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Abstract

We study a class of trending panel regression models with time-varying coefficients that
incorporate cross-sectional and serial dependence, as well as heteroskedasticity. Our models
also allow for missing observations in the dependent variable. We introduce a local linear
dummy variable estimator capable of handling missing observations and derive its asymptotic
properties. A key ingredient in our theoretical framework is a generic uniform convergence
result for near-epoch processes in kernel estimation for large panels (N,7 — oo0). The
resulting limiting distribution reflects the pattern of missing values and depends on various
nuisance parameters. An autoregressive wild bootstrap (AWB) is proposed to construct confi-
dence intervals and bands. The AWB accommodates missing observations and automatically
replicates all the nuisance parameters, demonstrating good finite sample performance. We
apply our methods to investigate (i) the relationship between PMjy 5 and mortality and (ii)
common trends in atmospheric ethane emissions in the Northern Hemisphere. Both examples

yield statistical evidence for time variation.

Keywords: autoregressive wild bootstrap, confidence bands, cross-sectional and serial depen-
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1 Introduction

Common trends and time-varying relations are often observed in panel data with a long time span.
Accordingly, recent empirical studies frequently adopt panel regression models that allow trending
intercepts and time-varying coefficients to evolve smoothly and deterministically (Silvapulle et al.,
2017; Cai et al., 2018; Hailemariam et al., 2019; Liddle et al., 2020; Uddin et al., 2020; Awaworyi
Churchill et al., 2021; Ren et al., 2022; Sun et al., 2023). This formulation offers the advantage of
straightforward empirical interpretation without compromising flexibility in the model specification.
However, despite the widespread use of these panel models in empirical studies, there exists limited
theoretical guidance on conducting inference. This shortfall constitutes a significant gap between
empirical and theoretical studies in two key aspects.

First, existing asymptotic approximations depend heavily on various nuisance parameters that
are difficult to estimate, including second-order bias terms and long-run covariance matrices (Li
et al., 2011; Chen and Huang, 2018). These nuisance parameters pose a challenge when applying
the asymptotic results for inference. Therefore, the previously mentioned empirical studies resort
to a naive wild bootstrap, generating bootstrap samples series by series, for constructing pointwise
confidence intervals at each time point. However, the theoretical justification for employing any
bootstrap method to construct confidence intervals in these models is absent from the literature.
This naive method falls short in capturing cross-sectional and serial dependence (Gongalves and
Perron, 2020), making it unsuitable for many macro-level applications due to the pervasive presence
of dependence in the data. As such, there is a pressing need for developing a more sophisticated
bootstrap method and corresponding theoretical foundations.

Second, in various applications, particularly in climate sciences and environmental economics,
the prevalence of missing observations is evident (Keef et al., 2009). This can be attributed, for
instance, to measurements being impeded by unfavorable weather conditions (Friedrich et al.,

2020). Common practice involves multiple imputation. Nevertheless, particularly for climatic data,



multiple imputation is challenging, given its complex dependence structure across units (Bashir
and Wei, 2018; Li et al., 2018; Cahan et al., 2023). The impact of imputed data on statistical
inference remains unclear as well. Missing observations add additional complexity, as quantifying
the uncertainty about the occurrence of missing data becomes crucial for ensuring valid inference.
In our setting, there are currently no available methods that allow inference in the presence
of missing observations. This limitation hinders the applicability of these models, especially in
climate studies. For example, researchers investigating the common trend of hydrologic regimes or
air pollution emissions face challenges due to the absence of suitable methods for handling missing
observations (Bard et al., 2015). This highlights the second urgent need in our research agenda.

We bridge the gap between empirical requirements and existing theoretical studies by intro-
ducing a new toolkit for conducting inference. Specifically, we introduce a local linear dummy
variable (LLDV) procedure for estimating parameters and a novel residual-based autoregressive
wild bootstrap (AWB) scheme for constructing pointwise intervals and simultaneous bands. Both
methods are designed to handle missing observations in the dependent variable without imputation.
Furthermore, our framework allows for flexible forms of cross-sectional and serial dependence, as
well as heteroskedasticity. The AWB is simple to implement but also consistently estimates the
nuisance parameters. We theoretically demonstrate its capability to mimic the pattern of missing
observations and the structure of dependence, both cross-sectionally and temporally.

The current paper builds upon multiple pioneering works. First, we refine the LLDV estimation
proposed by Li et al. (2011) to allow for missing observations. In environmental applications,
missing observations mainly occur in the dependent variable. Therefore, we focus on addressing
missing observations solely in the dependent variable, given that the missing pattern in explanatory
variables can significantly complicate asymptotic analysis. Second, we extend the previously
established asymptotic framework presented in Robinson (2012), Li et al. (2011), Chen et al.
(2012), Chen and Huang (2018), and Gao et al. (2020). While these seminal works are valuable,

each is characterized by at least one of the following restrictions: exclusion of explanatory variables,



assumption of time-constant slope coefficients, condition of independence (cross-sectionally and/or
serially), consideration only of strictly stationary data, or a lack of the capability to handle missing
values. We relax all these requirements. Notably, the pattern of missing observations, which
may arise with dependence along both cross-sectional and temporal dimensions, enter into our
asymptotic approximations. A crucial element in deriving our asymptotic results is a new uniform
deviation bound for near-epoch processes with cross-sectional dependence. This result extends Li
et al. (2012) from strictly stationary time series to potentially nonstationary panels and can be
of separate interest for asymptotic analysis in large panels. Finally, the proposed AWB can be
traced back to the works of Smeekes and Urbain (2014) and Friedrich et al. (2020). It was initially
designed for time series data, specifically for multivariate unit root testing and nonparametric
trend analysis. Our simulation study confirms the theoretical finding that it has noteworthy
potential in panel applications.

We illustrate the proposed methods through two empirical applications. We first investigate
the impact of surface particulate matter air pollution (PMs5) on mortality. Our findings reveal a
positive and significant impact of PMs 5 on mortality, along with an overall increasing trend in
mortality over time. In our second application, we employ the proposed method to investigate
common trends in atmospheric ethane in the Northern Hemisphere. Our results indicate that the
trend reversal pattern identified in the previous literature using a univariate approach extends to
a common global trend.

The paper is organized as follows. Section 2 describes the model and the nonparametric
estimation with missing observations in the dependent variable. Section 3 establishes the asymptotic
results. Section 4 proposes our autoregressive wild bootstrap. A thorough simulation study is
conducted in Section 5. Section 6 presents the empirical applications. Section 7 concludes. The
notation used throughout this paper is explained in Appendix A. All proofs, along with additional

results from simulation and empirical studies, are presented in the supplemental appendix.



2 The model and estimation

Consider the time-varying trending panel regression model originally proposed by Li et al. (2011):

d
yit:ai+gt+25t7jl’it’j+eit:ai“—gt“—a:;t,ﬁt—{—eit, i=1,...,N, t=1,...,T7,(2.1)
j=1

where y;; represents the dependent variable of the i-th cross-sectional unit at time ¢, o; captures
unobservable time-invariant heterogeneous effects that may correlate with the individual-specific
explanatory variables x; = (zi1,... ,xit,d)', commonly known as fixed effects. As detailed in
Section 3, we accommodate deterministic trending behaviors (as well as cross-sectional and serial
dependence) in x;;. The term g, captures the evolving environment shared among the units
in the panel and can be interpreted as a global trend. It may serve as a representative term
for unobservable variables, such as global crises, technology growth, and rising environmental
awareness (Lin and Reuvers, 2022; Friedrich et al., 2023). Unlike traditional two-way fixed effect
approaches that consider ¢g; as a nuisance parameter and seek ways to eliminate it in estimation, we
are interested in analyzing the common trending behavior observed in our data. Furthermore, the
slope coefficients are stacked in the vector B = (81, . . ., 5t,d>l and are allowed to vary over time.
The error process {e; } may exhibit heteroskedasticity, and cross-sectional and serial dependence
(Assumptions A3 - A4). The model offers a useful interpretation by decomposing y;; into a global
component ¢g; and a local component x},3,, making it popular in empirical studies.

We consider flexible functional forms: ¢, = ¢(¢/T), where g(-) = [0,1] — R is an unknown,
smooth function. Similarly, let B; = B (t/T); B(-) = (B1(-), ..., Ba(-)) : [0,1] — R? be a vector of
unknown, smooth functions. Our primary focus is estimating the unknown functions g(-) and 3(-),
constructing their confidence intervals/bands, while accounting for potentially missing observations
in the dependent variable. We adopt the asymptotic framework as (N,T) — oo jointly.

The theoretical properties of models similar to (2.1) have been explored in the literature,
albeit with different emphases or restrictions. The pioneering work by Li et al. (2011) requires

cross-sectional independence of regressors and errors. Robinson (2012) focuses on the case where



B; = 0 with cross-sectional dependence but requires that the error process is uncorrelated over time
and homoscedastic. Chen et al. (2012) and Gao et al. (2020) allow for cross-sectional dependence,
but the slope coefficients are not allowed to vary over time. Chen and Huang (2018) and Atak
et al. (2023) concentrate on testing whether the parameters are time-varying and/or homogeneous
across 4. Importantly, all the previous papers do not consider missing data, limiting their direct

suitability and applicability to many of our datasets of interest.

2.1 Nonparametric estimation with missing values

We first impose the following common condition for the identification of g;:

N

i=1
Our models explicitly allow for missing observations in {y;}. Intuitively, even in the presence of
missing observations for some unit ¢ at time ¢, the observed data for units j # ¢ still carry the

signal of (g4, B;). Consequently, pooling information from non-missing units enables consistent

estimates of the parameters. We define
M, = 1{y;; is observed}, i=1...,N, t=1,...,T. (2.3)

We adapt the local linear dummy variable (LLDV) estimation originally proposed in Li et al. (2011)

to accommodate missing observations. The adapted LLDV relies on the following approximation:

y & Myoi + 2 (1)'0(7) + Myeq, — 0(r) = (9(r), B(r),hg(r), hBV(7))', (2.4)

where yM = My, 2 (1) = Myzy (1), zi(7) = (17 X, T, Tt;Tm;t)/, and 7, = t/T. Our LLDV

estimator, adjusted for missing data, minimizes the following weighted loss criterion:

~

N T
0(r) = arg(rr)linz > ' = Mia; — 2 (r)6(n)]* K (” ; T) , (2.5)
0(r) =1 t=1

subject to the identification condition in Eq. (2.2). In Eq. (2.5), K(-) denotes a kernel function and

h | 0 is a bandwidth determining the smoothness of the estimators. Without missing observations,



we have M;; = 1, for all i = 1,...,N, t =1,...,T, such that the loss criterion (2.5) reduces to
the one given in Li et al. (2011). While we would ideally include missing values in the covariates,
the pattern of missing data significantly complicates the analysis. Hence, we consider this as an
avenue for future research.

The minimization problem (2.5) is computationally efficient and fast, with a closed-form
expression provided in (2.10) below. To illustrate, we require additional notation. More specifically,

we can express (2.4) in stacked notation as

yM =~ mua; + ZM(1)0(7) + €, i=1,...,N, (2.6)

)

where m; = (M;y,..., M), yM = diag(m;)yi, ¥i = (a,...,vir). Moreover, ZM(7) =
diag (m;) Z;(7) with Z;(7) = (zi1(7), . .. ,ZiT(T))/7 and ezM = diag (my;) (e, - . . ,eiT)’. Let k(1) =
(K (7)., K (=77)] € R, K, (1) = diag [kx(7)] be a diagonal matrix with elements ky (7)
on the diagonal. In the spirit of the Frisch-Waugh-Lovell Theorem, we introduce a procedure
minimizing the weighted loss in (2.5) given the identification condition (2.2).!

SteP 1 For each 7 € [0, 1], project K}IL/2(7')Z1-M(T) on K}IZ/Q(T)miai, i=1,...,N, and obtain

the residuals Z (7). It leads to
ZM(7) = K> (1) ZM (1) — diag(m)ky (1)l (7)' [0 (2] (7) — ZM(7))], (2.7)

fori=1,..., N, where

-1
(S K (55 Ma) . i DL K (35) Ma A0,
Vri = (28)

0, otherwise,
and ZM (1) = w 'Y v, ZM (7). Moreover, w, = SN, vy if vr; # 0 for some i
wy; = 1if v;; =0 for all 4.

Step 2 Project K,*(t)yM on K,*(r)miay, i = 1,..., N, and obtain the residuals . It

'Find the MATLAB codes for our estimation and bootstrap methods on https://yiconglin.com/
code-and-data/.
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leads to
g = K, (r)y) — diag(mi)k,* (1) kn(7)' [vr: (w) —9™)], (2.9)

P =M _ 1NN M
fori=1,...,N, where " =w 'Y .0, vy

Step 3 Project g™ on ZM(7),i=1,..., N, and obtain 6(7) given by

g(7)

I R

o - | °° :(zzz%)fz%) (zz;%)fa%). .10
hg™(7) i—1 i—1
hBW(r)

STEP 4 Given 5(7'), 7 € [0,1], we can obtain the estimates of fixed effects. Specifically, let
> !/

a= (a,...,an) = T7'31, a@f(n) be the estimate of @ = (a,...,ay), where

af(r) = (@l(r),...,ak(r)) with al(r) = kn(7)" [v,.€}(7)], and
eM(r) = (yM —g™) - [2M(r) - ZM(1)]6(r), i=1...,N. (2.11)

Several remarks are in order. First, there may be points 7 around which no data is observed
in an h-neighborhood in small samples. In such cases, we define v,; = 0 as seen in Eq. (2.8) in
STEP 1. Second, the procedure is constructed under the identification condition (2.2), leading to
Zﬁil a; = 0 for any N and T. Finally, it may be empirically relevant to include observable macro
variables that are common to all cross-sectional units in Eq. (2.1). We choose to omit them for

illustration purposes, but one could adapt the estimation procedure above by extending z;(7)

— — _ / . . .
to zu(T) = (1, ), w,, =7, ), “"w))" to estimate the corresponding coefficients, where w;

denotes the vector of macroeconomic variables.

3 Asymptotic theory

In the following sections, we present the asymptotic results. We begin by discussing the assumptions
necessary for establishing our asymptotic theory in Section 3.1. Several of these assumptions

8



are grounded in a crucial uniform deviation result, which will be introduced in Section 3.2. In
the same section, we establish the uniform consistency and asymptotic distribution of the LLDV

estimator in Eq. (2.10).

3.1 Assumptions underpinning asymptotic theory

Our asymptotic analysis hinges on the following sets of assumptions.

Assumptions: A1 The kernel function K(-) is positive, symmetric, Lipschitz continuous, and
has compact support [—1, 1] with py = f_ll K(u)du=1.
A2 The coefficient function B(-) € C3[0,1], namely B(-) € C3[0,1], k =1,...,d. Moreover, the

global trend function g(-) € C3[0,1].

Assumption Al on the kernel function is satisfied by many commonly adopted kernels, such
as the Epanechnikov kernel. Assumption A2 imposes a standard smoothness condition on the
functions, as in, e.g., Zhou and Wu (2010, Assumption 6).

The following assumptions impose some structure on error processes and explanatory variables.
One of the key assumptions necessary to develop the asymptotic theory involves allowing for a
general class of innovation processes, known as near-epoch dependent (NED) processes. These
processes accommodate various forms of dependence commonly encountered in econometrics,
including linear /nonlinear processes (Davidson, 2002) and strong mixing processes. We extend the
definition of NED processes from Lu and Linton (2007) and Li et al. (2012), originally applied to
strictly stationary time series, to a panel setting with potential nonstationarity. Refer to Definition
A1 in Appendix A for details. A NED process can be viewed as “approximately” mixing along

the time dimension, in the sense that it can be well-approximated by a mixing process.

Assumptions: A3 Innovations: Define &, = (&,,,...,&n,) s &« = (My,c4,¢l,) . Suppose
{&.4, t € Z} is an a-mizing process with mizing coefficients a(j) < Coj= %>, 0 < Cy < 0,

Yo > 2V (249)/6 for some § > 0. Further assumptions regarding the elements of €. are



presented separately in AJ - A6 below.

A Let ey = (en,...,ent) = 06y, €4 = (e14y...,6nt) . The process {e.,, t € Z} is strictly

stationary a-mizing and satisfies Assumption A3. Moreover, E(e.,) = 0 and E |[e.|” <

C < 00, po =2(2+0) for the same § > 0 as specified in Assumption A3. The deterministic

term oy = o(t/T) = diag (01(t/T),...,on(t/T)), where o;(-) : [0,1] = [0, 00] C (0, 4+00)

is Lipschitz continuous, i.e., for i =1,..., N, |o;(11) — 0i(12)| < K,|11 — 12|, K, > 0.

A5 Ezplanatory variables: xy = X; + £ (t)T) + vy, where £(t)T) = ({1 (t)T),...,Lq(t/T)),

Xi =

Po =

(a)
(b)

()

(Xid,---»Xid) € RL Moreover, {x;, i =1,...,N} is independent of {&.;,t € Z}. Let
2(2 + 9) with the same 6 > 0 in Assumption AS5.

The local trend function £(-) € C*[0,1], i.e., l;(-) € C?[0,1], k=1,...,d.

The individual levels x; are independent across i =1,..., N, where maxi<;<n || x| =
0,(1), E(x:) = 04, E (x;Xx}) = X is positive semidefinite, and E (||x;||”*) < C' < oo.
{i,...,vn)', t € Z} is strictly stationary with E(vy) = 0 and E ([|v|™) < C < o0
Define 1/2-(:1) = (Vi(ﬁ), e yi(:;))/. Let {I/it = (Vit1y-- - yit’d)/ ,te Z} be NED in Ly, with
(m) [P0

respect to {Cit, t € Z}, and 1; p,(m) = supteZE‘ Vit — U,

< dPm~%, where p, >
0, and S, d; = O(NY?) with d; > 0. The process {Cu, t € Z} is strictly stationary o-
mizing and satisfies Assumption A3. Moreover, limy oo N"'S2N ||E (v,0,) — X, || =

0, where X, € R™? js positive definite (p.d.).

Assumption A3 places conditions on the decaying rate of mixing coefficients. It is relatively

weak and guarantees only the absolute summability of autocovariances. As seen later, we do not

assume the process of missing observations to be strictly stationary, and thus we do not impose

strict stationarity of {£€.;}. The deterministic process {o, ¢ > 1} in Assumption A4 governs the

shape of the volatility of {e.;}. It permits the error process to exhibit heteroskedasticity, allowing

for a wide range of unconditional volatility processes, such as smooth trends and fluctuations.

One could consider relaxing the Lipschitz continuity condition on the volatility function o (-) by

10



permitting a finite number of discontinuities, as shown in Cavaliere et al. (2010). In Assumption
A5, we assume that the explanatory variables a;; can be decomposed into an individual-specific
(random) component x;, a deterministic trending component £(-), and a random component v;
that is NED in L,,, where py > 4. The process v;; captures the dependence in regressors across
cross-sectional and time dimensions, allowing for various dependence structures over time. The
condition Zf\il d; = O(N'/?) constrains the strength of cross-sectional dependence in vy and
enables us to apply the generic convergence result established in Theorem 1 in the next section.

This specification of @x;; is of practical relevance since it allows regressors to be trending and
seasonal, such as climate variables like PMs 5 and precipitation, or economic variables such as
GDP. It is similar to Chen et al. (2012, Eq. (1.2)), but we allow for a more flexible process of v;;
(Lp,-NED) instead of strictly stationary a-mixing. Next, we introduce assumptions regarding the

pattern of missing observations.

Assumption: A6 (a) Fori=1,...,N, {My, t € Z} satisfies Assumption A3, with B(My) =
P(M;; =1)=pi(t/T) € [pr,1], 0 < pr, < 1, where p;(-) € C?[0,1]. Moreover, there exist
5(-), () € €2[0,1] such that [IN"* SN pi(7)=p(7)| = O (¢pn) and N2 SN pit(7)—
7 T)‘ = O (¢qn), uniformly in 7 € [0,1], where ¢, N 1 0, ¢gn I 0, as N — oo.
(b) E (MyM;@ir)) = Rij(t/T,(t + k)/T), k > 0. Suppose R;;(-,-) : [0,1]* — [0,1] is
Lipschitz continuous uniformly in i, j. Namely, |R;;j(T1) — Ri;(12)| < Kr |11 — 72|,

where T, T € [0,1]2, and K > 0 is independent of i, j.

Assumption A6 is similar to Friedrich et al. (2020, Assumption 4) for nonparametric trending
time series models. The missing process can exhibit weak dependence and vary across cross-
sectional units. The missing probability can evolve smoothly over time, as observed in our empirical
studies and illustrated in Figure 2 of Friedrich et al. (2020). To facilitate the presentation of our
theory, we stipulate in Assumption A6G(«a) that the average proportion of missing/observed data

can be approximated by a smooth function. This average proportion is allowed to change over

11



time, as illustrated in Figure 3 (Section 6). As mentioned, { M, t € Z} does not need to be strictly
stationary. For instance, My can be independently (across i and over ¢) Bernoulli distributed
with probability p(¢/T) for all i. A broad class of generating processes satisfies Assumption
AG(a). If the processes {M;, t € Z} are strictly stationary Markov chains, they are a-mixing
with coefficients decreasing to zero, at least, exponentially fast (Bradley, 2005, Theorem 3.1).
Therefore, they fulfill Assumptions A3 and A6. Furthermore, a class of dynamic time series binary
choice models considered in de Jong and Woutersen (2011) also satisfies these assumptions under
suitable conditions. Similar to the missing probability, we allow the cross-sectional moments to
exhibit smooth time variation, as indicated in Assumption AG(b).

Some moment conditions on cross-sectional dependence and requirements for exogeneity

between the error process and regressors are necessary to establish the limiting distribution.

Assumption: A7 (a) Cross-sectional dependence: For some mgy > 1, sup,., E‘ Zi]il[Mit —
E (M)]|™ = O(N™/2); sup,e, E|| S0, [Myvie — E (M) || = O (N®/2), where
q € (1,po); SupteZEH Zf\il [Myvuvl, — E(Myvyv),)) HTO = O (N"™/?), rq € (1,po/2];
SUPeyz, EH Zfil witMitgitqithO/Q = 0 (Np0/4), where q = (1,x,,v},), and wy €
[wp, wy] C (0,00) is a nonrandom sequence, i =1,... . N, t=1,...,T.

(b) Define V; = (vir,...,vir). Fori,je{l,...,N}, s,t € {1,..., T}, the following con-
ditions of exogeneity hold almost surely: E(Vit | Mit) = E(vy), E(Vituj’-s | My, Mjs) =
E(Vitvj’-s), ]E(Xil/lft | Mit) = E(xivgt), E(XinthV;‘t | M, th) = E(Xivgtxjvét). More-
over, E(ey | My, xi) = 0, E(eucjs|mi,m;, V;, V;) = E(eucss), E(vucn ’ My) = 0,
E(Vjsaitsjs ’ M, Mjs) =0, and E(l/itu}seite

(€) Ximr Yk [E (nein)| = O(N).

