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Abstract

This paper introduces a novel score-driven dynamic factor model designed for filtering
cross-sectional co-movements in panels of time series. The model is formulated using
elliptical distribution for the noise terms, thus allowing the update of the time-varying
parameter to be potentially nonlinear and robust to outliers. We derive stochastic
properties of the time series generated by the model, such as stationarity and ergod-
icity, and establish the invertibility of the filter. We prove that the identification of
the factors and loadings is achieved by incorporating an orthogonality constraint on
the loadings which is invariant to the order of the series in the panel. Given the non-
linearity of the constraint, we propose to exploit a maximum likelihood estimation on
the Stiefel manifolds, which ensure that the identification constraint is satisfied nu-
merically, hence allowing a joint estimation of the static and time-varying parameters.
Furthermore, the asymptotic properties of the constrained estimator are derived. In
a series of Monte Carlo experiments, we find evidence of appropriate finite sample
properties of the estimator and resulting score filter for the time-varying parameters.
We reveal the empirical usefulness of our factor model for constructing indices of eco-
nomic activity from a set of macroeconomic and financial variables during the period
1981–2022. An empirical application highlights the importance of the robust update
for the time-varying parameters in the presence of V-shaped recessions, such as the
COVID-19 recession.
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1 Introduction

Factor models have become important tools for analyzing and modeling co-movements

in panels of economic and financial time series. The central idea is to summarize cross-

sectional covariation in a few unobserved factors, which can then be used for variety of

purposes. For example, central banks and other policy institutions are often interested in

constructing leading and coincident indices for monitoring economic and financial stability.

The work on index development was pioneered in the 20th century by the National Bureau

of Economic Research (NBER) as a part of the research program on business cycles. After

further developments and refinements, factor models have become the dominant approach

in this field giving a rise to a wide range of indices and indicators (Stock & Watson, 1989,

2002b; Brave & Kelley, 2017; Lewis et al., 2022).

The COVID-2019 pandemic has created new challenges for macroeconometric analy-

sis (Ng, 2021), particularly in terms of modeling economic and financial time series that

experienced large spikes during March 2020 and unanticipated recovery dynamics after-

wards. These spikes have a non-negligible effect on the pre-COVID fit of the models and

parameter estimates, and also make it substantially more difficult to interpret economic

indices. Therefore, the demand for robustness properties in time series econometric mod-

els has increased. To address these challenges, we introduce and develop a theory for

a novel, order-invariant, score-driven dynamic factor model that allows updates of time-

varying parameters to be potentially nonlinear and robust to influential points and outliers.

In the empirical application, we reveal the importance and flexibility of our approach in

constructing aggregate measures of economic activity in the presence of the COVID-19

recession period.

In the literature, there are two dominant approaches for modeling and estimation of

factor models. The first approach assumes that the factors are static, meaning that the

dynamics of the factors are not modeled explicitly. This approach typically uses principal

component analysis (PCA) and its variations for estimation (Stock & Watson, 2002a; Bai,

2003; Bai & Li, 2012). The second approach models the dynamics of the factors explicitly by

casting the model into a state space form. Maximum likelihood-based estimation methods

are then available for estimation of the model parameters (Engle & Watson (1981); Watson
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& Engle (1983); Quah & Sargent (1993); Doz et al. (2011, 2012)).

Alternatively, the dynamics of the factors can be modeled using an observation-driven

modeling approach, in which the dynamics of the factors are driven by past observations

(Cox et al., 1981). Observation-driven models are appealing since the likelihood is available

in a closed form regardless of the complexity of the distribution. Moreover, recently, Creal

et al. (2013) and Harvey (2013) introduced a new class of observation-driven models, known

as score-driven models, where the update of the time-varying parameter is based on the

scaled score of the predictive likelihood. This new class has given rise to a large strand of

observation-driven models since the updating equations based on the score provide a natural

updating mechanism while allowing the model to stay flexible and general (Artemova et

al., 2022a).

The score-driven modeling approach has been widely used and proved to be suitable

in many empirical applications as reviewed by Artemova et al. (2022b). Specifically, Creal

et al. (2014) introduced the first score-driven dynamic factor model with an application to

mixed-measurement observations. They considered score-driven Gaussian and Student’s t

factor models for modeling co-movements in the panel of macroeconomic and financial

time series. However, in contrast to our paper, Creal et al. (2014) did not discuss the

theoretical properties of the model and estimators. Furthermore, to resolve the rotational

indeterminacy, a typical problem in factor analysis, the authors adopted an identification

condition that is not invariant to the order of the series in the panel. This condition

can be restrictive in empirical applications, leading to a lack of model interpretation or

even model misspecification. For example, this condition makes it impossible to conduct

statistical inference on the restricted loadings, which is a shortcoming in empirical analysis.

In this paper, we introduce an order-invariant score-driven dynamic factor model for

capturing co-movements in panels of time series. The model is formulated using a general

class of elliptical distributions that covers many empirically relevant distributions, such as

Gaussian and Student’s t. In the score-driven framework, the choice of the distribution

plays a role not only in the modeling of the noise terms, but it also provides an intuitive

updating mechanism for the factors. Namely, in the Student’s t model, the update of the

factors becomes more robust to influential points and outliers with the degrees of freedom

parameter adjusting the importance of the robustness. This feature can be important in
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empirical applications as evidenced by a growing literature on the development of robust

factor models and estimation methods, see, for example, Fan et al. (2021) and He et al.

(2023) for robust estimation of factor models with static factors, D’Innocenzo et al. (2023)

for robust multivariate location models with score-driven dynamics, and Barigozzi et al.

(2023) for robust estimation of factor models for tensor-valued time series, among many

others.

We further provide general theoretical results for multivariate score-driven dynamic fac-

tor models with elliptically distributed innovations. Specifically, we analyze the stochastic

properties of the time series generated by the model such as stationarity and ergodicity

and show invertibility of the filter. We also discuss conditions required for the parameter

identification and show that for the order-invariant case the estimation can be done using a

constrained maximum likelihood estimator which is shown to be consistent and asymptot-

ically normal. The order-invariant identification condition is nonlinear, hence numerically

it requires a special treatment. We propose to estimate the model parameters using a con-

strained maximum likelihood, where the subset of the parameter space is restricted to lie on

a Stiefel manifold, (Stiefel, 1935; Edelman et al., 1998). In a series of Monte Carlo experi-

ments, we demonstrate that our estimation procedure is reliable in terms of the good finite

sample properties of the maximum likelihood (ML) estimates and the filtered estimates of

the factors. In the paper, we also show that the proposed model and estimation procedure

can accommodate application-specific parameter restrictions, such as group-factor models

with common and group-specific factors.

We apply our model to estimate economic activity indicators from a panel of macroeco-

nomic and financial time series. We find that the estimated factor is closely associated with

the US business cycle, where troughs indicate moments of downturns in the US economy.

Additionally, our analysis shows the importance of the robust updating mechanism for the

time-varying factors, especially when a V-type recession period, such as the COVID-19

recession, is present in the sample. Furthermore, our results emphasize the importance of

the order-invariant identification condition, which does not impose zero restrictions on the

matrix of loadings. This condition lets the data itself to reveal the structure, and enables

us to conduct statistical inference on all the estimated parameters.

The remainder of the paper is organized as follows. Section 2 introduces a score-driven
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factor model with elliptically distributed innovations. We establish the stochastic properties

of the time series generated by the model and of the filter and discuss in detail model

identification. Finally, an order-invariant score-driven factor model is introduced and its

link to the group-factor model is established. Section 3 discusses details of the estimation

procedure and establishes the asymptotic properties of the estimators. Section 4 presents

the results of the Monte Carlo studies where the reliability of our estimation and modeling

approaches is revealed. Section 5 demonstrates the results of the empirical application. The

proofs of the main theoretical results are contained in Appendix. Further technical details,

additional results of the Monte Carlo simulations and details for the empirical application

are contained in the Supplementary Appendix.

2 Score-driven factor model

2.1 Model specification

Let yt = (y1t, . . . , yNt)
⊤ denote an N -dimensional vector of time series. Assume that the

series are subject to a factor structure,

yt = Λft + εt, εt ∼ pε(εt,Σ;ν), t = 1, . . . , T, (1)

where ft = (f1t, . . . , frt)
⊤ is an r × 1 vector of common factors, Λ = [Λ1, . . . ,Λr] is an

N×r matrix of individual specific exposures to the factors with vectorΛr = (λ1r, . . . , λNr)
⊤

containing the exposures to the common factor frt, and εt is an independent identically dis-

tributed (i.i.d.) N ×1 zero-mean disturbance vector with multivariate density pε(εt,Σ;ν),

diagonal scale matrix Σ and other parameters of the distribution collected in a parameter

vector ν.

We further assume that pε(εt,Σ;ν) in (1) is a density from the general class of elliptical

distributions with a density generator g(·), that is εt ∼ EN(0,Σ, g). In general, the density

of elliptical distribution for some x ∼ EN(µ,Σ, g) is given by

|Σ|−1/2g((x− µ)⊤Σ−1(x− µ)). (2)
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The special cases of elliptical distribution are Gaussian with g(u) = (2π)−N/2 exp(−u/2)

and Student’s t with g(u) =
Γ(N+ν

2 )
Γ( ν

2 )
(νπ)−N/2 (1 + u

ν

)−N+ν
2 . The choice of the distribution

depends on the application at hand. For example, if the data is contaminated by outliers,

it can be desirable to consider the Student’s t distribution. Therefore, by formulating the

model using the general class of elliptical distributions we cover different applications. For

more details on the class of elliptical distributions, we refer the reader to Fang et al. (2018).

The goal of this paper is to develop a filter for the vector of dynamic factors ft that is

capable of summarizing co-movements between the series. The factors and innovations are

assumed to be mutually uncorrelated, while the factors ft are allowed to be dynamic. To

model the dynamics of the factors, we use the score-driven modeling approach introduced

in Creal et al. (2013) and Harvey (2013). Hence, the factors’ dynamics are as follows

ft+1 = ω +Ast +Bft, (3)

with ω = (ω1, . . . , ωr), A = diag(α1, . . . , αr), and B = diag(β1, . . . , βr), where ωi, αi, βi for

i = 1, . . . , N are unknown scalar coefficients.

The r×1 vector st is the score of the predictive likelihood ∇t scaled by a scaling matrix

St, where a common choice for St is the inverse of the Fisher information matrix I t|t−1,

that is

st = St∇t,

∇t =
∂ log py(yt|ft,Ft−1,θ)

∂ft
,

St = I−1
t|t−1 = Et−1

[
∇t∇⊤

t

]
,

where py(yt|ft,Ft−1,θ) is the predictive conditional density, Ft−1 is the filtration repre-

senting the set of information available at time t − 1, and vector θ ∈ Θ ⊆ Rq collects all

the unknown static parameters.

To complete the model specification, in Lemma 1, we derive the score, Fisher informa-

tion matrix and scaled score expressions for the case of factor model with elliptically dis-

tributed innovations. In the proof we exploit that, given model (1), the conditional density
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py(yt|ft,Ft−1,θ) is from the class of elliptical distributions, yt|ft,Ft−1 ∼ EN(Λft,Σ, g)1.

Lemma 1. Let (1) be the observation equation with elliptically distributed innovations,

εt ∼ EN(0,Σ, g). Then the score, Fisher information matrix and scaled score take the

following form

∇t = −2
g′(∥ỹt∥2)
g(∥ỹt∥2)

Λ⊤Σ−1/2ỹt,

I t|t−1 = −2C(∥ỹt∥, g)
1

N
Λ⊤Σ−1Λ, (4)

st =
1

W (∥ỹt∥, g)

(
1

N
Λ⊤Σ−1Λ

)−1
1

N
Λ⊤Σ−1/2ỹt, (5)

where g′(·) denotes the derivative of g(·), C(∥ỹt∥, g) := −2Et−1

[
∥ỹt∥2

(
g′(∥ỹt∥2)
g(∥ỹt∥2)

)2]
, ỹt :=

Σ−1/2(yt −Λft) and W (∥ỹt∥, g) := 1
N
C(∥ỹt∥, g)

(
g′(∥ỹt∥2)
g(∥ỹt∥2)

)−1

.

We further follow the literature on factor models and assume that the series are de-

meaned beforehand such that the unconditional mean of yt is equal to zero. Hence, in

updating equation (3), we can set ω = 0r. Given the score expression in Lemma 1, the

updating equation for the factors in case of elliptically distributed innovations is as follows

ft+1 = A
1

W (∥ỹt∥, g)

(
1

N
Λ⊤Σ−1Λ

)−1
1

N
Λ⊤Σ−1 (yt −Λft) +Bft. (6)

Gaussian and Student’s t distributions are members of the general class of elliptical dis-

tributions. Throughout the paper we consider these models as the main examples. Below,

we state the updating equations for the factors in case of the Gaussian and Student’s t

models. The derivations are presented in the Supplementary Appendix A.

EXAMPLE 1 (Model with Gaussian innovations. Updating equation). Consider a model

with observation equation (1) and εt ∼ N (0N ,Σ). The density generator for Gaussian

distribution is of the form g(u) = (2π)−N/2 exp(−u/2), which given (2) and yt|ft,Ft−1 ∼
1Throughout the paper, we adopt a common notation for norms. Particularly, we use a Euclidean norm

for vectors, that is, for any vector x, ∥x∥ =
√
x⊤x, and a spectral norm for matrices, i.e. for any matrix

A, ∥A∥ =
√
ϱ(ATA), where ϱ(ATA) denotes a spectral radius of matrix ATA.
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N (Λft,Σ), implies a well-known density function of a multivariate Gaussian distribution,

(2π)−N/2|Σ|−1/2 exp

(
−1

2
(yt −Λft)⊤Σ−1(yt −Λft)

)
.

Hence, C = −N/2 and W = 1 and the updating equation for the factors takes the following

form

ft+1 = A

(
1

N
Λ⊤Σ−1Λ

)−1
1

N
Λ⊤Σ−1 (yt −Λft) +Bft,

or, equivalently,

ft+1 = A

((
1

N
Λ⊤Σ−1Λ

)−1
1

N
Λ⊤Σ−1yt − ft

)
+Bft.

Clearly, in the case of the Gaussian model, the score update is linear and driven by a

scaled prediction error. Intuitively, the prediction error is weighted by the corresponding

common factors’ exposures, loadings, and downweighted in the case of the large variance

of the idiosyncratic components. Therefore, the score update ‘automatically’ ensures that

the series with large loadings contribute more to the update as they contain stronger signal

about the common factors, while for the series with the large variance of the error term

the effect is limited.

EXAMPLE 2 (Model with Student’s t innovations. Updating equation). Consider a

model with observation equation (1) and εt ∼ tν(0N ,Σ) with ν > 1 being the degrees of

freedom parameter.

