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Abstract

We study a class of trending panel regression models with time-varying coefficients that

incorporate cross-sectional and serial dependence, as well as heteroskedasticity. Our models

also allow for missing observations in the dependent variable. We introduce a local linear

dummy variable estimator capable of handling missing observations and derive its asymptotic

properties. A key ingredient in our theoretical framework is a generic uniform convergence

result for near-epoch processes in kernel estimation for large panels (N,T → ∞). The

resulting limiting distribution reflects the pattern of missing values and depends on various

nuisance parameters. An autoregressive wild bootstrap (AWB) is proposed to construct confi-

dence intervals and bands. The AWB accommodates missing observations and automatically

replicates all the nuisance parameters, demonstrating good finite sample performance. We

apply our methods to investigate (i) the relationship between PM2.5 and mortality and (ii)

common trends in atmospheric ethane emissions in the Northern Hemisphere. Both examples

yield statistical evidence for time variation.

Keywords: autoregressive wild bootstrap, confidence bands, cross-sectional and serial depen-

dence, time-varying, missing observations.
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1 Introduction

Common trends and time-varying relations are often observed in panel data with a long time span.

Accordingly, recent empirical studies frequently adopt panel regression models that allow trending

intercepts and time-varying coefficients to evolve smoothly and deterministically (Silvapulle et al.,

2017; Cai et al., 2018; Hailemariam et al., 2019; Liddle et al., 2020; Uddin et al., 2020; Awaworyi

Churchill et al., 2021; Ren et al., 2022; Sun et al., 2023). This formulation offers the advantage of

straightforward empirical interpretation without compromising flexibility in the model specification.

However, despite the widespread use of these panel models in empirical studies, there exists limited

theoretical guidance on conducting inference. This shortfall constitutes a significant gap between

empirical and theoretical studies in two key aspects.

First, existing asymptotic approximations depend heavily on various nuisance parameters that

are difficult to estimate, including second-order bias terms and long-run covariance matrices (Li

et al., 2011; Chen and Huang, 2018). These nuisance parameters pose a challenge when applying

the asymptotic results for inference. Therefore, the previously mentioned empirical studies resort

to a naive wild bootstrap, generating bootstrap samples series by series, for constructing pointwise

confidence intervals at each time point. However, the theoretical justification for employing any

bootstrap method to construct confidence intervals in these models is absent from the literature.

This naive method falls short in capturing cross-sectional and serial dependence (Gonçalves and

Perron, 2020), making it unsuitable for many macro-level applications due to the pervasive presence

of dependence in the data. As such, there is a pressing need for developing a more sophisticated

bootstrap method and corresponding theoretical foundations.

Second, in various applications, particularly in climate sciences and environmental economics,

the prevalence of missing observations is evident (Keef et al., 2009). This can be attributed, for

instance, to measurements being impeded by unfavorable weather conditions (Friedrich et al.,

2020). Common practice involves multiple imputation. Nevertheless, particularly for climatic data,
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multiple imputation is challenging, given its complex dependence structure across units (Bashir

and Wei, 2018; Li et al., 2018; Cahan et al., 2023). The impact of imputed data on statistical

inference remains unclear as well. Missing observations add additional complexity, as quantifying

the uncertainty about the occurrence of missing data becomes crucial for ensuring valid inference.

In our setting, there are currently no available methods that allow inference in the presence

of missing observations. This limitation hinders the applicability of these models, especially in

climate studies. For example, researchers investigating the common trend of hydrologic regimes or

air pollution emissions face challenges due to the absence of suitable methods for handling missing

observations (Bard et al., 2015). This highlights the second urgent need in our research agenda.

We bridge the gap between empirical requirements and existing theoretical studies by intro-

ducing a new toolkit for conducting inference. Specifically, we introduce a local linear dummy

variable (LLDV) procedure for estimating parameters and a novel residual-based autoregressive

wild bootstrap (AWB) scheme for constructing pointwise intervals and simultaneous bands. Both

methods are designed to handle missing observations in the dependent variable without imputation.

Furthermore, our framework allows for flexible forms of cross-sectional and serial dependence, as

well as heteroskedasticity. The AWB is simple to implement but also consistently estimates the

nuisance parameters. We theoretically demonstrate its capability to mimic the pattern of missing

observations and the structure of dependence, both cross-sectionally and temporally.

The current paper builds upon multiple pioneering works. First, we refine the LLDV estimation

proposed by Li et al. (2011) to allow for missing observations. In environmental applications,

missing observations mainly occur in the dependent variable. Therefore, we focus on addressing

missing observations solely in the dependent variable, given that the missing pattern in explanatory

variables can significantly complicate asymptotic analysis. Second, we extend the previously

established asymptotic framework presented in Robinson (2012), Li et al. (2011), Chen et al.

(2012), Chen and Huang (2018), and Gao et al. (2020). While these seminal works are valuable,

each is characterized by at least one of the following restrictions: exclusion of explanatory variables,
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assumption of time-constant slope coefficients, condition of independence (cross-sectionally and/or

serially), consideration only of strictly stationary data, or a lack of the capability to handle missing

values. We relax all these requirements. Notably, the pattern of missing observations, which

may arise with dependence along both cross-sectional and temporal dimensions, enter into our

asymptotic approximations. A crucial element in deriving our asymptotic results is a new uniform

deviation bound for near-epoch processes with cross-sectional dependence. This result extends Li

et al. (2012) from strictly stationary time series to potentially nonstationary panels and can be

of separate interest for asymptotic analysis in large panels. Finally, the proposed AWB can be

traced back to the works of Smeekes and Urbain (2014) and Friedrich et al. (2020). It was initially

designed for time series data, specifically for multivariate unit root testing and nonparametric

trend analysis. Our simulation study confirms the theoretical finding that it has noteworthy

potential in panel applications.

We illustrate the proposed methods through two empirical applications. We first investigate

the impact of surface particulate matter air pollution (PM2.5) on mortality. Our findings reveal a

positive and significant impact of PM2.5 on mortality, along with an overall increasing trend in

mortality over time. In our second application, we employ the proposed method to investigate

common trends in atmospheric ethane in the Northern Hemisphere. Our results indicate that the

trend reversal pattern identified in the previous literature using a univariate approach extends to

a common global trend.

The paper is organized as follows. Section 2 describes the model and the nonparametric

estimation with missing observations in the dependent variable. Section 3 establishes the asymptotic

results. Section 4 proposes our autoregressive wild bootstrap. A thorough simulation study is

conducted in Section 5. Section 6 presents the empirical applications. Section 7 concludes. The

notation used throughout this paper is explained in Appendix A. All proofs, along with additional

results from simulation and empirical studies, are presented in the supplemental appendix.
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2 The model and estimation

Consider the time-varying trending panel regression model originally proposed by Li et al. (2011):

yit = αi + gt +
d∑

j=1

βt,jxit,j + eit = αi + gt + x′
itβt + eit, i = 1, . . . , N, t = 1, . . . , T, (2.1)

where yit represents the dependent variable of the i-th cross-sectional unit at time t, αi captures

unobservable time-invariant heterogeneous effects that may correlate with the individual-specific

explanatory variables xit = (xit,1, . . . , xit,d)
′, commonly known as fixed effects. As detailed in

Section 3, we accommodate deterministic trending behaviors (as well as cross-sectional and serial

dependence) in xit. The term gt captures the evolving environment shared among the units

in the panel and can be interpreted as a global trend. It may serve as a representative term

for unobservable variables, such as global crises, technology growth, and rising environmental

awareness (Lin and Reuvers, 2022; Friedrich et al., 2023). Unlike traditional two-way fixed effect

approaches that consider gt as a nuisance parameter and seek ways to eliminate it in estimation, we

are interested in analyzing the common trending behavior observed in our data. Furthermore, the

slope coefficients are stacked in the vector βt = (βt,1, . . . , βt,d)
′ and are allowed to vary over time.

The error process {eit} may exhibit heteroskedasticity, and cross-sectional and serial dependence

(Assumptions A3 - A4). The model offers a useful interpretation by decomposing yit into a global

component gt and a local component x′
itβt, making it popular in empirical studies.

We consider flexible functional forms: gt = g(t/T ), where g(·) = [0, 1] → R is an unknown,

smooth function. Similarly, let βt = β (t/T ); β(·) = (β1(·), . . . , βd(·))′ : [0, 1] → Rd be a vector of

unknown, smooth functions. Our primary focus is estimating the unknown functions g(·) and β(·),

constructing their confidence intervals/bands, while accounting for potentially missing observations

in the dependent variable. We adopt the asymptotic framework as (N, T ) → ∞ jointly.

The theoretical properties of models similar to (2.1) have been explored in the literature,

albeit with different emphases or restrictions. The pioneering work by Li et al. (2011) requires

cross-sectional independence of regressors and errors. Robinson (2012) focuses on the case where
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βt ≡ 0 with cross-sectional dependence but requires that the error process is uncorrelated over time

and homoscedastic. Chen et al. (2012) and Gao et al. (2020) allow for cross-sectional dependence,

but the slope coefficients are not allowed to vary over time. Chen and Huang (2018) and Atak

et al. (2023) concentrate on testing whether the parameters are time-varying and/or homogeneous

across i. Importantly, all the previous papers do not consider missing data, limiting their direct

suitability and applicability to many of our datasets of interest.

2.1 Nonparametric estimation with missing values

We first impose the following common condition for the identification of gt:

N∑
i=1

αi = 0. (2.2)

Our models explicitly allow for missing observations in {yit}. Intuitively, even in the presence of

missing observations for some unit i at time t, the observed data for units j ̸= i still carry the

signal of (gt,βt). Consequently, pooling information from non-missing units enables consistent

estimates of the parameters. We define

Mit = 1{yit is observed}, i = 1 . . . , N, t = 1, . . . , T. (2.3)

We adapt the local linear dummy variable (LLDV) estimation originally proposed in Li et al. (2011)

to accommodate missing observations. The adapted LLDV relies on the following approximation:

yMit ≈Mitαi + zM
it (τ)

′θ(τ) +Miteit, θ(τ) =
(
g(τ),β(τ)′, hg(1)(τ), hβ(1)(τ)′

)′
, (2.4)

where yMit =Mityit, z
M
it (τ) =Mitzit(τ), zit(τ) =

(
1,x′

it,
τt−τ
h
, τt−τ

h
x′
it

)′
, and τt = t/T . Our LLDV

estimator, adjusted for missing data, minimizes the following weighted loss criterion:

θ̂(τ) = arg min
θ(τ)

N∑
i=1

T∑
t=1

[
yMit −Mitαi − zM

it (τ)
′θ(τ)

]2
K

(
τt − τ

h

)
, (2.5)

subject to the identification condition in Eq. (2.2). In Eq. (2.5), K(·) denotes a kernel function and

h ↓ 0 is a bandwidth determining the smoothness of the estimators. Without missing observations,
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we have Mit = 1, for all i = 1, . . . , N , t = 1, . . . , T , such that the loss criterion (2.5) reduces to

the one given in Li et al. (2011). While we would ideally include missing values in the covariates,

the pattern of missing data significantly complicates the analysis. Hence, we consider this as an

avenue for future research.

The minimization problem (2.5) is computationally efficient and fast, with a closed-form

expression provided in (2.10) below. To illustrate, we require additional notation. More specifically,

we can express (2.4) in stacked notation as

yM
i ≈ miαi +ZM

i (τ)θ(τ) + eM
i , i = 1, . . . , N, (2.6)

where mi = (Mi1, . . . ,MiT )
′, yM

i = diag (mi)yi, yi = (yi1, . . . , yiT )
′. Moreover, ZM

i (τ) =

diag (mi)Zi(τ) with Zi(τ) = (zi1(τ), . . . ,ziT (τ))
′, and eM

i = diag (mi) (ei1, . . . , eiT )
′. Let kh(τ) =[

K
(
τ1−τ
h

)
, . . . , K

(
τT−τ

h

)]′ ∈ RT×1, Kh(τ) = diag [kh(τ)] be a diagonal matrix with elements kh(τ)

on the diagonal. In the spirit of the Frisch-Waugh-Lovell Theorem, we introduce a procedure

minimizing the weighted loss in (2.5) given the identification condition (2.2).1

Step 1 For each τ ∈ [0, 1], project K
1/2
h (τ)ZM

i (τ) on K
1/2
h (τ)miαi, i = 1, . . . , N , and obtain

the residuals Z̃M
i (τ). It leads to

Z̃M
i (τ) = K

1/2
h (τ)ZM

i (τ)− diag(mi)k
1/2
h (τ)kh(τ)

′ [ντ,i (ZM
i (τ)− Z̄M(τ)

)]
, (2.7)

for i = 1, . . . , N , where

ντ,i =


(∑T

t=1K
(
τt−τ
h

)
Mit

)−1

, if
∑T

t=1K
(
τt−τ
h

)
Mit ̸= 0,

0, otherwise,

(2.8)

and Z̄M(τ) = ω−1
τ

∑N
i=1 ντ,iZ

M
i (τ). Moreover, ωτ =

∑N
i=1 ντ,i if ντ,i ̸= 0 for some i;

ωτ = 1 if ντ,i = 0 for all i.

Step 2 Project K
1/2
h (τ)yM

i on K
1/2
h (τ)miαi, i = 1, . . . , N , and obtain the residuals ỹM

i . It

1Find the MATLAB codes for our estimation and bootstrap methods on https://yiconglin.com/

code-and-data/.
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leads to

ỹM
i = K

1/2
h (τ)yM

i − diag(mi)k
1/2
h (τ)kh(τ)

′ [ντ,i (yM
i − ȳM

)]
, (2.9)

for i = 1, . . . , N , where ȳM = ω−1
τ

∑N
i=1 ντ,iy

M
i .

Step 3 Project ỹM
i on Z̃M

i (τ), i = 1, . . . , N , and obtain θ̂(τ) given by

θ̂(τ) =



ĝ(τ)

β̂(τ)

hĝ(1)(τ)

hβ̂(1)(τ)


=

(
N∑
i=1

Z̃M
i (τ)′Z̃M

i (τ)

)−1( N∑
i=1

Z̃M
i (τ)′ỹM

i

)
. (2.10)

Step 4 Given θ̂(τ), τ ∈ [0, 1], we can obtain the estimates of fixed effects. Specifically, let

α̂ = (α̂1, . . . , α̂N)
′ = T−1

∑T
t=1 α̂

†(τt) be the estimate of α = (α1, . . . , αN)
′, where

α̂†(τ) =
(
α̂†
1(τ), . . . , α̂

†
N(τ)

)′
with α̂†

i (τ) = kh(τ)
′ [ντ,iêM

i (τ)
]
, and

êM
i (τ) =

(
yM
i − ȳM

)
−
[
ZM

i (τ)− Z̄M(τ)
]
θ̂(τ), i = 1 . . . , N. (2.11)

Several remarks are in order. First, there may be points τ around which no data is observed

in an h-neighborhood in small samples. In such cases, we define ντ,i = 0 as seen in Eq. (2.8) in

Step 1. Second, the procedure is constructed under the identification condition (2.2), leading to∑N
i=1 α̂i ≡ 0 for any N and T . Finally, it may be empirically relevant to include observable macro

variables that are common to all cross-sectional units in Eq. (2.1). We choose to omit them for

illustration purposes, but one could adapt the estimation procedure above by extending zit(τ)

to zit(τ) =
(
1,x′

it,ω
′
t,

τt−τ
h
, τt−τ

h
x′
it,

τt−τ
h

ω′
t

)′
to estimate the corresponding coefficients, where ωt

denotes the vector of macroeconomic variables.

3 Asymptotic theory

In the following sections, we present the asymptotic results. We begin by discussing the assumptions

necessary for establishing our asymptotic theory in Section 3.1. Several of these assumptions
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are grounded in a crucial uniform deviation result, which will be introduced in Section 3.2. In

the same section, we establish the uniform consistency and asymptotic distribution of the LLDV

estimator in Eq. (2.10).

3.1 Assumptions underpinning asymptotic theory

Our asymptotic analysis hinges on the following sets of assumptions.

Assumptions: A1 The kernel function K(·) is positive, symmetric, Lipschitz continuous, and

has compact support [−1, 1] with µ0 ≡
∫ 1

−1
K(u) du = 1.

A2 The coefficient function β(·) ∈ C3[0, 1], namely βk(·) ∈ C3[0, 1], k = 1, . . . , d. Moreover, the

global trend function g(·) ∈ C3[0, 1].

Assumption A1 on the kernel function is satisfied by many commonly adopted kernels, such

as the Epanechnikov kernel. Assumption A2 imposes a standard smoothness condition on the

functions, as in, e.g., Zhou and Wu (2010, Assumption 6).

The following assumptions impose some structure on error processes and explanatory variables.

One of the key assumptions necessary to develop the asymptotic theory involves allowing for a

general class of innovation processes, known as near-epoch dependent (NED) processes. These

processes accommodate various forms of dependence commonly encountered in econometrics,

including linear/nonlinear processes (Davidson, 2002) and strong mixing processes. We extend the

definition of NED processes from Lu and Linton (2007) and Li et al. (2012), originally applied to

strictly stationary time series, to a panel setting with potential nonstationarity. Refer to Definition

A.1 in Appendix A for details. A NED process can be viewed as “approximately” mixing along

the time dimension, in the sense that it can be well-approximated by a mixing process.

Assumptions: A3 Innovations: Define ξ•t = (ξ′1t, . . . , ξ
′
Nt)

′, ξit = (Mit, εit, ζ
′
it)

′. Suppose

{ξ•t, t ∈ Z} is an α-mixing process with mixing coefficients α(j) ≤ Cαj
−φα, 0 < Cα < ∞,

φα > 2 ∨ (2 + δ)/δ for some δ > 0. Further assumptions regarding the elements of ξ•t are
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presented separately in A4 - A6 below.

A4 Let e•t = (e1t, . . . , eNt)
′ = σtε•t, ε•t = (ε1t, . . . , εNt)

′. The process {ε•t, t ∈ Z} is strictly

stationary α-mixing and satisfies Assumption A3. Moreover, E(ε•t) = 0 and E ∥ε•t∥p0 ≤

C <∞, p0 = 2(2 + δ) for the same δ > 0 as specified in Assumption A3. The deterministic

term σt = σ(t/T ) = diag (σ1(t/T ), . . . , σN(t/T )), where σi(·) : [0, 1] → [σL, σU ] ⊂ (0,+∞)

is Lipschitz continuous, i.e., for i = 1, . . . , N , |σi(τ1)− σi(τ2)| ≤ Kσ|τ1 − τ2|, Kσ > 0.

A5 Explanatory variables: xit = χi + ℓ (t/T ) + νit, where ℓ (t/T ) = (ℓ1 (t/T ) , . . . , ℓd (t/T ))
′,

χi = (χi,1, . . . , χi,d)
′ ∈ Rd. Moreover, {χi, i = 1, . . . , N} is independent of {ξ•t, t ∈ Z}. Let

p0 = 2(2 + δ) with the same δ > 0 in Assumption A3.

(a) The local trend function ℓ(·) ∈ C2[0, 1], i.e., lk(·) ∈ C2[0, 1], k = 1, . . . , d.

(b) The individual levels χi are independent across i = 1, . . . , N , where max1≤i≤N ∥χi∥ =

Op(1), E (χi) = 0d, E (χiχ
′
i) = Σχ is positive semidefinite, and E (∥χi∥p0) ≤ C <∞.

(c)
{
(ν1t, . . . ,νNt)

′ , t ∈ Z
}
is strictly stationary with E(νit) = 0 and E (∥νit∥p0) ≤ C <∞

Define ν
(m)
it =

(
ν
(m)
it,1 , . . . , ν

(m)
it,d

)′
. Let

{
νit = (νit,1, . . . , νit,d)

′ , t ∈ Z
}
be NED in Lp0 with

respect to {ζit, t ∈ Z}, and ψi,p0(m) = supt∈Z E
∥∥∥νit − ν

(m)
it

∥∥∥p0 ≤ dp0i m
−φν , where φν >

0, and
∑N

i=1 di = O(N1/2) with di ≥ 0. The process {ζit, t ∈ Z} is strictly stationary α-

mixing and satisfies Assumption A3. Moreover, limN→∞N−1
∑N

i=1 ∥E (νitν
′
it)−Σν∥ =

0, where Σν ∈ Rd×d is positive definite (p.d.).

Assumption A3 places conditions on the decaying rate of mixing coefficients. It is relatively

weak and guarantees only the absolute summability of autocovariances. As seen later, we do not

assume the process of missing observations to be strictly stationary, and thus we do not impose

strict stationarity of {ξ•t}. The deterministic process {σt, t ≥ 1} in Assumption A4 governs the

shape of the volatility of {e•t}. It permits the error process to exhibit heteroskedasticity, allowing

for a wide range of unconditional volatility processes, such as smooth trends and fluctuations.

One could consider relaxing the Lipschitz continuity condition on the volatility function σ(·) by
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permitting a finite number of discontinuities, as shown in Cavaliere et al. (2010). In Assumption

A5, we assume that the explanatory variables xit can be decomposed into an individual-specific

(random) component χi, a deterministic trending component ℓ(·), and a random component νit

that is NED in Lp0 , where p0 > 4. The process νit captures the dependence in regressors across

cross-sectional and time dimensions, allowing for various dependence structures over time. The

condition
∑N

i=1 di = O(N1/2) constrains the strength of cross-sectional dependence in νit and

enables us to apply the generic convergence result established in Theorem 1 in the next section.

This specification of xit is of practical relevance since it allows regressors to be trending and

seasonal, such as climate variables like PM2.5 and precipitation, or economic variables such as

GDP. It is similar to Chen et al. (2012, Eq. (1.2)), but we allow for a more flexible process of νit

(Lp0-NED) instead of strictly stationary α-mixing. Next, we introduce assumptions regarding the

pattern of missing observations.

Assumption: A6 (a) For i = 1, . . . , N , {Mit, t ∈ Z} satisfies Assumption A3, with E(Mit) =

P (Mit = 1) = pi(t/T ) ∈ [pL, 1], 0 < pL ≤ 1, where pi(·) ∈ C2[0, 1]. Moreover, there exist

p̄(·), q̄(·) ∈ C2[0, 1] such that
∣∣N−1

∑N
i=1 pi(τ)−p̄(τ)

∣∣ = O (ϕp,N) and
∣∣N−1

∑N
i=1 p

−1
i (τ)−

q̄(τ)
∣∣ = O (ϕq,N), uniformly in τ ∈ [0, 1], where ϕp,N ↓ 0, ϕq,N ↓ 0, as N → ∞.

(b) E
(
MitMj(t+k)

)
= Ri,j

(
t/T, (t + k)/T

)
, k ≥ 0. Suppose Ri,j(·, ·) : [0, 1]2 → [0, 1] is

Lipschitz continuous uniformly in i, j. Namely, |Ri,j(τ1)−Ri,j(τ2)| ≤ KR ∥τ1 − τ2∥,

where τ1, τ2 ∈ [0, 1]2, and KR > 0 is independent of i, j.

Assumption A6 is similar to Friedrich et al. (2020, Assumption 4) for nonparametric trending

time series models. The missing process can exhibit weak dependence and vary across cross-

sectional units. The missing probability can evolve smoothly over time, as observed in our empirical

studies and illustrated in Figure 2 of Friedrich et al. (2020). To facilitate the presentation of our

theory, we stipulate in Assumption A6(a) that the average proportion of missing/observed data

can be approximated by a smooth function. This average proportion is allowed to change over
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time, as illustrated in Figure 3 (Section 6). As mentioned, {Mit, t ∈ Z} does not need to be strictly

stationary. For instance, Mit can be independently (across i and over t) Bernoulli distributed

with probability p (t/T ) for all i. A broad class of generating processes satisfies Assumption

A6(a). If the processes {Mit, t ∈ Z} are strictly stationary Markov chains, they are α-mixing

with coefficients decreasing to zero, at least, exponentially fast (Bradley, 2005, Theorem 3.1).

Therefore, they fulfill Assumptions A3 and A6. Furthermore, a class of dynamic time series binary

choice models considered in de Jong and Woutersen (2011) also satisfies these assumptions under

suitable conditions. Similar to the missing probability, we allow the cross-sectional moments to

exhibit smooth time variation, as indicated in Assumption A6(b).

Some moment conditions on cross-sectional dependence and requirements for exogeneity

between the error process and regressors are necessary to establish the limiting distribution.

Assumption: A7 (a) Cross-sectional dependence: For some m0 > 1, supt∈Z E
∣∣∑N

i=1[Mit −

E (Mit)]
∣∣m0 = O(Nm0/2); supt∈Z E

∥∥∑N
i=1 [Mitνit − E (Mitνit)]

∥∥q0 = O
(
N q0/2

)
, where

q0 ∈ (1, p0]; supt∈Z E
∥∥∑N

i=1 [Mitνitν
′
it − E (Mitνitν

′
it)]
∥∥r0 = O

(
N r0/2

)
, r0 ∈ (1, p0/2];

supt∈Z E
∥∥∑N

i=1witMitεitqit

∥∥p0/2 = O
(
Np0/4

)
, where qit = (1,χ′

i,ν
′
it)

′, and wit ∈

[wL, wU ] ⊂ (0,∞) is a nonrandom sequence, i = 1, . . . , N , t = 1, . . . , T .

(b) Define Vi = (νi1, . . . ,νiT ). For i, j ∈ {1, . . . , N}, s, t ∈ {1, . . . , T}, the following con-

ditions of exogeneity hold almost surely: E
(
νit

∣∣Mit

)
= E(νit), E

(
νitν

′
js

∣∣Mit,Mjs

)
=

E(νitν
′
js), E

(
χiν

′
it

∣∣Mit

)
= E

(
χiν

′
it

)
, E
(
χiν

′
itχjν

′
jt

∣∣Mit,Mjt

)
= E

(
χiν

′
itχjν

′
jt

)
. More-

over, E
(
εit
∣∣Mit,χi

)
= 0, E

(
εitεjs |mi,mj,Vi,Vj

)
= E (εitεjs), E

(
νitεit

∣∣Mit

)
= 0,

E
(
νjsεitεjs

∣∣Mit,Mjs

)
= 0, and E

(
νitν

′
jsεitεjs

∣∣Mit,Mjs

)
= E

(
νitν

′
js

)
E
(
εitεjs

)
.

(c)
∑N

i,j=1

∑T
k=1 |E (εi1εjk)| = O(N).

(d) For any τ ∈ (0, 1), there exist p.d. matrices Λε(τ) ∈ R2×2 and Λνε(τ) ∈ Rd×d

such that, as N → ∞, N−1
∑N

i=1

∑N
j=1 Ri,j(τ, τ)Qi,j(τ)σi(τ)σj(τ)Ωε(i, j) → Λε(τ) :=(

Λε,11(τ) Λε,12(τ)
Λε,21(τ) Λε,22(τ)

)
, N−1

∑N
i=1

∑N
j=1 Ri,j(τ, τ)σi(τ)σj(τ)Ωνε(i, j) → Λνε(τ), and more-
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over, N−1
∑N

i=1Ri,i(τ, τ)σ
2
i (τ)Ωε(i, i) → Λ̄ε(τ), where Ri,j( · , · ) is defined in A6,

Qi,j(τ) =
(

[pi(τ)pj(τ)]
−1 [pi(τ)]

−1

[pj(τ)]
−1 1

)
, Ωε(i, j) =

∑∞
s=−∞ E

(
εitεj(t+s)

)
, and finally, Ωνε(i, j) =∑∞

s=−∞ E
(
εitνitεj(t+s)ν

′
j(t+s)

)
.

The moment conditions in Assumption A7(a) characterize the cross-sectional dependence.

They are commonly used in the panel model literature, see, e.g., Bai (2009, Assumption C), Chen

et al. (2012, Assumption A2), Corradi and Swanson (2014, Assumption AN1), and Gonçalves

and Perron (2014, Assumption 2). Under certain conditions, these requirements can easily be

verified. For instance, if cov (Mit,Mjt) = 0, i ̸= j, we have supt∈Z E
∣∣∣∑N

i=1 [Mit − E (Mit)]
∣∣∣2 =

supt≥1

∑N
i=1Var(Mit) ≤ N/4 fulfilling the first term in A7(a) with m0 = 2. Similarly, con-

sidering the element χi in qit, by the multinomial theorem, for k = 1, . . . , d, and utilizing

the independence of {χi}, it is straightforward to obtain supt∈Z
{
E
∣∣∑N

i=1witMitχi,kεit
∣∣4}1/4 =

supt∈Z
{∑N

i=1 E
(
witMitχi,kεit

)4
+6
∑N−1

i=1

∑N
ℓ=i+1 E

(
witwℓtMitMℓtχ

2
i,kχ

2
ℓ,kε

2
itε

2
ℓt

)}1/4 ≤ CN1/2 , along

with Assumptions A4, A5, and the Cauchy-Schwarz inequality. Alternatively, one may replace

these conditions by imposing α-mixing conditions on the cross-sectional dimension. Similar

moment conditions can then be obtained using Rosenthal-type inequalities for α-mixing processes

(Shao and Yu, 1996, Theorem 4.1). Assumption A7(b) provides standard conditions on exogeneity

and is clearly weaker than the often-imposed assumption of independence, as seen in, for example,

Sun et al. (2009). Assumption A7(c) resembles, e.g., Dong et al. (2015, Assumption 1) and Gao

et al. (2020, Assumption 2). Assumption A7(d) ensures that the long-run covariance matrix exists

and is well-defined, which is standard in the literature, see, e.g., Chen et al. (2012, Assumption

A4), Chen and Huang (2018, Assumption A.4).

Assumption: A8 Suppose 2φν ≥ p0φα and define ηmin = ϕ (m0 ∧ q0 ∧ r0), where m0, q0, r0, p0

are defined in Assumption A7. Let ϕ(x) =
(1− 1/x)φα

2 + (1 + 1/x)φα

and ϖ(x) =
4(1 + φα/x)

2 + (1 + 1/x)φα

,

x > 1, where φα is given in Assumption A3. The bandwidth h ≡ h(N, T ) satisfies

max

{
h,

1

Th2
,

ln(NT )

(NT )ηminh
,
Nϖ(p0/2) ln(NT )

T ϕ(p0/2)h

}
→ 0, (N, T ) → ∞. (3.1)
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Moreover,
[
N/(NT )ϕ(κ)

](2φν/[(p0φα)(1−1/κ)]−1
)
/2
h1/2 = O

(√
ln(NT )

)
, κ ∈ {m0, q0, r0, p0/2}.

Finally, Assumption A8 serves as a technical condition on the bandwidth parameter, offering

guidance on its practical selection. Depending on the desired strength of conditions imposed on

cross-sectional and serial dependence, one could choose h ∼ (NT )−c for some c > 0 in practice.

The condition below Eq. (3.1) corresponds to (3.4) in Theorem 1 in the next section. Since ϕ is

a positive-valued and strictly increasing function, it suffices to fulfill this condition by requiring

N/(NT )ηmin ≤ C <∞, given 2φν ≥ p0φα.

3.2 Uniform consistency and the limiting distribution

To develop our asymptotic results for θ̂(·) under cross-sectional and serial dependence, we first

establish a general uniform convergence result that ensures uniform consistency. This result is

noteworthy in its own right, and we present it in Theorem 1.