(d) For any 7 € (0,1), there exist p.d. matrices A.(1) € R**? and A,.(7) € R4

M, Mjs) = E(Vit’/y/'s>E(5it5j8) ‘

o

such that, as N — oo, N7! ZZ]\; Zjvzl Rij(1,7)Qi;(T)0i(T)0; (1) (1, ) = A(T) :=

(Ag,u(T) As,12(7))7 N-1 Zf\il Z;\le Rij(1,7)0i(T)0;(7)82,:(i,5) — A,e(7), and more-

Ac21(T) Ac22(7)

12



over, N~} Zf\il Rii(1,7)o2 (1) (i,i) — A7), where R; (-, ) is defined in A0,
Qis(r) = (PRI PO 0.6,5) = D2 B (2ussiere) and finally, e, j) =
D oo E(Eityitgj(tJrs)V],'(tst)) :

The moment conditions in Assumption A7(a) characterize the cross-sectional dependence.
They are commonly used in the panel model literature, see, e.g., Bai (2009, Assumption C), Chen
et al. (2012, Assumption A2), Corradi and Swanson (2014, Assumption AN1), and Gongalves
and Perron (2014, Assumption 2). Under certain conditions, these requirements can easily be
verified. For instance, if cov (M, Mj;) = 0, i # j, we have sup,c, E |3V, [My; — E (My)] g
SUP;>q ZfilVar(Mi) < N/4 fulfilling the first term in A7(a) with mg = 2. Similarly, con-
sidering the element x; in g;;, by the multinomial theorem, for & = 1,...,d, and utilizing
the independence of {x;}, it is straightforward to obtain sup,, {E} Zf;l witMitXi,k€it}4}l/ 1
SUP¢ez { Zi\il E(witMitXi7k5it)4+6 ZZ\SI ZéV:iJrl E(witwtitMitMetX?,kX?,kgzZtg?t) }1/4 < CN'? , along
with Assumptions A4, A5, and the Cauchy-Schwarz inequality. Alternatively, one may replace
these conditions by imposing a-mixing conditions on the cross-sectional dimension. Similar
moment conditions can then be obtained using Rosenthal-type inequalities for a-mixing processes
(Shao and Yu, 1996, Theorem 4.1). Assumption A7(b) provides standard conditions on exogeneity
and is clearly weaker than the often-imposed assumption of independence, as seen in, for example,
Sun et al. (2009). Assumption A7(c) resembles, e.g., Dong et al. (2015, Assumption 1) and Gao
et al. (2020, Assumption 2). Assumption A7(d) ensures that the long-run covariance matrix exists
and is well-defined, which is standard in the literature, see, e.g., Chen et al. (2012, Assumption
A4), Chen and Huang (2018, Assumption A.4).

Assumption: A8 Suppose 2p, > popa and define Ny = ¢ (Mo A qo A 7o), where mo, qo, 7o, Po

1-1 4(1
are defined in Assumption A7. Let ¢(x) = ( /%)$a and w(x) = 5 +((1++901a//$56)')@a7

24+ (14 1/2)¢,
x > 1, where @, is given in Assumption A3. The bandwidth h = h(N,T) satisfies

@(po/2)
- {h 1 In(NT) N In(NT)

TR (NTymeh T } — 0, (N, T) — oo. (3.1)
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Moreover, [N/(NT)*"] (260 /ope)1-1/)- )/2h1/2 O(yv/In(NT)), & € {mq, qo,70,p0/2}

Finally, Assumption A8 serves as a technical condition on the bandwidth parameter, offering
guidance on its practical selection. Depending on the desired strength of conditions imposed on
cross-sectional and serial dependence, one could choose h ~ (NT)~¢ for some ¢ > 0 in practice.
The condition below Eq. (3.1) corresponds to (3.4) in Theorem 1 in the next section. Since ¢ is
a positive-valued and strictly increasing function, it suffices to fulfill this condition by requiring

N/(NT)mmin < C < 00, given 29, > popa.

3.2 Uniform consistency and the limiting distribution

To develop our asymptotic results for 5() under cross-sectional and serial dependence, we first
establish a general uniform convergence result that ensures uniform consistency. This result is

noteworthy in its own right, and we present it in Theorem 1.

Theorem 1 Forp>1andi=1,...,N, let E|Yy|P < C < oo, and suppose {Yy, t € Z} is NED

in L, with respect to {ny, t € Z}, where

Yip(m) =supE

teZ

P
{ )‘ <&Pm>,  di>0, A>0. (3.2)

Suppose {nt = (nlt,ngt, e ,nNt)/, t e Z} is an a-mizing process (possibly nonstationary) with
mizing coefficients a(j) < Aj=P for some 0 < A, 3 < co. Moreover, assume the kernel function
K(+) is positive, symmetric, Lipschitz continuous, and has compact support [—ug, ug], ug > 0, with

u —1 .
fOK Ydu = 1. For xz > 1, define ¢pg(z) = (1—1/z)8 For some 1 < q <p, if

2+ (1+1/2)8"
N q
supE Vi — E(Yz)]| = O(NY?), d; = O(N'/?), 3.3
sup ;[ ¢ — E(Yi)] (N9/?) Z (3.3)
and
N (2x/B0-1/9)]-1) /2 1
- /2 _
{ T %(q)} h _o( ln(NT)), (3.4)
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then we have

%Zi(n;)%(n;)[n —E(iﬁ-t)]|—op< &%%) (3.5)

where k > 0 1s an integer.

Differing from our concentration probability (3.5), Gao et al. (2023) recently established
a central limit theorem (CLT) for (parametric) panel data models that consider both serial
correlation and cross-sectional dependence using the notion of physical dependence. While Yao
and Jiang (2012) explore panel extensions of Hoeffding’s inequality, similar to our result, they
require cross-sectional independence. Our Theorem 1 can be viewed as an extension of the uniform
convergence results found in Hansen (2008), Jiang (2009), Kristensen (2009), and Li et al. (2012)
from (stationary/nonstationary) time series to possibly nonstationary panel settings. Similar to ¢
in Assumption AS, ¢4 is positive-valued and strictly increasing. It reflects a tradeoff between the
strength of the assumptions on dependence and moment conditions and the speed of convergence.
The value of ¢g(q) can be made close to 1 by, for instance, considering 2\ = pf and an a-mixing

process with an exponentially decaying rate (5 — 00), as well as a sufficiently large value of ¢, but

it remains strictly smaller than 1. For N = 1, the rate in Eq. (3.5) yields v/In(T)/(T¢5@h). This
rate is slower than the optimal rate achievable in the time series literature, which is \/In(7")/(T'h).
Thus, we consider the rate in Eq. (3.5) to be sub-optimal.

Building upon Theorem 1, we are now ready to establish the first set of asymptotic results.
We will first provide the results and then offer further comments below Corollary 1. The following

proposition demonstrates the uniform consistency of our estimator under missing observations.

Proposition 1 Recall ¢ from Assumption AS. Under Assumptions Al - AS, we obtain

sup Hé\(T) — Q(T)H =0, (hQ n : In(NT)

(NT)ewo/2], N, T : 3.6
refo.1] NT)¢(po/2)h>’ (N, T) = oo (3.6)

Next, we establish the pointwise limiting distribution. A clear exposition of the result requires
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further notation.
(a) Quantities associated with K (- f LUK (u) du, vy, = f LUK (u) du, k> 0;
(b) Bias term: b(t) = 3 (Mzrs)(ﬂ) + 0,(1), where X'(1) = (g(7), B(7)")";
(¢) Short/long-run covariance: (1) = diag [®1(7), P2(7)], B-(7) = diag [Bre1(7), Pre2(7)],
— 5 0 = ! / — R 1 e(T)'
whete @1(r) = p(r) (° 5,) + [2(1)] ™ (o) (1607 ), Ba(7) = D7) (o) 5 +Eu)

D,.1(T) =10 (0 AW_.(T)) + ol (7) [a(r)] 7 (e(lf)) (1)), Ppea(T) = 112 (0 A5(7)2X+Aug(r)) +

Vol 22(T) (e(lf)) (1ey).

Theorem 2 (Pointwise asymptotic distribution) Under Assumptions A1 - AS, for any

fized 7 € (0,1), as (N, T) — o0

VNTh (§(7) — (1) — h2b(7)) 4 N(o, @(T)*lszsys(r)@(f)*). (3.7)

Theorem 2 offers the first asymptotic result in the literature that gives an approximation
in trending panels with missing observations and flexible dependence structures. Building on

Proposition 1 and Theorem 2, we can establish the consistency of the estimated fixed effects.

Corollary 1 Recalla; =T 3. al(n), i=1,...,N, where @!(-) is defined above Eq. (2.11).

Under Assumptions A1 - A8, as (N,T)

NT N= (o) 1 NT
max |@; — ;] = O, | max ¢ h?, / \/ n( . (3.8)
1<i<N P0/2

We now discuss some implications of these results. First, the second-order bias b(7) in

Theorem 2 arises from the Taylor approximation (2.6), a standard result in the nonparametric
literature. Second, the pointwise asymptotic distribution depends on various nuisance parameters
such as b(7) and the long-run covariance matrix, which, in turn, depends on the local trends
£(), the pattern of missing observations, and some second-order moment terms. Therefore,
conducting inference based on the asymptotic distribution requires the estimation of these terms,

which is far from straightforward in practice. While a jackknife procedure may be employed to
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eliminate bias, estimating long-run covariance matrices remains unavoidable and highly challenging.
The estimation of these nuisance parameters demands careful selection of tuning parameters,
substantially affecting the performance of asymptotic inference (Friedrich and Lin, 2022). For this
reason, we propose in the next section a residual-based bootstrap procedure as an alternative
method to construct confidence intervals and bands. The proposed bootstrap method automatically
reproduces the nuisance parameters, without requiring a cumbersome selection of tuning parameters.
Note that the uniform convergence results in Proposition 1 and Corollary 1 are key stepping stones

for establishing the theoretical validity of our bootstrap method.

4 Bootstrap inference

Asymptotic inference based on Theorem 2 requires the estimation of various nuisance parameters.
This challenge can be conveniently circumvented by employing a bootstrap method. However, a
simple univariate, naive wild bootstrap, as commonly employed in empirical studies (for instance,
Liddle et al., 2020), is not valid in the presence of cross-sectional and/or serial dependence. We
face three main challenges: (i) serial dependence (and heteroskedasticity), (ii) cross-sectional
dependence, and (iii) missing observations. To accommodate serial dependence and heteroskedas-
ticity, a sieve wild bootstrap scheme (Smeekes and Taylor, 2012) can be implemented to obtain
bootstrap samples separately for each unit in the panel. However, this neglects and eliminates
potential cross-sectional dependence in the panel. To address this, we bootstrap the residuals e
jointly by stacking them in a vector over 7, namely e€.; = (Elt, e ,é\Nt)’. Then, one can perform a
multivariate sieve wild bootstrap using {é\.t} to replicate serial dependence and heteroskedasticity.
However, the number of parameters will quickly increase as N increases. A potential remedy
to reduce the number of parameters might entail imposing certain factor structures on error
processes {e.;} and subsequently applying the techniques outlined in, for instance, Trapani (2013)

and Gongalves and Perron (2020). However, extending this approach to accommodate missing
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observations is not straightforward.

In Section 4.1, we propose an Autoregressive Wild Bootstrap (AWB) procedure that correctly
captures cross-sectional and serial dependence, and accommodates heteroskedasticity. Importantly,
the procedure allows for missing observations. The AWB was originally introduced in Smeekes and
Urbain (2014) for multivariate unit root testing and has demonstrated superior performance in
modeling nonparametric trends in time series with missing observations, as highlighted in Friedrich
et al. (2020). In Section 4.2, we discuss obtaining confidence intervals and provide a theoretical

justification.

4.1 The autoregressive wild bootstrap

The core concept behind our AWB is to incorporate an autoregressive scalar series into the
stacked residuals to capture heteroskedasticity and serial dependence in the error processes. By
stacking residuals, we preserve the cross-sectional dependence pattern, while the inclusion of an
autoregressive series accounts for the serial dependence and heteroskedasticity. The bootstrap
algorithm involves five key steps:

Step 1 Let a;, g(-), and B(), be the adapted LLDV estimates described in Section 2.1, but

using a larger bandwidth & > h. Obtain residuals
G =M (g = @ = g/T) = 2 BU/T)), i=1.. N, t=1,...T. (41)

Step 2 For v € (0,1), generate a scalar sequence vj,..., v as i.id. N (0,1 —~+?) and let
& =7+, t=2,...,T, where & ~ N(0,1).
Step 3 Fori=1,...,N,t=1,...,T, calculate the bootstrap errors e}, = M, e,,, and generate

the bootstrap observations by
i = M (@ + G(t/T) + @, BH/T) + ) (4:2)

where a;, g(+), and ,5() are the same estimates given in STEp 1.
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STEP 4 Using {(y;;, azit), 1=1,...,N,t=1,... ,T}, construct the bootstrap adapted LLDV
estimates (aj ,7(), B*()) with the same bandwidth A as used for the original estimates.

STEP 5 Repeat STEP 2 to STEP 4 B times, and let

qg.,a(f):mf{ueR;P* (B;m—ﬁj(ﬂ §u> Za}, j=1,....d, (4.3)

~ ~

denote the 100ath percentile of the B centered bootstrap statistics 37(7) — B;(7),

similarly for g*(7) —g(7), 7 € (0,1). These bootstrap quantiles shall be used to construct

confidence intervals/bands.
In STEP 1, a larger bandwidth h is used to produce an oversmoothed estimate. This approach
is similar to the time series setting considered in Friedrich and Lin (2022), and ensures that
the asymptotic bias is consistently estimated by the bootstrap; see Remark 2 below. Bootstrap
performance is not sensitive to the choice of . The parameter ~ in STEP 2 accounts for both
serial dependence and heteroskedasticity. Its interpretation is akin to the block length in block
bootstrap methods, representing a tradeoff between capturing more dependence and allowing for
more variation in the bootstrap samples (Smeekes and Urbain, 2014). In theory (Assumption
B1), we assume v = 0/¢, where § € (0,1) and ¢ = ¢y > 0 is some sequence that diverges to
oo as the sample sizes grow. Further discussion on the role of ~ is provided in Remark 1. It is
worth noting that the normality of v} (and &) in STEP 2 is not necessary for obtaining bootstrap
consistency. We only require v; to be i.i.d. conditionally on the original sample, with E*(v}) = 0,
E*(v})? =1 — 92, and E*(])* < oo. Finally, the bootstrap observations corresponding to M;; = 0
are artificially set to zero in our procedure, as they do not play a role due to the construction of our

loss function in (2.5). The missing pattern is automatically preserved without any modifications.

Remark 1 We briefly discuss the role of the parameter v in mimicking the asymptotic long-run
variance. To illustrate, consider a simple time series regression model without missing observations:
Y, = X;f+e, t =1,...,T, where B is the OLS estimator of the parameter 3, and B* 15 the bootstrap

counterpart using the AWB. To establish bootstrap consistency, we shall establish the distribution

19



of \/T(B* - B) = (T" ST X,?)_1 (7172 ST Xie:&;), conditionally on the original sample. As
a result, T—1/? ZL X 6.8 must consistently estimate the limiting variance of T—'/? Zthl Xiey.
Let v = 0" for some 0 € (0,1), where { = {p — 00, as T — 0o, is some positive sequence. We
define the kernel function k(-) in de Jong and Davidson (2000, Theorem 2.1) as k(zx) = 011, Under
some regularity conditions, it is straightforward to obtain that:

T 2 T T
Xl | = Xseres B (&€ X, X 68,0
Z Z 2 X =7 Z

=1 t=1 s=1

T T
ZZXthetesv‘t_sl = ZZXtX eesk < ) ;ZZE X Xsees)

t*IS*l tlsl t=1 s=1

The term T—! Zthl 23:1 E (X Xeres) will asymptotically converge to the desired long-run variance.

This example highlights the role of v as a kernel in estimating long-run variances.

4.2 Confidence intervals

For any 7 € (0, 1), asymptotic pointwise confidence intervals I; y 1. (7) for 8;(7) are constructed to
satisfy lim infr oo voyoo P(ﬁj (1) € [j7N’T7a(T)> > 1 — a. In other words, I; n1..(7) is statistically
valid for a fixed time point 7 € (0, 1). By utilizing g;(7) in (4.3), j = 1...,d, one can immediately
obtain pointwise (equal-tailed) bootstrap confidence intervals with the level of 1 — « as follows:

~

IFra(™) = | Bi(T) = @acapa(7), Bi(7) = Ghapp(m)| . 7€ (0,1). (4.4)

The construction for g(-) is similar.
Now we justify the AWB-based confidence intervals by demonstrating that the bootstrap
estimator asymptotically replicates the distribution of the proposed LLDV estimator in Section

2.1. This requires the following additional assumptions.

Assumptions: B1 Suppose v = 0" for some 6 € (0,1), where £ = {xp > 0 satisfying

/2 N=@®o/D In(NT) N2 N=wo/2In(NT) 1 ¢ 0
TNww/2)/2 oo/, T (TN?)eo)=0o/2) oo/, L Th ’

max {N 2h
as (N, T) — oo, where h is the oversmoothing parameter used in the AWB (STep 1).
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B2 Suppose Zgj,mzl (Zfil |E (51-15jk)|> (ZZﬂ |E (silemk)|> = o(N?). Moreover,
2

supE =0 (m™), ¢>1. (4.5)

t>1

N
1

= Z 0 (1) Mgt Vie — Vi(tm)

vap3 (e = 0i”)

B3 Choose h = h(N,T) such that max{iL,NTh7,NThl~z4, (NT)=(ro/2)/2 ln(NT)h/fL} — 0, as

(N, T) — oo.

We first comment on Assumption Bl. By the identities 1 — ¢(po/2) = w(po/2)/2 and
¢(po) — ¢(po/2) = [w(po/2) — w(po)]/2, Assumption B1 implies that N'/2¢{ max;<;<n | — o] +
SUD,¢[0,1] ||§(T) — 0(7)“} = 0,(1). Moreover, note that 4 > h by assumption. Under Assumption
A8, we have N=@0/2 In(NT)/(T¢#/?h) — 0. Therefore, a key requirement to maintain the rates
in Assumption Bl is to ensure that ¢ does not grow too rapidly. It indicates that when T is not
sufficiently large, ¢ cannot be too large. Otherwise, estimation errors such as those from the fixed
effects estimates in the cross-sectional dimension could accumulate quickly, leading to bootstrap
inconsistency. Specifically, the rapid growth of ¢ hinders the consistent estimation of the long-run
variance. For this reason, we recommend choosing a relatively small value for v in finite samples.
Assumption B2 aligns with the spirit of Assumptions A7(a) and A7(¢). Finally, Assumption B3
establishes conditions on the rate of the oversmoothing parameter such that the AWB correctly
captures the second-order bias (Remark 2).

The following theorem indicates that the AWB consistently mimics the asymptotic distribution

presented in Theorem 2.

Theorem 3 (Pointwise bootstrap validity) Let 6*(-) be the bootstrap counterpart of 6(-)
and 5(7) be the oversmoothed estimate of 6(-) in Section /J.1. Under Assumptions A1 - A8, Bl -

B3, for any fized 7 € (0,1), as (N, T) — oo,

~

NTh (9*(T> —8(r) - h2b(7)) & N(o, @(7)*1@47)515(7)*1). (4.6)

Remark 2 We can gain insight into the conditions related to the oversmoothing parameter h in
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~

STEP 1 of the AWB by examining the expression: v NTh (é\*(T) —6(r)— h?b(7)) = VNTh[6*(1)—
E* (5*(7))} +VNTh[E* (6*(7’)) —0(7)— h?b(7)]. The first term v/ NTh [5*(7) —E* (5*(7'))} appears
to mimic the stochastic variation and converges to the distribution in Eq. (4.6). To achieve bootstrap

consistency, we require the second term v/ NTh[E* (5* (1)) — 6(t) — h2b(7)] to be asymptotically

negligible. We find that E*(6*(r)) —0(7) — h2b(r) = O,(h*)+ 0, <E2 + \/ln(NT) /((NT)¢(p0/2)ﬁ)>,
uniformly in T € [0,1]. Assumption B3 is therefore needed. Despite these technical details, the
asymptotic negligibility of the term means that the bootstrap estimators can consistently estimate

the second-order bias.

Moreover, the overall variation of coefficient curves over a time period may be of interest
in practice. Simultaneous confidence bands serve this purpose. However, there is currently no
available asymptotic construction of simultaneous bands for our models, irrespective of the presence
of missing observations. Even if a construction were available, it might still face challenges with
slow convergence speeds, as recognized in the time series literature (Zhou and Wu, 2010). We

elaborate on obtaining simultaneous bands using AWB-based bootstrap correction in Appendix F.

5 Simulation study

We examine the consistency of the proposed LLDV estimator, as well as the empirical coverage and
length of the pointwise intervals and simultaneous bands from the AWB, in the presence of missing
observations. Throughout, we employ the Epanechnikov kernel K (z) = 3/4(1 — 2%)1j5<13. To
examine the impact of the bandwidth, we explore fixed values of h € {0.09,0.12,0.15}. Additionally,
we introduce a data-driven bandwidth selection (denoted as iAszMCV) in Appendix E using the
panel local modified cross-validation (PLMCYV). Since the results are relatively robust to the
oversmoothing bandwidth & in Step 1 of the AWB, we adopt the suggestion in Friedrich and
Lin (2022) and set h = Ch*? with C' = 2. Moreover, there is currently no available method

for selecting an “optimal” + in STEP 2 of the AWB. As our theory suggests that the value of ~
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Figure 1: Plots of the global trend and the slope coefficients used in the simulation study.

should be relatively small when 7" is not very large, we consider v € {0.15,0.2,0.25,0.3,0.35,0.4}
in simulations. As shown later, we find that a value around 0.25 consistently produces satisfactory
results. All confidence intervals have a nominal level of 95%. The results are based on 10* Monte
Carlo replications and B = 999 bootstrap samples. To evaluate the accuracy, we report the average
mean squared errors (AMSE). Moreover, we employ the methodology described in Friedrich and
Lin (2022, p.12) to evaluate empirical coverage and length of confidence intervals and bands
(details are available in Appendix G.2). Additional discussions and the full set of results are

provided in the supplementary materials, Appendices E - G.

