (a) and an artificial neuron (b). xi is the value of an input neuron, ŷi is 
the prediction of an output neuron, wi is the weight of a neuron, b is the bias, z is the output of the weighted sum, 
and f (z) represents the activation function. Source: Based on Goodfellow et al. (2016).
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       |  239SURROGATE MODELLING USING DEEP LEARNING

where wi is the weight of the input neuron xi, b is the bias, m is the number of input neurons, and z 
is the weighted sum.

Second, the weighted sum will be transferred by an activation function ( f (z)). Typically, 
activation functions are non-linear. For example, the Rectified Linear Unit (ReLU) returns the 
value that is equal to the input if it is positive, and it returns zero otherwise.1

Weights and biases are called ‘parameters’ of an NN. Training an NN like MLP finds the 
optimal parameters to minimise the loss function, that is, a function that measures the dif-
ference between the predicted outputs and the simulated outputs (e.g., the MSE loss). This 
process is usually done iteratively through backpropagation algorithms that compute the gra-
dient of the loss function with respect to the weights and biases (Rumelhart et al., 1986). The 
gradients are then used by an optimisation algorithm (an optimiser) to update the parameters. 
Training the NN with all the training data for one cycle is called one ‘epoch’. Usually, NNs are 
trained for multiple epochs. Within one epoch, the training dataset can be divided into mini-
batches, which will be passed through to the NN at one time. The number of data points that 
a mini-batch contains is called the ‘mini-batch size’.

While parameters can be estimated by algorithms from the training data, ‘hyperparame-
ters’ cannot be estimated from the data and are usually set manually by the modeller before 
training. NNs have various hyperparameters (like the number of layers and neurons). They 
may interact with each other in non-linear ways. Hyperparameter tuning is a procedure of 
finding the optimal hyperparameters of an NN (or other machine learning models), intro-
duced in detail in Section 3.

2.2  |  Different architectures of NNs used in surrogate modelling

Multilayer perceptrons have been widely used as surrogates in diverse disciplines (Roman 
et al., 2020). It has been shown that an MLP of one hidden layer (i.e., a shallow NN) with 
an adequate number of neurons can be trained to approximate any measurable function 
to any desired degree of accuracy (Hornik et al., 1989). As a result, studies using shallow 
MLPs are common in surrogate modelling. For example, Carnevale et al. (2012) use a one-
hidden-layer MLP to learn the relationship between emissions and air quality indices. In 
the review by Razavi et al. (2012) of surrogate models in water resource modelling, 13 out 
of 14 papers used shallow NNs. However, deep NNs (i.e., with more than one hidden layer) 
might require fewer neurons to capture a similar level of complexity and thus are also ap-
plied as surrogates. For instance, Liong et al. (2001) use an NN with three hidden layers to 
mimic a hydrological model.

The second common type of NNs used as surrogate models is convolutional neural net-
works (CNNs) (LeCun et al., 1990), originally designed for image data. In contrast to MLPs 
where the neurons in one layer are connected to all neurons of the previous layer, CNNs use 
so-called ‘convolution kernels’ that slide across the input. Each neuron thus depends only on 
a local neighbourhood of neurons and not on all neurons of the previous layer. CNNs are also 
promising in handling time-series data (Fawaz et al., 2019). Although deeper CNNs might be 
able to capture more complex relationships, classical CNNs do not perform well as they grow 
deeper due to the problem of vanishing gradient (i.e., the gradients of the loss function ap-
proach zero, making NNs hard to train) (Bengio et al., 1994). To overcome this issue, residual 
networks (ResNets) (He et al., 2016) allow ‘skip connections’ to enable the training of deeper 
networks. An additional skip connection skips multiple layers of a neural network such that 
the output of one layer is not only fed to the next layer but also to the target layer of the skip 

(1)z =
∑m

i=1
wixi + b

 14779552, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1477-9552.12543 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [14/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense
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connection. Weber et al. (2019) find ResNets perform better than classical CNNs in surrogate 
modelling for climate forecasts.

The third common type of NNs used is recurrent neural networks (RNNs) (Elman, 1990; 
Rumelhart et al., 1986; Werbos, 1988), designed for sequence prediction tasks, such as speech 
recognition (Graves et al., 2013) and time series modelling (Hsu, 2017). RNNs are suitable for 
processing sequential data since the recurrent layers feed the output of the layer back to the 
layer itself such that the current state of a layer depends on the current input of the sequence as 
well as on the previous states of the layer. However, as the length of inputs increases, long-term 
dependencies are difficult to capture by classical RNNs (Marhon et al.,  2013). Long short-
term memory (LSTM) (Hochreiter & Schmidhuber, 1997) is a special RNN, capable of learn-
ing long-term dependencies. Rahmani et al. (2021) have developed LSTMs as surrogates of a 
process-based model to predict stream water temperature. LSTMs have been used to predict 
crop yields (e.g. Sun et al., 2019; Tian et al., 2021), but to our knowledge, they are not yet applied 
as surrogates of agricultural models. The BiLSTM (bidirectional long short-term memory) 
(Graves et al., 2005) is an extension of LSTM. It learns the sequence and the reversed sequence 
of the inputs. Alibabaei et al. (2021) use a BiLSTM to model evapotranspiration and soil water 
content in irrigation scheduling. RNNs are also helpful for non-sequential data. For example, 
Chopra et al. (2017) train an RNN with non-sequential data to predict whether a patient would 
be readmitted to the hospital.