Theorem 1 For p > 1 and i = 1, . . . , N , let E|Yit|p ≤ C <∞, and suppose {Yit, t ∈ Z} is NED

in Lp with respect to {ηit, t ∈ Z}, where

ψi,p(m) = sup
t∈Z

E
∣∣∣Yit − Y

(m)
it

∣∣∣p ≤ dpim
−λ, di ≥ 0, λ > 0. (3.2)

Suppose
{
ηt =

(
η1t, η2t, . . . , ηNt

)′
, t ∈ Z

}
is an α-mixing process (possibly nonstationary) with

mixing coefficients α(j) ≤ Aj−β for some 0 < A, β <∞. Moreover, assume the kernel function

K(·) is positive, symmetric, Lipschitz continuous, and has compact support [−u0, u0], u0 > 0, with∫ u0

−u0
K(u) du = 1. For x > 1, define ϕβ(x) =

(1− 1/x)β

2 + (1 + 1/x)β
. For some 1 < q ≤ p, if

sup
t∈Z

E

∣∣∣∣∣
N∑
i=1

[Yit − E(Yit)]

∣∣∣∣∣
q

= O(N q/2),
N∑
i=1

di = O(N1/2), (3.3)

and [
N

(NT )ϕβ(q)

](2λ/[pβ(1−1/q)]−1
)
/2

h1/2 = O
(√

ln(NT )
)
, (3.4)
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then we have

sup
τ∈[0,1]

∣∣∣∣∣ 1

NTh

N∑
i=1

T∑
t=1

(
τt − τ

h

)k

K

(
τt − τ

h

)
[Yit − E (Yit)]

∣∣∣∣∣ = Op

(√
ln(NT )

(NT )ϕβ(q)h

)
, (3.5)

where k ≥ 0 is an integer.

Differing from our concentration probability (3.5), Gao et al. (2023) recently established

a central limit theorem (CLT) for (parametric) panel data models that consider both serial

correlation and cross-sectional dependence using the notion of physical dependence. While Yao

and Jiang (2012) explore panel extensions of Hoeffding’s inequality, similar to our result, they

require cross-sectional independence. Our Theorem 1 can be viewed as an extension of the uniform

convergence results found in Hansen (2008), Jiang (2009), Kristensen (2009), and Li et al. (2012)

from (stationary/nonstationary) time series to possibly nonstationary panel settings. Similar to ϕ

in Assumption A8, ϕβ is positive-valued and strictly increasing. It reflects a tradeoff between the

strength of the assumptions on dependence and moment conditions and the speed of convergence.

The value of ϕβ(q) can be made close to 1 by, for instance, considering 2λ = pβ and an α-mixing

process with an exponentially decaying rate (β → ∞), as well as a sufficiently large value of q, but

it remains strictly smaller than 1. For N = 1, the rate in Eq. (3.5) yields
√
ln(T )/(T ϕβ(q)h). This

rate is slower than the optimal rate achievable in the time series literature, which is
√

ln(T )/(Th).

Thus, we consider the rate in Eq. (3.5) to be sub-optimal.

Building upon Theorem 1, we are now ready to establish the first set of asymptotic results.

We will first provide the results and then offer further comments below Corollary 1. The following

proposition demonstrates the uniform consistency of our estimator under missing observations.

Proposition 1 Recall ϕ from Assumption A8. Under Assumptions A1 - A8, we obtain

sup
τ∈[0,1]

∥∥∥θ̂(τ)− θ(τ)
∥∥∥ = Op

(
h2 +

√
ln(NT )

(NT )ϕ(p0/2)h

)
, (N, T ) → ∞. (3.6)

Next, we establish the pointwise limiting distribution. A clear exposition of the result requires
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further notation.

(a) Quantities associated with K(·): µk =
∫ 1

−1
ukK(u) du, νk =

∫ 1

−1
ukK2(u) du, k ≥ 0;

(b) Bias term: b(τ) = 1
2

(
µ2Υ (2)(τ)

0

)
+ op(1), where Υ (τ) = (g(τ),β(τ)′)′;

(c) Short/long-run covariance: Φ(τ) = diag
[
Φ1(τ),Φ2(τ)

]
, Φνε(τ) = diag

[
Φνε,1(τ),Φνε,2(τ)

]
,

where Φ1(τ) = p̄(τ) ( 0
Σν

) +
[
q̄(τ)

]−1 ( 1
ℓ(τ)

)
( 1 ℓ(τ)′ ), Φ2(τ) = µ2p̄(τ)

(
1 ℓ(τ)′

ℓ(τ) Σχ+ℓ(τ)ℓ(τ)′+Σν

)
,

Φνε,1(τ) = ν0
(
0
Λνε(τ)

)
+ν0Λε,11(τ) [q̄(τ)]

−2 ( 1
ℓ(τ)

)
( 1 ℓ(τ)′ ), Φνε,2(τ) = ν2

(
0
Λ̄ε(τ)Σχ+Λνε(τ)

)
+

ν2Λε,22(τ)
(

1
ℓ(τ)

)
( 1 ℓ(τ)′ ).

Theorem 2 (Pointwise asymptotic distribution) Under Assumptions A1 - A8, for any

fixed τ ∈ (0, 1), as (N, T ) → ∞,

√
NTh

(
θ̂(τ)− θ(τ)− h2b(τ)

)
d→ N

(
0,Φ(τ)−1Φνε(τ)Φ(τ)−1

)
. (3.7)

Theorem 2 offers the first asymptotic result in the literature that gives an approximation

in trending panels with missing observations and flexible dependence structures. Building on

Proposition 1 and Theorem 2, we can establish the consistency of the estimated fixed effects.

Corollary 1 Recall α̂i = T−1
∑T

t=1 α̂
†
i (τt), i = 1, . . . , N , where α̂†

i (·) is defined above Eq. (2.11).

Under Assumptions A1 - A8, as (N, T ) → ∞,

max
1≤i≤N

|α̂i − αi| = Op

max

h2,
√

ln(NT )

(NT )ϕ(p0/2)h
,

√
Nϖ(p0) ln(NT )

T ϕ(p0)h


 . (3.8)

We now discuss some implications of these results. First, the second-order bias b(τ) in

Theorem 2 arises from the Taylor approximation (2.6), a standard result in the nonparametric

literature. Second, the pointwise asymptotic distribution depends on various nuisance parameters

such as b(τ) and the long-run covariance matrix, which, in turn, depends on the local trends

ℓ(·), the pattern of missing observations, and some second-order moment terms. Therefore,

conducting inference based on the asymptotic distribution requires the estimation of these terms,

which is far from straightforward in practice. While a jackknife procedure may be employed to
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eliminate bias, estimating long-run covariance matrices remains unavoidable and highly challenging.

The estimation of these nuisance parameters demands careful selection of tuning parameters,

substantially affecting the performance of asymptotic inference (Friedrich and Lin, 2022). For this

reason, we propose in the next section a residual-based bootstrap procedure as an alternative

method to construct confidence intervals and bands. The proposed bootstrap method automatically

reproduces the nuisance parameters, without requiring a cumbersome selection of tuning parameters.

Note that the uniform convergence results in Proposition 1 and Corollary 1 are key stepping stones

for establishing the theoretical validity of our bootstrap method.

4 Bootstrap inference

Asymptotic inference based on Theorem 2 requires the estimation of various nuisance parameters.

This challenge can be conveniently circumvented by employing a bootstrap method. However, a

simple univariate, naive wild bootstrap, as commonly employed in empirical studies (for instance,

Liddle et al., 2020), is not valid in the presence of cross-sectional and/or serial dependence. We

face three main challenges: (i) serial dependence (and heteroskedasticity), (ii) cross-sectional

dependence, and (iii) missing observations. To accommodate serial dependence and heteroskedas-

ticity, a sieve wild bootstrap scheme (Smeekes and Taylor, 2012) can be implemented to obtain

bootstrap samples separately for each unit in the panel. However, this neglects and eliminates

potential cross-sectional dependence in the panel. To address this, we bootstrap the residuals êit

jointly by stacking them in a vector over i, namely ê•t =
(
ê1t, . . . , êNt

)′
. Then, one can perform a

multivariate sieve wild bootstrap using
{
ê•t

}
to replicate serial dependence and heteroskedasticity.

However, the number of parameters will quickly increase as N increases. A potential remedy

to reduce the number of parameters might entail imposing certain factor structures on error

processes {e•t} and subsequently applying the techniques outlined in, for instance, Trapani (2013)

and Gonçalves and Perron (2020). However, extending this approach to accommodate missing
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observations is not straightforward.

In Section 4.1, we propose an Autoregressive Wild Bootstrap (AWB) procedure that correctly

captures cross-sectional and serial dependence, and accommodates heteroskedasticity. Importantly,

the procedure allows for missing observations. The AWB was originally introduced in Smeekes and

Urbain (2014) for multivariate unit root testing and has demonstrated superior performance in

modeling nonparametric trends in time series with missing observations, as highlighted in Friedrich

et al. (2020). In Section 4.2, we discuss obtaining confidence intervals and provide a theoretical

justification.

4.1 The autoregressive wild bootstrap

The core concept behind our AWB is to incorporate an autoregressive scalar series into the

stacked residuals to capture heteroskedasticity and serial dependence in the error processes. By

stacking residuals, we preserve the cross-sectional dependence pattern, while the inclusion of an

autoregressive series accounts for the serial dependence and heteroskedasticity. The bootstrap

algorithm involves five key steps:

Step 1 Let α̃i, g̃(·), and β̃(·), be the adapted LLDV estimates described in Section 2.1, but

using a larger bandwidth h̃ > h. Obtain residuals

ẽit =Mit

(
yit − α̃i − g̃(t/T )− x′

itβ̃(t/T )
)
, i = 1, . . . , N, t = 1, . . . , T. (4.1)

Step 2 For γ ∈ (0, 1), generate a scalar sequence ν∗1 , . . . , ν
∗
T as i.i.d. N (0, 1 − γ2) and let

ξ∗t = γξ∗t−1 + ν∗t , t = 2, . . . , T , where ξ∗1 ∼ N (0, 1).

Step 3 For i = 1, . . . , N , t = 1, . . . , T , calculate the bootstrap errors e∗it =Mitξ
∗
t ẽit, and generate

the bootstrap observations by

y∗it =Mit

(
α̃i + g̃(t/T ) + x′

itβ̃(t/T ) + e∗it

)
, (4.2)

where α̃i, g̃(·), and β̃(·) are the same estimates given in Step 1.
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Step 4 Using
{(
y∗it,xit

)
, i = 1, . . . , N, t = 1, . . . , T

}
, construct the bootstrap adapted LLDV

estimates
(
α̂∗
i , ĝ

∗(·), β̂∗(·)
)
with the same bandwidth h as used for the original estimates.

Step 5 Repeat Step 2 to Step 4 B times, and let

q̂j,α(τ) = inf
{
u ∈ R : P∗

(
β̂∗
j (τ)− β̃j(τ) ≤ u

)
≥ α

}
, j = 1, . . . , d, (4.3)

denote the 100αth percentile of the B centered bootstrap statistics β̂∗
j (τ) − β̃j(τ),

similarly for ĝ∗(τ)− g̃(τ), τ ∈ (0, 1). These bootstrap quantiles shall be used to construct

confidence intervals/bands.

In Step 1, a larger bandwidth h̃ is used to produce an oversmoothed estimate. This approach

is similar to the time series setting considered in Friedrich and Lin (2022), and ensures that

the asymptotic bias is consistently estimated by the bootstrap; see Remark 2 below. Bootstrap

performance is not sensitive to the choice of h̃. The parameter γ in Step 2 accounts for both

serial dependence and heteroskedasticity. Its interpretation is akin to the block length in block

bootstrap methods, representing a tradeoff between capturing more dependence and allowing for

more variation in the bootstrap samples (Smeekes and Urbain, 2014). In theory (Assumption

B1), we assume γ = θ1/ℓ, where θ ∈ (0, 1) and ℓ = ℓNT > 0 is some sequence that diverges to

∞ as the sample sizes grow. Further discussion on the role of γ is provided in Remark 1. It is

worth noting that the normality of ν∗t (and ξ∗1) in Step 2 is not necessary for obtaining bootstrap

consistency. We only require ν∗t to be i.i.d. conditionally on the original sample, with E∗(ν∗t ) = 0,

E∗(ν∗t )
2 = 1− γ2, and E∗(ν∗t )

4 <∞. Finally, the bootstrap observations corresponding to Mit = 0

are artificially set to zero in our procedure, as they do not play a role due to the construction of our

loss function in (2.5). The missing pattern is automatically preserved without any modifications.

Remark 1 We briefly discuss the role of the parameter γ in mimicking the asymptotic long-run

variance. To illustrate, consider a simple time series regression model without missing observations:

Yt = Xtβ+et, t = 1, . . . , T , where β̂ is the OLS estimator of the parameter β, and β̂∗ is the bootstrap

counterpart using the AWB. To establish bootstrap consistency, we shall establish the distribution
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of
√
T
(
β̂∗ − β̂

)
=
(
T−1

∑T
t=1X

2
t

)−1(
T−1/2

∑T
t=1Xtêtξ

∗
t

)
, conditionally on the original sample. As

a result, T−1/2
∑T

t=1Xtêtξ
∗
t must consistently estimate the limiting variance of T−1/2

∑T
t=1Xtet.

Let γ = θ1/ℓ for some θ ∈ (0, 1), where ℓ = ℓT → ∞, as T → ∞, is some positive sequence. We

define the kernel function k(·) in de Jong and Davidson (2000, Theorem 2.1) as k(x) = θ|x|. Under

some regularity conditions, it is straightforward to obtain that:

E∗

(
1√
T

T∑
t=1

Xtêtξ
∗
t

)2

=
1

T

T∑
t=1

T∑
s=1

XtXsêtêsE∗ (ξ∗t ξ
∗
s ) =

1

T

T∑
t=1

T∑
s=1

XtXsêtêsγ
|t−s|

≈ 1

T

T∑
t=1

T∑
s=1

XtXsetesγ
|t−s| =

1

T

T∑
t=1

T∑
s=1

XtXsetesk

(
t− s

ℓ

)
≈ 1

T

T∑
t=1

T∑
s=1

E (XtXsetes) .

The term T−1
∑T

t=1

∑T
s=1 E (XtXsetes) will asymptotically converge to the desired long-run variance.

This example highlights the role of γ as a kernel in estimating long-run variances.

4.2 Confidence intervals

For any τ ∈ (0, 1), asymptotic pointwise confidence intervals Ij,N,T,α(τ) for βj(τ) are constructed to

satisfy lim infT→∞,N→∞ P
(
βj(τ) ∈ Ij,N,T,α(τ)

)
≥ 1− α. In other words, Ij,N,T,α(τ) is statistically

valid for a fixed time point τ ∈ (0, 1). By utilizing q̂j,α(τ) in (4.3), j = 1 . . . , d, one can immediately

obtain pointwise (equal-tailed) bootstrap confidence intervals with the level of 1− α as follows:

IP∗
j,N,T,α(τ) =

[
β̂j(τ)− q̂j,1−α/2(τ), β̂j(τ)− q̂j,α/2(τ)

]
, τ ∈ (0, 1). (4.4)

The construction for g(·) is similar.

Now we justify the AWB-based confidence intervals by demonstrating that the bootstrap

estimator asymptotically replicates the distribution of the proposed LLDV estimator in Section

2.1. This requires the following additional assumptions.

Assumptions: B1 Suppose γ = θ1/ℓ for some θ ∈ (0, 1), where ℓ = ℓNT > 0 satisfying

max

{
Nℓ2h̃4,

ℓ2

Nϖ(p0/2)/2

Nϖ(p0/2) ln(NT )

T ϕ(p0/2)h̃
,

Nℓ2

(TN2)ϕ(p0)−ϕ(p0/2)

Nϖ(p0/2) ln(NT )

T ϕ(p0/2)h̃
,
1

ℓ
,
ℓ

Th

}
→ 0,

as (N, T ) → ∞, where h̃ is the oversmoothing parameter used in the AWB (Step 1).
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B2 Suppose
∑N

i,j,m=1

(∑T
k=1 |E (εi1εjk)|

)(∑T
k=1 |E (εi1εmk)|

)
= o(N2). Moreover,

sup
t≥1

E

∥∥∥∥∥ 1√
N

N∑
i=1

σi(τt)Mitεit

(
νit − ν

(m)
it

)∥∥∥∥∥
2

= O
(
m−ς

)
, ς > 1. (4.5)

B3 Choose h̃ = h̃(N, T ) such that max
{
h̃, NTh7, NThh̃4, (NT )ϖ(p0/2)/2 ln(NT )h/h̃

}
→ 0, as

(N, T ) → ∞.

We first comment on Assumption B1. By the identities 1 − ϕ(p0/2) = ϖ(p0/2)/2 and

ϕ(p0)− ϕ(p0/2) = [ϖ(p0/2)−ϖ(p0)]/2, Assumption B1 implies that N1/2ℓ
{
max1≤i≤N |α̃i − αi|+

supτ∈[0,1]
∥∥θ̃(τ)− θ(τ)

∥∥} = op(1). Moreover, note that h̃ > h by assumption. Under Assumption

A8, we have Nϖ(p0/2) ln(NT )/
(
T ϕ(p0/2)h̃

)
→ 0. Therefore, a key requirement to maintain the rates

in Assumption B1 is to ensure that ℓ does not grow too rapidly. It indicates that when T is not

sufficiently large, ℓ cannot be too large. Otherwise, estimation errors such as those from the fixed

effects estimates in the cross-sectional dimension could accumulate quickly, leading to bootstrap

inconsistency. Specifically, the rapid growth of ℓ hinders the consistent estimation of the long-run

variance. For this reason, we recommend choosing a relatively small value for γ in finite samples.

Assumption B2 aligns with the spirit of Assumptions A7(a) and A7(c). Finally, Assumption B3

establishes conditions on the rate of the oversmoothing parameter such that the AWB correctly

captures the second-order bias (Remark 2).

The following theorem indicates that the AWB consistently mimics the asymptotic distribution

presented in Theorem 2.

Theorem 3 (Pointwise bootstrap validity) Let θ̂∗(·) be the bootstrap counterpart of θ̂(·)

and θ̃(τ) be the oversmoothed estimate of θ(·) in Section 4.1. Under Assumptions A1 - A8, B1 -

B3, for any fixed τ ∈ (0, 1), as (N, T ) → ∞,

√
NTh

(
θ̂∗(τ)− θ̃(τ)− h2b(τ)

)
d∗→p N

(
0,Φ(τ)−1Φνε(τ)Φ(τ)−1

)
. (4.6)

Remark 2 We can gain insight into the conditions related to the oversmoothing parameter h̃ in
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Step 1 of the AWB by examining the expression:
√
NTh

(
θ̂∗(τ)− θ̃(τ)−h2b(τ)

)
=

√
NTh

[
θ̂∗(τ)−

E∗(θ̂∗(τ)
)]
+
√
NTh

[
E∗(θ̂∗(τ)

)
−θ̃(τ)−h2b(τ)

]
. The first term

√
NTh

[
θ̂∗(τ)−E∗(θ̂∗(τ)

)]
appears

to mimic the stochastic variation and converges to the distribution in Eq. (4.6). To achieve bootstrap

consistency, we require the second term
√
NTh

[
E∗(θ̂∗(τ)

)
− θ̃(τ)− h2b(τ)

]
to be asymptotically

negligible. We find that E∗(θ̂∗(τ)
)
− θ̃(τ)−h2b(τ) = Op(h

3)+Op

(
h̃2+

√
ln(NT )/

(
(NT )ϕ(p0/2)h̃

))
,

uniformly in τ ∈ [0, 1]. Assumption B3 is therefore needed. Despite these technical details, the

asymptotic negligibility of the term means that the bootstrap estimators can consistently estimate

the second-order bias.

Moreover, the overall variation of coefficient curves over a time period may be of interest

in practice. Simultaneous confidence bands serve this purpose. However, there is currently no

available asymptotic construction of simultaneous bands for our models, irrespective of the presence

of missing observations. Even if a construction were available, it might still face challenges with

slow convergence speeds, as recognized in the time series literature (Zhou and Wu, 2010). We

elaborate on obtaining simultaneous bands using AWB-based bootstrap correction in Appendix F.

5 Simulation study

We examine the consistency of the proposed LLDV estimator, as well as the empirical coverage and

length of the pointwise intervals and simultaneous bands from the AWB, in the presence of missing

observations. Throughout, we employ the Epanechnikov kernel K(x) = 3/4(1− x2)1{|x|≤1}. To

examine the impact of the bandwidth, we explore fixed values of h ∈ {0.09, 0.12, 0.15}. Additionally,

we introduce a data-driven bandwidth selection (denoted as ĥPLMCV) in Appendix E using the

panel local modified cross-validation (PLMCV). Since the results are relatively robust to the

oversmoothing bandwidth h̃ in Step 1 of the AWB, we adopt the suggestion in Friedrich and

Lin (2022) and set h̃ = Ch5/9 with C = 2. Moreover, there is currently no available method

for selecting an “optimal” γ in Step 2 of the AWB. As our theory suggests that the value of γ
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Figure 1: Plots of the global trend and the slope coefficients used in the simulation study.

should be relatively small when T is not very large, we consider γ ∈ {0.15, 0.2, 0.25, 0.3, 0.35, 0.4}

in simulations. As shown later, we find that a value around 0.25 consistently produces satisfactory

results. All confidence intervals have a nominal level of 95%. The results are based on 103 Monte

Carlo replications and B = 999 bootstrap samples. To evaluate the accuracy, we report the average

mean squared errors (AMSE). Moreover, we employ the methodology described in Friedrich and

Lin (2022, p.12) to evaluate empirical coverage and length of confidence intervals and bands

(details are available in Appendix G.2). Additional discussions and the full set of results are

provided in the supplementary materials, Appendices E - G.

5.1 The data generating process

We consider a model with a smooth global trend that mimics an asymmetric V-shape as observed

in one of our applications in ethane (Figure 5). Additionally, we adopt two time-varying slope

coefficients from Friedrich and Lin (2022); one positive slope coefficient with a two-peak shape,

and one negative, smoothly decreasing coefficient. Since the model allows for heteroskedasticity,

time-varying volatilities are also considered in our simulations. More specifically, we consider

yit = αi+ g (t/T )+β1(t/T )xit,1+β2(t/T )xit,2+σi(t/T )εit, where g(τ) = −4τ 3+9τ 2− 6τ +2, and

β1(τ) = 1.5 exp(−10(τ − 0.2)2) + 1.6 exp(−8(τ − 0.8)2), (5.1)

β2(τ) = −0.5τ − 0.5 exp(−5(τ − 0.8)2). (5.2)

Figure 1 depicts the curves of the global trend and the slope coefficients. For the regressors
{
xit =

(xit,1, xit,2)
′}, we shall specify their local trends, individual specific effects, and the innovation pro-
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cesses. First, we take the following local trends ℓ(τ) =
(
sin(τ), (τ −0.5)2

)′
. Second, the individual-

specific effects χi = (χi,1, χi,2)
′ are i.i.d. U[−1, 1]. Third, we generate the innovation processes from

a VAR(1) process, where we allow for cross-sectional dependence among individuals i through the

parameters ρu,1 and ρu,2 (given below) for the regressors, respectively. Additionally, we allow for

dependence between regressors for each i through ρu,3. In summary, we generate the innovations

of the regressors {ν•t,j} as follows: ν•t,j = (ν1t,j, . . . , νNt,j)
′ = Ajν•t−1,j +u•t,j , Aj = ajIN , j = 1, 2,

where u•t =
(
u′

•t,1,u
′
•t,2

)′ i.i.d.∼ N (0,Σu) with Σu =
(

Σu,1 Σu,3

Σu,3 Σu,2

)
, Σu,j =

(
ρ
|l−i|
u,j , 1 ≤ i, l ≤ N

)
for j = 1, 2, Σu,3 = ρu,3IN , and aj = 0.1. We take (ρu,1, ρu,2, ρu,3) = (0.3, 0.1, 0.3). Moreover,

following Li et al. (2011), we take the fixed effects as αi = ρα

(
T−1

∑T
t=1 xit,1

)
+uαi , u

α
i

i.i.d.∼ N (0, 1),

i = 1, . . . , N − 1, and αN = −
∑N−1

i=1 αi. We fix ρα = 1. We consider heteroskedastic errors.

Five patterns are adopted. In particular, the volatility process σi(τ) for individual i can be: (i)

constant, i.e., σi(τ) = 1; (ii) smoothly increasing, decreasing, i.e., σi(τ) = 1 + κτ , κ = 0.5,−0.5;

(iii) smoothly fluctuating, i.e., σi(τ) = 1 + a cos(2πκτ), a = 0.5 and κ = 4; or (iv) smoothly

increasing and fluctuating, i.e., σi(τ) = 1 + τ + a cos(2πκτ), a = 0.5 and κ = 4. We randomly

assign one of the patterns to the individuals i = 1, . . . , N . For the error process, we consider

a VAR(1) process, where we produce cross-sectional dependence through the covariance matrix

of the innovations. In particular, we generate the error term {ε•t = (ε1t, . . . , εNt)
′} according

to ε•t = Ξε•t−1 + ηt, ηt
i.i.d.∼ N (0,Ση), where Ξ = ρεIN , and Ση =

(
ρ
|j−i|
η , 1 ≤ i, j ≤ N

)
with

ρη = 0.1. We vary the strength of serial dependence and consider ρε ∈ {0.1, 0.3}. The final step

is to generate the missing patterns. We simulate a strictly stationary Markov chain of missing

values independently for each unit, with the transition matrix given by

Mit = 0 Mit = 1
Mi(t−1) = 0 0.3 0.7

Mi(t−1) = 1 0.1 0.9

where we let Mi1 ∼ Bern(7/8). This will yield approximately 12.5% of the sample to be missing.
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Figure 2: Average AMSE ×104 under heteroskedasticity, and h = 0.15.

Table 1: Pointwise empirical coverage of confidence bands for various sample sizes and heteroskedastic
errors, γ = 0.2.

ρε = 0.1 ρε = 0.3

N = 75 N = 75 N = 150 N = 75 N = 75 N = 150

h T = 75 T = 150 T = 150 T = 75 T = 150 T = 150

g

0.09 0.945 0.957 0.968 0.913 0.928 0.943
0.12 0.954 0.960 0.971 0.929 0.932 0.950
0.15 0.959 0.964 0.970 0.929 0.942 0.948

ĥPLMCV 0.958 0.960 0.969 0.928 0.936 0.944

β1

0.09 0.953 0.965 0.979 0.957 0.965 0.977
0.12 0.945 0.948 0.957 0.954 0.947 0.956
0.15 0.925 0.901 0.888 0.924 0.897 0.885

ĥPLMCV 0.926 0.947 0.968 0.927 0.940 0.970

β2

0.09 0.939 0.953 0.950 0.942 0.954 0.949
0.12 0.943 0.952 0.956 0.945 0.949 0.954
0.15 0.947 0.947 0.954 0.943 0.951 0.954

ĥPLMCV 0.945 0.950 0.955 0.944 0.946 0.954

5.2 Simulation findings

We draw the following four main conclusions from our simulation results.

(i) Figure 2 shows the empirical accuracy increases when N or T increases. These results

provide evidence of the uniform consistency of our LLDV estimator under missing values

(Proposition 1).

(ii) Pointwise intervals show overall accurate empirical coverage in Table 1, even when N and T

are small. They show robustness to the degree of serial correlation. For ρε = 0.3, empirical

coverage is slightly lower than for ρε = 0.1 when N = T = 75. But they are nevertheless
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Table 2: Pointwise empirical coverage (Cov.) and length (Lgth.) for (ρε, N, T ) = (0.3, 75, 75) with the
bandwidth ĥPLMCV selected by PLMCV (Appendix E) and heteroskedastic errors.

γ 0.15 0.2 0.25 0.3 0.35 0.4

Cov.
g 0.926 0.928 0.933 0.931 0.938 0.937
β1 0.924 0.927 0.931 0.933 0.932 0.936
β2 0.945 0.944 0.943 0.942 0.943 0.942

Lgth.
g 0.221 0.226 0.230 0.233 0.243 0.250
β1 0.190 0.193 0.195 0.199 0.206 0.211
β2 0.147 0.147 0.146 0.145 0.148 0.148

close to the nominal level (95%). Similar conclusions are found by Friedrich and Lin (2022)

for time-varying time series models.

(iii) The pointwise results are relatively robust to the choice of bandwidth. The empirical

coverage of all coefficient curves is close to the nominal level of 95%, irrespective of fixed or

data-driven bandwidth (ĥPLMCV), except for h = 0.15 in the case of β1. This is expected,

considering that β1 has two peaks, making it more challenging to cover compared to g and

β2. Empirical simultaneous coverage, on the other hand, is more sensitive to the choice of

bandwidth but generally exhibits accurate coverage or mild undercoverage (Appendix F.1).

(iv) The pointwise results demonstrate overall robustness to the choice of γ, as shown in Table 2.

A slight tradeoff between empirical coverage and length is observable.

Table G.2 (Appendix G.3) shows the empirical length decreases as either N or T increases.

6 Empirical application

We examine two empirical examples. In Section 6.1, we investigate the relationship between

surface particulate matter air pollution (PM2.5) and mortality. Subsequently, in Section 6.2, we

perform a common trend analysis of atmospheric ethane emissions in the Northern Hemisphere.

Both examples only involve missing observations in the dependent variables and thus fit into our

framework. The bandwidths are determined through PLMCV (Appendix E). For both analyses,

we present results for γ = 0.2 and B = 1, 500. Additional outputs for different values of γ can be
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Figure 3: Proportion of missing mortality data (left) and cross-sectional average for mortality (right).

found in Appendix H.1, where the results remain similar. Further details on data acquisition can

be found in Appendix H.3.

6.1 Mortality and PM2.5

The effect of PM2.5 on mortality has been studied by, for example, Pope III et al. (2009), Samet

et al. (2000), Lelieveld et al. (2015), and Zhang et al. (2017). Existing research identifies a range

of causes of death attributable to PM2.5 exposure (Burnett et al., 2018; Landrigan et al., 2018).

Current studies characterize the relationship between PM2.5 concentrations and mortality as

time-invariant. In our empirical analysis, we revisit this relationship, examining the trending

patterns and a potentially time-varying effect. We collect population-weighted surface PM2.5 data

in microgram per cubic metre (µg/m3) from the Atmospheric Composition Analysis Group. For

the mortality, we take the total death cases per month from UNdata and divide it by the total

population per month. The monthly total population data is part of the Atmospheric Composition

Analysis Group dataset. Our sample, in total, includes 132 countries all over the globe and spans

the months from January 2017 to December 2021, resulting in T = 60.

Due to registration and accounting limitations, mortality data are not transferred to the UN

for each month for every country. This results in an average number of missing observations

per month of around 30%. In Figure 3 (left), we display the average of missing data across all
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Figure 4: Estimated coefficient curves with 95%-level pointwise intervals (shaded area) and simultaneous
bands (dashed lines, see Appendix F). The simultaneity is over the full sample period.

countries over time. The data availability varies throughout the sample period and appears to

follow a Markovian pattern on average, aligning with our assumptions on the missing pattern.