5.1 The data generating process

We consider a model with a smooth global trend that mimics an asymmetric V-shape as observed
in one of our applications in ethane (Figure 5). Additionally, we adopt two time-varying slope
coefficients from Friedrich and Lin (2022); one positive slope coefficient with a two-peak shape,
and one negative, smoothly decreasing coefficient. Since the model allows for heteroskedasticity,
time-varying volatilities are also considered in our simulations. More specifically, we consider

Yir = a;+ g (t/T) + Bu(t/T)xi1 + Bo(t)T)wir 2+ 0i(t)T)ey, where (1) = —473 4+ 972 — 67 + 2, and
Bi(1) = 1.5exp(—10(7 — 0.2)?) + 1.6 exp(—8(7 — 0.8)?), (5.1)
Bo(T) = —0.57 — 0.5 exp(—5(7 — 0.8)?). (5.2)

Figure 1 depicts the curves of the global trend and the slope coefficients. For the regressors {mit =

(Tit1, Tiro)' }, we shall specify their local trends, individual specific effects, and the innovation pro-
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cesses. First, we take the following local trends £(7) = (sin(7), (7 — 0.5)2)/. Second, the individual-
specific effects x; = (xi1, xi2)" are i.i.d. U[—1,1]. Third, we generate the innovation processes from
a VAR(1) process, where we allow for cross-sectional dependence among individuals 7 through the
parameters p,1 and p, o (given below) for the regressors, respectively. Additionally, we allow for
dependence between regressors for each ¢ through p, 3. In summary, we generate the innovations
of the regressors {v., ;} as follows: v, ; = (v11,. .., I/Nt,j)' =Aivy 1 j+tu, Aj=a;ly, j=1,2,
where w, = (u,,,ul,,) & N(0,3,) with X, = (gzg §g;g), ., = (pljj', 1<il< N)
for j = 1,2, ¥, 35 = pusln, and a; = 0.1. We take (py1, pu2, pus) = (0.3,0.1,0.3). Moreover,
following Li et al. (2011), we take the fixed effects as a; = p, <T‘1 ST xitJ) Fug, ue R N0, 1),
t=1,....,N =1, and ay = — Zf:ll a;. We fix p, = 1. We consider heteroskedastic errors.
Five patterns are adopted. In particular, the volatility process o;(7) for individual i can be: (i)
constant, i.e., 0;(7) = 1; (ii) smoothly increasing, decreasing, i.e., o;(7) = 1 + k7, Kk = 0.5, —0.5;
(iii) smoothly fluctuating, i.e., 0;(7) = 1 4+ acos(2wkT), a = 0.5 and k = 4; or (iv) smoothly
increasing and fluctuating, i.e., 0;(7) = 1 + 7 + acos(27k7), a = 0.5 and k = 4. We randomly
assign one of the patterns to the individuals ¢ = 1,..., N. For the error process, we consider
a VAR(1) process, where we produce cross-sectional dependence through the covariance matrix
of the innovations. In particular, we generate the error term {e., = (ey;,...,en:)'} according
toes =Eeq 1+, M - (0,%,), where & = p. Iy, and X, = (p‘nj_il, 1<i4,5< N) with
py = 0.1. We vary the strength of serial dependence and consider p. € {0.1,0.3}. The final step

is to generate the missing patterns. We simulate a strictly stationary Markov chain of missing

values independently for each unit, with the transition matrix given by

My =0 M =1
Mi(tfl) - 0 03 07

Mi(t—l) = 1 01 09
where we let M;; ~ Bern(7/8). This will yield approximately 12.5% of the sample to be missing.
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Figure 2: Average AMSE x10% under heteroskedasticity, and h = 0.15.

Table 1: Pointwise empirical coverage of confidence bands for various sample sizes and heteroskedastic
errors, v = 0.2.

pe =0.1 pe = 0.3

N=7 N=7 N=150 N=7 N=7 N=150
h T'=7 T=150 T =150 T=7 1T=150 T =150

0.09 0.945 0.957 0.968 0.913 0.928 0.943

0.12 0.954 0.960 0.971 0.929 0.932 0.950

g 0.15 0.959 0.964 0.970 0.929 0.942 0.948
hpivey  0.958 0.960 0.969 0.928 0.936 0.944
0.09 0.953 0.965 0.979 0.957 0.965 0.977

0.12 0.945 0.948 0.957 0.954 0.947 0.956

b 0.15 0.925 0.901 0.888 0.924 0.897 0.885
hpovey  0.926 0.947 0.968 0.927 0.940 0.970
0.09 0.939 0.953 0.950 0.942 0.954 0.949

0.12 0.943 0.952 0.956 0.945 0.949 0.954

& 0.15 0.947 0.947 0.954 0.943 0.951 0.954
hpovey  0.945 0.950 0.955 0.944 0.946 0.954

5.2 Simulation findings

We draw the following four main conclusions from our simulation results.

(i) Figure 2 shows the empirical accuracy increases when N or T increases. These results
provide evidence of the uniform consistency of our LLDV estimator under missing values
(Proposition 1).

(ii) Pointwise intervals show overall accurate empirical coverage in Table 1, even when N and T'
are small. They show robustness to the degree of serial correlation. For p. = 0.3, empirical

coverage is slightly lower than for p. = 0.1 when N =T = 75. But they are nevertheless
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Table 2: Pointwise empirical coverage (Cov.) and length (Lgth.) for (p., N,T) = (0.3,75,75) with the
bandwidth hprycv selected by PLMCV (Appendix E) and heteroskedastic errors.

v~ 015 02 025 03 035 04

g 0926 0.928 0.933 0.931 0.938 0.937
Cov. (1 0924 0.927 0.931 0.933 0.932 0.936
B2 0.945 0.944 0.943 0.942 0.943 0.942

g 0221 0.226 0.230 0.233 0.243 0.250
Lgth. p; 0.190 0.193 0.195 0.199 0.206 0.211
B 0.147 0.147 0.146 0.145 0.148 0.148

close to the nominal level (95%). Similar conclusions are found by Friedrich and Lin (2022)
for time-varying time series models.

(iii) The pointwise results are relatively robust to the choice of bandwidth. The empirical
coverage of all coefficient curves is close to the nominal level of 95%, irrespective of fixed or
data-driven bandwidth (;lPLMCV>> except for h = 0.15 in the case of ;. This is expected,
considering that §; has two peaks, making it more challenging to cover compared to g and
[B2. Empirical simultaneous coverage, on the other hand, is more sensitive to the choice of
bandwidth but generally exhibits accurate coverage or mild undercoverage (Appendix F.1).

(iv) The pointwise results demonstrate overall robustness to the choice of 7, as shown in Table 2.
A slight tradeoff between empirical coverage and length is observable.

Table G.2 (Appendix G.3) shows the empirical length decreases as either N or T increases.

6 Empirical application

We examine two empirical examples. In Section 6.1, we investigate the relationship between
surface particulate matter air pollution (PM,5) and mortality. Subsequently, in Section 6.2, we
perform a common trend analysis of atmospheric ethane emissions in the Northern Hemisphere.
Both examples only involve missing observations in the dependent variables and thus fit into our
framework. The bandwidths are determined through PLMCV (Appendix E). For both analyses,

we present results for v = 0.2 and B = 1,500. Additional outputs for different values of v can be
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Figure 3: Proportion of missing mortality data (left) and cross-sectional average for mortality (right).

found in Appendix H.1, where the results remain similar. Further details on data acquisition can

be found in Appendix H.3.

6.1 Mortality and PM, ;

The effect of PMs 5 on mortality has been studied by, for example, Pope III et al. (2009), Samet
et al. (2000), Lelieveld et al. (2015), and Zhang et al. (2017). Existing research identifies a range
of causes of death attributable to PMy 5 exposure (Burnett et al., 2018; Landrigan et al., 2018).
Current studies characterize the relationship between PMs 5 concentrations and mortality as
time-invariant. In our empirical analysis, we revisit this relationship, examining the trending
patterns and a potentially time-varying effect. We collect population-weighted surface PMs 5 data
in microgram per cubic metre (ug/m?) from the Atmospheric Composition Analysis Group. For
the mortality, we take the total death cases per month from UNdata and divide it by the total
population per month. The monthly total population data is part of the Atmospheric Composition
Analysis Group dataset. Our sample, in total, includes 132 countries all over the globe and spans
the months from January 2017 to December 2021, resulting in 7" = 60.

Due to registration and accounting limitations, mortality data are not transferred to the UN
for each month for every country. This results in an average number of missing observations
per month of around 30%. In Figure 3 (left), we display the average of missing data across all
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Figure 4: Estimated coefficient curves with 95%-level pointwise intervals (shaded area) and simultaneous
bands (dashed lines, see Appendix F'). The simultaneity is over the full sample period.

countries over time. The data availability varies throughout the sample period and appears to
follow a Markovian pattern on average, aligning with our assumptions on the missing pattern.

Since we are interested in the effect of PMs 5 on mortality, we denote y;; as the average
population-weighted mortality for country ¢ in month ¢, and x; as the corresponding level of
PM, 5. In Figure 3 (right), we observe a gradual upward trend in y;;, while Figure H.1 (Appendix
H.1) illustrates a slight downward trend in z;. Both of these trending patterns align with our
theoretical framework. We thus estimate our model including a global trend and x; with a
data-driven bandwidth inLMCV = 0.2638.

Figure 4 displays the estimated global trend in the left panel as well as the estimated coefficient
curve for PMy 5 in the right panel (black lines). In both panels, the pointwise confidence intervals
(shaded area) and the simultaneous confidence bands (dashed lines) are added. The pointwise
intervals show us the significance of the trend or the effect of PMs 5 on mortality at any given point
in time, while we consult the simultaneous confidence bands for inference on the development over
time. The global trend in mortality (left panel) shows an overall upward-sloping behavior over
the whole sample. According to the 95% simultaneous confidence bands, this trending behavior
is significant. In addition, we find a significant and positive effect of PM, 5 concentrations on

mortality over the whole sample (right panel). The estimated coefficient curve of PMj 5 shows a
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relatively flat downward-upward-downward pattern. As highlighted by previous studies (Li et al.,
2023), a positive effect provides strong motivation for effective policy on air quality to reduce
mortality. The pointwise confidence intervals for the PMs 5 indicate that the effect is significantly
positive at each time point in our sample. Additionally, the width of the confidence intervals
seems to increase as the estimated effect of PM, 5 increases, for example, the width around the
peak in 2021 is larger than the width around the trough in 2018. Exploring the reasons behind

the time-varying width may be an interesting avenue for further research.

6.2 FEthane emissions

Ethane is the most abundant non-methane hydrocarbon gas and its main sources are the oil and
gas industry, where it is co-emitted with methane. It contributes to the formation of ground-level
ozone which is a major pollutant. Friedrich et al. (2020) analyze trends in ethane emissions
from four different measurement stations on a series-by-series basis. We extend their analysis
by extracting a common trend among N = 11 series from the Northern Hemisphere. The data
are obtained from the Network for the Detection of Atmospheric Composition Change (NDACC)
using the Fourier Transform InfraRed (FTIR) remote-sensing technique, spanning from 1986 to
2022 with daily observations (7' = 13,394). The dry air mole fraction of ethane is given in parts
per billion (ppb). We deseasonalize the data on a station-by-station basis by subtracting their
station-specific mean and regressing the series on one Fourier term. Since measurements can only
be taken under clear-sky conditions, the average across stations of missing observations in our
sample is around 90%. We apply our LLDV to estimate model (2.1) with d = 0, as the model in
Robinson (2012), and obtain only the global trend estimate g with the bootstrapped confidence
intervals/bands. The data-driven bandwidth is iAszMCV = 0.1298; see details in Appendix H.2.
The global trend and corresponding confidence intervals/bands are shown in Figure 5. The
left panel plots the data in colored circles as well as the estimated global trend (black line) and

the 95% simultaneous confidence intervals (dashed lines). The right panel zooms in on the trend
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Figure 5: Estimated global trend for ethane emissions; refer to Figure 4 for additional details.

and confidence bands. We observe an overall downward-upward-downward trending pattern which
confirms the main findings of the univariate analysis in Friedrich et al. (2020), but here it is
common to many stations. The first trend reversal around 2007 is often attributed to the oil and
gas boom in North America while the second reversal could be explained by a drastic drop in oil
prices making it less profitable to exploit shale gas wells. The local peak in 1997/1998 can be

attributed to boreal forest fires happening in Russia (Friedrich et al., 2020).

7 Conclusion

We explored a class of trending time-varying panel models that allow for missing observations,
cross-sectional and serial dependence, and heteroskedasticity. We introduced a local linear dummy
variable estimation method to handle missing observations in the dependent variable without
relying on imputation. We obtained the limiting distribution of the parameter estimators based
on a new uniform convergence result. This result accommodates cross-sectional dependence and
near-epoch dependence over time. The limiting distribution contains various nuisance parameters.
Estimating these nuisance parameters is challenging; hence, we propose an autoregressive wild

bootstrap (AWB) procedure to construct confidence intervals and bands. The AWB automatically
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captures these nuisance parameters and demonstrates good performance in finite samples. We
illustrated the proposed methods through two applications. First, we investigated the relationship
between environmental quality and mortality in 132 countries, uncovering a significant upward trend.
Second, we examined the global trend in atmospheric ethane, revealing an overall downward-upward-
downward trending pattern. For future research, developing results of strong approximations will
be crucial to justify the simultaneous bands. Additionally, the impact of missing observations in

covariates on the asymptotic distribution remains an open question.
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A Notation and definition of near-epoch processes

We collect the notation used throughout this paper in this section. Let 1{-} be an indicator function.
For any vector « = (z;) € R", its p-norm is denoted by [lz||, = (37, |2|P)}/P. The induced p-norm for
a matrix A is [|All, = sup,o [[Az||,/||z|[,- We omit the subscripts whenever p = 2. Let diag (A, B) =
(A B) for matrices A and B. For any vector x € R"™ and diagonal matrix D = diag (dy,...,d,) € R™*",
xk = <x§) and D* = diag (d’f, . ,d’;jj) take the power k element-wise. The Kronecker product is denoted
by “®”. The symbols «27 and “%” denote convergence in probability and in distribution, respectively.
For two sequences of positive numbers {ay7} and {by7}, we write ay 1 ~ by 7 if there exists some
constant € > 0 such that e ™! < ay7 /byt < € for all large N and T. For a,b € R, let aAb = min{a, b} and
aV b = max{a,b}. Moreover, we denote 37" . _ =>0_ > _ ...30_ . where k,m,n € Z*
and m < n. Bootstrap quantities are given a superscript *, expressing that it is conditional on the
original sample as in, e.g., Boswijk et al. (2021). For instance, “—d;p” denotes bootstrap weak convergence
in probability (Gine and Zinn, 1990). Let C'Z, i € N, be the collection of functions that have 4,-order

continuous derivatives on the interval Z € R, and f®(z) = d’f(z)/da’ represent the i-th-order derivative

of f with respect to x. The generic constants C, C1,Cs, ... can change from line to line.

The following definition of near-epoch process is an extension from time series to panel models.

Definition A.1 (Near-Epoch Dependence) Let { Xy, t € Z} be an R%-valued process, defined based

on a possibly vector-valued process {€;, t € Z} by
Xit = (Xit1, - Xira) = Ux, (€its €igr—1)---) » i=1,...,N,

where Vx, : R® — R? are Borel measurable functions. Fori=1,...,N, the process {Xit, t € Z} is said
to be (strictly stationary) near-epoch dependent in L,-norm (NED in L,) with respect to {ey, t € Z}, if

{eit, t € Z} is (strictly stationary) a-mizing process, and

P
Yip(m) =supE HXZt — X,L(fl)H — 0, p >0, as m — oo, (A.1)
teZ
/
where XZ-(tm) = <XZ-(tWi), . ,Xg?) =Ux, m(€its - Ei(t—m+1)), and Vx, m are R?-valued Borel measurable

functions with m arguments. The term ; ,(m) is said to be the stability coefficients of order p of the

process { X, t € Z}.

The process { X, t € Z} is not required to be strictly stationary. If it is strictly stationary, then
supyez Bl Xie — XUV||P = B[ X — XT™|” in Eq. (A1),
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B Proofs of auxiliary results

This section provides some intermediate results that are useful in the proofs of the main results. For

convenience, define wf (1) = (%)kK (T57), k> 0. Vr € [0,1], let Zp, (1) = {t : 7445 — 7| < R}, 5 > 0.

Without confusion, we suppress the dependence on s whenever s = 0, i.e., Z,(7) = Zp o(7). We first

establish the general theorem of uniform convergence which proves to be useful in our proofs.

Proof of Theorem 1 For m > 0, define Qy¢ = N1 le\il Y;; and QS@) =N"1 Zf\il ngm) Then the LHS
of (3.5) can be bounded by

sup % Z wf(T) [Q%’?—E( E\Tt)ﬂ + supl] % Z wf(T)IE (QN,t— %"2)

teIh,uO (T)

teIh’uO (T)

where Zj, o, (7) = {t : |7 — 7| < uph}. Consider the term Ky first. We cover the interval [0, 1] by a

finite number of subintervals B;, [ = 1,..., Lyr. These subintervals are centered at b; with a radius of
hrnt [0 (m)]F, where ryp = &%% and dy(m) = N~} Zﬁl [¢i’p(m)]1/p + N~1/2. Then, by the

triangle inequality, K 7,1 is bounded by

max sup 1 Z (wf(T) —wf(ln)) {Qg\?zt) —E (Qg\?lt)ﬂ

1SZSLNT TEB[ Th teIh (7—)
;uQ

1 (m) (m)
+ lgllrg}fw Mtel'hz(r) wy (by) [QN,t —E (QN,tﬂ - (B2)
yUQ

By Minkowski’s and Lyapunov’s inequalities, (3.2) and (3.3), we obtain
m ) 9 1/a m) |9\ 1/a aw1/q
sup (E|Q) ~E(QF)|) " < swp {2(E(QN¢—Q§V,2 )+ (BlQwe —E(@na)|) }
t>1 t>1
N q\ 1/q
Z [Yit - ngm)] ) + (]E
i=1

wl (1) — wf ()| < Crnr [0y (m)] ! by the Lipschitz continuity

ay 1/q
=N1lsup{2 (E ) < Cén(m). (B.3)

t>1

N
> Vi — E(Ya)
i=1

Note that, forany 7 € B;,l =1,..., Ly,

of x — z¥ K (x), where C does not depend on (k,[,7). By (B.3), the first component in (B.2) can then
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be bounded by

1 (m) (m)
Tte%‘;( 1S, UD | wi (1) — wf(bz)] ]QN,t —E (QN,t)’
< Oryr Tlh QG -E(QW))| = 0ptrar). (B4)
tEIh,uO(T)

Next, we consider the second component in (B.2). Let fzftl = o (n, t1 <t <ty). For any € > 0, by

Bonferroni’s inequality and the Triplex inequality (Jiang, 2009, Theorem 1), we obtain

P max | = 3 wh ) [ B (QU))]| > 2u0rwre

1<I<Lnyt | Th

tGI}L’uO(’T)
Lyt
1 k m m

<> P h > wib) [ng) ~E (ngfﬂ > 2ug TNy €

=1 tETp uy (T)

Lt 2 2

2ugThryr € 6 1 1 . 2 (m)

<Y qamen (s ) - E|E ) k(o)
_lz—;{ meXp( Am2r3, 288 +67°NT2UOTh Z wt 2 < 7o, ) ( N,t>
B huo

g X wooe([of - <ﬁcfzm{wm\@m—E(@w>w}>},
)

huo

(B.5)

where Ky > 0 can be any sequence that depends on (N, T'). Following the proof of Theorem 14.1 in
Davidson (1994), we observe that { g\%) ,t e Z} is an a-mixing process with mixing coefficients (™ (5)

bounded by

(B.6)

By Theorem 14.2 of Davidson (1994) and (B.3), the “dependence term” in (B.5), i.e., the second term

(without multiplicative constants), can be bounded as

B Z wl (bR ‘E (QNt \]—"t Qm) —-E <Q§\Tfng)’ < Cr;,lT [a(m)]l_l/q In(m). (B.7)

rNT QUOT}I tEIh,uO )

Moreover, by Holder’s and Markov’s inequalities, the “tail term” in (B.5), i.e., the last term (without
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multiplicative constants), can be bounded as

1 1
ryT 2ugTh

teIh,uO (T)

<o 3wk (E[QW -2 (0] [p (uten]ol) -

(m)

> wngn(|af -2 (o) [ (w0l -2 () > )

) )]

rnr 2uTh ¢ . (m
%)
(m) (m)\ |47 1/
— (m) (m) |1\ [wf (b)]"E }QN,t —E <QN,t)‘
<rNT2u0Tht€h§:T wf (by) (E’QNJ —E( N7t>‘ ) e
JuQ
= ! L k 1 (m) (m)\ |2
= rNT“}V_Yg 2uoTh teZ%(T) |:'U)t (bz)} E ’QN,t E (QN7t>‘
< Crypryg B (m)]". -

By Egs. (B.2), (B.4), (B.5), (B.7), and (B.8), and given that Ly = O (h_lr;éﬂ dn(m)), to establish

Knt11 = Op(rnT), it suffices to show there exist a positive sequence m = myr such that, as (N,T) — oo,

(a) h=Yrye On (myT)myT exp (—#hrzu? ) — 0 for any C' > 0;
NTVNT
(b) bt [almar)] '™ x (mav))” = 0;

(¢) hlry2 kN [on (mur)]

Observe that, from Eq. (3.3), we have

— 0.

N
Sy (myr) = myy "N (N_W > di> + N2 2 o(N12),
=1

We then take

/vy 1\ VPO ps(a) ny1]/1P0=1/2)]
TNT = {( W2 N> ~ [(NT) N } ’

1/(qg—1) o
KNT = <1H(NT) 1 > ~ [(NT)d)B(q)Nf((FFl)/Q] /(q )‘

%y N@/2

Given (B.9), we obtain

(B.9)

a) In(h=Yrk oy (myr)myr) ~ In(NT) and Thr? ma, KA ~ N%In(NT) for some ¢, =
NT NT NTENT

lo(q, 8) > 0, and therefore,

Thr]Q\,

W On (mavr)mar exp (— o C)=exp{ln (h™ryp v (mavr)mar) —

MNTRNT
for any C' > 0.
®) h i e(mar)] V4 [on (mar))? < C In(NT)] ™! = 0;

(¢) htrg rg On(mar) T < CIn(NT)] ™! = 0.
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Therefore, Kn7,1 = Op(rnt). For the term K72 in (B.1), we have

1 m —_ —

Knrp < sup — > wf(r) {supE Qny — EVB‘} =0 (mN)}/pN 1/2) = O (rnr), (B.10)
rejoq) T'h reTh e (7) t>1 ’

>UQ

where the last step follows from Eq. (3.4) and

=X/ [pB(1-1/9)] (NT)¢ﬁ(q)/2N_1/2\/H 1 <C.

“Mpar—1/2, -1 bp(q) nT—1
mPN rNT_(J[(NT) N ] T

Similarly, by applying Markov’s inequality, we can deduce that K73 = Op(rnT), which is the last term
n (B.1). Summing up, we have (3.5). [

1 o . .
Lemma B.1 Recall ¢p(x) = 5 i {a +/113/)<,0) in Assumption AS, where x > 1. Under Assumptions Al,

A3, Ab(e), Ala), AS, for any nonnegative integers k, ki, ke > 0,

N T N T
1 1
— Ekz i — ——— ( EkQ M|l =0, (R B.11
s terme i Eo om0, o
N T N
1
sSup || ===+ EkQ (1) My, wk1 Ek“’ (7 My, =0, (R , (B.12
| 2 5 M = D2 ot e B (k)| = Oy (i), (312
N T T
1 1 ,
e NThZZ:: Mty = o Z;w (7)E (M) || = Op (Rsnr) (B.13)
In(NT )
where R; N7 = (N(T)m‘;z’ with m1 = ¢ (mo), n2 = ¢(q0), and n3 = P(ro).

Proof of Lemma B.1 By inspecting each element in the vector/matrix, a straightforward application of
Theorem 1 establishes the lemma. It is worth noting that for the process {M;, t > 1}, one can simply

set d; =0, fori=1,...,N, in Eq. (3.2). The details of these steps are omitted. |

Lemma B.2 Under Assumptions A1, A3, A5 - A8, for any nonnegative integer k > 0,

1 L& 1 L 1 In(NT)
B Moy — — : S|
o | NTR ; ;“’t (MM = 37, ; t; we (DE (Mawa))) = Oy (m " \/(NT)¢>(moAqo) h) ’
(B.14)
N T N
1 b, i N 1 In(NT)
Tzl[g)l] T ; ;wt (1) My — NTh Zz; ;wt (T)E (Myxqxy,) || = Op N + (NT)yminh |
(B.15)

where ¢(-) and Nyin are defined in Lemma B.1.