Although MLPs have been applied as surrogates by Audsley et al.  (2008) and Nguyen 
et al. (2019) (see Section 1), and LSTMs have been used to predict crop yields as mentioned 
above, using NNs of different architectures as surrogates is unexplored in agricultural mod-
els. Besides, no NN applications to approximate economic farm models are known to us. 
Given these research gaps, we employ the four different architectures of NNs including 
MLP, ResNet, LSTM and BiLSTM to develop surrogates of the detailed farm-level model 
FarmDyn.

3  |   M ETHOD A N D DATA

Our research design is shown in Figure 2. First, from the underlying farm model FarmDyn, we 
generate the data that will be used for training NNs. This involves defining the inputs/outputs 
of the farm model, generating data, and some data preparation steps. Second, for each of the 
four NN architectures, we define three different implementations that vary in depth (i.e., the 
number of layers). This results in 12 variants of depth, for which we optimise the remaining 
hyperparameters. The loss function used to train NNs is the MSE loss. It should be noted 
that minimising MSE is by construction equivalent to maximising R2 (see Equation 2). We 
then select one best model in terms of R2 from each variant of depth (in total 12 best models) 
and compare their inference time. Third, from each NN architecture, we select the best model 
with the most promising hyperparameters and inspect model performance in greater detail. 
Specifically, we examine model performance across varying amounts of training data by con-
sidering a set of evaluation metrics. The details of these three steps are described below.

3.1  |  The underlying model and data generation

3.1.1  |  Define inputs/outputs of the farm model

The bio-economic farm-level model FarmDyn covers a wide range of farm branches, such as 
arable, dairy, beef cattle, pig fattening and biogas. We focus on the arable farming branch. 
However, as a robustness check of the surrogate modelling pipeline, Appendix  S1 presents 
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       |  241SURROGATE MODELLING USING DEEP LEARNING

an additional smaller experiment for dairy farms in FarmDyn. In general, arable farms in 
FarmDyn make management decisions by maximising the net profit using MIP. In the version 
we use for this paper, the programming problem is constructed with several modules, with 
each module dealing with a specific aspect of a farm. For more details, see the documentation 
of FarmDyn: https://farmd​yn.github.io/docum​entat​ion/.

1.	 Economic module: this defines the economic aspects of the farm-level model, including 
objective function (net profit maximisation), cash flow structure, income tax calculation, 
premium payments, sales and production levels, variable cost structure, and investment 
costs.

2.	 General cropping module: this optimises the cropping decisions subject to land availability, 
yields, maximal crop rotational shares, crop prices, machinery and fertiliser needs, and other 
variable costs of crops.

3.	 Labour module: this optimises labour allocation for different detailed on- and off-farm ac-
tivities with a monthly resolution.

4.	 Environmental accounting: this quantifies farm-level methane (CH4), ammonia (NH3), ni-
trous dioxide (N2O), nitrogen oxides (NOx) and elemental nitrogen (N2), as well as particu-
late matter formation (PM10 and PM2.5).

5.	 Fertilisation ordinance: this adds the fertilisation constraints based on the German imple-
mentation of the Nitrates Directive, including nutrient balance restrictions, threshold for 
organic nitrogen application quantities, restriction of fertiliser application in autumn, and 
others.

F I G U R E  2   The overall research design of this study.
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6.	 Greening: this captures the greening requirements of the Common Agricultural Policy of 
the European Union (CAP) as applicable since 2013. It integrates the key measures of crop 
diversification and ecological focus areas (mainly legumes) into FarmDyn.

To build a surrogate model of FarmDyn, it is necessary to define the model interface clearly. 
This means we need to define what input variables we pass to the model and what output vari-
ables we aim to obtain. In our case, the surrogate model takes the same inputs and produces 
the same outputs as the underlying model FarmDyn. Therefore, defining the inputs/outputs of 
FarmDyn will technically define the inputs/outputs of the surrogate model.

Table 1 summarises the inputs and outputs of arable farms in FarmDyn. They include vari-
ables about crops, farming inputs, machinery, farm endowment, environmental indicators, 
and farm accounting. Crops included in the model are winter wheat, winter barley, winter 
rapeseed, summer cereal, maize and sugar beet. The farming inputs include diesel, fertiliser 
(urea-ammonium nitrate, phosphorus and potassium), seed, lime, herbicide, fungicide, insec-
ticide, growth control, water, and hail insurance. In total, there are 77 inputs and 248 out-
puts. There are many constant parameters in FarmDyn, but we exclude them here since the 
surrogate model should be able to learn the underlying constant parameters that reflect the 
relationship between inputs and outputs. The detailed lists of inputs and outputs can be found 
in Appendix S1.

We develop a surrogate model that predicts 248 outputs simultaneously instead of building 
one separate model for each output. The advantages of this approach are: (1) it scales better 
with the number of outputs and is less time-consuming than training many separate models; 
and (2) it is easier to integrate only one surrogate model into the future ABM than many small 
ones. However, training separate models for each output makes it easier to observe the loss 
function of each output, thus it could be easier to improve the model accuracy for some par-
ticular outputs. Nonetheless, when training a neural network with multiple outputs, one can 
weight them differently, then the loss function will react more to those ‘more important’ out-
puts. In this paper, we treat all outputs equally since we do not target any specific application 
here.

3.1.2  |  Data generation and preparation

The initial farm data is generated from FarmDyn by Latin Hypercube Sampling (LHS) (McKay 
et al., 1979). LHS independently stratifies each input dimension into N equal intervals, where N 
is the number of data points. For a given dimension, it generates one data point in each interval 
and randomly combines this with the selected interval of the other dimensions. LHS provides 
outcomes from a uniform distribution of the data within the design space (Tyan & Lee, 2019).

