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Abstract

This paper introduces a novel score-driven dynamic factor model designed for filtering
cross-sectional co-movements in panels of time series. The model is formulated using
elliptical distribution for the noise terms, thus allowing the update of the time-varying
parameter to be potentially nonlinear and robust to outliers. We derive stochastic
properties of the time series generated by the model, such as stationarity and ergod-
icity, and establish the invertibility of the filter. We prove that the identification of
the factors and loadings is achieved by incorporating an orthogonality constraint on
the loadings which is invariant to the order of the series in the panel. Given the non-
linearity of the constraint, we propose to exploit a maximum likelihood estimation on
the Stiefel manifolds, which ensure that the identification constraint is satisfied nu-
merically, hence allowing a joint estimation of the static and time-varying parameters.
Furthermore, the asymptotic properties of the constrained estimator are derived. In
a series of Monte Carlo experiments, we find evidence of appropriate finite sample
properties of the estimator and resulting score filter for the time-varying parameters.
We reveal the empirical usefulness of our factor model for constructing indices of eco-
nomic activity from a set of macroeconomic and financial variables during the period
1981-2022. An empirical application highlights the importance of the robust update
for the time-varying parameters in the presence of V-shaped recessions, such as the
COVID-19 recession.

Keywords: Score-driven model; Robust filtering; Factor model; Economic indicators.
JEL Classification: C13, C32, C38.
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1 Introduction

Factor models have become important tools for analyzing and modeling co-movements
in panels of economic and financial time series. The central idea is to summarize cross-
sectional covariation in a few unobserved factors, which can then be used for variety of
purposes. For example, central banks and other policy institutions are often interested in
constructing leading and coincident indices for monitoring economic and financial stability.
The work on index development was pioneered in the 20th century by the National Bureau
of Economic Research (NBER) as a part of the research program on business cycles. After
further developments and refinements, factor models have become the dominant approach
in this field giving a rise to a wide range of indices and indicators (Stock & Watson) 1989,
2002b; [Brave & Kelley, 2017} [Lewis et al., [2022]).

The COVID-2019 pandemic has created new challenges for macroeconometric analy-
sis (Ng, 2021)), particularly in terms of modeling economic and financial time series that
experienced large spikes during March 2020 and unanticipated recovery dynamics after-
wards. These spikes have a non-negligible effect on the pre-COVID fit of the models and
parameter estimates, and also make it substantially more difficult to interpret economic
indices. Therefore, the demand for robustness properties in time series econometric mod-
els has increased. To address these challenges, we introduce and develop a theory for
a novel, order-invariant, score-driven dynamic factor model that allows updates of time-
varying parameters to be potentially nonlinear and robust to influential points and outliers.
In the empirical application, we reveal the importance and flexibility of our approach in
constructing aggregate measures of economic activity in the presence of the COVID-19
recession period.

In the literature, there are two dominant approaches for modeling and estimation of
factor models. The first approach assumes that the factors are static, meaning that the
dynamics of the factors are not modeled explicitly. This approach typically uses principal
component analysis (PCA) and its variations for estimation (Stock & Watson|, 2002a; Bai,
2003; Bai & Li, |2012). The second approach models the dynamics of the factors explicitly by
casting the model into a state space form. Maximum likelihood-based estimation methods

are then available for estimation of the model parameters (Engle & Watson (1981); Watson



& Engle (1983); |Quah & Sargent| (1993); Doz et al. (2011} 2012)).

Alternatively, the dynamics of the factors can be modeled using an observation-driven
modeling approach, in which the dynamics of the factors are driven by past observations
(Cox et al.,[1981). Observation-driven models are appealing since the likelihood is available
in a closed form regardless of the complexity of the distribution. Moreover, recently, (Creal
et al.[(2013) and Harvey| (2013]) introduced a new class of observation-driven models, known
as score-driven models, where the update of the time-varying parameter is based on the
scaled score of the predictive likelihood. This new class has given rise to a large strand of
observation-driven models since the updating equations based on the score provide a natural
updating mechanism while allowing the model to stay flexible and general (Artemova et
al., 2022a).

The score-driven modeling approach has been widely used and proved to be suitable
in many empirical applications as reviewed by |Artemova et al.| (2022b). Specifically, Creal
et al. (2014)) introduced the first score-driven dynamic factor model with an application to
mixed-measurement observations. They considered score-driven Gaussian and Student’s ¢
factor models for modeling co-movements in the panel of macroeconomic and financial
time series. However, in contrast to our paper, (Creal et al. (2014) did not discuss the
theoretical properties of the model and estimators. Furthermore, to resolve the rotational
indeterminacy, a typical problem in factor analysis, the authors adopted an identification
condition that is not invariant to the order of the series in the panel. This condition
can be restrictive in empirical applications, leading to a lack of model interpretation or
even model misspecification. For example, this condition makes it impossible to conduct
statistical inference on the restricted loadings, which is a shortcoming in empirical analysis.

In this paper, we introduce an order-invariant score-driven dynamic factor model for
capturing co-movements in panels of time series. The model is formulated using a general
class of elliptical distributions that covers many empirically relevant distributions, such as
Gaussian and Student’s ¢. In the score-driven framework, the choice of the distribution
plays a role not only in the modeling of the noise terms, but it also provides an intuitive
updating mechanism for the factors. Namely, in the Student’s ¢ model, the update of the
factors becomes more robust to influential points and outliers with the degrees of freedom

parameter adjusting the importance of the robustness. This feature can be important in



empirical applications as evidenced by a growing literature on the development of robust
factor models and estimation methods, see, for example, Fan et al.| (2021 and He et al.
(2023) for robust estimation of factor models with static factors, |[D’Innocenzo et al.| (2023))
for robust multivariate location models with score-driven dynamics, and |Barigozzi et al.
(2023)) for robust estimation of factor models for tensor-valued time series, among many
others.

We further provide general theoretical results for multivariate score-driven dynamic fac-
tor models with elliptically distributed innovations. Specifically, we analyze the stochastic
properties of the time series generated by the model such as stationarity and ergodicity
and show invertibility of the filter. We also discuss conditions required for the parameter
identification and show that for the order-invariant case the estimation can be done using a
constrained maximum likelihood estimator which is shown to be consistent and asymptot-
ically normal. The order-invariant identification condition is nonlinear, hence numerically
it requires a special treatment. We propose to estimate the model parameters using a con-
strained maximum likelihood, where the subset of the parameter space is restricted to lie on
a Stiefel manifold, (Stiefel, [1935; [Edelman et al., |[1998). In a series of Monte Carlo experi-
ments, we demonstrate that our estimation procedure is reliable in terms of the good finite
sample properties of the maximum likelihood (ML) estimates and the filtered estimates of
the factors. In the paper, we also show that the proposed model and estimation procedure
can accommodate application-specific parameter restrictions, such as group-factor models
with common and group-specific factors.

We apply our model to estimate economic activity indicators from a panel of macroeco-
nomic and financial time series. We find that the estimated factor is closely associated with
the US business cycle, where troughs indicate moments of downturns in the US economy.
Additionally, our analysis shows the importance of the robust updating mechanism for the
time-varying factors, especially when a V-type recession period, such as the COVID-19
recession, is present in the sample. Furthermore, our results emphasize the importance of
the order-invariant identification condition, which does not impose zero restrictions on the
matrix of loadings. This condition lets the data itself to reveal the structure, and enables
us to conduct statistical inference on all the estimated parameters.

The remainder of the paper is organized as follows. Section [2] introduces a score-driven



factor model with elliptically distributed innovations. We establish the stochastic properties
of the time series generated by the model and of the filter and discuss in detail model
identification. Finally, an order-invariant score-driven factor model is introduced and its
link to the group-factor model is established. Section |3| discusses details of the estimation
procedure and establishes the asymptotic properties of the estimators. Section 4] presents
the results of the Monte Carlo studies where the reliability of our estimation and modeling
approaches is revealed. Section [5]demonstrates the results of the empirical application. The
proofs of the main theoretical results are contained in Appendix. Further technical details,
additional results of the Monte Carlo simulations and details for the empirical application

are contained in the Supplementary Appendix.

2 Score-driven factor model

2.1 Model specification

Let y; = (yie, - - - ,yNt)T denote an N-dimensional vector of time series. Assume that the

series are subject to a factor structure,

yt:Aft+€t7 Ethe(Et,Z;V), tzl,...,T, (1)
where f; = (fi,..., fre)" is an r x 1 vector of common factors, A = [A;,..., A,] is an
N x 7 matrix of individual specific exposures to the factors with vector A, = (A, ..., Any) "

containing the exposures to the common factor f,;, and &, is an independent identically dis-
tributed (i.i.d.) N x 1 zero-mean disturbance vector with multivariate density pe(e;, 3; V),
diagonal scale matrix X' and other parameters of the distribution collected in a parameter
vector v.

We further assume that pe (e, 3; v) in (1) is a density from the general class of elliptical
distributions with a density generator g(-), that is &, ~ Ex(0, X, g). In general, the density
of elliptical distribution for some x ~ Ex(u, X, g) is given by

22 g((@ — p) 2 @ — ). (2)



The special cases of elliptical distribution are Gaussian with g(u) = (27)/2 exp(—u/2)

) : F(N;_V) —N/2 wy— . .. .
and Student’s ¢ with g(u) = — ) (vm) (1+ %) 2 . The choice of the distribution
2

depends on the application at hand. For example, if the data is contaminated by outliers,

it can be desirable to consider the Student’s ¢ distribution. Therefore, by formulating the
model using the general class of elliptical distributions we cover different applications. For
more details on the class of elliptical distributions, we refer the reader to Fang et al.| (2018)).

The goal of this paper is to develop a filter for the vector of dynamic factors f; that is
capable of summarizing co-movements between the series. The factors and innovations are
assumed to be mutually uncorrelated, while the factors f; are allowed to be dynamic. To
model the dynamics of the factors, we use the score-driven modeling approach introduced

in |Creal et al.| (2013)) and |Harvey| (2013). Hence, the factors’ dynamics are as follows
Jir1 =w+ As + Bfy, (3)

with w = (wy,...,w,), A = diag(ay,...,a,), and B = diag(fy, ..., ,), where w;, a;, §; for
1=1,..., N are unknown scalar coefficients.

The r x 1 vector s, is the score of the predictive likelihood V, scaled by a scaling matrix
S;, where a common choice for S; is the inverse of the Fisher information matrix Z;;_,

that is

sy = SV,

_ alogpy(yt|ft7 ft—la 9)
of: ’
St = Iz;tlfl = Etfl [vtv;r] 3

Vi

where py (y:|fi, Fi—1,0) is the predictive conditional density, F;_; is the filtration repre-
senting the set of information available at time ¢ — 1, and vector 8 € © C RY collects all
the unknown static parameters.

To complete the model specification, in Lemma [1, we derive the score, Fisher informa-
tion matrix and scaled score expressions for the case of factor model with elliptically dis-

tributed innovations. In the proof we exploit that, given model , the conditional density



Py(ye| fir, Fi—1,0) is from the class of elliptical distributions, y|fi, Fi—1 ~ En(Af:, X, g)ﬂ

Lemma 1. Let be the observation equation with elliptically distributed innovations,
g, ~ En(0,X,g). Then the score, Fisher information matriz and scaled score take the

following form

vt _ g/(HytH )AT271/2~

Y,
A, t
i1 = —20([[9ell; g) N ATXZ7A, (4)
s = L (iATz—IA)_l BN 12, (5)
W(llgell, g) \N N ;

N
where ¢'(-) denotes the derivative of g(-), C(||Gell,g9) == —2E;_4 {ngt||2 (g (|||‘?t”22)> }, Yy =

g(llg¢?)
- - (|G 2 -1
2y, — Af) and Wl 9) = gl g) (41205

We further follow the literature on factor models and assume that the series are de-
meaned beforehand such that the unconditional mean of y, is equal to zero. Hence, in
updating equation , we can set w = 0,. Given the score expression in Lemma , the

updating equation for the factors in case of elliptically distributed innovations is as follows

1

A
T = A5 0aT9)

-1
(%AT2‘1A> %ATz‘l (e — Afi) + B (6)

Gaussian and Student’s ¢ distributions are members of the general class of elliptical dis-
tributions. Throughout the paper we consider these models as the main examples. Below,
we state the updating equations for the factors in case of the Gaussian and Student’s ¢

models. The derivations are presented in the Supplementary Appendix [A]

EXAMPLE 1 (Model with Gaussian innovations. Updating equation). Consider a model
with observation equation and €; ~ N (Oy,X). The density generator for Gaussian
distribution is of the form g(u) = (2m)™ N2 exp(—u/2), which given and Y| fr, Fi_1 ~

!Throughout the paper, we adopt a common notation for norms. Particularly, we use a Euclidean norm
for vectors, that is, for any vector x, ||x| = V& T, and a spectral norm for matrices, i.e. for any matrix
) ) y ) ) p ) y

A, ||A]| = \/o(AT A), where o(AT A) denotes a spectral radius of matrix AT A.



N (Af;, X)), implies a well-known density function of a multivariate Gaussian distribution,

(QW)_N/2|2|_1/2 eXp (_%(yt - Aft)T2_1<yt - Aft)) .

Hence, C = —N/2 and W = 1 and the updating equation for the factors takes the following

form

1 !
firn=A (NATElA) NATE% (y: — Af:) + By,

or, equivalently,

1 |
fin=A ((NATZ_lA) NATE_lyt — .ft) + Bf;.

Clearly, in the case of the Gaussian model, the score update is linear and driven by a
scaled prediction error. Intuitively, the prediction error is weighted by the corresponding
common factors’ exposures, loadings, and downweighted in the case of the large variance
of the idiosyncratic components. Therefore, the score update ‘automatically’ ensures that
the series with large loadings contribute more to the update as they contain stronger signal
about the common factors, while for the series with the large variance of the error term

the effect is limited.

EXAMPLE 2 (Model with Student’s ¢ innovations. Updating equation). Consider a
model with observation equation and €, ~ t,(0y, X) with v > 1 being the degrees of

freedom parameter.

. . . P Y
In this case, the density generator is of the form g(u) = %) (vm) (1 + ;) 2
2
hence C' = —%(]]\Q(f:;)) and W(llg:ll.v) = 759 (1 + HQ;HZ> and the updating equation for

the factors takes the following form

— 1 1 T y1—1 711 T v1—1
ftH_AW(HQtH,V) ((NA b)) A) NA X7y —fi | +Bf:.

For the Student’s ¢ innovations, we obtain a nonlinear updating scheme which due to

the presence of a scaling factor W (]|y||, v) is robust to influential points and outliers. We



note that when v — oo the updating equation above simplifies to the Gaussian case.

2.2 Stationarity and invertibility of score-driven factor models

In this section, we state the general conditions for the stationarity and invertibility of
the score-driven factor model defined by equations and (@ Note that for a correctly
specified model, the updating equation for the factors, can be rewritten in terms of the

innovations in the following form

1 1 !

fi1i=A— (—ATE‘lA) —A"X 7', + Bf. (7)
W(llgell, 9) \ N N

We start with investigating the solutions to equations and (@ given the sequence

{€t}1ez. In other words, we analyze the properties of the sequences generated by the score-

driven factor model. First, we state the conditions under which the stationary solutions

exist. Second, we show that these solutions are also unique.

Assumption 1. The matriz X is diagonal with elements 0 < ¢ < 02 < ¢ < 00 for every

i=1,...,N.
Assumption 2. P := (%ATZ’AA)f1 is positive definite with || P|| < oo.

Assumption 3. {&;}icz is an i.i.d. sequence.

1 1
_271/2
Wz Vel N~

Assumption 4. Elog™ < 00.

Lemma 2 (Existence and uniqueness of the SE solution). Let Assumptions hold. Then,
for all fi € R" there exist unique strictly stationary and ergodic causal solutions { fi}iez,

and {y; }iez to equations and (6) if and only if |B|| <1 for all 6 € ©.

The last condition in Lemma [2] imposes a restriction on the parameter space ©. The
condition is the same as for linear models since, although the filter equation @ can be
nonlinear in f;, the updating equation as a data generating process is always linear. In
turn, Assumption [3| restricts the stochastic properties of the innovations and implies that
the sequence {&; };ez is strictly stationary and ergodic. Assumptions and imply that the

scaled score s; has a bounded logarithmic moment. We note that Assumption [2]is further



replaced by a stricter condition required for the identification, see Section [2.3] Below, we
show that Assumption {4| holds in a number of applications.

EXAMPLE 1 (Ctd., Gaussian model. Assumption. Here, we verify that Assumption
s fulfilled in the case of the score-driven factor model with Gaussian innovations with
covariance matriz X = 0, i.e. €, ~ N(Oy,X). We verify the existence of the logarithmic
moment by showing that there are two bounded moments which, in turn, imply the required
condition by Lyapunov’s inequality.

2

1 1

| 1
WS e g) N

1P| = %E |22 = ¥ <%

where the first equality follows since for all t W (|| X2 %¢,||,g) = 1 as stated in Section .

Hence, Elog™ H ﬁlz_l/Qst

172 g) N < o0 holds.