In this case, the density generator is of the form g(u) =
Γ(N+ν

2 )
Γ( ν

2 )
(νπ)−N/2 (1 + u

ν

)−N+ν
2 ,

hence C = −1
2

N(N+ν)
(N+ν+2)

and W (∥ỹt∥, ν) = ν
(N+ν+2)

(
1 + ∥ỹt∥2

ν

)
and the updating equation for

the factors takes the following form

ft+1 = A
1

W (∥ỹt∥, ν)

((
1

N
Λ⊤Σ−1Λ

)−1
1

N
Λ⊤Σ−1yt − ft

)
+Bft .

For the Student’s t innovations, we obtain a nonlinear updating scheme which due to

the presence of a scaling factor W (∥ỹt∥, ν) is robust to influential points and outliers. We
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note that when ν → ∞ the updating equation above simplifies to the Gaussian case.

2.2 Stationarity and invertibility of score-driven factor models

In this section, we state the general conditions for the stationarity and invertibility of

the score-driven factor model defined by equations (1) and (6). Note that for a correctly

specified model, the updating equation for the factors, can be rewritten in terms of the

innovations in the following form

ft+1 = A
1

W (∥ỹt∥, g)

(
1

N
Λ⊤Σ−1Λ

)−1
1

N
Λ⊤Σ−1εt +Bft. (7)

We start with investigating the solutions to equations (1) and (6) given the sequence

{εt}t∈Z. In other words, we analyze the properties of the sequences generated by the score-

driven factor model. First, we state the conditions under which the stationary solutions

exist. Second, we show that these solutions are also unique.

Assumption 1. The matrix Σ is diagonal with elements 0 < c ≤ σ2
i ≤ c̄ < ∞ for every

i = 1, . . . , N .

Assumption 2. P :=
(

1
N
Λ⊤Σ−1Λ

)−1
is positive definite with ∥P ∥ < ∞.

Assumption 3. {εt}t∈Z is an i.i.d. sequence.

Assumption 4. E log+
∥∥∥∥ 1

W (∥Σ−1/2εt∥, g)
1

N
Σ−1/2εt

∥∥∥∥ < ∞.

Lemma 2 (Existence and uniqueness of the SE solution). Let Assumptions 1–4 hold. Then,

for all f1 ∈ Rr there exist unique strictly stationary and ergodic causal solutions {ft}t∈Z
and {yt}t∈Z to equations (1) and (6) if and only if ∥B∥ < 1 for all θ ∈ Θ.

The last condition in Lemma 2 imposes a restriction on the parameter space Θ. The

condition is the same as for linear models since, although the filter equation (6) can be

nonlinear in ft, the updating equation (7) as a data generating process is always linear. In

turn, Assumption 3 restricts the stochastic properties of the innovations and implies that

the sequence {εt}t∈Z is strictly stationary and ergodic. Assumptions 2 and 4 imply that the

scaled score st has a bounded logarithmic moment. We note that Assumption 2 is further
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replaced by a stricter condition required for the identification, see Section 2.3. Below, we

show that Assumption 4 holds in a number of applications.

EXAMPLE 1 (Ctd., Gaussian model. Assumption 4). Here, we verify that Assumption 4

is fulfilled in the case of the score-driven factor model with Gaussian innovations with

covariance matrix Σ ≻ 0, i.e. εt ∼ N (0N ,Σ). We verify the existence of the logarithmic

moment by showing that there are two bounded moments which, in turn, imply the required

condition by Lyapunov’s inequality.

E
∥∥∥∥ 1

W (∥Σ−1/2εt∥, g)
1

N
Σ−1/2εt

∥∥∥∥2 = 1

N2
E
∥∥Σ−1/2εt

∥∥2 = 1

N
< ∞,

where the first equality follows since for all t W (∥Σ−1/2εt∥, g) = 1 as stated in Section 2.1.

Hence, E log+
∥∥∥ 1
W (∥Σ−1/2εt∥,g)

1
N
Σ−1/2εt

∥∥∥ < ∞ holds.

EXAMPLE 2 (Ctd., Student’s t model. Assumption 4). Let us verify Assumption 4

for the score-driven factor model with multivariate Student’s t distributed innovations with

scale matrix Σ ≻ 0, i.e. εt ∼ tν(0N ,Σ). Then

E log+
∥∥∥∥ 1

W (∥Σ−1/2εt∥, g)
1

N
Σ−1/2εt

∥∥∥∥ = E log+
∥∥∥∥ ∥Σ−1/2εt∥
NW (∥Σ−1/2εt∥, g)

Σ−1/2εt
∥Σ−1/2εt∥

∥∥∥∥
= log+

N + ν + 2

Nν
+ E log+

∥Σ−1/2εt∥
1 + ∥Σ−1/2εt∥2/ν

+ E log+
∥∥∥∥ Σ−1/2εt
∥Σ−1/2εt∥

∥∥∥∥ < ∞,

as long as ν > 0.

The examples above suggest that in many applications it is straightforward to verify

that the score has several bounded moments. Hence, by reinforcing Assumptions 2 and 4,

we can prove that the data generated by equations (1) and (6) has several moments.

Assumption 3.a. E∥εt∥k < ∞ for some k > 0.

Assumption 4.a. E
∥∥∥ 1
W (∥Σ−1/2εt∥,g)

1
N
Σ−1/2εt

∥∥∥k < ∞ with k as defined in Assumption 3.a.

Lemma 3 (Bounded moments). Let the conditions of Lemma 2 hold. If, additionally,

Assumptions 3.a and 4.a are satisfied, then the solutions to equations (1) and (6) satisfy

E∥ft∥k < ∞ and E∥yt∥k < ∞.
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EXAMPLE 2 (Ctd., Student’s t model. Assumption 4.a). For the Student’s t model, due

to the uniform boundedness of the score, we have a stronger result, i.e. supt ∥ft∥ < ∞.

Clearly,

sup
t

∥∥∥∥ 1

W (∥Σ−1/2εt∥, g)
1

N
Σ−1/2εt

∥∥∥∥ =
N + ν + 2

Nν
sup
t

∥Σ−1/2εt∥
1 + ∥Σ−1/2εt∥2/ν

< ∞,

as long as ν > 0. In turn, Assumption 3.a holds, hence E∥yt∥k < ∞, as long as ν > k.

Next, we analyze the solution to equation (6) given the data yt, not the innovations

εt as in the previous case, and also over different θ ∈ Θ which is crucial in deriving

the properties of the estimator. Moreover, in practice, the limit sequence {ft(θ)}t∈Z is

approximated by the filtered sequence {f̂t(θ, f̂1)}t∈N initialized at some value f̂1 ∈ Rr.

The chosen starting value is fixed, non-random, and is almost surely incorrect. Therefore,

for further proofs of consistency and asymptotic normality, it is important to ensure that the

choice of the initial value is irrelevant, in other words, we need to show that {f̂t(θ, f̂1)}t∈N
is ‘asymptotically SE’. The required form of stability is ensured by the filter invertibility

(Straumann & Mikosch, 2006; Wintenberger, 2013; Blasques, van Brummelen, Koopman,

& Lucas, 2022). We highlight that even under correct model specification the conditions

for the filter invertibility and stationarity are not the same (Blasques et al., 2018), hence

this notion of stability requires special treatment.

The proposition below establishes that, under certain conditions, the filtered sequence

converges exponentially almost surely (e.a.s.) to a stationary and ergodic limit sequence.

We note that the filtered sequence f̂t is defined recursively and to simplify further notation

we write the stochastic recurrence equation (SRE) in (6) as f̂t+1(θ) := ϕt(f̂t(θ),θ) where

ϕt(·) : Rr × Θ → Rr is a random function ∀t ∈ N. We further denote as ϕ
(p)
t ( · ,θ) a

function that represents a p-fold backward iterate of the dynamic system. For example,

ϕ
(3)
t (f ,θ) := ϕt(ϕt−1(ϕt−2(f ,θ),θ),θ).

Assumption 5. {yt}t∈Z is strictly stationary and ergodic (SE).

Proposition 1 (Properties of the filter). Let Assumption 5 be satisfied. Moreover, let the

following conditions hold

(i) E log+ sup
θ∈Θ

sup
f∈Rr

∥∥∥∥∂ϕt(f ,θ)

∂f

∥∥∥∥ < ∞;
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(ii) E log+ sup
θ∈Θ

∥ϕt(f ,θ)∥ < ∞ for some f ∈ Rr;

(iii) E log sup
θ∈Θ

sup
f∈Rr

∥∥∥∥∥∂ϕ(p)
t (f ,θ)

∂f

∥∥∥∥∥ < 0 for some integer p ≥ 1.

Then, the sequence {f̂t(θ)}t∈N initialized at some starting value f̂1 ∈ Rr converges expo-

nentially almost surely (e.a.s.) to a unique strictly stationary and ergodic (SE) solution

{ft(θ)}t∈Z to equation (6) uniformly over Θ. We have

sup
θ∈Θ

∥f̂t(θ)− ft(θ)∥
e.a.s.−−−→ 0 as t → ∞.

Proof. Proposition 3.12 in Straumann & Mikosch (2006). ■

Condition (iii) in Proposition 1 is the so-called contraction condition. The contraction

condition is usually employed for p = 1, i.e. E log supθ∈Θ supf∈Rr ∥B + A∂st(f ,θ)
∂f

∥ < 0,

see, for example, Blasques, van Brummelen, Koopman, & Lucas (2022). However, for

multivariate dynamic systems with r > 1 this contraction condition is restrictive and is

rarely satisfied, see, for example, the discussion in Pötscher & Prucha (1997, Chapter 6.4).

Therefore, we instead verify that the contraction condition holds for the p-th iterate.

For our main examples, below, we discuss extensively condition (iii) and verify condi-

tions (i) and (ii) of Proposition 1 in the Supplementary Appendix A.

EXAMPLE 1 (Ctd., Gaussian model. Contraction condition). For the Gaussian model,

the contraction condition for p = 1 takes the form log supθ∈Θ ∥B−A∥ < 0, which is implied

by supθ∈Θ ∥B −A∥ < 1. Here, due to the fact that matrices A and B are diagonal and the

updating equation is linear in ft(θ), the contraction condition is easily satisfied for p = 1

as long as the parameter space Θ is compact. We also note that the condition required for

the filter invertibility turns out to be stronger than the condition required for the existence

of the SE solution in Lemma 2. Furthermore, it can be shown, using a similar argument

as in the proof of Lemma 2, that for the Gaussian model the contraction condition is both

necessary and sufficient for the filter to be invertible since the updating equation is linear

in ft(θ).

EXAMPLE 2 (Ctd., Student’s t model. Contraction condition). For the model with
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Student’s t innovations, the contraction condition for p = 1 becomes

E log sup
θ∈Θ

sup
f∈Rr

∥∥∥∥B +
1

W (∥ỹt∥, ν)
A×

(
2

ν
(
1 + ∥ỹt∥2

ν

)( 1

N
Λ⊤Σ−1Λ

)−1

× 1

N
Λ⊤Σ−1 (yt −Λf) (yt −Λf)⊤Σ−1Λ− Ir

)∥∥∥∥ < 0.

Therefore, as long as Θ is compact, for supθ∈Θ ∥B∥ < 1 and sufficiently small elements of

A, the contraction condition (iii) might hold. However, for r > 1, this parameter region is

still very restrictive and is barely satisfied in practice. For p > 1 the contraction condition

is likely to hold, the system can still be ‘stable’.

For p > 1, an analytical expression of the contraction condition is cumbersome to

analyze. Hence, in practice, as in Blasques, Francq, & Laurent (2022) and Blasques, van

Brummelen, Gorgi, & Koopman (2022), for the Student’s t model, we suggest verifying

the contraction condition for a sufficiently large p using a feasible invertibility condition

introduced in Blasques et al. (2018).

We complete this subsection with a lemma that ensures the existence of bounded mo-

ments uniformly over Θ of the limit sequence ft(θ) of the filter that is formulated in terms

of the data yt rather than in terms of the innovations εt. The lemma is useful for es-

tablishing the theoretical properties of the estimator, such as consistency and asymptotic

normality. We note that the result can be obtained under two different sets of conditions

depending on whether the score is bounded or not.

Lemma 4. Let all the assumptions and conditions of Proposition 1 hold. If, furthermore,

there exists k > 0 such that

(i.A) E supθ∈Θ supf∈Rr ∥st(f ,θ)∥k < ∞;

(ii.A) supθ∈Θ sup(y,f)∈RN×Rr

∥∥∥∂ϕt(f ,θ)
∂f

∥∥∥ < 1;

then, the filter limit sequence as defined in Proposition 1 satisfies E supθ∈Θ ∥ft(θ)∥k < ∞.

If, in addition or alternatively,

(ii.B) there exists a constant d̄ > 0 such that supθ∈Θ supt ∥st(ft,θ)∥ < d̄ < ∞;

(ii.B) supθ∈Θ ∥B∥ < 1;
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then, the filter limit sequence as defined in Proposition 1 satisfies supt supθ∈Θ ∥ft(θ)∥k < ∞.

The first set of assumptions (i.A)− (ii.A) is a standard and general set of assumptions

for establishing bounded moments of the filter in a score-driven framework. However, for

multivariate nonlinear models, condition (ii.A) can be very restrictive, which is similar to

the issue with the contraction condition discussed above. However, as long as the score is

uniformly bounded in t (condition (i.B)) and condition (ii.B) holds, the factors possess

moments of any order.

EXAMPLE 2 (Ctd., Student’s t model. Condition (ii.B)). First, we rewrite the expres-

sion for the score st as follows

st(θ) := s(yt,ft(θ),θ) =
N + ν + 2√

ν

(
1

N
Λ⊤Σ−1Λ

)−1
1

N
Λ⊤Σ−1/2

× Σ−1/2(yt −Λft(θ))/
√
ν

1 + (yt −Λft(θ))⊤Σ−1(yt −Λft(θ))/ν

=
N + ν + 2√

ν
P

1

N
Λ⊤Σ−1/2 xt

1 + x⊤
t xt

,

where xt := Σ
−1/2(yt−Λft)/

√
ν. We notice that as ∥xt∥ → 0 or as ∥xt∥ → ∞, ∥st∥ → 0

since Θ ⊆ Rq and xt ∈ RN as long as ∥P ∥ < ∞, Σ ≻ 0 and 0 < ν < ∞. Therefore,

the score sequence is uniformly bounded, i.e. supt ∥st(θ)∥ < d̄(θ) < ∞ for all θ ∈ Θ. We

further obtain supθ∈Θ supt ∥st(θ)∥ < d̄ < ∞ as long as the parameter space Θ is compact.

2.3 Identification conditions

In factor models, loadings and factors are not separately identifiable, meaning that they

are subject to a rotational indeterminacy problem. There are several ways of imposing

restrictions on the loadings and covariance structure of the factors to resolve the rotational

indeterminacy problem. Here, we focus on those discussed in Bai & Li (2012), as they are

widely used in factor analysis. Furthermore, we discuss the implications of these restrictions

on the score-driven updating equations. The conditions are listed in Table 1. We proceed

with discussing these conditions in more detail.

IC1. Condition (IC1) requires the upper r × r block of the matrix of loadings to be

equal to the identity matrix while the lower (N − r)× r block is unrestricted. Essentially,
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Table 1: Standard identification restrictions in static factor models.