The optimal amount of data used to train a surrogate model depends on the complexity of 
the problem and the computational budget available. Since NNs need large datasets for prob-
lems with high dimensionality, we generated as many data points as possible given our time 
budget. With 10,000 model outcomes (i.e., observations) each time, the data generation process 
ran 17 times and produced 163,480 data points (taking about 45 h) because FarmDyn did not 
successfully solve for some input draws due to implausible input combinations.

The whole dataset is then randomly split into two subsets including the training set (90%) 
and the test set (10%), having 147,132 and 16,348 observations, respectively. The training set is 
used to train the model, and a test set is solely used to assess the model. During the training 
process, 10% of the training set is used as a validation set to monitor the models' performance 
on unseen data to avoid overfitting, meaning the network learns too much information that 
is specific to the training data and does not generalise for other datasets. The validation set is 
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also used to implement ‘early stopping’ given a stopping criterion; for example, when the loss 
function stops decreasing after a certain number of epochs. The difference between the vali-
dation set and the test set is that the test set is used to assess the final performance of a trained 
model, but the validation set is a part of the training set that is used during training to monitor 
the performance of the model.

Normalisation of data is recommended since it usually leads to faster convergence (Huang 
et al., 2020). For the training set, we normalised both input and output data between 0 and 1 
with the ‘MinMaxScalar’ of the python package ‘scikit-learn’ (Pedregosa et al., 2011). The test 
set is then normalised by the scalar of the training set because the unseen data must fit into the 
trained scale of the NN. This means that when later integrating the surrogate model into an 

TA B L E  1   Summary of inputs and outputs of arable farms in FarmDyn.

Inputs (unit) Outputs (unit)

Crops •	 Selling price of crops (€/t) •	 Production level (ha)
•	 Production quantity (t)
•	 Sale quantity (t)
•	 Crop revenues (€)
•	 Amount of fertiliser used (kg/ha)
•	 Output quantity of crop residues (t)
•	 Revenue from crop residues (€)

Farming inputs •	 Price (€/L, €/kg, €/t, €/ha) •	 Used amount (L, kg, t, ha)
•	 Cost (€)

Machinery •	 Price (€/unit) •	 Applied area (ha)
•	 Fixed cost (€)
•	 Variable cost (€)

Farm endowment •	 Farm size (ha) •	 Amount of idle land (ha)
•	 Shadow price of land (€/ha)
•	 Distribution of labour to each month (hours)
•	 Distribution of labour to on-farm and off-farm 

work opportunities (hours)

Environmental 
indicators

•	 Nitrogen needed from mineral 
fertiliser per ha (kg/ha)

•	 Phosphate need from mineral 
fertiliser per ha (kg/ha)

•	 Average nitrogen/phosphate input (kg/ha)
•	 Average nitrogen/phosphate surplus (kg/ha)
•	 Nitrogen leaching on the farm (kg)
•	 Phosphorus loss on the farm (kg)
•	 Emissions on the farm (e.g. phosphorus, nitrous 

oxide, nitrate, CO2 equivalent, particulate) (kg)
•	 Global warming potential as CO2 equivalent (kg)
•	 Particulate matter formation potential (kg)
•	 Terrestrial acidification potential (kg)
•	 Freshwater eutrophication potential (kg)
•	 Marine water eutrophication potential (kg)

Farm accounting / •	 Variable costs of crops, fertilisers, phytosanitary, 
machinery (€)

•	 Total crop revenue (€)
•	 Off-farm income (€)
•	 Sum of investments (€)
•	 Profit (€)
•	 Cash flows (€)
•	 Withdraw (€)
•	 Depreciation (€)
•	 Total premium (€)
•	 Income (€)

Total number of 
variables

77 248
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ABM, the input data must also be normalised before being used in the surrogate model. This 
can be achieved by either ABM modellers or surrogate modellers by adding a normalisation 
layer to the surrogate model.

It is worth noting that MLP can directly receive the one-dimensional (1D) data as input. In 
our case, an MLP as a surrogate model of FarmDyn should have 77 neurons in the input layer 
and 248 neurons in the output layer as shown in Figure 1. For CNNs, we use a 1D convolutional 
kernel for the 1D data. Both 1D and 2D convolutional kernels are commonly used in deep 
learning and are implemented by popular deep learning libraries, such as Keras (Chollet, 2015) 
and pytorch (Paszke et al., 2019). In this paper, we use Conv1D layer in Keras to process 1D 
data. RNNs treat 1D inputs as sequential data. In our case, the 77 input variables are treated 
as 77 time steps.

3.2  |  Developing surrogate models using NNs

3.2.1  |  Training and hyperparameter tuning

Developing surrogate models using NNs means obtaining well-fitted NNs that can approxi-
mate the underlying model. As mentioned above, while the training process that optimises 
parameters of an NN is automatically done by computer algorithms, hyperparameters are 
usually set by modellers manually before training. Types and numbers of hyperparameters 
differ among different types of NNs. Here, we focus on the main hyperparameters.

The number of hidden layers (i.e., the depth) is a determinant for NNs' ability to capture 
complex relationships. Although deep networks might perform better than shallow networks, 
increasing the depth does not always improve the performance (He et al., 2016). To compare 
the performance of NNs of different depths, we train three variants of depth for each architec-
ture of NN: for MLP, LSTM and BiLSTM, we train models with one, two and three hidden lay-
ers, respectively; for ResNet, we train models with 18, 34 and 50 layers, as these are proposed 
by the original paper of He et al. (2016). Our ResNets are 1D CNNs due to the characteristics 
of our input data. The hyperparameter tuning for the 12 variants was done according to the 
following steps (Table 2).