EXAMPLE 2 (Ctd., Student’s ¢ model. Assumption . Let us verify Assumption

for the score-driven factor model with multivariate Student’s t distributed innovations with

scale matriz X = 0, i.e. &, ~t,(0y,X). Then

1 1 | X2 X2,
Elog* H — > 1%,|| =Elog"
W([| X2, 9) N ' NW (|| Z=12e|, g) | X2
N+v+2 ||271/2€t|| 71/28,5
=logt ——— = + Elog* Elogt ||-———- || <
® TNy TR T E e % [T S

as long as v > 0.

The examples above suggest that in many applications it is straightforward to verify
that the score has several bounded moments. Hence, by reinforcing Assumptions [2] and [4]

we can prove that the data generated by equations and (@ has several moments.

Assumption 3.a. E|g||* < oo for some k > 0.

k
< oo with k as defined in Assumption .

Assumption 4.a. E )‘M%Z—l/zst

Lemma 3 (Bounded moments). Let the conditions of Lemma @ hold. If, additionally,
Assumptions and are satisfied, then the solutions to equations and @ satisfy

E[ f]|* < oo and E||ly||* < oo.



EXAMPLE 2 (Ctd., Student’s ¢ model. Assumption. For the Student’s t model, due
to the uniform boundedness of the score, we have a stronger result, i.e. sup, || fi]] < oc.

Clearly,

1 1
W22, 9) N

N+v+2 | X1 %,
— < 0

2—1/2
&t Nv S‘ip1+ | X122 /v ’

sup
t

as long as v > 0. In turn, Assumption holds, hence E||y;|* < oo, as long as v > k.

Next, we analyze the solution to equation (@ given the data y;, not the innovations
g; as in the previous case, and also over different 8 € © which is crucial in deriving
the properties of the estimator. Moreover, in practice, the limit sequence {f;(0)}icz is
approximated by the filtered sequence { ft(e, fl)}teN initialized at some value f; € R".
The chosen starting value is fixed, non-random, and is almost surely incorrect. Therefore,
for further proofs of consistency and asymptotic normality, it is important to ensure that the
choice of the initial value is irrelevant, in other words, we need to show that { ft(g, fl)}teN
is ‘asymptotically SE’. The required form of stability is ensured by the filter invertibility
(Straumann & Mikoschl, [2006; Wintenberger, 2013} |[Blasques, van Brummelen, Koopman,
& Lucas| [2022). We highlight that even under correct model specification the conditions
for the filter invertibility and stationarity are not the same (Blasques et al., 2018), hence
this notion of stability requires special treatment.

The proposition below establishes that, under certain conditions, the filtered sequence
converges exponentially almost surely (e.a.s.) to a stationary and ergodic limit sequence.
We note that the filtered sequence ft is defined recursively and to simplify further notation
we write the stochastic recurrence equation (SRE) in () as fre1(0) == ¢:(£.(0),0) where
¢i(-) - R" x © — R" is a random function V¢ € N. We further denote as ¢)§p)( -,0) a

function that represents a p-fold backward iterate of the dynamic system. For example,
37(£,0) = ¢i(¢r-1(¢12(F,6).6),0).

Assumption 5. {y, }iez is strictly stationary and ergodic (SE).

Proposition 1 (Properties of the filter). Let Assumptz’on@ be satisfied. Moreover, let the

following conditions hold

o).

(i) Elog™ sup sup of

0cO feRr

)

10



(ii) Elog™ sup ||@:(f, 0)|| < oo for some f € R";
0o

o¢y (£.0)

(i1i) Elogsup sup of

0cO feR"

< 0 for some integer p > 1.

Then, the sequence {ft(O)}teN initialized at some starting value fi € R™ converges expo-
nentially almost surely (e.a.s.) to a unique strictly stationary and ergodic (SE) solution

{f:(0)}1ez to equation (@ uniformly over ©. We have
zug Hft(e) —£(O) £ 0 ast — oco.
S

Proof. Proposition 3.12 in |Straumann & Mikosch| (2006)). [

Condition (iii) in Proposition |1|is the so-called contraction condition. The contraction
condition is usually employed for p = 1, i.e. Elogsupgcg supsegr: | B + A%J{’G)H < 0,
see, for example, Blasques, van Brummelen, Koopman, & Lucas| (2022). However, for
multivariate dynamic systems with » > 1 this contraction condition is restrictive and is
rarely satisfied, see, for example, the discussion in [Potscher & Pruchal (1997, Chapter 6.4).
Therefore, we instead verify that the contraction condition holds for the p-th iterate.

For our main examples, below, we discuss extensively condition (iii) and verify condi-

tions (i) and (ii) of Proposition |Iin the Supplementary Appendix

EXAMPLE 1 (Ctd., Gaussian model. Contraction condition). For the Gaussian model,
the contraction condition for p = 1 takes the form logsupgee || B — Al < 0, which is implied
by supgee ||B — Al|| < 1. Here, due to the fact that matrices A and B are diagonal and the
updating equation is linear in f,(0), the contraction condition is easily satisfied for p = 1
as long as the parameter space © is compact. We also note that the condition required for
the filter invertibility turns out to be stronger than the condition required for the existence
of the SE solution in Lemma[3. Furthermore, it can be shown, using a similar argument
as in the proof of Lemmal[3, that for the Gaussian model the contraction condition is both

necessary and sufficient for the filter to be invertible since the updating equation is linear

in f,(6).

EXAMPLE 2 (Ctd., Student’s ¢ model. Contraction condition). For the model with

11



Student’s t innovations, the contraction condition for p =1 becomes

1 2 1 -1
B+ —i7—AX (—~(—AT2’_1A)
Wllgell,v) ,,(H ||y;||2> N

« L ATy~ AR (g — AF) A Ir)

E log sup sup
6cO feR"

N

‘<0.

Therefore, as long as © is compact, for supgeg | B < 1 and sufficiently small elements of
A, the contraction condition (iii) might hold. However, for v > 1, this parameter region is
still very restrictive and is barely satisfied in practice. For p > 1 the contraction condition

15 likely to hold, the system can still be ‘stable’.

For p > 1, an analytical expression of the contraction condition is cumbersome to
analyze. Hence, in practice, as in Blasques, Francq, & Laurent| (2022)) and [Blasques, van
Brummelen, Gorgi, & Koopman| (2022)), for the Student’s ¢ model, we suggest verifying
the contraction condition for a sufficiently large p using a feasible invertibility condition
introduced in [Blasques et al| (2018)).

We complete this subsection with a lemma that ensures the existence of bounded mo-
ments uniformly over © of the limit sequence f;(0) of the filter that is formulated in terms
of the data y; rather than in terms of the innovations ;. The lemma is useful for es-
tablishing the theoretical properties of the estimator, such as consistency and asymptotic
normality. We note that the result can be obtained under two different sets of conditions

depending on whether the score is bounded or not.

Lemma 4. Let all the assumptions and conditions of Proposition[1] hold. If, furthermore,

there exists k > 0 such that

(i.4) Esupgee supyez: |5:(f,0)|" < oo;

.. o 79 ;
(ii-A) SUDgee SUD(y f)erN xR %HH <L

then, the filter limit sequence as defined in Proposition satisfies Esupgee || F:(0)]]F < oo.

If, in addition or alternatively,
(i4.B) there exists a constant d > 0 such that supgeg sup, ||s:(f:,0)|| < d < oo;
(i1.B) supgeo | B < 1;

12



then, the filter limit sequence as defined in Proposz'tion satisfies sup, supgeg || f:(0)||F < .

The first set of assumptions (7.4) — (7i.A) is a standard and general set of assumptions
for establishing bounded moments of the filter in a score-driven framework. However, for
multivariate nonlinear models, condition (ii.A) can be very restrictive, which is similar to
the issue with the contraction condition discussed above. However, as long as the score is
uniformly bounded in ¢ (condition (i.B)) and condition (ii.B) holds, the factors possess

moments of any order.

EXAMPLE 2 (Ctd., Student’s ¢ model. Condition (ii.B)). First, we rewrite the expres-

sion for the score sy as follows

N+v+2 (1 AR .
St(e) = S(yt,ft(O),O) = T (NATZ IA) NATZ 1/2

X2y, — Af,(0)) /v
1+ (yo — ASi(0) "X (y, — Afi(0)) /v
N+v+2_1 S Ty

= P Ayl
N N 1+ xfz,’

X

where &, := X2 (y, — Af,)//v. We notice that as ||z,|| — 0 or as ||x,|| — oo, ||s¢]| = 0
since © C R? and x; € RY as long as ||P|| < oo, X = 0 and 0 < v < oo. Therefore,
the score sequence is uniformly bounded, i.e. sup, ||s;(8)| < d(@) < co for all @ € ©. We

further obtain supgee sup, ||8:(0)|| < d < oo as long as the parameter space © is compact.

2.3 Identification conditions

In factor models, loadings and factors are not separately identifiable, meaning that they
are subject to a rotational indeterminacy problem. There are several ways of imposing
restrictions on the loadings and covariance structure of the factors to resolve the rotational
indeterminacy problem. Here, we focus on those discussed in Bai & Li (2012), as they are
widely used in factor analysis. Furthermore, we discuss the implications of these restrictions
on the score-driven updating equations. The conditions are listed in Table [I. We proceed

with discussing these conditions in more detail.

IC1. Condition (IC1) requires the upper r x r block of the matrix of loadings to be

equal to the identity matrix while the lower (N — r) x r block is unrestricted. Essentially,
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Table 1: Standard identification restrictions in static factor models.

Restrictions on Cov f; Restrictions on A
IC1 Unrestricted A= (I, AT
IC2 Cov f; = diagonal A= (AX, Ag),

where A4 is an r X r lower triangular
matrix with 1s on the diagonal
IC3 Covfy =1I, AT = (AL, AD)T,
where A4 is an r X r lower triangular
matrix with non-zero diagonal elements

1C4 Covf; = diagonal +ATZIA=1T,
(with distinct elements)
IC5 Covfy =1, %ATZ’_IA = diagonal

(with distinct elements)
Based on the paper Bai & Li (2012).

this means that the first r factors are measured in terms of the units of the first r series.
Additionally, for the upper block, it implies that the first factor is uncorrelated with series
2,...r, the second factor is uncorrelated with series 1,3, ...r, and so on.

The advantage of (IC1) is that no additional restrictions need to be imposed on the
factors. For example, factors are allowed to be correlated, oblique factors, making standard
estimation methods, such as maximum likelihood, applicable. However, this restriction
makes the model not invariant to the ordering of the series. This may lead to a lack
of model interpretation and even to an incorrectly specified model. For example, setting
A11 = 1 to meet the restriction may not be appropriate when in the true process A\;; = 0.
Furthermore, it can be desirable to conduct inference on the loadings which in this setting
would not be possible for the restricted loadings. This problem is in some sense similar
to the normalization of the cointegrating vector problem, see Hamilton| (1994, Chapter
20). |Chan et al.| (2018) also discuss the lack of invariance problem in application to factor

models in a Bayesian setup.

IC2 & IC3. This type of restriction is adopted by |Creal et al.| (2014)) who introduced the
first score-driven factor model for summarizing the co-movements between macroeconomic
and financial time series in a few factors. Compared to (IC1), conditions (IC2) and (IC3)
impose less restrictions on the matrix of loadings. Intuitively, these conditions allow for
more flexibility, as the first factor is allowed to be correlated with all the series, the second

factor to be correlated with all but the first series, and so on. However, these identification
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conditions are also not order-invariant. Moreover, the relaxation of the restrictions comes
at the cost of restricting the covariance matrix of the factors to be diagonal or even the
identity matrix. We also note that, although |Creal et al|(2014]) adopt this restriction, they
do not discuss the restrictions on Cov(f;) which is required for identification.

Due to the lack of invariance, we do not further proceed with restrictions (IC1)-(IC3).

IC4 & IC5. In turn, conditions (IC4) and (IC5), the so-called orthogonality restric-
tions, are order-invariant. However, they also impose restrictions both on the factors and
loadings. To proceed with the model formulation, we, first, consider the model-implied
structure of the covariance matrix Cov(f;) under these restrictions assuming the correct

model specification.

Lemma 5. Let all the assumptions and conditions of Lemma[3 hold for k = 2. Further-
more, let the parameter space © satisfy the identification condition (IC4) on the loadings,

i.e. wATX A =1, and a stochastic process {f,(60)}icz be generated by a score-driven

model and @ with 8y € ©. Then,

1

Cov(f(60)) = (I, — B*) E

€] 1
(vwtiara) ] A ¥
Cov(fisn(60), f:(60)) = BhCOU(ft)7 9)

o e
Cov(fiin(60),€;) = AB"'A'E {W] 7 o

with ét = 2_1/2€t-

Given that matrices A and B are diagonal, the restriction on the loadings and updating
equations for the factors imply that Cov(f, fr) = 0 for all m # k. In other words,
the orthogonality restriction on the loadings and the model formulation guarantee that
Cou(f;) is diagonal. Therefore, if the unconditional variances of the factors differ between
the factors, the restriction on the covariance structure of f; is fulfilled by design, and we

only need to ensure that %ATZ'”A = I,., which is an order-invariant restriction.

Corollary 1. Let all the assumptions and conditions of Lemma [3 hold for k = 2 and let
matriz + A" X7 A be diagonal (restriction (IC5) on the loadings). If a stochastic process
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{f1(80) }1ez is generated by a score-driven model and @ with 68y € O, then, for the
restriction on the covariance matriz of the factors in (IC5) to be satisfied, the following

condition must hold

(I, - B)'E

€] >2 (1 T o1 )_1 2
o —“ATZ'A) A%=1,.
(NW(H&H,Q) N

Therefore, by imposing restrictions on the matrix of loadings we guarantee that Cov( f;)
is diagonal. However, for Couv(f;) to be identity we need additional restrictions on the

parameter space.
Remark. Both under (IC4) and (IC5):
— A and f; are identified up to a column sign change;

—an general, the order of the factors and of the columns of matriz A are identified
up to a relabeling. For example, we can always redefine fie = fotr, for = f1. and
Ay = Ay, Ay = Ay That is why, by requiring in (IC4) and (I1C5) matrices Cov f; and
%ATZJ”A to have distinct diagonal elements with decreasing order of magnitude,

the ordering issue s resolved.

To sum up, given the generality, order-invariance and simplicity of the condition (IC4),
we conclude that (IC4) is the most suitable condition for an order-invariant score-driven
factor model. Then, the score-driven factor model with elliptically distributed innovations

takes the following form

yi=> Ajfute, e~En(0X,yg), (11)

j=1

1 1
t :A+—AT2’71 t_A t B ts 12
Fn = g nt ¥ e AR BT 1

with the static parameters as defined in Section [2.1
Model f will be the baseline model in our further discussion. We call this model
an order-invariant score-driven dynamic factor model. Below, we present the updating

equation for our main examples under (IC4).
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EXAMPLE 3 (Gaussian and Student’s t models. Updating equation for common factors).
For the Gaussian and Student’s t models, the updating equation for the dynamic factor f;
15 given by
fii=A L (Lyrg fi | +Bf,
t+1 = W, \ N Yt t ts

where for the Gaussian model Wy = 1 and for the Student’s t model W; = m(l +

(ye—Af) "X (y—Afr) )

2.4 Model extensions

2.4.1 Score-driven group-factor model

A factor model with group-factor structure is a special case of the standard factor model.
In this model, not all the factors are common to all the series but rather there are some
common factors as well as group-specific ones. The observation equation, in vector form,
remains unchanged, however, the matrix of loadings has some elements set to zero. For
example, in the case of ¢ = 2 groups, the matrix of loadings has the following structure

A Ay Ox

A 1 1 7

Ay On_g Az

where K is the number of series in group 1.
Since X is diagonal, the identifying restriction +A”X'A = I, can be split into ¢

orthogonality constraints with ¢ being the number of groups. For ¢ = 2, we have

1 | A
K| Ay

1 A
N —-—K Ay

21_(1><K [An A21] = ITc+T17 Z&I—KXN—K [A12 A32} = dretras

where X := diag(Xx«x, X(N-K)x(N-K)); Tc is the number of common factors and r; with
i = {1,2} denotes the number of group-specific factors corresponding to group i, hence,

the total number of factors is r = r. + r; + rs.
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Combining these two restrictions we obtain

I, 0 0
1
NAT2*1A= o Xr, o |. (13)
N—K
o o0 NKp

Restriction is a modified version of the (IC4) orthogonality restriction. Intuitively,
this restriction accounts for the fact that all the series are subject to the common factor,
K /N proportion of the series is subject to the first group-specific factor, and (N — K)/N
proportion of the series is subject to the second group-specific factor.

Given restriction , the updating equation for the common factors remains un-

changed. For the group-specific factors, the updating equations are adapted as follows

A 1 1 .
flo = Ay AT S (g — Af) + By ff.
Wil e) K Lo
where j =1,...,c and K, corresponds to the number of series in group j. We notice that

the updating equation takes into account the fact that only the proportion of the series is
related to the corresponding group-specific factor. Below, we state the updating equations

for the group-specific factors for the Student’s ¢ model.