Restrictions on Covft Restrictions on Λ

IC1 Unrestricted Λ = (Ir,Λ
⊤
B)

⊤

IC2 Covft = diagonal Λ = (Λ⊤
A,Λ

⊤
B),

where ΛA is an r × r lower triangular
matrix with 1s on the diagonal

IC3 Covft = Ir Λ⊤ = (Λ⊤
A,Λ

⊤
B)

⊤,
where ΛA is an r × r lower triangular
matrix with non-zero diagonal elements

IC4 Covft = diagonal 1
NΛ

⊤Σ−1Λ = Ir
(with distinct elements)

IC5 Covft = Ir 1
NΛ

⊤Σ−1Λ = diagonal
(with distinct elements)

Based on the paper Bai & Li (2012).

this means that the first r factors are measured in terms of the units of the first r series.

Additionally, for the upper block, it implies that the first factor is uncorrelated with series

2, . . . r, the second factor is uncorrelated with series 1, 3, . . . r, and so on.

The advantage of (IC1) is that no additional restrictions need to be imposed on the

factors. For example, factors are allowed to be correlated, oblique factors, making standard

estimation methods, such as maximum likelihood, applicable. However, this restriction

makes the model not invariant to the ordering of the series. This may lead to a lack

of model interpretation and even to an incorrectly specified model. For example, setting

λ11 = 1 to meet the restriction may not be appropriate when in the true process λ11 = 0.

Furthermore, it can be desirable to conduct inference on the loadings which in this setting

would not be possible for the restricted loadings. This problem is in some sense similar

to the normalization of the cointegrating vector problem, see Hamilton (1994, Chapter

20). Chan et al. (2018) also discuss the lack of invariance problem in application to factor

models in a Bayesian setup.

IC2 & IC3. This type of restriction is adopted by Creal et al. (2014) who introduced the

first score-driven factor model for summarizing the co-movements between macroeconomic

and financial time series in a few factors. Compared to (IC1), conditions (IC2) and (IC3)

impose less restrictions on the matrix of loadings. Intuitively, these conditions allow for

more flexibility, as the first factor is allowed to be correlated with all the series, the second

factor to be correlated with all but the first series, and so on. However, these identification
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conditions are also not order-invariant. Moreover, the relaxation of the restrictions comes

at the cost of restricting the covariance matrix of the factors to be diagonal or even the

identity matrix. We also note that, although Creal et al. (2014) adopt this restriction, they

do not discuss the restrictions on Cov(ft) which is required for identification.

Due to the lack of invariance, we do not further proceed with restrictions (IC1)–(IC3).

IC4 & IC5. In turn, conditions (IC4) and (IC5), the so-called orthogonality restric-

tions, are order-invariant. However, they also impose restrictions both on the factors and

loadings. To proceed with the model formulation, we, first, consider the model-implied

structure of the covariance matrix Cov(ft) under these restrictions assuming the correct

model specification.

Lemma 5. Let all the assumptions and conditions of Lemma 3 hold for k = 2. Further-

more, let the parameter space Θ satisfy the identification condition (IC4) on the loadings,

i.e. 1
N
Λ⊤Σ−1Λ = Ir, and a stochastic process {ft(θ0)}t∈Z be generated by a score-driven

model (1) and (6) with θ0 ∈ Θ. Then,

Cov(ft(θ0)) =
(
Ir −B2

)−1 E

[(
∥ε̃t∥

NW (∥ε̃t∥, g)

)2
]
A2, (8)

Cov(ft+h(θ0),ft(θ0)) = B
hCov(ft), (9)

Cov(ft+h(θ0), εt) = AB
h−1Λ⊤E

[
∥ε̃t∥2

N2W (∥ε̃t∥, g)

]
, (10)

with ε̃t := Σ
−1/2εt.

Given that matricesA andB are diagonal, the restriction on the loadings and updating

equations for the factors imply that Cov(fmt, fkt) = 0 for all m ̸= k. In other words,

the orthogonality restriction on the loadings and the model formulation guarantee that

Cov(ft) is diagonal. Therefore, if the unconditional variances of the factors differ between

the factors, the restriction on the covariance structure of ft is fulfilled by design, and we

only need to ensure that 1
N
Λ⊤Σ−1Λ = Ir, which is an order-invariant restriction.

Corollary 1. Let all the assumptions and conditions of Lemma 3 hold for k = 2 and let

matrix 1
N
Λ⊤Σ−1Λ be diagonal (restriction (IC5) on the loadings). If a stochastic process
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{ft(θ0)}t∈Z is generated by a score-driven model (1) and (6) with θ0 ∈ Θ, then, for the

restriction on the covariance matrix of the factors in (IC5) to be satisfied, the following

condition must hold

(
Ir −B2

)−1 E

[(
∥ε̃t∥

NW (∥ε̃t∥, g)

)2
](

1

N
Λ⊤Σ−1Λ

)−1

A2 = Ir.

Therefore, by imposing restrictions on the matrix of loadings we guarantee that Cov(ft)

is diagonal. However, for Cov(ft) to be identity we need additional restrictions on the

parameter space.

Remark. Both under (IC4) and (IC5):

– Λ and ft are identified up to a column sign change;

– in general, the order of the factors and of the columns of matrix Λ are identified

up to a relabeling. For example, we can always redefine f̃1t = f2t, f̃2t = f1t and

Λ̃1 = Λ2, Λ̃2 = Λ1. That is why, by requiring in (IC4) and (IC5) matrices Covft and
1
N
Λ⊤Σ−1Λ to have distinct diagonal elements with decreasing order of magnitude,

the ordering issue is resolved.

To sum up, given the generality, order-invariance and simplicity of the condition (IC4),

we conclude that (IC4) is the most suitable condition for an order-invariant score-driven

factor model. Then, the score-driven factor model with elliptically distributed innovations

takes the following form

yt =
r∑

j=1

Λjfjt + εt, εt ∼ EN(0,Σ, g), (11)

ft+1 = A
1

W (∥ỹt∥, g)
1

N
Λ⊤Σ−1 (yt −Λft) +Bft, (12)

with the static parameters as defined in Section 2.1.

Model (11)–(12) will be the baseline model in our further discussion. We call this model

an order-invariant score-driven dynamic factor model. Below, we present the updating

equation for our main examples under (IC4).
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EXAMPLE 3 (Gaussian and Student’s tmodels. Updating equation for common factors).

For the Gaussian and Student’s t models, the updating equation for the dynamic factor ft

is given by

ft+1 = A
1

Wt

(
1

N
Λ⊤Σ−1yt − ft

)
+Bft,

where for the Gaussian model Wt = 1 and for the Student’s t model Wt = ν
(N+ν+2)

(1 +

(yt−Λft)⊤Σ−1(yt−Λft)
ν

).

2.4 Model extensions

2.4.1 Score-driven group-factor model

A factor model with group-factor structure is a special case of the standard factor model.

In this model, not all the factors are common to all the series but rather there are some

common factors as well as group-specific ones. The observation equation, in vector form,

remains unchanged, however, the matrix of loadings has some elements set to zero. For

example, in the case of c = 2 groups, the matrix of loadings has the following structure

Λ =

Λ11 Λ21 0K

Λ12 0N−K Λ32

 ,

where K is the number of series in group 1.

Since Σ is diagonal, the identifying restriction 1
N
ΛTΣ−1Λ = Ir can be split into c

orthogonality constraints with c being the number of groups. For c = 2, we have

1

K

Λ11

Λ21

Σ−1
K×K

[
Λ11 Λ21

]
= Irc+r1 ,

1

N −K

Λ12

Λ32

Σ−1
N−K×N−K

[
Λ12 Λ32

]
= Irc+r2 ,

where Σ := diag(ΣK×K ,Σ(N−K)×(N−K)), rc is the number of common factors and ri with

i = {1, 2} denotes the number of group-specific factors corresponding to group i, hence,

the total number of factors is r = rc + r1 + r2.
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Combining these two restrictions we obtain

1

N
Λ⊤Σ−1Λ =


Irc 0 0

0 K
N
Ir1 0

0 0 N−K
N
Ir2

 . (13)

Restriction (13) is a modified version of the (IC4) orthogonality restriction. Intuitively,

this restriction accounts for the fact that all the series are subject to the common factor,

K/N proportion of the series is subject to the first group-specific factor, and (N −K)/N

proportion of the series is subject to the second group-specific factor.

Given restriction (13), the updating equation for the common factors remains un-

changed. For the group-specific factors, the updating equations are adapted as follows

f j
t+1 = Aj

1

W (∥ỹt∥, g)
1

Kj

Λ⊤
j Σ

−1 (yt −Λft) +Bjf
j
t ,

where j = 1, . . . , c and Kj corresponds to the number of series in group j. We notice that

the updating equation takes into account the fact that only the proportion of the series is

related to the corresponding group-specific factor. Below, we state the updating equations

for the group-specific factors for the Student’s t model.

EXAMPLE 4 (Gaussian and Student’s t models. Updating equations for group-specific

factors). For a group-factor model with Student’s t innovations, the group-specific factor j

is updated as follows

f j
t+1 = Aj

(N + ν + 2)

ν

1

Wt

(
1

Kj

Λ⊤
j Σ

−1yt − ft
)
+Bjf

j
t ,

with Wt as defined in Example 3.

2.4.2 Temporal dependence in the innovation term

In practice, Assumption 3 of the i.i.d. innovations can be very restrictive. Intuitively, it

means that all the dynamic effects in the time series are only due to common factors, but

excludes the possibility of individual time series having their own dynamic effects. We relax
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this assumption and allow {εt}t∈Z to follow a restricted AR(1) process, i.e.

εt+1 = ρεt + ut, ut ∼ EN(0,Ω, g), t = 1, . . . , T.

Applying the lag operator (1− ρL) to the original model equations, this implies that

yt = ρyt−1 +Λf
⋆
t + ut,

ft = f
⋆
t + ρft−1, (14)

where the vector of innovations ut is i.i.d.

Hence, model (11)–(12) can be rewritten in the following form

yt = ρyt−1 +Λf
⋆
t + ut, ut ∼ EN(0,Ω, g), t = 1, . . . , T,

f ⋆
t+1 = A

1

W (∥ỹ⋆
t ∥, g)

1

N
Λ⊤Ω−1 (y⋆

t −Λf ⋆
t ) +Bf

⋆
t , (15)

with y⋆
t := yt − ρyt−1 and ỹ⋆

t := Ω−1/2(y⋆
t −Λf ⋆

t ).

Given the relation between ft and f
⋆
t , we can recover ft itself using (14) or as follows

ft+1 =A
1

W (∥ỹ⋆
t ∥, g)

1

N
Λ⊤Ω−1[(yt −Λft)− ρ (yt−1 −Λft−1)]

+ (B + ρIr)ft − ρBft−1.

Similar to the discussion in Section 2.2, in practice, the filtered sequence {f̂ ⋆
t (θ)}t∈N is

defined recursively using the SRE (15). Clearly, under certain conditions, Proposition 1

ensures that the sequence {f̂ ⋆
t (θ)}t∈N converges e.a.s. and uniformly over Θ to a limit

sequence {f ⋆
t (θ)}t∈Z that is strictly stationary and ergodic. Then, as the corollary below

states, under additional assumptions on the parameter space Θ, it follows that the filter

for the dynamic common factor {f̂t(θ)}t∈N itself converges e.a.s. and uniformly to an SE

limit sequence {ft(θ)}t∈Z.

Corollary 2 (Properties of the filter). Let {f̂ ⋆
t (θ)}t∈N be a solution to SRE (15). Let

all the assumptions and conditions of Proposition 1 hold, then the sequence {f ⋆
t (θ)}t∈N

converges e.a.s. and uniformly to a unique SE solution {f ⋆
t (θ)}t∈Z to equation (15). If,
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furthermore, supθ∈Θ |ρ| < 1, then the sequence {ft(θ)}t∈N converges e.a.s. and uniformly

to a unique SE solution {ft(θ)}t∈Z to equation (14).

3 Estimation

Parameters of observation-driven models can be estimated by maximum likelihood which

in our case would imply

θ̂T = argmax
θ∈Θ

1

T

T∑
t=2

lt(θ)

:= argmax
θ∈Θ

1

T

T∑
t=2

(
−1

2
log |Σ|+ log g

(
(yt −Λft)⊤Σ−1(yt −Λft)

))
,

where θ = ((diagΣ)⊤, vec(Λ)⊤, diagA⊤, diagB⊤,ν⊤)⊤ and g(·) is a density generator that

can correspond to, for example, Gaussian or Student’s t distributions.

However, as discussed in Section 2.3, in factor models, special attention should be

devoted to parameter identification which is crucial for estimation. Therefore, we start our

discussion with formulating the conditions required for the model identification and then

turn to the detailed discussion of the estimation procedure.

3.1 Parameter identifiability

We begin this section with the summary of the conditions imposed on the parameter space

Θ. In particular, the parameter space Θ is such that

A. matrices A and B are diagonal with ∥B∥ < 1;

B. the scale matrixΣ is diagonal with elements 0 < c ≤ σ2
i ≤ c̄ < ∞ for all i = 1, . . . , N .

As discussed in the previous section, the conditions above ensure the existence of the SE

solutions with two bounded moments. Next, we summarize the conditions on the parameter

space that guarantee identification. For this, we introduce a restricted parameter set Θ̃,

which is a subset of the original set Θ, i.e. Θ̃ ⊆ Θ, subject to the following restrictions:

C. 1
N
Λ⊤Σ−1Λ = Ir;
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D. the covariance matrix K := Cov(ft) has distinct elements on the diagonal, with

Cov(ft) as specified in equation (8);

E. if any row of matrix Λ is deleted, the remaining matrix can be partitioned into two

disjoint submatrices of rank r.

Conditions A-D ensure that (IC4) is satisfied, importance of which is extensively dis-

cussed in Section 2.3. Condition E comes from the statistical factor model literature, and it

guarantees the identification of the variance of the common and idiosyncratic components

(Anderson et al., 1956). The proposition below establishes parameter identification under

the assumptions and conditions stated above.

Proposition 2 (Identification for correctly specified models). Let all the assumptions and

conditions of Lemma 3 hold for k = 2. Furthermore, let the parameter space Θ̃ satisfy

conditions A–E and let the observed data y = (y1, . . . ,yT ) be a subset of a stochastic

process {yt(θ0)}t∈Z generated by a score-driven model (11)–(12) and with θ0 ∈ Θ̃. Then,

θ0 is set identifiable.

If, in addition, parameter space Θ̃ is such that the sign(λik) is known for some i = 1, . . . , N

and for all k = 1, . . . , r, then θ0 is identifiable meaning that it is not observationally

equivalent to any other parameter θ ∈ Θ̃, i.e. p(y;θ) ̸= p(y;θ0) for all θ ̸= θ0 and some

y in a set of non-zero probability.