Step 1: Number of neurons in a hidden layer/Number of filters in the second stage
For each variant of depth of MLP, LSTM and BiLSTM, we must tune the number of neurons 
in each hidden layer since it is an important hyperparameter determining the performance 
of NNs. A small number of neurons could lead to underfitting, meaning the network is not 
complex enough to capture underlying relationships in the data. A high number could cause 
overfitting. We experiment with the number of neurons of {32, 64, 128, 256, 512, 1024, 2048} in 
each hidden layer.

For the three variants of ResNets, we tune the number of filters in the second stage. The 
commonly used ResNets have five stages of convolutional process. The number of filters in 
the second stage will automatically determine the number of filters in the following stages (He 
et al., 2016). The training process of ResNets estimates the weights of all filters. We explore the 
space of {16, 32, 64, 128, 256, 512} for this hyperparameter.

Step 2: Learning rate
The learning rate determines the speed of the algorithm to head to the next solution in the pa-
rameter search space. A small learning rate takes a long time for the network to converge, and 
a large learning rate might cause the network not to converge. We explore the space of {0.0001, 
0.0003, 0.001, 0.003, 0.01} for learning rate for all models.
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Step 3: Mini-batch size
Mini-batch size determines how often the loss function is computed in one epoch and thus in-
fluences the updates of parameters. We experiment with a mini-batch size of {16, 32, 64, 128} 
for all models.

Step 4: Optimiser
Optimisers determine how the parameters of a network are changed to reduce the loss func-
tion. We experiment with {Adam (adaptive moment estimation), Adamax (a variant of Adam 
based on the infinity norm), RMSprop (root mean squared propagation), SGD (stochastic 
gradient descent)}.2

Since we only tune one hyperparameter at each step, the rest of the hyperparameters should 
be set with default values in order to start training. The last column of Table 2 indicates the 
default setting of other hyperparameters at each step besides the tuned hyperparameter. As 
can be seen, we do not tune the activation function. For MLP and ResNet, we use the ReLU ac-
tivation function; for LSTM and BiLSTM, we use the tanh activation function (i.e., hyperbolic 
tangent function) to enable faster training on the GPU (graphics processing unit). Early stop-
ping is used to determine when the training process should be stopped. The maximum number 
of epochs is set to 200, but the training process will be terminated when the validation error 
stops decreasing after 15 epochs. The performance of an NN is recorded after each epoch, and 
the model with the lowest MSE on the validation set will be saved as the trained model. All 
NNs are built and trained using the ‘Keras’ library (Chollet, 2015). To run the experiments, we 
use an 11 GB GPU (NVIDIA GeForce RTX 2080 Ti).

3.2.2  |  Selecting the best models and evaluating the inference time

After hyperparameter tuning, we select the 12 best models (three variants of depth from each 
architecture) according to the R2 on the test set. Then, we examine the inference time, defined 
as the time to make one prediction (i.e., one forward run of the NN), of the selected mod-
els. Inference time determines the efficiency of the surrogate model in future applications. To 
make a fair comparison between the trained NNs and FarmDyn, we record the simulation 
time of FarmDyn and the inference time of NNs on the same machine (with Intel Xeon CPU 
E5-2699 V4, 2.20GHz). The same experiment is repeated five times, and the average inference 
time per data point of each NN is calculated to avoid fluctuations in computing time.

3.3  |  Evaluating surrogate models

3.3.1  |  Motivation to evaluate surrogate models beyond R2

The training process described above uses the entire training set we have generated. However, 
from a practical perspective, there are two aspects we must consider when developing and ap-
plying the surrogate model: (1) Generating data from highly detailed farm-level models could 
be time-consuming. Although increasing the amount of data is always possible, it is time-
consuming and computationally expensive for modellers. From a practitioner's perspective, a 
natural question is how to determine when to stop generating data. For this, we need to assess 
how additional data can affect model performance, and we need to determine when the surro-
gate model has obtained an accuracy that is sufficient for the envisioned application. The latter 
is usually difficult to assess based on the R2 measure; (2) Different model architectures might 
differ substantially in inference time, with MLPs being much faster than the other architec-
tures and possibly only minor differences in model performance in terms of R2. Thus, we need 
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additional evaluation metrics that are more targeted to the application of the surrogate model 
to judge if those differences in model performance are relevant from a practical perspective 
and justify a longer inference time.

Therefore, we first develop evaluation metrics besides R2 (see Section 3.3.2 and Table 3) that 
are relevant for the application of the surrogate model. Secondly, we perform a simulation exer-
cise (see Section 3.3.3) where we evaluate the performance of the four different architectures when 
trained with varying amounts of data. These simulations allow us to assess if similar performance 
could be achieved with a smaller size of training set or if we can expect performance increases 
from additional data. Additionally, it allows us to inspect how the alternative model evaluation 
criteria (besides R2) behave when varying the size of the training set. This helps us decide the 
amount of data required to achieve acceptable performance from an application point of view.

3.3.2  |  Evaluation metrics

1.	 Goodness of fit

Like many other studies (see Roman et al., 2020), we first use R2 to measure the goodness of 
fit of a surrogate model on the test set. R2 measures the proportion of the total variation in an 
output variable explained by the model. For an output variable y, the R2 in terms of this output 
is calculated with Equation (2).

where yi is the simulated value (i.e., ‘true’ value generated by FarmDyn in our case) of the output y 
of the observation i, ŷi is the predicted value of the output y of the observation i, and y is the mean 
of the simulated values of the output y.