Proof of Lemma B.2 By definition, the LHS of (B.14) is bounded by Z?:l EnT,j(M,x), where, by
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Lemma B.1, Ex7.1(M,2) = sup,cp H(NTh)—l SN ST wk(r)e(r) [M; M H = 0, (RynT)
E’NTQ(M, :1}) = SUPre[o,l} H (NTh)_l Zfil Zle wf (7’) [MitVit —E (MitVzt ’ = Op (R2,NT)- MOI‘GOVGI‘,
by Assumption A7(b),

N T
1 k
EnT3(M,x) up ||~ wi (1) [Miexi — E (Mix)] ‘
ef.] || NTh 2; ;
1 b 1 | & 1 &
= sup NTh Z Zwt tiz < sup ﬁ Z ’wt (7)) N Z MitXi
G[O 1 i=1 t=1 76[071] t=1 =1

By Assumptions A5(b) and A7(b),

2 d N 2
= N72 Z E (Z MitXi,j)
j=1  \i=1

N
N~ Z Miexi
=1

d N
=N Z k Z Miex3 ; + Z M Mpxijxe; | <CN™L
j=1 i=1 i£0

By Markov’s inequality, we have HN’l Zfil Mixi|| = Op (N’l/Q) uniformly in 7. Then, Enr3(M, x) =
Op (N_l/z), and thus (B.14) is obtained by noting O, (23:1 Ri’NT) =0, (\/1n(NT)/[(NT)¢(m0/\‘10)h]).

Similarly, the LHS of (B.15) is bounded by 2]6-:1 EnT,;(M,xz'), where

Svra(Msee!) = sup | 33 b)) i~ B (0] ‘ = 0, (Rinr).
1 ZiN_T
Enro(M,za’) = 2721[%1?1} NTh Z; ;wf(ﬂf(n) [Miv}, — E (Miv},) ] H = O, (R2NT) »
LN T
Enrs(M,zx') = Tzl[lol,)u NTT - 2 wf(T) [Mituituft —E (Mityityl{t)] H = Op (R3,NT) »

2
using Lemma B.1. Note that, by Assumptions A5 and A7(b), we have E HN‘l Zfil M (x;x; — E (xix})) H <

2 2
CN~and E [NTUEX, [Mixiv), — B (Mitxiugt)]H K HN—l SN Muxav,|” < CN-V. Using similar

arguments for En73(M,x) above, we obtain

N T
1
Enta(M, zx') = il[lopu NTh wa( ) [Maxix; — E (Mixix;)] H =0p (Nfl/Z + Rl,NT) ;
Tl i=1 t=1
1 T
Enrs(M,zx') =2 21[101)1} NTh wa(T)E(Tt) [Mix; — E (Mix;)] ‘ =0p (N_1/2> ;
T i=1 t=1
TN
Ente(M, zz’) =2 zl[t)pl] NTh Z wa(ﬂ [MitXin(t —E (MitXin(t)] H =0p (N_I/Q) .

i=1 t=1

ST



Eq. (B.15) is then obtained by combining these results. |

Lemma B.3 Under Assumptions Al, A5(a), and A6, for any nonnegative integer k > 0,
(@) sup,eioy) [(NTR) TSN, ST wf()pi(r) = j(7)| = O (12 + (Th*) ™ + 6y, ),
(b) supreppy) | (NTR) SNy L wk (Fpi(r)e(m) = mp(D)e(r)|| = O (12 + (ThA) ™ + 6y0),
(NTR) ™ 2 S wf (r)pi(r)e(r)t(m) - ukp< JE(r)|| = O (12 + (Th*) " + dyw),

where ¢, N s given in Assumption AG.

(¢) sup,ep

Proof of Lemma B.5 The following result is used repeatedly:

sup |g(z) —g(y)l, (B.16)
lz—y|<T—1

1
TS g (4/T) - /0 o) dz| <

where g(+) is continuous and Riemann-integrable (Biihlmann, 1998, Eq. (6.5)). We only show Part (¢) as
the others are similar. By (B.16), Assumption A6, and that p(-)€(-)£(-)" € C?[0,1],

T
Tl; sz 71) (7)€ Tt = Ttht )E(Tt)/+0(¢p7N)

_ /Olhl (Z;T>kK (Z;T>p(z)£( )e(z) dz + 0 <T22> +0(¢p.)

1 ~ 1
- /1 u* K (w)p( + uh)€(T + uh)€(r + uh) du+ O <Th2) + O(dp,n)

= P + O02) + 0 (77 ) + O,

where the final step follows from a Taylor expansion of each element of p(7 + uh)€(7 + uh)€(T + uh)’
around the corresponding element of p(7)€(7)£(7)’, and 1 = f_ll uK (u) du = 0. Note that the asymptotic

terms O(-) and o(+) are uniform in 7, and thus Part (¢) follows. |

Recall the definition of v;; Eq. (2.8). When T is sufficiently large, Assumption A6 ensures the

presence of at least one observation in the h-neighborhood 7 € [0, 1], we have v,; # 0. Without loss of

generality, we will proceed with the assumption v, ; = (ZtT:l w)) (T)Mit>

(1 - 1/2)¢a 401 + pa/x)
Lemma B.4 Recall ¢(x) = 2+ (1+1/7)pn 24+ (14+1/2)paq

that ¢(-) and w(-) are strictly increasing and decreasing functions, respectively. Suppose Assumptions Al,

and w(x) =

i Assumption AS. Note

A3, and A5(c), are imposed for all the parts below. Let k,ki,ky > 0 be any nonnegative integers (if not
specified).

(@) jmax sup [(Th) T ub(r) (Ma ~ BOL)| = O,

Jm o) =

N1=mmaa In(NT) -
Timaz » lmax —
N1=mee In(NT) _ N=@o/2) In(NT)

Ya/(2+ ¢a). One has Tnmaz b = Topo/2)p,

AS.

— 0, as (N, T) — oo, by Assumption
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(b)) max sup (Thry;) = Op(1).

1<i<N 7€[0,1]
B NT—mas In(NT) 1\ .
(¢) max. Til[lopl] ‘(Th) LSS wk(r)M, ( T, +h+ Th2> if k is odd, and is

Op(1) if k is even.

N=@o) In(NT

@) max, swp (@) T ub(r) Mava — B (Ml = O, \/ e )). By Assump-

_ N=@) In(NT)  N=Wo/2) In(NT)

tion A8, one has oG, < TowD ] — 0, as (N,T) — o0

NE®/2) In(NT
() mas, s TR S b (o) M — E (V)| = O, \/ ik cikd
_ N=®) In(NT) 1

(f) 2, sup H(Th) o wf (1) Miwa| = O, \/Td,(po)h tht g | = 0p(1) for an

odd integer k and is Op(1) for an even k, if Assumptions A5(b), A7(b), and A8 hold.

_o N=@o) In(NT)
- T(Po) '

N1=Mmas In(NT)

(9) Suop1] HN 121 1 Vrji Zt 1wt( )M
7'6

1
(h) sup |ThN'w; —q(1)| = Oy (qﬁqw +h+ T + \/ if Assumption A6 holds.

T€[0,1] Timazh
NI=maz In(NT)
. — N T
(Z) 7_21[10?1] N 1 Z’L:l V‘r}i thl wf(T)Mlt - /“Lk" = O (h + Th2 + Tnmazh ) ’

Proof of Lemma B./ We start by showing Part (a). The steps are similar to Proof of Theorem 1. That
is, we cover the interval [0, 1] by a finite number of subintervals B;, [ = 1,..., Ly7, which are centered at

b; with radius hont, where oy = [T*"m‘“” h~IN1=maz ln(NT)] 1/2. It is easy to obtain

L K
< . Vo — E(MO
< Op(QNT)+1<Zf?§V1<l<f?§VT Th tEIE( )wt (by) [Mir — E(M;)]
h(T

max
1<i<N TE[O 1]

1 T
T E:: E(Mt)]

Let ‘7:;21&1 = o0 (&4, t1 <t <t9). By Bonferroni’s inequality and the Triplex inequality (Jiang 2009,

Theorem 1), for any M, éyr > 0 and positive integer gy,

1
— . >
Plimss s, a2 vt M~ B(M)]) 2 2Meonr

teZy(T)
Lyt 2
2ThQNT M: 6 1 i
< 2qNTexp< > + wh (0B [E (M| FEZ2T) — B (Ma)|
; =1 qNT5]2VT 288 Z\jE ONT 2Th IZ(T)
+ Eii Z wt bl (Mit]l{’wf(bl)Mit > SNT}) . (B.17)
Me ont 2Th

t€Tp(r)
Putting p = 1 and 7 = oo in Theorem 14.2 by Davidson (1994), we have

1

< Covira(Gnr) .
QNTQTh = QNTO‘(QNT)

Z wh(b)E ‘IE (M| FEZT) — B (M)
T(r)
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Moreover, by Markov’s inequality, for any 7 > 0,

wh(b)E (Mnll{’wt b)) My,

onT 2Th Z > vt} ) < Coyiront

By (B.17), one obtains max;<j<y maxi<i<r, |(Th)~ ZtEI (r) Wi (b)) [My — E(My)]| = Op(onT) if for

any € > 0, there exists M, > 0 such that

Thod M?
52, 144

2N LNTONT €XP <— ) + OlNLNTQNTa (QNT) + CQNLNT(;NTQNT €, (B.18)

2
NT(SNT

where C1,Cy > 0 are some constants.

1/¢a _ 17
Let gyt = [(Nln(QNTU v -‘ and Iy = (NlngNT)) . Note that Ly < Koh_lgj\,lT for some

hQNT hQNT
Ky > 0. Simple linear algebra leads to

In (2N Ln7gnT) < In(N) +In(NT) < 2In(NT), as (N, T) — oo

Tho? - 7 . _ . . o
Moreover, we have T ~ (NT) Mmaz /T In(NT). Since 7 > 0 is arbitrary, we can take 7 = Fyp =
INTONT

NT — o0, as (N,T) — oo, leading to (NT)fZ”’"”/F — 1. Therefore, for any € > 0, one can always find
an M, > 0 such that

Tho2,. M? Tho2.. M2
2N LNTqNT €xp (—_29—NQT < ) < exp (2 In(NT) — QJ;’T € > <¢/3.
NrONnT 144 qNTdNT 144

Finally, it is easy to obtain C1NLyronra (@nr) < C[In(NT) ™' < ¢/3 and CoNLyrdymony <
CIn(NT)] " < €/3, as (N, T) — oo, for any Cy,Cy > 0. Combining these results, we obtain (B.18).

Next, we show Part (b). By Part (a) and Assumption A8, we have
1 o 1 o
Th Z M = Th Z T)pi(7t) + 0p(1) = pro + 0p(1), (B.19)

for all 4, where the op-terms are uniform in 7 and i. That is, (Th)™! Zthl w?(7)M;; is bounded below
away from zero with arbitrarily large probability as (N, T) — oo, uniformly in 7 and i. Therefore, we

have maxi<;<n sup,¢jo 1) (Thvr,;) < C with arbitrarily large probability.
Part (c) is obtained using Part () and the Riemann sum approximation (B.16).

The proof of Part (d) is similar to Part () and Theorem 1; we only sketch the steps. We first construct

open subintervals centered at by with the radius hN !y, where gy = /NZ®0) In(NT)/(T¢Po)h).
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Using E || Mwi]] < E vy < C, it is easy to obtain

max sup
1<’L<N TG[O 1

T
Z Myvy — E (MitVit)]
=1

1

<0.(5 _ .

< Op(onT) + max | max ||z tGIE( )wt (b)) [Myvy — E (M)
h

N

1

<0, . 1/po ) _ g (0™

< Op(ont) + Op <§1 (Y190 (m)] > + max | max || tEIE( )wt ¢ (br) [ ity — B (M@tvlt )} :
1= (T

where m = myr > 0. By the Triplex inequality again, there exist some constants C7,Cs > 0 such that

1 (m) <m>>] .

_ >

B 2 || T tEZI ( )wt (b‘)[ itVit ]E(M””t = 2MeonT
h\T

2ThQ M? o _ . _
<d {4NLNTmNT exp < 2 /J:T 2886(1) + ClNLNTQN}T [a(mNT)]l 1/po + C2NLNTQN1TKJ}V'1?0} .
NT'"VNT

Let myp = ’7(N27w(pO)T¢(p0))1/[(171/170)9004]—‘ and Ky = (Ng,w(po)Td)(pO))l/(pofl)' For any € > 0, it is
not hard to show the second and third terms in the brackets are bounded by C [In(NT)]™! < ¢/3. By
somewhat cumbersome linear algebra, we find that the construction of w(-) ensures that the first term
2Tho%, M?

<) < K, In(NT) — KyM21 NT), B.20
4m§VTﬁ;‘7’VT288d) exp (K1 n(NT) — KoM In(NT) (B-20)

4NLNT7TLNT exp <—

where K7, Ky > 0 are some constants. For any € > 0, one can choose a sufficiently large M, > 0 such

that (B.20) is bounded by €/3. Summing up, we obtain

1 k C(m) N\l _ .
12%\/ 1<rlrng>§VT Th te; )wt (br) [M”Vit E (Mltyit )] = Op (ONT) -
h\T

Given the chosen my7 above, simple linear algebra gives

N
S Wi (mam)] P Gy < Oy PNV g3k < O\/h/In(NT) (Nf) N2 0
=1

(Po = Dpa — 20y
2po + (po + 1)¢a
conclude that O, <Zi:1 (Vi po (m)]l/po) = 0p(0nT). Combining these results, we obtain Part (d).

where ng = < 0 by the condition 2y, > poy, as required in Assumption A8. We then

Note that z — 2fK?(z) is Lipschitz continuous on [—1,1] for any nonnegative integer ¢, and
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E || Myvyv,|| <E|vi|? < C. Moreover,

po/2 2/po
{E HMitVit”z{t ~ M }

2/po

") @t < Clipm . B2

ol (m)

Vit —V; it

gc{u«:‘

+2<E‘

By (B.21), Part (¢) follows from similar arguments above.
Next, we note that Part (f) can be bounded by

T

1
Th Z wf (1) My — E (Myxit)]
t—1

max

+ max sup
1<Z<N TE 0 1]

1<’L<N TG[O 1}

‘ . (B.22)

h Z ’LUt ztht)
By the moment conditions in Assumptions A5(b) - (¢), and A7(b), using the Riemann sum approximation
(8.16), max_ sup H (Th)"' ST wh(r)E (Mitacit)H — O (1/(Th?)) + O(h) if k is odd, and is O(1) if k

T7€[0,1]
is even. Moreover, the second term in (B.22) can be bounded by

T T
1 1 k
_— — £ My —E (M
(s ) (mN[p] Th 2 W )ﬂlgz’%vg[ga] T 2 (7)) [V = B (M)
1 T
k
—_— M, —[E (M,
+1I£113<4>§V721[10p1] Th £ wt( )[ itVit ( thzt)]‘
T
N1-maz In(NT)
k
— — M,
(&%”Xz') (mN S0 | 2 ()M )+Op( Tmach )

o N@@o) In(NT)
+Up To(po) ’

where the final equality follows from a straightforward modification (to include the components of £(-) as
n (B.11)) of Part (a), and Part (d) above. By maxi<j<n || xi|| = Op (1) in Assumption A5(b) and Part

(¢), we have

T

wf (T) M

max |Ixil| ] | max sup | =0 N In(NT) Chy
| Gie X 1IN Te[opl] Th &~ -7 T"maz Th?

. We obtain Part

N'7mas In(NT) \/ N=@o) In(NT)

if k is odd, and is O,(1) if k is even. Note that \/ Trmanly oo,

(/) by combining these results.

For Part (g), note that

T

1 k
—_— Z wt (T)Mityit
Th P

sup
T€[0,1]

} |

< { max  sup (Thl/m-)} { max  sup

1<i<N r€[0,1] 1<i<N r€[0,1]

g V’rz§ wt thzt

By Parts (b), (d), and Assumption A7(b), Part (¢) is obtained.
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Consider Part (1). Note that P (w, = 1) = P (2?:1 Vi = o) =P(My=0,Vi=1,...,N, Vt € Ty(r)) =
o(1) by Assumption A6, as (N,T) — oo. It is only necessary to consider the case w; # 1. Since
|pi(1¢) — pi(7)| < Ch whenever |7, — 7| < h by Assumption A6, and that K(-) has the support [—1, 1], by
Lemma B.4(a),

N
1 T N1=Mmas In(NT)
7“7 N z:: T 2 < h )pi(n) O <\/ Trimazh

teTr(T)

=T - al 1=nmaz 1n
5, () ($5me) romo ()

t:|me—7|<h
_ 1 N1=mmaz In(NT)
=q(1) + O(¢gn) + O <W> + O(h) 4+ O, (\/ Timar Ty ) ;

where the asymptotic terms O(-) and o(-) are uniform in 7.

-1

Finally, for Part (i), note that

N T

;IZVT,ZZU)}; zt_ﬂk

T

<—Z sup V”wa My — py)| -

= 17'601

sup
T7€[0,1]

By |pi(1t) — pi(7)| < Ch if |1, — 7| < h, Part (a) above, the Riemann sum approximation (B.16), and Eq.
(B.19),

| = g (G o (V)
= s Z’;gg; ' +0 ( T}ﬁ) +0(h) + 0, < \/ Nl—?;n;; jf}ENT)>
oy oo (T g
where the O(-)/O,(:)-terms are uniform in i. We conclude Part (i). |
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Lemma B.5 Define

T T !
0
ANt (T Z Z wy (1) M), — Z vea | > wl(r) M | | Y wd(r)Miwms |
t=1

i=1 t=1 t=1
Bar(r) =33 wi(r) tmzt—zu” (z W m) (zw )
i—1 t=1 =1
T li
Cnr(7) = Zzwt Miyxira;, — ZVTZ <Zwt t$1t> (Zwtl(T)MitiBit> :
i—1 t=1 =1
N T 2
Dar(r) = 33 wle) 0~ z (z wgmMit) ,
i—1 t=1 ; -
T !
Exr(r) = 3°3 w(r)Mat zu” (z ulr ) (2 k(7 m> ,
i=1 t=1
T T /
FNT(T) Zzwz ’Ltmltht ZVTZ <Z wtl ztht> <Zwtl 1tm2t> ,
i=1 t=1
N T

Ghr(T) = Z Vri Z wy (1) M.

Under the assumptions in Lemmas B.1 - B.j, we have

(a) suprcp1 H (NTh _IANT(T) —p(T Z',,H = 0p(1),

(0) SUPre(o,1] H NTh)~ (7')H = op(1),

(¢) sup ey ||(NTh) 1C'NT(T)H = o0p(1),

(d) suprepo,1) [(NTh)™' D7 (1) — p2p(7)| = 0p(1),

(e) sup e ||(NTh) " Enr(1) — pep(m)e(r)'|| = 0p(1),

(f) suprepo,) [|[(NTR) T Fnp (1) — pop(7) [ By + £(7)E(T) + Z,]|| = 0p(1).
(9) sup,epo [|NTFGhp(r) — unl(7)|| = 0p(1), k=0,1,2.

Proof of Lemma B.5 We start with Part (a). Recall that x;; = x; + £ (¢/T) + vi:. One can decompose
Apnr(7) into Ay7(T) = AnT,1(T) + ANT2(T) + ANT2(T) + ANT3(T), Where

T /
ANTl ZZU}? ztf Tt ZVT’L (Zwt ztf Tt ) (ng zte Tt ) )

i=1 t=1
/
A (1) M;( O(7) M;(
NT2 wt My Tt V‘rz wt M Tt wt Mivy s
i=1 t=1
/
A 0 0
NT3 wt ’LtVZtVzt VTz wt Mivg wt Muvy .
i=1 t=1

For the first component of (NTh)"'Anr1(7), we have (NTh)"' SN ST wd (1) Myl (m)8() =

p(7)(1)L(T)" + 0p(1) by Lemma B.3(c), where the op-term is uniform in 7. Moreover, since K ()
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has the support [—1,1],

~

Sl Mib(m) = o 3 wd(T)Mik(m) = v () + Op(h) (B.24)

L
Th
t=1 tEZh(T)

by a Taylor expansion of £(7;) around £(7), where the Op-term is uniform in 7. Using (B.24), we have

NTh Z Vrji (Z U)t M; () ) (Z wt M (1) ) —p(r)e(T)e(r)|| = op(1),

up

€l0,1]
and finally, sup,¢jo 1) |(NTh) Anr71(7)|| = 0p(1). By Assumptions A5, A7(b), Eq. (B.12) in Lemma
B.1, and (), (d) in Lemma B.4, we have sup ¢ 1] |(NTh)"YAnr2(7)|| = 0p(1). Before continuing, note

that, by Assumption A5(c),

N
1
<O Y [ () — S = o), k>0, (B25)

N T
N1 Zzwf pz Tt (VitVz{t) - 21/]

=1 t=1

By Assumption A7(b) and Eq. (B.13) in Lemma B.1, the first component of (NTh)'Anr3(T) can be

written as

N T
1 1
N O 2w () Mawiew)y = NThZZw? i1 By + 0p(1) = p(r) Z, + 0p(1),

i=1 t=1 i=1 t=1

where the op-terms are uniform in 7. Note that E(v;) = 0, by (b), (d) in Lemma B.4, Assumption A7(b),

/
Sup v w v w9 v
NZ h . ; Tt (Z ¢ (7) Mit “f) (E ¢ (7) M zt)

N
< sup (Thvr;)
TE[O 1] Z

1 T
Ti Z ? ’LtV’Lt

@ (po) n
=0, (W) = 0,(1). (B.26)

Therefore, sup,¢jo 1] |(NTh)™ Anrs(T) = B(T) X, || = 0p(1). Combining these results leads to Part (a).
By Assumptions Al, A5, A7(b), Lemma B.2, and (b), (¢), (f) in Lemma B.4, it is simple to obtain Part

(b):

<
TE[O 1]

sup
T€[0,1]

NTh Z Z wtl Mz

i=1 t=1
T
1 § O
Th t ztht

1
v PV

N

1
+ sup —Z(Thum
T7€[0,1] i—1

Similarly, Part (¢) can be obtained using Lemmas B.2, B.3, and (b), (f) in Lemma B.4.
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Now we consider Part (d). By Lemmas B.1, B.3(a), and B.4(b) - (¢),

N T
1 1 2 1 )
— E(M;
re0) N PN b NThl s & 1wt NTh;;wt(T) (Mit)
1 & 1 < ?
2 1 .
NTh zz; t=1 v b)) ¥ N ;(T}Wﬂi) (Th ;wt (T)Mit> — ot

Part (e) is similar to Part (f) below, and thus omitted.
Next, by Lemmas B.2 - B.3, Assumptions A5, A7(b), and the identity E (x;x),) = X\ + €(1)€() +
E (v,,v},), the first component of (NTh)™! Fyr(7) can be written as

N T
1
NTh ZZ“’? M, = NTh ZZU’? T)pi()E (@,2;) + 0p(1)

i=1 t=1 =1 t=1

= p2p(7) [Zy + L(T)(7) + X, ] + 0p(1), (B.27)

where the op-terms are uniform in 7. Note that by (b), (f) in Lemma B.4,

!
sup NTh Z VT 7 (Z wtl ztmzt> (Z wtl ztht>

7€[0,1]

N 2

1
< sup —Z(Thum-)
T€[0,1] i1

= 0,(1). (B.28)

T
1 1
—_— Z Wy (T)Mitwit
Th pt

Part (f) is obtained by combining (B.27) and (B.28).
Finally, consider N~1G%..(7). Note that

T

N
T) :ZXiVT,izwf( zt+ZVTszt ztﬁ 7—t +ZVTZZwt thzt
i=1 t=1

GNT 1(7) + GIJCVT,2(T) + GNT,:s(T)-

By Assumption A5(b) and Eq. (B.23), when N and T pass to infinity jointly,

N N T
1 1 1
NGIZCVTJ(T) :NkNZXi'i‘ NZXZ (V'r,izwf(T)Mit ) = Mk 7 ZX1+OP = op(1),
=1 =1 t=1
uniformly in 7. Using similar argument as (B.24) and Lemma B.4(7), we have N_lGlfVTQ(T) = uil(T) +