Since we are interested in the effect of PM2.5 on mortality, we denote yit as the average

population-weighted mortality for country i in month t, and xit as the corresponding level of

PM2.5. In Figure 3 (right), we observe a gradual upward trend in yit, while Figure H.1 (Appendix

H.1) illustrates a slight downward trend in xit. Both of these trending patterns align with our

theoretical framework. We thus estimate our model including a global trend and xit with a

data-driven bandwidth ĥPLMCV = 0.2638.

Figure 4 displays the estimated global trend in the left panel as well as the estimated coefficient

curve for PM2.5 in the right panel (black lines). In both panels, the pointwise confidence intervals

(shaded area) and the simultaneous confidence bands (dashed lines) are added. The pointwise

intervals show us the significance of the trend or the effect of PM2.5 on mortality at any given point

in time, while we consult the simultaneous confidence bands for inference on the development over

time. The global trend in mortality (left panel) shows an overall upward-sloping behavior over

the whole sample. According to the 95% simultaneous confidence bands, this trending behavior

is significant. In addition, we find a significant and positive effect of PM2.5 concentrations on

mortality over the whole sample (right panel). The estimated coefficient curve of PM2.5 shows a
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relatively flat downward-upward-downward pattern. As highlighted by previous studies (Li et al.,

2023), a positive effect provides strong motivation for effective policy on air quality to reduce

mortality. The pointwise confidence intervals for the PM2.5 indicate that the effect is significantly

positive at each time point in our sample. Additionally, the width of the confidence intervals

seems to increase as the estimated effect of PM2.5 increases, for example, the width around the

peak in 2021 is larger than the width around the trough in 2018. Exploring the reasons behind

the time-varying width may be an interesting avenue for further research.

6.2 Ethane emissions

Ethane is the most abundant non-methane hydrocarbon gas and its main sources are the oil and

gas industry, where it is co-emitted with methane. It contributes to the formation of ground-level

ozone which is a major pollutant. Friedrich et al. (2020) analyze trends in ethane emissions

from four different measurement stations on a series-by-series basis. We extend their analysis

by extracting a common trend among N = 11 series from the Northern Hemisphere. The data

are obtained from the Network for the Detection of Atmospheric Composition Change (NDACC)

using the Fourier Transform InfraRed (FTIR) remote-sensing technique, spanning from 1986 to

2022 with daily observations (T = 13, 394). The dry air mole fraction of ethane is given in parts

per billion (ppb). We deseasonalize the data on a station-by-station basis by subtracting their

station-specific mean and regressing the series on one Fourier term. Since measurements can only

be taken under clear-sky conditions, the average across stations of missing observations in our

sample is around 90%. We apply our LLDV to estimate model (2.1) with d = 0, as the model in

Robinson (2012), and obtain only the global trend estimate ĝ with the bootstrapped confidence

intervals/bands. The data-driven bandwidth is ĥPLMCV = 0.1298; see details in Appendix H.2.

The global trend and corresponding confidence intervals/bands are shown in Figure 5. The

left panel plots the data in colored circles as well as the estimated global trend (black line) and

the 95% simultaneous confidence intervals (dashed lines). The right panel zooms in on the trend
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Figure 5: Estimated global trend for ethane emissions; refer to Figure 4 for additional details.

and confidence bands. We observe an overall downward-upward-downward trending pattern which

confirms the main findings of the univariate analysis in Friedrich et al. (2020), but here it is

common to many stations. The first trend reversal around 2007 is often attributed to the oil and

gas boom in North America while the second reversal could be explained by a drastic drop in oil

prices making it less profitable to exploit shale gas wells. The local peak in 1997/1998 can be

attributed to boreal forest fires happening in Russia (Friedrich et al., 2020).

7 Conclusion

We explored a class of trending time-varying panel models that allow for missing observations,

cross-sectional and serial dependence, and heteroskedasticity. We introduced a local linear dummy

variable estimation method to handle missing observations in the dependent variable without

relying on imputation. We obtained the limiting distribution of the parameter estimators based

on a new uniform convergence result. This result accommodates cross-sectional dependence and

near-epoch dependence over time. The limiting distribution contains various nuisance parameters.

Estimating these nuisance parameters is challenging; hence, we propose an autoregressive wild

bootstrap (AWB) procedure to construct confidence intervals and bands. The AWB automatically
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captures these nuisance parameters and demonstrates good performance in finite samples. We

illustrated the proposed methods through two applications. First, we investigated the relationship

between environmental quality and mortality in 132 countries, uncovering a significant upward trend.

Second, we examined the global trend in atmospheric ethane, revealing an overall downward-upward-

downward trending pattern. For future research, developing results of strong approximations will

be crucial to justify the simultaneous bands. Additionally, the impact of missing observations in

covariates on the asymptotic distribution remains an open question.
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A Notation and definition of near-epoch processes

We collect the notation used throughout this paper in this section. Let 1{·} be an indicator function.

For any vector x = (xj) ∈ Rn, its p-norm is denoted by ∥x∥p = (
∑n

j=1 |xj |p)1/p. The induced p-norm for

a matrix A is ∥A∥p = supx̸=0 ∥Ax∥p/∥x∥p. We omit the subscripts whenever p = 2. Let diag (A,B) =(
A

B

)
for matrices A and B. For any vector x ∈ Rn and diagonal matrix D = diag (d1, . . . , dn) ∈ Rn×n,

xk =
(
xkj

)
and Dk = diag

(
dk1, . . . , d

k
n

)
take the power k element-wise. The Kronecker product is denoted

by “⊗”. The symbols “
p→” and “

d→” denote convergence in probability and in distribution, respectively.

For two sequences of positive numbers {aNT } and {bNT }, we write aN,T ∼ bN,T if there exists some

constant ε > 0 such that ε−1 ≤ aNT /bNT ≤ ε for all large N and T . For a, b ∈ R, let a∧b = min{a, b} and

a ∨ b = max{a, b}. Moreover, we denote
∑n

i1,i2,...,ik=m =
∑n

i1=m

∑n
i2=m . . .

∑n
ik=m, where k,m, n ∈ Z+

and m ≤ n. Bootstrap quantities are given a superscript ∗, expressing that it is conditional on the

original sample as in, e.g., Boswijk et al. (2021). For instance, “
d∗→p” denotes bootstrap weak convergence

in probability (Gine and Zinn, 1990). Let CiI, i ∈ N, be the collection of functions that have ith-order

continuous derivatives on the interval I ⊂ R, and f (i)(x) = dif(x)/dxi represent the i-th-order derivative

of f with respect to x. The generic constants C,C1, C2, . . . can change from line to line.

The following definition of near-epoch process is an extension from time series to panel models.

Definition A.1 (Near-Epoch Dependence) Let {Xit, t ∈ Z} be an Rd-valued process, defined based

on a possibly vector-valued process {εit, t ∈ Z} by

Xit = (Xit,1, . . . , Xit,d)
′ = ΨXi

(
εit, εi(t−1), . . .

)
, i = 1, . . . , N,

where ΨXi : R∞ → Rd are Borel measurable functions. For i = 1, . . . , N , the process {Xit, t ∈ Z} is said

to be (strictly stationary) near-epoch dependent in Lp-norm (NED in Lp) with respect to {εit, t ∈ Z}, if

{εit, t ∈ Z} is (strictly stationary) α-mixing process, and

ψi,p(m) = sup
t∈Z

E
∥∥∥Xit −X

(m)
it

∥∥∥p → 0, p > 0, as m→ ∞, (A.1)

where X
(m)
it =

(
X

(m)
it,1 , . . . , X

(m)
it,d

)′
= ΨXi,m(εit, . . . , εi(t−m+1)), and ΨXi,m are Rd-valued Borel measurable

functions with m arguments. The term ψi,p(m) is said to be the stability coefficients of order p of the

process {Xit, t ∈ Z}.

The process {Xit, t ∈ Z} is not required to be strictly stationary. If it is strictly stationary, then

supt∈Z E
∥∥Xit −X

(m)
it

∥∥p = E
∥∥Xit −X

(m)
it

∥∥p in Eq. (A.1).
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B Proofs of auxiliary results

This section provides some intermediate results that are useful in the proofs of the main results. For

convenience, define wk
t (τ) =

(
τt−τ
h

)k
K
(
τt−τ
h

)
, k ≥ 0. ∀τ ∈ [0, 1], let Ih,s(τ) = {t : |τt+s − τ | ≤ h}, s ≥ 0.

Without confusion, we suppress the dependence on s whenever s = 0, i.e., Ih(τ) = Ih,0(τ). We first

establish the general theorem of uniform convergence which proves to be useful in our proofs.

Proof of Theorem 1 For m ≥ 0, define QN,t = N−1
∑N

i=1 Yit and Q
(m)
N,t = N−1

∑N
i=1 Y

(m)
it . Then the LHS

of (3.5) can be bounded by

sup
τ∈[0,1]

∣∣∣∣∣∣ 1

Th

∑
t∈Ih,u0 (τ)

wk
t (τ)

[
Q

(m)
N,t − E

(
Q

(m)
N,t

)]∣∣∣∣∣∣+ sup
τ∈[0,1]

∣∣∣∣∣∣ 1

Th

∑
t∈Ih,u0 (τ)

wk
t (τ)E

(
QN,t −Q

(m)
N,t

)∣∣∣∣∣∣
+ sup

τ∈[0,1]

∣∣∣∣∣∣ 1

Th

∑
t∈Ih,u0 (τ)

wk
t (τ)

(
QN,t −Q

(m)
N,t

)∣∣∣∣∣∣ =: KNT,1 +KNT,2 +KNT,3, (B.1)

where Ih,u0(τ) = {t : |τt − τ | ≤ u0h}. Consider the term KNT,1 first. We cover the interval [0, 1] by a

finite number of subintervals Bl, l = 1, . . . , LNT . These subintervals are centered at bl with a radius of

h rNT [δN (m)]−1, where rNT =
√

ln(NT )

(NT )ϕ(q)h
and δN (m) = N−1

∑N
i=1 [ψi,p(m)]1/p +N−1/2. Then, by the

triangle inequality, KNT,1 is bounded by

max
1≤l≤LNT

sup
τ∈Bl

∣∣∣∣∣∣ 1

Th

∑
t∈Ih,u0 (τ)

(
wk
t (τ)− wk

t (bl)
) [
Q

(m)
N,t − E

(
Q

(m)
N,t

)]∣∣∣∣∣∣
+ max

1≤l≤LNT

∣∣∣∣∣∣ 1

Th

∑
t∈Ih,u0 (τ)

wk
t (bl)

[
Q

(m)
N,t − E

(
Q

(m)
N,t

)]∣∣∣∣∣∣ . (B.2)

By Minkowski’s and Lyapunov’s inequalities, (3.2) and (3.3), we obtain

sup
t≥1

(
E
∣∣∣Q(m)

N,t − E
(
Q

(m)
N,t

)∣∣∣q)1/q ≤ sup
t≥1

{
2
(
E
∣∣∣QN,t −Q

(m)
N,t

∣∣∣q)1/q + (E∣∣∣QN,t − E
(
QN,t

)∣∣∣q)1/q}

= N−1 sup
t≥1

2

(
E

∣∣∣∣∣
N∑
i=1

[
Yit − Y

(m)
it

]∣∣∣∣∣
q)1/q

+

(
E

∣∣∣∣∣
N∑
i=1

[Yit − E (Yit)]

∣∣∣∣∣
q)1/q

 ≤ CδN (m). (B.3)

Note that, for any τ ∈ Bl, l = 1, . . . , LNT ,
∣∣wk

t (τ)−wk
t (bl)

∣∣ ≤ CrNT [δN (m)]−1 by the Lipschitz continuity

of x 7→ xkK(x), where C does not depend on (k, l, τ). By (B.3), the first component in (B.2) can then
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be bounded by

1

Th

∑
t∈Ih,u0 (τ)

max
1≤l≤LNT

sup
τ∈Bl

∣∣∣wk
t (τ)− wk

t (bl)
∣∣∣ ∣∣∣Q(m)

N,t − E
(
Q

(m)
N,t

)∣∣∣
≤ CrNT

1

Th

∑
t∈Ih,u0 (τ)

∣∣∣Q(m)
N,t − E

(
Q

(m)
N,t

)∣∣∣ = Op(rNT ). (B.4)

Next, we consider the second component in (B.2). Let F t2
η,t1

= σ (ηt, t1 ≤ t ≤ t2). For any ϵ > 0, by

Bonferroni’s inequality and the Triplex inequality (Jiang, 2009, Theorem 1), we obtain

P

 max
1≤l≤LNT

∣∣∣∣∣∣ 1

Th

∑
t∈Ih,u0 (τ)

wk
t (bl)

[
Q

(m)
N,t − E

(
Q

(m)
N,t

)]∣∣∣∣∣∣ > 2u0 rNT ϵ


≤

LNT∑
l=1

P

∣∣∣∣∣∣ 1

Th

∑
t∈Ih,u0 (τ)

wk
t (bl)

[
Q

(m)
N,t − E

(
Q

(m)
N,t

)]∣∣∣∣∣∣ > 2u0 rNT ϵ


≤

LNT∑
l=1

{
4m exp

(
−
2u0Th r

2
NT

4m2κ2NT

ϵ2

288

)
+

6

ϵ

1

rNT

1

2u0Th

∑
t∈Ih,u0 (τ)

wk
t (bl)E

∣∣∣E(Q(m)
N,t | F

t−2m
η,−∞

)
− E

(
Q

(m)
N,t

)∣∣∣
+

15

ϵ

1

rNT

1

2u0Th

∑
t∈Ih,u0 (τ)

wk
t (bl)E

( ∣∣∣Q(m)
N,t − E

(
Q

(m)
N,t

)∣∣∣1{wk
t (bl)

∣∣∣Q(m)
N,t − E

(
Q

(m)
N,t

)∣∣∣ > κNT

})}
,

(B.5)

where κNT > 0 can be any sequence that depends on (N,T ). Following the proof of Theorem 14.1 in

Davidson (1994), we observe that
{
Q

(m)
N,t , t ∈ Z

}
is an α-mixing process with mixing coefficients α(m)(j)

bounded by

α(m)(j) ≤


α(j −m), j ≥ m+ 1,

1/4, j ≤ m.

(B.6)

By Theorem 14.2 of Davidson (1994) and (B.3), the “dependence term” in (B.5), i.e., the second term

(without multiplicative constants), can be bounded as

1

rNT

1

2u0Th

∑
t∈Ih,u0 (τ)

wk
t (bl)E

∣∣∣E(Q(m)
N,t | F

t−2m
η,−∞

)
− E

(
Q

(m)
N,t

)∣∣∣ ≤ Cr−1
NT [α(m)]1−1/q δN (m). (B.7)

Moreover, by Hölder’s and Markov’s inequalities, the “tail term” in (B.5), i.e., the last term (without
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multiplicative constants), can be bounded as

1

rNT

1

2u0Th

∑
t∈Ih,u0 (τ)

wk
t (bl)E

( ∣∣∣Q(m)
N,t − E

(
Q

(m)
N,t

)∣∣∣1{wk
t (bl)

∣∣∣Q(m)
N,t − E

(
Q

(m)
N,t

)∣∣∣ > κNT

})
≤ 1

rNT

1

2u0Th

∑
t∈Ih,u0 (τ)

wk
t (bl)

(
E
∣∣∣Q(m)

N,t − E
(
Q

(m)
N,t

)∣∣∣q)1/q [P(wk
t (bl)

∣∣∣Q(m)
N,t − E

(
Q

(m)
N,t

)∣∣∣ > κNT

)]1−1/q

≤ 1

rNT

1

2u0Th

∑
t∈Ih,u0 (τ)

wk
t (bl)

(
E
∣∣∣Q(m)

N,t − E
(
Q

(m)
N,t

)∣∣∣q)1/q
[wk

t (bl)
]q E ∣∣∣Q(m)

N,t − E
(
Q

(m)
N,t

)∣∣∣q
κqNT

1−1/q

=
1

rNTκ
1−q
NT

1

2u0Th

∑
t∈Ih,u0 (τ)

[
wk
t (bl)

]q
E
∣∣∣Q(m)

N,t − E
(
Q

(m)
N,t

)∣∣∣q
≤ Cr−1

NTκ
1−q
NT [δN (m)]q . (B.8)

By Eqs. (B.2), (B.4), (B.5), (B.7), and (B.8), and given that LNT = O
(
h−1r−1

NT δN (m)
)
, to establish

KNT,1 = Op(rNT ), it suffices to show there exist a positive sequence m = mNT such that, as (N,T ) → ∞,

(a) h−1r−1
NT δN (mNT )mNT exp

(
− Th r2NT

m2
NT κ2

NT
C
)
→ 0 for any C > 0;

(b) h−1r−2
NT [α(mNT )]

1−1/q [δN (mNT )]
2 → 0;

(c) h−1r−2
NT κ

1−q
NT [δN (mNT )]

q+1 → 0.

Observe that, from Eq. (3.3), we have

δN (mNT ) = m
−λ/p
NT N−1/2

(
N−1/2

N∑
i=1

di

)
+N−1/2 = O(N−1/2). (B.9)

We then take

mNT =

⌈(
ln(NT )

h r2NT

1

N

)1/[β(1−1/q)]
⌉
∼
[
(NT )ϕβ(q)N−1

]1/[β(1−1/q)]
,

κNT =

(
ln(NT )

h r2NT

1

N (q+1)/2

)1/(q−1)

∼
[
(NT )ϕβ(q)N−(q+1)/2

]1/(q−1)
.

Given (B.9), we obtain

(a′) ln
(
h−1r−1

NT δN (mNT )mNT

)
∼ ln(NT ) and Th r2NT /(m

2
NTκ

2
NT ) ∼ N ℓ0 ln(NT ) for some ℓ0 =

ℓ0(q, β) > 0, and therefore,

h−1r−1
NT δN (mNT )mNT exp

(
−

Th r2NT

m2
NTκ

2
NT

C

)
= exp

{
ln
(
h−1r−1

NT δN (mNT )mNT

)
−

Th r2NT

m2
NTκ

2
NT

C

}
→ 0,

for any C > 0.

(b′) h−1r−2
NT [α(mNT )]

1−1/q [δN (mNT )]
2 ≤ C [ln(NT )]−1 → 0;

(c′) h−1r−2
NT κ

1−q
NT [δN (mNT )]

q+1 ≤ C [ln(NT )]−1 → 0.
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Therefore, KNT,1 = Op(rNT ). For the term KNT,2 in (B.1), we have

KNT,2 ≤

 sup
τ∈[0,1]

1

Th

∑
t∈Ih,u0 (τ)

wk
t (τ)


{
sup
t≥1

E
∣∣∣QN,t −Q

(m)
N,t

∣∣∣} = O
(
m

−λ/p
NT N−1/2

)
= O (rNT ) , (B.10)

where the last step follows from Eq. (3.4) and

m
−λ/p
NT N−1/2r−1

NT ≤ C
[
(NT )ϕβ(q)N−1

]−λ/[pβ(1−1/q)]
(NT )ϕβ(q)/2N−1/2

√
h

1√
ln(NT )

≤ C.

Similarly, by applying Markov’s inequality, we can deduce that KNT,3 = Op(rNT ), which is the last term

in (B.1). Summing up, we have (3.5). ■

Lemma B.1 Recall ϕ(x) =
(1− 1/x)φα

2 + (1 + 1/x)φα
in Assumption A8, where x > 1. Under Assumptions A1,

A3, A5(c), A7(a), A8, for any nonnegative integers k, k1, k2 ≥ 0,

sup
τ∈[0,1]

∥∥∥∥∥ 1

NTh

N∑
i=1

T∑
t=1

wk1
t (τ)ℓk2(τt)Mit −

1

NTh

N∑
i=1

T∑
t=1

wk1
t (τ)ℓk2(τt)E (Mit)

∥∥∥∥∥ = Op (R1,NT ) , (B.11)

sup
τ∈[0,1]

∥∥∥∥∥ 1

NTh

N∑
i=1

T∑
t=1

wk1
t (τ)ℓk2(τt)Mitν

′
it −

1

NTh

N∑
i=1

T∑
t=1

wk1
t (τ)ℓk2(τt)E

(
Mitν

′
it

)∥∥∥∥∥ = Op (R2,NT ) , (B.12)

sup
τ∈[0,1]

∥∥∥∥∥ 1

NTh

N∑
i=1

T∑
t=1

wk
t (τ)Mitνitν

′
it −

1

NTh

N∑
i=1

T∑
t=1

wk
t (τ)E

(
Mitνitν

′
it

)∥∥∥∥∥ = Op (R3,NT ) , (B.13)

where Ri,NT =

√
ln(NT )

(NT )ηih
, with η1 = ϕ (m0), η2 = ϕ(q0), and η3 = ϕ(r0).

Proof of Lemma B.1 By inspecting each element in the vector/matrix, a straightforward application of

Theorem 1 establishes the lemma. It is worth noting that for the process {Mit, t ≥ 1}, one can simply

set di ≡ 0, for i = 1, . . . , N , in Eq. (3.2). The details of these steps are omitted. ■

Lemma B.2 Under Assumptions A1, A3, A5 - A8, for any nonnegative integer k ≥ 0,

sup
τ∈[0,1]

∥∥∥∥∥ 1

NTh

N∑
i=1

T∑
t=1

wk
t (τ)Mitxit −

1

NTh

N∑
i=1

T∑
t=1

wk
t (τ)E (Mitxit)

∥∥∥∥∥ = Op

(
1√
N

+

√
ln(NT )

(NT )ϕ(m0∧q0)h

)
,

(B.14)

sup
τ∈[0,1]

∥∥∥∥∥ 1

NTh

N∑
i=1

T∑
t=1

wk
t (τ)Mitxitx

′
it −

1

NTh

N∑
i=1

T∑
t=1

wk
t (τ)E

(
Mitxitx

′
it

)∥∥∥∥∥ = Op

(
1√
N

+

√
ln(NT )

(NT )ηminh

)
,

(B.15)

where ϕ(·) and ηmin are defined in Lemma B.1.

Proof of Lemma B.2 By definition, the LHS of (B.14) is bounded by
∑3

j=1ΞNT,j(M,x), where, by
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Lemma B.1, ΞNT,1(M,x) = supτ∈[0,1]

∥∥∥(NTh)−1
∑N

i=1

∑T
t=1w

k
t (τ)ℓ(τt) [Mit − E (Mit)]

∥∥∥ = Op (R1,NT ),

ΞNT,2(M,x) = supτ∈[0,1]

∥∥∥(NTh)−1
∑N

i=1

∑T
t=1w

k
t (τ) [Mitνit − E (Mitνit)]

∥∥∥ = Op (R2,NT ). Moreover,

by Assumption A7(b),

ΞNT,3(M,x) = sup
τ∈[0,1]

∥∥∥∥∥ 1

NTh

N∑
i=1

T∑
t=1

wk
t (τ) [Mitχi − E (Mitχi)]

∥∥∥∥∥
= sup

τ∈[0,1]

∥∥∥∥∥ 1

NTh

N∑
i=1

T∑
t=1

wk
t (τ)Mitχi

∥∥∥∥∥ ≤ sup
τ∈[0,1]

1

Th

T∑
t=1

∣∣∣wk
t (τ)

∣∣∣ ∥∥∥∥∥ 1

N

N∑
i=1

Mitχi

∥∥∥∥∥ .
By Assumptions A5(b) and A7(b),

E

∥∥∥∥∥N−1
N∑
i=1

Mitχi

∥∥∥∥∥
2

= N−2
d∑

j=1

E

(
N∑
i=1

Mitχi,j

)2

= N−2
d∑

j=1

E

 N∑
i=1

Mitχ
2
i,j +

∑
i ̸=ℓ

MitMℓtχi,jχℓ,j

 ≤ CN−1.

By Markov’s inequality, we have
∥∥∥N−1

∑N
i=1Mitχi

∥∥∥ = Op

(
N−1/2

)
uniformly in τ . Then, ΞNT,3(M,x) =

Op

(
N−1/2

)
, and thus (B.14) is obtained by noting Op

(∑2
i=1Ri,NT

)
= Op

(√
ln(NT )/[(NT )ϕ(m0∧q0)h]

)
.

Similarly, the LHS of (B.15) is bounded by
∑6

j=1ΞNT,j(M,xx′), where

ΞNT,1(M,xx′) = sup
τ∈[0,1]

∥∥∥∥∥ 1

NTh

N∑
i=1

T∑
t=1

wk
t (τ)ℓ(τt)ℓ(τt)

′ [Mit − E (Mit)]

∥∥∥∥∥ = Op (R1,NT ) ,

ΞNT,2(M,xx′) = 2 sup
τ∈[0,1]

∥∥∥∥∥ 1

NTh

N∑
i=1

T∑
t=1

wk
t (τ)ℓ(τt)

[
Mitν

′
it − E

(
Mitν

′
it

)]∥∥∥∥∥ = Op (R2,NT ) ,

ΞNT,3(M,xx′) = sup
τ∈[0,1]

∥∥∥∥∥ 1

NTh

N∑
i=1

T∑
t=1

wk
t (τ)

[
Mitνitν

′
it − E

(
Mitνitν

′
it

)]∥∥∥∥∥ = Op (R3,NT ) ,

using Lemma B.1. Note that, by Assumptions A5 and A7(b), we have E
∥∥∥N−1

∑N
i=1Mit (χiχ

′
i − E (χiχ

′
i))
∥∥∥2 ≤

CN−1 and E
∥∥∥N−1

∑N
i=1 [Mitχiν

′
it − E (Mitχiν

′
it)]
∥∥∥2 = E

∥∥∥N−1
∑N

i=1Mitχiν
′
it

∥∥∥2 ≤ CN−1. Using similar

arguments for ΞNT,3(M,x) above, we obtain

ΞNT,4(M,xx′) = sup
τ∈[0,1]

∥∥∥∥∥ 1

NTh

N∑
i=1

T∑
t=1

wk
t (τ)

[
Mitχiχ

′
i − E

(
Mitχiχ

′
i

)]∥∥∥∥∥ = Op

(
N−1/2 +R1,NT

)
,

ΞNT,5(M,xx′) = 2 sup
τ∈[0,1]

∥∥∥∥∥ 1

NTh

N∑
i=1

T∑
t=1

wk
t (τ)ℓ(τt)

[
Mitχ

′
i − E

(
Mitχ

′
i

)]∥∥∥∥∥ = Op

(
N−1/2

)
,

ΞNT,6(M,xx′) = 2 sup
τ∈[0,1]

∥∥∥∥∥ 1

NTh

N∑
i=1

T∑
t=1

wk
t (τ)

[
Mitχiν

′
it − E

(
Mitχiν

′
it

)]∥∥∥∥∥ = Op

(
N−1/2

)
.
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Eq. (B.15) is then obtained by combining these results. ■

Lemma B.3 Under Assumptions A1, A5(a), and A6, for any nonnegative integer k ≥ 0,

(a) supτ∈[0,1]

∣∣∣(NTh)−1
∑N

i=1

∑T
t=1w

k
t (τ)pi(τt)− µkp̄(τ)

∣∣∣ = O
(
h2 + (Th2)−1 + ϕp,N

)
,

(b) supτ∈[0,1]

∥∥∥(NTh)−1
∑N

i=1

∑T
t=1w

k
t (τ)pi(τt)ℓ(τt)− µkp̄(τ)ℓ(τ)

∥∥∥ = O
(
h2 + (Th2)−1 + ϕp,N

)
,

(c) supτ∈[0,1]

∥∥∥(NTh)−1
∑N

i=1

∑T
t=1w

k
t (τ)pi(τt)ℓ(τt)ℓ(τt)

′ − µkp̄(τ)ℓ(τ)ℓ(τ)
′
∥∥∥ = O

(
h2 + (Th2)−1 + ϕp,N

)
,

where ϕp,N is given in Assumption A6.

Proof of Lemma B.3 The following result is used repeatedly:

∣∣∣∣∣T−1
T∑
t=1

g (t/T )−
∫ 1

0
g(z) dz

∣∣∣∣∣ ≤ sup
|x−y|≤T−1

|g(x)− g(y)| , (B.16)

where g(·) is continuous and Riemann-integrable (Bühlmann, 1998, Eq. (6.5)). We only show Part (c) as

the others are similar. By (B.16), Assumption A6, and that p̄(·)ℓ(·)ℓ(·)′ ∈ C2[0, 1],

1

Th

T∑
t=1

wk
t (τ)

1

N

N∑
i=1

pi(τt)ℓ(τt)ℓ(τt)
′ =

1

Th

T∑
t=1

wk
t (τ)p̄(τt)ℓ(τt)ℓ(τt)

′ +O(ϕp,N )

=

∫ 1

0
h−1

(
z − τ

h

)k

K

(
z − τ

h

)
p̄(z)ℓ(z)ℓ(z)′ dz +O

(
1

Th2

)
+O(ϕp,N )

=

∫ 1

−1
ukK(u)p̄(τ + uh)ℓ(τ + uh)ℓ(τ + uh)′ du+O

(
1

Th2

)
+O(ϕp,N )

= µkp̄(τ)ℓ(τ)ℓ(τ)
′ +O(h2) +O

(
1

Th2

)
+O(ϕp,N ),

where the final step follows from a Taylor expansion of each element of p̄(τ + uh)ℓ(τ + uh)ℓ(τ + uh)′

around the corresponding element of p̄(τ)ℓ(τ)ℓ(τ)′, and µ1 =
∫ 1
−1 uK(u) du = 0. Note that the asymptotic

terms O(·) and o(·) are uniform in τ , and thus Part (c) follows. ■

Recall the definition of ντ,i Eq. (2.8). When T is sufficiently large, Assumption A6 ensures the

presence of at least one observation in the h-neighborhood τ ∈ [0, 1], we have ντ,i ̸= 0. Without loss of

generality, we will proceed with the assumption ντ,i =
(∑T

t=1w
0
t (τ)Mit

)−1
.

Lemma B.4 Recall ϕ(x) =
(1− 1/x)φα

2 + (1 + 1/x)φα
and ϖ(x) =

4(1 + φα/x)

2 + (1 + 1/x)φα
in Assumption A8. Note

that ϕ(·) and ϖ(·) are strictly increasing and decreasing functions, respectively. Suppose Assumptions A1,

A3, and A5(c), are imposed for all the parts below. Let k, k1, k2 ≥ 0 be any nonnegative integers (if not

specified).

(a) max
1≤i≤N

sup
τ∈[0,1]

∣∣∣(Th)−1
∑T

t=1w
k
t (τ) [Mit − E(Mit)]

∣∣∣ = Op

(√
N1−ηmax ln(NT )

T ηmaxh

)
, ηmax = lim

x→+∞
ϕ(x) =

φα/(2 + φα). One has
N1−ηmax ln(NT )

T ηmaxh
≤ Nϖ(p0/2) ln(NT )

T ϕ(p0/2)h
→ 0, as (N,T ) → ∞, by Assumption

A8.
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(b) max
1≤i≤N

sup
τ∈[0,1]

(Thντ,i) = Op(1).

(c) max
1≤i≤N

sup
τ∈[0,1]

∣∣∣(Th)−1
∑T

t=1w
k
t (τ)Mit

∣∣∣ = Op

(√
N1−ηmax ln(NT )

T ηmaxh
+ h+

1

Th2

)
if k is odd, and is

Op(1) if k is even.