EXAMPLE 4 (Gaussian and Student’s ¢ models. Updating equations for group-specific
factors). For a group-factor model with Student’s t innovations, the group-specific factor j

1s updated as follows

; (N+v+2)1 (1 N ;
ftj+1:Aj7Wt EA;FE ‘v, — fi | + B, f/,

with Wy as defined in Example[3

2.4.2 Temporal dependence in the innovation term

In practice, Assumption [3] of the i.i.d. innovations can be very restrictive. Intuitively, it
means that all the dynamic effects in the time series are only due to common factors, but

excludes the possibility of individual time series having their own dynamic effects. We relax
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this assumption and allow {&;}4cz to follow a restricted AR(1) process, i.e.
€t+1:p€t+ut, UtNgN(O,Q,g), tzl,,T
Applying the lag operator (1 — pL) to the original model equations, this implies that

Y = pYi—1 + Af] + uy,
fe=fl+pfior, (14)

where the vector of innovations w; is i.i.d.

Hence, model f can be rewritten in the following form

yt:pyt—1+Af:+uta UtNEN<O,Q,g), tzla---7T7
1

.ft:l = AW—

1 — * * *
(Hg*H g)NATQ l(yt _Aft)+Bft7 (15>
til

with y; =y — pyr—1 and g7 = 272 (yf — Af}).
Given the relation between f; and f;, we can recover f; itself using or as follows
1
o =A—r—
W(llgell. 9)

+ (B +pl)fi — pBfi 1.

%ATQ_I[(yt —Afy) = p(Yyi—1 — Afi-1)]

Similar to the discussion in Section , in practice, the filtered sequence { ft* (0)}ien is
defined recursively using the SRE ([15]). Clearly, under certain conditions, Proposition
ensures that the sequence { ft* (0)}ien converges e.a.s. and uniformly over © to a limit
sequence {f7(0)}icz that is strictly stationary and ergodic. Then, as the corollary below
states, under additional assumptions on the parameter space O, it follows that the filter
for the dynamic common factor {f;(0)}sen itself converges e.a.s. and uniformly to an SE

limit sequence {f;(0)}icz-

Corollary 2 (Properties of the filter). Let {f(8)}en be a solution to SRE ([5). Let
all the assumptions and conditions of Proposition |1 hold, then the sequence {f;(0)}ien
converges e.a.s. and uniformly to a unique SE solution {f;(0)}icz to equation (15). If,
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furthermore, supgcg |p| < 1, then the sequence {fi(0)}ien converges e.a.s. and uniformly

to a unique SE solution { f(0)} ez to equation (14).

3 Estimation

Parameters of observation-driven models can be estimated by maximum likelihood which

in our case would imply

T
. 1
0r = arg max ; 1:(0)
1/ 1
= argmax . ) (—5 log | 2| +log g ((y: — Af)) "X (s — A.ft))) ,

6co

where 8 = ((diag X) ", vec(A)",diag A", diag BT, v ") T and g¢(-) is a density generator that
can correspond to, for example, Gaussian or Student’s ¢ distributions.

However, as discussed in Section [2.3] in factor models, special attention should be
devoted to parameter identification which is crucial for estimation. Therefore, we start our
discussion with formulating the conditions required for the model identification and then

turn to the detailed discussion of the estimation procedure.

3.1 Parameter identifiability

We begin this section with the summary of the conditions imposed on the parameter space

©. In particular, the parameter space © is such that
A. matrices A and B are diagonal with ||B|| < 1;
B. the scale matrix X is diagonal with elements 0 < ¢ < 0? <c< oo foralli=1,..., N.

As discussed in the previous section, the conditions above ensure the existence of the SE
solutions with two bounded moments. Next, we summarize the conditions on the parameter
space that guarantee identification. For this, we introduce a restricted parameter set o,

which is a subset of the original set ©, i.e. © C O, subject to the following restrictions:

C. %ATZ’”A =1,
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D. the covariance matrix K := Cou(f;) has distinct elements on the diagonal, with

Cou(f;) as specified in equation ;

E. if any row of matrix A is deleted, the remaining matrix can be partitioned into two

disjoint submatrices of rank r.

Conditions ensure that (IC4) is satisfied, importance of which is extensively dis-
cussed in Section [2.3] Condition [E] comes from the statistical factor model literature, and it
guarantees the identification of the variance of the common and idiosyncratic components
(Anderson et al., [1956)). The proposition below establishes parameter identification under

the assumptions and conditions stated above.

Proposition 2 (Identification for correctly specified models). Let all the assumptions and
conditions of Lemma @ hold for k = 2. Furthermore, let the parameter space © satisfy
conditions @ and let the observed data y = (yi,...,yr) be a subset of a stochastic
process {y:(0o) }iez generated by a score-driven model [L1)-(12) and with 6, € ©. Then,
0, is set identifiable.

If, in addition, parameter space O is such that the sign(Aix) is known for somei=1,... N
and for all k = 1,...,r, then 0y 1is identifiable meaning that it is not observationally
equivalent to any other parameter @ € ©, i.ec. p(y; 0) # p(y; 6y) for all @ # 6y and some

Yy in a set of non-zero probability.

3.2 Estimation procedure

Given conditions on the parameter space O, several constraints are imposed on the
parameters. Particularly, condition [C]imposes a nonstandard nonlinear constraint, making
standard constrained optimization inapplicable. Therefore, to ensure that the constraint
is fulfilled we resort to optimization on a Stiefel manifold. The Stiefel manifold defines
a set of matrices X that satisfy an orthogonality constraint, i.e. X'X = I,. For an
introduction to manifolds, see [Edelman et al| (1998)); [Boumal (2023|). The details on
Python implementation can be found in Townsend et al.| (2016).

Standard optimization methods, like gradient descent, are not available when carrying

out optimization on manifolds since manifold space is nonlinear. Therefore, the existing
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optimization methods on manifolds exploit the idea of moving in the direction of the tangent
space while remaining on the manifold. In other words, given an initial ‘guess’, the search
continues along the tangent direction and a retraction map ensures that the next search
point remains on the manifold.

Hence, to fulfill condition |C| we restrict matrix X := \/LNE_I/ 2A to lie on the Stiefel
manifold. Further restrictions on the loadings, such as those implied by economic theory,
can be imposed by using the approach introduced by [Liu & Boumal (2020)). The remaining
parameters diag A, diag 3 and v are reparameterized to ensure the positivity constraints
but, in general, they do not require constrained optimization, hence their reparameterized
counterparts lie on a Euclidean manifold. Since the Cartesian product of manifolds forms a
manifold (Boumal, 2023, Proposition 3.14), in practice, the whole optimization problem is
still an optimization on a manifold. In the next subsection, we further discuss the properties

of the estimator.

3.3 Asymptotic properties of the constrained estimator

In this section, we establish the consistency and asymptotic normality of the constrained
ML estimator. We note that, as typical for score-driven models, the log-likelihood func-
tion depends on the filtered sequence { ft(O)}teN. Hence, first, we define the empirical
average log-likelihood based on the filtered sequence {f,(8)}en and on the limit sequence

{f:(0) }1cz, respectively, as follows

Lr(0) = 5 °0(0) = > Ulw. £:(0).6),
£r(0) = 13 1(0) = 7 D" i £:0),0), (16)

It is also important to highlight that the loadings and factors are identified up to a sign
change, hence the limit criterion function has two global maxima. This implies that one of
the conditions, identifiable uniqueness, required for the consistency of an M-estimator to a
single point is clearly violated. However, it is possible to establish the consistency of the
estimator towards the set of the maximizers of the limit criterion function L. (0) := E[l,(0)]

(Potscher & Pruchal |1997). Alternatively, to ensure the consistency towards the point, one
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can impose restrictions on the sign of one of the rows of the matrix of loadings as in

Proposition [
Assumption 6. The parameter space © is compact.

1,(0) — 1,(0)| <55 0 as t — co.

Assumption 7. supgcg
Assumption 8. Esupg.g ’log g((ys — Aj*t(G))T Xy, — Afi(0)))] < cc.

Theorem 1 (Consistency of the constrained ML under correct model specification). Let the
assumptions and conditions of Propositions[l] and[9 hold. Furthermore, let Assumptions|0-
E be satisfied. Then, the constrained ML estimator Or is strongly consistent to OF for any

filter initialization fl eR",

~

Or 25505 as T — oo,

where OF = argmaxg.g Loo(0).
If, parameter space © is such that the sign(Aix) s known for some i =1,..., N and for all

k=1,...,r, then the constrained ML estimator 07 is strongly consistent to 6.

Assumption [7] essentially ensures that the filter initialization has a negligible effect on
the empirical likelihood. As we show below, the filter invertibility will be sufficient for
this assumption to hold. In turn, Assumption |8 ensures that the log-likelihood function
is bounded, hence it allows application of the ergodic law of large numbers in the proof.
We verify the assumptions for the Gaussian model in the Supplementary Appendix [A.1]
Below, we verify that the assumptions of the Theorem (1] hold for the Student’s ¢ model.

EXAMPLE 2 (Ctd., Student’s ¢ model. Assumptions El and . First, we verify that

Assumption [§ holds for the score-driven model with Student’s t innovations. We have

E sup |log g ((yt —Af(0)" X7 (y, — Aft(e)))’

0co
N N
< sup |logT’ <i> ‘ + sup |logT" (Z)‘ + — sup |log(v7)|
0co 2 0co 2 2 gco
N —A£(0) XL (y, — AF(O
+ sup + VEsup log (1 + 7 $(9)) 7 Fi( ))> < 00.
6co 6co v
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The first three terms are bounded as long as 0 < v < oo since the parameter space © is

compact (Assumption @ For the last term we have that

E sup
6o

v

log (1 L = AF(0) Z7 (g Aft(0>>> ’

< Esup
[SC)

v

(y: — AF:(0)" T (y, — Af(6)) ‘

1
< sup —Esup “271/2 (yr — AF(0))

2
0co 'V 9co H

1 _
< sup —sup || Z~1| (CrE lyell” + e sup || A|*E sup ||ft(9)\|2) ) (17)
(C] 6co 6co

0co V oc

where in the last line we used the Loéve’s ¢, inequality. Given the correct model specifica-

tion, by Lemma [q E|ly||* < 0o as long as X = 0 and v > 2. By Lemmaly, for the filter
limit sequence we also have Esupgee || f1(0)||* < co for any k. Hence, given the conditions
on the parameter space stated in Sectz’on the whole expression in 1 bounded.

Now, we turn to Assumption[]. By the mean-value theorem, we have

alt(fa 0)
of

sup

0(6) ~ 1(6)| < sup sup
0cO

0cO feRr

sup
6co

£46)~ £46)||.

AL:(£,6)

of
yi, which by Lemma [ given Assumptions [5 and [ and conditions [A{Q is SE. Since by

The sequence {supgee SUP fepr

} 18 SE since it is a continuous function of
tez

Proposition the filter is uniformly invertible, supgceo 1£:(0) — £,(0)|| <225 0 as t — oo,

by Lemma 2.1 in |Straumann & Mikosch (2006]), supgeq ‘l}(@) —1,(0)

Al (£,8)
of

Z25 0 ast — oo

as long as the SE sequence {supge@ SUP fegr

} has a logarithmic moment. The
tez

latter follows since we have

Olog g((y: — Af)" X' (y, — Af))

Elog™ sup sup

0cO FeRr” of
N+v _ (yt—Af>
= Elog™ sup sup |[2 AT Y1
& hebren | v T+ (g — Af) =y, — Af)]v
2(N +v) X2y, — Af) [
< logt su +logt VN + Elog™ sup su )
=08 oeg \/; & s Begfeﬂg 1+(yt_Af)T2_1(yt_Af)/V

(18)
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The first term in the expression above is bounded since the parameter space © is compact

z+(0)
1+wt(9)th(0)

X2y, — Af)/\/v. Clearly, for all @ € O, as ||z:(0)|| — 0 or ||:(0)|| — co we have
|lvi(8)|| — 0. Therefore, the last term in is uniformly bounded in (y:, f). Since

as long as 0 < v < oo. Let us now consider the term v,(0) = , where x,(0) :=

parameter space © is compact (Assumption @, we have that Esupg sup peg- ||v:(6)]] < oo.

We complete this section with the asymptotic distribution of the ML estimator. First,

we state the high-level assumptions required for the proof of the theorem.
Assumption 9. 6, € int(0).

Assumption 10. ||V99£T(éT) —Z(6o)| 50 asT — oo, where I(8) := E [gzlééﬂ and

2
VeoLlr(0) = 83559(3) -

Assumption 11. For the derivative of the filter we have ||ft’(00) — Fl(8y)] === 0 as

t — oo, where {f](00) }1ez s a limit sequence which is unique and SE.

€.a.s.

oly(80) 0l (8o)

Assumption 12. H 8- — 58 0 ast— oo.

Assumption 13. The following moment conditions hold:

(i) E H Ol (ft( 90) o) < 00;
. %L (f,0
(ii) Elog™ sup pcpr é;}(g]ﬁ(’) < 005

(1ii) E Halt(ft 8).80) < oo for some § >0 and E|| £/(6)|" < oo with n > 2.

Theorem 2 (Asymptotic normality of the constrained ML estimator). Let the assumptions
and conditions of Theorem[1] hold. Furthermore, let Assumptions [JHI3 be satisfied. Then,

for any filter initialization f'l € R", the constrained ML estimator O satisfies
VT(0r — 6y) % N (0, PVP) as T — oo,
where P := Hﬁl—HilQ(QTﬂilQ)ilQTHil, H(eo) = I(Oo)+Q<00)QT(90), V(OQ) =

E[l1(00)I1(00) "], Z(6y) = E[l/(6y)], and Q(6y) := VoC(6y)" with C(0) collecting the
stacked (IC4) constraints on the loadings.
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The proof of this theorem and explicit expressions for all the matrices stated above are
provided in the appendices. In appendices, we verify all the conditions of the theorem for
our main examples. Specifically, for Gaussian and Student’s ¢ models, we verify Assump-
tions [10] and [11] which results in Lemmas [SB.3| and [SB.4] respectively. For the examples,
Assumption [12)is verified in the Supplementary Appendix [A] Finally, Assumption [I3| holds
given the result in Lemmas [SB.5| and [SB.6| together with the assumption of two bounded

moments required by Proposition

4 Monte Carlo simulations

In this section, we assess the finite sample properties of the constrained maximum likelihood
estimator and how well the score-driven filter captures the dynamics of the factors. We
consider a simulation design where the data generating process (DGP) is either Gaussian
or Student’s t score-driven factor model. Additional Monte Carlo simulation setups and

results are presented in the Supplementary Appendix [D}

4.1 Simulation design

As a DGP, we use Gaussian and Student’s ¢ score-driven dynamic factor models, i.e. €; ~
N0y, X) or g; ~ t,(0y, X)), given by equations and . In the simulations, we set
the values of the static factors’ parameters to o = f, = 0.9 — 0.1 x (k — 1). That is, in

case of r = 3 the values of the parameters considered for the simulations are as follows
A = diag(0.9,0.8,0.7), B = diag(0.9,0.8,0.7).

The choice of the parameter values ensures that matrix Cov(f;) has distinct elements on
the diagonal with a decreasing order of magnitude, required for the identification. For the
idiosyncratic errors, we consider X' = diag(o?,...,0%) with o ~ U([0.1,1.1]) and, in the
case of the Student’s ¢ factor model, we set v = 5.

The matrix of loadings is generated from a standard normal distribution. The loadings
are further rotated to satisfy condition , which is %ATZJ’lA = I,. Due to the rotation,

the final values of matrix A used for generating the time series vary between different
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simulation setups with different values of r and/or N. As a result, the experiments with
different values of N and r are not directly comparable, but the experiments with different
values of T" are directly comparable.

In the simulations, we consider different values of N, T, and r, namely, N = {10, 20},
T = {300, 500,1000}, and r = {1,2,3}. Throughout the simulation study, the number of
replications is set to 1000. In all the experiments, the number of factors is assumed to be
known.

We emphasize that the identification of the factors and loadings is up to a sign and
relabeling, as stated in Remark[2.3] Therefore, in the simulations, the signs of the estimated
factors and loadings are defined such that the correlation coefficient between the estimated
and simulated factors is positive. The order, label, of the factors is defined based on the
sample unconditional variance of the factors, so that the covariance matrix of the factors
has decreasing elements on the diagonal. This is done merely for presenting the precision
metrics for each of the factors separately, instead of using canonical correlation (Frobenius
norm) metrics. We do not use canonical correlation metrics because we are specifically
interested in assessing the ability of the filter to identify each of the factors separately. We
note that the labeling of the factors and loadings is subject to the estimation uncertainty,
and as a result, there can be an additional variation in the parameter estimates due to the
uncertainty in the labeling.

Below, we present the results for Gaussian models. The results for the Student’s ¢
model as well as further details can be found in the Supplementary Appendix [Dl We note
that with an increase in N and/or r the number of the loadings increases substantially.
Therefore, a good choice for the starting values of the parameters is important for the
convergence of the optimization procedure. We propose to initialize the matrix of loadings

using the PCA estimates.