The R2 typically ranges from 0 to 1. However, when a model's performance is worse than 
simply predicting the mean of the output for all observations, it becomes negative.3 Since we 
only select models that have a positive R2, it ranges from 0 to 1 in this study. We calculate the 
average R2 across all outputs with Equation (3):

where K is the number of outputs (K = 248 in this study).
Besides R2 measure, we also include root mean squared error (RMSE) as another goodness 

of fit measure. It can reflect the prediction error of outliers well by squaring the difference 
between the simulated and predicted values. For an output y, RMSE in terms of this output is 
calculated with Equation (4):

where yi is the simulated value of the output y of the observation i, ŷi is the predicted value of the 
output y of the observation i, and N is the number of observations in the test set. We then calculate 
the average RMSE across all outputs with Equation (5):

(2)R2
y
= 1 −

∑
�

yi− ŷi
�2

∑
�

yi−y
�2

(3)R2 =
1

K

∑

R2
yk

(4)
RMSEy =

�

∑
�

yi− ŷi
�2

N
,
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where K is the number of outputs (K = 248 in this study).

2.	 Consistency of bivariate relationships

From an application perspective, it is crucial to assess whether some fundamental relation-
ships between an input and an output or between two outputs are learnt by the surrogate model. 
This is particularly important for applications where the results of scenarios strongly depend on 
the relationship between certain variables. Here, two examples demonstrate how the consistency 
of bivariate relationships can be evaluated. The first one is from the environmental perspective. 
When simulating scenarios about nitrogen (N) fertilisation and its environmental impact, mod-
ellers would want to check if the surrogate model can correctly capture the relationship between 
fertilisation decision and the environmental outcomes. Here, we consider if the relationship be-
tween the amount of N applied and the amount of N leaching on a farm is learnt by the surrogate 
model. In FarmDyn, for a specific crop of a certain yield level, the relationship between the two 
variables is linear. However, it becomes non-linear at the farm level due to different combinations 
of crop choices. The second example is from the economic perspective. When the selling price of 
a crop increases, farms tend to cultivate more of this crop to maximise the profit. Since we look 
at the relationship between crop price and crop revenue across farms that have different farm 
endowments (e.g., farm size), it is more meaningful to look at the relationship between crop price 
and the share of this crop revenue in total farm revenue, rather than the relationship between crop 
price and crop revenue at farm level. Here, we use the example of sugar beet price and share of 
sugar beet revenue in total farm revenue, which is also not linear according to the simulated data.

To capture the non-linear relationship between two variables, we use the maximum infor-
mation coefficient (MIC) (Reshef et al., 2011, see Appendix S1), a non-parametric method that 
has been widely applied (Cao et al., 2021). MIC ranges from 0 to 1. The higher the MIC is, 
the stronger the relationship between the two variables. We use the python package ‘minepy’ 
(Albanese et al., 2013) to calculate the MICs. Then, we calculate the absolute percentage error 
(APE) between the simulated and predicted MICs between the two variables with Equation (6):

where MICsimulated is the MIC between the two variables calculated from the simulation data, and 
MICpredicted is calculated from the predicted data of the surrogate model.

(5)RMSE =
1

K

∑

RMSEyk

(6)APErelationship = ∣MICsimulated −MICpredicted ∣ ∕MICsimulated

TA B L E  3   Summary of the evaluation metrics.

Criterion Example measurement Notation Range

Goodness of fit Average R2 across all outputs R2 (0, 1)

Average root mean squared error RMSE (0, + ∞)

Consistency of bivariate 
relationships

Average APE between simulated and predicted 
MICs between selected variables:

1.	 The amount of N applied and N leaching on 
a farm

2.	Price of sugar beet and share of sugar beet 
revenue in total farm revenue

APErelationship (0, + ∞)

Accuracy of capturing 
corner solutions

Accuracy in capturing corner solutions of crop 
choices

Accuracycorner (0, 1)

Accuracy in holding 
constraints

Accuracy in holding the constraint of farm size Accuracyconstraint (0, 1)

 14779552, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1477-9552.12543 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [14/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



       |  249SURROGATE MODELLING USING DEEP LEARNING

The average APErelationship of the above-mentioned two groups of variables is calculated at 
the end.

3.	 Accuracy in capturing corner solutions

Another important aspect for the application of surrogate models is its ability to capture 
corner solutions. These are special solutions to an optimisation problem in which the quantity 
of one of the arguments in the objective function is zero (Debertin, 2012). In arable farming, 
examples of corner solutions are an available technology that is not chosen or a particular crop 
that is not produced. A previous study has shown that capturing corner solutions is usually 
challenging for surrogate models (Seidel & Britz, 2019). The ability of the model to capture cor-
ner solutions is difficult to assess from R2. It would be interesting to see if the surrogate model 
is able to capture corner solutions, that is, if it at least gets the farmers' basic crop choices 
correct without considering the level. This dimension becomes particularly relevant if farmers' 
choices are the focus of the analysis in applying surrogate models, for example when simulating 
farmers' technology adoption decisions.

For example, we measure NNs' ability to capture corner solutions of farmers' crop choices. 
For a crop c, we first transform its simulated and predicted production levels for each observa-
tion into binary: 0 (if not produced4) and 1 (if produced). Then, we count the number of farms 
whose decisions are correctly predicted. The accuracy in capturing corner solutions of crop c 
is calculated with Equation (7):

where ac is the number of observations whose decision on crop c is correctly predicted, and N is 
the number of observations in the test set.

The average accuracy in capturing corner solutions across all crops is calculated with 
Equation (8):

where C is the number of crop types (C = 6 in this study).