(d) max
1≤i≤N

sup
τ∈[0,1]

∥∥∥(Th)−1
∑T

t=1w
k
t (τ) [Mitνit − E (Mitνit)]

∥∥∥ = Op

√Nϖ(p0) ln(NT )

T ϕ(p0)h

. By Assump-

tion A8, one has
Nϖ(p0) ln(NT )

T ϕ(p0)h
<
Nϖ(p0/2) ln(NT )

T ϕ(p0/2)h
→ 0, as (N,T ) → ∞.

(e) max
1≤i≤N

sup
τ∈[0,1]

∥∥∥(Th)−1
∑T

t=1w
k1
t (τ)wk2

t (τ) [Mitνitν
′
it − E (Mitνitν

′
it)]
∥∥∥ = Op

√Nϖ(p0/2) ln(NT )

T ϕ(p0/2)h

.

(f) max
1≤i≤N

sup
τ∈[0,1]

∥∥∥(Th)−1
∑T

t=1w
k
t (τ)Mitxit

∥∥∥ = Op

√Nϖ(p0) ln(NT )

T ϕ(p0)h
+ h+

1

Th2

 = op(1) for an

odd integer k and is Op(1) for an even k, if Assumptions A5(b), A7(b), and A8 hold.

(g) sup
τ∈[0,1]

∥∥∥N−1
∑N

i=1 ντ,i
∑T

t=1w
k
t (τ)Mitνit

∥∥∥ = Op

√Nϖ(p0) ln(NT )

T ϕ(p0)h

.

(h) sup
τ∈[0,1]

∣∣ThN−1ωτ − q̄(τ)
∣∣ = Op

(
ϕq,N + h+

1

Th2
+

√
N1−ηmax ln(NT )

T ηmaxh

)
if Assumption A6 holds.

(i) sup
τ∈[0,1]

∣∣∣N−1
∑N

i=1 ντ,i
∑T

t=1w
k
t (τ)Mit − µk

∣∣∣ = Op

(
h+

1

Th2
+

√
N1−ηmax ln(NT )

T ηmaxh

)
.

Proof of Lemma B.4 We start by showing Part (a). The steps are similar to Proof of Theorem 1. That

is, we cover the interval [0, 1] by a finite number of subintervals B̄l, l = 1, . . . , L̄NT , which are centered at

b̄l with radius hϱNT , where ϱNT =
[
T−ηmaxh−1N1−ηmax ln(NT )

]1/2
. It is easy to obtain

max
1≤i≤N

sup
τ∈[0,1]

∣∣∣∣∣ 1

Th

T∑
t=1

wk
t (τ) [Mit − E(Mit)]

∣∣∣∣∣ ≤ Op(ϱNT )+ max
1≤i≤N

max
1≤l≤LNT

∣∣∣∣∣∣ 1

Th

∑
t∈Ih(τ)

wk
t (bl) [Mit − E(Mit)]

∣∣∣∣∣∣ .
Let F t2

ξ,t1
= σ (ξ•t, t1 ≤ t ≤ t2). By Bonferroni’s inequality and the Triplex inequality (Jiang 2009,

Theorem 1), for any Mϵ, δ̄NT > 0 and positive integer q̄NT ,

P

 max
1≤i≤N

max
1≤l≤LNT

∣∣∣∣∣∣ 1

Th

∑
t∈Ih(τ)

wk
t (bl) [Mit − E(Mit)]

∣∣∣∣∣∣ ≥ 2MϵϱNT


≤

N∑
i=1

LNT∑
l=1

2q̄NT exp

(
−
2Thϱ2NT

q̄2NT δ̄
2
NT

M2
ϵ

288

)
+

6

Mϵ

1

ϱNT

1

2Th

∑
t∈Ih(τ)

wk
t (bl)E

∣∣∣E(Mit | F t−q̄NT

ξ,−∞

)
− E (Mit)

∣∣∣
+

15

Mϵ

1

ϱNT

1

2Th

∑
t∈Ih(τ)

wk
t (bl)E

(
Mit1

{∣∣∣wk
t (bl)Mit

∣∣∣ > δ̄NT

}) . (B.17)

Putting p = 1 and r = ∞ in Theorem 14.2 by Davidson (1994), we have

1

ϱNT

1

2Th

∑
t∈Ih(τ)

wk
t (bl)E

∣∣∣E(Mit | F t−q̄NT

ξ,−∞

)
− E (Mit)

∣∣∣ ≤ Cϱ−1
NT α (q̄NT ) .
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Moreover, by Markov’s inequality, for any r̄ > 0,

1

ϱNT

1

2Th

∑
t∈Ih(τ)

wk
t (bl)E

(
Mit1

{∣∣∣wk
t (bl)Mit

∣∣∣ > δ̄NT

})
≤ Cδ̄−r̄

NTϱ
−1
NT .

By (B.17), one obtains max1≤i≤N max1≤l≤LNT

∣∣∣(Th)−1
∑

t∈Ih(τ)w
k
t (bl) [Mit − E(Mit)]

∣∣∣ = Op(ϱNT ) if for

any ϵ > 0, there exists Mϵ > 0 such that

2NLNT q̄NT exp

(
−
Thϱ2NT

q̄2NT δ̄
2
NT

M2
ϵ

144

)
+ C̃1NLNTϱ

−1
NTα (q̄NT ) + C̃2NLNT δ̄

−r̄
NTϱ

−1
NT ≤ ϵ, (B.18)

where C̃1, C̃2 > 0 are some constants.

Let q̄NT =

⌈(
N ln(NT )
hϱ2NT

)1/φα
⌉

and δ̄NT =
(
N ln(NT )
hϱ2NT

)1/r̄
. Note that LNT ≤ K0h

−1ϱ−1
NT for some

K0 > 0. Simple linear algebra leads to

ln (2NLNT q̄NT ) < ln(N) + ln(NT ) < 2 ln(NT ), as (N,T ) → ∞.

Moreover, we have
Thϱ2NT

q̄2NT δ̄2NT
∼ (NT )−2ηmax/r̄ ln(NT ). Since r̄ > 0 is arbitrary, we can take r̄ = r̄NT =

NT → ∞, as (N,T ) → ∞, leading to (NT )−2ηmax/r̄ → 1. Therefore, for any ϵ > 0, one can always find

an Mϵ > 0 such that

2NLNT q̄NT exp

(
−
Thϱ2NT

q̄2NT δ̄
2
NT

M2
ϵ

144

)
< exp

(
2 ln(NT )−

Thϱ2NT

q̄2NT δ̄
2
NT

M2
ϵ

144

)
≤ ϵ/3.

Finally, it is easy to obtain C̃1NLNTϱ
−1
NTα (q̄NT ) ≤ C [ln(NT )]−1 ≤ ϵ/3 and C̃2NLNT δ̄

−r̄
NTϱ

−1
NT ≤

C [ln(NT )]−1 ≤ ϵ/3, as (N,T ) → ∞, for any C̃1, C̃2 > 0. Combining these results, we obtain (B.18).

Next, we show Part (b). By Part (a) and Assumption A8, we have

1

Th

T∑
t=1

w0
t (τ)Mit =

1

Th

T∑
t=1

w0
t (τ)pi(τt) + op(1) ≥ pLµ0 + op(1), (B.19)

for all i, where the op-terms are uniform in τ and i. That is, (Th)−1
∑T

t=1w
0
t (τ)Mit is bounded below

away from zero with arbitrarily large probability as (N,T ) → ∞, uniformly in τ and i. Therefore, we

have max1≤i≤N supτ∈[0,1] (Thντ,i) ≤ C with arbitrarily large probability.

Part (c) is obtained using Part (a) and the Riemann sum approximation (B.16).

The proof of Part (d) is similar to Part (a) and Theorem 1; we only sketch the steps. We first construct

open subintervals centered at bl with the radius hN−1ϱ̃NT , where ϱ̃NT =
√
Nϖ(p0) ln(NT )/(T ϕ(p0)h).
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Using E ∥Mitνit∥ ≤ E ∥νit∥ ≤ C, it is easy to obtain

max
1≤i≤N

sup
τ∈[0,1]

∥∥∥∥∥ 1

Th

T∑
t=1

wk
t (τ) [Mitνit − E (Mitνit)]

∥∥∥∥∥
≤ Op(ϱ̃NT ) + max

1≤i≤N
max

1≤l≤LNT

∥∥∥∥∥∥ 1

Th

∑
t∈Ih(τ)

wk
t (bl) [Mitνit − E (Mitνit)]

∥∥∥∥∥∥
≤ Op(ϱ̃NT ) +Op

(
N∑
i=1

[ψi,p0(m)]1/p0

)
+ max

1≤i≤N
max

1≤l≤LNT

∥∥∥∥∥∥ 1

Th

∑
t∈Ih(τ)

wk
t (bl)

[
Mitν

(m)
it − E

(
Mitν

(m)
it

)]∥∥∥∥∥∥ ,
where m = mNT > 0. By the Triplex inequality again, there exist some constants C1, C2 > 0 such that

P

 max
1≤i≤N

max
1≤l≤LNT

∥∥∥∥∥∥ 1

Th

∑
t∈Ih(τ)

wk
t (bl)

[
Mitν

(m)
it − E

(
Mitν

(m)
it

)]∥∥∥∥∥∥ ≥ 2Mϵϱ̃NT


≤ d

{
4NLNTmNT exp

(
−

2Thϱ̃2NT

4m2
NTκ

2
NT

M2
ϵ

288d

)
+ C1NLNT ϱ̃

−1
NT [α(mNT )]

1−1/p0 + C2NLNT ϱ̃
−1
NTκ

1−p0
NT

}
.

Let mNT =
⌈(
N2−ϖ(p0)T ϕ(p0)

)1/[(1−1/p0)φα]
⌉
and κNT =

(
N2−ϖ(p0)T ϕ(p0)

)1/(p0−1)
. For any ϵ > 0, it is

not hard to show the second and third terms in the brackets are bounded by C [ln(NT )]−1 < ϵ/3. By

somewhat cumbersome linear algebra, we find that the construction of ϖ(·) ensures that the first term

4NLNTmNT exp

(
−

2Thϱ̃2NT

4m2
NTκ

2
NT

M2
ϵ

288d

)
< exp

(
K1 ln(NT )−K2M

2
ϵ ln(NT )

)
, (B.20)

where K1,K2 > 0 are some constants. For any ϵ > 0, one can choose a sufficiently large Mϵ > 0 such

that (B.20) is bounded by ϵ/3. Summing up, we obtain

max
1≤i≤N

max
1≤l≤LNT

∥∥∥∥∥∥ 1

Th

∑
t∈Ih(τ)

wk
t (bl)

[
Mitν

(m)
it − E

(
Mitν

(m)
it

)]∥∥∥∥∥∥ = Op (ϱ̃NT ) .

Given the chosen mNT above, simple linear algebra gives

N∑
i=1

[ψi,p0(mNT )]
1/p0 ϱ̃−1

NT ≤ Cm
−φν/p0
NT N1/2ϱ̃−1

NT ≤ C
√
h/ ln(NT )

(
N
√
T
)η0

N−1/2 → 0,

where η0 =
(p0 − 1)φα − 2φν

2p0 + (p0 + 1)φα
< 0 by the condition 2φν ≥ p0φα as required in Assumption A8. We then

conclude that Op

(∑N
i=1 [ψi,p0(m)]1/p0

)
= op(ϱ̃NT ). Combining these results, we obtain Part (d).

Note that x 7→ xℓK2(x) is Lipschitz continuous on [−1, 1] for any nonnegative integer ℓ, and
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E ∥Mitνitν
′
it∥ ≤ E ∥νit∥2 ≤ C. Moreover,

{
E
∥∥∥Mitνitν

′
it −Mitν

(m)
it ν

(m)′
it

∥∥∥p0/2}2/p0

≤ C

{
E
∥∥∥νit − ν

(m)
it

∥∥∥p0 + 2
(
E
∥∥∥νit − ν

(m)
it

∥∥∥p0)1/2 (E ∥νit∥p0)1/2
}2/p0

≤ C [ψi,p0(m)]1/p0 . (B.21)

By (B.21), Part (e) follows from similar arguments above.

Next, we note that Part (f) can be bounded by

max
1≤i≤N

sup
τ∈[0,1]

∥∥∥∥∥ 1

Th

T∑
t=1

wk
t (τ)E (Mitxit)

∥∥∥∥∥+ max
1≤i≤N

sup
τ∈[0,1]

∥∥∥∥∥ 1

Th

T∑
t=1

wk
t (τ) [Mitxit − E (Mitxit)]

∥∥∥∥∥ . (B.22)
By the moment conditions in Assumptions A5(b) - (c), and A7(b), using the Riemann sum approximation

(B.16), max
1≤i≤N

sup
τ∈[0,1]

∥∥∥(Th)−1
∑T

t=1w
k
t (τ)E (Mitxit)

∥∥∥ = O
(
1/(Th2)

)
+ O(h) if k is odd, and is O(1) if k

is even. Moreover, the second term in (B.22) can be bounded by

(
max
1≤i≤N

∥χi∥
)(

max
1≤i≤N

sup
τ∈[0,1]

∥∥∥∥∥ 1

Th

T∑
t=1

wk
t (τ)Mit

∥∥∥∥∥
)

+ max
1≤i≤N

sup
τ∈[0,1]

∥∥∥∥∥ 1

Th

T∑
t=1

wk
t (τ)ℓ(τt) [Mit − E (Mit)]

∥∥∥∥∥
+ max

1≤i≤N
sup

τ∈[0,1]

∥∥∥∥∥ 1

Th

T∑
t=1

wk
t (τ) [Mitνit − E (Mitνit)]

∥∥∥∥∥
=

(
max
1≤i≤N

∥χi∥
)(

max
1≤i≤N

sup
τ∈[0,1]

∥∥∥∥∥ 1

Th

T∑
t=1

wk
t (τ)Mit

∥∥∥∥∥
)

+Op

(√
N1−ηmax ln(NT )

T ηmaxh

)

+Op

√Nϖ(p0) ln(NT )

T ϕ(p0)h

 ,

where the final equality follows from a straightforward modification (to include the components of ℓ(·) as

in (B.11)) of Part (a), and Part (d) above. By max1≤i≤N ∥χi∥ = Op (1) in Assumption A5(b) and Part

(c), we have

(
max
1≤i≤N

∥χi∥
)(

max
1≤i≤N

sup
τ∈[0,1]

∥∥∥∥∥ 1

Th

T∑
t=1

wk
t (τ)Mit

∥∥∥∥∥
)

= Op

(√
N1−ηmax ln(NT )

T ηmaxh
+ h+

1

Th2

)

if k is odd, and is Op(1) if k is even. Note that

√
N1−ηmax ln(NT )

T ηmaxh
≤

√
Nϖ(p0) ln(NT )

T ϕ(p0)h
. We obtain Part

(f) by combining these results.

For Part (g), note that

sup
τ∈[0,1]

∥∥∥∥∥ 1

N

N∑
i=1

ντ,i

T∑
t=1

wk
t (τ)Mitνit

∥∥∥∥∥ ≤

{
max
1≤i≤N

sup
τ∈[0,1]

(Thντ,i)

}{
max
1≤i≤N

sup
τ∈[0,1]

∥∥∥∥∥ 1

Th

T∑
t=1

wk
t (τ)Mitνit

∥∥∥∥∥
}
.

By Parts (b), (d), and Assumption A7(b), Part (g) is obtained.
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Consider Part (h). Note that P (ωτ = 1) = P
(∑N

i=1 ντ,i = 0
)
= P (Mit = 0, ∀i = 1, . . . , N, ∀t ∈ Ih(τ)) =

o(1) by Assumption A6, as (N,T ) → ∞. It is only necessary to consider the case ωτ ̸= 1. Since

|pi(τt)− pi(τ)| ≤ Ch whenever |τt − τ | ≤ h by Assumption A6, and that K(·) has the support [−1, 1], by

Lemma B.4(a),

Th

N
ωτ =

1

N

N∑
i=1

 1

Th

∑
t∈Ih(τ)

K

(
τt − τ

h

)
pi(τt) +Op

(√
N1−ηmax ln(NT )

T ηmaxh

)
−1

=

 1

Th

∑
t:|τt−τ |≤h

K

(
τt − τ

h

)−1(
1

N

N∑
i=1

p−1
i (τ)

)
+O(h) +Op

(√
N1−ηmax ln(NT )

T ηmaxh

)

= q̄(τ) +O(ϕq,N ) +O

(
1

Th2

)
+O(h) +Op

(√
N1−ηmax ln(NT )

T ηmaxh

)
,

where the asymptotic terms O(·) and o(·) are uniform in τ .

Finally, for Part (i), note that

sup
τ∈[0,1]

∣∣∣∣∣ 1N
N∑
i=1

ντ,i

T∑
t=1

wk
t (τ)Mit − µk

∣∣∣∣∣ ≤ 1

N

N∑
i=1

sup
τ∈[0,1]

∣∣∣∣∣ντ,i
T∑
t=1

wk
t (τ)Mit − µk

∣∣∣∣∣ .
By |pi(τt)− pi(τ)| ≤ Ch if |τt − τ | ≤ h, Part (a) above, the Riemann sum approximation (B.16), and Eq.

(B.19),

sup
τ∈[0,1]

∣∣∣∣∣ντ,i
T∑
t=1

wk
t (τ)Mit − µk

∣∣∣∣∣ = sup
τ∈[0,1]

∣∣∣∣∣(Th)−1
∑T

t=1w
k
t (τ)pi(τt)

(Th)−1
∑T

t=1w
0
t (τ)pi(τt)

− µk

∣∣∣∣∣+Op

(√
N1−ηmax ln(NT )

T ηmaxh

)

= sup
τ∈[0,1]

∣∣∣∣µkpi(τ)µ0pi(τ)
− µk

∣∣∣∣+O

(
1

Th2

)
+O(h) +Op

(√
N1−ηmax ln(NT )

T ηmaxh

)

= O

(
1

Th2

)
+O(h) +Op

(√
N1−ηmax ln(NT )

T ηmaxh

)
, (B.23)

where the O(·)/Op(·)-terms are uniform in i. We conclude Part (i). ■
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Lemma B.5 Define

ANT (τ) =
N∑
i=1

T∑
t=1

w0
t (τ)Mitxitx

′
it −

N∑
i=1

ντ,i

(
T∑
t=1

w0
t (τ)Mitxit

)(
T∑
t=1

w0
t (τ)Mitxit

)′

,

BNT (τ) =
N∑
i=1

T∑
t=1

w1
t (τ)Mitxit −

N∑
i=1

ντ,i

(
T∑
t=1

w0
t (τ)Mitxit

)(
T∑
t=1

w1
t (τ)Mit

)
,

CNT (τ) =

N∑
i=1

T∑
t=1

w1
t (τ)Mitxitx

′
it −

N∑
i=1

ντ,i

(
T∑
t=1

w0
t (τ)Mitxit

)(
T∑
t=1

w1
t (τ)Mitxit

)′

,

DNT (τ) =
N∑
i=1

T∑
t=1

w2
t (τ)Mit −

N∑
i=1

ντ,i

(
T∑
t=1

w1
t (τ)Mit

)2

,

ENT (τ) =

N∑
i=1

T∑
t=1

w2
t (τ)Mitx

′
it −

N∑
i=1

ντ,i

(
T∑
t=1

w1
t (τ)Mit

)(
T∑
t=1

w1
t (τ)Mitxit

)′

,

FNT (τ) =
N∑
i=1

T∑
t=1

w2
t (τ)Mitxitx

′
it −

N∑
i=1

ντ,i

(
T∑
t=1

w1
t (τ)Mitxit

)(
T∑
t=1

w1
t (τ)Mitxit

)′

,

Gk
NT (τ) =

N∑
i=1

ντ,i

T∑
t=1

wk
t (τ)Mitxit.

Under the assumptions in Lemmas B.1 - B.4, we have

(a) supτ∈[0,1]
∥∥(NTh)−1ANT (τ)− p̄(τ)Σν

∥∥ = op(1),

(b) supτ∈[0,1]
∥∥(NTh)−1BNT (τ)

∥∥ = op(1),

(c) supτ∈[0,1]
∥∥(NTh)−1CNT (τ)

∥∥ = op(1),

(d) supτ∈[0,1]
∣∣(NTh)−1DNT (τ)− µ2p̄(τ)

∣∣ = op(1),

(e) supτ∈[0,1]
∥∥(NTh)−1ENT (τ)− µ2p̄(τ)ℓ(τ)

′∥∥ = op(1),

(f) supτ∈[0,1]
∥∥(NTh)−1FNT (τ)− µ2p̄(τ) [Σχ + ℓ(τ)ℓ(τ)′ +Σν ]

∥∥ = op(1).

(g) supτ∈[0,1]
∥∥N−1Gk

NT (τ)− µkℓ(τ)
∥∥ = op(1), k = 0, 1, 2.

Proof of Lemma B.5 We start with Part (a). Recall that xit = χi + ℓ (t/T ) + νit. One can decompose

ANT (τ) into ANT (τ) = ANT,1(τ) +ANT,2(τ) +ANT,2(τ)
′ +ANT,3(τ), where

ANT,1(τ) =

N∑
i=1

T∑
t=1

w0
t (τ)Mitℓ(τt)ℓ(τt)

′ −
N∑
i=1

ντ,i

(
T∑
t=1

w0
t (τ)Mitℓ(τt)

)(
T∑
t=1

w0
t (τ)Mitℓ(τt)

)′

,

ANT,2(τ) =
N∑
i=1

T∑
t=1

w0
t (τ)Mitℓ(τt)ν

′
it −

N∑
i=1

ντ,i

(
T∑
t=1

w0
t (τ)Mitℓ(τt)

)(
T∑
t=1

w0
t (τ)Mitνit

)′

,

ANT,3(τ) =
N∑
i=1

T∑
t=1

w0
t (τ)Mitνitν

′
it −

N∑
i=1

ντ,i

(
T∑
t=1

w0
t (τ)Mitνit

)(
T∑
t=1

w0
t (τ)Mitνit

)′

.

For the first component of (NTh)−1ANT,1(τ), we have (NTh)−1
∑N

i=1

∑T
t=1w

0
t (τ)Mitℓ(τt)ℓ(τt)

′ =

p̄(τ)ℓ(τ)ℓ(τ)′ + op(1) by Lemma B.3(c), where the op-term is uniform in τ . Moreover, since K(·)
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has the support [−1, 1],

1

Th

T∑
t=1

w0
t (τ)Mitℓ(τt) =

1

Th

∑
t∈Ih(τ)

w0
t (τ)Mitℓ(τt) =

1

Th
ν−1
τ,i ℓ(τ) +Op(h), (B.24)

by a Taylor expansion of ℓ(τt) around ℓ(τ), where the Op-term is uniform in τ . Using (B.24), we have

sup
τ∈[0,1]

∥∥∥∥∥∥ 1

NTh

N∑
i=1

ντ,i

(
T∑
t=1

w0
t (τ)Mitℓ(τt)

)(
T∑
t=1

w0
t (τ)Mitℓ(τt)

)′

− p̄(τ)ℓ(τ)ℓ(τ)′

∥∥∥∥∥∥ = op(1),

and finally, supτ∈[0,1]
∥∥(NTh)−1ANT,1(τ)

∥∥ = op(1). By Assumptions A5, A7(b), Eq. (B.12) in Lemma

B.1, and (b), (d) in Lemma B.4, we have supτ∈[0,1]
∥∥(NTh)−1ANT,2(τ)

∥∥ = op(1). Before continuing, note

that, by Assumption A5(c),

1

NTh

∥∥∥∥∥
N∑
i=1

T∑
t=1

wk
t (τ)pi(τt)

[
E
(
νitν

′
it

)
−Σν

]∥∥∥∥∥ ≤ C
1

N

N∑
i=1

∥∥E (νitν ′
it

)
−Σν

∥∥ = o(1), k ≥ 0. (B.25)

By Assumption A7(b) and Eq. (B.13) in Lemma B.1, the first component of (NTh)−1ANT,3(τ) can be

written as

1

NTh

N∑
i=1

T∑
t=1

w0
t (τ)Mitνitν

′
it =

1

NTh

N∑
i=1

T∑
t=1

w0
t (τ)pi(τt)Σν + op(1) = p̄(τ)Σν + op(1),

where the op-terms are uniform in τ . Note that E(νit) = 0, by (b), (d) in Lemma B.4, Assumption A7(b),

1

NTh
sup

τ∈[0,1]

∥∥∥∥∥∥
N∑
i=1

ντ,i

(
T∑
t=1

w0
t (τ)Mitνit

)(
T∑
t=1

w0
t (τ)Mitνit

)′∥∥∥∥∥∥
≤ sup

τ∈[0,1]

1

N

N∑
i=1

(Thντ,i)

∥∥∥∥∥ 1

Th

T∑
t=1

w0
t (τ)Mitνit

∥∥∥∥∥
2

= Op

(
Nϖ(p0) ln(NT )

T ϕ(p0)h

)
= op(1). (B.26)

Therefore, supτ∈[0,1]
∥∥(NTh)−1ANT,3(τ)− p̄(τ)Σν

∥∥ = op(1). Combining these results leads to Part (a).

By Assumptions A1, A5, A7(b), Lemma B.2, and (b), (c), (f) in Lemma B.4, it is simple to obtain Part

(b):

sup
τ∈[0,1]

∥∥∥∥ 1

NTh
BNT (τ)

∥∥∥∥ ≤ sup
τ∈[0,1]

∥∥∥∥∥ 1

NTh

N∑
i=1

T∑
t=1

w1
t (τ)Mitxit

∥∥∥∥∥
+ sup

τ∈[0,1]

1

N

N∑
i=1

(Thντ,i)

∥∥∥∥∥ 1

Th

T∑
t=1

w0
t (τ)Mitxit

∥∥∥∥∥
∣∣∣∣∣ 1

Th

T∑
t=1

w1
t (τ)Mit

∣∣∣∣∣ = op(1).

Similarly, Part (c) can be obtained using Lemmas B.2, B.3, and (b), (f) in Lemma B.4.
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Now we consider Part (d). By Lemmas B.1, B.3(a), and B.4(b) - (c),

sup
τ∈[0,1]

∣∣∣∣ 1

NTh
DNT (τ)− µ2p̄(τ)

∣∣∣∣ ≤
∣∣∣∣∣ 1

NTh

N∑
i=1

T∑
t=1

w2
t (τ)Mit −

1

NTh

N∑
i=1

T∑
t=1

w2
t (τ)E(Mit)

∣∣∣∣∣
+

∣∣∣∣∣ 1

NTh

N∑
i=1

T∑
t=1

w2
t (τ)E(Mit)− µ2p̄(τ)

∣∣∣∣∣+
∣∣∣∣∣∣ 1N

N∑
i=1

(Thντ,i)

(
1

Th

T∑
t=1

w1
t (τ)Mit

)2
∣∣∣∣∣∣ = op(1).

Part (e) is similar to Part (f) below, and thus omitted.

Next, by Lemmas B.2 - B.3, Assumptions A5, A7(b), and the identity E (xitx
′
it) = Σχ + ℓ(τt)ℓ(τt)

′ +

E (νitν
′
it), the first component of (NTh)−1FNT (τ) can be written as

1

NTh

N∑
i=1

T∑
t=1

w2
t (τ)Mitxitx

′
it =

1

NTh

N∑
i=1

T∑
t=1

w2
t (τ)pi(τt)E

(
xitx

′
it

)
+ op(1)

= µ2p̄(τ)
[
Σχ + ℓ(τ)ℓ(τ)′ +Σν

]
+ op(1), (B.27)

where the op-terms are uniform in τ . Note that by (b), (f) in Lemma B.4,

sup
τ∈[0,1]

∥∥∥∥∥∥ 1

NTh

N∑
i=1

ντ,i

(
T∑
t=1

w1
t (τ)Mitxit

)(
T∑
t=1

w1
t (τ)Mitxit

)′∥∥∥∥∥∥
≤ sup

τ∈[0,1]

1

N

N∑
i=1

(Thντ,i)

∥∥∥∥∥ 1

Th

T∑
t=1

w1
t (τ)Mitxit

∥∥∥∥∥
2

= op(1). (B.28)

Part (f) is obtained by combining (B.27) and (B.28).

Finally, consider N−1Gk
NT (τ). Note that

Gk
NT (τ) =

N∑
i=1

χiντ,i

T∑
t=1

wk
t (τ)Mit +

N∑
i=1

ντ,i

T∑
t=1

wk
t (τ)Mitℓ(τt) +

N∑
i=1

ντ,i

T∑
t=1

wk
t (τ)Mitνit

=: Gk
NT,1(τ) +Gk

NT,2(τ) +Gk
NT,3(τ).