4.2 Simulation results

In Figures|l|and [2| we present the simulation results for Gaussian model for a cross-sectional
sizes N = 10 and N = 20, respectively. The goal is to assess the performance of the score-

driven filter for extracting the factors. This is done by demonstrating the kernel density
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plots for the root mean squared error (RMSE) of the estimated factors, for different values

of r and T'. For each factor k£, the RMSE is computed as

T

" 1 o 2
RMSE(fk‘): T;<fk,t_fk,t> ) fOI'l{le,...,T,
where fj+ is the kth true, simulated, factor, while sz,t is the kth estimated factor. Similarly,
the kernel density of the RMSE for the loadings estimates is plotted, where RMSEs are

computed as follows

~ 1 ~ 2
RMSE(AY) = ||~ </\k . )\k> Cofork=1,....r

i=1

Based on the experiments, we find that overall our estimation procedure performs well.
As expected, both the factor and loading estimates improve with an increase in the size
of the sample T'. We also find that the RMSEs for the factors estimates decrease with an
increase in N, while the loadings estimates are unaffected. Intuitively, as the cross-sectional
size N increases, there is more information about the factors, which leads to improvements
in the factors’ estimates. At the same time, it increases the total number of the loadings
parameters substantially which, in turn, increases the estimation uncertainty.

The RMSEs are the smallest for the first factor which is not surprising since for the
identification the order of the factors is in the decreasing order of magnitude, and hence the
first factor has the largest variation. The RMSEs for the model with » = 1 are considerably
smaller than for the model with » = 2 and r = 3 factors. This result can have two potential
explanations. The first one is that the identification is more challenging when two or more
factors are present. The second explanation is that this result can also be driven by the
relabeling issue. However, given that we do not observe several peaks in the distribution of
the RMSEs, the latter should not have a significant impact on the results. Further increase
in r does not significantly affect the results for the factors and loadings, indicating that
the estimation procedure can identify the factors separately even in the presence of several
factors.

The results for other static parameters as well as the results for the Student’s ¢ model are
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Figure 1: Kernel density plots of the RMSEs for the factors and loadings. Monte
Carlo simulation results for different values of 7" and r, T = {300, 500, 1000} and r = {1,2,3}.
The DGP is a Gaussian score-driven factor model with N = 10. The top panel displays the kernel
density of the RMSE for the factors, while the bottom panel presents the results for the loadings.
The results are based on 1000 Monte Carlo replications.

presented in Supplementary Appendix [D} The results in Tables [SD.IHSD.4] provide further
confirmation that the estimation procedure accurately estimates the static parameters.
First, the biases are negligible for all the parameters across all the simulation setups.

Moreover, the biases and standard errors decrease with an increase in the sample size T

5 Empirical application

In this section, we provide an empirical illustration for extracting economic activity indi-
cators from a panel of macroeconomic and financial time series with a specific focus on
analyzing the importance of the robustness features in the model. The indicators often
have a business and/or financial cycle interpretation and, hence, are of special interest
in applied work. In our empirical illustration, we analyze the co-movements between the
series and interpret the extracted factors. Given that the model is dynamic, the forecasts

and impulse response functions follow straightforwardly from the model. The indicators
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Figure 2: Kernel density of the RMSEs for the factors and loadings. Monte Carlo
simulation results. The DGP is a Gaussian score-driven factor model with N = 20. For further
details we refer to Figure

can further be used to construct economic leading indicators or used as control variables

for analyzing shocks to economic indicators, see, for example, [Loria et al.| (2022).

5.1 Data

For our analysis, we use monthly macroeconomic and financial time series for the US
starting from January 1981 until February 2022. We follow (Creal et al.| (2014) and consider
the following time series: (i) the annualized industrial production growth rate (INDPRO),
(ii) the annual change in the unemployment rate (UNRATE), (iii) the spread between the
yield on Baa-rated corporate bonds and the yield on 10-year Treasury bonds (BAATB10Y),
(iv) annualized S&P500 returns (S&P500), and (v) stock market volatility (S&P500vol).
We further expand the panel by including additional macro-finance variables that are often
considered for constructing business and financial cycle indicators, see, for example, [Loria
et al.[(2022). Particularly, given the increasing importance of the trade and service sectors,

we append to the dataset the annual change in the log retail sales (RETAIL), log RS; —

30



log RS;_12, where RS; stands for the retail sales at the end of month ¢. Moreover, to
capture the consumer sentiment, we include the annual change in the consumer sentiment
index constructed by the University of Michigan (UMSENTX), C'S; — C'S;_12, where C'S,
is the consumer confidence index at the end of month ¢. Finally, for the finance sector,
we consider the annual change in the housing starts index (HOUSING), HS; — HS; 12,
as well as the excess bond premium (EBP) index. The EBP index is a novel time series
introduced by |Gilchrist & Zakrajsek (2012)) and updated by |[Favara et al| (2016). It has
been recently recognized as an important time series for constructing economic coincident
indicators. The EBP index is constructed as a difference between the average of bond
credit spreads and the average of the predicted credit spreads and, intuitively, it captures
the risk appetite in the corporate bond market. For further details on the dataset, we refer
to the Supplementary Appendix [E]

All the series are standardized beforehand such that the mean is equal to zero and the
standard deviation to one (Figure [3]). Clearly, many time series tend to co-move together
with the degree of co-movements becoming stronger during recessions. We also notice that
the recession periods are characterized by different shapes. For example, the COVID-19
recession period has a steep decline but a rather quick recovery (V-shaped recession), while
the great recession period is characterized by a long period between the decline and recovery
(U-shaped recession). Given the difference in the shapes, for the model comparison, we
consider two different time periods: the first sample period, January 1981 — December 2011,
ends after the great recession, while the second sample period, January 1981 — February
2022, ends after the COVID-19 recession. The latter corresponds to the full sample. The
presence of the spikes at the end of the sample indicates that a model equipped with
robustness properties might be preferable for the construction of the economic indicators.

We investigate this further in the next subsections.

5.2 Model specification and parameter estimates

In our empirical analysis, we estimate parameters of the introduced Gaussian and Stu-
dent’s ¢ score-driven factor models with AR(1) innovations as presented in Section [2.4.2]

and with » = 1, 2, 3 factors, giving us a total of 6 model specifications. We do not consider
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Figure 3: Time series.

the specification with i.i.d. errors as it results in significantly worse in-sample model fit.

The optimization on manifolds is carried out using the Python package ‘Pymanopt’ devel-

oped by [Townsend et al.| (2016)). The parameters of the Gaussian models are initialized

using PCA estimates, while the parameters of the Student’s ¢ models are initialized at the
corresponding Gaussian model’s parameter estimates. Additionally, to avoid convergence
to local maxima, multiple starting values for the parameters are considered.

In Table [2 we report the log-likelihood and Bayesian Information Criterion (BIC)
evaluated at the parameter estimates for various model specifications. As mentioned before,
we assess the model fit over two different time periods. The results of our analysis in Table[2]
suggest that for both sample periods a single factor model with AR(1) innovations provides
good fit for the data according to the log-likelihood and BIC. Moreover, we find that
regardless of the number of factors included, the BIC is always lower for the Student’s ¢
models than for the Gaussian ones. This indicates that the Student’s ¢ models provide
better in-sample fit to the data compared to the Gaussian models. The differences in
the models’ fit are particularly pronounced in the full sample period, which includes the
COVID-19 recession, where the Student’s ¢ models’ fit is almost twice better than the fit
of the Gaussian models.

Next, we examine the parameter estimates, excluding for now the loadings estimates,
which we will turn to later. In Table [3, we present the parameter estimates of the one-

factor models selected by the BIC, along with their standard errors. The standard errors are
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log L BIC
N0, D) 4,(0,5) NO.Z) 4(0,5)
Sample period 1981-2011

r=1 -1394.18 -1130.57 2912.59 2391.29
r=2 -13579 -1110.95 2905.12 2417.14
r=3 -1325.3 -1088.1  2905.0 2436.52

Sample period 1981-2022

r=1 -2682.74 -1460.73 5495.7 3057.87
r=2 -2652.45 -1435.51 5503.32 3075.63
r=3 -2629.9 -1414.76 5526.43 3102.33

Table 2: Model fit comparison: log-likelihood and BIC values for Gaussian and
Student’s ¢ score-driven factor models with AR(1) innovations and with 1, 2,
and 3 common factors. log L denotes the maximized log-likelihood value.

calculated using the asymptotic variance expression given in Theorem [2] assuming correct
model specification. From this analysis, we find that parameter p estimates of the AR(1)
processes are large and significant, indicating that the innovations have a persistent and
dynamic structure. Intuitively, a model with only one common factor and i.i.d. innovations
is too simplistic to capture all the dynamics present in the time series. By incorporating a
more complex structure for the innovations, we are able to better capture the individual-
specific dynamics of each series. Moreover, the results show that the estimated degrees
of freedom parameter v appears to be small and lower when the full sample period is
considered. This suggests that the improvement in the model’s fit documented above is
due to the robustness of the Student’s ¢ model, especially for the full sample period which
includes the COVID-19 recession, where the gains are larger due to the V-shape of the
recession.

The results in Table [3] also indicate that the estimates of the static parameters of the
Student’s t model are relatively stable across different sample periods, while the parameter
estimates of the Gaussian model are more sensitive to the changes in the samples. In
particular, for the 1981-2011 sample period, the parameter estimates of both models are
similar. However, for the 1981-2022 sample period, the estimates of the Gaussian model,
especially the factors’ static parameters, a; and 3, change dramatically, while those of the

Student’s ¢t model remain largely unchanged. This confirms the sensitivity of the Gaussian
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model to the presence of the spikes in the sample, which is an undesirable feature of the

model when V-shaped recession(s) are present in the sample.

Sample period 1981-2011 Sample period 1981-2022

N(0, X) t,(0, %) N(0, %) t,(0, %)

éT S.e. éT S.c. ‘ éT S.e. éT S.e.
a1 0.448 0.034 0.399 0.044 | 0.603 0.039 0.389 0.039
51 0.900 0.021 0.870 0.025 | 0.409 0.042 0.849 0.025
p 0.869 0.009 0.890 0.008 | 0.856 0.008 0.883 0.005
v 5.432 0.525 4.285 0.250

o2vppro  0.038 0.002 0.026 0.002 | 0.090 0.007 0.026 0.002
angRATE 0.044 0.003 0.037 0.003 | 0.213 0.008 0.022 0.002

TR ATL 0.191 0.010 0.123 0.009 | 0.282 0.013 0.081 0.005
o2 rrospnre 0236 0.015 0182 0.015 | 0.263 0.016 0.185 0.014
024 psoo 0.094 0.006 0.061 0.005 | 0.105 0.006 0.063 0.005

0Zepsoowe 0659 0.013  0.238 0.019 | 0.730 0.014 0.249 0.018
angATBmY 0.065 0.004 0.033 0.003 | 0.064 0.003 0.032 0.002
Zovsivg 0336 0.019 0.269 0.023 | 0.379 0.020 0.281 0.022
oL pp 0.148 0.008 0.077 0.006 | 0.162 0.008 0.078 0.005

Table 3: Parameter estimates and standard errors (s.e.) of the Gaussian and
Student’s ¢t score-driven factor models with AR(1) innovations and r = 1 com-
mon factor.

Next, we examine the estimates, based on the full sample, of the factors and loadings
of the one-factor models selected by the information criterion; see Figures df and [5] We
note that the scale of the factors differs due to the differences in parameter p estimates.
To facilitate further representation, at the bottom of Figure [l we also demonstrate the
standardized common factors and the filtered factors ft* = fi — pfor.

The results of our analysis indicate that the dynamics of the factors resembles the
dynamics of the US business cycle, with the troughs of the common factors corresponding
to the US recessions. Overall, the factors of both Gaussian and Student’s ¢ models are
similar, although differences become more pronounced during recessions. In particular,
the factors ft and ft* in Figures {4| from the Student’s ¢ model heavily downweight the
impact of the influential observations during the great recession and even more so during
the COVID-19 recession period. We highlight that the model ‘automatically’ adjusts the
‘weight” assigned to extreme observations.

The estimated loadings demonstrated in Figure [5 further reinforce the business cycle
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Figure 4: Estimates of the common factors. Results for the Gaussian and Student’s ¢
models with AR(1) innovations and with r = 1 factors. The top panel demonstrates filtered
common factors ft. The bottom left panel presents f; = ft —p ft,l. The bottom right panel
presents factors ft standardized by the standard deviation.

interpretation for the common factor. Particularly, we find that the loadings of the indus-
trial production, retail sales, S&P500 index, and consumer confidence index are positive,
while the loadings of the unemployment rate, excess bond premium, and credit spread are
negative. The loadings of the S&P500 volatility and housing starts index appear to be
insignificant at the 5% confidence level for both models. Furthermore, we find that the
confidence bounds for the loadings for the Student’s ¢ model are often narrower than those
for the Gaussian model. We highlight that the order-invariant restriction enables us to
conduct inference on all the loadings without having to specify the order of the series.
Finally, the results of the standard residual diagnostics are reported in Tables [4] and
(see also Figures [SE.3| [SE.4] and [SE.5|in the Supplementary Appendix). We find that

our models substantially reduce autocorrelation for most of the time series, indicating the
models’ ability to capture a considerable number of dynamic features. There are still some

traces of the autocorrelation at lag 12 left, which can be attributed to the seasonality
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Figure 5: Estimates of the loadings. Results for the Gaussian (left bars) and Student’s ¢
(right bars) models with AR(1) innovations and r = 1 factors.

features unaccounted by the models. Further improvements can be achieved by adding
more lags in the dynamic specification of the residuals. The results of the Kolmogorov-
Smirnov test in Table [5| further supports the distributional assumptions, namely that for
the majority of the series the Student’s ¢ distribution provides better fit to the data than
the Gaussian distribution. This conclusion is also consistent with the results of the Pearson

x? goodness of fit test, as shown in Table |SE.5|

Raw Residuals N Residuals %,

INDPRO 1959.227 23.870 36.293
UNRATE 1321.451 10.400 12.143
RETAIL 1313.986 26.041 25.244
UMCSENTx 1087.597 14.323 19.291
S&P500 1814.605 32.209 53.957
S&P500vol 445.284 61.883 62.085
BAATBI10Y 2328.579 19.778 61.831
HOUSING 1497.350 69.927 67.913
EBP 1848.516 19.765 16.924

Table 4: The Ljung—Box test for residual serial correlation. We compare the
Ljung—Box test statistics of the standardised raw data to the test statistics of the residuals of the
Gaussian and Student’s ¢ factor models. We consider the Ljung—Box test for residual autocorre-
lation up to order 8.

Our results indicate that the Student’s t model performs better in the presence of
observations from a V-shaped recession, offering more stable parameter estimates, and
factor estimates that are less influenced by extreme observations. Unlike the Gaussian

model, the Student’s ¢ model downweights extreme observations, producing results that
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Residuals N Residuals ¢,

INDPRO 0.000 0.384
UNRATE 0.000 0.538
RETAIL 0.000 0.323
UMCSENTx 0.130 0.423
S&P500 0.080 0.692
S&P500vol 0.000 0.003
BAATB10Y 0.000 0.034
HOUSING 0.335 0.693
EBP 0.000 0.167

Table 5: The Kolmogorov-Smirnov test. We report the p-values of the Kolmogorov-
Smirnov test of the equality of the distributions of the residuals with the reference distribution.

are less influenced by spikes. This makes the factors obtained from the model potentially
more applicable as coincident economic indicators or as control variables. In the next

section, we further examine the out-of-sample performance of the models.

5.3 Forecasting results

In this section, we compare the out-of-sample density forecasting performance during re-
cessions of the Gaussian and Student’s ¢ score-driven factor models, both with r» = 1 factor
as suggested by the in-sample BIC. Results for the models with more factors are similar
and not included here. Out-of-sample forecasts are generated using a rolling-window esti-
mation with a rolling window size of 312 months (27 years). We produce one-month-ahead
density forecasts during the periods of great recession (October 2007 to September 2010)
and COVID-19 recession (March 2019 to February 2022). For each window, we re-estimate
the models’ parameters and produce one-step-ahead density forecasts. In total, for each
sample, we have 36 months (3 years) for evaluating models’ out-of-sample performance.
The density forecasts are further used to compute mean logarithmic scoring rule (LSR)
which is a commonly considered loss function in density forecasts evaluation literature.
The results in Table [f] reveal that during the great recession (U-shaped recession), the
average LSR is higher for the Gaussian model than for the Student’s t model for half
of the time series, as indicated by the positive sign of the Diebold-Mariano (DM) test
statistics, and vice versa. However, during the COVID-19 recession (V-shaped recession),

the Student’s ¢t model consistently outperforms the Gaussian model. This suggests that
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Great recession: October 2007-September 2010
INDPRO UNRATE RETAIL UMCSENTx S&P500

DM -0.041 1.404 1.948 -0.988 -0.912
p-value 0.967 0.160 0.060 0.330 0.368

S&P500vol BAATB10Y HOUSING EBP Total
DM -0.378 -1.300 0.526 -0.878 -1.027
p-value 0.707 0.202 0.602 0.386 0.312

COVID-19 recession: March 2019-February 2022
INDPRO UNRATE RETAIL UMCSENTx S&P500

DM -1.488 -1.159 -1.729 -1.570 -1.845
p-value 0.137 0.254 0.084 0.116 0.074

S&P500vol BAATB10Y  HOUSING EBP Total
DM -1.232 -1.748 -0.726 -1.586 -1.573
p-value 0.226 0.089 0.472 0.113 0.125

Table 6: Diebold-Mariano test. The test statistics is computed based on the out-of-sample
logarithmic scoring rule. A negative value of the statistics corresponds to a lower average log-
arithmic scoring rule of the Gaussian model. The DM test statistics is computed based on
heteroscedasticity robust standard errors.

while both models perform similarly during the U-shaped recession, the Gaussian model
performs worse during the V-shaped recession. However, the difference between the two
models is mostly not statistically significant at a 10% significance level for both out-of-
sample periods. Intuitively, both models have similar out-of-sample performance, with
the main differences occurring during the short periods of extreme observations. Given
that there are only a few extreme observations and a relatively large standard deviation of
the loss differential, it is not surprising that the difference is not statistically significant.
Nevertheless, for policymakers, it is of high order importance to produce reliable forecasts
during turbulent periods like the COVID-19 pandemic, making Gaussian model, which is
sensitive to extreme observations, less favorable.