4.	 Accuracy in holding constraints

Individual farm optimisation models simulate farmers' choices to maximise an output subject 
to a set of constraints (e.g., land/labour endowment). When employing a surrogate model of such 
an individual farm model, it is crucial that those constraints hold. For example, the sum of the 
planted areas of all farm crops cannot exceed the farm size if renting land is impossible. From an 
economic modelling point of view, a smaller violation of these constraints by the surrogate model 
is often more problematic than a larger deviation from the underlying model behaviour within 
the feasible solution space (e.g., some underutilisation of a resource). R2 does not capture this, as 
it does not distinguish between feasible and infeasible solution space given by the constraints of 
the underlying model. Therefore, a dedicated measure of how well the prediction of the surrogate 
model obeys the constraints is warranted.

As an example, we measure NNs' accuracy in holding constraints of farm size with Equation (9):

where aconstraint is the number of observations whose constraints of farm size are not violated, and 
N is the number of observations in the test set.

(7)Ac =
1

N
ac

(8)Accuracycorner =
1

C

∑

Ac

(9)Accuracyconstraint =
1

N
aconstraint
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3.3.3  |  Training with different amounts of data

To investigate the impact of the amount of training data on the performance of the surrogate 
model, we choose the best model with the most promising hyperparameters from each NN 
architecture and train them with varying amounts of training data. We split the original train-
ing set (Section 3.1.2) into sizes of {1000, 5000, 10,000, 50,000, 100,000, 147,1325}. The test set is 
the same as before, containing 16,348 data points, but it is normalised according to the scale 
of each training set. To avoid fluctuations, we average the performances of five models trained 
with the same data using different random seeds for each architecture of NN and for each size 
of training set.

4  |   RESU LTS A N D DISCUSSION

4.1  |  The best models and their inference time

We select the 12 best models in total (three variants of depth from each architecture) in terms 
of R2 on the test set. Table  4 shows the architecture of the selected NNs. As can be seen, 
BiLSTM3 (BiLSTM with three hidden layers) has the highest R2 of 0.99, while ResNet18 has 
the lowest R2 of 0.93. This shows NNs can capture the variance in the data very well. In terms 
of R2, we observe that BiLSTMs and LSTMs perform better than MLPs and ResNets. RNNs, 
although designed for sequential data, can also adapt to non-sequential data. Appendix S1 
provides the detailed scatter plots of the predictions of BiLSTM3 (the model with the highest 
R2) and simulated results of a few outputs that are usually important in applications.

As shown in Figure 3, the inference time of different NNs differs substantially. MLPs are 
the fastest in predicting, whereas LSTMs and BiLSTMs are much slower, reflecting the larger 
number of parameters than MLPs (see Table 4). FarmDyn takes 5.40 s to generate one data 
point on average. In comparison, the MLP3 (MLP with three hidden layers) (R2 = 0.95) needs 
0.000026 s to predict one data point being about 207,000 times faster than FarmDyn, and the 
BiLSTM3 (R2 = 0.99) takes 0.021 s, being 257 times faster. Whether this speed is satisfying de-
pends on the time budget of future applications.

4.2  |  Model performance and impact of the amount of training data

According to Table 4, we select the four best model specifications in terms of R2 to experiment 
with different sizes of training set as described in Section 3.3.3. They are MLP with 2 hidden 
layers (MLP2), ResNet with 50 layers (ResNet50), LSTM with 3 hidden layers (LSTM3), and 
BiLSTM with 3 hidden layers (BiLSTM3). In the following, we refer to them as MLP, ResNet, 
LSTM and BiLSTM without repeating the number of layers.

4.2.1  |  Goodness of fit

Figure 4a,b show the change of R2 and RMSE (calculated using the normalised data) of the 
selected NNs with varying amounts of training data. With a training set of 1000 observations, 
BiLSTM and MLP can achieve an average R2 of 0.8, whereas LSTM can only achieve around 
0.55. For ResNet, 1000 observations for training are insufficient to converge because the R2 
of ResNet trained with this amount of data is negative (not shown in the figure).6 As the size 
of training set increases from 1000 to 5000, we see a steep increase in R2 for all four types of 
models. With 50,000 data points for training, BiLSTM and MLP can already achieve a R2 of 
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252  |      SHANG ET AL.

around 0.95. Interestingly, with 100,000 data points, all models except for LSTM are already 
close to their maximum performance level, where additional data is of little benefit.

4.2.2  |  Consistency of bivariate relationships

Figure 4c shows the measure for the ability to capture the relationships of two groups of vari-
ables as mentioned above. With more and more training data, the APErelationship of BiLSTM 
goes down steadily, achieving an APE of 0.70% with 100,000 observations. In comparison, 
MLP can also reach a similar level of accuracy but with fluctuations when the size of train-
ing set is smaller. BiLSTM, MLP and LSTM all achieved the best performance in capturing 
the relationships with 100,000 observations, while ResNet has a much higher level of error of 
8.35% given the same amount of training data.

4.2.3  |  Accuracy in capturing corner solutions

Figure 4d shows the accuracy in capturing corner solutions of crop choices (Accuracycorner) 
of each NN architecture trained with different amounts of data. With 10,000 data points for 
training, BiLSTM can achieve accuracy near to 100% in capturing the corner solutions of crop 
choices. Once the size of training set exceeds 50,000, the accuracy does not increase much for 
most models except for LSTM. We can also see that MLP is as good as BiLSTM in capturing 
corner solutions at and beyond 50,000 data points.

4.2.4  |  Accuracy in holding constraints

Figure 4e shows the accuracy of NNs in holding constraints of farm size (Accuracyconstraint). With 
a smaller training set (less than 20,000 data points), MLP outperforms BiLSTM with an accuracy 
of 0.98, but BiLSTM dominates once the size of training set reaches 50,000. Furthermore, the 

F I G U R E  3   Inference time per data point of each NN.
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accuracy of BiLSTM in holding the constraints is very close to 100%, given 50,000 data points. 
After this point, adding more data points does not improve the performance of BiLSTM.