By Assumption A5(b) and Eq. (B.23), when N and T pass to infinity jointly,

1

N
Gk

NT,1(τ) = µk
1

N

N∑
i=1

χi +
1

N

N∑
i=1

χi

(
ντ,i

T∑
t=1

wk
t (τ)Mit − µk

)
= µk

1

N

N∑
i=1

χi + op(1) = op(1),

uniformly in τ . Using similar argument as (B.24) and Lemma B.4(i), we have N−1Gk
NT,2(τ) = µkℓ(τ) +

Op(h)
p→ µkℓ(τ) uniformly in τ . Finally, Lemma B.4(g) implies that N−1Gk

NT,3(τ) = op(1) uniformly in

τ . These results jointly lead to Part (g). ■
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C Proofs of main asymptotic results

Proposition C.1 Under the assumptions in Lemma B.5, we have

sup
τ∈[0,1]

∥∥∥∥∥ 1

NTh

N∑
i=1

Z̃M
i (τ)′Z̃M

i (τ)−Φ(τ)

∥∥∥∥∥ = op(1), as (N,T ) → ∞. (C.1)

Proof of Proposition C.1 Recall the construction of Z̃M
i (τ) in Eq. (2.7). We have

N∑
i=1

Z̃M
i (τ)′Z̃M

i (τ)

=
N∑
i=1

ZM
i (τ)′Kh(τ)Z

M
i (τ)−

N∑
i=1

ντ,iZ
M
i (τ)′kh(τ)kh(τ)

′ (ZM
i (τ)− Z̄M (τ)

)
=

{
N∑
i=1

ZM
i (τ)′Kh(τ)Z

M
i (τ)−

N∑
i=1

ντ,i
(
ZM

i (τ)′kh(τ)
) (

ZM
i (τ)′kh(τ)

)′}

+ ω−1
τ

(
N∑
i=1

ντ,iZ
M
i (τ)′kh(τ)

)(
N∑
i=1

ντ,iZ
M
i (τ)′kh(τ)

)′

=


N∑
i=1

T∑
t=1

K

(
τt − τ

h

)
Mitzit(τ)zit(τ)

′ −
N∑
i=1

ντ,i

(
T∑
t=1

K

(
τt − τ

h

)
Mitzit(τ)

)(
T∑
t=1

K

(
τt − τ

h

)
Mitzit(τ)

)′
+ ω−1

τ

(
N∑
i=1

ντ,i

T∑
t=1

K

(
τt − τ

h

)
Mitzit(τ)

)(
N∑
i=1

ντ,i

T∑
t=1

K

(
τt − τ

h

)
Mitzit(τ)

)′

=: Π1 +Π2. (C.2)

Consider Π1 first. By the definition of zit(τ), one can separate Π1 into blocks Π1 = (Π1,ij , 1 ≤ i, j ≤ 4),

where Π1,1j = Π ′
1,j1 = 0′, Π1,22 = ANT (τ), Π1,23 = BNT (τ), Π1,24 = CNT (τ), Π1,33 = DNT (τ),

Π1,34 = ENT (τ), Π1,44 = FNT (τ), and Π1,ij = Π ′
1,ji, 1 ≤ i, j ≤ 4, where ANT (τ) to FNT (τ) are defined

in Lemma B.5. Using Lemma B.5, we obtain

1

NTh
Π1 =


0

p̄(τ)Σν

Φ2(τ)

+ op(1), (C.3)

where the op-term is uniform in τ . Similarly, one can write Π2 = (Π2,ij , 1 ≤ i, j ≤ 4), where Π2,11 =
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ω−1
τ N2, Π2,12 = ω−1

τ N
∑N

i=1 ντ,i
∑T

t=1w
0
t (τ)Mitx

′
it,

Π2,13 = ω−1
τ N

N∑
i=1

ντ,i

T∑
t=1

w1
t (τ)Mit, Π2,14 = ω−1

τ N

N∑
i=1

ντ,i

T∑
t=1

w1
t (τ)Mitx

′
it,

Π2,22 = ω−1
τ

(
N∑
i=1

ντ,i

T∑
t=1

w0
t (τ)Mitxit

)(
N∑
i=1

ντ,i

T∑
t=1

w0
t (τ)Mitxit

)′

,

Π2,23 = ω−1
τ

(
N∑
i=1

ντ,i

T∑
t=1

w0
t (τ)Mitxit

)(
N∑
i=1

ντ,i

T∑
t=1

w1
t (τ)Mit

)
,

Π2,24 = ω−1
τ

(
N∑
i=1

ντ,i

T∑
t=1

w0
t (τ)Mitxit

)(
N∑
i=1

ντ,i

T∑
t=1

w1
t (τ)Mitxit

)′

,

Π2,33 = ω−1
τ

(
N∑
i=1

ντ,i

T∑
t=1

w1
t (τ)Mit

)2

, Π2,34 = ω−1
τ

(
N∑
i=1

ντ,i

T∑
t=1

w1
t (τ)Mit

)(
N∑
i=1

ντ,i

T∑
t=1

w1
t (τ)Mitxit

)′

,

and Π2,44 = ω−1
τ

(∑N
i=1 ντ,i

∑T
t=1w

1
t (τ)Mitxit

)(∑N
i=1 ντ,i

∑T
t=1w

1
t (τ)Mitxit

)′
, with Π2,ij = Π ′

2,ji, 1 ≤

i, j ≤ 4. By (h) and (i) in Lemma B.4, Lemma B.5(g), we obtain

1

NTh
Π2 = [q̄(τ)]−1


1 ℓ(τ)′

ℓ(τ) ℓ(τ)ℓ(τ)′

O

+ op(1), (C.4)

where the op-term is uniform in τ . Combining (C.3) and (C.4), we have (C.1). ■

Proposition C.2 Recall b(τ) = 1
2

(
µ2Υ (2)(τ)

0

)
+ op(1), where Υ (τ) = (g(τ),β(τ)′)′. Let ∆M

i (τ) =

diag(mi)bi −ZM
i (τ)θ(τ), where bi = (g1, . . . , gT )

′ +
(
x′
i1β1, . . . ,x

′
iTβT

)′
. Define

BNT (τ) =

N∑
i=1

ZM
i (τ)′Kh(τ)∆

M
i (τ)−

N∑
i=1

ντ,iZ
M
i (τ)′kh(τ)kh(τ)

′

(
∆M

i (τ)− ω−1
τ

N∑
i=1

ντ,i∆
M
i (τ)

)
. (C.5)

Under the assumptions in Lemma B.5, we have

sup
τ∈[0,1]

∥∥∥∥ 1

NTh
BNT (τ)− diag [Φ1(τ),O]h2b(τ)

∥∥∥∥ = Op(h
3). (C.6)

Proof of Proposition C.2 By a Taylor expansion of Υ (τt) around Υ (τ) for |τt − τ | ≤ h,

∆M
i (τ) =

h2

2
diag

[(
τ1 − τ

h

)2

, . . . ,

(
τT − τ

h

)2
]
ZM

i (τ)

Υ (2)(τ)

0d+1

+Op(h
3), (C.7)

where the Op(h
3)-term is uniform in τ . In a similar way to (C.2), using (C.7), (NTh)−1BNT (τ) can be
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written as

1

NTh

[
N∑
i=1

ZM
i (τ)′Kh(τ)∆

M
i (τ)−

N∑
i=1

ντ,iZ
M
i (τ)′kh(τ)kh(τ)

′∆M
i (τ)

+ω−1
τ

N∑
i=1

ντ,iZ
M
i (τ)′kh(τ)

N∑
i=1

ντ,ikh(τ)
′∆M

i (τ)

]
=
h2

2

[
1

NTh
Π̃1 +

1

NTh
Π̃2

]Υ (2)(τ)

0d+1

+Op(h
3),

(C.8)

where the Op(h
3)-term is uniform in τ , and

Π̃1 =

N∑
i=1

T∑
t=1

w2
t (τ)Mitzit(τ)zit(τ)

′ −
N∑
i=1

ντ,i

(
T∑
t=1

w0
t (τ)Mitzit(τ)

)(
T∑
t=1

w2
t (τ)Mitzit(τ)

)′

,

Π̃2 = ω−1
τ

(
N∑
i=1

ντ,i

T∑
t=1

w0
t (τ)Mitzit(τ)

)(
N∑
i=1

ντ,i

T∑
t=1

w2
t (τ)Mitzit(τ)

)′

,

which are 2(d+1)-dimensional square matrices. As the block decomposition of Π1 in Proof of Proposition

C.1, by the definition of zit(τ), one can separate Π̃1 into blocks Π̃1 =
(
Π̃1,ij , 1 ≤ i, j ≤ 4

)
, where Π̃1,ij

have the same dimensions of Π1,ij . The matrix Π̃2 is similar. By noting the zero vector 0d+1 in Eq. (C.8),

it is only necessary to consider the first d+1 columns of Π̃k for k = 1, 2, i.e.,
(
Π̃k,ij , 1 ≤ i ≤ 4, 1 ≤ j ≤ 2

)
.

For Π̃1, we obtain Π̃1,11 = 0, Π̃1,12 = 0′,

Π̃1,21 =
N∑
i=1

T∑
t=1

w2
t (τ)Mitxit −

N∑
i=1

ντ,i

(
T∑
t=1

w0
t (τ)Mitxit

)(
T∑
t=1

w2
t (τ)Mit

)
,

Π̃1,22 =
N∑
i=1

T∑
t=1

w2
t (τ)Mitxitx

′
it −

N∑
i=1

ντ,i

(
T∑
t=1

w0
t (τ)Mitxit

)(
T∑
t=1

w2
t (τ)Mitxit

)′

,

Π̃1,31 =

N∑
i=1

T∑
t=1

w3
t (τ)Mit −

N∑
i=1

ντ,i

(
T∑
t=1

w1
t (τ)Mit

)(
T∑
t=1

w2
t (τ)Mit

)
,

Π̃1,32 =
N∑
i=1

T∑
t=1

w3
t (τ)Mitx

′
it −

N∑
i=1

ντ,i

(
T∑
t=1

w1
t (τ)Mit

)(
T∑
t=1

w2
t (τ)Mitxit

)′

,

Π̃1,41 =
N∑
i=1

T∑
t=1

w3
t (τ)Mitxit −

N∑
i=1

ντ,i

(
T∑
t=1

w1
t (τ)Mitxit

)(
T∑
t=1

w2
t (τ)Mit

)
,

and Π̃1,42 =
∑N

i=1

∑T
t=1w

3
t (τ)Mitxitx

′
it −

∑N
i=1 ντ,i

(∑T
t=1w

1
t (τ)Mitxit

)(∑T
t=1w

2
t (τ)Mitxit

)′
. By a

straightforward modification of Lemma B.5, using Lemma B.4, we find

1

NTh


Π̃1,11 Π̃1,12

Π̃1,21 Π̃1,22

Π̃1,31 Π̃1,32

Π̃1,41 Π̃1,42

 = µ2p̄(τ)


0 0′

0 Σν

0 0′

0 O

+ op(1), (C.9)
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where the op-term is uniformly in τ . For Π̃2, we obtain Π̃2,11 = ω−1
τ N

∑N
i=1 ντ,i

∑T
t=1w

2
t (τ)Mit, Π̃2,12 =

ω−1
τ N

∑N
i=1 ντ,i

∑T
t=1w

2
t (τ)Mitx

′
it,

Π̃2,21 = ω−1
τ

(
N∑
i=1

ντ,i

T∑
t=1

w0
t (τ)Mitxit

)(
N∑
i=1

ντ,i

T∑
t=1

w2
t (τ)Mit

)
,

Π̃2,22 = ω−1
τ

(
N∑
i=1

ντ,i

T∑
t=1

w0
t (τ)Mitxit

)(
N∑
i=1

ντ,i

T∑
t=1

w2
t (τ)Mitxit

)′

,

Π̃2,31 = ω−1
τ

(
N∑
i=1

ντ,i

T∑
t=1

w1
t (τ)Mit

)(
N∑
i=1

ντ,i

T∑
t=1

w2
t (τ)Mit

)
,

Π̃2,32 = ω−1
τ

(
N∑
i=1

ντ,i

T∑
t=1

w1
t (τ)Mit

)(
N∑
i=1

ντ,i

T∑
t=1

w2
t (τ)Mitxit

)′

,

Π̃2,41 = ω−1
τ

(
N∑
i=1

ντ,i

T∑
t=1

w1
t (τ)Mitxit

)(
N∑
i=1

ντ,i

T∑
t=1

w2
t (τ)Mit

)
,

Π̃2,42 = ω−1
τ

(
N∑
i=1

ντ,i

T∑
t=1

w1
t (τ)Mitxit

)(
N∑
i=1

ντ,i

T∑
t=1

w2
t (τ)Mitxit

)′

.

Similarly,

1

NTh


Π̃2,11 Π̃2,12

Π̃2,21 Π̃2,22

Π̃2,31 Π̃2,32

Π̃2,41 Π̃2,42

 = µ2
1

q̄(τ)


1 ℓ(τ)′

ℓ(τ) ℓ(τ)ℓ(τ)′

0 0′

0 O

+ op(1), (C.10)

where the op-term is uniformly in τ . Therefore, by disregarding the last d+ 1 columns, the initial d+ 1

columns of (NTh)−1
(
Π̃1 + Π̃2

)
can be written as

(
µ2Φ1(τ)

O

)
+ op(1) by combining (C.8) and (C.9).

Plugging it into (C.10), we obtain Eq. (C.6). ■

Lemma C.1 Under Assumptions A1, A3, A4, A5(c), A6, A7, and A8, for any fixed τ ∈ (0, 1),

k = 0, 1, . . .,

1√
NTh

N∑
i=1

T∑
t=1

wk
t (τ)Mit


Thντ,i

1

χi

νit

 eit
d→ N

(
0, ν2k

(
Λε(τ)

Λ̄ε(τ)Σχ

Λνε(τ)

))
, (C.11)

as (N,T ) → ∞, where Λε(τ), Λ̄ε(τ), and Λνε(τ), are defined in Assumption A7(d).

Proof of Lemma C.1 We use the Cramér-Wold device to establish the asymptotic joint distribution. For
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any unit vector a = (a1,a
′
2)

′ ∈ R2(d+1), it suffices to consider

T∑
t=1

YNT,t(τ) + a1
1√
NTh

N∑
i=1

T∑
t=1

wk
t (τ)Mit

{
(Thντ,i)− [pi(τ)]

−1
}
eit, (C.12)

where YNT,t(τ) = (NTh)−1/2wk
t (τ)

∑N
i=1Mita

′ [1/pi(τ), 1,χ
′
i,ν

′
it]

′ eit. We shall argue that, as (N,T ) →

∞,

(a)
∑T

t=1 YNT,t(τ)
d→ N

(
0,a′ν2k diag

[
Λε(τ), Λ̄ε(τ)Σχ,Λνε(τ)

]
a
)
for any τ ∈ (0, 1);

(b) (NTh)−1/2
∑N

i=1

∑T
t=1w

k
t (τ)Mit

{
(Thντ,i)− [pi(τ)]

−1
}
eit = op(1) for any τ ∈ (0, 1).

We prove Part (a) in two steps: (i) derive the asymptotic variance; (ii) show the asymptotic normality.

For the asymptotic variance, we have E
(∑T

t=1 YNT,t(τ)
)
= 0 by Assumption A7(b). Moreover, by the

identities eit = σi(τt)εit and

(
N∑
i=1

T∑
t=1

ait

)2

=
N∑

i,j=1

[
T∑
t=1

aitajt +
T−1∑
s=1

T−s∑
t=1

(
aitaj(t+s) + ai(t+s)ajt

)]
, (C.13)

we have E
(∑T

t=1 YNT,t(τ)
)2

= a′E [ENT (τ)]a, where ENT (τ) =
(
ENT,k1k2(τ), k1, k2 = 1, 2, 3, 4

)
is a

block matrix with the elements given by

ENT,k1k2(τ) =
1

NTh

N∑
i,j=1


T∑
t=1

[
wk
t (τ)

]2
σi(τt)σj(τt)MitMjtAk1k2

(
i, t; j, t

)
εitεjt

+
T−1∑
s=1

T−s∑
t=1

wk
t (τ)w

k
t+s (τ)σi(τt)σj(τt+s)MitMj(t+s)Ak1k2

(
i, t; j, t+ s

)
εitεj(t+s)

+
T−1∑
s=1

T−s∑
t=1

wk
t (τ)w

k
t+s (τ)σi(τt+s)σj(τt)Mi(t+s)MjtAk1k2

(
i, t+ s; j, t

)
εi(t+s)εjt

,
with Ak1k2

(
i, ti; j, tj

)
= ak1(i, ti)ak2(j, tj)

′. Moreover, for ℓ = i or ℓ = j, we define a1(ℓ, tℓ) = 1/pℓ(τ),

a2(ℓ, tℓ) = 1, a3(ℓ, tℓ) = χℓ, a4(ℓ, tℓ) = νℓtℓ .

Before deriving E [ENT,k1k2(τ)], k1, k2 = 1, . . . , 4, some intermediate results are given as follows.

Recall the definition Ih,s(τ) = {t : |τt+s − τ | ≤ h}, s ≥ 0, and Ih(τ) = Ih,s(τ) for s = 0.

(a.1) ∀τ ∈ (0, 1), wk
t (τ)w

k
t+s (τ) ≡ 0 if t ̸∈ Ih(τ)∩Ih,s(τ) = {⌈T (τ − h)⌉ ≤ t ≤ ⌊T (τ + h)− s⌋, 0 ≤ s ≤ 2Th}.

Therefore, for s > 2Th, (Th)−1
∑T−s

t=1 w
k
t (τ)w

k
t+s (τ) = 0, and

1

Th

T−s∑
t=1

wk
t (τ)w

k
t+s (τ) =

1

Th

⌊T (τ+h)−s⌋∑
t=⌈T (τ−h)⌉

wk
t (τ)w

k
t+s (τ) , 0 ≤ s ≤ 2Th. (C.14)

Furthermore, let {HT } ⊂ (0, ⌊2Th⌋) be some sequence that satisfies
1

HT
+
HT

Th
→ 0 as T → ∞,
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then for s < HT ,

1

Th

⌊T (τ+h)−s⌋∑
t=⌈T (τ−h)⌉

wk
t (τ)w

k
t+s (τ) =

1

Th

T∑
t=1

[
wk
t (τ)

]2
+O

(
HT

Th

)
→ ν2k, T → ∞, (C.15)

uniformly in τ , due to (Th)−1
∑⌊T (τ+h)⌋

t=⌊T (τ+h)−s⌋+1

[
wk
t (τ)

]2 ≤ CHT /(Th), and

∣∣∣∣∣∣ 1

Th

⌊T (τ+h)−s⌋∑
t=⌈T (τ−h)⌉

wk
t (τ)

[
wk
t+s (τ)− wk

t (τ)
]∣∣∣∣∣∣ ≤ C

HT

Th
,

by the Lipschitz continuity of x 7→ xkK(x) over [−1, 1].

(a.2) For t ∈ Ih(τ)∩ Ih,s(τ), we have |σi(τt+s)− σi(τ)| ≤ Ch and |Ri,j(τt, τt+s) −Ri,j(τ, τ)| ≤ Ch by

the Lipschitz continuity (Assumptions A4, A6(b)), where τ ∈ (0, 1), s ≥ 0, i, j ∈ {1 . . . , N}.

Now we derive E [ENT,k1k2(τ)], k1, k2 = 1, . . . , 4. Let HT be the sequence as given in (a.1) above.

Note that {εitεj(t+s)}, s ∈ Z, are strictly stationary by Assumption A3 and Theorem 3.35 in White

(2001), i.e., E
(
εitεj(t+s)

)
= E (εi0εjs). Using (a.1) - (a.2), Assumptions A3, A4, A6(b), A7(b) - (c), we

have

E [ENT,11(τ)]

=
1

N

N∑
i,j=1

[pi(τ)pj(τ)]
−1

E (εitεjt)
1

Th

T∑
t=1

[
wk
t (τ)

]2
σi(τt)σj(τt)Ri,j(τt, τt)

+

T−1∑
s=1

E
(
εitεj(t+s)

) 1

Th

T−s∑
t=1

wk
t (τ)w

k
t+s (τ)σi(τt)σj(τt+s)Ri,j(τt, τt+s)

+
T−1∑
s=1

E
(
εi(t+s)εjt

) 1

Th

T−s∑
t=1

wk
t (τ)w

k
t+s (τ)σi(τt+s)σj(τt)Ri,j(τt+s, τt)


=

1

N

N∑
i,j=1

Ri,j(τ, τ)

pi(τ)pj(τ)
σi(τ)σj(τ)

E (εitεjt)
1

Th

T∑
t=1

[
wk
t (τ)

]2

+
T−1∑
s=1

E
(
εitεj(t+s)

) 1

Th

T−s∑
t=1

wk
t (τ)w

k
t+s (τ) +

T−1∑
s=1

E
(
εi(t+s)εjt

) 1

Th

T−s∑
t=1

wk
t (τ)w

k
t+s (τ)

+O(h)

=
1

N

N∑
i,j=1

Ri,j(τ, τ)

pi(τ)pj(τ)
σi(τ)σj(τ)

E (εitεjt)
1

Th

T∑
t=1

[
wk
t (τ)

]2

+

HT−1∑
s=1

E
(
εitεj(t+s)

) 1

Th

T∑
t=1

[
wk
t (τ)

]2
+

⌊2Th⌋∑
s=HT

E
(
εitεj(t+s)

) 1

Th

⌊T (τ+h)−s⌋∑
t=⌈T (τ−h)⌉

wk
t (τ)w

k
t+s (τ)+

+

HT−1∑
s=1

E
(
εi(t+s)εjt

) 1

Th

T∑
t=1

[
wk
t (τ)

]2
+

⌊2Th⌋∑
s=HT

E
(
εi(t+s)εjt

) 1

Th

⌊T (τ+h)−s⌋∑
t=⌈T (τ−h)⌉

wk
t (τ)w

k
t+s (τ)

+O

(
HT

Th

)
+O(h)

=

 1

N

N∑
i,j=1

Ri,j(τ, τ)

pi(τ)pj(τ)
σi(τ)σj(τ)

HT−1∑
s=−HT+1

E
(
εitεj(t+s)

)
{

1

Th

T∑
t=1

[
wk
t (τ)

]2}
+O

(
HT

Th

)
+ o(1) +O(h),
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where the o(1)-term in the final equality is obtained by using A7(c),

∣∣∣∣∣∣ 1N
N∑

i,j=1

Ri,j(τ, τ)

pi(τ)pj(τ)
σi(τ)σj(τ)

⌊2Th⌋∑
s=HT

{
E
(
εitεj(t+s)

)
+ E

(
εi(t+s)εjt

)} 1

Th

⌊T (τ+h)−s⌋∑
t=⌈T (τ−h)⌉

wk
t (τ)w

k
t+s (τ)

∣∣∣∣∣∣
≤ C

1

N

N∑
i,j=1

T∑
s=HT

{∣∣E (εitεj(t+s)

)∣∣+ ∣∣E (εi(t+s)εjt
)∣∣} = o(1),

as (N,T ) → ∞. By Assumption A7(d), we obtain

E [ENT,11(τ)] → ν2kΛε,11(τ), (N,T ) → ∞, (C.16)

where Λε,,k1k2(τ) is the (k1, k2)th element of Λε(τ). Similarly, we obtain E [ENT,k1k2(τ)] → ν2kΛε,k1k2(τ),

1 ≤ k1, k2,≤ 2. Moreover, by Assumption A7(b), one can obtain E [ENT,13(τ)
′] = E [ENT,31(τ)] =

E [ENT,14(τ)
′] = E [ENT,41(τ)] = E [ENT,23(τ)

′] = E [ENT,32(τ)] = E [ENT,24(τ)
′] = E [ENT,42(τ)] = 0,

and E [ENT,34(τ)] = E [ENT,43(τ)] = O. Note that χi, i = 1, . . . , N , are independent, by steps similar to

E [ENT,11(τ)], we have

E [ENT,33(τ)] = Σχ

 1

N

N∑
i=1

Ri,i(τ, τ)σ
2
i (τ)

HT−1∑
s=−HT+1

E
(
εitεi(t+s)

)
×

{
1

Th

T∑
t=1

[
wk
t (τ)

]2}
+ O

(
HT

Th

)
+ o(1) + O(h) → ν2kΛ̄ε(τ)Σχ, (C.17)

as (N,T ) → ∞, and

E [ENT,44(τ)] =

 1

N

N∑
i,j=1

Ri,j(τ, τ)σi(τ)σj(τ)

HT−1∑
s=−HT+1

E
(
νitν

′
j(t+s)εitεj(t+s)

)
×

{
1

Th

T∑
t=1

[
wk
t (τ)

]2}
+ O

(
HT

Th

)
+ o(1) + O(h) → ν2kΛνε(τ). (C.18)

Combining the results above, we have

E

(
T∑
t=1

YNT,t(τ)

)2

→ a′ν2k


Λε(τ)

Λ̄ε(τ)Σχ

Λνε(τ)

a. (C.19)

For Part (a), it remains to establish the asymptotic normality. We employ the central limit theorem

(CLT) for NED processes given in Corollary 24.7 of Davidson (1994), as in Gao et al. (2020, Proof of Eq.

(B.25)). As such, we verify the conditions required in the corollary.

(a.3) E (YNT,t(τ)) = 0, and by Eq. (C.19), E
(∑T

t=1 YNT,t(τ)
)2

→ a′ν2k diag
[
Λε(τ), Λ̄ε(τ)Σχ,Λνε(τ)

]
a.
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(a.4) Let cT,t = 1/
√
Th, t ≥ 1, and r = p0/2 = 2 + δ > 2. By Assumption A7(a), we have

{E |YNT,t(τ)/cT,t|r}1/r =
1√
N
wk
t (τ)

{
E

∣∣∣∣∣a1
N∑
i=1

σi(τt)

pi(τ)
Mitεit + a′

2

N∑
i=1

σi(τt)Mitνitεit

∣∣∣∣∣
r}1/r

≤ C
1√
N


(
E

∣∣∣∣∣
N∑
i=1

σi(τt)

pi(τ)
Mitεit

∣∣∣∣∣
r)1/r

+

(
E

∥∥∥∥∥
N∑
i=1

σi(τt)Mitνitεit

∥∥∥∥∥
r)1/r


≤ C.

(a.5) For any τ ∈ (0, 1), YNT,t(τ) is L2-NED of size −1 on {ξ•t}, where {ξ•t} is α-mixing of size

−(2 + δ)/δ by Assumption A3, in the terminology of Davidson (1994). More specifically, recall

F t2
ξ,t1

= σ (ξ•t, t1 ≤ t ≤ t2). By Minkowski’s and Cauchy-Schwarz inequalities, Assumptions A4,

A5(c), we have

{
E
∣∣∣YNT,t(τ)− E

(
YNT,t(τ)

∣∣∣F t+m
ξ,t−m

)∣∣∣2}1/2

=
1√
NTh

wk
t (τ)

E

∣∣∣∣∣
N∑
i=1

σi(τt)Mita
′
2

[
νit − E

(
νit

∣∣∣F t+m
ξ,t−m

)]
εit

∣∣∣∣∣
2


1/2

≤ C
1√
NTh

N∑
i=1

{
E
∥∥∥νit − E

(
νit

∣∣∣F t+m
ξ,t−m

)∥∥∥4}1/4 [
E(ε4it)

]1/4
(C.20)

≤ C
1√
NTh

N∑
i=1

{
E
∥∥∥νit − ν

(m)
it

∥∥∥p0}1/p0
≤ C

1√
NTh

N∑
i=1

[ψi,p0(m)]1/p0 ≤ C
1√
Th

m−φν/p0 ,

where (C.20) follows from Theorem 10.28 in Davidson (1994) and Lyapunov’s inequality. Since

φν/p0 > 1, we can conclude that YNT,t(τ) is L2-NED of size −1.

(a.6) Note that
∑T

t=1 YNT,t(τ) =
∑

t∈Ih(τ) YNT,t(τ), where the cardinality of Ih(τ) is bounded by CTh.

Eq. (24.28) in Davidson (1994) can be replaced by supT (Th)maxt≥1 c
2
T,t <∞.

The conditions in Corollary 24.7 of Davidson (1994) are fulfilled by (a.3) - (a.6). Therefore, Part (a) is

obtained.
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We consider Part (b) next. Note that by Assumptions A7(b) - (c) and A8,

E

∣∣∣∣∣ 1√
NTh

N∑
i=1

T∑
t=1

wk
t (τ)Mit

{
(Thντ,i)− [pi(τ)]

−1
}
eit

∣∣∣∣∣
2

=
1

NTh
E


N∑

i,j=1

{
(Thντ,i)− [pi(τ)]

−1
}{

(Thντ,j)− [pj(τ)]
−1
} T∑

s,t=1

wk
t (τ)w

k
s (τ)σi(τt)σj(τs)MitMjsεitεjs


=

1

NTh
E


N∑

i,j=1

{
(Thντ,i)− [pi(τ)]

−1
}{

(Thντ,j)− [pj(τ)]
−1
} T∑

s,t=1

wk
t (τ)w

k
s (τ)σi(τt)σj(τs)MitMjsE (εitεjs)


≤ C

(
N1−ηmax ln(NT )

T ηmaxh
+ h4 +

1

T 2h4

)
1

NTh

N∑
i,j=1

T∑
s,t=1

wk
t (τ)w

k
s (τ) |E (εitεjs)| (C.21)

≤ C

(
N1−ηmax ln(NT )

T ηmaxh
+ h4 +

1

T 2h4

)
1

N

N∑
i,j=1

{
|E (εi0εj0)|+

T−1∑
k=1

(|E (εi0εjk)|+ |E (εikεj0)|)

}

= o(1), uniformly in τ , (C.22)

where (C.21) is obtained using Lemma B.4(a) - (b) as follows:

max
1≤i≤N

sup
τ∈[0,1]

∣∣∣(Thντ,i)− [pi(τ)]
−1
∣∣∣ = max

1≤i≤N
sup

τ∈[0,1]

∣∣∣∣∣(Thντ,i) [pi(τ)]−1

{
1

Th

T∑
t=1

w0
t (τ)Mit − pi(τ)

}∣∣∣∣∣
≤ pL

{
max
1≤i≤N

sup
τ∈[0,1]

(Thντ,i)

}{
max
1≤i≤N

sup
τ∈[0,1]

∣∣∣∣∣ 1

Th

T∑
t=1

w0
t (τ)Mit − pi(τ)

∣∣∣∣∣
}

≤ C

(√
N1−ηmax ln(NT )

T ηmaxh
+ h2 +

1

Th2

)
.

Then Part (b) is obtained by Markov’s inequality. ■

Proposition C.3 Define

DNT (τ) =
N∑
i=1

ZM
i (τ)′Kh(τ)e

M
i −

N∑
i=1

ντ,iZ
M
i (τ)′kh(τ)kh(τ)

′

(
eMi − ω−1

τ

N∑
i=1

ντ,ie
M
i

)
. (C.23)

Under Assumptions A1, A3, A5 - A8, for any fixed τ ∈ (0, 1),

1√
NTh

DNT (τ)
d→ N

(
0,Φνε(τ)

)
, (C.24)

as (N,T ) → ∞, where Φνε(τ) is defined above Theorem 2 (p. 16).
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Proof of Proposition C.3 We first split DNT (τ) into four main blocks of vectors:

DNT (τ) =
N∑
i=1

T∑
t=1

w0
t (τ)Mitzit(τ)eit −

N∑
i=1

ντ,i

(
T∑
t=1

w0
t (τ)Mitzit(τ)

)(
T∑
t=1

w0
t (τ)Miteit

)

+ ω−1
τ

(
N∑
i=1

ντ,i

T∑
t=1

w0
t (τ)Mitzit(τ)

)(
N∑
i=1

ντ,i

T∑
t=1

w0
t (τ)Miteit

)
=:


ΥNT,1(τ)

...

ΥNT,4(τ)

 , (C.25)

where,

ΥNT,1(τ) = ω−1
τ N

(
N∑
i=1

ντ,i

T∑
t=1

w0
t (τ)Miteit

)
,

ΥNT,2(τ) =
N∑
i=1

T∑
t=1

w0
t (τ)Mitxiteit −

N∑
i=1

ντ,i

(
T∑
t=1

w0
t (τ)Mitxit

)(
T∑
t=1

w0
t (τ)Miteit

)

+ ω−1
τ

(
N∑
i=1

ντ,i

T∑
t=1

w0
t (τ)Mitxit

)(
N∑
i=1

ντ,i

T∑
t=1

w0
t (τ)Miteit

)
,

ΥNT,3(τ) =

N∑
i=1

T∑
t=1

w1
t (τ)Miteit −

N∑
i=1

ντ,i

(
T∑
t=1

w1
t (τ)Mit

)(
T∑
t=1

w0
t (τ)Miteit

)

+ ω−1
τ

(
N∑
i=1

ντ,i

T∑
t=1

w1
t (τ)Mit

)(
N∑
i=1

ντ,i

T∑
t=1

w0
t (τ)Miteit

)
,

ΥNT,4(τ) =
N∑
i=1

T∑
t=1

w1
t (τ)Mitxiteit −

N∑
i=1

ντ,i

(
T∑
t=1

w1
t (τ)Mitxit

)(
T∑
t=1

w0
t (τ)Miteit

)

+ ω−1
τ

(
N∑
i=1

ντ,i

T∑
t=1

w1
t (τ)Mitxit

)(
N∑
i=1

ντ,i

T∑
t=1

w0
t (τ)Miteit

)
.

We first make the following claims.

(CL.1) (NTh)−1/2
(
ΥNT,1(τ),ΥNT,2(τ)

′
)′ d→ N

(
0,Φνε,1(τ)

)
;

(CL.2) (NTh)−1/2
(
ΥNT,3(τ),ΥNT,4(τ)

′
)′ d→ N

(
0,Φνε,2(τ)

)
;

(CL.3) (NTh)−1/2
(
ΥNT,1(τ),ΥNT,2(τ)

′
)′

and (NTh)−1/2
(
ΥNT,3(τ),ΥNT,4(τ)

′
)′

are asymptotically inde-

pendent.