Next, we examine the predictive densities of individual time series during the COVID-
19 recession. Our findings reveal that prior to the recession, the model predictions are
comparable and well aligned with the actual observations, as shown in Figure [6al However,
after the recession, the performance of the Student’s ¢ model is substantially better, as

illustrated in Figure [6b] The reason behind this superior performance is the robustness of
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the Student’s t model to extreme observations, which are a common phenomenon in all

time series during the COVID-19 recession.
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Figure 6: Density predictions for individual time series. The densities are constructed
based on the parameter estimates obtained using a sample of 312 observations up to April 2019
and April 2020, respectively. The red dot represents the actual observation.

This sensitivity of the Gaussian model to extreme observations during the COVID-19
recession is a major shortcoming, as it can lead to unreliable forecasts. Our analysis of the
sensitivity of the loadings estimates used for the out-of-sample forecasts further supports
this statement. As shown in Figure [7] the loadings estimates of the Gaussian model are
highly impacted by new observations, whereas the Student’s ¢ model displays only minor
changes. This highlights the advantages of utilizing robust models, such as the Student’s t,
when dealing with V-shaped recessions like COVID-19 recession.
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Figure 7: Rolling-window estimates of loadings for individual time series. The
results are based on the rolling window estimation with a rolling window size equal to 312 months.

6 Conclusion

We have introduced an order-invariant dynamic factor model with elliptically distributed
innovations where the dynamics of the factors is driven by the score of the predictive like-
lihood. The update based on the score allows the dynamics of the factors to be potentially
robust to extreme values and outliers. We discuss the model identification and propose
a solution to the rotational indeterminacy problem using an order-invariant identification
constraint. We also establish theoretical properties of the model and its estimator. A
numerical estimation of the model under the order-invariant identification condition is pro-
posed by using optimization methods on the Stiefel manifolds. In an extensive simulation
study, we confirm the good finite sample properties of the estimator. The empirical appli-
cation for constructing coincident economic indicators demonstrates the importance of the

robust updating equations in the presence of the COVID-19 recession period in the sample.
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Appendix

A Proofs of the main results

Proof of Lemma[l]. Since &, ~ En(0,X,¢g) it implies that yq|fi, Fio1 ~ En(Af, X, 9).
Hence,
Py(yt|]:t—1) = |2|_1/29 ((yt - Aft>T2_1(yt - Aft)) )
1
log py (i Fi1) = =5 log | X[ + log g (3 — Afs) X~ (g — Af)) -

The result for the score follows immediately by taking the derivative of the log-likelihood

with respect to f;. Let us consider the Fisher information matrix

e 112 2
Ty1 = B[V V]] = 4E,, (M) ATE Py 2712 A

9(lg:l1?)

L 112)\ 2 ~ ~T
||’!Jt||2 (Q(HytH )) AT 12 Y Yy 2—1/2/1] :

- 4]Et—1 = ~ ~
g(llg:l?) [[gell {9

where g; denotes a standardized vector of observations (with mean zero and identity scale
matrix), hence it is spherically distributed. Therefore, by Theorem 2.3 in [Fang et al. (2018)
llg:|| and g, /||g:|| are independent. This implies that the expression above can be rewritten

as follows

Ty = 4K,

s 112 2 ~ T
”gt||2 (Lytlt)) AT2_1/2Et_1 |:i yf :| 2—1/2/1‘
g(ll9:l*) 1Gel 1]

Exploiting the fact that u, := m is the uniform base of the spherical distribution, by
Theorem 2.7 in |[Fang et al| (2018) we have E [utuﬂ = + Iy and this implies that

s 12 2
. 1 _
P (M> Lotz

g9(llg:1?)

This completes the proof. [ |

Proof of Lemma[3. We first show that there exists a stationary and ergodic causal solution
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{fi}iez to (). By iterating backwards equation (€], we obtain

t—1

fir1=As,+ Bfi = As,+ B(As,_.1 + Bfi.1) =Y B/As,_;+ B'fi, (A1)
=0
where under correct model specification s, = m (%ATZ‘_lA)_l AT ey

The last term in expression (A.1]) goes to zero as t — oo since |BJ|* — 0 and f; € R".

Then, if the limit sequence exists, it is of the form
fin=) BlAs,_; (A.2)
=0

We further establish the stochastic properties of the score sequence s;. First, s; is
continuous, hence, measurable function of strictly stationary and ergodic (SE) sequence
;. Therefore, by Proposition 4.3 in [Krengel| (1985)) sequence {s;}icz is also SE. Now we
show that the score has a logarithmic moment. By norm submultiplicativity and positive

definiteness of matrix P = (%ATZ’*lA)_l, we have

1

1 _1
E10g+ HStH S lOng (NATZlA) \/—NATzil/z + ElOng H\/Nét

1
= - log* || P| +Elog+H\/N§t < 0,
2 —

J/

<00, by Ass. |2| <00, byv Ass.
s 1 1 y-1/2
where s; := W) v e

We further prove that the series in (|A.2)) converges if and only if | B|| < 1.
Suppose that |B|| < 1. By monotone convergence theorem, norm subadditivity and

submultiplicativity, we have

B [Bas | < S IBIE|As | < A Elsd S Bl <oo.  (A3)
=0 3=0 <o?é-€/]Rq =0

where the last claim in follows by Lemma 2.1 in [Straumann & Mikosch| (2006]) since
| B||* — 0 exponentially as t — oo and the sequence {||s;||}:cz is SE with Elog™ ||s;|| < oc.
Therefore, the series in ((A.2)) converges almost surely and the limit sequence { f; }/c7 exists.
If ||BJ| > 1 then the series in diverges at least for one of the vector components
which implies that there is a.s. no finite solution to (@ and, consequently, to . For
||B|| = 1, the series in may diverge at least for one of the vector components.
Furthermore, by Proposition 4.3 in Krengel (1985) the limit sequence { f; }ic7 is strictly
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stationary and ergodic since it is a measurable function of {s;};cz which is SE. Proposi-
tion 4.3 in Krengel (1985)) also ensures that {y;}:cz is SE since it is a continuous, hence
measurable, function of f; and &,, which are jointly SE.

We now establish the uniqueness of the stationary solutions. Assume that there exists
another SE solution { .ft}tez satisfying equation @, then for ¢t = t* such that fi # fi+ and
for all 7 > 0, we have

= ||B||Z ft*—i - ft*—i

0< | fi — fir

By the conditions of the lemma || B||" — 0 exponentially as i — oo. Moreover, || fy_; —
ft,lH = Op(1) as the sequences are strictly stationary, hence P(f;, = f)) = 1 and the

uniqueness follows. [

Proof of Lemma[3. First, we consider the case k > 1. For this case, we prove that E|| f;||* <
oo by showing that || f;|x = (E||£:]|¥)"/* < oo which clearly implies the desired result.
Given ({A.2) and by Minkowski’s inequality, we have

150k < SO UBIIAlls sl < 1A (ST IBIF) x (IPI)Y2 x ||V,
=0 <o0,6CRa I=0

k)?

~—_———
<00, by Ass. <oo, by Ass. [13]

with s; as defined in the proof of Lemma [2| and positive definite matrix P as defined in
Assumption . Since, || B|| < 1, we conclude that (E| f:]|*)*/* < oo and the result follows.
In the case of 0 < k < 1, the result immediately follows by application of the Loeve’s
¢, inequality directly to K[| fiy1]|*.
The proof for y;, i.e. E|y* < oo, follows by the established above result for the

factors, E||f]|* < oo, and the Loeve’s ¢, inequality, that is,
Ellyell* = E[Afe + ec]* < .| AIE[£oll" + erElle]|* < oo,

since ¢, € R, E||e/||* < oo by Assumption [B.a]and © C R
|

Proof of Lemmal[f} Under the set of conditions (A), the proof is essentially a multivariate
extension of Blasques, van Brummelen, Koopman, & Lucas (2022, Proposition 3.1) and,
hence, is omitted.

Under the set of conditions (B), we notice that, given that supgcg || B|| < 1, for large
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enough m, we have

supsup | fis1(0)]| < 1+ sup |4 S sup | BY|| supsup s,
t 0cO 6cO =0 0cO t 0cO

1
<
1 — supgee || B

m
< 1+dsup |A||Y sup || B|| <1+ dsup A 00,
0cO 5 0<0 0cO

which completes the proof. [ |

Proof of Lemma[J Lemma [3] ensures the existence of the stationary solution with k& = 2
bounded moments. Then, from (A.2)) we obtain

Cov(fi+1) = Cov (Z BjAstj> = Z BIACov (s;_;) AB’ = Z B/ACov (s;) ABY,

j=0 j=0 =0

where we exploited the fact that under correct model specification the score sequence is
stationary and white noise.
To simplify further notation, we introduce &, := X~/2¢,. Given expression for the

score, the covariance matrix for s; is as follows

N2

1 1 -1
xCov|—" & | X2 <—AT2—1A)
((W(||€t||79))2 t) N

_ (LATS_lA)‘l LATE_WE[ €l }
N N2 (W&l 9

- AT 1 —1
JE[ ct_ & ]2—1/2/1 (NATZ‘lA)

€]l [|€¢]
€ )2 (1 T 51 )_1
—_ —A XA ,
(NW(Ilstll,g) N
where the second and third equalities follow by application of Theorems 2.3 and 2.7 in

Fang et al.| (2018)) and the fact that E[g;] = 0.

Hence, under restriction (IC4) on the loadings, we obtain

ECT—F
NW(lgdl.g)) |
Cov(fiy1) = iBjACov (st) AB’ = (I, — B2)71 Cov (s;) A?,

J=0

-1
Cov (8;) = (%ATZ‘lA) LATZ"”2

=E

Cov(s;) =E
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where we exploited that matrices Cov(s;), A and B are diagonal and ||B|| < 1.

Next, we turn to the autocovariance structure of f;
oo oo
Cov(fiins1, fie1) = Cov <Z B'Asin g, Yy BJAstj)
j=0 j=0

= Cov <i Bj+hAstj,iBjAstj>

j=—h j=0
= B"Cov <Z B'As_;,> BjAstj> = B"Cou(f)).
§=0 §=0
Finally,

1 1
Cov(sy, 1) = NATE_I/QCOU (W

- ¢ ,21/25)
(&, g)"" '

1 B €¢I g €/
= _ATZI 1/2]E |: i _ f 21/2
N W (€], g) IE €]
1 €| ] { & & ] 1 €|
— AR { t El— | = —AE|———|,
N W(ll&:ll, g) 1€l [[€¢|l N2 W(ll&:ll, g)

Cov(fernir, €0) = Cov <Z B/ Asiyj, 5t> =A Z B/Cov(8¢4h-j, €t)
Jj=0 7=0
— ABhCOU(3t7€t) — %ABhATE { “éf”2 :| 7
N W (ll&l, 9)

where we applied Theorems 2.3 and 2.7 in [Fang et al. (2018) and the fact that E[&,] = 0.
Hence, the proof follows. [ |

Proof of Proposition[3. Observation equation implies the following covariance struc-
ture of the data
Cov(y;) = AKA" + X :=LL" + %, (

>
=

where, for example, for the Gaussian model X = X and for the Student’s ¢ model X =
53

Intuitively, given that X' is diagonal, equation implies that all the co-movements
between the series are explained by the common components. Identification of L and b5
follows immediately from Theorem 5.1 in |Anderson et al. (1956) given conditions [Bf and
Moreover, (IC4) (conditions guarantees that matrices A and K are uniquely
identified (Lawley & Maxwell, |1971} [Bai & Li, 2012). We further note that it suffices to
show the identification for (v, X) = (v, X).

For the remaining parameters, we proceed by contradiction. Assume that there exists
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1 = (diag(A)T, diag(B)T)T such that 1) # 1) are observationally equivalent.

We proceed by exploiting the autocovariance structure of y;

Cov(Yetn, yr) = ACov(fiyn, ft)AT + ACov(fiin. &)
+ COU(€t+h, ft)/lT + COU<€t+h’ Et), Vh > 1.

From @D and , Vh > 1 we have:
Cov(firn, fir) = B"K,

~ 112
Cov &)= AB"'A'E [ﬂ} '
(frens€t) N2W(||&ll, 9)

Therefore,

= 1|2
C _AB'KAT + AB" ' AATE | 1T
oV(Yisns Yt) + N2W (||€:], g)

~ 112
— AB"! <BK + AE {&D AT, VR >1.
N2W([|€:ll, 9)
To shorten further notation we introduce d := E [#ﬁllg)} . Since there exists an obser-

vationally equivalent 1 # 1, we have that:
B"!(BK +dA) = B"! (BK + CZA) , Vh>1.
Hence, for h =1 and h = 2, we have

(BK +dA) = <BK + cZA) :

B(BK+dA):B(BK+cZA).

From this, we can conclude that B = B and A = A.
[ |

Proof of Theorem [1 'We note that, although we are dealing with the constrained estimator,
the standard consistency proof, for example, |White (1996, Theorem 3.5) or Potscher &
Pruchal (1997, Lemma 3.1), still applies since the conditions of the theorems do not require
0, to belong to the interior of the parameter space ©. Particularly, the strong consistency
of the ML estimator follows from (i) the uniform a.s. convergence of the criterion function;
(ii) the regularity of the level sets of the limit criterion function (Pdtscher & Prucha; 1997,
Definition 4.1).

To prove consistency, we use a similar approach as in the proof of Blasques, van Brum-
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melen, Koopman, & Lucas| (2022, Theorem 4.6) or [Blasques et al.| (2023 Theorem 2). We

start with showing the uniform convergence. By the triangle inequality

sup |Lr(6) — Loo(6)] < sup

£1(6) ~ L(6)

0co 6cO
< sup | £1(8) — LT(Q)) Fsup |Lr(0) — Loo(8)]. (A5)
0cO 0cO

We further notice that

T
. 1
sup | £1(8) — L2(6)] < 7> sup
t=2

0co

By Lemma 2.1 in |Straumann & Mikosch (2006)), supgce ‘ﬁT(O) _£T<9)‘ 50 as

€.a.s.

T — oo since by Assumption [7| supgcgo ‘l}(@) — lt(O)‘ — 0ast— oo.

Now we turn to the second term in . To show the uniform convergence, we apply
the uniform law of large numbers of |[Rao| (1962) to the sequence {l;(-) }sez. The sequence is
SE by |[Krengel (1985, Proposition 4.3) since it is a continuous function on the SE sequence

{(ft, yt) }tez. Moreover, Esupgeg |1:(0)| < oo since
1
Esup|l:(0)] < §Esup llog | || + Esup |log g ((y: — Af) X (y, — Afy))| < oo, (A6)
0co 0co 0co

where the first term is bounded by condition [BJon the parameter space © and compactness
of ©. Assumption [§ ensures that the second term in is also bounded. Therefore,
the conditions of the uniform law of large numbers are satisfied, and we conclude that the
second term in also goes to 0 almost surely as 1" — oo.

The level sets of the limit log-likelihood function are regular since the parameter space
© is compact (Assumption @ and the limit criterion function is continuous. Hence, the
consistency towards the set of maximizers follows.

If, in addition, sign(A;) is known for some ¢ = 1,..., N and for all k = 1,...,r, then
parameter @y is point identified; see Proposition [2] Since E|l;(0)| < oo for all 8 € O, then
it immediately follows that @, is the unique maximizer of the limit log-likelihood. This
result together with the compactness of © and continuity of the limit log-likelihood further
imply identifiable uniqueness.

This finishes the proof of the strong consistency.

|

Proof of Theorem [ The parameter space O is a closed subset of © subject to the or-

thogonality constraint %ATZ”A = I, which introduces m = @ constraints. The
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constraints can be summarized as follows
. I et
Cq(0) = diag NA YTA) =1, =0,
) 1 _
Chan(0) := ndiagh (NATZ 1A> —0,¢—1)/2 = 0p(r—1) /2,

where diag(-) and ndiagh(-) refer to the diagonal and lower diagonal elements of the matrix.
To shorten further notation, we introduce C(0) := (Cq(8),Cran(0)) = 0,,, with C(0)
collecting all the constraints.

Given the constraints, we can write the penalized criterion function as

~

Ly(¢) = TLr(0) + W(C),

where ¢ := (07,¢7)7, £1(0) denotes the average log-likelihood function based on the
filtered time-varying parameter f,(0) as in Theorem |1, W(¢) := &7 x C(0) and £ is an
m-~dimensional vector of Lagrange multipliers.