Op(h) 2 1u3£(7) uniformly in 7. Finally, Lemma B.4(g) implies that N_IG’]“VTB(T) = 0p(1) uniformly in
7. These results jointly lead to Part (g). |
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C Proofs of main asymptotic results

Proposition C.1 Under the assumptions in Lemma B.5, we have

= 0,(1), as (N,T) — oc. (C.1)

Proof of Proposition C.1 Recall the construction of ZZM(T) in Eq. (2.7). We have
N ~ ~
>z (ryzM (r)
i=1
N
= ZM(1)Kiu(r) va 7)kn(T)kn () (Z] (1) — Z™ (7))
i=1
N
= {Z ZM () Kn(r) 2} (1) ~ va' (ZM () k(7)) (ZiM(T)/kh(T))/}
i=1 i=1
N !/
<Z V‘r,zZsz /kh ) (Z VT i 7—)>

S () o zu”(zx(“ b)) (S5 (5 7) i)

i=1 t=1 t=1

T

! <§;K<T;T> wza(r )(ZVHZK@ ) ltzlt(7)>lzzﬂl+ﬂg. (C.2)

Consider I, first. By the definition of z;(7), one can separate IT; into blocks ITy = (ITy 5, 1 <1i,j < 4),
where ITy1; = IT; j; = 0', IT1 20 = An7(7), IT123 = Bn7(7), ITh 20 = Cn7(T), 133 = Dnr(7),
H1734 = ENT(T), H1,44 = FNT( ) and H1 i = Hl i 1 S Z,j S 4, where ANT(T) to FNT(T) are deﬁned

in Lemma B.5. Using Lemma B.5, we obtain

= + 0p(1), (C.3)
452(7')

where the op-term is uniform in 7. Similarly, one can write IT, = (Hg,ij, 1 <i,j <4), where Iy 1; =
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—1 72 _,,—1 N T 0 /
wr N, Iy np = wi N 3 Sisy vei Dy wy (7) Mgy,
IT) 3 = 1N IT 1N L
2,13 — VTz wt 7,t7 2,14 = W, VTz wt zthta
N T !
-1
H2,22 = W, g Vri E wt Mz § Vri E wt Miixi |

=1 t=1
N T T
-1 0 1
I 53 = w; E Vri E wy (1) M E Vri E wi (1) My |,
i=1 t=1 i=1 t=1
N T N T !
—1 1
Iy 94 = W, E Vri § wt ztmzt Vri § wt zta:zt s
i=1 t=1 i=1 t=1

N T 2 T N T !
—1 1 —1 1 ].
H2,33 = W, E Vri § Wy (T)Mit s H2,34 = W, § Vri E Wy (T ( § Vri § wt ztxzt y
! =1 t=1

!
and ITp 44 = w;? (Zi]\il Vri Yooy wtl(T)Mitwit> <Z¢N:1 Vri Yoy W} (T)Mith‘t> , with ITy 5 = ITj ;;, 1 <

i,j <4. By (h) and (i) in Lemma B.4, Lemma B.5(g), we obtain

1 L(r)
1 -1
N e = am] T [ er) e(r)er) + op(1), (C.4)
o
where the op-term is uniform in 7. Combining (C.3) and (C.4), we have (C.1). [

Proposition C.2 Recall b(1) = 1 (“2T(2( )> + 0,(1), where T (1) = (g(7),B(7)"). Let AM (1) =
diag(m;)b; — Zl-M(T)B(T), where b; = (g1,...,97) + (a:ﬂ,Bl, . ,a:;T,BT)/. Define

N
Byr(r) =Y ZM(r)K Z v ZM (7Y K (T) ke (7) (A{.W () —w; ' vl (T)> . (C.5)
; =1

Under the assumptions in Lemma B.5, we have

——Bnr(1) — diag [1(7), O] h*b(7) || = O,(h?). (C.6)

sup

T€[0,1] NTh

Proof of Proposition C.2 By a Taylor expansion of Y (7;) around Y'(7) for |1 — 7| < h,

2 n—7\> -7\ (s
Ay(r):’;diagk 1h ) ,...,(Th )]ziM(T) odjl) + 0, (h®), (C.7)

where the O, (h®)-term is uniform in 7. In a similar way to (C.2), using (C.7), (NTh)'Byr(7) can be
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written as

N
1
NTh > ZM () Kn(m)AY (7 va (7)Fen(7)Rer (1) A (7)

=1

N 2

R 1 = 1 =1 ({79
-1 ZM (7Y I AM _ 3
+w; Z;ymzz ) k(T Zynkh )’ Al ()] 5 [NThH1+NThH2] - +0,(h?),
(C.8)

where the O, (h?)-term is uniform in 7, and

N T T T !
2 0 2
= E wt tzzt Zzt g Vri E wt tzzt E wt tzzt ) )
t=1

i=1 t=1

y N T T !
H2 —W <Z V‘r,zzw? ztzzt ) (Z VTZZwt ztzzt )) s

=1 t=1

which are 2(d+ 1)-dimensional square matrices. As the block decomposition of IT; in Proof of Proposition

C.1, by the definition of z;(7), one can separate ﬁl into blocks ﬁl = (ﬁl,ij, 1<i4,5< 4), where IATJLZ-]-

have the same dimensions of IT; ;;. The matrix ﬁg is similar. By noting the zero vector 0411 in Eq. (C.8),

it is only necessary to consider the first d+1 columns of ﬁk fork=1,2, ie., (IAT/MJ-, 1<1<4,1<5< 2).
For ﬁl, we obtain ﬁl,ll =0, ﬁng =0,

Hl 21 = Z Z wt Mz — Z Vri (Z wt ztxzt> (Z wt2 zt) s

i=1 t=1 t=1
T !
T 2
II, 5 = g g wi (T) Myxixh, — E Vri (g wy (1 z’twit> (E wi (T ztht> ;
i=1 t=1 t=1
N T T T
T Z Z 3 Z Z 1 Z 2
H1731 = ’U.)t (T)Mit — VT,i wt (T)Mit ’U.Jt (T)Mit 5
i=1 t=1 =1 t=1 t=1
T !
T 2
I1, 3, = E g w3 (T) M), — g Vri (g w; it> E wi (T)Mitmit> ,
i=1 t=1 =1 t=1 t=1
T T
T 2
H1,41 § § wt Mz — § Vri § ’U) Mz § Wy (T)Mit ,
i=1 t=1 = t=1 t=1

—~ !
and ITy g2 = Y101 Spy wi (1) Myzaxl, — SN vry (ZtT:l wi (1) M tht) (Zt LW (T )Mith‘t) . By a

straightforward modification of Lemma B.5, using Lemma B.4, we find

II, 1, ﬁ1,12 0o o

1 ﬁ1,21 ﬁ1,22 ~ 0 X

NTh | 7 = | TP | o), (C9)
I3, II3 0o o
ﬁ141 ﬁ1,42 0 O
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where the 0,-term is uniformly in 7. For ITy, we obtain IT5 11 = wyIN Zf\il Vri 23;1 w2 (1) My, Iy 15 =

-1 N T 2
wr N DL Vi 3oy wi (T) My,
H2,21 =w, (E Vri g wt ztht> (
N T !
2
E Vri g wt ztht> (E Vri E wt ztht> s
N

N T
ﬁ2,32 =w;! <Z i Z wtl(T)Mit>

H2722 = w

Il 31 = w;

V.
i=1 =1 i1 t—1
- N T N T
ot (S0 S wgmMitmﬁ) (z s w$<f>Mit> ,
i—1 =1 i—1 t—1
N N T N T !
II5 40 = w; Z Vri w; ( )Mztm2t> (Z Vri Z wtz( )Mztmzt>
i—1 t—1 i—1 t—1
Similarly,
ﬁ2,11 ﬁ2,12 1 £(t)
1 ﬁzgl ﬁ/ggz 1 E(T) E(T)B(T)/
Iy 3 I3 ar) | o o’
Iy Iy 0 o

where the op-term is uniformly in 7. Therefore, by disregarding the last d 4+ 1 columns, the initial d + 1
columns of (NTh)™! (ﬁl + ﬁz) can be written as (“2%(7)) + 0p(1) by combining (C.8) and (C.9).
Plugging it into (C.10), we obtain Eq. (C.6). |

Lemma C.1 Under Assumptions Al, A3, A, Ab(c), A6, A7, and A8, for any fized T € (0,1),

k=0,1,...
Thl/ti
1 L&, 1 p Ac(r)
SN wh (r) My eir = N 07V2k< Re(n) 3y > : (C.11)
NTh i=1 =1 XZ AVE(T)
Vit

as (N, T) — oo, where A-(1), A-(7), and A,(7), are defined in Assumption A7(d).

Proof of Lemma C.1 We use the Cramér-Wold device to establish the asymptotic joint distribution. For
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any unit vector a = (ay, ab)’ € R4+ it suffices to consider

Mq
&

ZyNTt +a ;T Z

=1

{(Thu”) [ i(T)]—l} e, (C.12)

>
~+
I
—_

where Yn74(7) = (NTh) " 2wl(r) SN Mya [1/pi(7),1, %}, V) eir. We shall argue that, as (N, T) —
007
(a) Zthl YnT(T) LN /\/(0, a'vyy, diag [AE(T),]\E(T)EX, AZ,E(T)](I> for any 7 € (0,1);
(b) (NTR) 250, S wh (7) Mig { (Thurs) = [pi(7)] b ea = 0,(1) for any 7 € (0,1),
We prove Part (o) in two steps: (i) derive the asymptotic variance; (ii) show the asymptotic normality.

For the asymptotic variance, we have E (Zthl yNT,t(T)> = 0 by Assumption A7(b). Moreover, by the

identities e;y = 0;(7)e;r and

N T 2 T—1T—s
<Zzait> = Z [Zazta]tJrZZ @it (14s) +a(t+s)ajt)], (C.13)

i=1 t=1 i,j=1 s=1 t=1

2
we have E (zle yNT,t(T)) = &/E[En7(1)] @, where Exp(r) = (sNT,kl,Q (r), k1, ko = 1,2,3,4) is a

block matrix with the elements given by

N T
ENT ko (T) = Z Z [ } i (1) 05 (7¢) Mt Mjr Ay iy (i, 85 4, ) €ivE it
=1 | =1
17—
Z wt+5 7) 04(16) 0§ (Tots) Mt M (11 5) Ay iy (05 85 5, T + 5)€it 145
-
17—
Z Z T)weys (7) 0i(Ters) 05 (7)) My 4.6) Myt Ay (65 £+ 83 4, 1) E5140)E5t ¢
——

with Ay, k, (i,ti;j,tj) = ag, (i,t;)ag,(j,t;)". Moreover, for ¢ =i or £ = j, we define a1(¢,t;) = 1/pe(7),
ax(l,ty) =1, as(l,ty) = x¢, as(l,ty) = ve,.
Before deriving E [EnT i ko (T)], k1,k2 = 1,...,4, some intermediate results are given as follows.
Recall the definition Zp, ¢(7) = {t : |74s — 7| < h}, s > 0, and Zp,(7) = Zj, 5(7) for s = 0.
(a.1) V1 € (0,1), wf (1) wk, (1) = 0ift € Tp,(1)NTy (1) = {[T(r — h)] <t < |T(7 +h) — 5|, 0 < s < 2Th}.
Therefore, for s > 2Th, (Th)~' S whk (r Ywl (1) =0, and

1 T—s 1 |T(7+h)—s]
k k _ k k
Th ; wi (1) w5 (1) = h t—m;hﬂ wi (1) wi'y s (7)), 0<s<2Th. (C.14)

1 Hr
Furthermore, let {H7} C (0, |2Th|) be some sequence that satisfies 7.t T = 0as T — oo,
T
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then for s < Hrp,

1 | T(7+h)—s] Hy
k

T Z wf (1) wfy g (1 =75 Z [wt ] (Th) — Vo, T — o0, (C.15)

t=[T(r—h)]
uniformly in 7, due to (Th)~ Z}T&t@m sl [wf (1 )] < CHp/(Th), and

| T (r+h)—s]

1 H
7 > wb@) el (@) —ut (]| < 0%
t=[T(r—h)]

by the Lipschitz continuity of 2 — z¥K (z) over [—1,1].
(a.2) For t € Iy (1) NIy 4(7), we have |0i(Ti4s) — 0i(7)| < Ch and |R; (7%, Teqs) — Rij(7,7)] < Ch by
the Lipschitz continuity (Assumptions A4, A6(b)), where 7 € (0,1), s> 0,4, € {1...,N}.

Now we derive E [EnrT gk, (T)], k1,k2 = 1,...,4. Let Hr be the sequence as given in (a.1) above.
Note that {EitEj(t+5)}, s € Z, are strictly stationary by Assumption A3 and Theorem 3.35 in White
(2001), i.e., E (€i4&j+5)) = E (cioejs). Using (a.1) - (a.2), Assumptions A3, A4, AG(b), A7(b) - (c), we

have

E[Enr11(7)]

1 1 1 & 2
= 2 P ) S Eeusi) 7 O |wf (0] oi(m)oy(r)Rag(mi,m)

,7=1 t=1
T-1
1
+ E (5it5j(t+s)) Th Z wy (7) wf—i—s (7) (1) 0 (Tegs)Rij (Tes Ters)
s=1 t=1
T-1 1 T—s
+ E (81(t+5)€jt) Th Z wy (7) wf+s (1) 0i(Te45) 05 (Te)Ri i (Tets, Tt)
s=1 t=1
LS Ratn) oo Beues) -3 [uk )]
N o= pimpi (1) T
T—1 T—s T-1 T—
1 1
+ Z E (Sltgj(t—IrS)) Th wi (7) wf—i—s (1) + Z E ( Ei(t+s) £jt) Th Z wt+s } + O(h)
s=1 t=1 s=1 t=1
N T
1 Rij(7,7) 1 i 2
- ’ (T 7)< E (g1 wy (7
Nm,zzlpz(T)pj(T) (e ){ (€ucje) Th;[ a )]
Hr—1 1 T 9 |2Th] 1 |T(T+h)—s]|
+ 30 Eeusyorn) 7 2 [ 0]+ 30 Eleusyon) 7y Do wb (Mubi ()
s=1 t=1 s=Hrp t=[T(7—h)]
Hr—1 1 I o 127h] 1 [T (T4h)—s] Hy
+ Z E (5i(t+s)5jt) Th Z [wf (1) ] + Z sz t+s) 5Jt T Z wf (1) wf+s (1) p +0 <Th> +O(h)
s=1 t=1 s=Hr t=[T(7—h)]
N Hp—1 T
_ )1 Rig(r,m) | 1 ko]’ Hr
V¥ X o X Eleusien) o\ 7n wf (O] §+0 () +01) +0(h),
ij=1 J =—Hp+1 t=1
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where the o(1)-term in the final equality is obtained by using A7(c),

N |2Th) [T (7+h)—s]

3 3 Bl ojosr) 3 (B eussern) HE Guroes)} gy D ub (ki)

i,j=1 s=Hr t=[T(r—h)]

1 N
SN2

E (cit€i(ers)) | + |E (eirs)gie) |} = o(1),

éMﬂ

as (N,T) — co. By Assumption A7(d), we obtain
E [gNT,ll(T)] — VQ]CA5711(T), (N, T) — 00, (016)

where Ag ki, (7) is the (ki, k2), element of A (7). Similarly, we obtain E [€ N7 kiko (T)] = VorAe kyko (T)s
1 < ki, ko, < 2. Moreover, by Assumption A7(b), one can obtain E [En713(7)'] = E[EnTa1(T)] =
E[EnT1a(T)] = E[ENT41(T)] = E[ENT23(T)] = E[ENnT32(7)] = E[ENT24(7)'] = E[ENTA2(T)] = O,
and E [Enr34(T)] = E[EnTa3(7)] = O. Note that x;, i =1,..., N, are independent, by steps similar to
E [EnT11(7)], we have

1 Hp—1
EfEnTas(n)] = 2 Y Rii(r,m)oi(r) Y E(ciirs)
=1 =—Hp+1
1 i 2 Hy _
X {Th tzl [wt (7')] } +0 (Th) +0(1) + O(h) = vopA(T) X, (C.1T7)
as (N, T) — oo, and
Hp—1
E[EnTa4(T Z Ri (T, 1)oi(T)o;(T) Z E <VitV;-(t+s)€it€j(t+s))
i,j=1 s=—Hr+1
LS~ [b )] o(4r 0 A
X Thtz1 [wt (T)} + (Th) +0(1) + O(h) = vorAye(1). (C.18)
Combining the results above, we have
T 2 AE(T)
E (Z yNT,t(T)> — a'vyy, A(T) X, a. (C.19)
t=1
Aye(T)

For Part (a), it remains to establish the asymptotic normality. We employ the central limit theorem
(CLT) for NED processes given in Corollary 24.7 of Davidson (1994), as in Gao et al. (2020, Proof of Eq.
(B.25)). As such, we verify the conditions required in the corollary.

(4.8) EVnra(r)) = 0, and by Bq. (€19), B (S, V() — a'vay ding [A:(7), A7) By, Ave()] @
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(a.4) Let ¢y =1/VTh,t> 1, and r = pg/2 =2+ 6 > 2. By Assumption A7(a), we have

ry 1/7
=1 }
ry 1/r r\ 1/r

(a.5) For any 7 € (0,1), Yn7.+(7) is Lo-NED of size —1 on {&.;}, where {£.;} is a-mixing of size

{E|Ynr(7)/era T = \/1> w (1 {IE

Uz
ay g ) Mieir + ab E oi(Te) Miyvirei

N
Uz
Mgt
2 : 7_

N
Z oi(1e) Muvireir
i—1

—(2+ 0)/0 by Assumption A3, in the terminology of Davidson (1994). More specifically, recall
‘7:£2t1 = 0 (€4, t1 <t <t3). By Minkowski’s and Cauchy-Schwarz inequalities, Assumptions A4,
A5(c), we have

(e pwrr) & (w7, ) L

2y 1/2
L L AR CECEN B
1 N 43 1/4
=¢ NTh;{E‘"“_E@“ 7| } ()" (C.20)
¢ : ) E el 1/P0 ! 3 1/7’0 <C ! —ov/Po
- NTh;{ ‘Vﬁ_y’t } NTh; Wi ()] < € g ,

where (C.20) follows from Theorem 10.28 in Davidson (1994) and Lyapunov’s inequality. Since
©u/po > 1, we can conclude that Yy (7) is Lo-NED of size —1.

(a.6) Note that Zthl INTH(T) = Yte, (r) YNT(T), Where the cardinality of Zp,(7) is bounded by CTh.
Eq. (24.28) in Davidson (1994) can be replaced by sups(7Th) max;>; c%t < 0.

The conditions in Corollary 24.7 of Davidson (1994) are fulfilled by (a.3) - (a.6). Therefore, Part (a) is

obtained.
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We consider Part (b) next. Note that by Assumptions A7(b) - (¢) and A8,

2

_.
o~
Il

—_

N T

- {Zl {@hors) = o { o) — g1} 22 b ) ul () oitmos(r) M (gim}
17 max n N T

<C <N Ty A Tzlh4> T D0 3wk () wk () [E (eusy)| (C.21)

Nl=mmas In(NT) , 1 \ 1 & =
= < Tmah 0 T2h4> N Z |E (gi0€50)| + ; |E (2i0g5)| + |E (girejo)l)

=o(1), uniformly in 7, (C.22)

where (C.21) is obtained using Lemma B.4(a) - (b) as follows:

T

1
Th i) — |Pi -1 — Th T, 7 -1 T 0 1 1
25, s |(Thve) = [pi(D] | = e sup |(Thor) 7 {T g £(7) M — pil7 )}'
1 I
<pr{ max sup (Thv,; max sup |— O(r)M; — p;
{1<Z<NTE[OH( ) 1<i<N o) | T ; t ! (7)

Nl=mmasIn(NT) , 1

< —F | .

¢ (\/ Tmaz R Th2>

Then Part (b) is obtained by Markov’s inequality. [

Proposition C.3 Define

N N
Dy (1) = Z zM(r) Z v ZM (7) K (T) ke (1) <e£w —w;t Z VTJeﬁW) : (C.23)
i=1 1=1
Under Assumptions Al, A3, A5 - A8, for any fized 7 € (0,1),
1 d
WDNT(T) — N<0, fﬁue(f)), (C.24)

as (N, T) — 0o, where @,c(7) is defined above Theorem 2 (p. 16).
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Proof of Proposition C.3 We first split Dy7(7) into four main blocks of vectors:

N T T
DNT(T) = Z Zw?( ) ztzzt 6zt - Z Vri (Z w? ztzzt > (Z wt ztezt>
i=1 t=1
Ynr,1(7)
N T T
+ w;l (Z Vri Z w?( Mz (T > <Z Vri Z w? zt(%t) =: : , (C.25)
i=1 t=1
Ynr4(T)

where,
N T
Yy (T) = w, 'N (Z Vr Z w} (1) ztezt> ;
T
TNT,2(7_) = Z Z w?( Miyxie; — Z Vri (Z wt ztmzt> <Z w? (T)Miteit>
= N . t=1
<Z Vri Z w? zta:zt) <Z Vri Z wt ztezt> ,
N T T T
TNT 3 Z Z wtl ztezt Z V’r,i (Z wtl (T)M ) <Z ’U}? ztezt>
=1 t=1

i=1 t=1
N T N T
-1 0
+ w; g Vﬂr,ig M g Z/T,l§ wt Mieq |,
=1 t=1
T T
1 1 0
TNT4 § § wt Miyxie; — E Vri § wt Mtz E Wy (T)Miteit
i=1 t=1 t=1
T N T
0
E Vri E wt My E Vri E Wy (T)Miteit .
=1 t=1

We first make the following claims.
(CL1) (NTH) 2 (Yra(7), Tra(r)) 5 N (0, 8,(r) )
(CL2) (NTh) 2 (Yrs(r), Tara(r)) 5 N (0, 8,00(r) )
(CL.3) (NTh)=1/? (TNTJ(T), TNTQ(T)/)I and (NTh)~1/2 (TNT,g(T),TNTA(T)’)/ are asymptotically inde-
pendent.
These claims jointly imply the limiting distribution (C.24). We next prove these claims.

1. Proof of Claim (CL.1)

We prove the claim in two steps. First, we establish the asymptotic marginal distributions of (N Th)*l/ 2TNT71 (1)
and (NTh)~Y2Yn7(7), respectively. When showing the asymptotic distribution of (NTh)~Y2Y 7 (1),
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we argue that (NTh)™Y2Ynro(7) is asymptotically dominated by

1 N Th -1 1 N T
0 Miviieqs + < T) £ o M (Thvr i) e | . (C.26
NTh;;wt(T) wirei + | 77w () \/m;;wt(ﬂ ¢ (Thurg)eir | . (C.26)

If (C.26) holds, then the joint distributional convergence of (TNTJ(T),TNTQ(T),)/ is immediate by
utilizing Lemma C.1. Given the joint convergence, as the second step, we only need to establish the
asymptotic covariance matrix of (NTh)*l/2 (TNTJ(T), TNTQ(T)/)/.