These claims jointly imply the limiting distribution (C.24). We next prove these claims.

I. Proof of Claim (CL.1)

We prove the claim in two steps. First, we establish the asymptotic marginal distributions of (NTh)−1/2ΥNT,1(τ)

and (NTh)−1/2ΥNT,2(τ), respectively. When showing the asymptotic distribution of (NTh)−1/2ΥNT,2(τ),
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we argue that (NTh)−1/2ΥNT,2(τ) is asymptotically dominated by

1√
NTh

N∑
i=1

T∑
t=1

w0
t (τ)Mitνiteit +

(
Th

N
ωτ

)−1

ℓ(τ)

(
1√
NTh

N∑
i=1

T∑
t=1

w0
t (τ)Mit (Thντ,i) eit

)
. (C.26)

If (C.26) holds, then the joint distributional convergence of
(
ΥNT,1(τ),ΥNT,2(τ)

′
)′

is immediate by

utilizing Lemma C.1. Given the joint convergence, as the second step, we only need to establish the

asymptotic covariance matrix of (NTh)−1/2
(
ΥNT,1(τ),ΥNT,2(τ)

′
)′
.

Consider ΥNT,1(τ) first. By Lemma B.4(h) and Lemma C.1, we have

1√
NTh

ΥNT,1(τ) =

(
Th

N
ωτ

)−1
(

1√
NTh

N∑
i=1

T∑
t=1

w0
t (τ)Mit (Thντ,i) eit

)
d→ N

(
0, ν0Λε,11(τ)/ [q̄(τ)]

2
)
,

(C.27)

where Λε,,k1k2(τ) is the (k1, k2)th element of Λε(τ). Namely, the (marginal) asymptotic variance of

ΥNT,1(τ) is ν0Λε,11(τ)/ [q̄(τ)]
2.

Now we show that

1√
NTh

ΥNT,2(τ)
d→ N

(
0, ν0

(
Λε,11(τ)ℓ(τ)ℓ(τ)

′/ [q̄(τ)]2 +Λνε(τ)
))

, (N,T ) → ∞. (C.28)

More specifically, plugging xit = χi + ℓ(τt) + νit in ΥNT,2(τ), we have

ΥNT,2(τ) =

N∑
i=1

T∑
t=1

w0
t (τ)ℓ(τt)Miteit −

N∑
i=1

ντ,i

(
T∑
t=1

w0
t (τ)ℓ(τt)Mit

)(
T∑
t=1

w0
t (τ)Miteit

)

+

N∑
i=1

T∑
t=1

w0
t (τ)Mitνiteit −

N∑
i=1

ντ,i

(
T∑
t=1

w0
t (τ)Mitνit

)(
T∑
t=1

w0
t (τ)Miteit

)

+

(
Th

N
ωτ

)−1
{(

1

N

N∑
i=1

ντ,i

T∑
t=1

w0
t (τ)ℓ(τt)Mit

)
+

(
1

N

N∑
i=1

ντ,i

T∑
t=1

w0
t (τ)Mitνit

)
+

(
1

N

N∑
i=1

χi

)}

×

(
N∑
i=1

T∑
t=1

w0
t (τ)Mit (Thντ,i) eit

)

=: ΥNT,2,1(τ)− ΥNT,2,2(τ) + ΥNT,2,3(τ)− ΥNT,2,4(τ) + ΥNT,2,5(τ).

We consider ΥNT,2,1(τ)− ΥNT,2,2(τ) as a whole. By a Taylor expansion of ℓ(τt) around ℓ(τ), we have

1√
NTh

ΥNT,2,1(τ) = ℓ(τ)
1√
NTh

N∑
i=1

T∑
t=1

w0
t (τ)Miteit +

1√
NTh

N∑
i=1

T∑
t=1

w0
t (τ) [ℓ(τt)− ℓ(τ)]Miteit

= ℓ(τ)
1√
NTh

N∑
i=1

T∑
t=1

w0
t (τ)Miteit +Op(h),

where the second equality is by a straightforward modification of Eq. (C.22) and Markov’s inequality.
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Similarly,

1√
NTh

ΥNT,2,2(τ) = ℓ(τ)
1√
NTh

N∑
i=1

T∑
t=1

w0
t (τ)Miteit +Op(h).

Combining these results, we have (NTh)−1/2 [ΥNT,2,1(τ)− ΥNT,2,2(τ)] = Op(h). Note that (NTh)
−1/2ΥNT,2,3(τ)

is the first component in Eq. (C.26). Moreover, by Assumptions A5(c), A7(b), and (b), (d) in Lemma

B.4, a modification of (C.22) together with Markov’s inequality, we have

1√
NTh

ΥNT,2,4(τ) = Op

√Nϖ(p0) ln(NT )

T ϕ(p0)h

 . (C.29)

For (NTh)−1/2ΥNT,2,5(τ), by the Taylor expansion of ℓ(τt) around ℓ(τ), Assumptions A5(b) - (c), A7(b),

and Lemma B.4(b) - (d), we obtain

1√
NTh

ΥNT,2,5(τ) =

(
Th

N
ωτ

)−1
(ℓ(τ) + op(h)

)
+Op

√Nϖ(p0) ln(NT )

T ϕ(p0)h

+Op

(
1√
N

)
×

(
1√
NTh

N∑
i=1

T∑
t=1

w0
t (τ)Mit (Thντ,i) eit

)

=

(
Th

N
ωτ

)−1

ℓ(τ)

(
1√
NTh

N∑
i=1

T∑
t=1

w0
t (τ)Mit (Thντ,i) eit

)
+ op(1),

implying that (NTh)−1/2ΥNT,2,5(τ) is asymptotically dominated by the second component in Eq. (C.26).

Combining the results above, by Eq. (C.26) and Lemma C.1, we have the marginal distribution of

(NTh)−1/2ΥNT,2(τ) as given in (C.28).

For the asymptotic covariance between ΥNT,1(τ) and ΥNT,2(τ), it is only necessary to consider the

asymptotic covariance between the asymptotically dominating terms, namely, between ΥNT,1(τ) and

ΥNT,2,3(τ) + ΥNT,2,5(τ). Note that ΥNT,1(τ) and ΥNT,2,3(τ) are asymptotically independent by Lemma

C.1. Hence, the asymptotic covariance between ΥNT,1(τ) and ΥNT,2(τ) is determined by ΥNT,1(τ) and

ΥNT,2,5(τ), resulting in ν0Λε,11(τ)/ [q̄(τ)]
2 ℓ(τ). Putting these results together, Claim (CL.1) is obtained.

II. Proof of Claim (CL.2)

Consider ΥNT,3(τ) first. By employing (b), (c), (i) in Lemma B.4, Markov’s inequality, and an adaption
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of Eq. (C.22), we have

1√
NTh

ΥNT,3(τ)

=
1√
NTh

N∑
i=1

T∑
t=1

w1
t (τ)Miteit −

1√
NTh

N∑
i=1

(Thντ,i)

(
1

Th

T∑
t=1

w1
t (τ)Mit

)(
T∑
t=1

w0
t (τ)Miteit

)

+

(
Th

N
ωτ

)−1
(

1

N

N∑
i=1

ντ,i

T∑
t=1

w1
t (τ)Mit

)(
1√
NTh

N∑
i=1

T∑
t=1

w0
t (τ)Mit (Thντ,i) eit

)

=
1√
NTh

N∑
i=1

T∑
t=1

w1
t (τ)Miteit +Op

(√
N1−ηmax ln(NT )

T ηmaxh
+ h+

1

Th2

)
.

By Lemma C.1, we have

1√
NTh

ΥNT,3(τ)
d→ N

(
0, ν2Λε,22(τ)

)
, (N,T ) → ∞. (C.30)

Now consider ΥNT,4(τ). By Lemma C.1, the first component in (NTh)−1/2ΥNT,4(τ) can be written

as:

1√
NTh

N∑
i=1

T∑
t=1

w1
t (τ)Mitxiteit =

1√
NTh

N∑
i=1

T∑
t=1

w1
t (τ)Mitχieit + ℓ(τ)

1√
NTh

N∑
i=1

T∑
t=1

w1
t (τ)Miteit

+
1√
NTh

N∑
i=1

T∑
t=1

w1
t (τ)Mitνiteit +Op(h)

d→ N
(
0, ν2

(
Λ̄ε(τ)Σχ + Λε,22(τ)ℓ(τ)ℓ(τ)

′ +Λνε(τ)
))
.

Moreover, the last two components in (NTh)−1/2ΥNT,4(τ) are asymptotically negligible:

1√
NTh

N∑
i=1

ντ,i

(
T∑
t=1

w1
t (τ)Mitxit

)(
T∑
t=1

w0
t (τ)Miteit

)
= op(1),

1√
NTh

ω−1
τ

(
N∑
i=1

ντ,i

T∑
t=1

w1
t (τ)Mitxit

)(
N∑
i=1

ντ,i

T∑
t=1

w0
t (τ)Miteit

)
= op(1),

using similar arguments for (C.22), Assumptions A5(c) and A7(b), Lemma B.4(b) - (d), and Lemma

B.5(g). Combining these results, we have

1√
NTh

ΥNT,4(τ)
d→ N

(
0, ν2

(
Λ̄ε(τ)Σχ + Λε,22(τ)ℓ(τ)ℓ(τ)

′ +Λνε(τ)
))
. (C.31)

As seen, the asymptotically dominating terms in (NTh)−1/2ΥNT,3(τ) and (NTh)−1/2ΥNT,4(τ) jointly

converge to a Gaussian distribution (Lemma C.1). Moreover, note that the asymptotic covariance between

(NTh)−1/2ΥNT,3(τ) and (NTh)−1/2ΥNT,4(τ) is determined by the covariance between the asymptotically

dominating terms, i.e., (NTh)−1/2
∑N

i=1

∑T
t=1w

1
t (τ)Miteit and (NTh)−1/2

∑N
i=1

∑T
t=1w

1
t (τ)Mitxiteit.

By Lemma C.1, we observe that (NTh)−1/2
∑N

i=1

∑T
t=1w

1
t (τ)Miteit is asymptotically independent

of (NTh)−1/2
∑N

i=1

∑T
t=1w

1
t (τ)Mitχieit and (NTh)−1/2

∑N
i=1

∑T
t=1w

1
t (τ)Mitνiteit, respectively. The
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asymptotic covariance between (NTh)−1/2ΥNT,3(τ) and (NTh)−1/2ΥNT,4(τ) is therefore fully determined

by the covariance between (NTh)−1/2
∑N

i=1

∑T
t=1w

1
t (τ)Miteit and ℓ(τ)(NTh)−1/2

∑N
i=1

∑T
t=1w

1
t (τ)Miteit.

Claim (CL.2) is now immediate.

III. Proof of Claim (CL.3)

Using the symmetric property of K(·), we have ν1 =
∫ 1
−1 uK

2(u) du = 0. With this identity, the remaining

steps are similar to the proof for Lemma C.1 and are thus omitted. ■

Proof of Theorem 2 Recall the definition θ̂(τ) in (2.10), and ∆M
i (τ) = diag(mi)bi − ZM

i (τ)θ(τ) in

Proposition C.2, where bi = (g1, . . . , gT )
′ +
(
x′
i1β1, . . . ,x

′
iTβT

)′
. Since

yM
i = ZM

i (τ)θ(τ) +miαi +∆M
i (τ) + eMi , (C.32)

we have

θ̂(τ)− θ(τ) =

(
N∑
i=1

Z̃M
i (τ)′Z̃M

i (τ)

)−1 (
ANT (τ) +BNT (τ) +DNT (τ)

)
, (C.33)

where

ANT (τ) =
N∑
i=1

ZM
i (τ)′Kh(τ)miαi −

N∑
i=1

ντ,iZ
M
i (τ)′kh(τ)kh(τ)

′

(
miαi − ω−1

τ

N∑
i=1

ντ,imiαi

)
.

Moreover, BNT (τ) and DNT (τ) are defined in Propositions C.2 and C.3, respectively.

ConsiderANT (τ) first. Note that
∑N

i=1Z
M
i (τ)′Kh(τ)miαi =

∑N
i=1

∑T
t=1K

(
τt−τ
h

)
Mitzit(τ)αi. With

the identity ν−1
τ,i = kh(τ)

′mi and the identification assumption
∑N

i=1 αi = 0, we obtain

N∑
i=1

ντ,iZ
M
i (τ)′kh(τ)kh(τ)

′

(
miαi − ω−1

τ

N∑
i=1

ντ,imiαi

)

=
N∑
i=1

ντ,i

{(
T∑
t=1

K

(
τt − τ

h

)
Mitzit(τ)

)(
αiν

−1
τ,i − ω−1

τ

N∑
i=1

αi

)}
=

N∑
i=1

T∑
t=1

K

(
τt − τ

h

)
Mitzit(τ)αi.

Therefore, the two components in ANT (τ) cancel out, leading to ANT (τ) = 0. As a result, Eq. (C.33)

can further written as

√
NTh

θ̂(τ)− θ(τ)−

(
1

NTh

N∑
i=1

Z̃M
i (τ)′Z̃M

i (τ)

)−1(
1

NTh
BNT (τ)

)
=

(
1

NTh

N∑
i=1

Z̃M
i (τ)′Z̃M

i (τ)

)−1(
1√
NTh

DNT (τ)

)
, (C.34)
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where BNT (τ) relates to the asymptotic bias, and DNT (τ) determines the asymptotic distribution. By

Propositions C.1 - C.3, we have Eq. (3.7). ■

Proposition C.4 Recall DNT (τ) as defined in Proposition C.3, and ϕ(·) in Assumption A8. Under

Assumptions A1, A3, A4, A5, A7(a) - (b), and A8,

sup
τ∈[0,1]

∥∥∥∥ 1

NTh
DNT (τ)

∥∥∥∥ = Op

(√
ln(NT )

(NT )ϕ(p0/2)h

)
. (C.35)

Proof of Proposition C.4 Recall xit = χi + ℓ(τt) + νit and eit = σi(τt)εit, where σi(·) ∈ [σL, σU ] ⊂ R+ in

Assumption A4, i = 1, . . . , N . By the decomposition (C.25) and the corresponding discussions concerning

ΥNT,1(τ), . . . ,ΥNT,4(τ) provided below the equation, it is not hard to see that the asymptotic order of

supτ∈[0,1]
∥∥(NTh)−1DNT (τ)

∥∥ is determined by

(a) supτ∈[0,1]

∥∥∥(NTh)−1
∑N

i=1

∑T
t=1w

0
t (τ)Mitνiteit

∥∥∥+C supτ∈[0,1]

∥∥∥(NTh)−1
∑N

i=1

∑T
t=1w

0
t (τ)Mit (Thντ,i) eit

∥∥∥;
(b) supτ∈[0,1]

∥∥∥(NTh)−1
∑N

i=1

∑T
t=1w

1
t (τ)Miteit

∥∥∥;
(c) supτ∈[0,1]

∥∥∥(NTh)−1
∑N

i=1

∑T
t=1w

1
t (τ)Mitxiteit

∥∥∥.
It is not hard to show that supτ∈[0,1]

∣∣∣(NTh)−1
∑N

i=1

∑T
t=1w

0
t (τ)Mit (Thντ,i) eit

∣∣∣ is asymptotically domi-

nated by supτ∈[0,1]

∣∣∣(NTh)−1
∑N

i=1

∑T
t=1w

0
t (τ)Mit [pi(τ)]

−1 eit

∣∣∣. With the definition of xit, the asymptotic

orders of the terms in Parts (a) - (c) boil down to linear combinations of the intermediate terms found in

(C.36) - (C.38) below. More specifically, based on Theorem 1, the following bounds can be obtained:

sup
τ∈[0,1]

∥∥∥∥∥ 1

NTh

N∑
i=1

T∑
t=1

wk1
t (τ)ℓk2(τt)Mit [pi(τ)]

−1 eit

∥∥∥∥∥ = Op

(√
ln(NT )

(NT )ϕ(p0/2)h

)
, (C.36)

sup
τ∈[0,1]

∥∥∥∥∥ 1

NTh

N∑
i=1

T∑
t=1

wk
t (τ)Mitνiteit

∥∥∥∥∥ = Op

(√
ln(NT )

(NT )ϕ(p0/2)h

)
, (C.37)

sup
τ∈[0,1]

∥∥∥∥∥ 1

NTh

N∑
i=1

T∑
t=1

wk
t (τ)Mitχieit

∥∥∥∥∥ = Op

(√
ln(NT )

(NT )ϕ(p0/2)h

)
, (C.38)

where k, k1, k2 are nonnegative integers. Note that for (C.38), the process {Mitχieit, t ≥ 1}, i = 1, . . . , N ,

is α-mixing (and thus NED) conditional on {χi, i = 1 . . . , N}, and therefore (C.38) immediately holds

by Theorem 1 conditional on {χi, i = 1 . . . , N}. By Xiong and Li (2008, Theorem 3.3), it also holds

unconditionally. Combining these results, we obtain (C.35). ■

Proof of Proposition 1 By Eq. (C.33),

sup
τ∈[0,1]

∥∥∥θ̂(τ)− θ(τ)
∥∥∥ ≤ sup

τ∈[0,1]

∥∥∥∥∥∥
(

1

NTh

N∑
i=1

Z̃M
i (τ)′Z̃M

i (τ)

)−1
∥∥∥∥∥∥

×

(
sup

τ∈[0,1]

∥∥∥∥ 1

NTh
BNT (τ)

∥∥∥∥+ sup
τ∈[0,1]

∥∥∥∥ 1

NTh
DNT (τ)

∥∥∥∥
)
, (C.39)
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where BNT (τ) and DNT (τ) are defined in Propositions C.2 and C.3, respectively. Since (A+B)−1 =

A−1 −A−1B(A+B)−1 for invertible matrices A and A+B, Proposition C.1 implies

sup
τ∈[0,1]

∥∥∥∥∥∥
(

1

NTh

N∑
i=1

Z̃M
i (τ)′Z̃M

i (τ)

)−1
∥∥∥∥∥∥ = Op(1). (C.40)

Finally, we have supτ∈[0,1]
∥∥(NTh)−1BNT (τ)

∥∥ = Op(h
2) by Proposition C.2. Combining these results

with Proposition C.4 leads to (3.6). ■

Proof of Corollary 1 By Eq. (C.32), we can write

max
1≤i≤N

|α̂i − αi| ≤ max
1≤i≤N

sup
τ∈[0,1]

∣∣∣α̂†
i (τ)− αi

∣∣∣ ≤ max
1≤i≤N

sup
τ∈[0,1]

∣∣∣ντ,ikh(τ)
′
(
ZM

i (τ)−Z̄M (τ)
)(

θ̂(τ)−θ(τ)
)∣∣∣

+ max
1≤i≤N

sup
τ∈[0,1]

∣∣∣∣∣ντ,ikh(τ)
′
(
∆M

i (τ)−ω−1
τ

N∑
i=1

ντ,i∆
M
i (τ)

)∣∣∣∣∣+ max
1≤i≤N

sup
τ∈[0,1]

∣∣∣∣∣ντ,ikh(τ)
′
(
eMi −ω−1

τ

N∑
i=1

ντ,ie
M
i

)∣∣∣∣∣.
By applying Parts (b), (c), (f), and (h) in Lemma B.4 and making use of Proposition 1, we obtain:

max
1≤i≤N

sup
τ∈[0,1]

∣∣∣ντ,ikh(τ)
′
(
ZM

i (τ)− Z̄M (τ)
)(

θ̂(τ)− θ(τ)
)∣∣∣ ≤ max

1≤i≤N
sup

τ∈[0,1]

{(
Thντ,i

)
×

∥∥∥∥ 1

Th
kh(τ)

′
(
ZM

i (τ)− Z̄M (τ)
)∥∥∥∥∥∥∥θ̂(τ)− θ(τ)

∥∥∥} = Op

(
h2 +

√
ln(NT )

(NT )ϕ(p0/2)h

)
. (C.41)

Similarly, by Eq. (C.7), we have

max
1≤i≤N

sup
τ∈[0,1]

∣∣∣∣∣ντ,ikh(τ)
′
(
∆M

i (τ)− ω−1
τ

N∑
i=1

ντ,i∆
M
i (τ)

)∣∣∣∣∣ = Op(h
2). (C.42)

Moreover, a straightforward modification of Lemma B.4(d) yields

max
1≤i≤N

sup
τ∈[0,1]

∣∣(Th)−1kh(τ)
′eMi

∣∣ = Op

√Nϖ(p0) ln(NT )

T ϕ(p0)h

 , (C.43)

leading to

max
1≤i≤N

sup
τ∈[0,1]

∣∣∣∣∣ντ,ikh(τ)
′
(
eMi − ω−1

τ

N∑
i=1

ντ,ie
M
i

)∣∣∣∣∣ = Op

√Nϖ(p0) ln(NT )

T ϕ(p0)h

 . (C.44)

Combining these results implies (3.8). ■
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D Proofs of bootstrap validity

As in Gonçalves and Perron (2014, Appendix B), we will frequently use the property that O∗
p(1)Op(1) =

O∗
p(1)O

∗
p(1) = O∗

p(1) in probability, and O∗
p(1)op(1) = O∗

p(1)o
∗
p(1) = o∗p(1) in probability, in the following

proofs. A justification for this can be found in Lemma 3 of Cheng and Huang (2010).

Lemma D.1 Under Assumptions A1 - A8, B1 - B2, for any fixed τ ∈ (0, 1), k = 0, 1, . . ., we have: as

(N,T ) → ∞,

1√
NTh

N∑
i=1

T∑
t=1

wk
t (τ)Mit


Thντ,i

1

χi

νit

 ξ∗t ẽit
d∗→p N

(
0, ν2k

(
Λε(τ)

Λ̄ε(τ)Σχ

Λνε(τ)

))
, (D.1)

which mimics the asymptotic distribution as given in Lemma C.1.

Proof of Lemma D.1 Similar to Lemma C.1, the Cramér-Wold device is employed to establish the

asymptotic joint distribution. Specifically, for any unit vector a = (a1,a
′
2)

′ ∈ R2(d+1), we consider

T∑
t=1

Ỹ∗
NT,t(τ) + a1

1√
NTh

N∑
i=1

T∑
t=1

wk
t (τ)Mit

{
(Thντ,i)− [pi(τ)]

−1
}
ξ∗t ẽit, (D.2)

where Ỹ∗
NT,t(τ) = (NTh)−1/2wk

t (τ)
∑N

i=1Mita
′ [1/pi(τ), 1,χ

′
i,ν

′
it]

′ ẽitξ
∗
t .

Note that the sequence {wit := (χi,νit), i = 1, . . . , N, t = 1, . . . , T} is not directly observable and

therefore does not fall within our information set. To simplify the proof, we first condition on the data

and {wit}, from which we derive the conditional asymptotic normality of
∑T

t=1 Ỹ∗
NT,t(τ). Given that the

limiting distribution does not depend on {wit}, our results also hold unconditionally with respect to the

sequence.

I. Asymptotic mean and variance of
∑T

t=1 Ỹ∗
NT,t(τ)

Recall the notation defined below (C.13). Namely, Ak1k2

(
i, ti; j, tj

)
= ak1(i, ti)ak2(j, tj)

′, 1 ≤ k1, k2 ≤

4, where a1(ℓ, tℓ) = 1/pℓ(τ), a2(ℓ, tℓ) = 1, a3(ℓ, tℓ) = χℓ, and a4(ℓ, tℓ) = νℓtℓ , for ℓ = i or ℓ =

j. Furthermore, let E∗
w(·) = E

(
·
∣∣ {(xit, yit,Mit,wit), i = 1, . . . , N, t = 1, . . . , T

})
. Since {ξ∗t } is

independent of
{
(xit, yit,Mit,wit)

}
, it follows that E∗

w(ξ∗t ) = 0 and E∗
w

(
ξ∗t ξ

∗
s

)
= γ|t−s|. As a result, we have

E∗
w

(∑T
t=1 Ỹ∗

NT,t(τ)
)
= 0. Furthermore, by Eq. (C.13), we obtain E∗

w

(∑T
t=1 Ỹ∗

NT,t(τ)
)2

= a′ẼNT (τ)a,
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where ẼNT (τ) =
(
ẼNT,k1k2(τ), k1, k2 = 1, 2, 3, 4

)
is a block matrix with the elements given by

ẼNT,k1k2(τ) =
1

NTh

N∑
i,j=1


T∑
t=1

[
wk
t (τ)

]2
MitMjtAk1k2

(
i, t; j, t

)
ẽitẽjt

+

T−1∑
s=1

γs
T−s∑
t=1

wk
t (τ)w

k
t+s (τ)MitMj(t+s)Ak1k2

(
i, t; j, t+ s

)
ẽitẽj(t+s)

+
T−1∑
s=1

γs
T−s∑
t=1

wk
t (τ)w

k
t+s (τ)Mi(t+s)MjtAk1k2

(
i, t+ s; j, t

)
ẽi(t+s)ẽjt


=: ĨNT,k1,k2(τ) + ĨINT,k1,k2(τ) + ĨIINT,k1,k2(τ).

(D.3)

Note that ẽit =Mit

[
eit + (αi − α̃i) + (gt − g̃t) + x′

it

(
βt − β̃t

)]
. Using Proposition 1 and Corollary 1, we

can express ĨNT,k1,k2(τ) as follows:

ĨNT,k1,k2(τ) =
1

NTh

N∑
i,j=1

T∑
t=1

[
wk
t (τ)

]2
MitMjtAk1k2

(
i, t; j, t

)
eitejt + op(1). (D.4)

We will maintain ĨNT,k1,k2(τ) for now and proceed to simplify ĨINT,k1,k2(τ) and ĨIINT,k1,k2(τ). The steps

involved in simplifying ĨINT,k1,k2(τ) and ĨIINT,k1,k2(τ) are similar, with the primary challenge lying in

ĨINT,k1,k2(τ). To proceed, we first split ĨINT,k1,k2(τ) as follows:

ĨINT,k1,k2(τ) =
1

NTh

N∑
i,j=1

T−1∑
s=1

γs
T−s∑
t=1

wk
t (τ)w

k
t+s (τ)MitMj(t+s)Ak1k2

(
i, t; j, t+ s

)
eitej(t+s)

+
1

NTh

N∑
i,j=1

T−1∑
s=1

γs
T−s∑
t=1

wk
t (τ)w

k
t+s (τ)MitMj(t+s)Ak1k2

(
i, t; j, t+ s

) (
ẽitẽj(t+s) − eitej(t+s)

)
=: ĨI

a

NT,k1,k2(τ) + ĨI
b

NT,k1,k2(τ). (D.5)

We prove ĨI
b

NT,k1,k2(τ) = op(1) first and address ĨI
a

NT,k1,k2(τ) subsequently.

Recall the notation Υ (τ) in Proposition C.2, and define Υt = Υ (τt) =
(
gt,β

′
t

)′
, Υ̃t = Υ̃ (τt) =

(
g̃t, β̃

′
t

)′
.

We have

MitMj(t+s)

(
ẽitẽj(t+s) − eitej(t+s)

)
=MitMj(t+s)

[
(αj − α̃j)eit + (αi − α̃i)ej(t+s) + (αi − α̃i)(αj − α̃j)

+ (αi − α̃i)
(
1,x′

j(t+s)

)
(Υt+s − Υ̃t+s) + (αj − α̃j)

(
1,x′

it

)
(Υt − Υ̃t) + eit

(
1,x′

j(t+s)

)
(Υt+s − Υ̃t+s)

+ ej(t+s)

(
1,x′

it

)
(Υt − Υ̃t) + (Υt − Υ̃t)

′(1,x′
it)

′(1,x′
j(t+s)

)
(Υt+s − Υ̃t+s)

]
. (D.6)

This decomposition results in ĨI
b

NT,k1,k2(τ) being split into a summation of eight components, denoted as

ĨI
b,ℓ

NT,k1,k2(τ) for ℓ = 1, . . . , 8. The details of ĨI
b,1

NT,k1,k2(τ), . . . , ĨI
b,8

NT,k1,k2(τ) are provided below, i.e., Eqs.

(D.9) - (D.16).
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Before we proceed, it is worth noting that

∞∑
s=0

γs =
∞∑
s=0

θs/ℓ = 1/(1− θ1/ℓ) = −ℓ/ ln(θ) + o(ℓ) = O(ℓ), ∀θ ∈ (0, 1). (D.7)

Furthermore, by applying the Cauchy-Schwarz inequality, we have:

E

∥∥∥∥∥
N∑
i=1

MitMj(t+s)Ak1k2

(
i, t; j, t+ s

)
eit

∥∥∥∥∥
ξ0/2
2/ξ0

≤ C

E

∥∥∥∥∥
N∑
i=1

Mitσi(τt)ak1(i, t)εit

∥∥∥∥∥
ξ0
1/ξ0

≤ CN1/2, (D.8)

uniformly in j, t, s ≥ 1, ξ0 = p0/2. The final inequality above is obtained from Assumption A7(a).

Using (D.7) and (D.8), and based on the exogeneity condition of {εit} in Assumption A7(b), we can

bound ĨI
b,1

NT,k1,k2(τ) as follows:

∥∥∥ĨIb,1NT,k1,k2(τ)
∥∥∥ =

∥∥∥∥∥∥ 1

NTh

N∑
i,j=1

T−1∑
s=1

γs
T−s∑
t=1

wk
t (τ)w

k
t+s (τ)MitMj(t+s)Ak1k2

(
i, t; j, t+ s

)
(αj − α̃j)eit

∥∥∥∥∥∥
≤

N∑
j=1

|αj − α̃j |
T−1∑
s=1

γs

∥∥∥∥∥ 1

NTh

N∑
i=1

T−s∑
t=1

wk
t (τ)w

k
t+s (τ)MitMj(t+s)Ak1k2

(
i, t; j, t+ s

)
eit

∥∥∥∥∥
= N max

1≤j≤N
|αj − α̃j |O(ℓ)Op

(
1√
N

)
= op(1), (D.9)

where the second-to-last equality is deduced from the Triplex inequality (Jiang, 2009) and Assumption

A8, following similar steps to the proof of Lemma C.1. Moreover, the final equality is due to Assumption

B1. Similarly, we have

ĨI
b,2

NT,k1,k2(τ) =
1

NTh

N∑
i,j=1

T−1∑
s=1

γs
T−s∑
t=1

wk
t (τ)w

k
t+s (τ)MitMj(t+s)Ak1k2

(
i, t; j, t+s

)
(αi−α̃i)ej(t+s) = op(1).