Let us further denote the penalized log-likelihood function based on the limit time-
varying parameter f;(0) as Lr(¢) = TLp(0) + W(¢). Similar to Blasques et al. (2023),
first, we show the asymptotic normality of the estimator ¢z which maximizes the criterion

function Lr(¢). The mean value theorem around ¢, yields

VeLr(Cr) = VeLr($o) + VeeLr () (Cr — Co), (A7)

where ¢4 lies between {7 and (o, and where formally ¢ differs between the rows of the
Hessian matrix Ve Lp.
Since the estimator ¢; maximizes Ly (¢), from the first order condition, we obtain

V¢Lr({r) = 0. Hence, rearranging the terms

VT (67 — )

VeeLr(Cr) VT(Er — &)

] = VTV L&) (A-8)

In our notation, we have

VoL (C)
VeLr(C)

VeLr(€) =

TVoLr(0) + VoW (C)
C(9) ’
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(VooLr(¢) VeeLr(C)|  [VaoLr(C) Q(O)]
| VeoLr(¢) VeeLr(C) Q)" 0,
B [ TVo0L1(6) + VoW (C) Q(B)]
- Q(6)" O |

where Q(0) := VoC(0)". Substituting these expressions into (A.8) and taking into account
that C(6y) = 0,,, we obtain

Voo Lr(¢) Q(07)] [VT(6r —60)| '—mTveﬁT(eo)weW(co))]
QO;)T 0, | |[VT(Er-&)| | O, ’

(FVooLr(Ch) Q07)| [VT(Or —60)| _ [~VTVoLr(B0) — Jz VoWV (Co)
QO 0. | |FHEr—&)]| | O

Trivially, \/LTVQW(CO) — 04 and £VeoW ({f) == Ogxg as T — oo. Furthermore, Assump-

tion@ together with the strong consistency of the estimator O imply Voo L7 (6% ) 51 (o)
as T — oo. Therefore, by the strong consistency of the estimator 8, Lemma and
Slutsky’s lemma, it follows that

Z(6)) Q(6) ﬁ(t%—@o)] 4, [z] as T — oo (A.9)
Q)" O | | J7(r—&) O | |

where z is N/(04, V' (6p)) with V'(6)) as defined in Lemma [SB.1]

Since 6y is not identifiable without restrictions, matrix Z(8y) is singular which leads to
a degenerate limiting distribution. Following a similar argument as in Silvey| (1959), we
notice that implies that Q(8,)" VT (67 — 6y) 4 0,, as T — co. Hence, by Slutsky’s
lemma, the result in can be rewritten as

\/T(OT - 90)] i> [Z
T (&r — o) 0

Z(6o) + Q(6:)Q(6y)" Q(6o)
Q(6)" 0,,

] as T — oo. (A.10)

Since the restriction C(0) = 0 ensures identifiability of 6, and 6 is a regular point of
both Q(8,) and [Z(8)"?,Q(6)]", the ‘augmented’ limit Hessian matrix H(6y) := Z(0,) +
Q(0,)Q(0,)" is positive definite (Rothenberg, |1971; Silvey, [1975). Therefore, by |Aitchison
H(6)) Q(6o)
Q)" 0,

Next, let us introduce the following notation for the inverse of matrix S, i.e. S71 =

& Silvey| (1958, Lemma 3) S(6y) := [ ] is non-singular.

P
[DT R] , where, to simplify the expressions, we suppress the dependence of the matrices
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on By. Then, from the formula for the partitioned inverse, for the block P we have
P-H'-H'QQ H'Q) QH" (A.11)
Therefore, for the limiting distribution of the constrained estimator we have
VT (07— 60) SN (0,PVP) as T — oo,

with P defined in (A.11]).
Now, we turn to the asymptotic properties of the estimator 07 of the penalized criterion

function based on the filtered time-varying parameter. By the mean value theorem

VeLr(Cr) = VeLr(ér) + VeeLr(G)(Cr — ér), (A.12)

where ¢ lies (row-wise) between ¢r and Cr.
Noticing that V¢Lp((r) = VCﬁT(éT) = O0y4m, from (A.12), we have

VeeLr(GVT(Cr = r) = VT (Velr(Gr) = VeLr(ér))

By Lemma and the strong consistency of the estimator éT, the right hand side
of the expression above converges to 0 almost surely as T' — oco. Moreover, by the strong
consistency of the estimator @ and Assumption , we have Voo L7 (0%) <23 T(0,). Then,

following similar reasoning as in the first part of the proof, we obtain

VT(6r — 90)] a [0
T (&r — &) 0

Z(60) + Q(60)Q(60)" Q(6o)
Q6" 0.,

] as 1T — oo. (A.13)

Since matrix Z(6y) + Q(00)Q(6,)7 is full rank, it follows that /T'||@7 — 67| %0 as
T — oo which implies that the estimator 07 has the same asymptotic distribution as @,

thus completing the proof. [ |

o4



Supplementary Appendix

An Order-Invariant Score-Driven Dynamic
Factor Model

Mariia Artemova

A Specific cases of elliptical distribution

A.1 Gaussian model

A.1.1 Updating equation

For Gaussian distribution the density generator is of the form g(u) = cexp (—u/2) (Fang et al., |2018|

Table 3.1). Therefore, it can be noticed that ¢'(u) = —ig(u), which implies that 72%/((;‘) = 1 and

C (/|9¢ll,9) = —%. Therefore, from equation and expression for the score (), we obtain

-1
1 1
fr—wiA (NATz—lA) AT o~ Af) + B,

or

1 !
ft+1 :w+A <<NAT21A> NATZ?lyfff> +Bff

A.1.2 Condition (i), Proposition I

For the Gaussian model, condition (i) in Proposition [1|is of the form log™ supgeg || B — A|| < oo, which
trivially holds as long as © C R? is compact.

A.1.3 Condition (ii), Proposition
Exploiting the expressions derived in Section condition (ii) for the Gaussian model can be rewritten

as follows

Elog™ sup
6co

-1
A <<;AT2‘1A> %ATE_lyt - f) + BfH

< 2log2+ Elog™ sup +log™ (B —A)f|

—1
1 1
Al=ATx1A)] =ATx!
0co (N ) N v

1 —1
T g1
(A b)) A)

+log™ sup HZ'_lH +Elog™ ||y:|| +log™ sup | B — A|| +log™ | £]|,
IC) 0co

iAT

1 +
+ log ™" sup N

6coe

< 2log2 4 log™ sup ||A|| + log™ sup
6ce 0co



where we applied Lemma 2.2 from |Straumann & Mikosch| (2006), norm subadditivity and submultiplica-
tivity. The expression is finite as long as Elog™ |ly:|| < co, X = 0 and H(%ATZ’lA)AH <00, O CR?
is compact, since f € R". Hence, we conclude that for the Gaussian model condition (ii) holds as long as
Elog™ |ly: < oo, X =0, (%ATZ'”A)_IH < o0, and © C R? is compact.

A.1.4 Assumptions |7| and

Assumption [§] for the score-driven model with Gaussian innovations is of the following form
E sup ‘logg ((yt —Af) 27y - Aft))‘
6co
<c+0.5 x Esug ((ye — Af) "Xy — AF)|
€

it — Ai fi)?
(yit A Jt) ’<OO’
g;

N
<c+0.5 E sup

where ¢ is a constant that does not depend on the parameter 6. The last result follows by condition [B] and
by Lemmas [3] and [] for k& = 2.

Now we turn to Assumption [7] First, we notice that

sup [i16) ~ 1:(6)] = 5 sup |(y — AF(6) "=y ~ A(0))
1SS 6co

— (ye — Af(0)) " X7 (g, — Afi(0))| < sup || £:(6) — £.(0)] sup AT Xy
6co 6co

2 sup | £.0)TATELAL(0) - £,(0)T AT AS,(0)]
2 gco

= sup || £(0) — £:(0)] sup || AT Xy + g sup || £+(0) " £:(0) — £:(0) T f:(0)], (SA.1)
0co 0co 0co

where in the last line we exploited condition [C}
Following a similar argument as in the proof of Lemma TA.14 in [Blasques, van Brummelen, Koopman,
& Lucas| (2022), but generalizing it to a multivariate case, for the second term in (SA.1), by the triangle

inequality, we have

sup Hft(O)Tft(O) - ft(O)Tft(O)H < Slelg ||ft(0)Tft(0) - ft(O)Tft(G)H

6€o
+sup | fo(8) " £:(6) — £1(6) T £(6)l < sup [ £:(6)]| sup | £o(6) — F:(6)]
0co 6co 6co
+sup || £:(0) — £1(8)| sup [ £1(6) || < sup || £1(6) — £:(6) + £.(8)| sup || £1(6) — £:(0)]
6co 6co 6co 6co
+sup [|£:(0) — £:(8)| sup || £1(6)]| < (sup [ £:(0) — £:(0)])?
6co 6co 6co
+sup || £o(6) || sup || £(8) — £:(6) ]| + sup [ £(8) — £:(6)]| sup || £:(6)]|-
6co 6co 6co 6co
By compactness of © and Lemmafor k =1 Esupgeg || f:(0)| < co. Then, by Lemma 2.1 in [Strau-
mann & Mikosch| (2006), supgcg || £:(0)T £:(8) — £:(8)T £:(0)] <22 0 as t — oo since by Proposition
supgeo || f1(8) — F2(6)] 2 0 as t = cc.

The last result implies that the whole expression in converges e.a.s. to 0 as t — oo as long as
{y;}1ez is SE with Elog™ |ly¢|| < co and the parameter space © is compact.



A.2 Student’s ¢t model

A.2.1 Updating equation

In the case of the Student’s ¢ distributed innovations, the density generator is of the form g(u) =
c(1+ u/l/)_(N'H/)/2 (Fang et al., 2018, Table 3.1), where v is the degrees of freedom parameter.

Therefore, ¢'(u) = —2t2¢(1 /)" T2 and —25;((3)) = Mty 1+i/u' Then, we have
1 /N+v\> 1 2
(g =—- Eooy |19 ( ————=—) ) | . SA.2
(I5il0) =~ () Ees [yg (s ] (542)

First, we compute the conditional expectation that appears in (SA.2). Given that y|fi, F¢—1 is mul-

tivariate Student’s ¢t distributed we have

E 4 lIQtII2 (H;w/uﬂ

400 T (N+1/> 1 —(N+4v)/2 1 -2
_ ~ 2 2 L2 L2
= [ 080 iy s (14 10R) (1+ 203?) v

- 2
N+tv +oo —(N+v+4)/2
- e | ) (1 1) ay
_ ) G ) T L)
I OPEREPIRE L. ( v ) ( y ) '
N/2

o (M) r(@“)ww)w?ﬂ”(;z) |z

=T (%) VN/Q,R_N/2‘E|1/2 T (W)

N/2
R il G B BZC O R NC O TS
) P () T Ty [T(HE) ()
_ () T2 | B | v T(E)s N
T TOEEY || TN D) NG
_ v? N
- N+vN+v+2
Substituting the last expression into we have
. 1 (N+v\? 2 N 1 NN +v)
C’(||yt||,g)2< v )N+VN+V+22(N+V+2)'

From the last result and equation the scaled score is as follows

1 1 -1
St = T mmE N ATZ‘lA) ATy 1 —Af),
C W (lglv) (N N (ye — Af)

or, alternatively,

1
1 1 1
Sp = ——— AT2—1A> — ATy, — ,
'S W) ((N A g



where W (||g||,v) := 1+ (yt*Aft)TE_l(yrAft))

v
N+v+2 v

A.2.2 Condition (i), Proposition I

For the Student’s ¢ model condition (i) in Proposition [1] takes the form

1 N+v+2 2 1 -1
B+ - A X < — <AT21A>
W(llg:ll,v) v vW(l|g:ll,v) \ N

2(N 2 1 -t
HH)AH + log™ sup (AT2_1A>
oco ||\ NV

Elog™ sup sup
0cO feR"

x (leATz—lyt - f) (y— Af) XA - IT>

< c+logt sup || B| + log™ sup H
0co 0co v

1 1 _ T e
+Elog™ sup sup || ——— (ATE Ly, — f> y — Af) X 1AH
oo Jb v o \ T A
2(N 2 1 !
< c+logt sup || B| + log™ sup HH—H)A‘ +log™ sup (AT21A>
0co 0co v pco ||\ NV

(AT y, — f) (g — Af) Z'A
v(1+ (ye — Af)T XYy, — Af)/v)?

+Elog™ sup sup
0cO feRa

)

where c is a constant that does not depend on 8 and f. The first four terms are bounded as long as v > 0,
|P|| < oo, and the parameter space © C R? is compact.

For the last term in the expression above we have
NATZ V2SR (y, — f) (o - AS)T ZTV2E2A
(L4 (g — Af) T XYy, — Af)/v)?

%ATZ‘_l/thw:E_l/QA
(1+ 2] z,)?

z; = Elog™ sup sup
6cO fcRa

= Elog™ sup sup
0cO feRr

a:ta::
(1+zx)?

1
=log" sup || =AT X 'A|| + Elog™ sup sup
oco N 6O feR™

where @; ;= XV/2(y;— Af)/\/v. As x| = 0or ||x¢| — oo, it follows that the term ||z¢|| — 0. Therefore,
we conclude that the term z; is uniformly bounded in (f,y;). If then the compactness of © C R? holds,
condition (i) in Proposition [T holds.

A.2.3 Condition (ii), Proposition

Below, we verify condition (ii) in Proposition (1| for the Student’s ¢ model, i.e.

_ -1 _
(N+v+2) ((%ATZ t4)  yATE 1yt*f>

Elog™ sup ||A +Bf
60 v L+ (e — Af)T 271 (g — Af) Jv
N 2
< 2log2 + log* sup | B]| + log" | ]| + log* sup | ]| + log* sup 2+
0co 0co 6coO vVNv

+log™ sup

6co

1 -t
AT21A> —ATx12
(N VN




ZV2 (y — Af) v

+Elog™ sup < c¢+log" sup || B
0o || 1+ (yr — Af) X1 (y, — Af) v ee(—)H |
N+v+2) 1 1 N\t
+log™ +log™ sup || Al + log™ su (7+710+su (ATZ 1A>
B 171+ log™ sup LA + log™ sup X2 4 logsup | (

=2y —Af) VY
L+ (ye—AF) T -1 (ye—AS) /v

parameter space © is compact, the whole expression above is finite as long as 3 - 0,

where we exploited the fact that the term is uniformly bounded. Therefore, if the

(kaTz74)7"| <

oo and 0 < v < o0.

Assumption

To show that H aita(g“) — 813(990) ©%%5 0 as t — 0o, we notice that by the mean value theorem
0l;(f:(60),60)  OL(f:(60), 60) 9*l(f,60) H : ‘ e.as.
— < g — 7 1l's —
‘ 00 o6 || =7 | TaearT | pB IO~ RO 0

where the final result follows by Lemma 2.1 in [Straumann & Mikoschl (2006) since by Proposition
SUPgeo | £:(8) — £.(6)|| converges to zero e.a.s., while by Lemma O%1(F,0)/000f T is uniformly
bounded in f and 6 for Gaussian and Student’s ¢ case and by |[Krengel (1985, Proposition 4.3) it is also SE

sequence.

B Asymptotic normality: Additional lemmas

Lemma SB.1. Let all the assumptions and conditions of Theorem[q hold. Then
VTVeLr(0)) % N(0,V(6y) asT — oo,

where V (8o) = E [1,(80)11(80) 7] with 1,(8) := 2UtlO:0) 44 Gy r(6) := 2£210).

Proof. We recall that VeLr(6o) = = 31, 14(6p), where

T

00 08 OfT  lg=r.(8) 00T

To prove the theorem, we apply the Central Limit Theorem (CLT) for stationary and ergodic (SE)
martingale difference sequences (mds) of [Billingsley| (1961) to the sequence {l;(0¢)}tcz. To apply the
theorem, we show that the sequence is an SE mds sequence with two bounded moments.

The stationarity and ergodicity of {l}(8g)}+cz immediately follows by application of [Krengel| (1985,
Proposition 4.3) since I is a continuous function on SE sequence {(y, f:(60), fi(60))}tcz. The latter
sequence is SE by Lemmaand Assumption and the fact that {y: }+ez = {y:(00) }1ez is an SE sequence.

Furthermore, {l;(0y)}tez is an mds sequence since, under the correct model specification, we have
E[l;(60)|Fi—1] = 0, hence E[l;(0¢)|Fi—1] = OE[:(00)|Fi—1]/00 = 0,4. The interchange of the expectation
and derivative is permitted since the likelihood function is continuous and the derivative with respect to @
is uniformly bounded, which allows the application of the measure theory version of the Leibniz integral

rule.



Finally, we show that the second moment of [;(6y) is bounded. Specifically, from (SB.3)), by the Loeve’s

¢, inequality, we notice that

2 2

Ol (f:(60),00) Of:(6o)
of T 207

Il (f+(6o), 6o)
00

EJ1(60)]° < . H (SB.4)

o

Assumption (7) implies that the first term in (SB.4]) is bounded. For the second term, by the generalized

Holder inequality, we have

2

Ol (f+(6o), 60)
of

é
E E||£1(80)]" < oo, (SB.5)

H Ol (£:(00),80) Of:(60)
ofT 207

<E|

where n = 52 and the last result follows by Assumption [L3| (iéi). Hence, we conclude that E||l;(8p)| < oo
and the desired result follows by the CLT.