Consider ¥y7 1(7) first. By Lemma B.4(/) and Lemma C.1, we have

1 ™ \'[ 1 &
WTNTJ(T) = (Nw7—> ( NTT ; tZ:; w?(T)Mit (Thl/ﬂi) 6#) i) N(O, V0A5711(T)/ [Q(T)]Q )7

(C.27)

where A; k1, (7) is the (ki,k2)s, element of A.(7). Namely, the (marginal) asymptotic variance of

TNT,I(T) iS V()A&H(T)/ [(j(T)P

Now we show that

1
NTh

Ynralr) 5 N (o, v (Aeat (DA ) a(m)] + Ave(7)) > (N.T) 5 oc.  (C.28)

More specifically, plugging x;: = x; + €(7¢) + Vit in Yy 2(7), we have

N T
Ynro(T Zzw? (1) Mjress — ZVT’L (Z wy (1 ) (Z wy (1 ztezt>

i=1 t=1
T
0 0
+ Z Zwt Myvies — Z Vri (Z wt thzt> <Zw 'Lte'Lt)
i=1 t=1 =1 t=1 t=1
N

h \'[[1 4 1 a 1 Y
) (i) (e e} ()
X (Z > wl () My (Thy;) eit>

= UN721(7) = YnT22(T) + YNT2,3(T) — YNT2,4(T) + YN 2,5(T).

We consider ¥'n72,1(7) — Yn722(7) as a whole. By a Taylor expansion of £(7;) around £(7), we have

N T

N T
;TNT,Q,I(T) = £(7) = DY wd(r)Myeq + ;Th SN w(r) [6(r) — €(7)] Misei

i=1 t=1 i=1 t=1

N T
1
= £(7) DD w(r)Miceir + Op(h),
where the second equality is by a straightforward modification of Eq. (C.22) and Markov’s inequality.
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Similarly,

N T
1 1
—7, T)=8(T) —— wd (1) Meq + O, (h).
S Tvraaln) = €)= 33 ulr) M + 0,1
Combining these results, we have (NTh)™Y2 [Yn72.1(T) — ¥Yn122(T)] = Op(h). Note that (NTh) ™/ 2Yn7.23(7)
is the first component in Eq. (C.26). Moreover, by Assumptions A5(c), A7(b), and (b), (d) in Lemma

B.4, a modification of (C.22) together with Markov’s inequality, we have

1 N=Wwo) In(NT)
NThTNT,QA(T) = Op \/W . (029)

For (NTh)~'/?Ynr25(7), by the Taylor expansion of £(7;) around £(7), Assumptions A5(b) - (¢), A7(b),
and Lemma B.4(b) - (d), we obtain

1 Th \* N=@0) In(NT) 1
NThTNT,2,5(T) = (NWT) |:(£(T) +0p(h)) + Oy \/T‘f’(PO)h + O, <\/ﬁ>

Th \~' R
= | —wr (T wd (1) M, (Thr;) ey | + 0,(1),
(5 <>< 7 2o 2V (Tho) ) (1)
implying that (NTh)~'/2Y 1 25(7) is asymptotically dominated by the second component in Eq. (C.26).
Combining the results above, by Eq. (C.26) and Lemma C.1, we have the marginal distribution of
(NTh) ™/ ?Y 7 (1) as given in (C.28).

For the asymptotic covariance between X1 (7) and Yy 2(7), it is only necessary to consider the
asymptotic covariance between the asymptotically dominating terms, namely, between X7 (7) and
Ynr23(T) + Ynr2,5(7). Note that X'vy1(7) and X'nr23(7) are asymptotically independent by Lemma
C.1. Hence, the asymptotic covariance between ¥y71(7) and ¥y72(7) is determined by ¥n7,1(7) and

Y'n72,5(7), resulting in voAc 11(7)/ [q(7)]> £(7). Putting these results together, Claim (CL.1) is obtained.

II. Proof of Claim (CL.2)

Consider ¥'y73(7) first. By employing (b), (¢), (i) in Lemma B.4, Markov’s inequality, and an adaption
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of Eq. (C.22), we have

3(7T
g vralT)
1 N T 1 N 1 T T
1 1 0
= DS wi(r)Mieq — > (Thuy,) ( > w (T)Mit> <Z w! <T)M,-te,-t>
NTh i=1 t=1 NTh =1 Th t=1 t=1
Th \ ' (1 d 1 L
() (3 S bt ) (e S5 uflr) M (T e
=1 t=1 i=1 t=1
N T
1 1 N1=Mmae In(NT) 1
= Mjeir + O h4 — | .
~T ; ;wt (T)Miesr + O, ( Timar Ty +h+ The
By Lemma C.1, we have
1 d
WTNT’g(T) — N(O, V2A6’22 (T)), (N, T) — Q. (0.30)

Now consider ¥n74(7). By Lemma C.1, the first component in (NTh)~"/?Ynr4(7) can be written

as:

1 1
Z wy (T)Mei
=1 t=1 NTh ==

N T
1
wtl (T)Mita:iteit = TT}L Z Z wtl (T)MitXieit + e(T)

2| —
~
>=
[M]=

I
—

>

7 t=1

_l’_

T
> wi (1) Myvieir + Op(h) A N(o, v (Ac(T) 2y + Acoo(7)€(T)E(T) + AVE(T))).
1 t=1

=
>

NT

7

Moreover, the last two components in (NTh)~Y/ 2Ynr14(T) are asymptotically negligible:

N T T
1 1 0
e Z Vri Z w; (T)Mitacit> (Z wy (T)Miteit> = 0p(1),
NTh i=1 <t=1 t=1
T

N N T
1 -
w ! (Z Vri Z i (T)Mitmit> (Z Vri Z w?(T)Miteit> = o0p(1),
NTh =1 t=1 =1 t=1

]

using similar arguments for (C.22), Assumptions A5(c¢) and A7(b), Lemma B.4(b) - (d), and Lemma

B.5(g). Combining these results, we have

1
NTh

Yn7a(T) LY N(o, vo (Aa(T) Xy + Acoo(7)€(7)E(T)" + AUE(T))). (C.31)

As seen, the asymptotically dominating terms in (NTh)~'/2Yy73(r) and (NTh)™'/2Y 7 4(7) jointly
converge to a Gaussian distribution (Lemma C.1). Moreover, note that the asymptotic covariance between
(NTh)=Y?Ynr3(7) and (NTh)~Y?Ynr4(7) is determined by the covariance between the asymptotically
dominating terms, i.e., (NTh)~V2SN ST wl(r)Myey and (NTh)"V2 SN ST k(1) Myxizess.
By Lemma C.1, we observe that (NTh)~1/2 ZZJ\L 1 Ethl wi (7)Mye; is asymptotically independent
of (NTh)~1/? Zf\il Zthl w} () Misxieir and (NTh)=/? sz\il Zle w}(T)Myvisesr, respectively. The
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asymptotic covariance between (NTh)™/2Y 7 3(7) and (NTh)~Y/2Y 7 4(7) is therefore fully determined
by the covariance between (NTh)~1/2 Ef\il Zthl w} (7)Mises and £(1)(NTh)~1/2 Zf\il Zthl wi (1) Mjei.

Claim (CL.2) is now immediate.

III. Proof of Claim (CL.3)

Using the symmetric property of K (-), we have vy = fil uK?(u) du = 0. With this identity, the remaining

steps are similar to the proof for Lemma C.1 and are thus omitted. |

Proof of Theorem 2 Recall the definition 5(7') in (2.10), and AM(7) = diag(m;)b; — ZM(7)0(7) in

Proposition C.2, where b; = (g1,...,97) + (z}181, ... ,x;T,BT)I. Since

yM = ZM(1)0(1) + mia; + AM (1) + M, (C.32)
we have
N -1
6(t) — 0(r) = (Z ZM(r)zZM (T)> (Anr(1) + Byr(1) + Dyr(T)), (C.33)
i=1
where
N N N
Anr(T) = Z ZZ»M(T)’Kh(T)miai — Z I/-,-’iZ,L-JVI(T)/kh(T)kh(T), (miai — wT_l Z ym-ml-ai> )
i=1 i=1 i=1

Moreover, By (7) and Dyr(7) are defined in Propositions C.2 and C.3, respectively.

Consider Ay (7) first. Note that Y8 | ZM (7Y K (1)me; = S8 S0 K (T5-7) My zi (1) ;. With

the identity v_ ! = Ky, (7)'m; and the identification assumption ZZ]\L , & = 0, we obtain

N N
Z VT,iZi]w(T),kh(T)kh(T), (miai —w;t Z VT,imiai>
i=1

i=1

_ f; { (zK (") M,.tzitm) ( e f;) } =3 > () M

i=1 t=1

Therefore, the two components in Ay7(7) cancel out, leading to Ayn7(7) = 0. As a result, Eq. (C.33)

can further written as
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where By7(7) relates to the asymptotic bias, and D7 (7) determines the asymptotic distribution. By

Propositions C.1 - C.3, we have Eq. (3.7). |

Proposition C.4 Recall Dy (T) as defined in Proposition C.3, and ¢(-) in Assumption AS. Under
Assumptions Al, A3, A4, A5, ATa) - (b), and AS,

In(NT)
=0Op ( ( NT)¢(p0/2)h> ' (C-35)

Proof of Proposition C.J Recall xi = x; + £(7¢) + vy and ey = 0;(7¢)ei, where 0;(-) € [op,0p] C RT in

LI

P I NTH

7€[0,1]

Assumption A4, i =1,..., N. By the decomposition (C.25) and the corresponding discussions concerning
Yn1a(7), ..., YN74(7) provided below the equation, it is not hard to see that the asymptotic order of
SUPr¢[0,1] H(NTh)_l'DNT(T)H is determined by
(@) suprefo,1] H (NTh)=' 320, S wf (1) Migvisei
(b) suprepoy) | (NTR) SN SOL wh (1) Magen
(©) supepoy |[(NTR) Y, L wl M|
It is not hard to show that sup,¢jo ) (NTh)™! va 1 Zf,l w (1) Myt (Thvy;) eit
nated by sup,fo.) |(NTh) ™ S5, S5 wf(7) M [pi(7)] " e

orders of the terms in Parts (a) - (¢) boil down to linear combinations of the intermediate terms found in

+C'sup,¢(o,1] H (NTh)= 320, Sy wf (1) Mig (Thur) e

is asymptotically domi-

. With the definition of x;;, the asymptotic

(C.36) - (C.38) below. More specifically, based on Theorem 1, the following bounds can be obtained:

N T
T;; W (7)€% () Mg [ps(7)] " e _o,,< m> (C.36)
I v In(NT
m;tzlwf(T)Mitwteit =Op( (NT§¢(Po/)2)h>’ (C.37)

sup
€[0,1]
N T
1 k In(NT)
Sup || 7741 Wy T Mz Xi€it|| = @) — |, C.38
r€[0,1] Thg;t:1 i (7) Migxieit p( (NT)¢(p0/2)h> ( )

where k, k1, ko are nonnegative integers. Note that for (C.38), the process { M xieit, t > 1}, i=1,..., N,
is a-mixing (and thus NED) conditional on {x;, i =1..., N}, and therefore (C.38) immediately holds
by Theorem 1 conditional on {x;, ¢ =1...,N}. By Xiong and Li (2008, Theorem 3.3), it also holds

unconditionally. Combining these results, we obtain (C.35). |

Proof of Proposition 1 By Eq. (C.33),

r€[0,1] T€(0,1]

1
sup Hé\(T)_G(T)H < sup <N1T}L§:ZM(T)/ZM(T)>
=1

1
+ sup |(|—==Dn7(7)

X sup WBNT(T) 7_6[0’1}

7€[0,1]

> , (C.39)
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where Byr(7) and Dy7(7) are defined in Propositions C.2 and C.3, respectively. Since (A + B)™! =
A"l — A"'B(A + B)™! for invertible matrices A and A + B, Proposition C.1 implies

N -1
sup (@LZZN(T)'ZM(T)) = 0,(1). (C.40)

Finally, we have sup.¢ 1 |(NTh)"'Bnr(7)|| = Op(h*) by Proposition C.2. Combining these results
with Proposition C.4 leads to (3.6). [

Proof of Corollary 1 By Eq. (C.32), we can write

max |a; —a;| < max sup
1<i<N 1<i<N 7€[0,1]

vrikn(r) (AN -1Zum (")

< max sup

alir) —
‘ Z(T) 1<i<N 7€[0,1]

vrikon(r) (21()-2M (7)) (8(r)-0(7))|

vy iken (T ( . 121/”6 >‘

+ max sup

+ max sup
1<i<N r€[0,1]

1<i<N 7€[0,1]

By applying Parts (b), (¢), (f), and () in Lemma B.4 and making use of Proposition 1, we obtain:

M M 2 _ < .
B8, sup vrikn () (Z (1) -2 (T)) (9(7) 9(7))‘ TSN o] {(Th’/m)x
_ ~ In(NT
Hkh z}(r) - 2"(n)) H |6(r) —0(n)| } — 0, (h2 + (NT)(¢><po/>2>h) . (C41)
Similarly, by Eq. (C.7), we have
N
125??\7721[21’1] vrikn(T )( i (T) —w; ;VT,zAz (T))' Op(h7). (C.42)
Moreover, a straightforward modification of Lemma B.4(d) yields
N=wo) In(NT)
~1 1M _
B P [(Th) ™ k(1) €| = Oy \/ oG ; (C.43)
leading to

max sup
1<i<N 7€[0,1]

N=@o) In(NT)
1 _
vrikp(T) ( E Vri€; )‘ = \/ S0 ) (C.44)

Combining these results implies (3.8). [
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D Proofs of bootstrap validity

As in Gongalves and Perron (2014, Appendix B), we will frequently use the property that O;(1)Op(1) =
0,(1)0,(1) = O;(1) in probability, and Oy (1)op(1) = O,(1)0,(1) = 0j,(1) in probability, in the following

proofs. A justification for this can be found in Lemma 3 of Cheng and Huang (2010).

Lemma D.1 Under Assumptions Al - A8, Bl - B2, for any fized 7 € (0,1), k =0,1,..., we have: as
(N, T) — oo,

ThVTﬂ'
1 k 1 —d* Ac(r)
Zzwt (T) Mit gt €it _>p N 07V2k A (1) 2y y (Dl)
NTh == Xi Ave(T)
Vit

which mimics the asymptotic distribution as given in Lemma C.1.

Proof of Lemma D.1 Similar to Lemma C.1, the Cramér-Wold device is employed to establish the

asymptotic joint distribution. Specifically, for any unit vector a = (a1, a})’ € R2(@+1) | we consider

Z > wp (r) My {(ThVTj) - [pi(T)]_l} & €t (D.2)

where Vi, (7) = (NTh) ™ 2wf (1) 0, Misa! [1/pi(7), 1, X6, Vi) @y

Note that the sequence {w; = (xi,Vit), i =1,...,N,t =1,...,T} is not directly observable and
therefore does not fall within our information set. To simplify the proof, we first condition on the data
and {wy}, from which we derive the conditional asymptotic normality of .1 | ﬁj{,T’t(T). Given that the
limiting distribution does not depend on {wj;}, our results also hold unconditionally with respect to the

sequence.

I Asymptotic mean and variance of ZZ;I y;[T,t(T)

Recall the notation defined below (C.13). Namely, A, g, (i,ti;j,tj) = ak, (i, t;)ag, (j,t;), 1 < ki, ko <
4, where a1(4,ty) = 1/pe(7), az2(¢,te) = 1, as(l,t)) = xe, and aq(l,ty) = vy, for £ = i or £ =
j. Furthermore, let EX (1) = E( . ‘{(mit,yit,Mit,wit),i =1,...,N,t = 1,...,T}). Since {&}

—e

s

independent of { (@, yit, Mst, wit) }, it follows that B3, (&) = 0 and E}, (§&)) = A5l As a result, we have
- ~ 2 ~

EX, (Zthl y]’(,TJ(T)) = 0. Furthermore, by Eq. (C.13), we obtain E}, (Zthl y]’(,TJ(T)) =a'Enr(7)a,
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where ENT(T) = <ENT,;€1;€2(T), ki,ke =1,2,3, 4) is a block matrix with the elements given by

N
= 1 2 N~
ENThk(T) = D4 D [wf (T)] Mt Mjj Ay, (i 15 5, ) €t

+ 78 Z ’U)f (T> wf—&-s (T) Mith(t+s)Ak1k2 (Z, t; j7 t+ 5) gitgj(t+s)
t=

Note that €;; = M;; [eit + (0 — i) + (gt — §t) + =, (Bt — Et)] Using Proposition 1 and Corollary 1, we

can express In7 g, k, (7) as follows:

N T
2
TNT ey o (T h 3 [wf (T)] MiyMj; Agyio (i £:5, 1) eivegn + 0p(1). (D.4)

i,j=1t=1
We will maintain TNTJﬁJQ (1) for now and proceed to simplify fINTJ%;€2 (7) and III NT,k ko (7). The steps
involved in simplifying I NT k1 ko (T) and IIA/INTJCIJ€2 (1) are similar, with the primary challenge lying in

ﬁNT,kl’kz (7). To proceed, we first split ININT,;CL;€2 (1) as follows:

N T-1 T-s
~ 1 . .
HNT,k1,Ig2 (7') = ?h Z ’Ys ’LU wt+s ) Mith(t+s)Ak1k2 (2, t; 7,0+ S) €itCj(t+s)
i,j=1 s=1 t=1
1 N T-1 T-s
+ NTh Z 75 ’UJ,{C (T) wf—i—s (7-) Mith(t—f—s)Ak’lkg (Z; t; 7,1+ 5) (gitgj(t+5) — eitej(t+s))

ij=1s=1  t=1

~ ~b
= N gy o (T) + Tng gy £, (7)) (D.5)

~b ~
We prove Iy, £, (7) = 0p(1) first and address II(]I\,TJC Lk (T) subsequently.
Recall the notation I°(7) in Proposition C.2, and define 1} = ¥ (1) = (gt,ﬁé)/, Y, = f(n) = (@,Bg)’.
We have

MitMjj(ers) (€it€j(14s) — €itj(es)) = MitMps) [(aj —aj)en + (a; — Qi)ejps) + (a — i) (o — )
+ (ai - )(1 T (t+s))(n+s - ﬁ—f—s) + (aj - 62]) (1? w;t) (n - :rt) + 6“5(1 :Dj(t+s))(n+8 - ﬁ-ﬁ-s)

tejire (L) (G- 1) + (-1 (L) (1,2 Litrsy) QLis — 173:+s)] (D.6)

~b
This decomposition results in Iy g 4, (7) being split into a summation of eight components, denoted as
~bt ) ~b,1 ~b,8 . )
HNT gk, (7) for £ =1,...,8. The details of Iy, £, (7);- -, Hyr g, £, (7) are provided below, i.e., Egs.
(D.9) - (D.16).
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Before we proceed, it is worth noting that

iys _y 0/ =1/(1 — 0 = —£/In(0) + o(£) = O(L), V6 € (0,1). (D.7)
s=0 s=0

Furthermore, by applying the Cauchy-Schwarz inequality, we have:

€0/2\ 2/

N
E Z Mit M y) Akaks (185, + 5) i
i=1

N 50 1/50
E|>" Myoi(re)a, (i t)ei < CNY2, (D.8)

i=1

<C

uniformly in j,¢,s > 1, £ = po/2. The final inequality above is obtained from Assumption A7(a).
Using (D.7) and (D.8), and based on the exogeneity condition of {&;;} in Assumption A7(b), we can

~b,1
bound 7, 1, (7) as follows:

N T-1 T—s

HHNTkl,kQ( H = N h Z Z'Ys w wt+s )Mth (t+s)Ak1k2(Z L ]7t+3)( _a])ezt
3,j=1 s=1 t=1

N N T-—s
Z Qg — a]’ Z ry NTh Z Z /wf T wt+s )Mith(t+s)Ak1k2 (,Lvta])t + S>6it
j=1 =1 t=1
1
=N [y~ 510000, (2 ) = o) (D.9)

where the second-to-last equality is deduced from the Triplex inequality (Jiang, 2009) and Assumption
AR, following similar steps to the proof of Lemma C.1. Moreover, the final equality is due to Assumption

B1. Similarly, we have

N T-1 T-s
~b,2 1 L. ~
HNT,k1,k2 (T) = NTHh Z o wf (7') wars (7') Mith(t+s)Ak1k2 (Zat;jat+8)(ai_ai)€j(t+s) = Op(1)~
ij=1s=1  t=1
(D.10)
Moreover,
b3 1 N T-1 T-s
HHNT o (T H ~ I ~NTh Z Z 7’ wt (7) w1156+s (7) Mt M1+ 5) Ak ks (i,t;j,t + 3) (@i —ai)(a; — aj)
ij=1s=1  t=1
T—-1 T—s
1 ~ ~
S ﬂ ”ys ’Ll)f (T)st Z HMth t+s)Aklk2(z t: j,t+8)( —ozi)(aj—aj)H
s=1 t=1 i,j=1

i,j=1

"o L(NE) = 0,(1), (D.11)

T-1 —
= (1%?5v|aj_aj> NTh 27 Z“’t 7wy (7 Z [ Ak (7,5, + 5) |
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~b,4 . .
using Markov’s inequality in the second-to-last step. For Iy 1, (7), the application of Proposition 1

and Corollary 1 implies

~b4
HHNTkl,kQ H

T-1 T—

w0

N
= h Z Z v wf (T) wf—&-s (7_) Mith(t—i—s)Alﬂkz (Zv t 7,0+ 8) (ai - al) |:(17 m;‘(t+5))(n+8 - T;f+8):|

=1

-

&,
Il
_
©
Il
-
-

T—1 T—s

< %h Z'ys wf (1) wt+s Z HMth (1) Akiks (1, 5 7,1 + 5) (i — @) [(1’xj(t+8))(n+s _ f‘tﬂ)} H
s=1 t=1 i,j=1

= 2y log = &1 sup |6 = 60| 0p(e) = 0, 1), (D.12)

Similarly, we obtain

N
~b,5 1
IINT,kl,kQ (1) = Th Z o wf (1) wf+s (7) Mith(t—i-s)
X Ay (i85t + 8) (0 — 5) [ (1, @l) (1 = T)| = 0,(1). (D.13)

We now proceed to ﬁ[;{;()‘T,kth (7). Note that for any A € R“*% and a,b € R%, dy,dy,d3 € ZF, we
~b,6

have | A(a'b)]| = (A ® a)(Is, @ b)|| < |A®a'|[ |1, @ b]| < ||A & a||[b]]. Hence, Tings, ,(7) can be

bounded by

~b,6
HIINTk‘l k:z H

N
1 s L =
~ I ~NTh Z Z v wf (1) wf—}-s (1) Mit M1 y5)Akyks (17 t;7,t+ 3)€it(1’ Clc](Hs))(TtJrs — Yits)

T-1 T-s N
1 s X . ~
= NTh Y wf (7) wars (T) Z Mith(t+s)Ak1k2 (%t;%t + 5)6@5(17 w;’(t-i-s)) (Yits — Tits)
s=1 =1 ij=1
N
: e He H NTh ZVSZ“’f ) wies (T)|| D2 MitMj(eps) Aty (1015, + s)ew @ (1,21 ))
7€[0, t=1 Q=1
— sup Hé(T) —o(T)Hop(\/M) = 0,(1), (D.14)
T7€[0,1]

where the second-to-last equality is derived as follows. More specifically, by the Markov’s inequality, for
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any € > 0, there exists M, < co such that

T-1 T-s
1 C,
P N o Z wf wt+8 Z Mt M1 46) Ak ks (z, t;g,t+ s)eit ® (1, mJ(HS)) >V NUM,
s=1 t=1 7,j=1
111 Tt T N
< AL ITh ,),szwf( Ywyy s (T \/“ZM“akl i,t) e“ﬁz ()W (0, + 8) @ (1, 21))
s=1 t=1 j=1
1/2
== ) 1 N /
< Cﬁz Z ’Ysﬁ Z wi () wiy (1) NE Z M Mjiak, (i,t) ax, (j, V)eirejt <C/M. <,
€7 s=1 t=1 3,j=1

where the second inequality follows from the Cauchy-Schwarz and ¢, inequalities and Assumption A5,

and the third one is due to Eq. (D.7) and (b), (d) in Assumption A7. Similarly, one could obtain
T—s

N T-1
~b,7 1
ONT ks o (T) = g DY Y wp () wiy (7) MMy
i,j=1 s=1 t=1

X Apiy (1854t + 8)ej(p0) (L @) (T = 1) = 0p(1). (D.15)

Finally, we have

b8
HHNTW |

N
= Th Z 78 wf (7_) w?—&-s (T) Mith(t-‘rs)Aklkz (i, tg,t+ 3) (n - T;t)/( ) (1 T, (t+s)) (Y;H-s - n-i-s)

s=1 t=1 2,J=1

0,(Nt) = 0,(1). (D.16)

N 2 1 T-1 T-s
< ( sup HG(T) - 9(7)”) NTh YN T wk (1) wHS Z | Ak (i, 85,8+ 5) || H (Lxy) (1, (t+s))H
T€[0,1] >

= < sup Hg(T) - 0(7)”

Combining (D.9) - (D.16) leads to ﬁl])vﬂkhkz (1) = 0p(1), and therefore

N T-1 T—s
TINT oy o (T) = NTh Z Z o wa () Wfy o (7) MitMjp 1) Apyisy (68 5, 1+5) €€ (14s) +H0p(1). (D.17)

N
HINT jy ey (T) = NTh Z ~° wf (1) wars (7) Mi(4-5) Mjt Ak iy (i,t+s;j,t)ei(tJrs)ejt—i—op(l). (D.18)

By (D.3), (D.4), (D.17), (D.18), gNTJﬁ’CQ (1) can be equivalently written as

1

gNT,klkg (1) = T

>

N T T
SN wf (7) Misag, (i, t)eqwt (1) Mjsar, (5, 5) 7" + 0p(1).
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Since ~lt=sl = glt=51/¢ we then have

T 2 T T
E;, (zmm) :a'{zzxm XNT<>'e't-S'/f}a+op<1>, Yre 1), (D19)
t=1

t=1 s=1
where
Xnr(r) = \/%wf (r) (\;Ng:ai(ﬁ)Mit [1/pi(r),1,xg,ygt}’git> . t=1,...T.  (D.20)
=1

Note that the function z — 61%l satisfies Assumption 1 of de Jong and Davidson (2000) for any 6 € (0, 1).