(D.10)

Moreover,

∥∥∥ĨIb,3NT,k1,k2(τ)
∥∥∥ =

∥∥∥∥∥∥ 1

NTh

N∑
i,j=1

T−1∑
s=1

γs
T−s∑
t=1

wk
t (τ)w

k
t+s (τ)MitMj(t+s)Ak1k2

(
i, t; j, t+ s

)
(αi − α̃i)(αj − α̃j)

∥∥∥∥∥∥
≤ 1

NTh

T−1∑
s=1

γs
T−s∑
t=1

wk
t (τ)w

k
t+s (τ)

N∑
i,j=1

∥∥MitMj(t+s)Ak1k2

(
i, t; j, t+ s

)
(αi − α̃i)(αj − α̃j)

∥∥
≤
(

max
1≤j≤N

|αj − α̃j |
)2 1

NTh

T−1∑
s=1

γs
T−s∑
t=1

wk
t (τ)w

k
t+s (τ)

N∑
i,j=1

∥∥Ak1k2

(
i, t; j, t+ s

)∥∥
=

(
max

1≤j≤N
|αj − α̃j |

)2

Op(Nℓ) = op(1), (D.11)
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using Markov’s inequality in the second-to-last step. For ĨI
b,4

NT,k1,k2(τ), the application of Proposition 1

and Corollary 1 implies

∥∥∥ĨIb,4NT,k1,k2(τ)
∥∥∥

=

∥∥∥∥∥∥ 1

NTh

N∑
i,j=1

T−1∑
s=1

γs
T−s∑
t=1

wk
t (τ)w

k
t+s (τ)MitMj(t+s)Ak1k2

(
i, t; j, t+ s

)
(αi − α̃i)

[(
1,x′

j(t+s)

)
(Υt+s − Υ̃t+s)

]∥∥∥∥∥∥
≤ 1

NTh

T−1∑
s=1

γs
T−s∑
t=1

wk
t (τ)w

k
t+s (τ)

N∑
i,j=1

∥∥∥MitMj(t+s)Ak1k2

(
i, t; j, t+ s

)
(αi − α̃i)

[(
1,x′

j(t+s)

)
(Υt+s − Υ̃t+s)

]∥∥∥
= max

1≤j≤N
|αj − α̃j | sup

τ∈[0,1]

∥∥∥θ̃(τ)− θ(τ)
∥∥∥Op(Nℓ) = op(1). (D.12)

Similarly, we obtain

ĨI
b,5

NT,k1,k2(τ) =
1

NTh

N∑
i,j=1

T−1∑
s=1

γs
T−s∑
t=1

wk
t (τ)w

k
t+s (τ)MitMj(t+s)

×Ak1k2

(
i, t; j, t + s

)
(αj − α̃j)

[(
1,x′

it

)
(Υt − Υ̃t)

]
= op(1). (D.13)

We now proceed to ĨI
b,6

NT,k1,k2(τ). Note that for any A ∈ Rd1×d2 and a, b ∈ Rd3 , d1, d2, d3 ∈ Z+, we

have ∥A(a′b)∥ = ∥(A⊗ a′)(Id2 ⊗ b)∥ ≤ ∥A⊗ a′∥ ∥Id2 ⊗ b∥ ≤ ∥A⊗ a′∥ ∥b∥. Hence, ĨI
b,6

NT,k1,k2(τ) can be

bounded by

∥∥∥ĨIb,6NT,k1,k2(τ)
∥∥∥

=

∥∥∥∥∥∥ 1

NTh

N∑
i,j=1

T−1∑
s=1

γs
T−s∑
t=1

wk
t (τ)w

k
t+s (τ)MitMj(t+s)Ak1k2

(
i, t; j, t+ s

)
eit
(
1,x′

j(t+s)

)
(Υt+s − Υ̃t+s)

∥∥∥∥∥∥
=

∥∥∥∥∥∥ 1

NTh

T−1∑
s=1

γs
T−s∑
t=1

wk
t (τ)w

k
t+s (τ)

 N∑
i,j=1

MitMj(t+s)Ak1k2

(
i, t; j, t+ s

)
eit
(
1,x′

j(t+s)

) (Υt+s − Υ̃t+s)

∥∥∥∥∥∥
≤ sup

τ∈[0,1]

∥∥∥θ̃(τ)− θ(τ)
∥∥∥ 1

NTh

T−1∑
s=1

γs
T−s∑
t=1

wk
t (τ)w

k
t+s (τ)

∥∥∥∥∥∥
N∑

i,j=1

MitMj(t+s)Ak1k2

(
i, t; j, t+ s

)
eit ⊗

(
1,x′

j(t+s)

)∥∥∥∥∥∥
= sup

τ∈[0,1]

∥∥∥θ̃(τ)− θ(τ)
∥∥∥Op(

√
Nℓ) = op(1), (D.14)

where the second-to-last equality is derived as follows. More specifically, by the Markov’s inequality, for
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any ϵ > 0, there exists Mϵ <∞ such that

P

 1

NTh

T−1∑
s=1

γs
T−s∑
t=1

wk
t (τ)w

k
t+s (τ)

∥∥∥∥∥∥
N∑

i,j=1

MitMj(t+s)Ak1k2

(
i, t; j, t+ s

)
eit ⊗

(
1,x′

j(t+s)

)∥∥∥∥∥∥ ≥
√
NℓMϵ


≤ 1

Mϵ

1

ℓ

1

Th

T−1∑
s=1

γs
T−s∑
t=1

wk
t (τ)w

k
t+s (τ)E

∥∥∥∥∥∥ 1√
N

N∑
i=1

Mitak1(i, t)eit
1

N

N∑
j=1

Mj(t+s)ak2(j, t+ s)′ ⊗
(
1,x′

j(t+s)

)∥∥∥∥∥∥
≤ C

1

Mϵ

1

ℓ

T−1∑
s=1

γs
1

Th

T−s∑
t=1

wk
t (τ)w

k
t+s (τ)

 1

N
E

 N∑
i,j=1

MitMjtak1(i, t)
′ak1(j, t)eitejt


1/2

≤ C/Mϵ ≤ ϵ,

where the second inequality follows from the Cauchy-Schwarz and cr inequalities and Assumption A5,

and the third one is due to Eq. (D.7) and (b), (d) in Assumption A7. Similarly, one could obtain

ĨI
b,7

NT,k1,k2(τ) =
1

NTh

N∑
i,j=1

T−1∑
s=1

γs
T−s∑
t=1

wk
t (τ)w

k
t+s (τ)MitMj(t+s)

×Ak1k2

(
i, t; j, t + s

)
ej(t+s)

(
1,x′

it

)
(Υt − Υ̃t) = op(1). (D.15)

Finally, we have

∥∥∥ĨIb,8NT,k1,k2(τ)
∥∥∥

=

∥∥∥∥∥∥ 1

NTh

N∑
i,j=1

T−1∑
s=1

γs
T−s∑
t=1

wk
t (τ)w

k
t+s (τ)MitMj(t+s)Ak1k2

(
i, t; j, t+ s

)
(Υt − Υ̃t)

′(1,x′
it)

′(1,x′
j(t+s)

)
(Υt+s − Υ̃t+s)

∥∥∥∥∥∥
≤

(
sup

τ∈[0,1]

∥∥∥θ̃(τ)− θ(τ)
∥∥∥)2

1

NTh

T−1∑
s=1

γs
T−s∑
t=1

wk
t (τ)w

k
t+s (τ)

N∑
i,j=1

∥∥Ak1k2

(
i, t; j, t+ s

)∥∥ ∥∥∥(1,x′
it)

′(1,x′
j(t+s)

)∥∥∥
=

(
sup

τ∈[0,1]

∥∥∥θ̃(τ)− θ(τ)
∥∥∥)2

Op(Nℓ) = op(1). (D.16)

Combining (D.9) - (D.16) leads to ĨI
b

NT,k1,k2(τ) = op(1), and therefore

ĨINT,k1,k2(τ) =
1

NTh

N∑
i,j=1

T−1∑
s=1

γs
T−s∑
t=1

wk
t (τ)w

k
t+s (τ)MitMj(t+s)Ak1k2

(
i, t; j, t+s

)
eitej(t+s)+op(1). (D.17)

Similarly, one could have

ĨIINT,k1,k2(τ) =
1

NTh

N∑
i,j=1

T−1∑
s=1

γs
T−s∑
t=1

wk
t (τ)w

k
t+s (τ)Mi(t+s)MjtAk1k2

(
i, t+s; j, t

)
ei(t+s)ejt+op(1). (D.18)

By (D.3), (D.4), (D.17), (D.18), ẼNT,k1k2(τ) can be equivalently written as

ẼNT,k1k2(τ) =
1

NTh

N∑
i,j=1

T∑
t=1

T∑
s=1

wk
t (τ)Mitak1(i, t)eitw

k
s (τ)Mjsak2(j, s)

′ejsγ
|t−s| + op(1).

S37



Since γ|t−s| = θ|t−s|/ℓ, we then have

E∗
w

(
T∑
t=1

Ỹ∗
NT,t(τ)

)2

= a′

{
T∑
t=1

T∑
s=1

XNT,t(τ)XNT,s(τ)
′θ|t−s|/ℓ

}
a+ op(1), ∀τ ∈ (0, 1), (D.19)

where

XNT,t(τ) =
1√
Th

wk
t (τ)

(
1√
N

N∑
i=1

σi(τt)Mit

[
1/pi(τ), 1,χ

′
i,ν

′
it

]′
εit

)
, t = 1, . . . , T. (D.20)

Note that the function x 7→ θ|x| satisfies Assumption 1 of de Jong and Davidson (2000) for any θ ∈ (0, 1).

Moreover, define Eχ(·) = E
(
· | {χi}Ni=1

)
and recall F t2

ξ,t1
= σ (ξ•t, t1 ≤ t ≤ t2). Then, for any τ ∈ (0, 1),

Eχ

∥∥∥XNT,t(τ)− Eχ

(
XNT,t(τ)

∣∣∣F t+m
ξ,t−m

)∥∥∥2
=

(
1√
Th

wk
t (τ)

)2

Eχ

∥∥∥∥∥ 1√
N

N∑
i=1

σi(τt)
[
Mit

[
1/pi(τ), 1,χ

′
i,ν

′
it

]′
εit − Eχ

(
Mit

[
1/pi(τ), 1,χ

′
i,ν

′
it

]′
εit

∣∣∣F t+m
ξ,t−m

)]∥∥∥∥∥
2

=

(
1√
Th

wk
t (τ)

)2

Eχ

∥∥∥∥∥ 1√
N

N∑
i=1

σi(τt)Mitεit

[
νit − Eχ

(
νit

∣∣∣F t+m
ξ,t−m

)]∥∥∥∥∥
2

=

(
1√
Th

wk
t (τ)

)2

Eχ

∥∥∥∥∥ 1√
N

N∑
i=1

σi(τt)Mitεit

[
νit − E

(
νit

∣∣∣F t+m
ξ,t−m

)]∥∥∥∥∥
2

≤
(

1√
Th

wk
t (τ)

)2

sup
t≥1

E

∥∥∥∥∥ 1√
N

N∑
i=1

σi(τt)Mitεit

(
νit − ν

(m)
it

)∥∥∥∥∥
2

≤ C

(
1√
Th

wk
t (τ)

)2

m−ς , (D.21)

by Assumption B2 and the independence between {χi, i = 1, . . . , N} and {ξ•t, t = 1, . . . , T}, where ς > 1.

Therefore, for τ ∈ (0, 1), conditional on {χi}, {XNT,t(τ), t = 1, . . . , T} fulfills Assumption 2 of de Jong

and Davidson (2000) (by taking dnt = cnt = (Th)−1/2wk
t (τ) and r = p0/2). Finally, Assumption B1

ensures that ℓ satisfies their Assumption 3. By employing (D.19) and applying Theorem 2.1 of de Jong

and Davidson (2000), we can conclude that

E∗
w

(
T∑
t=1

Ỹ∗
NT,t(τ)

)2

= a′

{
T∑
t=1

T∑
s=1

Eχ

[
XNT,t(τ)XNT,s(τ)

′
]
+ op(1)

}
a+ op(1), (D.22)

for τ ∈ (0, 1). Here, we use the fact that if a random sequence is conditionally op(1) then it is

unconditionally op(1), see, e.g., Xiong and Li (2008, Theorem 3.3). We next prove that

T∑
t=1

T∑
s=1

Eχ

[
XNT,t(τ)XNT,s(τ)

′
]
= E [ENT (τ)] + op(1), ∀τ ∈ (0, 1). (D.23)

where ENT (τ) is defined in Lemma C.1. Eq. (D.23) can be obtained if the following two terms are
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asymptotically negligible for any τ ∈ (0, 1):

KNT,1(τ) =
1

N

N∑
i,j=1

KT,ij(τ)
[
χiχ

′
j − E

(
χiχ

′
j

)]
, KNT,2(τ) =

1

N

N∑
i,j=1

KT,ij(τ) [χi − E (χi)] =
1

N

N∑
i,j=1

Kij(τ)χi,

where KT,ij(τ) = (Th)−1
∑T

t,s=1w
k
t (τ)w

k
s (τ)σi(τt)σj(τs)E (MitMjs)E (εitεjs). By Assumptions A7(c)

and B2, we have supτ∈[0,1]
∑N

i,j=1 |KT,ij(τ)| = O(N) and supτ∈[0,1]
∑N

i,j,m=1KT,ij(τ)KT,im(τ) = o(N2).

Note that E [KNT,1(τ)] = O, E [KNT,2(τ)] = 0, and max1≤i,j≤N supτ∈[0,1] |KT,ij(τ)| ≤ C. Moreover, since

E
[
KNT,1(τ)KNT,1(τ)

′] = 1

N2

N∑
i,j,m,n=1

KT,ij(τ)KT,mn(τ)E
{ [

χiχ
′
j − E

(
χiχ

′
j

)] [
χmχ′

n − E
(
χmχ′

n

)] }

=


O(N−1), i = j = m = n,

O, i = j = m ̸= n, or i = j ̸= m = n, or i ̸= j ̸= m ̸= n,

O(N−1), i = m ̸= j = n,

and E [KNT,2(τ)KNT,2(τ)
′] = ΣχN

−2
∑N

i,j,m=1KT,ij(τ)KT,im(τ) = o(1). Therefore, we deduce that

KNT,1(τ) = op(1) and KNT,2(τ) = op(1), leading to result of Eq. (D.23). By (D.22), (D.23) and Lemma

C.1, we have

E∗
w

(
T∑
t=1

Ỹ∗
NT,t(τ)

)2

p→ a′ν2k diag
[
Λε(τ), Λ̄ε(τ)Σχ,Λνε(τ)

]
a. (D.24)

II. Asymptotic normality of
∑T

t=1 Ỹ∗
NT,t(τ)

Let Q̃N,t(τ) = N−1/2wk
t (τ)

∑N
i=1Mita

′ [1/pi(τ), 1,χ
′
i,ν

′
it]

′ ẽit so that
∑T

t=1 Ỹ∗
NT,t(τ) = (Th)−1/2

∑T
t=1 Q̃N,t(τ)ξ

∗
t .

Note that {ξ∗t } admits an MA(∞) representation ξ∗t =
∑∞

j=0 γ
jν∗t−j , where {ν∗t , t < 1} is defined similarly

to {ν∗t , t ≥ 1}. Choose an M such that M/ℓ→ ∞ as (N,T ) → ∞, and truncate the bootstrap errors ξ∗t

at M lags, denoted by ξ∗t,M =
∑M

j=0 γ
jν∗t−j . Then

T∑
t=1

Ỹ∗
NT,t(τ) =

1√
Th

T∑
t=1

Q̃N,t(τ)ξ
∗
t,M +

1√
Th

T∑
t=1

Q̃N,t(τ)

 ∞∑
j=M+1

γjν∗t−j

 . (D.25)

Note that the second component in (D.25) is asymptotically negligible conditional on {wit}. To see this,

observe that, for any s ≥ 0 and θ ∈ (0, 1),

E∗
w

 ∞∑
j=M+1

γjν∗t−j

 ∞∑
j=M+1

γjν∗t+s−j

 = γs(1− γ2)
∞∑

j=M+1

γ2j = γsθ2(M+1)/ℓ = o(γs). (D.26)
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By replacing γs with o(γs) in (D.3) in Part I, it is immediate to obtain

E∗
w

 1√
Th

T∑
t=1

Q̃N,t(τ)

 ∞∑
j=M+1

γjν∗t−j

2

= op(1), ∀τ ∈ (0, 1). (D.27)

We now adopt the common blocking technique as in Friedrich et al. (2020, Proof of Theorem 2) and

Friedrich and Lin (2022, Proof of Theorem 1) to establish asymptotic normality of (Th)−1/2
∑T

t=1 Q̃N,t(τ)ξ
∗
t,M .

We partition the index set {1, . . . , T} = ∪kT
j=1Bj , where Bj =

{
bj+1, . . . , bj+ lT

}∪{bj+ lT +1, . . . , bj+1

}
,

bj = (j − 1)(lT + sT ), and kT = ⌈T/(lT + sT )⌉. We truncate the final block BkT to have T observations

in total. Moreover, we require 1/lT + lT /(Th) → 0 and 1/sT + sT /lT +M/sT → 0 as T → ∞. For

instance, one can take lT =
⌊
Th2

⌋
, sT =

⌊
(Th2)1/2

⌋
, and M =

⌊
(Th2)1/4

⌋
. Then, we have kT ∼ T/lT . By

construction, each block Bj is divided into two subsets, one with a relatively large length (lT ) and the other

with a small length (sT ). It leads to (Th)−1/2
∑T

t=1 Q̃N,t(τ)ξ
∗
t,M =

∑kT
j=1 V

∗
N,T,j(τ) +

∑kT
j=1W

∗
N,T,j(τ),

where

V ∗
N,T,j(τ) =

1√
Th

bj+lT∑
t=bj+1

Q̃N,t(τ)ξ
∗
t,M , W ∗

N,T,j(τ) =
1√
Th

bj+1∑
t=bj+lT+1

Q̃N,t(τ)ξ
∗
t,M . (D.28)

We first show that
∑kT

j=1W
∗
N,T,j(τ) is asymptotically negligible conditionally on {wit}. Note that{

ξ∗t,M

}
is an M -dependent process conditionally on {wit}. As such, the blocks W ∗

N,T,j(τ), j =

1, . . . , kT , are conditionally independent for a sufficiently large T . Moreover, recall Mit (ẽit − eit) =

Mit

[
(αi − α̃i) +

(
1,x′

it

)
(Υt − Υ̃t)

]
. Then we can write Q̃N,t(τ) = QN,t(τ) + RN,t(τ), where QN,t(τ) =

N−1/2wk
t (τ)

∑N
i=1Mita

′ [1/pi(τ), 1,χ
′
i,ν

′
it]

′ eit, and

RN,t(τ) = wk
t (τ)N

−1/2
N∑
i=1

a′ [1/pi(τ), 1,χ′
i,ν

′
it

]′
Mit (ẽit − eit)

≤ wk
t (τ)N

−1/2
N∑
i=1

(C + ∥χi∥+ ∥νit∥) ∥Mit (ẽit − eit)∥

≤ Cwk
t (τ)

{
max

1≤j≤N
|αj − α̃j |+ sup

τ∈[0,1]

∥∥∥θ̃(τ)− θ(τ)
∥∥∥}{Op(

√
N) +N−1/2

N∑
i=1

∥νit∥2
}
, (D.29)

where the term Op(
√
N) is uniform in τ and t. By utilizing the results above and the identity

(∑U
t=L qt

)2
=
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∑U−L
s=−(U−L)

∑U−|s|
t=L qtqt+|s|, we obtain

E∗
w

 kT∑
j=1

W ∗
N,T,j(τ)

2

=

kT∑
j=1

E∗
w

(
W ∗

N,T,j(τ)
)2

≤ 1

Th

sT−1∑
s=−sT+1

θ|s|/ℓ
kT∑
j=1

bj+1−|s|∑
t=bj+lT+1

[
Q̃N,t(τ)Q̃N,t+|s|(τ)

]

=

 1

Th

sT−1∑
s=−sT+1

θ|s|/ℓ
kT∑
j=1

bj+1−|s|∑
t=bj+lT+1

QN,t(τ)QN,t+|s|(τ)

+ op

(
sT
lT

)
, (D.30)

where the second step follows from

E∗
w

(
ξ∗t,Mξ

∗
t+|s|,M

)
= γ|s|(1− γ2)

M∑
j=0

γ2j = γ|s|
(
1− γ2(M+1)

)
≤ θ|s|/ℓ, θ ∈ (0, 1), (D.31)

and the third step is due to (D.29) and the assumption
√
NO(ℓ)

{
max1≤j≤N |αj − α̃j |+ supτ∈[0,1]

∥∥∥θ̃(τ)− θ(τ)
∥∥∥} =

op(1). Since, by Assumption A7(d),

E

 1

Th

sT−1∑
s=−sT+1

θ|s|/ℓ
kT∑
j=1

bj+1−|s|∑
t=bj+lT+1

QN,t(τ)QN,t+|s|(τ)

 ≤ C
kT sT
T

a′

N−1
N∑

i,j=1

Ri,j(τ, τ)σi(τ)σj(τ)

×
sT−1∑

s=−sT+1

E
[
A
(
i, t; j, t + s

)
εitεj(t+s)

]a + o

(
sT
lT

)
= O

(
sT
lT

)
, (D.32)

where A
(
i, t; j, t + s

)
is a block matrix, and the (k1, k2)th block is given by Ak1k2

(
i, t; j, t + s

)
. By

combining (D.30) and (D.32), it follows that

E∗
w

 kT∑
j=1

W ∗
N,T,j(τ)

2

=

(
sT
lT

)
= op(1), ∀τ ∈ (0, 1). (D.33)

Since E∗
w

(∑kT
j=1W

∗
N,T,j(τ)

)
= 0, we conclude that

∑kT
j=1W

∗
N,T,j(τ) converges to zero in probability

conditionally on {wit}.

Recall V ∗
N,T,j(τ) = (Th)−1/2

∑bj+1

t=bj+lT+1 Q̃N,t(τ)ξ
∗
t,M , j = 1, . . . , kT . To establish the asymptotic

normality of (Th)−1/2
∑T

t=1 Q̃N,t(τ)ξ
∗
t,M , it essentially involves proving the asymptotic normality of∑kT

j=1 V
∗
N,T,j(τ). To this end, we will employ the Lindeberg central limit theorem (Davidson, 1994, Theorem

23.6). Note that E∗
w

(∑kT
j=1 V

∗
N,T,j(τ)

)
= 0, and

∑kT
j=1 V

∗
N,T,j(τ) dominates the asymptotic behavior

of
∑T

t=1 Ỹ∗
NT,t(τ). By (D.19), (D.26), and (D.33), it becomes evident that E∗

w

(∑kT
j=1 V

∗
N,T,j(τ)

)2 p→

a′ν2k diag
[
Λε(τ), Λ̄ε(τ)Σχ,Λνε(τ)

]
a for any τ ∈ (0, 1). The final step is to verify the Lindeberg
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condition. That is, for any κ > 0, we shall show

kT∑
j=1

E∗
w

[V ∗
N,T,j(τ)

]2
ω∗2
NT

1

{∣∣∣∣V ∗
N,T,j(τ)

ω∗
NT

∣∣∣∣ > κ

} = op(1), ∀τ ∈ (0, 1), (D.34)

where ω∗2
NT = E∗

w

(∑kT
j=1 V

∗
N,T,j(τ)

)2
. Recall that p0 = 2(2 + δ) as indicated in Assumption A4, where

δ > 0. Given E∗
w(ν

∗
i )

p0/2 < ∞, Q̃N,t(τ)ξ
∗
t,M forms an Lp0/2-mixingale, conditional on {wit}, when

ci = |Q̃N,i(τ)|
(
E∗
w(ν∗i )

p0/2
)2/p0 is taken in Definition 1 in Hansen (1991) (Davidson, 1994, Example 16.2,

for instance). Since Q̃N,t(τ) = QN,t(τ) +RN,t(τ), using Lemma 2 of Hansen (1991), the LHS of (D.34)

can be bounded by

1

κδ

kT∑
j=1

E∗
w

[V ∗
N,T,j(τ)

]p0/2
ω
∗(p0/2)
NT

1

{∣∣∣∣V ∗
N,T,j(τ)

ω∗
NT

∣∣∣∣ > κ

} ≤ 1

κδ
ω
∗−(p0/2)
NT

kT∑
j=1

E∗
w

([
V ∗
N,T,j(τ)

]p0/2)

≤ C
1

κδ
ω
∗−(p0/2)
NT

1

(Th)1+δ/2

kT∑
j=1

 bj+1∑
t=bj+lT+1

[
Q̃N,i(τ)

]21+δ/2

≤ C
1

κδ
ω
∗−(p0/2)
NT

l
δ/2
T

(Th)1+δ/2

kT∑
j=1

bj+1∑
t=bj+lT+1

[∣∣QN,t(τ)
∣∣p0/2 + ∣∣RN,t(τ)

∣∣p0/2]

≤ C
1

κδ
ω
∗−(p0/2)
NT

(
lT
Th

)δ/2 1

Th

T∑
t=1

[∣∣QN,t(τ)
∣∣p0/2 + ∣∣RN,t(τ)

∣∣p0/2]
= Op(1)

(
lT
Th

)δ/2
{
Op

(
1

Th

T∑
t=1

[
wk
t (τ)

]p0/2)
+ op

(
1

Th

T∑
t=1

[
wk
t (τ)

]p0/2)}
,

where the cr-inequality is applied twice in the third step, while the final step is a result of Assumption

A7(a), Eq. (D.29), and the fact that ω∗−4
NT = Op(1). Since lT /(Th) → 0 as T → ∞, we obtain (D.34).

III. Asymptotic order of the second component in (D.2)

Similar to the proof for ĨI
b

NT,k1,k2(τ) in Part I, one can obtain

E∗
w

∣∣∣∣∣ 1√
NTh

N∑
i=1

T∑
t=1

wk
t (τ)Mit

{
(Thντ,i)− [pi(τ)]

−1
}
ξ∗t ẽit

∣∣∣∣∣
2

=
1

NTh

N∑
i,j=1

{
(Thντ,i)− [pi(τ)]

−1
}{

(Thντ,j)− [pj(τ)]
−1
} T∑

s,t=1

wk
t (τ)w

k
s (τ)MitMjsẽitẽjsγ

|t−s|

=
1

NTh

N∑
i,j=1

{
(Thντ,i)− [pi(τ)]

−1
}{

(Thντ,j)− [pj(τ)]
−1
} T∑

s,t=1

wk
t (τ)w

k
s (τ)MitMjseitejsγ

|t−s| + op(1)

= op(1),

where the final step follows from the arguments for Part (b) in the proof of Lemma C.1. Using Markov’s

inequality, the component (NTh)−1/2
∑N

i=1

∑T
t=1w

k
t (τ)Mit

{
(Thντ,i)− [pi(τ)]

−1 }ξ∗t ẽit is asymptotically
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negligible.

The proof of the lemma is now complete. ■

Proposition D.1 Let D∗
NT (τ) be the bootstrap counterpart of DNT (τ) as defined in Eq. (C.23) in

Proposition C.3. That is,

D∗
NT (τ) =

N∑
i=1

ZM
i (τ)′Kh(τ)e

∗
i −

N∑
i=1

ντ,iZ
M
i (τ)′kh(τ)kh(τ)

′

(
e∗i − ω−1

τ

N∑
i=1

ντ,ie
∗
i

)
. (D.35)

Under Assumptions A1 - A8, B1 - B2, for any fixed τ ∈ (0, 1), (NTh)−1/2D∗
NT (τ) and (NTh)−1/2DNT (τ)

share the same limiting distribution. Namely, for any fixed τ ∈ (0, 1),

1√
NTh

D∗
NT (τ)

d∗→p N
(
0,Φνε(τ)

)
, (N,T ) → ∞. (D.36)

Proof of Proposition D.1 Recall e∗it =Mitξ
∗
t ẽit in Section 4.1 (Step 3). As in Proof of Proposition C.3,

we split D∗
NT (τ) into four main blocks of vectors:

D∗
NT (τ) =

N∑
i=1

T∑
t=1

w0
t (τ)Mitzit(τ)ξ

∗
t ẽit −

N∑
i=1

ντ,i

(
T∑
t=1

w0
t (τ)Mitzit(τ)

)(
T∑
t=1

w0
t (τ)Mitξ

∗
t ẽit

)

+ ω−1
τ

(
N∑
i=1

ντ,i

T∑
t=1

w0
t (τ)Mitzit(τ)

)(
N∑
i=1

ντ,i

T∑
t=1

w0
t (τ)Mitξ

∗
t ẽit

)
=:


Υ ∗
NT,1(τ)

...

Υ ∗
NT,4(τ)

 , (D.37)

where

Υ ∗
NT,1(τ) = ω−1

τ N

(
N∑
i=1

ντ,i

T∑
t=1

w0
t (τ)Mitξ

∗
t ẽit

)
,

Υ ∗
NT,2(τ) =

N∑
i=1

T∑
t=1

w0
t (τ)Mitxitξ

∗
t ẽit −

N∑
i=1

ντ,i

(
T∑
t=1

w0
t (τ)Mitxit

)(
T∑
t=1

w0
t (τ)Mitξ

∗
t ẽit

)

+ ω−1
τ

(
N∑
i=1

ντ,i

T∑
t=1

w0
t (τ)Mitxit

)(
N∑
i=1

ντ,i

T∑
t=1

w0
t (τ)Mitξ

∗
t ẽit

)
,
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and

Υ ∗
NT,3(τ) =

N∑
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T∑
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t (τ)Mitξ

∗
t ẽit −
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∗
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)
,

Υ ∗
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∗
t ẽit −
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(
T∑
t=1
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t (τ)Mitxit
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t (τ)Mitξ

∗
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)

+ ω−1
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(
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ντ,i

T∑
t=1
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t (τ)Mitxit

)(
N∑
i=1

ντ,i
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w0
t (τ)Mitξ

∗
t ẽit

)
.

Applying similar arguments as in Proposition C.3, we obtain

1√
NTh

D∗
NT (τ)

=



(
Th
N ωτ

)−1
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1√
NTh

∑N
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∑T
t=1w

0
t (τ)Mit(Thντ,i)ξ

∗
t ẽit

)
1√
NTh

∑N
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∑T
t=1w

0
t (τ)Mitνitξ

∗
t ẽit + ℓ(τ)
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Th
N ωτ

)−1
(

1√
NTh

∑N
i=1

∑T
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0
t (τ)Mit(Thντ,i)ξ

∗
t ẽit

)
1√
NTh

∑N
i=1
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t=1w

1
t (τ)Mitξ

∗
t ẽit

1√
NTh

∑N
i=1

∑T
t=1w

1
t (τ)Mitxitξ

∗
t ẽit


+ o∗p(1),

where the o∗p(1) term follows from utilizing (D.6) and employing similar steps in Lemma D.1. We then

obtain (D.36) by Lemma D.1. ■

Proof of Theorem 3 As in Lemma 6 of Friedrich and Lin (2022), one can write

√
NTh

(
θ̂∗(τ)− θ̃(τ)− h2b(τ)

)
=

√
NTh

[
θ̂∗(τ)− E∗(θ̂∗(τ)

)]
+
√
NTh

[
E∗(θ̂∗(τ)

)
− θ̃(τ)− h2b(τ)

]
=: M∗

NT (τ) +R∗
NT (τ). (D.38)

We shall prove: (i) M∗
NT (τ) replicates the asymptotic distribution of the LLDV estimator, as established

in Theorem 2; (ii) the remainder term R∗
NT (τ) is asymptotically negligible for any τ ∈ [0, 1].