3.2 Estimation procedure

Given conditions A–E on the parameter space Θ̃, several constraints are imposed on the

parameters. Particularly, condition C imposes a nonstandard nonlinear constraint, making

standard constrained optimization inapplicable. Therefore, to ensure that the constraint

is fulfilled we resort to optimization on a Stiefel manifold. The Stiefel manifold defines

a set of matrices X that satisfy an orthogonality constraint, i.e. X⊤X = Ir. For an

introduction to manifolds, see Edelman et al. (1998); Boumal (2023). The details on

Python implementation can be found in Townsend et al. (2016).

Standard optimization methods, like gradient descent, are not available when carrying

out optimization on manifolds since manifold space is nonlinear. Therefore, the existing
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optimization methods on manifolds exploit the idea of moving in the direction of the tangent

space while remaining on the manifold. In other words, given an initial ‘guess’, the search

continues along the tangent direction and a retraction map ensures that the next search

point remains on the manifold.

Hence, to fulfill condition C, we restrict matrix X := 1√
N
Σ−1/2Λ to lie on the Stiefel

manifold. Further restrictions on the loadings, such as those implied by economic theory,

can be imposed by using the approach introduced by Liu & Boumal (2020). The remaining

parameters diagA, diagΣ and ν are reparameterized to ensure the positivity constraints

but, in general, they do not require constrained optimization, hence their reparameterized

counterparts lie on a Euclidean manifold. Since the Cartesian product of manifolds forms a

manifold (Boumal, 2023, Proposition 3.14), in practice, the whole optimization problem is

still an optimization on a manifold. In the next subsection, we further discuss the properties

of the estimator.

3.3 Asymptotic properties of the constrained estimator

In this section, we establish the consistency and asymptotic normality of the constrained

ML estimator. We note that, as typical for score-driven models, the log-likelihood func-

tion depends on the filtered sequence {f̂t(θ)}t∈N. Hence, first, we define the empirical

average log-likelihood based on the filtered sequence {f̂t(θ)}t∈N and on the limit sequence

{ft(θ)}t∈Z, respectively, as follows

L̂T (θ) :=
1

T

T∑
t=2

l̂t (θ) =
1

T

T∑
t=2

l(yt, f̂t(θ),θ),

LT (θ) :=
1

T

T∑
t=2

lt (θ) =
1

T

T∑
t=2

l (yt,ft(θ),θ) . (16)

It is also important to highlight that the loadings and factors are identified up to a sign

change, hence the limit criterion function has two global maxima. This implies that one of

the conditions, identifiable uniqueness, required for the consistency of an M-estimator to a

single point is clearly violated. However, it is possible to establish the consistency of the

estimator towards the set of the maximizers of the limit criterion function L∞(θ) := E[lt(θ)]

(Pötscher & Prucha, 1997). Alternatively, to ensure the consistency towards the point, one
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can impose restrictions on the sign of one of the rows of the matrix of loadings as in

Proposition 2.

Assumption 6. The parameter space Θ is compact.

Assumption 7. supθ∈Θ

∣∣∣l̂t(θ)− lt(θ)
∣∣∣ e.a.s.−−−→ 0 as t → ∞.

Assumption 8. E supθ∈Θ

∣∣∣log g((yt −Λft(θ))⊤Σ−1 (yt −Λft(θ)))
∣∣∣ < ∞.

Theorem 1 (Consistency of the constrained ML under correct model specification). Let the

assumptions and conditions of Propositions 1 and 2 hold. Furthermore, let Assumptions 6–

8 be satisfied. Then, the constrained ML estimator θ̂T is strongly consistent to Θ⋆
0 for any

filter initialization f̂1 ∈ Rr,

θ̂T
a.s.−−→ Θ⋆

0 as T → ∞,

where Θ⋆
0 = argmaxθ∈Θ̃ L∞(θ).

If, parameter space Θ̃ is such that the sign(λik) is known for some i = 1, . . . , N and for all

k = 1, . . . , r, then the constrained ML estimator θ̂T is strongly consistent to θ0.

Assumption 7 essentially ensures that the filter initialization has a negligible effect on

the empirical likelihood. As we show below, the filter invertibility will be sufficient for

this assumption to hold. In turn, Assumption 8 ensures that the log-likelihood function

is bounded, hence it allows application of the ergodic law of large numbers in the proof.

We verify the assumptions for the Gaussian model in the Supplementary Appendix A.1.

Below, we verify that the assumptions of the Theorem 1 hold for the Student’s t model.

EXAMPLE 2 (Ctd., Student’s t model. Assumptions 7 and 8). First, we verify that

Assumption 8 holds for the score-driven model with Student’s t innovations. We have

E sup
θ∈Θ

∣∣∣log g ((yt −Λft(θ))⊤Σ−1 (yt −Λft(θ))
)∣∣∣

≤ sup
θ∈Θ

∣∣∣∣log Γ(N + ν

2

)∣∣∣∣+ sup
θ∈Θ

∣∣∣log Γ(ν
2

)∣∣∣+ N

2
sup
θ∈Θ

|log(νπ)|

+ sup
θ∈Θ

N + ν

2
E sup

θ∈Θ

∣∣∣∣∣log
(
1 +

(yt −Λft(θ))⊤Σ−1 (yt −Λft(θ))
ν

)∣∣∣∣∣ < ∞.
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The first three terms are bounded as long as 0 < ν < ∞ since the parameter space Θ is

compact (Assumption 6). For the last term we have that

E sup
θ∈Θ

∣∣∣∣∣log
(
1 +

(yt −Λft(θ))⊤Σ−1 (yt −Λft(θ))
ν

)∣∣∣∣∣
≤ E sup

θ∈Θ

∣∣∣∣∣(yt −Λft(θ))⊤Σ−1 (yt −Λft(θ))
ν

∣∣∣∣∣
≤ sup

θ∈Θ

1

ν
E sup

θ∈Θ

∥∥Σ−1/2 (yt −Λft(θ))
∥∥2

≤ sup
θ∈Θ

1

ν
sup
θ∈Θ

∥Σ−1∥
(
crE ∥yt∥2 + cr sup

θ∈Θ
∥Λ∥2E sup

θ∈Θ
∥ft(θ)∥2

)
, (17)

where in the last line we used the Loève’s cr inequality. Given the correct model specifica-

tion, by Lemma 3 E∥yt∥2 < ∞ as long as Σ ≻ 0 and ν > 2. By Lemma 4, for the filter

limit sequence we also have E supθ∈Θ ∥ft(θ)∥k < ∞ for any k. Hence, given the conditions

on the parameter space stated in Section 3.1, the whole expression in (17) is bounded.

Now, we turn to Assumption 7. By the mean-value theorem, we have

sup
θ∈Θ

∣∣∣l̂t(θ)− lt(θ)
∣∣∣ ≤ sup

θ∈Θ
sup
f∈Rr

∥∥∥∥∂lt(f ,θ)∂f

∥∥∥∥ sup
θ∈Θ

∥∥∥f̂t(θ)− ft(θ)∥∥∥ .
The sequence

{
supθ∈Θ supf∈Rr

∥∥∥∂lt(f ,θ)
∂f

∥∥∥}
t∈Z

is SE since it is a continuous function of

yt, which by Lemma 2 given Assumptions 3 and 4 and conditions A-C is SE. Since by

Proposition 1 the filter is uniformly invertible, supθ∈Θ ∥f̂t(θ) − ft(θ)∥
e.a.s.−−−→ 0 as t → ∞,

by Lemma 2.1 in Straumann & Mikosch (2006), supθ∈Θ

∣∣∣l̂t(θ)− lt(θ)
∣∣∣ e.a.s.−−−→ 0 as t → ∞

as long as the SE sequence
{
supθ∈Θ supf∈Rr

∥∥∥∂lt(f ,θ)
∂f

∥∥∥}
t∈Z

has a logarithmic moment. The

latter follows since we have

E log+ sup
θ∈Θ

sup
f∈Rr

∥∥∥∥∥∂ log g((yt −Λf)⊤Σ−1 (yt −Λf))
∂f

∥∥∥∥∥
= E log+ sup

θ∈Θ
sup
f∈Rr

∥∥∥∥2N + ν

ν
ΛTΣ−1 (yt −Λf)

1 + (yt −Λf)⊤Σ−1(yt −Λf)/ν

∥∥∥∥
≤ log+ sup

θ∈Θ

2(N + ν)√
ν

+ log+
√
N + E log+ sup

θ∈Θ
sup
f∈Rr

∥∥∥∥ Σ−1/2(yt −Λf)/
√
ν

1 + (yt −Λf)⊤Σ−1(yt −Λf)/ν

∥∥∥∥ .
(18)
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The first term in the expression above is bounded since the parameter space Θ is compact

as long as 0 < ν < ∞. Let us now consider the term vt(θ) =
xt(θ)

1+xt(θ)⊤xt(θ)
, where xt(θ) :=

Σ−1/2(yt − Λf)/
√
ν. Clearly, for all θ ∈ Θ, as ∥xt(θ)∥ → 0 or ∥xt(θ)∥ → ∞ we have

∥vt(θ)∥ → 0. Therefore, the last term in (18) is uniformly bounded in (yt,f). Since

parameter space Θ is compact (Assumption 6), we have that E supθ supf∈Rr ∥vt(θ)∥ < ∞.

We complete this section with the asymptotic distribution of the ML estimator. First,

we state the high-level assumptions required for the proof of the theorem.

Assumption 9. θ0 ∈ int(Θ).

Assumption 10. ∥∇θθLT (θ̂T ) − I(θ0)∥
P−→ 0 as T → ∞, where I(θ) := E

[
∂2lt(θ)
∂θ∂θ⊤

]
and

∇θθLT (θ) :=
∂2LT (θ)
∂θ∂θ⊤ .

Assumption 11. For the derivative of the filter we have ∥f̂ ′
t(θ0) − f ′

t(θ0)∥
e.a.s.−−−→ 0 as

t → ∞, where {f ′
t(θ0)}t∈Z is a limit sequence which is unique and SE.

Assumption 12.
∥∥∥∂l̂t(θ0)

∂θ
− ∂lt(θ0)

∂θ

∥∥∥ e.a.s.−−−→ 0 as t → ∞.

Assumption 13. The following moment conditions hold:

(i) E
∥∥∥∂lt(ft(θ0),θ0)

∂θ

∥∥∥2 < ∞;

(ii) E log+ supf∈Rr

∥∥∥∂2lt(f ,θ0)
∂f∂f⊤

∥∥∥ < ∞;

(iii) E
∥∥∥∂lt(ft(θ0),θ0)

∂f

∥∥∥δ < ∞ for some δ > 0 and E ∥f ′
t(θ0)∥

n < ∞ with n ≥ 2δ
2−δ

.

Theorem 2 (Asymptotic normality of the constrained ML estimator). Let the assumptions

and conditions of Theorem 1 hold. Furthermore, let Assumptions 9–13 be satisfied. Then,

for any filter initialization f̂1 ∈ Rr, the constrained ML estimator θ̂T satisfies

√
T (θ̂T − θ0)

d−→ N (0q,PV P ) as T → ∞,

where P :=H−1−H−1Q(Q⊤H−1Q)−1Q⊤H−1,H(θ0) := I(θ0)+Q(θ0)Q
⊤(θ0), V (θ0) :=

E[l′t(θ0)l′t(θ0)⊤], I(θ0) := E[l′′t (θ0)], and Q(θ0) := ∇θC(θ0)
⊤ with C(θ) collecting the

stacked (IC4) constraints on the loadings.
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The proof of this theorem and explicit expressions for all the matrices stated above are

provided in the appendices. In appendices, we verify all the conditions of the theorem for

our main examples. Specifically, for Gaussian and Student’s t models, we verify Assump-

tions 10 and 11 which results in Lemmas SB.3 and SB.4, respectively. For the examples,

Assumption 12 is verified in the Supplementary Appendix A. Finally, Assumption 13 holds

given the result in Lemmas SB.5 and SB.6 together with the assumption of two bounded

moments required by Proposition 2.

4 Monte Carlo simulations

In this section, we assess the finite sample properties of the constrained maximum likelihood

estimator and how well the score-driven filter captures the dynamics of the factors. We

consider a simulation design where the data generating process (DGP) is either Gaussian

or Student’s t score-driven factor model. Additional Monte Carlo simulation setups and

results are presented in the Supplementary Appendix D.

4.1 Simulation design

As a DGP, we use Gaussian and Student’s t score-driven dynamic factor models, i.e. εt ∼

N (0N ,Σ) or εt ∼ tν(0N ,Σ), given by equations (11) and (12). In the simulations, we set

the values of the static factors’ parameters to αk = βk = 0.9 − 0.1 × (k − 1). That is, in

case of r = 3 the values of the parameters considered for the simulations are as follows

A = diag(0.9, 0.8, 0.7), B = diag(0.9, 0.8, 0.7).

The choice of the parameter values ensures that matrix Cov(ft) has distinct elements on

the diagonal with a decreasing order of magnitude, required for the identification. For the

idiosyncratic errors, we consider Σ = diag(σ2
1, . . . , σ

2
N) with σ2

i ∼ U([0.1, 1.1]) and, in the

case of the Student’s t factor model, we set ν = 5.

The matrix of loadings is generated from a standard normal distribution. The loadings

are further rotated to satisfy condition C, which is 1
N
Λ⊤Σ−1Λ = Ir. Due to the rotation,

the final values of matrix Λ used for generating the time series vary between different
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simulation setups with different values of r and/or N . As a result, the experiments with

different values of N and r are not directly comparable, but the experiments with different

values of T are directly comparable.

In the simulations, we consider different values of N , T , and r, namely, N = {10, 20},

T = {300, 500, 1000}, and r = {1, 2, 3}. Throughout the simulation study, the number of

replications is set to 1000. In all the experiments, the number of factors is assumed to be

known.

We emphasize that the identification of the factors and loadings is up to a sign and

relabeling, as stated in Remark 2.3. Therefore, in the simulations, the signs of the estimated

factors and loadings are defined such that the correlation coefficient between the estimated

and simulated factors is positive. The order, label, of the factors is defined based on the

sample unconditional variance of the factors, so that the covariance matrix of the factors

has decreasing elements on the diagonal. This is done merely for presenting the precision

metrics for each of the factors separately, instead of using canonical correlation (Frobenius

norm) metrics. We do not use canonical correlation metrics because we are specifically

interested in assessing the ability of the filter to identify each of the factors separately. We

note that the labeling of the factors and loadings is subject to the estimation uncertainty,

and as a result, there can be an additional variation in the parameter estimates due to the

uncertainty in the labeling.

Below, we present the results for Gaussian models. The results for the Student’s t

model as well as further details can be found in the Supplementary Appendix D. We note

that with an increase in N and/or r the number of the loadings increases substantially.

Therefore, a good choice for the starting values of the parameters is important for the

convergence of the optimization procedure. We propose to initialize the matrix of loadings

using the PCA estimates.