[ |
Lemma SB.2. Let all the assumptions and conditions of Theorem[g hold. Then
VT||VoLr(60) — VoLr(6o)| =50 as T — oo,
with VoL (0) as defined in the Supplementary Appendiz .
Proof. First, we show that [|I}(80) — }(00)]] <%25 0 as t — co. By the norm subadditivity, we have
111(60) — 11(60)|| < 5lt(ft((9900)700) B 5lt(fté?90)’9o)
| o) 2O O0) g7 Pl (00). 00 ‘ . (5B.6)

The first term on the right hand side of (SB.6) goes to 0 e.a.s. as t — oo by Assumption [12]
Now, we turn to the second term on the right hand side of (SB.6). Following a similar argument as in

the proof of Lemma TA.14 in |Blasques, van Brummelen, Koopman, & Lucas| (2022)), we have

’ ft'(eo)TW - fé(GO)TW < (IF180)] + 1 £1(80) — £1(80)])
" alt(ftéefo)700) B alt(ftéio)yeo) n Halt(ftg;o)aeo) ’ 1 £1(80) — £1(80)]. (SB.7)

Below, we show that both terms on the right hand side of go to 0 exponentially fast almost
surely as ¢t — oo. In particular, for the last term, we have that ||£/(60) — f/(60)]] =225 0 as t — oo
by Assumption Additionally, H%‘;")’HO)H is SE with a finite logarithmic moment, where the SE
property follows by [Krengel (1985, Proposition 4.3) as 9l;(f:(8),0)/0f is a continuous function on the SE
sequence {yq, f+(0)}icz. The existence of a logarithmic moment follows by Assumption (#i7). Then, by
Lemma 2.1 in [Straumann & Mikosch| (2006)), the second term on the right hand side of converges

e.a.s. to 0 ast — oo.



For the first term on the right hand side of (SB.7)), by the mean value theorem we have

By Proposition |1}, supgeg | £:(8) — £:(0)|| converges to 0 e.a.s. as t — oo, while by Assumption [13] (i)
sup pegr |021:(f,00)/0f0f || has a logarithmic bounded moment and by [Krengel (1985, Proposition 4.3)
it is also an SE sequence. Hence, by Lemma 2.1 in |Straumann & Mikosch| (2006) we conclude that the

Ol (£+(60),60)  1:(£:(60)00)
of of

921,(£, 6)
aFofT

\m (80) — £.(60)].

‘ "~ feRrr

whole expression above converges to zero e.a.s. Given that by Assumption [L1| || f/(80) — £/(80)|| <225 0
and the sequence {f!(0o)}icz is SE with Elog™ || f/(60)|| < oo (Assumption (#it)), we obtain that
1£(80) — 1;(80)l] ==+ 0 as t — cc.

Finally, by the norm subadditivity and Lemma 2.1 of |Straumann & Mikosch| (2006, we have

e.a.s

VT VeLr(0o) — VeLr ()] < [1(80) —1L(00)] <2250 as T — oo,

|Mﬂ

which finishes the proof. |

Lemma SB.3 (Assumption [10] for the Gaussian and Student’s ¢ models). Let all the assumptions and
conditions of Theorem[1] hold. Then,

Voo Lr(67) —I(6o)| 20 as T — oo, (SB.8)
where Z(0) = E[l}(0)].

Proof. (i) Gaussian model: First, we notice that the desired result is implied by a stronger result, namely,
Supgeo |[Voo L1(0) — Z(0)|| <=5 0 as T — oco. We show the latter by application of the ergodic theorem
of Rao| (1962) to {I}(-)}tez. Specifically, the uniform convergence follows if 1). the sequence {l}(-)}iez is
SE and 2). Esupgce [|17(0)]| < oc.

The first condition is satisfied by Krengel’s theorem since {”(-) is a continuous function on the SE
sequence {yy, f:(), f{(-), f/'(:) }tez, where the latter is true by Lemmas [2] [4] and [SB.4] Next, we turn to the
moment bound. We notice that by the norm subadditivity and generalized Holder inequality

0*1(£.(6),6)
aeaeT‘«+2Ebup

0co
Esup || £/(0)|]” + IES H
ee®” ACI Z up

9°1(£:(0),0) | /
ta(ofé(fw lEsgg FAGI

l:(£:(0),0) ||”
afr

E sup [1£/(6)]) < E sup H
0co 6coO

0%, (£1(0).6)
ofofT H

-+ sup sup
t 6eO

Esup | f,(0)|*.  (SB.9)
6co

By Lemma the expression above is finite as long as E|jy;||? < oo, Esupgeg || f:(0)]]? < oo,
Esupgee || F1(0)]]? < 0o, and Esupgcg || £//(0)]|* < oo. E|y:[* < oo holds by Lemma given Assumption
and conditions andon the parameter space, E supgcg || f:(0)]]? is bounded by Lemma since E||y:]|? <
% and supgeo |B — Al| < 1. Finally, Esupgeo [£(0)]? < 0o and Esupgee [1£7/(6)]> < 5o follow by
Lemma [SB.5] This finishes the proof for the Gaussian model.

(ii) Student’s t model: Given that by Lemma- SB.5| for the Student’s t model we only have E|| f/(80)||* < oo

and E|| f{'(60)||*> < oo, and not uniformly over ©, we take a different approach to prove the convergence of



the hessian. Specifically, we notice that

Vo,0,L1(01) — Zi(00)| < [Vo,6,Lr(00) — Tij(80)| + sup IV6,0,0L7(0)]|[|61 — 6. (SB.10)
€

By the law of large numbers for SE sequences, ||Vo,0, L7 (00) — Z;;(00)|| —= 0 as T — oo since by
Krengel’s theorem {Vg,9,1:(60)} is SE and E|Vg,e,1:(09)| < co. The latter holds as long as E|jy||* < oo,
E||£:(60)||*> < oo, E|| £{(60)]|*> < oo, and E|| f{'(00)]|* < oo (see equation. Elly:||? and E||£:(6o)]? are
bounded by Lemma[3]as long as v > 2, Assumption [3|and conditions [A]abd [Blon the parameter space hold.
Furthermore, as long as the conditions of Lemma (4i) hold, it ensures that Esupgee || f{(00)]* < oo
and Esupgeg || £//(00)]]? < oo.

For the second term in (SB.10)), by Theorem [1| we have 67 — 60| == 0. Furthermore, given that
SupPgeo || Vo,0,0L7(0)| is SE as it is a continuous function on the SE sequence, it is bounded in probability,
|Ve,0,0L7(0)|| = Op(1). Therefore, supgcg ||V9i9].9£T(0)||||éT — 6ol 2 0as T — co. [ |

i.e. Supgeg

Lemma SB.4 (Derivatives of the filter). Let all the conditions of Proposition |1l hold. Then, for the

Gaussian and Student’s t score-driven filters, there exist unique strictly stationary solutions {f/(0)}icz,

{£fi'(0)}iez, and {f;"(0)}iez to (SC.11)), (SC.12)), and (SC.13), respectively, such that
sup | £1(8) — £1(0)]| <250 as t— oo,
6co
sup | £/(0) — £//(0)] <2250 as t— oo,
0co

gugllft’”(o)— 79| “25 0 as t— oo
S

Proof. The proof of this lemma is similar to the proof of Proposition 3.4 in [Blasques, van Brummelen,
Koopman, & Lucas| (2022) and of Proposition 2 in |Blasques, van Brummelen, Gorgi, & Koopman! (2022).
As shown in Section [C] the SRE for the first derivative of f; is of the following form

fl1(0)=CY + Lfl(6),

where C’t(l) = Ct(l)(ft(O), 0) and I, = I(f:(0),0) with explicit expressions for Ct(l) and I7 in case of the
Gaussian and Student’s ¢ filters given in Section [C| . This implies that the filtered sequence {f/(0)}ien
initialized at f] depends on the filtered sequence {f;(8)}sen. In turn, the unperturbed sequence { f(8)}ren
initialized at f] depends on the limit sequence {f;(6)};cz. We denote the limit process as {f/(60)};cz.
Hence, to prove this lemma, we use Theorem 2.10 in [Straumann & Mikosch| (2006]) for perturbed
stochastic recurrence equations. Condition S.3 of [Straumann & Mikosch| (2006, Theorem 2.10), the con-

vergence of the perturbed sequence {f/(8)}ien to the stationary limit sequence {f/(6)}, corresponds to

having
sup €L (£1(6).0) — CL(£(0),0)] =
sup [13(£:(6). 0) = I(£:(6).0) | % 0.
as t — oo.



We show this result by using the mean value theorem. Namely, for the first expression, we have

(1)
t

of

sup [[C (£:(6),8) — CV(£.(8),8)|| < sup sup sup || £:(6) — £:(0)|,
6cO f 6€6 CISC)

€.a.s.

and similarly for the second expression. Given that supgeg || £:(0) — £.(0)] =225 0 as t — oo and that the
derivatives of C’t(l) and I} with respect to f are SE, it suffices to show that the derivatives of Cgl) and I}
with respect to f are uniformly bounded in f and 0, which is the case given the result in Lemma
Specifically, given that for both Gaussian and Student’s ¢t models §%s;/0f0f" is uniformly bounded in
both f and @, it implies the convergence for I';. Next, the uniform boundedness in f and 0 of ||3sy ¢/Of " ||
and [|02sy+/000F | for k =1,...,r, implies the convergence for Ct(l). The convergence of the Lipschitz
coefficients then follows straightforwardly.

Condition S.1 of |Straumann & Mikosch| (2006, Theorem 2.10) is fulfilled since I (f:(0), @) evaluated at
the limit sequence f;(@) is bounded uniformly over ¢ and 8, and Ct(l)( f1(0),0) has a bounded logarithmic

moment uniformly over © since

(i). for the Gaussian model, conditions of Proposition [1f require Elog™ ||y;|| < oo and by Lemma [4] we
then also have Esupgeg log™ || £:(0)]| < oo, which together with the compactness of the parameter
space © imply Esupgeg log™ ||Ct(1)(ft(0),0)|| < o0.

(ii). for the Student’s t model, Ct(l)(ft(ﬁ), 0) is uniformly bounded in ¢ and O, hence it has moments of

any order uniformly over ©.

This implies that the unperturbed recurrence equation evaluated at some deterministic point has a bounded
logarithmic moment.
The condition S.2 of |Straumann & Mikosch| (2006, Theorem 2.10) in our case is of the form

p—1

E sup log™ || I:(£:(0),0)| < co and Esuplog|| H I,_;(fi—;(0),0)] <o0.
) 6O i=0

Since I (f,0) is uniformly bounded in f and 6, the first condition trivially holds. Following a similar
argument as in the proof of Proposition 2 in [Blasques, van Brummelen, Gorgi, & Koopman| (2022)), we
notice that the second condition is implied by Esupgeg Sup fcg- ||8¢§p) (f,0)/0f| <0, which is one of the
conditions for the filter invertibility in Proposition [l The proofs for the second and third order derivatives

are similar and are omitted. ]

Lemma SB.5 (Moments of the derivatives of the filter). Let all the conditions of Lemmas |4| and
hold. Then, for the limit sequence of the derivative of the filter, we have

(i). for the Gaussian model, Esupgce || £1(0)]|* < 0o and Esupgee || £/(0)||* < 0o with k as defined in
Lemmas[j)

(ii). for the Student’s t model, let for some integer p > 1 and some 0 < k < v
p—1
E| [T T(e—j 00)lIF <1

=0

with Iy as defined in Section Then, E Hft’(90)||k < 0o and E||f}'(6o)||* < co.



Proof. (i) Gaussian model: The stochastic recurrence equation for the derivative process is of the form

fl1(0)=CY + (B~ A)fl(0).

Hence, following a similar reasoning as in the proof of Lemma[d] for k > 1, we have

m M e
S [l
IF@IF <143 1B - AV ICICEIE <1+ 1= 5= <

Jj=0

where the second inequality follows since the conditions of Proposition [I]imply that supg [|[B — Al| < 1 and
since ||Ct(i)] 19 = HCt(l) |© for every j as it is a function on the SE sequence. The final inequality follows by
Lemmas 3 and 4] which imply that |CV||© < di < co. Hence, we have that | £/1(0)]f < oo for k > 1.
The proof for 0 < k < 1 follows immediately by the application of the Loeve’s ¢, inequality. The proof
for the second order derivative is similar and is omitted.

(ii) Student’s t model: The SRE for the derivative of the filter is of the form

fi1(0) = C(l)(yta 1:(0),0) + I'(y:, f:(0),0)f,(0).
And under correct model specification, we have
ft/J,»l(BO) = C(l)(sta ft(00)7 00) + F(Eta 00)f£(00)7

where Ct(l)(st, f1(60),0y) is as defined in Section
Then, the SRE for the p-th iterate takes the following form

p—1
£ 7 (00) =~ (CD(ers. F1-5(60).00)) (Hr e 1,0())
j=0
jp_l
+ ( F(et—1790)> 77 (60).
=0

First, by norm subadditivity and submultiplicativity, we have

p—1 j—1
174700 < 3 [CD e £y (00 00)| HH e
=0 i=0

Iterating backwards the SRE for the pth iterate, we obtain

i, 60)

ft/(p)(e())H )

T p—1 j—1
1£14: 7 (80)] <<Z D NCY (i jphs Frj—pn(80), 00) | || T T'(€—i—pn, 60)
h= 7=0 =0
—1||p-1 _ _
H HF Et—i— pl,OO ) H HF Et—i— pl790) ’ft/—pl(p)(e())H
1=0 =0 [|l:=0

For any t € Z, the sequence {an:—ol I'(ey—i—pi, BO)H}Z , is i.i.d., hence SE, sequence of nonnegative
€
random variables. The conditions of the lemma also imply that Elog || Hf;é I'(e;—;,00)| <1 (condition

10



in Proposition . Therefore, by Lemma 2.4 in [Straumann & Mikosch| (2006) we have

T ||lp—1
H HF(et,i,pl,Go) 2250 as T — oc.
1=0 || i=0

Since by Lemma the sequence {|| /") (80)||}+ez is also SE, there exists large enough I such that
T-1
H Hft/—pl(p)(go)H <1, as.
1=0

Then, for k > 1, we have

p—1
H I'(ei—i—p1,60)
i=0

T-1|| [p—1 j—1

[FARUCHIESED DY (Hc(l)(etfjfpiu ftfj—ph(Bo)ﬁo)H) [II(etmizpn. 60)
h=oll \j=0 i=0
h—1 ||p—1
X H H I(et—i—pi,60)
1=0 Ili=o k
T—1 |[p—1 j—1
<1+ Z Z (||C(1)(€t—j—ph7ft—j—Ph(00)700)||) H I'(ei—i—ph, 60)
h=0 || =0 =0 k
h—1||p—1
x H H I'(ei—i—pi, 60)
i=o Ili=o k
h
T-1 p—1 B\ R
<1+e,(00) > | [E||J] Tei.00)
h=0 i=0
<14 Cr,p(0o) < oo,

(e reco] )

where the second inequality follows since Zf;é (ICM (e1—j—phs Fr—j—pn(60),00)||) HHZ;& I(et—i—ph, BO)H
and Hg;_ol H Hf:_ol I'(et—i—p1,60) H are independent; the third inequality follows by Proposition 4.3 in Krengel
(1985) since for any t € Z 773 (10D (v pn fi i —pn(00),00)) |TTZ T(eripn 00)]| is a continu-
ous function on the SE sequence {f;(6o), ..., fit1-(h+1)p(60);€ts - - -, E¢41—(h+1)p }rez; the forth inequality
follows given the conditions of the lemma, i.e. E|| H?;é I(ei—j,00)|F < 1.

For 0 < k < 1, the proof follows by Loeve’s ¢i inequality, where the constant ¢, = 1 when 0 < k& < 1.

The proof for the second order derivative is similar and is omitted.
|

C Derivatives

In this section, we provide the expressions for the required derivatives. To simplify further notation,
let us further define o2 = diag X, a = diag A and b = diag B, so that for the Gaussian model 8 =
(O'QT,vec AT a”,b")T and for the Student’s ¢ model § = (0'2T,Vec AT a" b7, )T,

11



C.1 Derivatives of the time-varying parameter

For the Gaussian and Student’s t models we have the following updating equation fi11 = As;+ B f;, with
st = 8(ys, £1(0),0) and f, = £,(0).