For M∗
NT (τ), by Proposition C.1, we obtain

M∗
NT (τ) =

(
1

NTh

N∑
i=1

Z̃M
i (τ)′Z̃M

i (τ)

)−1(
1√
NTh

N∑
i=1

Z̃M
i (τ)′ẽ∗i

)
=
[
Φ(τ)−1 + op(1)

]
D∗

NT (τ), (D.39)

where ẽ∗i = K
1/2
h (τ)e∗i − diag(mi)k

1/2
h (τ)kh(τ)

′ντ,i

(
e∗i − ω−1

τ

∑N
i=1 ντ,ie

∗
i

)
, e∗i = (e∗i1, . . . , e

∗
iT )

′, and

D∗
NT (τ) is defined in Eq. (D.35). By Proposition D.1, D∗

NT (τ) shares the same limiting distribution of

DNT (τ). Overall, for any τ ∈ (0, 1), we have

M∗
NT (τ)

d∗→p N
(
0,Φ(τ)−1Φνε(τ)Φ(τ)−1

)
, (N,T ) → ∞. (D.40)
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Next, we consider R∗
NT (τ). Note that

E∗(θ̂∗(τ)
)
=

(
N∑
i=1

Z̃M
i (τ)′Z̃M

i (τ)

)−1

×

[
N∑
i=1

ZM
i (τ)′Kh(τ) diag(mi)b̃i −
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ντ,iZ
M
i (τ)′kh(τ)kh(τ)

′ diag(mi)

(
b̃i − ω−1

τ

N∑
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ντ,ib̃i
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,

(D.41)

where b̃i = (g̃1, . . . , g̃T )
′ +
(
x′
i1β̃1, . . . ,x

′
iT β̃T

)′
. Now, let’s rewrite the terms in the square brackets of Eq.

(D.41). For |τt − τ | ≤ h, Proposition 1 implies that

g̃(τt) = g̃(τ) + g̃(1)(τ)(τt − τ) + g̃(τt)− g̃(τ)− g̃(1)(τ)(τt − τ)

= g̃(τ) + g̃(1)(τ)(τt − τ) +
[
g(τt)− g(τ)− g(1)(τ)(τt − τ)

]
+Op

(
h̃2 +

√
ln(NT )

(NT )ϕ(p0/2)h̃

)

= g̃(τ) + g̃(1)(τ)(τt − τ) +
[
g̃(2)(τ) +O(h)

] (τt − τ)2

2
+Op

(
h̃2 +

√
ln(NT )

(NT )ϕ(p0/2)h̃

)
, (D.42)

where the Op-terms are uniform in τ ∈ [0, 1]. Similarly, we have

β̃(τt) = β̃(τ) + β̃(1)(τ)(τt − τ) +
[
β̃(2)(τ) +O(h)

] (τt − τ)2

2
+Op

(
h̃2 +

√
ln(NT )

(NT )ϕ(p0/2)h̃

)
. (D.43)

By (D.42) and (D.43), we obtain

diag(mi)b̃i = ZM
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h2

2
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(
h̃2 +

√
ln(NT )

(NT )ϕ(p0/2)h̃

)
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)
.

(D.44)

where Υ (τ) and ∆M
i (τ) are defined in Proposition C.2, and the O(h3) terms does not rely on i ∈ Z+ and

τ ∈ [0, 1]. Putting (D.44) back to (D.41) leads to

E∗(θ̂∗(τ)
)
= θ̃(τ) +

(
1

NTh

N∑
i=1

Z̃M
i (τ)′Z̃M

i (τ)

)−1
1

NTh
BNT (τ) +Op(h

3) +Op

(
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√
ln(NT )
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)

= θ̃(τ) + h2b(τ) +Op(h
3) +Op
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√
ln(NT )
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)
, (D.45)
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where the second step is due to Propositions C.1 and C.2, and the Op(·)-terms are uniform in τ ∈ [0, 1].

By (D.45), we arrive at

sup
τ∈[0,1]

∥R∗
NT (τ)∥ = Op

(√
NTh7

)
+Op

(√
NThh̃4 +

√
(NT )1−ϕ(p0/2) ln(NT )h/h̃

)
= op(1), (D.46)

under Assumption B3. The results from Eqs. (D.38), (D.40), and (D.46) jointly imply Eq. (4.6). ■

E Bandwidth selection

As previously observed in the literature, pointwise confidence intervals are not sensitive to bandwidth

selection. This is in contrast to simultaneous confidence bands, which can be highly sensitive. The

simultaneous coverage depends heavily on the local behavior of the parameter curves. For instance, if a

curve exhibits large fluctuations in certain neighborhoods, a smaller bandwidth is typically needed to

achieve the targeted coverage in those regions. Conversely, a flat region may only require a relatively

large bandwidth. For additional insights, refer to the simulation study conducted in Friedrich and Lin

(2022). Our initial investigation indicates that the commonly used leave-one-unit-out cross-validation

method developed in Sun et al. (2009) tends to select an overly small bandwidth in our specific context.

This might be attributed to the fact that it is specifically designed for panel data models that are

cross-sectionally independent and without missing observations.

To maintain the structure of cross-sectional dependence and capture local features of parameter

curves, we suggest extending the local modified-cross-validation procedure introduced by Friedrich and

Lin (2022). This approach combines the modified cross-validation method proposed by Chu and Marron

(1991) with the local cross-validation approach suggested by Vieu (1991), exhibiting superior performance

as demonstrated in Friedrich and Lin (2022). More specifically, for a given h > 0, let
(
ĝ l,h(τ), β̂l,h(τ)

)
denote the leave-(2l + 1)-out LLDV estimator, which is constructed as in Eq. (2.10) but omitting all

observations between time ⌊τT ⌋−l and ⌊τT ⌋+l, namely
{
(yit,xit), i = 1, . . . , N, ⌊τT ⌋−l ≤ t ≤ ⌊τT ⌋+l

}
.

For each τ ∈ (0, 1) and l ≥ 0, the locally optimal bandwidth ĥ(τ, l) minimizes the panel local modified

cross-validation (PLMCV) criterion PLMCVτ,l(h), h ∈ [hL, hU ] ⊂ (0,∞), where

PLMCVτ,l(h) =
1

NT

N∑
i=1

T∑
t=1

Mit

(
yit − α̂i − ĝ l,h(t/T )− x′

itβ̂
l,h(t/T )

)2
ωτ (t/T ),

and α̂i is obtained without excluding any observations. Moreover, ωτ (·) is some weight function. We

follow Vieu (1991) to take ωτ (·) as the density of N (τ, 0.025). The final selector sets ĥPLMCV =

(TK)−1
∑K

k=1

∑T
t=1 ĥ(τt, lk), lk ∈ {0, 2, 4, 6}.
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Figure E.1: Selected bandwidth by PLMCV with heteroskedastic errors and ρε = 0.3.

E.1 Finite sample performance of PLMCV

In the simulation design outlined in Section 5, we also examine the impact of the chosen range during a

grid search. Specifically, the grid spans from 0.06 to hU , with steps of 0.015, where hU takes values of

0.21 and 0.27. Figure E.1 shows the bandwidths selected by PLMCV for different hU . As T increases, the

selected bandwidth generally decreases. For a large hU = 0.27, the PLMCV-selected bandwidth remains

comparable to those under h = 0.21 on average.

F Bootstrap-corrected simultaneous confidence bands

In practice, one might be interested in understanding the overall variation of coefficient curves over a

specific period. Simultaneous confidence bands serve this purpose. Specifically, for a given set of time points

G ⊂ [0, 1], simultaneous bands IGj,N,T,α(·) should satisfy lim infT→∞,N→∞ P
(
βj(τ) ∈ IGj,N,T,α(τ), ∀τ ∈

G
)
≥ 1−α. To address this, one may consider using the Bonferroni correction. However, it is well known

that the Bonferroni correction can result in highly conservative results, particularly when dealing with

an infinite number of points in G. Moreover, as of our best knowledge, there is currently no available

asymptotic simultaneous bands for our models, whether with or without missing observations. Even

S47



if such bands were available, they might suffer from slow convergence speeds, as known in the time

series case (Zhou and Wu, 2010). In contrast, the residual-based bootstrap correction has demonstrated

superior performance in finite samples for time series time-varying models (Friedrich and Lin, 2022). We

therefore adapt the three-step procedure outlined in Friedrich and Lin (2022), originally proposed by

Bühlmann (1998), for nonparametric time series to large panels using the AWB described in Section 4.1.

This procedure produces confidence bands that are simultaneous within a finite union of neighborhoods

G = ∪m
i=1Ui(h), where the neighborhoods Ui(h) take the form Ui(h) = [τi − ah, τi + bh], with 0 ≤ a, b <∞

and m <∞. Given the similarity in the construction of g(·), we will provide details for βj(·) only.

Step 1 Compute the pointwise quantiles q̂j,αp/2(τ), q̂j,1−αp/2(τ) by varying αp ∈ [1/B, α], for τ ∈ G,

j = 1, . . . , d.

Step 2 Choose α̂s = α̂s(α) as

α̂s = arg min
αp∈[1/B,α]

∣∣∣P∗
(
q̂j,αp/2(τ) ≤ β̂∗j (τ)− β̃j(τ) ≤ q̂j,1−αp/2(τ), ∀τ ∈ G

)
− (1− α)

∣∣∣ .
Step 3 Given α̂s from Step 2, construct the simultaneous confidence bands as

IG∗
j,N,T,α̂s

(τ) =
[
β̂j(τ)− q̂j,1−α̂s/2(τ), β̂j(τ)− q̂j,α̂s/2(τ)

]
, τ ∈ G.

Step 2 essentially chooses a level α̂s such that

#
{
β̂∗j (τ)− β̃j(τ) ∈

[
q̂j,α̂s/2(τ), q̂j,1−α̂s/2(τ)

]
, ∀τ ∈ G

}
B

≈ 1− α,

where #E counts how many times the event E occurs in bootstrap. It typically results in a level α̂s

which is much smaller than α to ensure the simultaneous coverage is close to 1− α. This often leads to

a level α̂s significantly smaller than α to ensure that the simultaneous coverage is close to 1− α. The

theoretical justification of this procedure in the current context is highly challenging, as it necessitates

the establishment of some strong approximation results in large panels with cross-sectional and serial

dependence, accommodating nonstationarity. Addressing these complexities is a topic for future research.

Nevertheless, we assess the finite-sample performance of this procedure through an extensive simulation

study as described in Section 5.

F.1 Simulation results of bootstrap-corrected simultaneous bands

In addition to pointwise confidence intervals, it is informative to investigate the coverage of simultaneous

confidence bands. For this, we count the number of times the true curve lies within the confidence

bands for all points in subsets of [0, 1]. As in Friedrich and Lin (2022), we consider subsets of the form

Gsub = U1(h) ∪ U4(h) and G =
⋃4

i=1 Ui(h), with Ui(h) =
{
(i/5)− h+ j/100, j = 0, . . . , ⌊200h⌋

}⋂
[0, 1].

S48



We further investigate empirical simultaneous coverage over the full sample. The results are given in

Tables F.1 to F.4. We make the following five observations.

(i) The empirical simultaneous coverage is mildly lower than 95%. The undercoverage issue is more

pronounced over the full sample, as covering all points {1/T, 2/T, . . . , T/T} simultaneously is highly

challenging. In contrast to the pointwise intervals, the results show that the serial correlation

substantially affects the simultaneous coverage of g(·). For β1(·) and β2(·), however, the coverage

remains close across ρε.

(ii) The empirical simultaneous coverage for all three coefficient curves increases as the sample size

increases, approaching the nominal level, especially when T increases.

(iii) The choice of bandwidth affects the simultaneous coverage. For example, for β1(·), we observe

that the coverage is lowest for h = 0.15 across different data generating processes, except for

(N,T, ρε) = (75, 75, 0.1). In theory, h should shrink to zero as the sample sizes increase. We observe

that a large h leads to under-coverage of simultaneous bands. As discussed in Friedrich and Lin

(2022), a smaller h is preferred for simultaneous bands if the function has more local features to be

captured. The results show that a careful bandwidth selection method is crucial for simultaneous

bands.

(iv) The simultaneous empirical coverage results with h selected by PLMCV align with those for fixed

bandwidths, indicating the proposed PLMCV is reasonable to use in practice. However, relying

on data-driven methods completely may be troublesome in practice; see also the discussion by

Friedrich and Lin (2022) on data-driven bandwidth selection methods.

(v) Table F.4 shows that the simultaneous empirical coverage is relatively robust to the value of γ.

Table F.1: Simultaneous empirical coverage over Gsub for various sample sizes and heteroskedastic
errors, γ = 0.2.

ρε = 0.1 ρε = 0.3

N = 75 N = 75 N = 150 N = 75 N = 75 N = 150

h T = 75 T = 150 T = 150 T = 75 T = 150 T = 150

g

0.09 0.885 0.911 0.932 0.771 0.833 0.842
0.12 0.895 0.916 0.920 0.819 0.822 0.870
0.15 0.909 0.923 0.931 0.824 0.853 0.858

ĥPLMCV 0.893 0.915 0.935 0.808 0.855 0.859

β1

0.09 0.870 0.941 0.976 0.901 0.932 0.972
0.12 0.882 0.916 0.960 0.920 0.913 0.952
0.15 0.874 0.841 0.845 0.846 0.849 0.869

ĥPLMCV 0.873 0.924 0.956 0.879 0.883 0.971

β2

0.09 0.884 0.939 0.926 0.885 0.939 0.916
0.12 0.902 0.915 0.927 0.903 0.916 0.919
0.15 0.895 0.914 0.923 0.891 0.916 0.914

ĥPLMCV 0.876 0.922 0.929 0.873 0.918 0.916
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Table F.2: Simultaneous empirical coverage over G for various sample sizes and heteroskedastic errors,
γ = 0.2.

ρε = 0.1 ρε = 0.3

N = 75 N = 75 N = 150 N = 75 N = 75 N = 150

h T = 75 T = 150 T = 150 T = 75 T = 150 T = 150

g

0.09 0.843 0.898 0.935 0.711 0.799 0.843
0.12 0.897 0.921 0.935 0.802 0.829 0.886
0.15 0.907 0.927 0.938 0.820 0.866 0.865

ĥPLMCV 0.896 0.922 0.944 0.796 0.838 0.863

β1

0.09 0.815 0.894 0.950 0.820 0.887 0.935
0.12 0.829 0.871 0.903 0.873 0.866 0.893
0.15 0.812 0.781 0.758 0.797 0.775 0.770

ĥPLMCV 0.816 0.879 0.911 0.825 0.853 0.931

β2

0.09 0.858 0.927 0.906 0.850 0.917 0.905
0.12 0.895 0.909 0.926 0.887 0.907 0.915
0.15 0.897 0.914 0.923 0.884 0.919 0.921

ĥPLMCV 0.870 0.919 0.910 0.868 0.902 0.909

Table F.3: Simultaneous empirical coverage over the full sample {t/T, t = 1, . . . , T} for various sample
sizes and heteroskedastic errors, γ = 0.2.

ρε = 0.1 ρε = 0.3

N = 75 N = 75 N = 150 N = 75 N = 75 N = 150

h T = 75 T = 150 T = 150 T = 75 T = 150 T = 150

g

0.09 0.772 0.861 0.894 0.601 0.733 0.784
0.12 0.853 0.900 0.922 0.761 0.789 0.863
0.15 0.900 0.929 0.939 0.813 0.866 0.866

ĥPLMCV 0.894 0.886 0.921 0.792 0.810 0.821

β1

0.09 0.786 0.879 0.946 0.797 0.874 0.930
0.12 0.816 0.871 0.902 0.867 0.859 0.893
0.15 0.816 0.787 0.764 0.797 0.776 0.771

ĥPLMCV 0.810 0.878 0.908 0.824 0.852 0.929

β2

0.09 0.787 0.878 0.863 0.795 0.881 0.861
0.12 0.862 0.880 0.884 0.840 0.877 0.877
0.15 0.873 0.903 0.904 0.865 0.907 0.910

ĥPLMCV 0.848 0.891 0.870 0.850 0.874 0.874
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Table F.4: Simultaneous empirical coverage (Cov.) and length (Lgth.) for (ρε, N, T ) = (0.3, 75, 150)
with the bandwidth ĥPLMCV selected by PLMCV (Appendix E) and heteroskedastic errors.

γ 0.15 0.2 0.25 0.3 0.35 0.4

Cov.

Gsub

g 0.849 0.855 0.856 0.833 0.843 0.835
β1 0.877 0.883 0.918 0.922 0.928 0.935
β2 0.915 0.918 0.914 0.919 0.909 0.900

G
g 0.834 0.838 0.850 0.831 0.848 0.836
β1 0.849 0.853 0.889 0.876 0.888 0.895
β2 0.903 0.902 0.907 0.912 0.910 0.899

Full Sample
g 0.804 0.810 0.813 0.799 0.819 0.825
β1 0.844 0.852 0.884 0.871 0.886 0.892
β2 0.877 0.874 0.883 0.884 0.870 0.869

Lgth.

Gsub

g 0.241 0.247 0.250 0.254 0.263 0.269
β1 0.209 0.213 0.217 0.221 0.229 0.233
β2 0.162 0.163 0.163 0.162 0.164 0.162

G
g 0.252 0.258 0.261 0.265 0.275 0.281
β1 0.219 0.223 0.228 0.232 0.240 0.245
β2 0.170 0.170 0.171 0.169 0.171 0.170

Full Sample
g 0.254 0.260 0.263 0.267 0.276 0.283
β1 0.220 0.225 0.229 0.233 0.241 0.246
β2 0.171 0.171 0.172 0.170 0.172 0.171

G Additional discussions on simulations

This section provides supplementary discussions and results for our simulation study. In Section G.1, we

present the estimation accuracy results for the LLDV estimator under two levels of serial dependence for

heteroskedastic errors. Section G.2 details the computation of empirical coverage and length of confidence

intervals and bands. Additional results regarding empirical coverage and length of pointwise confidence

intervals and simultaneous confidence bands are presented in Section G.3.

G.1 Accuracy results

For N = T = 75 in Table G.1, we observe that the average AMSE increases when ρε increases. The

average AMSE is lowest for coefficient β2(·), which can be explained by its smoothness. The amount of

smoothness of the coefficient curve is also crucial for the choice of bandwidth h. We see in Table G.1

that, for relatively smooth curves g(·) and β2(·), increasing h leads to lower AMSE on average. However,

for β1(·), h = 0.15 results in too much smoothing, so that AMSE increases. Similar results can be found

for the standard deviation of the AMSE, in Table G.1. The standard deviation increases for ρϵ = 0.3,

and generally, larger bandwidth results in a lower standard deviation of AMSE for g(·) and β2(·).

When we increase the sample size, we see that the average AMSE decreases for all coefficient functions,
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Table G.1: Average AMSE and standard deviation of AMSE, for heteroskedastic errors.

Average Standard deviation

N = 75, T = 75

ρε h g β1 β2 h g β1 β2

0.1
0.09 38.775 26.665 24.811 0.09 20.265 11.932 11.852
0.12 30.436 23.774 19.095 0.12 17.107 11.696 10.699
0.15 26.316 24.474 15.473 0.15 15.610 12.486 8.949

0.3
0.09 53.212 28.236 25.585 0.09 26.436 14.425 12.170
0.12 43.194 24.958 20.838 0.12 23.253 12.366 10.975
0.15 36.819 25.914 16.004 0.15 21.338 13.391 9.155

N = 75, T = 150

ρε h g β1 β2 h g β1 β2

0.1
0.09 19.239 13.770 11.651 0.09 9.351 6.545 5.462
0.12 15.764 13.187 9.132 0.12 8.790 6.229 4.725
0.15 14.011 16.653 7.484 0.15 7.834 7.735 4.137

0.3
0.09 26.905 14.258 12.397 0.09 12.777 6.410 5.588
0.12 22.838 14.379 9.790 0.12 12.768 7.048 5.083
0.15 23.420 18.811 9.438 0.15 14.180 8.519 5.443

N = 150, T = 150

ρε h g β1 β2 h g β1 β2

0.1
0.09 9.853 7.301 5.891 0.09 4.776 3.217 2.751
0.12 8.271 8.664 4.636 0.12 4.226 3.871 2.498
0.15 8.940 13.027 4.378 0.15 4.712 4.784 2.595

0.3
0.09 13.776 7.767 6.258 0.09 7.236 3.486 2.992
0.12 12.414 9.561 5.504 0.12 6.686 4.222 2.868
0.15 12.023 13.241 4.462 0.15 6.583 4.750 2.582

across different levels of serial dependence. These results confirm the consistency of the LLDV estimator

in our model. Similarly, the standard deviation of the AMSE decreases as the sample size increases,

suggesting that the LLDV estimates get more centered around the true value, as our theory predicts.

G.2 Computing empirical coverage and length

(a) Empirical pointwise coverage: For each j = 1, . . . , d and each Monte Carlo iteration, we calculate

the percentage of βj(τt) covered by the bootstrap intervals for t = 1, . . . , T . The average of these

percentages over the total of M iterations is then computed.

(b) Empirical simultaneous coverage: For each j = 1, . . . , d and each Monte Carlo iteration, we

determine whether the set
{
βj(τ), τ ∈ G

}
is entirely contained within the confidence bands over

G. The empirical simultaneous coverage is calculated as the success rate across all M iterations.

(c) Empirical length: For each Monte Carlo iteration, we compute the median length of intervals/bands
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across the time grid {1/T, 2/T, . . . , T/T}. The average of these medians is then computed over M

iterations.

G.3 Full results of empirical coverage and length

We report the complete set of empirical coverage and length for both pointwise intervals and simultaneous

bands in Table G.2.
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Table G.2: Empirical coverage and length of 95%-level pointwise confidence intervals and simultaneous confidence bands, γ = 0.2.

(N, T ) = (75, 75) (N, T ) = (75, 150) (N, T ) = (150, 150)

ρϵ h Pointwise Gsub G Full Sample Pointwise Gsub G Full Sample Pointwise Gsub G Full Sample

Empirical coverage

0.1

g
0.09 0.945 0.885 0.843 0.772 0.957 0.911 0.898 0.861 0.968 0.932 0.935 0.894
0.12 0.954 0.895 0.897 0.853 0.960 0.916 0.921 0.900 0.971 0.920 0.935 0.922
0.15 0.959 0.909 0.907 0.900 0.964 0.923 0.927 0.929 0.970 0.931 0.938 0.939

β1

0.09 0.953 0.870 0.815 0.786 0.965 0.941 0.894 0.879 0.979 0.976 0.950 0.946
0.12 0.945 0.882 0.829 0.816 0.948 0.916 0.871 0.871 0.957 0.960 0.903 0.902
0.15 0.925 0.874 0.812 0.816 0.901 0.841 0.781 0.787 0.888 0.845 0.758 0.764

β2

0.09 0.939 0.884 0.858 0.787 0.953 0.939 0.927 0.878 0.950 0.926 0.906 0.863
0.12 0.943 0.902 0.895 0.862 0.952 0.915 0.909 0.880 0.956 0.927 0.926 0.884
0.15 0.947 0.895 0.897 0.873 0.947 0.914 0.914 0.903 0.954 0.923 0.923 0.904

0.3

g
0.09 0.913 0.771 0.711 0.601 0.928 0.833 0.799 0.733 0.943 0.842 0.843 0.784
0.12 0.929 0.819 0.802 0.761 0.932 0.822 0.829 0.789 0.950 0.870 0.886 0.863
0.15 0.929 0.824 0.820 0.813 0.942 0.853 0.866 0.866 0.948 0.858 0.865 0.866

β1

0.09 0.957 0.901 0.820 0.797 0.965 0.932 0.887 0.874 0.977 0.972 0.935 0.930
0.12 0.954 0.920 0.873 0.867 0.947 0.913 0.866 0.859 0.956 0.952 0.893 0.893
0.15 0.924 0.846 0.797 0.797 0.897 0.849 0.775 0.776 0.885 0.869 0.770 0.771

β2

0.09 0.942 0.885 0.850 0.795 0.954 0.939 0.917 0.881 0.949 0.916 0.905 0.861
0.12 0.945 0.903 0.887 0.840 0.949 0.916 0.907 0.877 0.954 0.919 0.915 0.877
0.15 0.943 0.891 0.884 0.865 0.951 0.916 0.919 0.907 0.954 0.914 0.921 0.910

Empirical length

0.1

g
0.09 0.243 0.346 0.366 0.366 0.177 0.253 0.267 0.268 0.142 0.202 0.214 0.216
0.12 0.227 0.325 0.340 0.342 0.163 0.234 0.245 0.246 0.138 0.198 0.207 0.208
0.15 0.213 0.307 0.314 0.317 0.158 0.227 0.232 0.236 0.135 0.195 0.199 0.202

β1

0.09 0.223 0.317 0.336 0.337 0.161 0.228 0.242 0.243 0.136 0.192 0.204 0.205
0.12 0.201 0.288 0.303 0.304 0.144 0.206 0.216 0.217 0.124 0.177 0.186 0.187
0.15 0.184 0.263 0.271 0.273 0.134 0.192 0.197 0.200 0.116 0.165 0.171 0.173

β2

0.09 0.172 0.246 0.259 0.259 0.122 0.175 0.185 0.186 0.089 0.127 0.135 0.136
0.12 0.153 0.219 0.230 0.231 0.108 0.155 0.163 0.163 0.081 0.115 0.121 0.122
0.15 0.138 0.197 0.203 0.205 0.100 0.143 0.147 0.149 0.075 0.107 0.110 0.112

0.3

g
0.09 0.247 0.351 0.371 0.372 0.184 0.262 0.277 0.278 0.147 0.209 0.221 0.223
0.12 0.231 0.330 0.346 0.348 0.169 0.242 0.253 0.255 0.141 0.202 0.212 0.213
0.15 0.227 0.325 0.333 0.336 0.159 0.229 0.234 0.238 0.137 0.197 0.202 0.205

β1

0.09 0.227 0.322 0.342 0.342 0.164 0.233 0.248 0.249 0.138 0.195 0.207 0.209
0.12 0.206 0.294 0.309 0.310 0.148 0.211 0.221 0.222 0.126 0.179 0.188 0.189
0.15 0.194 0.277 0.286 0.287 0.134 0.192 0.198 0.201 0.117 0.166 0.171 0.173

β2

0.09 0.175 0.249 0.263 0.263 0.127 0.181 0.191 0.193 0.092 0.131 0.139 0.140
0.12 0.156 0.224 0.235 0.236 0.112 0.161 0.168 0.169 0.083 0.119 0.125 0.126
0.15 0.149 0.213 0.219 0.221 0.101 0.145 0.149 0.151 0.076 0.109 0.112 0.114
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H Additional empirical results

This section presents additional empirical results and information about the data acquisition.

H.1 Additional results for mortality and PM2.5

Figure H.1: Cross-sectional average for PM2.5.

Figure H.1 displays the cross-sectional average for PM2.5. The regressor PM2.5 is slightly downward

trending. In our theory, we allow for this type of trending pattern.

H.1.1 Additional estimation results

Figure H.2: The left figure displays the residuals after employing the LLDV estimator with bandwidth
ĥPLMCV = 0.2605 and γ = 0.2. The right figure displays the sample autocorrelation function of the
cross-sectionally averaged residuals.
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In Figure H.2 (left) we show the residuals from employing the LLDV estimator on our data. We observe

that the dispersion in the residuals varies per time point. We see that the dispersion in 2021 is larger

than the dispersion in 2017 for instance. Our theory allows for this heteroskedasticity.

Moreover, our theory allows for serial correlation in the error process. In Figure H.2 (right) we

display the sample autocorrelation function of the cross-sectionally averaged residual. We see that there is

significant autocorrelation present in the residuals. In particular, the sample autocorrelation is significant

for 1, 5, 6, and 12 months of lag.

Figure H.3: Fit of our model and LLDV estimator for Germany and Guatemala. We use ĥPLMCV =
0.2605 and γ = 0.2.

Figure H.3 displays the estimated mortality compared to the monthly reported mortality for Germany

and Guatemala. Given the substantial differences in economy, healthcare systems, and demographics

between these countries, the fits illustrate the efficacy of the model and the LLDV estimator that allows

for missing observations.
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H.1.2 Robustness checks

(a) γ = 0.1 (b) γ = 0.2

(c) γ = 0.3 (d) γ = 0.4

Figure H.4: Robustness to choice of γ parameter: estimated global trend, and 95%-level pointwise
intervals and simultaneous bands for γ = 0.1, 0.2, 0.3, 0.4.

In Figure H.4 we depict the global trend and estimated confidence intervals and bands for different values

of the γ parameter. We fix the bandwidth to h = 0.2638, which corresponds to ĥPLMCV for γ = 0.2. We

observe that the width is similar for different values of γ.

H.2 Bandwidth selection for Ethane analysis

A large value of T intensifies the computational demands for bandwidth selection. In this instance,

the computational time is long with T = 13, 394 days. To circumvent this issue, we segment our data

into non-overlapping blocks along the time dimension, each with a fixed cross-sectional dimension of

N = 11. For each block, we calculate the bandwidth, and the final bandwidth is obtained by averaging

the computed values across all blocks. Employing a window size of 250 days, we appropriately divide the
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Station Country Location Altitude Obs. Missing Reference

Boulder United States 40◦N, 105◦W 1,634m 788 81.61%
Bremen Germany 53◦N, 9◦E 27m 544 91.82% Notholt et al. (2000)
Eureka Canada 80◦N, 86◦W 610m 828 83.40% Batchelor et al. (2009)

Jungfraujoch Switzerland 47◦N, 8◦E 3,580m 3,171 76.26% Franco et al. (2015)
Mauna Loa United States 20◦N, 156◦W 3,397m 2,746 71.46%
Ny-Ålesund Norway 79◦N, 12◦E 15m 882 90.88% Notholt et al. (1997)

Paramaribo Suriname 6◦N, 55◦W 23m 102 96.89%
Rikubetsu Japan 43◦N, 144◦E 380m 1,078 89.10%
Thule Greenland 77◦N, 69◦W 225m 1,464 81.75%

Toronto Canada 44◦N, 79◦W 174m 2,377 67.78% Yamanouchi et al. (2023)
Tsukuba Japan 36◦N, 140◦E 31m 1,089 85.71%

Table H.1: Information on the location of the FTIR measurement stations as well as the number of
observations and missing data of the individual time series.

data. The last block accommodates the remaining observations, totaling 144 days. The final result gives

ĥPLMCV = 0.1298, and is relatively robust to different window sizes.

H.3 Additional information about data acquisition

Mortality and PM2.5

The data of the Atmospheric Composition Analysis Group, Van Donkelaar et al. (2021), can be

found at ACAG (https://sites.wustl.edu/acag/datasets/surface-pm2-5/). The mortality data

can be found at UNdata (https://unstats.un.org/unsd/demographic-social/products/dyb/index.

cshtml).

Ethane

With permission to use the data, we acquire ethane data from the following 11 stations: Thule, Boulder,

Mauna Loa, Ny Alesund, Bremen, Paramaribo, Eureka, Toronto, Jungfraujoch, Rikubetsu, and Tsukuba.

More information on the specific sites can be obtained from Table H.1. While the data is freely available

on the NDACC website, for its use in publications or communications, it is essential to contact the

NDACC principal investigators during the preparation phase to discuss potential collaboration and

co-authorship.
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