4.2 Simulation results

In Figures 1 and 2 we present the simulation results for Gaussian model for a cross-sectional

sizes N = 10 and N = 20, respectively. The goal is to assess the performance of the score-

driven filter for extracting the factors. This is done by demonstrating the kernel density
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plots for the root mean squared error (RMSE) of the estimated factors, for different values

of r and T . For each factor k, the RMSE is computed as

RMSE(f̂k) =

√√√√ 1

T

T∑
t=1

(
fk,t − f̂k,t

)2
, for k = 1, . . . , r,

where fk,t is the kth true, simulated, factor, while f̂k,t is the kth estimated factor. Similarly,

the kernel density of the RMSE for the loadings estimates is plotted, where RMSEs are

computed as follows

RMSE(Λ̂k) =

√√√√ 1

N

N∑
i=1

(
λi,k − λ̂i,k

)2
, for k = 1, . . . , r.

Based on the experiments, we find that overall our estimation procedure performs well.

As expected, both the factor and loading estimates improve with an increase in the size

of the sample T . We also find that the RMSEs for the factors estimates decrease with an

increase in N , while the loadings estimates are unaffected. Intuitively, as the cross-sectional

size N increases, there is more information about the factors, which leads to improvements

in the factors’ estimates. At the same time, it increases the total number of the loadings

parameters substantially which, in turn, increases the estimation uncertainty.

The RMSEs are the smallest for the first factor which is not surprising since for the

identification the order of the factors is in the decreasing order of magnitude, and hence the

first factor has the largest variation. The RMSEs for the model with r = 1 are considerably

smaller than for the model with r = 2 and r = 3 factors. This result can have two potential

explanations. The first one is that the identification is more challenging when two or more

factors are present. The second explanation is that this result can also be driven by the

relabeling issue. However, given that we do not observe several peaks in the distribution of

the RMSEs, the latter should not have a significant impact on the results. Further increase

in r does not significantly affect the results for the factors and loadings, indicating that

the estimation procedure can identify the factors separately even in the presence of several

factors.

The results for other static parameters as well as the results for the Student’s tmodel are
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Figure 1: Kernel density plots of the RMSEs for the factors and loadings. Monte
Carlo simulation results for different values of T and r, T = {300, 500, 1000} and r = {1, 2, 3}.
The DGP is a Gaussian score-driven factor model with N = 10. The top panel displays the kernel
density of the RMSE for the factors, while the bottom panel presents the results for the loadings.
The results are based on 1000 Monte Carlo replications.

presented in Supplementary Appendix D. The results in Tables SD.1–SD.4 provide further

confirmation that the estimation procedure accurately estimates the static parameters.

First, the biases are negligible for all the parameters across all the simulation setups.

Moreover, the biases and standard errors decrease with an increase in the sample size T .

5 Empirical application

In this section, we provide an empirical illustration for extracting economic activity indi-

cators from a panel of macroeconomic and financial time series with a specific focus on

analyzing the importance of the robustness features in the model. The indicators often

have a business and/or financial cycle interpretation and, hence, are of special interest

in applied work. In our empirical illustration, we analyze the co-movements between the

series and interpret the extracted factors. Given that the model is dynamic, the forecasts

and impulse response functions follow straightforwardly from the model. The indicators
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Figure 2: Kernel density of the RMSEs for the factors and loadings. Monte Carlo
simulation results. The DGP is a Gaussian score-driven factor model with N = 20. For further
details we refer to Figure 1.

can further be used to construct economic leading indicators or used as control variables

for analyzing shocks to economic indicators, see, for example, Loria et al. (2022).

5.1 Data

For our analysis, we use monthly macroeconomic and financial time series for the US

starting from January 1981 until February 2022. We follow Creal et al. (2014) and consider

the following time series: (i) the annualized industrial production growth rate (INDPRO),

(ii) the annual change in the unemployment rate (UNRATE), (iii) the spread between the

yield on Baa-rated corporate bonds and the yield on 10-year Treasury bonds (BAATB10Y),

(iv) annualized S&P500 returns (S&P500), and (v) stock market volatility (S&P500vol).

We further expand the panel by including additional macro-finance variables that are often

considered for constructing business and financial cycle indicators, see, for example, Loria

et al. (2022). Particularly, given the increasing importance of the trade and service sectors,

we append to the dataset the annual change in the log retail sales (RETAIL), logRSt −
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logRSt−12, where RSt stands for the retail sales at the end of month t. Moreover, to

capture the consumer sentiment, we include the annual change in the consumer sentiment

index constructed by the University of Michigan (UMSENTx), CSt − CSt−12, where CSt

is the consumer confidence index at the end of month t. Finally, for the finance sector,

we consider the annual change in the housing starts index (HOUSING), HSt − HSt−12,

as well as the excess bond premium (EBP) index. The EBP index is a novel time series

introduced by Gilchrist & Zakraǰsek (2012) and updated by Favara et al. (2016). It has

been recently recognized as an important time series for constructing economic coincident

indicators. The EBP index is constructed as a difference between the average of bond

credit spreads and the average of the predicted credit spreads and, intuitively, it captures

the risk appetite in the corporate bond market. For further details on the dataset, we refer

to the Supplementary Appendix E.

All the series are standardized beforehand such that the mean is equal to zero and the

standard deviation to one (Figure 3). Clearly, many time series tend to co-move together

with the degree of co-movements becoming stronger during recessions. We also notice that

the recession periods are characterized by different shapes. For example, the COVID-19

recession period has a steep decline but a rather quick recovery (V-shaped recession), while

the great recession period is characterized by a long period between the decline and recovery

(U-shaped recession). Given the difference in the shapes, for the model comparison, we

consider two different time periods: the first sample period, January 1981 – December 2011,

ends after the great recession, while the second sample period, January 1981 – February

2022, ends after the COVID-19 recession. The latter corresponds to the full sample. The

presence of the spikes at the end of the sample indicates that a model equipped with

robustness properties might be preferable for the construction of the economic indicators.

We investigate this further in the next subsections.

5.2 Model specification and parameter estimates

In our empirical analysis, we estimate parameters of the introduced Gaussian and Stu-

dent’s t score-driven factor models with AR(1) innovations as presented in Section 2.4.2

and with r = 1, 2, 3 factors, giving us a total of 6 model specifications. We do not consider
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Figure 3: Time series.

the specification with i.i.d. errors as it results in significantly worse in-sample model fit.

The optimization on manifolds is carried out using the Python package ‘Pymanopt’ devel-

oped by Townsend et al. (2016). The parameters of the Gaussian models are initialized

using PCA estimates, while the parameters of the Student’s t models are initialized at the

corresponding Gaussian model’s parameter estimates. Additionally, to avoid convergence

to local maxima, multiple starting values for the parameters are considered.

In Table 2, we report the log-likelihood and Bayesian Information Criterion (BIC)

evaluated at the parameter estimates for various model specifications. As mentioned before,

we assess the model fit over two different time periods. The results of our analysis in Table 2

suggest that for both sample periods a single factor model with AR(1) innovations provides

good fit for the data according to the log-likelihood and BIC. Moreover, we find that

regardless of the number of factors included, the BIC is always lower for the Student’s t

models than for the Gaussian ones. This indicates that the Student’s t models provide

better in-sample fit to the data compared to the Gaussian models. The differences in

the models’ fit are particularly pronounced in the full sample period, which includes the

COVID-19 recession, where the Student’s t models’ fit is almost twice better than the fit

of the Gaussian models.

Next, we examine the parameter estimates, excluding for now the loadings estimates,

which we will turn to later. In Table 3, we present the parameter estimates of the one-

factor models selected by the BIC, along with their standard errors. The standard errors are
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logL BIC

N (0,Σ) tν(0,Σ) N (0,Σ) tν(0,Σ)

Sample period 1981-2011

r = 1 -1394.18 -1130.57 2912.59 2391.29
r = 2 -1357.9 -1110.95 2905.12 2417.14
r = 3 -1325.3 -1088.1 2905.0 2436.52

Sample period 1981-2022

r = 1 -2682.74 -1460.73 5495.7 3057.87
r = 2 -2652.45 -1435.51 5503.32 3075.63
r = 3 -2629.9 -1414.76 5526.43 3102.33

Table 2: Model fit comparison: log-likelihood and BIC values for Gaussian and
Student’s t score-driven factor models with AR(1) innovations and with 1, 2,
and 3 common factors. logL denotes the maximized log-likelihood value.

calculated using the asymptotic variance expression given in Theorem 2, assuming correct

model specification. From this analysis, we find that parameter ρ estimates of the AR(1)

processes are large and significant, indicating that the innovations have a persistent and

dynamic structure. Intuitively, a model with only one common factor and i.i.d. innovations

is too simplistic to capture all the dynamics present in the time series. By incorporating a

more complex structure for the innovations, we are able to better capture the individual-

specific dynamics of each series. Moreover, the results show that the estimated degrees

of freedom parameter ν appears to be small and lower when the full sample period is

considered. This suggests that the improvement in the model’s fit documented above is

due to the robustness of the Student’s t model, especially for the full sample period which

includes the COVID-19 recession, where the gains are larger due to the V-shape of the

recession.

The results in Table 3 also indicate that the estimates of the static parameters of the

Student’s t model are relatively stable across different sample periods, while the parameter

estimates of the Gaussian model are more sensitive to the changes in the samples. In

particular, for the 1981-2011 sample period, the parameter estimates of both models are

similar. However, for the 1981-2022 sample period, the estimates of the Gaussian model,

especially the factors’ static parameters, α1 and β1, change dramatically, while those of the

Student’s t model remain largely unchanged. This confirms the sensitivity of the Gaussian
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model to the presence of the spikes in the sample, which is an undesirable feature of the

model when V-shaped recession(s) are present in the sample.

Sample period 1981-2011 Sample period 1981-2022
N (0,Σ) tν(0,Σ) N (0,Σ) tν(0,Σ)

θ̂T s.e. θ̂T s.e. θ̂T s.e. θ̂T s.e.

α1 0.448 0.034 0.399 0.044 0.603 0.039 0.389 0.039
β1 0.900 0.021 0.870 0.025 0.409 0.042 0.849 0.025
ρ 0.869 0.009 0.890 0.008 0.856 0.008 0.883 0.005
ν 5.432 0.525 4.285 0.250
σ2INDPRO 0.038 0.002 0.026 0.002 0.090 0.007 0.026 0.002
σ2UNRATE 0.044 0.003 0.037 0.003 0.213 0.008 0.022 0.002
σ2RETAIL 0.191 0.010 0.123 0.009 0.282 0.013 0.081 0.005
σ2UMCSENTx 0.236 0.015 0.182 0.015 0.263 0.016 0.185 0.014
σ2S&P500 0.094 0.006 0.061 0.005 0.105 0.006 0.063 0.005
σ2S&P500vol 0.659 0.013 0.238 0.019 0.730 0.014 0.249 0.018
σ2BAATB10Y 0.065 0.004 0.033 0.003 0.064 0.003 0.032 0.002
σ2HOUSING 0.336 0.019 0.269 0.023 0.379 0.020 0.281 0.022
σ2EBP 0.148 0.008 0.077 0.006 0.162 0.008 0.078 0.005

Table 3: Parameter estimates and standard errors (s.e.) of the Gaussian and
Student’s t score-driven factor models with AR(1) innovations and r = 1 com-
mon factor.

Next, we examine the estimates, based on the full sample, of the factors and loadings

of the one-factor models selected by the information criterion; see Figures 4 and 5. We

note that the scale of the factors differs due to the differences in parameter ρ estimates.

To facilitate further representation, at the bottom of Figure 4, we also demonstrate the

standardized common factors and the filtered factors f̂ ⋆
t = f̂t − ρ̂f̂t−1.

The results of our analysis indicate that the dynamics of the factors resembles the

dynamics of the US business cycle, with the troughs of the common factors corresponding

to the US recessions. Overall, the factors of both Gaussian and Student’s t models are

similar, although differences become more pronounced during recessions. In particular,

the factors f̂t and f̂ ⋆
t in Figures 4 from the Student’s t model heavily downweight the

impact of the influential observations during the great recession and even more so during

the COVID-19 recession period. We highlight that the model ‘automatically’ adjusts the

‘weight’ assigned to extreme observations.

The estimated loadings demonstrated in Figure 5 further reinforce the business cycle
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Figure 4: Estimates of the common factors. Results for the Gaussian and Student’s t
models with AR(1) innovations and with r = 1 factors. The top panel demonstrates filtered
common factors f̂t. The bottom left panel presents f̂⋆t = f̂t − ρ̂f̂t−1. The bottom right panel
presents factors f̂t standardized by the standard deviation.

interpretation for the common factor. Particularly, we find that the loadings of the indus-

trial production, retail sales, S&P500 index, and consumer confidence index are positive,

while the loadings of the unemployment rate, excess bond premium, and credit spread are

negative. The loadings of the S&P500 volatility and housing starts index appear to be

insignificant at the 5% confidence level for both models. Furthermore, we find that the

confidence bounds for the loadings for the Student’s t model are often narrower than those

for the Gaussian model. We highlight that the order-invariant restriction enables us to

conduct inference on all the loadings without having to specify the order of the series.

Finally, the results of the standard residual diagnostics are reported in Tables 4 and

5 (see also Figures SE.3, SE.4, and SE.5 in the Supplementary Appendix). We find that

our models substantially reduce autocorrelation for most of the time series, indicating the

models’ ability to capture a considerable number of dynamic features. There are still some

traces of the autocorrelation at lag 12 left, which can be attributed to the seasonality
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Figure 5: Estimates of the loadings. Results for the Gaussian (left bars) and Student’s t
(right bars) models with AR(1) innovations and r = 1 factors.

features unaccounted by the models. Further improvements can be achieved by adding

more lags in the dynamic specification of the residuals. The results of the Kolmogorov-

Smirnov test in Table 5 further supports the distributional assumptions, namely that for

the majority of the series the Student’s t distribution provides better fit to the data than

the Gaussian distribution. This conclusion is also consistent with the results of the Pearson

χ2 goodness of fit test, as shown in Table SE.5.

Raw Residuals N Residuals tν

INDPRO 1959.227 23.870 36.293
UNRATE 1321.451 10.400 12.143
RETAIL 1313.986 26.041 25.244
UMCSENTx 1087.597 14.323 19.291
S&P500 1814.605 32.209 53.957
S&P500vol 445.284 61.883 62.085
BAATB10Y 2328.579 19.778 61.831
HOUSING 1497.350 69.927 67.913
EBP 1848.516 19.765 16.924

Table 4: The Ljung–Box test for residual serial correlation. We compare the
Ljung–Box test statistics of the standardised raw data to the test statistics of the residuals of the
Gaussian and Student’s t factor models. We consider the Ljung–Box test for residual autocorre-
lation up to order 8.

Our results indicate that the Student’s t model performs better in the presence of

observations from a V-shaped recession, offering more stable parameter estimates, and

factor estimates that are less influenced by extreme observations. Unlike the Gaussian

model, the Student’s t model downweights extreme observations, producing results that
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Residuals N Residuals tν

INDPRO 0.000 0.384
UNRATE 0.000 0.538
RETAIL 0.000 0.323
UMCSENTx 0.130 0.423
S&P500 0.080 0.692
S&P500vol 0.000 0.003
BAATB10Y 0.000 0.034
HOUSING 0.335 0.693
EBP 0.000 0.167

Table 5: The Kolmogorov-Smirnov test. We report the p-values of the Kolmogorov-
Smirnov test of the equality of the distributions of the residuals with the reference distribution.

are less influenced by spikes. This makes the factors obtained from the model potentially

more applicable as coincident economic indicators or as control variables. In the next

section, we further examine the out-of-sample performance of the models.