Figure 4f shows the total score of each NN, which is calculated by simple addition and subtrac-
tion of all criteria (Total score = R2 −RMSE −APErelationship +Accuracycorner +Accuracyconstraint ) 
because they all were chosen to be in the range of 0 and 1 in this study. As can be seen, increasing 
the size of training set from 1000 to 50,000 significantly improves the performance of all types of 
models. Once the size of training set reaches 100,000, adding more observations to the training 
process does not necessarily improve the performance of surrogate models. Thus, in our case, a 

F I G U R E  4   Performance of different architectures of NNs given different sizes of training set.
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254  |      SHANG ET AL.

size of training set between 50,000 to 100,000 should be sufficient to develop surrogate models 
that perform well concerning all our evaluation metrics. In terms of model preferability, BiLSTM 
almost always dominates over other types of NNs given different amount of training data but has 
a close competitor—MLP. Considering the inference time of the trained model, MLP may be the 
go-to model in many surrogate model applications that require a large number of model runs.

The surrogate models developed by Troost et al. (2022) capture the underlying relationship 
between 22 inputs (prices and model uncertainty parameters) and 9 outputs (crop areas). When 
the size of the training sample is below 1000 data points, the performance of the surrogate 
models increases the most. With many more input and output variables in our case, train-
ing surrogate models requires more data. In terms of inference time, deep learning methods 
used in our paper are 257–207,000 times faster than the detailed farm-level model FarmDyn, 
whereas the surrogate models in Troost et al. (2022) are 1800–60,000 times faster than their 
underlying farm model.

5  |   SU RROGATE MODELS FOR AGRICU LTU RA L POLICY 
SIM U LATION IN A N A BM: A CONCEPTUA L DISCUSSION

The previous sections show that developing a surrogate model of a farm-level model like 
FarmDyn is possible and they provide practical guidance to do so. Here, we discuss some im-
plications of how such a surrogate model can be used for agricultural policy simulation in an 
ABM, as well as further avenues opened up by it. Additionally, we comment on the challenges 
and potential downsides when using surrogate models.

Integrating a surrogate model of a farm-level model into an ABM makes it possible to repre-
sent the decision-making mechanism of agents (i.e., the behaviour of the underlying individual 
farm-level model) with the surrogate model, whereas the landscape of the selected region and 
interaction rules among agents are determined by the ABM. Prior to any simulation, the ABM 
initialises the farm population for the selected research region. This might include defining the 
types of farms and the original number of farms that belong to each farm type, which reflects 
the characteristics of the farm population in the research region. In the case of AgriPoliS, farms 
are initialised and differentiated from each other in terms of location, farm size, equity, avail-
ability of labour, existing capacity of machinery, age of the farm operator, and so on. Some 
of these farm characteristics serve as an input to the surrogate model for determining agents' 
behaviour. The ABM keeps track of the actions of each agent and their interactions and up-
dates farm characteristics for the next period accordingly. For example, if a farm has acquired 
additional land or new investment in one period, it needs to be accounted for in the next period.

As one of the main opportunities of using a surrogate model to couple complex farm-level 
models, such as FarmDyn, with ABMs, such as AgriPoliS, we consider the possibilities to 
simulate agri-environmental policy impacts. One of the strengths of FarmDyn is the compa-
rably rich representations of bio-physical processes, farm technologies and farm management 
decisions. For example, FarmDyn captures the whole nitrogen flow (bio-physical processes) 
on the farm, which can be altered using low-emission manure techniques (farm technology) or 
exporting on-farm manure (farm management decision). FarmDyn also allows assessment of 
a wide range of environmental indicators (e.g., nitrogen balances). This enables us to simulate 
and assess outcomes of policies that limit fertiliser use in certain locations, reflecting on the 
one hand management decisions by individual farmers through FarmDyn, and on the other 
hand accounting for (spatially explicit) interactions between farms on the land market simu-
lated in AgriPoliS. Eventually, the connection between both models allows us to assess spatial 
environmental policy effects based on FarmDyn's environmental indicators.

It is important to note that while surrogate models offer new possibilities in coupling complex 
individual farm-level model with ABMs, it is still bound by the capabilities of each individual 
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model. For example, the current version of FarmDyn, which is considered in this paper, does not 
allow farms to switch between types, for example turning from an arable farm to a dairy farm. 
Hence, this capability is also not included in the surrogate model. In Appendix S1, we present 
an additional surrogate modelling experiment which tests the applicability of the approach on 
a dairy farm type. If a switch between farm types is required from the ABM perspective, either 
FarmDyn needs to be extended by this feature, or a surrogate model needs to be trained on data 
of multiple farm types, which internally can determine the resulting farm type.