Moreover, define Ey(-) = E (- | {x;};) and recall fgftl =0 (&4, t1 <t <ty). Then, for any 7 € (0,1),

2
vt (| )|

N
= ;hwf (7')> Ey \/1N Zdi(Tt) [Mit [l/pi(T), 1, %4, V{t]/sit —Ey (Mit [1/pi(7'), 1, %, V{t}/fsit fgmm
) 2
= ;hwf (T)) EX Z 0'7, Tt ztszt |:Vit — EX (Vit fg,—'t—:nm>}
1 2 ’
= ﬁwf (T)) Ey \/» Z 0i(7e) Mirei {Vzt —E (Vzt fé?mm)}
(L k) 1 | Low )
< (\/ﬁwt (7')> ilzlpl)E \/—N ;O’Z‘(Tt)MitEit (Vit —-v, ) ‘ <C (mwt (7')> m-°, (D.21)

by Assumption B2 and the independence between {x;, i =1,..., N} and {&.;, t =1,...,T}, where ¢ > 1.

Therefore, for 7 € (0, 1), conditional on {x;}, {Xn7:(7), t =1,...,T} fulfills Assumption 2 of de Jong
and Davidson (2000) (by taking dn; = cpe = (Th)™Y?wf (1) and r = po/2). Finally, Assumption B1
ensures that ¢ satisfies their Assumption 3. By employing (D.19) and applying Theorem 2.1 of de Jong

and Davidson (2000), we can conclude that
T 2
£ (X 9] = { XY [ouns Xm0 f i) (0.2)
t=1 t=1 s=1

for 7 € (0,1). Here, we use the fact that if a random sequence is conditionally o0,(1) then it is

unconditionally o,(1), see, e.g., Xiong and Li (2008, Theorem 3.3). We next prove that

ZZEX[XNTt XNTS()] E[Enr(r)] +o0p(1),  ¥re (0,1). (D.23)

where €np(7) is defined in Lemma C.1. Eq. (D.23) can be obtained if the following two terms are
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asymptotically negligible for any 7 € (0, 1):

N

1
Knra(r Z Kri5(7) [ix; — E (ix)] . Knralr Z Kri;(t —E(xi)] = N Z K (7)X4,
i,j=1 i,j=1 i,j=1

where Kr;i(1) = (Th)™! Zfs Lwr (T)wk (1) 03(1) 0 (15)E (Mt Mjs) E (ei1645). By Assumptions A7(c)

w
and B2, we have sup ¢ 1 Z i1 | K1:5(T)] = O(N) and sup ¢y ] Zﬁ;’mzl K15 (T)Krim (1) = 0o(N?).
Note that E [ICnr,1(7)] = O, E [KKn12(7)] = 0, and maxi<;,j<n sup,¢po,1] [ K1,ij(7)| < C. Moreover, since

E [Knri (T)Knra (T Z K (7) K7 i (T )E{ [xix; —E (xixj)] [xmxn —E (XmX7,)] }
i,7,m,n=1
O(N_l)a t=j=m=n,
=40, i=j=m#n, ori=j#m=mn, or i j #m #n,
O(N_l)v i=m#j=n,

and E [KCnr2(T)Knr2(7)] = E N~ QZ”m 1 K745 (T)K7im(7) = 0(1). Therefore, we deduce that
Kn7,1(7) = 0p(1) and IKCn72(7) = 0p(1), leading to result of Eq. (D.23). By (D.22), (D.23) and Lemma

C.1, we have

T 2
E;, (Z %T,t(f)> 2, a'vyy, diag [Ac(7), Ao(7) By, Ave(7)] a. (D.24)

II. Asymptotic normality of Zthl )7]"§,T,t(7')

Let Qne(r) = N2l (7) 3255, Misa! [1/pi(7), 1, X, i) @i s0 that 3y Vi (1) = (Th) V2 50, Qua(r)g-
Note that {¢/} admits an MA(co) representation & = 3 7% Vvt ;» where {v}, t < 1} is defined similarly

to {vf, t > 1}. Choose an M such that M /¢ — oo as (N,T) — oo, and truncate the bootstrap errors &

at M lags, denoted by &, = Zj]\i(] 'yjyt*_j. Then

T - A . A 00 .
;yNT,t(T):\/ﬂtZ_;QNJ(T)St,M"'_m;QN,t(T) Z ’Ythfj : (D.25)

j=M+1

Note that the second component in (D.25) is asymptotically negligible conditional on {wj;}. To see this,

observe that, for any s > 0 and 6 € (0, 1),

E;, Z ’yjl/;‘,j Z 7jyf+37j = Z A% = A2 MFD/E — 5(~%). (D.26)
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By replacing +* with o(+*®) in (D.3) in Part I, it is immediate to obtain

2

o \/1Tih > Gitr) j_%:ﬂfyjyg_j —op(1),  ¥re(01). (D.27)

We now adopt the common blocking technique as in Friedrich et al. (2020, Proof of Theorem 2) and
Friedrich and Lin (2022, Proof of Theorem 1) to establish asymptotic normality of (7h)~1/2 23:1 Q N (T)E -

We partition the index set {1,...,T} = U;ZlBj, where B; = {bj+1,...,b;+lp}U{bj+lr+1,...,bj31},

bj = (j —1)(Ir + sr), and kp = [T/(Ir + s7)]|. We truncate the final block By, to have T' observations

in total. Moreover, we require 1/lp + l7/(Th) — 0 and 1/sp + sp/lp + M /sy — 0 as T — oo. For

instance, one can take Ip = |Th2|, sy = | (Th?)'/?]|, and M = |(Th?)'/*|. Then, we have ky ~ T/l7. By

construction, each block Bj is divided into two subsets, one with a relatively large length (I7) and the other

with a small length (s7). It leads to (Th) /21 Qnu(T)& = S8 Vi g (7) + S50 Wi 1 (1),

where

b+t bj+1
* 1 *
V(T Z QT BISEYE W r(7) = JTh Z QT )& - (D.28)
VTh b +1 t=b, +ip+1

We first show that Zfﬁl W r;(7) is asymptotically negligible conditionally on {w;}. Note that

{ IM} is an M-dependent process conditionally on {wj}. As such, the blocks Wy r.(7), j =
1,...,kp, are conditionally independent for a sufficiently large T. Moreover, recall M, (€;; —e;r) =
Mit[(o; — @) + (1,2,) (X3 — ft)] Then we can write @Mt(r) = Qn+(7) + Rny(7), where Qn(7) =

Nﬁl/ka( )ZZ 1M7'ta [1/pl( )7 ?Xz? zt] elt) a‘nd
Ry(r) = wy(r)N~1/? Za [1/pi(7), 1, x5, Vi) Mit (it — ext)

< wy(r)N~1? Z (C + lIxill + llwiell) | M (€ — e |
=1

T7€[0,1]

N
< Cwh(r) {lr%ax laj — &;| + sup Hé(T) - a(T)H} {op(\/ﬁ) + NN |uit\|2} . (D.29)
= =1

2
where the term O,(v/N) is uniform in 7 and ¢. By utilizing the results above and the identity (Z?: L qt) =
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Z U L) Zt QtQtH |, we obtain
kr 2 g ,
S Wiy ()| =S Ea (Wi (1)
Jj=1 j=1

sp—1 kr  bjy1—|s|

< =5 h Z 0 WZ Z [@N,t(T)@N,tHﬂ(T)}
s=—sp+1 j=1t=b;+lr+1
st—1 bjt1—Is| ST
= Th > 9|SWZ > Qua(M)Qngsps(T)| +0p <l> . (D.30)
s=—sr+1 Jj=1t=b;+ir+1 T
where the second step follows from
M
(ét MEH s |M> = ol* Z'ﬁ’ = Al° ( 72(M+1)) <oblt ge (1), (D.31)

and the third step is due to (D.29) and the assumption v NO(¢) {maxlSjSN aj — aj| +sup ¢ 1 Hé(T) —
op(1). Since, by Assumption A7(d),

s7—1 bjt1—|s]
s kTsT
Th > o WZ > QNiT)Quas () | < C—"=a 127@] 7, 7)0i(7)o5(7)
s=—s7+1 J=1t=b;+lr+1 4,j=1
= o ST ST
X Z E[A(z,t;],t—l—s)eitsj(tﬂ)} a+o T =0 R (D.32)
T T
s=—sp+1

where A(i,t;j,t + s) is a block matrix, and the (ki,k2), block is given by Ay, k, (i,t;j,t + s). By
combining (D.30) and (D.32), it follows that

kT
S Wirs(n) | = (‘9T> —o0,(1), V¥re(0,1). (D.33)
j=1

Since Ej, (Z;Zl W;\},TJ(T)) = 0, we conclude that Z;zl Wy r;(7) converges to zero in probability
conditionally on {w;}.

Recall VK,’TJ( 7) = (Th)~/? Ztﬁl‘fHTﬂ @NVt(T)sz, j =1,...,kpr. To establish the asymptotic
normality of (Th)~1/2 thl Q Nﬂf(T)gt, a» it essentially involves proving the asymptotic normality of
Z?ﬁl V. r;(7). To this end, we will employ the Lindeberg central limit theorem (Davidson, 1994, Theorem
23.6). Note that E}, (Z?; Vi (T)) = 0, and Z;Zl VX r;(7) dominates the asymptotic behavior

- 2
of 2T, Vur(7). By (D.19), (D.26), and (D.33), it becomes evident that Ej, (2521 Vﬁ7T7j(T)> 2
a'vyp diag [A-(7), Ac(T) Xy, Aye(7)]@ for any 7 € (0,1). The final step is to verify the Lindeberg
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condition. That is, for any k > 0, we shall show

ZE* NT’J( )]2]1{"/’3{4(7)’ > ;@} =o0,(1), Vre(0,1), (D.34)

"JNT WNT

where wi?, = Ef, (Z?L VT, j(7)>2. Recall that pg = 2(2 + J) as indicated in Assumption A4, where
§ > 0. Given Ef (v¥)P0/? < oo, éNyt(T)g,M forms an L, ,-mixingale, conditional on {w;}, when
¢ = |QVN1( ) (B (v, )p0/2)2/p0 is taken in Definition 1 in Hansen (1991) (Davidson, 1994, Example 16.2,
for instance). Since QN¢(7') = Qn(7) + Ry (7), using Lemma 2 of Hansen (1991), the LHS of (D.34)

can be bounded by

kr * Po/2 *
1 o VA, (7) Vi (7) 1o )
3o | Mo \m} < o S (Vi)

w
j=1 WNT NT j=1

by 146/2
1

L v (po/2)
< OS5y (Thw/z > |Onilr )]
7j=1 t= b+lT+1

bjt1

15/

2 /2 /2

< CR(; NT(p(J/ : ThT1+5/2 ]th b; » [‘QN,t(T)‘pO + |Rvo(m)[” }
T

1 .- i\ 1 &
< CEWNT@OM) <T1;L> Th ; [‘QN,t(T)VDO/2 + ‘RN,t(T)‘pO/Q}

= Ol) (:?}l)m {0p (ﬁi [uf(r)]™ 2) +op (Tlhi ()] 2) } |

where the c,-inequality is applied twice in the third step, while the final step is a result of Assumption

A7(a), Eq. (D.29), and the fact that wh* = Op(1). Since Ir/(Th) — 0 as T — oo, we obtain (D.34).

III. Asymptotic order of the second component in (D.2)

~b
Similar to the proof for Iy g, 4, (7) in Part I, one can obtain

2

1 N T o
h;; My { (Thor) = ()] &

T
Thl/T'L pz )] 1} {(Thl/-r,j) — [pj(T)]_l} Z wf (7’) w!: (7-) Mithsgitgjs'Ylt_s|

21
{

T
(Thvzs) = i)~ F{(Thvrg) = (M) Y wh (7) wk (7) My Mjseine;n = 4 0,(1)
t,j=1 s,t=1

where the final step follows from the arguments for Part (b) in the proof of Lemma C.1. Using Markov’s

inequality, the component (NTh)~V/23 N ST 4k ( Mi{ (Thv.;) — [pi(T }§t €it is asymptotically
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negligible.
The proof of the lemma is now complete. |

Proposition D.1 Let Dy (1) be the bootstrap counterpart of Dnr(T) as defined in Eq. (C.23) in
Proposition C.5. That 1is,

D}(VT(T) = ZZZJ\/I( e - ZVT’L /kh( )kh( <e>§< - ZVTze ) . (D35)

Under Assumptions A1 - A8, BI - B2, for any fized T € (0,1), (NTh)~Y2D*(7) and (NTh)~Y>D (1)

share the same limiting distribution. Namely, for any fized T € (0, 1),

1

o Divr(m) Y N(o B, ( )) (N,T) — 0. (D.36)

Proof of Proposition D.1 Recall e}, = M, &/€;, in Section 4.1 (STEP 3). As in Proof of Proposition C.3,

we split Dy (7) into four main blocks of vectors:

i=1 t=1

T T
DNT Z Z w? ztzzt ét €it — Z Vri <Z w? ztzzt )) <Z w? (T)Mlt£:g2t>

TR (7)
N T N T ’
<Z Vri Z w? ztzzt ) <Z Vri Z w? z’tft gn) = s (D.37)

Tra(7)

where
N T
Yira(r) =w,'N (Z Vri Z wy (1) M€ 5@5) ;
T T
T]thQ(T) - Z Zw ( ) ztxztgt €it — ZVT’L <Z w? ztht> (Z w?(T)Mitft gzt)
i=1 t=1 =1
N T N T
(z Yol a,-> (z VT,izwg)(T)Mitgtat),
i=1 t=1
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and

N T T
Yirs(r) =Y ) wi(r) Maki ey — Z Vri (Z wtl(r)Mit) (Z w?h)Mitsz‘at)
t=1

=1 t=1 = t=1
T
1 E E 1 E E
VT,i Wy T ( zt VT,z w ztft it |,
i t=1 i=1 t=1
T T
1 *~ 1 0 ~
TNT4 E E wy (T) Myxa& e — E Vrg wy (T7) Maxi E wy (T)Mu&f e
i=1 t=1 1=1 t=1 t=1
N T
0 *~
E Vri § wt Mz E Vri § Wy (T)Mitgt €it | -
=1 t=1

Applying similar arguments as in Proposition C.3, we obtain

1 .
WDNT(T)

(711\?“’7)71 (\/17 va1 ZtT L W (T) Mig(Thu-)&; git)
TR i Sty W (1) Mavini e + £ ) (i I S w () Mio(Thor )67
\/727, 1Zt L wi () M€ e
\/W Zi:l Zt:l wy (1) Mixin&] €in

o

where the 0]";(1) term follows from utilizing (D.6) and employing similar steps in Lemma D.1. We then

obtain (D.36) by Lemma D.1. [ |

Proof of Theorem 3 As in Lemma 6 of Friedrich and Lin (2022), one can write

VNTh (5*(7) —8(r) - th(T)) — VNTh [5*(7) _E ((3*(7))} +VNTh [E* (6*(r)) — 6(r) — h?b(r)
=: Myo(7) + Ryp(T). (D.38)
We shall prove: (i) M,(7) replicates the asymptotic distribution of the LLDV estimator, as established

in Theorem 2; (ii) the remainder term R}, (7) is asymptotically negligible for any 7 € [0, 1].

For M}, (7), by Proposition C.1, we obtain

1 N
Mir(r) = (NThZzM )2 (r )) ( W%MZZ%Y%:) = [2(r)™" +0p(1)] Divr(r), (D.39)
=1

where ef = I(,i/Q(T)e;k - diag(mi)k,llﬂ(T)kh(T)’I/m- (e;‘ — wt Zfil Z/T,ie;“), e; = (ef,...,€e;p), and
Dip(7) is defined in Eq. (D.35). By Proposition D.1, Dy (7) shares the same limiting distribution of
Dyr(7). Overall, for any 7 € (0,1), we have

Mir(r) 5, N (0,8(r) 7' @,.(r)@() 1), (N,T) = ox. (D.40)
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Next, we consider R}y, (7). Note that

N -1
B (6"(7) = (Z ZM )z} <T>>

9

N N N
X [Z ZM (7Y Ky (7) diag(mi)b; — Y vri ZM (1) ke (7)ken (7)' diag(m,) (B} —w Yy wa)

i=1 =1 i=1

(D.41)

where EZ = (q1,-.- .or) + (a:fﬂ,gl, . ,a:;;TBT)I. Now, let’s rewrite the terms in the square brackets of Eq.
(D.41). For |7y — 7| < h, Proposition 1 implies that
9(m) = 9(r) + gV (1) (n = 1) + 3(r) — 4(r) = gV () (e — 7)

=3(r) + TV - ) + [9(m) — 9(7) — gV ()~ )] + 0, (,;2 +

=31 + gV - 1) + [§2(7) + O(h) (”_27)2 +0, (iﬁ + MNT)) , (D.42)

where the Op-terms are uniform in 7 € [0, 1]. Similarly, we have

~ ~ ~ ~ T —T)? ~ n
Bir) = ) + B — 1)+ [B2) + o] 2T v o, (m . W) - (D43)

By (D.42) and (D.43), we obtain

~ ~ h2
diag(m;)b; = ZM (1)0(7) + 5 diag

() ()

2V <r<2>(7)+0(h)) o <B2+ In(NT) )
7 p )

0441

= 7Y (nf(r) + Al (r)

7

2
= In(NT)
zM Py
) (T) + Op (h + (NT)¢(p0/2)h>

(D.44)

where 7(7) and AM(7) are defined in Proposition .2, and the O(h3) terms does not rely on i € ZT and
7 € [0,1]. Putting (D.44) back to (D.41) leads to

. R X -y - In(NT)
E*(6*(r)) = 6(7) + (NTh Zl ZM(ryzZM <T)> ~77 BT (7) + Op(h%) + O, (h2 + (NT)¢(P/2)h>
o - In(NT)
= 6(r) + W°0(7) + O, + 0, (h2 ! W) ’ (0.15)
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where the second step is due to Propositions C.1 and C.2, and the O,(-)-terms are uniform in 7 € [0, 1].

By (D.45), we arrive at

sup || Rir(r)]| = 0, (VNTHT) + 0, < NThEA + \/(NT)1-0(00/2) 1n(NT)h/iL) — 0,(1), (D.46)
T7€[0,1]

under Assumption B3. The results from Eqgs. (D.38), (D.40), and (D.46) jointly imply Eq. (4.6). [

E Bandwidth selection

As previously observed in the literature, pointwise confidence intervals are not sensitive to bandwidth
selection. This is in contrast to simultaneous confidence bands, which can be highly sensitive. The
simultaneous coverage depends heavily on the local behavior of the parameter curves. For instance, if a
curve exhibits large fluctuations in certain neighborhoods, a smaller bandwidth is typically needed to
achieve the targeted coverage in those regions. Conversely, a flat region may only require a relatively
large bandwidth. For additional insights, refer to the simulation study conducted in Friedrich and Lin
(2022). Our initial investigation indicates that the commonly used leave-one-unit-out cross-validation
method developed in Sun et al. (2009) tends to select an overly small bandwidth in our specific context.
This might be attributed to the fact that it is specifically designed for panel data models that are
cross-sectionally independent and without missing observations.

To maintain the structure of cross-sectional dependence and capture local features of parameter
curves, we suggest extending the local modified-cross-validation procedure introduced by Friedrich and
Lin (2022). This approach combines the modified cross-validation method proposed by Chu and Marron
(1991) with the local cross-validation approach suggested by Vieu (1991), exhibiting superior performance
as demonstrated in Friedrich and Lin (2022). More specifically, for a given h > 0, let (/g\l’h(T), B”‘(T))
denote the leave-(2] + 1)-out LLDV estimator, which is constructed as in Eq. (2.10) but omitting all
observations between time [77"| — and |77 ]+, namely { (yit, i), i =1,..., N, [7T|—1 <t < |[7T]+1}.
For each 7 € (0,1) and [ > 0, the locally optimal bandwidth iL(T, [) minimizes the panel local modified
cross-validation (PLMCYV) criterion PLMCV_;(h), h € [hr, hy] C (0, 00), where

N T
1 L - 2
PLMCVi(h) = = > > Ma (yz‘t —a; —gM(/T) - wétﬁl’h(t/T)) wr (t/T),
i=1 t=1

and @; is obtained without excluding any observations. Moreover, w; (-) is some weight function. We

follow Vieu (1991) to take w,(-) as the density of A(7,0.025). The final selector sets hpravcy =
(TK)il Zszl Zthl }Al(’rtv lk)v Ik € {07 27476}'
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Figure E.1: Selected bandwidth by PLMCV with heteroskedastic errors and p. = 0.3.