5.3 Forecasting results

In this section, we compare the out-of-sample density forecasting performance during re-

cessions of the Gaussian and Student’s t score-driven factor models, both with r = 1 factor

as suggested by the in-sample BIC. Results for the models with more factors are similar

and not included here. Out-of-sample forecasts are generated using a rolling-window esti-

mation with a rolling window size of 312 months (27 years). We produce one-month-ahead

density forecasts during the periods of great recession (October 2007 to September 2010)

and COVID-19 recession (March 2019 to February 2022). For each window, we re-estimate

the models’ parameters and produce one-step-ahead density forecasts. In total, for each

sample, we have 36 months (3 years) for evaluating models’ out-of-sample performance.

The density forecasts are further used to compute mean logarithmic scoring rule (LSR)

which is a commonly considered loss function in density forecasts evaluation literature.

The results in Table 6 reveal that during the great recession (U-shaped recession), the

average LSR is higher for the Gaussian model than for the Student’s t model for half

of the time series, as indicated by the positive sign of the Diebold-Mariano (DM) test

statistics, and vice versa. However, during the COVID-19 recession (V-shaped recession),

the Student’s t model consistently outperforms the Gaussian model. This suggests that
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Great recession: October 2007-September 2010

INDPRO UNRATE RETAIL UMCSENTx S&P500

DM -0.041 1.404 1.948 -0.988 -0.912
p-value 0.967 0.160 0.060 0.330 0.368

S&P500vol BAATB10Y HOUSING EBP Total

DM -0.378 -1.300 0.526 -0.878 -1.027
p-value 0.707 0.202 0.602 0.386 0.312

COVID-19 recession: March 2019-February 2022

INDPRO UNRATE RETAIL UMCSENTx S&P500

DM -1.488 -1.159 -1.729 -1.570 -1.845
p-value 0.137 0.254 0.084 0.116 0.074

S&P500vol BAATB10Y HOUSING EBP Total

DM -1.232 -1.748 -0.726 -1.586 -1.573
p-value 0.226 0.089 0.472 0.113 0.125

Table 6: Diebold-Mariano test. The test statistics is computed based on the out-of-sample
logarithmic scoring rule. A negative value of the statistics corresponds to a lower average log-
arithmic scoring rule of the Gaussian model. The DM test statistics is computed based on
heteroscedasticity robust standard errors.

while both models perform similarly during the U-shaped recession, the Gaussian model

performs worse during the V-shaped recession. However, the difference between the two

models is mostly not statistically significant at a 10% significance level for both out-of-

sample periods. Intuitively, both models have similar out-of-sample performance, with

the main differences occurring during the short periods of extreme observations. Given

that there are only a few extreme observations and a relatively large standard deviation of

the loss differential, it is not surprising that the difference is not statistically significant.

Nevertheless, for policymakers, it is of high order importance to produce reliable forecasts

during turbulent periods like the COVID-19 pandemic, making Gaussian model, which is

sensitive to extreme observations, less favorable.

Next, we examine the predictive densities of individual time series during the COVID-

19 recession. Our findings reveal that prior to the recession, the model predictions are

comparable and well aligned with the actual observations, as shown in Figure 6a. However,

after the recession, the performance of the Student’s t model is substantially better, as

illustrated in Figure 6b. The reason behind this superior performance is the robustness of
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the Student’s t model to extreme observations, which are a common phenomenon in all

time series during the COVID-19 recession.
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Figure 6: Density predictions for individual time series. The densities are constructed
based on the parameter estimates obtained using a sample of 312 observations up to April 2019
and April 2020, respectively. The red dot represents the actual observation.

This sensitivity of the Gaussian model to extreme observations during the COVID-19

recession is a major shortcoming, as it can lead to unreliable forecasts. Our analysis of the

sensitivity of the loadings estimates used for the out-of-sample forecasts further supports

this statement. As shown in Figure 7, the loadings estimates of the Gaussian model are

highly impacted by new observations, whereas the Student’s t model displays only minor

changes. This highlights the advantages of utilizing robust models, such as the Student’s t,

when dealing with V-shaped recessions like COVID-19 recession.
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Figure 7: Rolling-window estimates of loadings for individual time series. The
results are based on the rolling window estimation with a rolling window size equal to 312 months.

6 Conclusion

We have introduced an order-invariant dynamic factor model with elliptically distributed

innovations where the dynamics of the factors is driven by the score of the predictive like-

lihood. The update based on the score allows the dynamics of the factors to be potentially

robust to extreme values and outliers. We discuss the model identification and propose

a solution to the rotational indeterminacy problem using an order-invariant identification

constraint. We also establish theoretical properties of the model and its estimator. A

numerical estimation of the model under the order-invariant identification condition is pro-

posed by using optimization methods on the Stiefel manifolds. In an extensive simulation

study, we confirm the good finite sample properties of the estimator. The empirical appli-

cation for constructing coincident economic indicators demonstrates the importance of the

robust updating equations in the presence of the COVID-19 recession period in the sample.
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Appendix

A Proofs of the main results

Proof of Lemma 1. Since εt ∼ EN(0,Σ, g) it implies that yt|ft,Ft−1 ∼ EN(Λft,Σ, g).

Hence,

py(yt|Ft−1) = |Σ|−1/2g
(
(yt −Λft)⊤Σ−1(yt −Λft)

)
,

log py(yt|Ft−1) = −1

2
log |Σ|+ log g

(
(yt −Λft)⊤Σ−1(yt −Λft)

)
.

The result for the score follows immediately by taking the derivative of the log-likelihood

with respect to ft. Let us consider the Fisher information matrix

I t|t−1 = Et−1[∇t∇⊤
t ] = 4Et−1

[(
g′(∥ỹt∥2)
g(∥ỹt∥2)

)2

Λ⊤Σ−1/2ỹtỹ
⊤
t Σ

−1/2Λ

]

= 4Et−1

[
∥ỹt∥2

(
g′(∥ỹt∥2)
g(∥ỹt∥2)

)2

Λ⊤Σ−1/2 ỹt
∥ỹt∥

ỹ⊤
t

∥ỹt∥
Σ−1/2Λ

]
,

where ỹt denotes a standardized vector of observations (with mean zero and identity scale

matrix), hence it is spherically distributed. Therefore, by Theorem 2.3 in Fang et al. (2018)

∥ỹt∥ and ỹt/∥ỹt∥ are independent. This implies that the expression above can be rewritten

as follows

I t|t−1 = 4Et−1

[
∥ỹt∥2

(
g′(∥ỹt∥2)
g(∥ỹt∥2)

)2
]
Λ⊤Σ−1/2Et−1

[
ỹt
∥ỹt∥

ỹ⊤
t

∥ỹt∥

]
Σ−1/2Λ.

Exploiting the fact that ut := ỹt

∥ỹt∥ is the uniform base of the spherical distribution, by

Theorem 2.7 in Fang et al. (2018) we have E
[
utu

⊤
t

]
= 1

N
IN and this implies that

I t|t−1 = 4Et−1

[
∥ỹt∥2

(
g′(∥ỹt∥2)
g(∥ỹt∥2)

)2
]

1

N
Λ⊤Σ−1Λ.

This completes the proof. ■

Proof of Lemma 2. We first show that there exists a stationary and ergodic causal solution
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{ft}t∈Z to (6). By iterating backwards equation (6), we obtain

ft+1 = Ast +Bft = Ast +B (Ast−1 +Bft−1) =
t−1∑
j=0

BjAst−j +B
tf1, (A.1)

where under correct model specification st =
1

W (∥Σ−1/2εt∥,g)

(
1
N
Λ⊤Σ−1Λ

)−1 1
N
Λ⊤Σ−1εt.

The last term in expression (A.1) goes to zero as t → ∞ since ∥B∥t → 0 and f1 ∈ Rr.

Then, if the limit sequence exists, it is of the form

ft+1 =
∞∑
j=0

BjAst−j. (A.2)

We further establish the stochastic properties of the score sequence st. First, st is

continuous, hence, measurable function of strictly stationary and ergodic (SE) sequence

εt. Therefore, by Proposition 4.3 in Krengel (1985) sequence {st}t∈Z is also SE. Now we

show that the score has a logarithmic moment. By norm submultiplicativity and positive

definiteness of matrix P =
(

1
N
Λ⊤Σ−1Λ

)−1
, we have

E log+ ∥st∥ ≤ log+

∥∥∥∥∥
(

1

N
Λ⊤Σ−1Λ

)−1
1√
N
Λ⊤Σ−1/2

∥∥∥∥∥+ E log+
∥∥∥√N s̃t

∥∥∥
=

1

2
log+ ∥P ∥︸ ︷︷ ︸
<∞, by Ass. 2

+E log+
∥∥∥√N s̃t

∥∥∥︸ ︷︷ ︸
<∞, by Ass. 4

< ∞,

where s̃t :=
1

W (∥Σ−1/2εt∥,g)
1
N
Σ−1/2εt.

We further prove that the series in (A.2) converges if and only if ∥B∥ < 1.

Suppose that ∥B∥ < 1. By monotone convergence theorem, norm subadditivity and

submultiplicativity, we have

E
∞∑
j=0

∥∥BjAst−j

∥∥ ≤
∞∑
j=0

∥B∥jE ∥Ast−j∥ ≤ ∥A∥︸︷︷︸
<∞, Θ∈Rq

E∥st∥
∞∑
j=0

∥B∥j < ∞, (A.3)

where the last claim in (A.3) follows by Lemma 2.1 in Straumann & Mikosch (2006) since

∥B∥t → 0 exponentially as t → ∞ and the sequence {∥st∥}t∈Z is SE with E log+ ∥st∥ < ∞.

Therefore, the series in (A.2) converges almost surely and the limit sequence {ft}t∈Z exists.

If ∥B∥ > 1 then the series in (A.2) diverges at least for one of the vector components

which implies that there is a.s. no finite solution to (6) and, consequently, to (1). For

∥B∥ = 1, the series in (A.2) may diverge at least for one of the vector components.

Furthermore, by Proposition 4.3 in Krengel (1985) the limit sequence {ft}t∈Z is strictly
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stationary and ergodic since it is a measurable function of {st}t∈Z which is SE. Proposi-

tion 4.3 in Krengel (1985) also ensures that {yt}t∈Z is SE since it is a continuous, hence

measurable, function of ft and εt, which are jointly SE.

We now establish the uniqueness of the stationary solutions. Assume that there exists

another SE solution {f̃t}t∈Z satisfying equation (6), then for t = t∗ such that ft∗ ̸= f̃t∗ and

for all i > 0, we have

0 < ∥ft∗ − f̃t∗∥ = ∥B∥i
∥∥∥ft∗−i − f̃t∗−i

∥∥∥ .
By the conditions of the lemma ∥B∥i → 0 exponentially as i → ∞. Moreover, ∥ft∗−i −
f̃t∗−i∥ = OP (1) as the sequences are strictly stationary, hence P(ft = f̃t) = 1 and the

uniqueness follows. ■

Proof of Lemma 3. First, we consider the case k ≥ 1. For this case, we prove that E∥ft∥k <
∞ by showing that ∥ft∥k ≡ (E∥ft∥k)1/k < ∞ which clearly implies the desired result.

Given (A.2) and by Minkowski’s inequality, we have

∥ft∥k ≤
∞∑
j=0

∥B∥j∥A∥∥st−j∥k ≤ ∥A∥︸︷︷︸
<∞,Θ⊆Rq

(
∞∑
j=0

∥B∥j)× (∥P ∥)1/2︸ ︷︷ ︸
<∞, by Ass. 2

×
∥∥∥√N s̃t

∥∥∥
k︸ ︷︷ ︸

<∞, by Ass. 4.a

),

with s̃t as defined in the proof of Lemma 2 and positive definite matrix P as defined in

Assumption 2. Since, ∥B∥ < 1, we conclude that (E∥ft∥k)1/k < ∞ and the result follows.

In the case of 0 < k < 1, the result immediately follows by application of the Loève’s

cr inequality directly to E∥ft+1∥k.
The proof for yt, i.e. E∥yt∥k < ∞, follows by the established above result for the

factors, E∥ft∥k < ∞, and the Loève’s cr inequality, that is,

E∥yt∥k = E∥Λft + εt∥k ≤ cr∥Λ∥E∥ft∥k + crE∥εt∥k < ∞,

since cr ∈ R, E∥εt∥k < ∞ by Assumption 3.a and Θ ⊆ Rq.

■

Proof of Lemma 4. Under the set of conditions (A), the proof is essentially a multivariate

extension of Blasques, van Brummelen, Koopman, & Lucas (2022, Proposition 3.1) and,

hence, is omitted.

Under the set of conditions (B), we notice that, given that supθ∈Θ ∥B∥ < 1, for large
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enough m, we have

sup
t

sup
θ∈Θ

∥ft+1(θ)∥ ≤ 1 + sup
θ∈Θ

∥A∥
m∑
j=0

sup
θ∈Θ

∥Bj∥ sup
t

sup
θ∈Θ

∥st−j∥

≤ 1 + d̄ sup
θ∈Θ

∥A∥
m∑
j=0

sup
θ∈Θ

∥Bj∥ ≤ 1 + d̄ sup
θ∈Θ

∥A∥ 1

1− supθ∈Θ ∥B∥
< ∞,

which completes the proof. ■

Proof of Lemma 5. Lemma 3 ensures the existence of the stationary solution with k = 2

bounded moments. Then, from (A.2) we obtain

Cov(ft+1) = Cov

(
∞∑
j=0

BjAst−j

)
=

∞∑
j=0

BjACov (st−j)AB
j =

∞∑
j=0

BjACov (st)ABj,

where we exploited the fact that under correct model specification the score sequence is

stationary and white noise.

To simplify further notation, we introduce ε̃t := Σ
−1/2εt. Given expression (5) for the

score, the covariance matrix for st is as follows

Cov (st) =
(

1

N
Λ⊤Σ−1Λ

)−1
1

N2
Λ⊤Σ−1/2

× Cov
(

1

(W (∥ε̃t∥, g))2
ε̃t

)
Σ−1/2Λ

(
1

N
Λ⊤Σ−1Λ

)−1

=

(
1

N
Λ⊤Σ−1Λ

)−1
1

N2
Λ⊤Σ−1/2E

[
∥ε̃t∥2

(W (∥ε̃t∥, g))2

]
× E

[
ε̃t

∥ε̃t∥
ε̃⊤t
∥ε̃t∥

]
Σ−1/2Λ

(
1

N
Λ⊤Σ−1Λ

)−1

= E

[(
∥ε̃t∥

NW (∥ε̃t∥, g)

)2
](

1

N
Λ⊤Σ−1Λ

)−1

,

where the second and third equalities follow by application of Theorems 2.3 and 2.7 in

Fang et al. (2018) and the fact that E[ε̃t] = 0.