Beyond surrogate models for ABMs, an entirely different potential use of surrogate mod-
els is for more efficient calibration of the underlying model (Storm et al., 2020). Assume that 
we want to calibrate FarmDyn to some empirically observed crop shares, that is, we want to 
minimise the difference between the observed crop shares (calibration target) and the crop 
share output of FarmDyn. For the calibration case with FarmDyn, we could consider yields as 
calibration parameters; however, other technology parameters or prices are also conceivable 
(see Britz, 2021 for a detailed description of this calibration procedure). In the case of an NN-
based surrogate model, one would then use yields as varying input variables in addition to the 
more general input variables such as farm endowments. In the next step, the surrogate model 
can learn new input/output relationships under different yield levels. For the calibration in 
FarmDyn, we can then use the trained surrogate model to find the yield level that minimises 
the difference between the FarmDyn output and the defined calibration target, which is in our 
example the crop shares. The potential advantage of using the NN-based surrogate model for 
calibration is that gradients (i.e., how outputs change in response to changes in inputs) can be 
calculated analytically and in a highly efficient manner. On the contrary, for the underlying 
model, gradients need to be calculated numerically, which is computationally expensive. In 
theory, this idea can be extended to calibrate the ABM coupled with a surrogate model. In this 
case, it would require building a surrogate model for the entire ABM. The surrogate model 
learns the relationship between the varying inputs (including parameters to be calibrated and 
the input variables of the ABM) and the ABM outputs. Parameters to be calibrated could be, 
for example, one that specifies interaction behaviour on the land market. Similar to the cali-
bration of a farm-level model using surrogate models, the ABM parameters can be efficiently 
calibrated according to the gradients.

Despite the benefits of surrogate modelling, we must be aware of its limitations. First, we 
need to consider that although surrogate models themselves are computationally efficient, 
training surrogate models, especially hyperparameter tuning, is time-consuming and requires 
considerable computational resources (Troost et al., 2022). Second, deep-learning-based sur-
rogate models are restricted in their validity to the range of input values in the training data. 
This means that once the ranges of input data are extended, surrogate models must be re-
trained. Retraining might also be necessary each time the underlying model is updated, either 
to consider new features or to resolve bugs, or if the model needs to be adjusted for a new study 
or research question. This frequent need for retraining might counteract the advantage of re-
usability of surrogate models. However, future research can overcome the difficulty by auto-
mating the training process as far as possible. It is also important to consider that it might not 
be necessary to repeat the entire hyperparameter search process, as long as the fundamental 
complexity of the model is not changed substantially. This makes retraining substantially less 
costly and automation more feasible.

6  |   CONCLUSIONS

We investigate the performance of NNs of different architectures in approximating the behav-
iour of a detailed farm-level model FarmDyn. We compare the performances of four architec-
tures of NNs (MLP, ResNet, LSTM and BiLSTM), considering 12 different implementations 
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in terms of model depth. The trained NNs are supposed to accurately map the relationship 
between 77 input variables and 248 output variables of the farm model. The high goodness of 
fit of the selected surrogate models shows that NNs can explain most of the variation in the 
output variables. The BiLSTM with three hidden layers achieves an average R2 of 0.99 across 
all output variables, whereas the lowest average R2 is 0.93 by ResNet with 18 layers. BiLSTM 
and LSTM achieve better performance than other types of NNs, although they are originally 
designed to handle sequential data. In terms of inference time, all trained NNs are much faster 
than FarmDyn. MLPs are about 207,000 times faster, and the best performing BiLSTM re-
garding R2 is still 257 times faster.

We also provide generic evaluation metrics to assess the performance of surrogate mod-
els, which can offer future modellers additional help in selecting surrogate models in ap-
plied modelling. The evaluation metrics consist of four dimensions: (1) Goodness of fit; (2) 
Consistency of bivariate relationships; (3) Accuracy in capturing corner solutions; and (4) 
Accuracy in holding constraints. They are calculated for different sizes of training set used 
for training to understand the effort needed in data generation. In our specific case, increas-
ing the size of training set from 1000 to 50,000 significantly improves the performance of all 
types of models. Once the amount of training data reaches 100,000, adding more data points 
for training does not improve the performance of the surrogate models in any relevant way as 
defined by the evaluation metrics. MLP performs the second best in general, and its perfor-
mance on other criteria is close to the best model—BiLSTM. Since it has a strong advantage 
on inference time, MLP might be the prime choice for many cases with strong computational 
demands.

Our research shows NNs are efficient in approximating detailed farm-level models. Thus, 
they can offer upscaling possibilities of ABMs with detailed farm-level model outcomes. 
Specifically, the integrated modelling system can be used to enable comprehensive analyses of 
agri-environmental policies that are targeted at the individual farm level. It will be worth ex-
ploring whether the slight deviation (like 1%) of the surrogate model at the farm level can cause 
crucial divergence at the regional level, where heterogeneous farms interact with each other in 
both the short and long run. Furthermore, updating and debugging the integrated modelling 
system could be challenging because three different models (i.e., farm model, surrogate model 
and ABM) that are potentially operated by different teams are involved.

Finally, future research may move towards more systematic development and integrated 
application of surrogate models going beyond their stand-alone methodological assessment. 
An interesting alternative avenue in training surrogate models might be the use of generative 
adversarial networks (GANs) (Goodfellow et al., 2014). They could learn the criteria for mak-
ing the outcomes from the original and surrogate model indistinguishable in a data-driven way 
or could allow us to derive more natural stopping criteria for data generation. The rapid devel-
opment of machine learning will likely further improve the performance of surrogate models 
and make the training of NNs a more standard approach.
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EN DNOT E S
	1	 See Goodfellow et al. (2016) for further details.

	2	 See the Github repository of the ‘Keras’ library (Chollet, 2015).

	3	 In the context of OLS (ordinary least squares), R2 will always be between 0 and 1. But in the machine learning context, 
when R2 is calculated based on a test set not used in estimation, negative values may occur even if  the fit criterion in 
training is least squares.

	4	 In practice, this threshold is <0.01 because NNs usually do not predict a strict ‘0’ but rather a very small number like 
0.000001.

	5	 This is the maximum amount of observations in the original training set.

	6	 Because of the poor performance, the evaluations of ResNet with 1000 observations are not shown in the following 
figures, either.
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