As discussed before f; is an r x 1 vector. Hence, for k=1,...,r
Tr(t+1) = QkSkt + Brfrt-
Let us introduce the following notation:

T
70 = [fi10) ... 1.0)]

T
1(0)=[11.0) .. f10)]

where, for Kk =1,...,r, we have
Jro441(0) = afkéig(e) = Clglt) + f1(6) Ty,
fi141(0) = vec (W) = Clgrzt) + £/(0) Ty,
where
Clilt) = C;il)(yu 11(0),0) = %Sk ¢+ o a;zt OB fk t

Tit:=Tr(ye, :(0),0) = Brer + au, ;’}t
O = O (e, £1(6),0)
ac a o) ar or
Jahlras f{(e)+fz<ef< so + 577 116 >)>

( g Osg ¢ 8sk + Oay, P?spt OBk fru )

= vec

90 907 o0 007 « “*5000T © 00 007
30% 8skt 825k,t aﬂk T
(ae ofT t “oaart + ge o ) f10)

fon T D?spy 0Br  Osp Doy 0%sp 1
+Vec<ft(9) < vagapT T O TengeT t 55 agT T 8f80T>>

where ey is an r X 1 vector of zeros with the one in the kth position and where we use the notation

ask,t - 85k(y7 fa 0) ‘
00 - 00 (,£,0)=(ys,£:(6),0)’

ask’,t .: ask(y7 .fa 0) ‘
of - of (y.£.0)=(y:,£:(6),0)

and similar notations for the other derivatives. Then, the derivatives satisfy the following SREs

fl.1(0)=C + T, fl(6), (SC.11)
fl.(8)=C® + 1. f(0), (SC.12)

where C’t(i) = (C’fzz, cees C,(ji)—r with ¢ = {1,2}. The third derivative can be also represented by a similar

12



SRE, i.e.

£,(0) = C + I, (0), (SC.13)
T "
with 770) = [11140) . 7@ o 5100) = vee (22,

C.2 Derivatives of the score
In this section, we provide explicit expressions for the derivatives of the score for the specific cases of

Gaussian and Student’s ¢ models.

Gaussian model. The score for this model is of the following form

_ 1 T y—1
S(yv.fae)_NA 2 Y fv
hence, Sk(ya f?e) = %A;’Zily - fk-

Cleaﬂya 3s(y, fv 0)/0f’|’ = _Ira aQSk(ya fv 0)/aaaf—r = qur and aQSk(y, fa 0)/afaf—r = 0pxr.

Furthermore, we have

[ Osn(y.f.0 _
75’“(,(;;; ) —% diag(y) X2 Ay
Osk(y,f,0 _
Osi(y, f,0) _ 7;5%&;49; | ere(xZ )
sk (Y, T, ?
00 e 0,
_ask(gl;f,e) 0,
[ 9%sk(y,f,0) 9?51 (y,£,6) %sk(y,f,0)  Osk(y,f,0)
o2002 " 0020 vec AT 0o020a " 0020b T
92 0 %5, (y,£,0) s (y, £,0) sy (y,£,0) % sk(y,f.0)
Sk(y7 .f7 ) _ agecAaoﬁT Ovec Advec AT Ovec Ada" dvec AObT
000" Culufo) Cuwtd Cufo) Ounw.lo)
1o 2 ad vec ada a
0%51(5.£.0) Colyf0) Dot 0)  Pouly.f0)
L dbdo2 vec a
r . _ . _ . T
% diag(yX~?) diag(Ax) — (er ® X 2diag(y))  Onxr Onxr
_ —er ® %272 dlag(y) ONT‘XNT ON'I"XT 0Nr><r
OTXN 0r><Nr Or><r O’I"X’r’ 7
L 0r><N 07’><Nr 0r><r O’l“)(’l’

where ey, is an r x 1 vector of zeros with a one in the kth position and operator diag(:) creates an N x N

diagonal matrix out of an N x 1 vector with the elements of the vector on the diagonal.
The score for the Student’s ¢ model is of the form
iATz—ly ~f
N )

Nvt2 Lo (RAT Sy — i) with K(y, £.0) = 1+ (y — Af)T S 'y — Af)/v.

v

Student’s ¢ model.

N+4+v+2 1
v 1+ (y—Af)T Xy - Af)/v

s(y, f,0) =

hence, Sk(ya f7 0) =
Then

Js(y. f.0)  N+v+2 1 I _ 1
arT v Ky, f,0)" Ky, f.0)

0K(y, f, 9).

s(y, f,0) oF T

13



Similar to the case of Gaussian model, we use the following notation

83k(y7 .fa 0) _ ask(ya .fv 0) ask(yv f» 0) 8Sk(y, fa 9) ask(ya .fv 0) ask(yv f? 0) i
00 902" ' OvecAT ' Qal obT v
We have
_ N+v+2 diag(y) X2 A,
v N
Ntvt2, o (szly)
ask(yaf70) . —1 v N 1 aK(yafae)

- 0
. K(y, f,H) Sk(y7 fa ) 90 )
2 (LTS f)

where ey, is an r x 1 vector of zeros with a one in the kth position and operator diag(-) creates an N x N
diagonal matrix out of an N x 1 vector with the elements of the vector on the diagonal.
To simplify further derivations, we introduce

-
, Nevi2e, o (Lx-ly), 0, 0, —(5A7Z 'y—fi) Nf} '
Then, we have

Psi(y, .0 _ OK(y.f.0)  N+2 -
28 L0 Ky, £.0) muly £ 0) LD 2 1y £,0)) e
1

2  O0K(y,f,0)0K(y,f,0) 0*K(y,f,0)
T K. 500 (K(y - )

, F,0) 00 afT 200 fT
N+4+v+2 0K(y f,0) +

YUKW £.0)2 08 M

where v, is a g x 1 vector of zeros with a one in the gth position.

828k(y7fa0) —1 —2 (’)K(y7f,0)
W:(K(yafaa)) Hk(yafk79)_(K(y7f70)) Wk(y7fk70)T
1 0K (y,f,0)0K(y, f,0
Byl T
K(y. £,0) """ 90067 K(y,f,0) 00 00T
with
I (y, fr,0) =
2(N;Z+2Z diag(yX—3) diag(Ay) ,W(ek ® X~2diag(y))T  Onxr Onxr %ﬁ diag(y) X2 Ax
—Ntrize, @ (4 X2 diag(y)) ONrx Ny Onrsr Onexr  —2e, @ (427 1y)
0r><N 0r><Nr Or><r 0'r><7‘ 0,
0r><N 0r><Nr Orxr Orxr 0,
Moz (diag(y) 22 A,) T -

NiZler @ (27 y)T  Oier  Oixr  (HA]Z ly—f) 202
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?sp(y,f,0) N+v+2 1 0K (y, f,0) 1 ’K(y, f,0)

ofofT v K@ fort of  Kwfe WO 5o
(K(y, £,0))2 Y1 of ofT K(y.f.0) of afT

Now we turn to the derivatives of K (y, f,0).

aK(y7 fv 0) T —1 aQK(yv fve) 2N
—2 2 - = 2(y— A YA — - =——1T,,
afT (y f) /V7 6faf'|' v
0K (y, f,0 T sl T
% = | ~(diagly — ANZVan/v -2f© TNy Af)fv 0, 0, —WANZlwoAn]
0K (y, f,0)
00007
2(diag(y — AF)?XZ73 /v (2f ® ¥ 2diag(y — Af)/V)T  Onxr Onxr (diag(y — AF)Z 712y /12
2f ©® X2 diag(y — Af)/v 2ff7) ®diag(Z 1) /v ONrxr Onpxr  2f@ X7 1(y— Af)/1?
= 07‘><N Orer 0r><r 0T><7‘ Or
07~><N Orer 0r><r 0r><7‘ Or
Jingly - AHS22 2T @S ly-AppE ol o]  2w=AnTETlwoas)
OK(y, f,0 AT g1
8(0}/8;1) = [ 2diag(y — Af)X2A/v 2(diag(f) + fi,) )@ X~1A/v 0, O, 2(1””2722"} :

C.3 Derivatives of log-likelihood

Here, we provide the expressions for the first and second derivatives of the log-likelihood function Lr(6)
defined in with respect to 8 = (a2, vec A, a, b,v), where a := diag A, b := diag B and o2 := diag X

For the first derivative, we have VoLr(0) := MaLH(G) =1 ZZ;Q 13(0), where
Ol (£:(6),6) _ dli(f,6) Al (£,6) 0£:(6)\"
1(0) := AL ’ : 14
«(6) 00 00 ‘f:ft(o) of T ‘f:ft<0> ol Al ’ (5C.14)
where
oly(f,0) Al (f.0) Bl (f.0 oL (£.0)] "
o0 = |: 3(02 : S;J(ec A) 0, 0O, él/ )i| ’
with
ol (f,0) _ 1 1, k(£ 0) o)) 2
W = 7§d1ag2 +TZ (dlag(ythf)> LN,
8lt(f7 9) _ —1
S8 (5.00f © (3 - AF),

where for the Gaussian model x; = 1 and for the Student’s model x:(f,0) = Wm with K (f,6) as
defined in Section [C.2} ¢y is an N-dimensional vector of ones.

2We define as diag(A) the r x 1 vector holding the diagonal elements of matrix A.
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In case of the Gaussian model, U(£.6) 0, while for the Student’s ¢ model

ov
1 (v+N 1 (v
2¢< 2 )—2¢ (5)
N Ll K(f.0) 4 (£ 0K (F.0),

8lt(.f7 0) _
ov

where 9(-) is a digamma function.
The derivatives of f; are presented in Section while for 0l;(f,0)/0f " we have

ol:(f,0 _
Al O) _(£.0)(w — AF) 5714
of
For the second-order derivatives we have

T

o2L
VeoLr(6) := aaaTeT Z

=2

where

l//(e) — 82lt(ft(0)a 0) _ 62lt(.fv 0) ‘

AT 00007 00007 li=7z.(0) 000fT

i 3ft(9)T aQZt(fv 0) ’ 3ft(0)T a2lt(fa 0) ‘ 0f:(0)
00 Of00T lr=r.(0) 00  OfofT lr=r.(0) 00T

oly(f,0) 0% e (0)
Z ‘f fi(6

9*1,(f,0) ‘ of:(0)
f=f.(6) 007

O fx 3030T '
0%1,(£.6) 921, (£.0) 921,(£.0)
g-260-2T 0020vec AT ONvT ONW 0o20v
o%1(1.0) LTS o g 0°1,(£.0)
32lt(f 0) dvec Ada2 | Ovec ADvec AT Nr,r Nrr Jvec Adv
)
W = Or,N OT',NT 07'77' 07',7" OT )
OT,N Or,Nr Or,r 01“,7" 07"
0%1:(£.6) 0%1,(£.6) of  of ule)
vdo2 " Ovdvec AT T T ov2

62lt(fa0) — |: 82lt(f79) 82lt(f,0) 0 0 BZZt(f,B)
8]"89T dfoa2 T Ofdvec AT T T

For the Student’s ¢t model

0%l(f,0
L = I{t(f, 0) |:—AT dlag(yt — Af)272 ® yt 27 0r><'r O’I“X’I" 0

o0fo0T
N 1 0K, 9
_:I/IQ(j’ﬁ)QATzl(yt—Aft)at‘(fT’)7
2
w N %E * = ra(f,0) 7 (ding(y — Af))°
% - ({feg> Eiz(diag(yt - Af))sz(yt _ Af)TE*Q
0%l,(f.0
30.25(% = —ri(F,0)f @ (X2 diag(y; — Af))
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0
' J}({f,l)z “(diag(y; — AF)?en(fT ® (g — AF)TEY),
% - %2’2(diag(yt — Af))%NW’
%1, (f,0) Ors(f.0)
dvec Adv —

2
T A AT = OIS 4 e 0 (5 - AT €= 4957

82lt(f,0)71 (1) N+V 1 (1) 14 N 1 1 T e
T = O () Y () e me g e AN e A
_ 1 8/€t(f,0)
22" ov

Lo (Ntvy Loy, N _N_ 1 AR TS s —
_41/11 ( 2 4’(/}1 (2)+2V2 2V3Kt(f,0)(yt Af) ) l(yt Af)
Okt (f,0)

o '’

= o (X y — Af))

e £,0) (e — AF)T 7 i — Af) + 5Kl .0)

+ %Kt(.fao)

where M = V‘Q” K,(f 92 (yy — Af) Xy, — Af) — ﬂf and 9 (M (.) is a polygamma function

of order 1.

a2lt(.fa 0) —

afafT —Nlﬁlt(f,g)‘F

ATE Ny — Af)(y: — Af)TZ

For the Gaussian model

9*l,(f,0)

5700 :[—ATdiag(yt—Af)y2 ¢ Oy X7 0y Opxr 0},

321t(f79) N -3/ 2
W = 52 — X" (diag(y: — Af))",

0%l,(f,0 -2 4i

e O g (572 dins(y, - A)),
__OL(1.6)
Ovec ADvec AT
821t(f7 0) _
s "

The following lemma states the bounds for each of the derivative.

=—(ffHex

Lemma SC.6. The derivatives of the log-likelihood and the score can be bounded as follows:
For the Student’s t model:

o sup, o |01:(f.0)/00°|| < c1;
e sup, g ||0l:(F,0)/0vec Al| < ci;

o supg [|0L(£,0)/0v|| < c1 + eallyel)® + sl £ 1%
o sup; o [01:(f,0)/0F| < c1;

o sup, o [10°%:(£,0)/0F0FT|| < 1

o sup, o [0°1:(£,0)/0f00° | < c1;
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Sup; g 0%1,(f,0)/0fdvec AT|| < cy;

supy g [|0s:/0f|| < e1;

sup; g [102s:/0600f || < c1;

sup; g 028 /OFOF T < c1.

For the Gaussian model:

o sup, o [|0s./0f|| < cr;

e sup, g |0%s,/000Ff 7| = 0;

o sup, g 025, /0FOFT| = 0;

o supg [|9s:/06]| < c1+ collyill;

o supg [|025,/90007 || < c1 + collyill;

o supy |06(f,60)/002|| < c1 + callyel|* + sl £II2;
o supg |0L(f,60)/dvec Al| < cilly f 7| + co I
o supg [0 (£, 0)/0F] < cillye]l + call £11;

o supg [0%1(£,0)/0f00 || < cillyell + c2l £1;

o sup; g ||0%(f,0)/0f0vec AT|| < c1|lyill;

o supg [0%1(£,0)/00%00% || < c1 + callyel|* + es ]| £11%
o supg [|021:(f,0)/0vec Ada? || < ellyef T + call £11%:

o supg |02, (f,8)/dvec Advec AT || < c1|| |2

The derivations are straightforward and can be checked using e.g. Mathematica.
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D Supplementary Monte Carlo simulation results

In this section, we present additional Monte Carlo results. Specifically, we demonstrate the
results for the experiments with N = 20 and different values of 7" and r. For the detailed

description of the simulation design we refer the reader to Section

RMSE(f,) —— T=300
40 —— T=500
—————— T=1000
RMSE(f,)
0.‘6 0.‘8 A
RMSE (f5)

154

2104

g .|
T T 0 u S T T T T
0.6 0.8 0.0 0.1 0.2 0.3 0.4 0.5 0.6

RMSE (A1)

0 L—L4 — - T -
0.000 0.025 0.050 0.075 0.100 0.125 0.150

RMSE(A,)

04‘6 0‘,8 1‘,0 016 U‘,B 14‘0 A
RMSE(As5)

; = T T T T / e - T T - 0.0 / = - T T -
000 025 050 075 100 125 00 02 04 06 08 10 12 000 025 050 075 100 125

Figure SD.1: Kernel density of the RMSE for the factors and loadings. Monte
Carlo simulation results. The DGP is a Student’s ¢ score-driven factor model with NV = 10. For
further details we refer to Figure
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RMSE(f;)

0 s —emas 7 T T
0.00 0.02 004 006 008 010 0.2

RMSE(f,)

0.4

RMSE (A;)

1.0 1.2

Figure SD.2: Kernel density of the RMSE for the factors and loadings. Monte
Carlo simulation results. The DGP is a Student’s ¢ score-driven factor model with N = 20. For

further details we refer to Figure
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E Supplementary empirical application details

E.1 Dataset

Name Description Abbreviation
. . Annual change in log industrial INDPRO
Industrial production production index, log I P, — log I P12
Annual change in the unemployment UNRATE
Unemployment rate rate, URy — URy15
. Annual change in log retail RETAIL
Retail sales sales, log RSy — log RSy_12
Annual change in the survey-based UMCSENTx
Con. - sentiment consumer sentiment index constructed by the
R (TTA 5% ¢ University of Michigan,
CS; — CSi—12
. Monthly annual returns S&P500
S&P500 index on the S&P500 index, log SP; — log SP;_12
Annualized daily realized volatility S&P500vol

S&P500 volatility computed over the current month

Difference between the yield on Baa-rated bonds BAATB10Y

Credit spread and the yield on 10-year Treasury bonds

Annual monthly change HOUSING
Housing starts: in the housing starts index
total new privat. owned HS, — HS;_ 12
EBP Excess bond premium EBP

Table SE.5: Time series: description, and abbreviation. All the time series but S&P500
volatility and EBP are retrieved from the FRED MD database McCracken & Ng (2016)). The
time series for S&P500vol are constructed as discussed in (Creal et al.| (2014) using the data from
the Yahoo finance database.

E.2 Model diagnostics
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Figure

SE.3: The plots of the autocorrelation functions: of the data (left column) and
the one-step-ahead prediction errors for the individual series of the Gaussian (middle column)

and Student’s ¢ (right column) models.
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Figure SE.4: Histograms of the probability integral transforms (PITs) for the
Gaussian (light orange) and Student’s ¢ (blue) score-driven factor models with
r = 1 factor. The PITs were computed using the residuals of the fitted model considered in

Section El
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Figure SE.5: The p-values of the Pearson Y? goodness-of-fit test. The test is applied
to the residuals of the score-driven factor models considered in Section Bl with r = 1 factors as
selected by the BIC. The null hypothesis corresponds to the correct model specification.
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