Hence, under restriction (IC4) on the loadings, we obtain

Cov (st) = E

[(
∥ε̃t∥

NW (∥ε̃t∥, g)

)2
]
Ir,

Cov(ft+1) =
∞∑
j=0

BjACov (st)ABj =
(
Ir −B2

)−1Cov (st)A2,
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where we exploited that matrices Cov(st), A and B are diagonal and ∥B∥ < 1.

Next, we turn to the autocovariance structure of ft

Cov(ft+h+1,ft+1) = Cov

(
∞∑
j=0

BjAst+h−j,

∞∑
j=0

BjAst−j

)

= Cov

(
∞∑

j=−h

Bj+hAst−j,

∞∑
j=0

BjAst−j

)

= BhCov

(
∞∑
j=0

BjAst−j,

∞∑
j=0

BjAst−j

)
= BhCov(ft).

Finally,

Cov(st, εt) =
1

N
Λ⊤Σ−1/2Cov

(
1

W (∥ε̃t∥, g)
ε̃t,Σ

1/2ε̃t

)
=

1

N
Λ⊤Σ−1/2E

[
∥ε̃t∥2

W (∥ε̃t∥, g)
ε̃t

∥ε̃t∥
ε̃⊤t
∥ε̃t∥

]
Σ1/2

=
1

N
Λ⊤E

[
∥ε̃t∥2

W (∥ε̃t∥, g)

]
E
[
ε̃t
∥ε̃t∥

ε̃⊤t
∥ε̃t∥

]
=

1

N2
Λ⊤E

[
∥ε̃t∥2

W (∥ε̃t∥, g)

]
,

Cov(ft+h+1, εt) = Cov

(
∞∑
j=0

BjAst+h−j, εt

)
= A

∞∑
j=0

BjCov(st+h−j, εt)

= ABhCov(st, εt) =
1

N2
ABhΛ⊤E

[
∥ε̃t∥2

W (∥ε̃t∥, g)

]
,

where we applied Theorems 2.3 and 2.7 in Fang et al. (2018) and the fact that E[ε̃t] = 0.

Hence, the proof follows. ■

Proof of Proposition 2. Observation equation (11) implies the following covariance struc-

ture of the data

Cov(yt) = ΛKΛ⊤ +Σ := LL⊤ + Σ̃, (A.4)

where, for example, for the Gaussian model Σ̃ ≡ Σ and for the Student’s t model Σ̃ ≡
ν

ν−2
Σ.

Intuitively, given that Σ is diagonal, equation (A.4) implies that all the co-movements

between the series are explained by the common components. Identification of L and Σ̃

follows immediately from Theorem 5.1 in Anderson et al. (1956) given conditions B and

E. Moreover, (IC4) (conditions C–D) guarantees that matrices Λ and K are uniquely

identified (Lawley & Maxwell, 1971; Bai & Li, 2012). We further note that it suffices to

show the identification for (ν,Σ) = (ν0,Σ0).

For the remaining parameters, we proceed by contradiction. Assume that there exists
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ψ̃ := (diag(Ã)⊤, diag(B̃)⊤)⊤ such that ψ̃ ̸= ψ are observationally equivalent.

We proceed by exploiting the autocovariance structure of yt

Cov(yt+h,yt) = ΛCov(ft+h,ft)Λ
⊤ +ΛCov(ft+h, εt)

+ Cov(εt+h,ft)Λ
⊤ + Cov(εt+h, εt), ∀h ≥ 1.

From (9) and (10), ∀h ≥ 1 we have:

Cov(ft+h,ft) = B
hK,

Cov(ft+h, εt) = AB
h−1Λ⊤E

[
∥ε̃t∥2

N2W (∥ε̃t∥, g)

]
.

Therefore,

Cov(yt+h,yt) = ΛB
hKΛ⊤ +ΛBh−1AΛ⊤E

[
∥ε̃t∥2

N2W (∥ε̃t∥, g)

]
= ΛBh−1

(
BK +AE

[
∥ε̃t∥2

N2W (∥ε̃t∥, g)

])
Λ⊤, ∀h ≥ 1.

To shorten further notation we introduce d := E
[

∥ε̃t∥2
N2W (∥ε̃t∥,g)

]
. Since there exists an obser-

vationally equivalent ψ̃ ̸= ψ, we have that:

Bh−1 (BK + dA) = B̃h−1
(
B̃K + d̃Ã

)
, ∀h ≥ 1.

Hence, for h = 1 and h = 2, we have

(BK + dA) =
(
B̃K + d̃Ã

)
,

B (BK + dA) = B̃
(
B̃K + d̃Ã

)
.

From this, we can conclude that B = B̃ and A = Ã.

■

Proof of Theorem 1. We note that, although we are dealing with the constrained estimator,

the standard consistency proof, for example, White (1996, Theorem 3.5) or Pötscher &

Prucha (1997, Lemma 3.1), still applies since the conditions of the theorems do not require

θ0 to belong to the interior of the parameter space Θ̃. Particularly, the strong consistency

of the ML estimator follows from (i) the uniform a.s. convergence of the criterion function;

(ii) the regularity of the level sets of the limit criterion function (Pötscher & Prucha, 1997,

Definition 4.1).

To prove consistency, we use a similar approach as in the proof of Blasques, van Brum-
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melen, Koopman, & Lucas (2022, Theorem 4.6) or Blasques et al. (2023, Theorem 2). We

start with showing the uniform convergence. By the triangle inequality

sup
θ∈Θ̃

∣∣∣L̂T (θ)− L∞(θ)
∣∣∣ ≤ sup

θ∈Θ

∣∣∣L̂T (θ)− L∞(θ)
∣∣∣

≤ sup
θ∈Θ

∣∣∣L̂T (θ)− LT (θ)
∣∣∣+ sup

θ∈Θ
|LT (θ)− L∞(θ)| . (A.5)

We further notice that

sup
θ∈Θ

∣∣∣L̂T (θ)− LT (θ)
∣∣∣ ≤ 1

T

T∑
t=2

sup
θ∈Θ

∣∣∣l̂t(θ)− lt(θ)
∣∣∣

By Lemma 2.1 in Straumann & Mikosch (2006), supθ∈Θ

∣∣∣L̂T (θ)− LT (θ)
∣∣∣ a.s.−−→ 0 as

T → ∞ since by Assumption 7 supθ∈Θ

∣∣∣l̂t(θ)− lt(θ)
∣∣∣ e.a.s.−−−→ 0 as t → ∞.

Now we turn to the second term in (A.5). To show the uniform convergence, we apply

the uniform law of large numbers of Rao (1962) to the sequence {lt(·)}t∈Z. The sequence is
SE by Krengel (1985, Proposition 4.3) since it is a continuous function on the SE sequence

{(ft,yt)}t∈Z. Moreover, E supθ∈Θ |lt(θ)| < ∞ since

E sup
θ∈Θ

|lt(θ)| ≤
1

2
E sup

θ∈Θ
|log |Σ||+ E sup

θ∈Θ

∣∣log g ((yt −Λft)⊤Σ−1(yt −Λft)
)∣∣ < ∞, (A.6)

where the first term is bounded by condition B on the parameter space Θ and compactness

of Θ. Assumption 8 ensures that the second term in (A.6) is also bounded. Therefore,

the conditions of the uniform law of large numbers are satisfied, and we conclude that the

second term in (A.5) also goes to 0 almost surely as T → ∞.

The level sets of the limit log-likelihood function are regular since the parameter space

Θ is compact (Assumption 6) and the limit criterion function is continuous. Hence, the

consistency towards the set of maximizers follows.

If, in addition, sign(λik) is known for some i = 1, . . . , N and for all k = 1, . . . , r, then

parameter θ0 is point identified; see Proposition 2. Since E|lt(θ)| < ∞ for all θ ∈ Θ, then

it immediately follows that θ0 is the unique maximizer of the limit log-likelihood. This

result together with the compactness of Θ and continuity of the limit log-likelihood further

imply identifiable uniqueness.

This finishes the proof of the strong consistency.

■

Proof of Theorem 2. The parameter space Θ̃ is a closed subset of Θ subject to the or-

thogonality constraint 1
N
Λ⊤Σ−1Λ = Ir, which introduces m = r(r+1)

2
constraints. The
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constraints can be summarized as follows

Cd(θ) := diag

(
1

N
Λ⊤Σ−1Λ

)
− ιr = 0r,

Cndh(θ) := ndiagh

(
1

N
Λ⊤Σ−1Λ

)
− 0r(r−1)/2 = 0r(r−1)/2,

where diag(·) and ndiagh(·) refer to the diagonal and lower diagonal elements of the matrix.

To shorten further notation, we introduce C(θ) := (Cd(θ), Cndh(θ)) = 0m, with C(θ)

collecting all the constraints.

Given the constraints, we can write the penalized criterion function as

L̂T (ζ) = T L̂T (θ) +W (ζ),

where ζ := (θ⊤, ξ⊤)⊤, L̂T (θ) denotes the average log-likelihood function based on the

filtered time-varying parameter f̂t(θ) as in Theorem 1, W (ζ) := ξ⊤ × C(θ) and ξ is an

m-dimensional vector of Lagrange multipliers.

Let us further denote the penalized log-likelihood function based on the limit time-

varying parameter ft(θ) as LT (ζ) = TLT (θ) + W (ζ). Similar to Blasques et al. (2023),

first, we show the asymptotic normality of the estimator ζ̄T which maximizes the criterion

function LT (ζ). The mean value theorem around ζ0 yields

∇ζLT (ζ̄T ) = ∇ζLT (ζ0) +∇ζζLT (ζ
⋆
T )(ζ̄T − ζ0), (A.7)

where ζ⋆T lies between ζ̄T and ζ0, and where formally ζ⋆T differs between the rows of the

Hessian matrix ∇ζζLT .

Since the estimator ζ̄T maximizes LT (ζ), from the first order condition, we obtain

∇ζLT (ζ̄T ) = 0. Hence, rearranging the terms

∇ζζLT (ζ
⋆
T )

[√
T (θ̄T − θ0)√
T (ξ̄T − ξ0)

]
= −

√
T∇ζLT (ζ0). (A.8)

In our notation, we have

∇ζLT (ζ) =

[
∇θLT (ζ)

∇ξLT (ζ)

]
=

[
T∇θLT (θ) +∇θW (ζ)

C(θ)

]
,
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∇ζζLT (ζ) =

[
∇θθLT (ζ) ∇θξLT (ζ)

∇ξθLT (ζ) ∇ξξLT (ζ)

]
=

[
∇θθLT (ζ) Q(θ)

Q(θ)⊤ 0m

]

=

[
T∇θθLT (θ) +∇θθW (ζ) Q(θ)

Q(θ)⊤ 0m

]
,

whereQ(θ) := ∇θC(θ)⊤. Substituting these expressions into (A.8) and taking into account

that C(θ0) = 0m, we obtain[
∇θθLT (ζ

⋆
T ) Q(θ⋆T )

Q(θ⋆T )
⊤ 0m

][√
T (θ̄T − θ0)√
T (ξ̄T − ξ0)

]
=

[
−
√
T (T∇θLT (θ0) +∇θW (ζ0))

0m

]
,[

1
T
∇θθLT (ζ

⋆
T ) Q(θ⋆T )

Q(θ⋆T )
⊤ 0m

][√
T (θ̄T − θ0)
1√
T
(ξ̄T − ξ0)

]
=

[
−
√
T∇θLT (θ0)− 1√

T
∇θW (ζ0)

0m

]
.

Trivially, 1√
T
∇θW (ζ0) → 0q and

1
T
∇θθW (ζ⋆T )

a.s.−−→ 0q×q as T → ∞. Furthermore, Assump-

tion 10 together with the strong consistency of the estimator θ̄T imply ∇θθLT (θ
⋆
T )

P−→ I(θ0)
as T → ∞. Therefore, by the strong consistency of the estimator θ̄T , Lemma SB.1 and

Slutsky’s lemma, it follows that[
I(θ0) Q(θ0)

Q(θ0)
⊤ 0m

][√
T (θ̄T − θ0)
1√
T
(ξ̄T − ξ0)

]
d−→

[
z

0m

]
as T → ∞, (A.9)

where z is N (0q,V (θ0)) with V (θ0) as defined in Lemma SB.1.

Since θ0 is not identifiable without restrictions, matrix I(θ0) is singular which leads to

a degenerate limiting distribution. Following a similar argument as in Silvey (1959), we

notice that (A.9) implies that Q(θ0)
⊤
√
T (θ̄T − θ0)

d−→ 0m as T → ∞. Hence, by Slutsky’s

lemma, the result in (A.9) can be rewritten as[
I(θ0) +Q(θ0)Q(θ0)

⊤ Q(θ0)

Q(θ0)
⊤ 0m

][√
T (θ̄T − θ0)
1√
T
(ξ̄T − ξ0)

]
d−→

[
z

0

]
as T → ∞. (A.10)

Since the restriction C(θ) = 0 ensures identifiability of θ0 and θ0 is a regular point of

both Q(θ0) and [I(θ)1/2,Q(θ)]⊤, the ‘augmented’ limit Hessian matrix H(θ0) := I(θ0) +
Q(θ0)Q(θ0)

⊤ is positive definite (Rothenberg, 1971; Silvey, 1975). Therefore, by Aitchison

& Silvey (1958, Lemma 3) S(θ0) :=

[
H(θ0) Q(θ0)

Q(θ0)
⊤ 0m

]
is non-singular.

Next, let us introduce the following notation for the inverse of matrix S, i.e. S−1 :=[
P D

D⊤ R

]
, where, to simplify the expressions, we suppress the dependence of the matrices
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on θ0. Then, from the formula for the partitioned inverse, for the block P we have

P =H−1 −H−1Q
(
Q⊤H−1Q

)−1
Q⊤H−1. (A.11)

Therefore, for the limiting distribution of the constrained estimator we have

√
T
(
θ̄T − θ0

) d−→ N (0,PV P ) as T → ∞,

with P defined in (A.11).

Now, we turn to the asymptotic properties of the estimator θ̂T of the penalized criterion

function based on the filtered time-varying parameter. By the mean value theorem

∇ζLT (ζ̄T ) = ∇ζLT (ζ̂T ) +∇ζζLT (ζ
⋆
T )(ζ̄T − ζ̂T ), (A.12)

where ζ⋆T lies (row-wise) between ζ̄T and ζ̂T .

Noticing that ∇ζLT (ζ̄T ) = ∇ζL̂T (ζ̂T ) = 0q+m, from (A.12), we have

∇ζζLT (ζ
⋆
T )
√
T (ζ̄T − ζ̂T ) =

√
T
(
∇ζL̂T (ζ̂T )−∇ζLT (ζ̂T )

)
.