E.1 Finite sample performance of PLMCV

In the simulation design outlined in Section 5, we also examine the impact of the chosen range during a
grid search. Specifically, the grid spans from 0.06 to hy, with steps of 0.015, where hy takes values of
0.21 and 0.27. Figure E.1 shows the bandwidths selected by PLMCYV for different hyr. As T increases, the
selected bandwidth generally decreases. For a large hyy = 0.27, the PLMCV-selected bandwidth remains

comparable to those under h = 0.21 on average.

F Bootstrap-corrected simultaneous confidence bands

In practice, one might be interested in understanding the overall variation of coefficient curves over a
specific period. Simultaneous confidence bands serve this purpose. Specifically, for a given set of time points
G C [0,1], simultaneous bands IfN’T’aC) should satisfy lim infTHoo,NHOOF’(ﬂj(T) € IfN’Tya(T), VT €
G) > 1 —«. To address this, one may consider using the Bonferroni correction. However, it is well known
that the Bonferroni correction can result in highly conservative results, particularly when dealing with
an infinite number of points in G. Moreover, as of our best knowledge, there is currently no available

asymptotic simultaneous bands for our models, whether with or without missing observations. Even
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if such bands were available, they might suffer from slow convergence speeds, as known in the time
series case (Zhou and Wu, 2010). In contrast, the residual-based bootstrap correction has demonstrated
superior performance in finite samples for time series time-varying models (Friedrich and Lin, 2022). We
therefore adapt the three-step procedure outlined in Friedrich and Lin (2022), originally proposed by
Bithlmann (1998), for nonparametric time series to large panels using the AWB described in Section 4.1.

This procedure produces confidence bands that are simultaneous within a finite union of neighborhoods
G = U2 U;(h), where the neighborhoods U;(h) take the form U;(h) = [r; — ah, 7; + bh], with 0 < a,b < co

and m < oco. Given the similarity in the construction of g(-), we will provide details for §;(-) only.

SteEP 1 Compute the pointwise quantiles gj o, /2(T), Gj1-a,/2(7) by varying oy, € [1/B, o], for 7 € G,
j=1,....d.

STEP 2 Choose & = Gs(a) as

~
*

P (G00/2(7) < B (7) = B5() < Gpaoay olr), W7 €G) =~ (1= a)].

&s = arg min
OLpE[l/B,Oé]

STEP 3 Given &g from STEP 2, construct the simultaneous confidence bands as

~ ~

IjG,’th,T,dS (1) = [@‘(7) — Qji—a,/2(T), Bi(T) — aj,as/z(T)} ; Ted.

STEP 2 essentially chooses a level &g such that

# {Bf(T) - Bj(T) € [Gj.ae/2(T), @j—a,2(T)] , VT € G}
B

~1-—aq,

where #FE counts how many times the event E occurs in bootstrap. It typically results in a level &g
which is much smaller than « to ensure the simultaneous coverage is close to 1 — a.. This often leads to
a level ¢, significantly smaller than « to ensure that the simultaneous coverage is close to 1 — «. The
theoretical justification of this procedure in the current context is highly challenging, as it necessitates
the establishment of some strong approximation results in large panels with cross-sectional and serial
dependence, accommodating nonstationarity. Addressing these complexities is a topic for future research.
Nevertheless, we assess the finite-sample performance of this procedure through an extensive simulation

study as described in Section 5.

F.1 Simulation results of bootstrap-corrected simultaneous bands

In addition to pointwise confidence intervals, it is informative to investigate the coverage of simultaneous
confidence bands. For this, we count the number of times the true curve lies within the confidence
bands for all points in subsets of [0,1]. As in Friedrich and Lin (2022), we consider subsets of the form
Gy = Ur(h) UUs(h) and G = J;_, Us(h), with U;(h) = {(i/5) — h + j/100, j = 0,...,|[200h]} N[0, 1].
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We further investigate empirical simultaneous coverage over the full sample. The results are given in

Tables F.1 to F.4. We make the following five observations.

(i)

(iv)

(v)

The empirical simultaneous coverage is mildly lower than 95%. The undercoverage issue is more
pronounced over the full sample, as covering all points {1/7,2/T,...,T/T} simultaneously is highly
challenging. In contrast to the pointwise intervals, the results show that the serial correlation
substantially affects the simultaneous coverage of g(-). For £1(-) and fa(-), however, the coverage
remains close across pe.

The empirical simultaneous coverage for all three coefficient curves increases as the sample size
increases, approaching the nominal level, especially when T increases.

The choice of bandwidth affects the simultaneous coverage. For example, for 8i(-), we observe
that the coverage is lowest for h = 0.15 across different data generating processes, except for
(N, T, pe) = (75,75,0.1). In theory, h should shrink to zero as the sample sizes increase. We observe
that a large h leads to under-coverage of simultaneous bands. As discussed in Friedrich and Lin
(2022), a smaller h is preferred for simultaneous bands if the function has more local features to be
captured. The results show that a careful bandwidth selection method is crucial for simultaneous
bands.

The simultaneous empirical coverage results with h selected by PLMCYV align with those for fixed
bandwidths, indicating the proposed PLMCYV is reasonable to use in practice. However, relying
on data-driven methods completely may be troublesome in practice; see also the discussion by
Friedrich and Lin (2022) on data-driven bandwidth selection methods.

Table F.4 shows that the simultaneous empirical coverage is relatively robust to the value of ~.

Table F.1: Simultaneous empirical coverage over G, for various sample sizes and heteroskedastic
errors, v = 0.2.

pe = 0.1 pe = 0.3

N=7 N=7 N=150 N=7 N=7 N=150
h T=7 T=150 T =150 T=7 T=150 T =150

0.09 0.885 0.911 0.932 0.771 0.833 0.842

0.12 0.895 0.916 0.920 0.819 0.822 0.870

0.15 0.909 0.923 0.931 0.824 0.853 0.858
hpivey  0.893 0.915 0.935 0.808 0.855 0.859
0.09 0.870 0.941 0.976 0.901 0.932 0.972

0.12 0.882 0.916 0.960 0.920 0.913 0.952

b 0.15 0.874 0.841 0.845 0.846 0.849 0.869
hprvey  0.873 0.924 0.956 0.879 0.883 0.971
0.09 0.884 0.939 0.926 0.885 0.939 0.916

0.12 0.902 0.915 0.927 0.903 0.916 0.919

& 0.15 0.895 0.914 0.923 0.891 0.916 0.914
hpovey  0.876 0.922 0.929 0.873 0.918 0.916
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Table F.2: Simultaneous empirical coverage over G for various sample sizes and heteroskedastic errors,
v =0.2.

pe =0.1 pe = 0.3

N=7 N=7 N=150 N=7 N=7 N=150
h T'=7 T=150 T =150 T=7 1T=150 T =150

0.09 0.843 0.898 0.935 0.711 0.799 0.843

0.12 0.897 0.921 0.935 0.802 0.829 0.886

0.15 0.907 0.927 0.938 0.820 0.866 0.865

hprvmcev  0.896 0.922 0.944 0.796 0.838 0.863

0.09 0.815 0.894 0.950 0.820 0.887 0.935

3 0.12 0.829 0.871 0.903 0.873 0.866 0.893

! 0.15 0.812 0.781 0.758 0.797 0.775 0.770

hprvey  0.816 0.879 0.911 0.825 0.853 0.931

0.09 0.858 0.927 0.906 0.850 0.917 0.905

3 0.12 0.895 0.909 0.926 0.887 0.907 0.915

2 0.15 0.897 0.914 0.923 0.884 0.919 0.921

hprvmev  0.870 0.919 0.910 0.868 0.902 0.909
Table F.3: Simultaneous empirical coverage over the full sample {¢/T,t =1,...,T} for various sample

sizes and heteroskedastic errors, v = 0.2.

pe = 0.1 pe = 0.3

N=7 N=7 N=150 N=7 N=7 N=150
h T'=7 T=150 T =150 T=7 T=150 T =150

0.09 0.772 0.861 0.894 0.601 0.733 0.784

0.12 0.853 0.900 0.922 0.761 0.789 0.863

0.15 0.900 0.929 0.939 0.813 0.866 0.866
hpovey  0.894 0.886 0.921 0.792 0.810 0.821
0.09 0.786 0.879 0.946 0.797 0.874 0.930

0.12 0.816 0.871 0.902 0.867 0.859 0.893

b 0.15 0.816 0.787 0.764 0.797 0.776 0.771
hpivey  0.810 0.878 0.908 0.824 0.852 0.929
0.09 0.787 0.878 0.863 0.795 0.8381 0.861

0.12 0.862 0.880 0.884 0.840 0.877 0.877

& 0.15 0.873 0.903 0.904 0.865 0.907 0.910
hpovey  0.848 0.891 0.870 0.850 0.874 0.874
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Table F.4: Simultaneous empirical coverage (Cov.) and length (Lgth.) for (p-, N,T) = (0.3, 75,150)
with the bandwidth hprymev selected by PLMCV (Appendix E) and heteroskedastic errors.

~ 015 02 025 03 035 04

g 0.849 0.855 0.856 0.833 0.843 0.835
Gub f1 0.877 0.883 0.918 0.922 0.928 0.935
B2 0.915 0.918 0.914 0.919 0.909 0.900

c g 0.834 0.838 0.850 0.831 0.848 0.836
Ov. G B, 0.849 0.853 0.889 0.876 0.888 0.895
By 0.903 0.902 0.907 0.912 0.910 0.899

g 0.804 0.810 0.813 0.799 0.819 0.825
Full Sample 3, 0.844 0.852 0.884 0.871 0.886 0.892
Bo 0.877 0.874 0.883 0.884 0.870 0.869

g 0241 0.247 0.250 0.254 0.263 0.269
Gsup f1 0.209 0.213 0.217 0.221 0.229 0.233
B2 0.162 0.163 0.163 0.162 0.164 0.162

Loth g 0.252 0.258 0.261 0.265 0.275 0.281
geh. G f1 0.219 0.223 0.228 0.232 0.240 0.245
B 0.170 0.170 0.171 0.169 0.171 0.170

g 0254 0.260 0.263 0.267 0.276 0.283
Full Sample S; 0.220 0.225 0.229 0.233 0.241 0.246
B 0.171 0.171 0.172 0.170 0.172 0.171

G Additional discussions on simulations

This section provides supplementary discussions and results for our simulation study. In Section G.1, we
present the estimation accuracy results for the LLDV estimator under two levels of serial dependence for
heteroskedastic errors. Section G.2 details the computation of empirical coverage and length of confidence
intervals and bands. Additional results regarding empirical coverage and length of pointwise confidence

intervals and simultaneous confidence bands are presented in Section G.3.

G.1 Accuracy results

For N =T = 75 in Table G.1, we observe that the average AMSE increases when p. increases. The
average AMSE is lowest for coefficient (5(-), which can be explained by its smoothness. The amount of
smoothness of the coefficient curve is also crucial for the choice of bandwidth h. We see in Table G.1
that, for relatively smooth curves g(-) and fa(-), increasing h leads to lower AMSE on average. However,
for 81(+), h = 0.15 results in too much smoothing, so that AMSE increases. Similar results can be found
for the standard deviation of the AMSE, in Table GG.1. The standard deviation increases for p. = 0.3,
and generally, larger bandwidth results in a lower standard deviation of AMSE for ¢(-) and Sa2(-).

When we increase the sample size, we see that the average AMSE decreases for all coefficient functions,
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Table G.1: Average AMSE and standard deviation of AMSE, for heteroskedastic errors.

Average Standard deviation
N =75 T="75

Pe h g B I h g B B

0.09 38.775 26.665 24.811 0.09 20.265 11.932 11.852
0.1 0.12 30436 23.774 19.095 0.12 17.107 11.696 10.699
0.15 26.316 24.474 15.473 0.15 15.610 12.486 8.949

0.09 53.212 28.236 25.585 0.09 26.436 14.425 12.170
0.3 0.12 43.194 24.958 20.838 0.12 23.253 12.366 10.975
0.15 36.819 25914 16.004 0.15 21.338 13.391 9.155

N =75 T =150

Pe h g Io 65 h g B B2

0.09 19.239 13.770 11.651 0.09 9.351 6.545 5.462
0.1 0.12 15.764 13.187 9.132 0.12 8790 6.229  4.725
0.15 14.011 16.653 7.484 0.15 7.834 7.735 4.137

0.09 26.905 14.258 12.397 0.09 12777 6.410 5.588
0.3 0.12 22.838 14.379 9.790 0.12 12.768 7.048 5.083
0.15 23420 18.811 9.438 0.15 14.180 8519 5.443

N =150, T = 150

Pe h g B B2 h g o B2

0.09 9.853 7.301 5.891 0.09 4.776 3.217 2.751
0.1 0.12 8271 8.664 4.636 0.12 4.226 3.871  2.498
0.15 8.940 13.027 4.378 0.15 4.712 4784  2.595

0.09 13.776 7.767  6.258 0.09 7.236 3.486  2.992
0.3 0.12 12414 9.561  5.504 0.12 6.686 4.222  2.868
0.15 12.023 13.241 4.462 0.15 6.583 4.750  2.582

across different levels of serial dependence. These results confirm the consistency of the LLDV estimator
in our model. Similarly, the standard deviation of the AMSE decreases as the sample size increases,

suggesting that the LLDV estimates get more centered around the true value, as our theory predicts.

G.2 Computing empirical coverage and length

(a) Empirical pointwise coverage: For each j = 1,...,d and each Monte Carlo iteration, we calculate
the percentage of 3;(7;) covered by the bootstrap intervals for ¢ = 1,...,T. The average of these
percentages over the total of M iterations is then computed.

(b) Empirical simultaneous coverage: For each j = 1,...,d and each Monte Carlo iteration, we
determine whether the set { Bi(r), 7€ G } is entirely contained within the confidence bands over
G. The empirical simultaneous coverage is calculated as the success rate across all M iterations.

(¢) Empirical length: For each Monte Carlo iteration, we compute the median length of intervals/bands

552



across the time grid {1/7,2/T,...,T/T}. The average of these medians is then computed over M

iterations.

G.3 Full results of empirical coverage and length

We report the complete set of empirical coverage and length for both pointwise intervals and simultaneous

bands in Table G.2.
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Table G.2: Empirical coverage and length of 95%-level pointwise confidence intervals and simultaneous confidence bands, v = 0.2.

(N, T) = (75,75) (N, T) = (75,150) (N, T) = (150, 150)
Pe h  Pointwise Gy G Full Sample Pointwise Gy G Full Sample Pointwise Gy G Full Sample
Empirical coverage
0.09 0.945 0.885 0.843 0.772 0.957 0.911 0.898 0.861 0.968 0.932 0.935 0.894
g 0.12 0.954 0.895 0.897 0.853 0.960 0.916 0.921 0.900 0.971 0.920 0.935 0.922
0.15 0.959 0.909 0.907 0.900 0.964 0.923 0.927 0.929 0.970 0.931 0.938 0.939
0.09 0.953 0.870 0.815 0.786 0.965 0.941 0.894 0.879 0.979 0.976  0.950 0.946
0.1 B 0.12 0.945 0.882 0.829 0.816 0.948 0.916 0.871 0.871 0.957 0.960 0.903 0.902
0.15 0.925 0.874 0.812 0.816 0.901 0.841 0.781 0.787 0.888 0.845 0.758 0.764
0.09 0.939 0.884 0.858 0.787 0.953 0.939 0.927 0.878 0.950 0.926  0.906 0.863
By 0.12 0.943 0.902 0.895 0.862 0.952 0.915 0.909 0.880 0.956 0.927 0.926 0.884
0.15 0.947 0.895 0.897 0.873 0.947 0.914 0.914 0.903 0.954 0.923 0.923 0.904
0.09 0.913 0.771 0.711 0.601 0.928 0.833 0.799 0.733 0.943 0.842 0.843 0.784
g 0.12 0.929 0.819 0.802 0.761 0.932 0.822 0.829 0.789 0.950 0.870 0.886 0.863
0.15 0.929 0.824 0.820 0.813 0.942 0.853 0.866 0.866 0.948 0.858 0.865 0.866
0.09 0.957 0.901 0.820 0.797 0.965 0.932 0.887 0.874 0.977 0.972 0.935 0.930
0.3 81 0.12 0.954 0.920 0.873 0.867 0.947 0.913 0.866 0.859 0.956 0.952 0.893 0.893
0.15 0.924 0.846 0.797 0.797 0.897 0.849 0.775 0.776 0.885 0.869 0.770 0.771
0.09 0.942 0.885  0.850 0.795 0.954 0.939 0.917 0.881 0.949 0.916 0.905 0.861
By 0.12 0.945 0.903 0.887 0.840 0.949 0.916 0.907 0.877 0.954 0.919 0.915 0.877
0.15 0.943 0.891 0.884 0.865 0.951 0.916 0.919 0.907 0.954 0.914 0.921 0.910
Empirical length
0.09 0.243 0.346 0.366 0.366 0.177 0.253 0.267 0.268 0.142 0.202 0.214 0.216
g 0.12 0.227 0.325 0.340 0.342 0.163 0.234  0.245 0.246 0.138 0.198 0.207 0.208
0.15 0.213 0.307 0.314 0.317 0.158 0.227 0.232 0.236 0.135 0.195 0.199 0.202
01 0.09 0.223 0.317 0.336 0.337 0.161 0.228 0.242 0.243 0.136 0.192 0.204 0.205
’ 5y 0.12 0.201 0.288 0.303 0.304 0.144 0.206 0.216 0.217 0.124 0.177 0.186 0.187
0.15 0.184 0.263 0.271 0.273 0.134 0.192 0.197 0.200 0.116 0.165 0.171 0.173
0.09 0.172 0.246 0.259 0.259 0.122 0.175 0.185 0.186 0.089 0.127 0.135 0.136
By 0.12 0.153 0.219 0.230 0.231 0.108 0.155 0.163 0.163 0.081 0.115 0.121 0.122
0.15 0.138 0.197 0.203 0.205 0.100 0.143 0.147 0.149 0.075 0.107 0.110 0.112
0.09 0.247 0.351 0.371 0.372 0.184 0.262 0.277 0.278 0.147 0.209 0.221 0.223
g 0.12 0.231 0.330 0.346 0.348 0.169 0.242  0.253 0.255 0.141 0.202 0.212 0.213
0.15 0.227 0.325 0.333 0.336 0.159 0.229 0.234 0.238 0.137 0.197 0.202 0.205
0.3 0.09 0.227 0.322 0.342 0.342 0.164 0.233 0.248 0.249 0.138 0.195 0.207 0.209
’ £y 0.12 0.206 0.294 0.309 0.310 0.148 0.211 0.221 0.222 0.126 0.179 0.188 0.189
0.15 0.194 0.277 0.286 0.287 0.134 0.192 0.198 0.201 0.117 0.166 0.171 0.173
0.09 0.175 0.249 0.263 0.263 0.127 0.181 0.191 0.193 0.092 0.131 0.139 0.140
By 0.12 0.156 0.224 0.235 0.236 0.112 0.161 0.168 0.169 0.083 0.119 0.125 0.126

0.15 0.149 0.213 0.219 0.221 0.101 0.145 0.149 0.151 0.076 0.109 0.112 0.114




H Additional empirical results

This section presents additional empirical results and information about the data acquisition.

H.1 Additional results for mortality and PM, ;

Average PM 2.5

22

21}

Figure H.1: Cross-sectional average for PMs 5.

Figure H.1 displays the cross-sectional average for PMs 5. The regressor PMs 5 is slightly downward

trending. In our theory, we allow for this type of trending pattern.

H.1.1 Additional estimation results
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Figure H.2: The left figure displays the residuals after employing the LLDV estimator with bandwidth
hprvcey = 0.2605 and v = 0.2. The right figure displays the sample autocorrelation function of the
cross-sectionally averaged residuals.
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In Figure H.2 (left) we show the residuals from employing the LLDV estimator on our data. We observe
that the dispersion in the residuals varies per time point. We see that the dispersion in 2021 is larger
than the dispersion in 2017 for instance. Our theory allows for this heteroskedasticity.

Moreover, our theory allows for serial correlation in the error process. In Figure H.2 (right) we
display the sample autocorrelation function of the cross-sectionally averaged residual. We see that there is
significant autocorrelation present in the residuals. In particular, the sample autocorrelation is significant

for 1, 5, 6, and 12 months of lag.
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Figure H.3: Fit of our model and LLDV estimator for Germany and Guatemala. We use BPLMCV =
0.2605 and v = 0.2.

Figure H.3 displays the estimated mortality compared to the monthly reported mortality for Germany
and Guatemala. Given the substantial differences in economy, healthcare systems, and demographics
between these countries, the fits illustrate the efficacy of the model and the LLDV estimator that allows

for missing observations.

556



H.1.2 Robustness checks
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Figure H.4: Robustness to choice of v parameter: estimated global trend, and 95%-level pointwise
intervals and simultaneous bands for v = 0.1,0.2,0.3,0.4.

In Figure H.4 we depict the global trend and estimated confidence intervals and bands for different values
of the « parameter. We fix the bandwidth to h = 0.2638, which corresponds to iLPLMCV for v = 0.2. We

observe that the width is similar for different values of ~.

H.2 Bandwidth selection for Ethane analysis

A large value of T intensifies the computational demands for bandwidth selection. In this instance,
the computational time is long with T = 13,394 days. To circumvent this issue, we segment our data
into non-overlapping blocks along the time dimension, each with a fixed cross-sectional dimension of
N = 11. For each block, we calculate the bandwidth, and the final bandwidth is obtained by averaging

the computed values across all blocks. Employing a window size of 250 days, we appropriately divide the
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Station Country Location Altitude Obs. Missing Reference

Boulder United States 40°N, 105°W 1,634m 788  81.61%

Bremen Germany 53°N, 9°E 27m 544 91.82% Notholt et al. (2000)
Eureka Canada 80°N, 86°W  610m 828  83.40% Batchelor et al. (2009)
Jungfraujoch Switzerland 47°N, 8°E 3,080m 3,171 76.26% Franco et al. (2015)
Mauna Loa  United States 20°N, 156°W  3,397m 2,746 71.46%

Ny-Alesund ~ Norway 79°N, 12°E 15m 882  90.88% Notholt et al. (1997)
Paramaribo  Suriname 6°N, 55°W 23m 102 96.89%

Rikubetsu Japan 43°N, 144°E  380m 1,078 89.10%

Thule Greenland T7°N, 69°W  225m 1,464 81.75%

Toronto Canada 44°N, 79°W  174m 2,377 67.78% Yamanouchi et al. (2023)
Tsukuba Japan 36°N, 140°E  31m 1,089 85.71%

Table H.1: Information on the location of the FTIR measurement stations as well as the number of
observations and missing data of the individual time series.

data. The last block accommodates the remaining observations, totaling 144 days. The final result gives

fszMcv = 0.1298, and is relatively robust to different window sizes.

H.3 Additional information about data acquisition

Mortality and PM, 5

The data of the Atmospheric Composition Analysis Group, Van Donkelaar et al. (2021), can be
found at ACAG (https://sites.wustl.edu/acag/datasets/surface-pm2-5/). The mortality data
can be found at UNdata (https://unstats.un.org/unsd/demographic-social/products/dyb/index.

cshtml).

Ethane

With permission to use the data, we acquire ethane data from the following 11 stations: Thule, Boulder,
Mauna Loa, Ny Alesund, Bremen, Paramaribo, Eureka, Toronto, Jungfraujoch, Rikubetsu, and Tsukuba.
More information on the specific sites can be obtained from Table H.1. While the data is freely available
on the NDACC website, for its use in publications or communications, it is essential to contact the
NDACC principal investigators during the preparation phase to discuss potential collaboration and

co-authorship.
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