By Lemma SB.2 and the strong consistency of the estimator θ̂T , the right hand side

of the expression above converges to 0 almost surely as T → ∞. Moreover, by the strong

consistency of the estimator θ̄T and Assumption 10, we have ∇θθLT (θ
⋆
T )

a.s.−−→ I(θ0). Then,
following similar reasoning as in the first part of the proof, we obtain[

I(θ0) +Q(θ0)Q(θ0)
⊤ Q(θ0)

Q(θ0)
⊤ 0m

][√
T (θ̄T − θ0)
1√
T
(ξ̄T − ξ0)

]
d−→

[
0

0

]
as T → ∞. (A.13)

Since matrix I(θ0) +Q(θ0)Q(θ0)
⊤ is full rank, it follows that

√
T∥θ̄T − θ̂T∥

P−→ 0 as

T → ∞ which implies that the estimator θ̂T has the same asymptotic distribution as θ̄T ,

thus completing the proof. ■
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Supplementary Appendix

An Order-Invariant Score-Driven Dynamic
Factor Model

Mariia Artemova

A Specific cases of elliptical distribution

A.1 Gaussian model

A.1.1 Updating equation

For Gaussian distribution the density generator is of the form g(u) = c exp (−u/2) (Fang et al., 2018,

Table 3.1). Therefore, it can be noticed that g′(u) = − 1
2g(u), which implies that −2 g′(u)

g(u) = 1 and

C (∥ỹt∥, g) = −N
2 . Therefore, from equation (3) and expression for the score (5), we obtain

ft+1 = ω +A

(
1

N
Λ⊤Σ−1Λ

)−1
1

N
Λ⊤Σ−1(yt −Λft) +Bft,

or

ft+1 = ω +A

((
1

N
Λ⊤Σ−1Λ

)−1
1

N
Λ⊤Σ−1yt − ft

)
+Bft.

A.1.2 Condition (i), Proposition 1

For the Gaussian model, condition (i) in Proposition 1 is of the form log+ supθ∈Θ ∥B −A∥ < ∞, which

trivially holds as long as Θ ⊆ Rq is compact.

A.1.3 Condition (ii), Proposition 1

Exploiting the expressions derived in Section A.1.1 condition (ii) for the Gaussian model can be rewritten

as follows

E log+ sup
θ∈Θ

∥∥∥∥∥A
((

1

N
Λ⊤Σ−1Λ

)−1
1

N
Λ⊤Σ−1yt − f

)
+Bf

∥∥∥∥∥
≤ 2 log 2 + E log+ sup

θ∈Θ

∥∥∥∥∥A
(

1

N
Λ⊤Σ−1Λ

)−1
1

N
Λ⊤Σ−1yt

∥∥∥∥∥+ log+ ∥(B −A)f∥

≤ 2 log 2 + log+ sup
θ∈Θ

∥A∥+ log+ sup
θ∈Θ

∥∥∥∥∥
(

1

N
Λ⊤Σ−1Λ

)−1
∥∥∥∥∥+ log+ sup

θ∈Θ

∥∥∥∥ 1

N
Λ⊤
∥∥∥∥

+ log+ sup
θ∈Θ

∥∥Σ−1
∥∥+ E log+ ∥yt∥+ log+ sup

θ∈Θ
∥B −A∥+ log+ ∥f∥,

1



where we applied Lemma 2.2 from Straumann & Mikosch (2006), norm subadditivity and submultiplica-

tivity. The expression is finite as long as E log+ ∥yt∥ < ∞, Σ ≻ 0 and
∥∥∥( 1

NΛ
⊤Σ−1Λ

)−1
∥∥∥ < ∞, Θ ⊆ Rq

is compact, since f ∈ Rr. Hence, we conclude that for the Gaussian model condition (ii) holds as long as

E log+ ∥yt∥ <∞, Σ ≻ 0,
∥∥∥( 1

NΛ
⊤Σ−1Λ

)−1
∥∥∥ <∞, and Θ ⊆ Rq is compact.

A.1.4 Assumptions 7 and 8.

Assumption 8 for the score-driven model with Gaussian innovations is of the following form

E sup
θ∈Θ

∣∣∣log g ((yt −Λft)⊤Σ−1 (yt −Λft)
)∣∣∣

≤c+ 0.5× E sup
θ∈Θ

|(yt −Λft)⊤Σ−1(yt −Λft)|

≤ c+ 0.5

N∑
i=1

E sup
θ∈Θ

∣∣∣∣ (yit −Λi·ft)
2

σ2
i

∣∣∣∣ <∞,

where c is a constant that does not depend on the parameter θ. The last result follows by condition B and

by Lemmas 3 and 4 for k = 2.

Now we turn to Assumption 7. First, we notice that

sup
θ∈Θ

∣∣∣l̂t(θ)− lt(θ)
∣∣∣ = 1

2
sup
θ∈Θ

|(yt −Λf̂t(θ))⊤Σ−1(yt −Λf̂t(θ))

− (yt −Λft(θ))⊤Σ−1(yt −Λft(θ))| ≤ sup
θ∈Θ

∥f̂t(θ)− ft(θ)∥ sup
θ∈Θ

∥Λ⊤Σ−1yt∥

+
1

2
sup
θ∈Θ

|f̂t(θ)⊤Λ⊤Σ−1Λf̂t(θ)− ft(θ)⊤Λ⊤Σ−1Λft(θ)∥

= sup
θ∈Θ

∥f̂t(θ)− ft(θ)∥ sup
θ∈Θ

∥Λ⊤Σ−1yt∥+
N

2
sup
θ∈Θ

∥f̂t(θ)⊤f̂t(θ)− ft(θ)⊤ft(θ)∥, (SA.1)

where in the last line we exploited condition C.

Following a similar argument as in the proof of Lemma TA.14 in Blasques, van Brummelen, Koopman,

& Lucas (2022), but generalizing it to a multivariate case, for the second term in (SA.1), by the triangle

inequality, we have

sup
θ∈Θ

∥f̂t(θ)⊤f̂t(θ)− ft(θ)⊤ft(θ)∥ ≤ sup
θ∈Θ

∥f̂t(θ)⊤f̂t(θ)− f̂t(θ)⊤ft(θ)∥

+ sup
θ∈Θ

∥f̂t(θ)⊤ft(θ)− ft(θ)⊤ft(θ)∥ ≤ sup
θ∈Θ

∥f̂t(θ)∥ sup
θ∈Θ

∥f̂t(θ)− ft(θ)∥

+ sup
θ∈Θ

∥f̂t(θ)− ft(θ)∥ sup
θ∈Θ

∥ft(θ)∥ ≤ sup
θ∈Θ

∥f̂t(θ)− ft(θ) + ft(θ)∥ sup
θ∈Θ

∥f̂t(θ)− ft(θ)∥

+ sup
θ∈Θ

∥f̂t(θ)− ft(θ)∥ sup
θ∈Θ

∥ft(θ)∥ ≤ (sup
θ∈Θ

∥f̂t(θ)− ft(θ)∥)2

+ sup
θ∈Θ

∥ft(θ)∥ sup
θ∈Θ

∥f̂t(θ)− ft(θ)∥+ sup
θ∈Θ

∥f̂t(θ)− ft(θ)∥ sup
θ∈Θ

∥ft(θ)∥.

By compactness of Θ and Lemma 4 for k = 1 E supθ∈Θ ∥ft(θ)∥ < ∞. Then, by Lemma 2.1 in Strau-

mann & Mikosch (2006), supθ∈Θ ∥f̂t(θ)⊤f̂t(θ) − ft(θ)⊤ft(θ)∥
e.a.s.−−−→ 0 as t → ∞ since by Proposition 1

supθ∈Θ ∥f̂t(θ)− ft(θ)∥
e.a.s.−−−→ 0 as t→ ∞.

The last result implies that the whole expression in SA.1 converges e.a.s. to 0 as t → ∞ as long as

{yt}t∈Z is SE with E log+ ∥yt∥ <∞ and the parameter space Θ is compact.

2



A.2 Student’s t model

A.2.1 Updating equation

In the case of the Student’s t distributed innovations, the density generator is of the form g(u) =

c (1 + u/ν)
−(N+ν)/2

(Fang et al., 2018, Table 3.1), where ν is the degrees of freedom parameter.

Therefore, g′(u) = −N+ν
2ν c (1 + u/ν)

−(N+ν+2)/2
and −2 g′(u)

g(u) = N+ν
ν

1
1+u/ν . Then, we have

C(∥ỹt∥, g) = −1

2

(
N + ν

ν

)2

Et−1

[
∥ỹt∥2

(
1

1 + ∥ỹt∥2/ν
)

)2
]
. (SA.2)

First, we compute the conditional expectation that appears in (SA.2). Given that yt|ft,Ft−1 is mul-

tivariate Student’s t distributed we have

Et−1

[
∥ỹt∥2

(
1

1 + ∥ỹt∥2/ν

)2
]

=

∫ +∞

−∞

(
∥ỹt∥2/ν

) νΓ
(
N+ν
2

)
Γ
(
ν
2

)
νN/2πN/2|Σ|1/2

(
1 +

1

ν
∥ỹt∥2

)−(N+ν)/2(
1 +

1

ν
∥ỹt∥2

)−2

dy

=
νΓ
(
N+ν
2

)
Γ
(
ν
2

)
νN/2πN/2|Σ|1/2

∫ +∞

−∞

(
∥ỹt∥2/ν

)(
1 +

1

ν
∥ỹt∥2

)−(N+ν+4)/2

dy

=
νΓ
(
N+ν
2

)
Γ
(
ν
2

)
νN/2πN/2|Σ|1/2

∫ +∞

−∞

[(
1 +

1

ν
∥ỹt∥2

)−(N+ν+2)/2

−
(
1 +

1

ν
∥ỹt∥2

)−(N+ν+4)/2
]
dy

=
νΓ
(
N+ν
2

)
Γ
(
ν
2

)
νN/2πN/2|Σ|1/2

[
Γ
(
ν+2
2

)
(ν + 2)N/2πN/2

(
ν

ν+2

)N/2

|Σ|1/2

Γ
(
N+ν+2

2

)
−

Γ
(
ν+4
2

)
(ν + 4)N/2πN/2

(
ν

ν+4

)N/2

|Σ|1/2

Γ
(
N+ν+4

2

) ]
=
νΓ
(
N+ν
2

)
Γ
(
ν
2

) [
Γ
(
ν+2
2

)
Γ
(
N+ν+2

2

) − Γ
(
ν+4
2

)
Γ
(
N+ν+4

2

)]

=
νΓ
(
N+ν
2

)
Γ
(
ν
2

) Γ
(
ν+2
2

)
Γ
(
N+ν+2

2

) [1− ν+2
2

N+ν+2
2

]
=
νΓ
(
N+ν
2

)
Γ
(
ν
2

) Γ
(
ν
2

)
ν
2

Γ
(
N+ν
2

)
N+ν
2

N

N + ν + 2

=
ν2

N + ν

N

N + ν + 2
.

Substituting the last expression into (SA.2) we have

C(∥ỹt∥, g) = −1

2

(
N + ν

ν

)2
ν2

N + ν

N

N + ν + 2
= −1

2

N(N + ν)

(N + ν + 2)
.

From the last result and equation (5) the scaled score is as follows

st =
1

W (∥ỹt∥, ν)

(
1

N
Λ⊤Σ−1Λ

)−1
1

N
Λ⊤Σ−1(yt −Λft),

or, alternatively,

st =
1

W (∥ỹt∥, ν)

((
1

N
Λ⊤Σ−1Λ

)−1
1

N
Λ⊤Σ−1yt − ft

)
,
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where W (∥ỹt∥, ν) := ν
N+ν+2

(
1 + (yt−Λft)

⊤Σ−1(yt−Λft)
ν

)
.

A.2.2 Condition (i), Proposition 1

For the Student’s t model condition (i) in Proposition 1 takes the form

E log+ sup
θ∈Θ

sup
f∈Rr

∥∥∥∥B +
1

W (∥ỹt∥, ν)
A
N + ν + 2

ν
×
(

2

νW (∥ỹt∥, ν)

(
1

N
Λ⊤Σ−1Λ

)−1

×
(

1

N
Λ⊤Σ−1yt − f

)
(yt −Λf)⊤Σ−1Λ− Ir

)∥∥∥∥
≤ c+ log+ sup

θ∈Θ
∥B∥+ log+ sup

θ∈Θ

∥∥∥∥2(N + ν + 2)

ν
A

∥∥∥∥+ log+ sup
θ∈Θ

∥∥∥∥∥
(

1

N
Λ⊤Σ−1Λ

)−1
∥∥∥∥∥

+ E log+ sup
θ∈Θ

sup
f∈Rq

∥∥∥∥ 1

ν(W (∥ỹt∥, ν))2

(
1

N
Λ⊤Σ−1yt − f

)
(yt −Λf)⊤Σ−1Λ

∥∥∥∥
≤ c+ log+ sup

θ∈Θ
∥B∥+ log+ sup

θ∈Θ

∥∥∥∥2(N + ν + 2)

ν
A

∥∥∥∥+ log+ sup
θ∈Θ

∥∥∥∥∥
(

1

N
Λ⊤Σ−1Λ

)−1
∥∥∥∥∥

+ E log+ sup
θ∈Θ

sup
f∈Rq

∥∥∥∥∥
(

1
NΛ

⊤Σ−1yt − f
)
(yt −Λf)⊤Σ−1Λ

ν(1 + (yt −Λf)⊤Σ−1(yt −Λf)/ν)2

∥∥∥∥∥ ,
where c is a constant that does not depend on θ and f . The first four terms are bounded as long as ν > 0,

∥P ∥ <∞, and the parameter space Θ ⊆ Rq is compact.

For the last term in the expression above we have

zt := E log+ sup
θ∈Θ

sup
f∈Rq

∥∥∥∥∥ 1
NΛ

⊤Σ−1/2Σ−1/2 (yt − f) (yt −Λf)⊤Σ−1/2Σ−1/2Λ/ν

(1 + (yt −Λf)⊤Σ−1(yt −Λf)/ν)2

∥∥∥∥∥
= E log+ sup

θ∈Θ
sup
f∈Rr

∥∥∥∥∥ 1
NΛ

⊤Σ−1/2xtx
⊤
t Σ

−1/2Λ

(1 + x⊤
t xt)2

∥∥∥∥∥
= log+ sup

θ∈Θ
∥ 1

N
Λ⊤Σ−1Λ∥+ E log+ sup

θ∈Θ
sup
f∈Rr

∥∥∥∥ xtx
⊤
t

(1 + x⊤
t xt)2

∥∥∥∥ ,
where xt := Σ

−1/2(yt−Λf)/
√
ν. As ∥xt∥ → 0 or ∥xt∥ → ∞, it follows that the term ∥zt∥ → 0. Therefore,

we conclude that the term zt is uniformly bounded in (f ,yt). If then the compactness of Θ ⊆ Rq holds,

condition (i) in Proposition 1 holds.

A.2.3 Condition (ii), Proposition 1

Below, we verify condition (ii) in Proposition 1 for the Student’s t model, i.e.

E log+ sup
θ∈Θ

∥∥∥∥∥∥A (N + ν + 2)

ν

((
1
NΛ

⊤Σ−1Λ
)−1 1

NΛ
⊤Σ−1yt − f

)
1 + (yt −Λf)⊤Σ−1 (yt −Λf) /ν

+Bf

∥∥∥∥∥∥
≤ 2 log 2 + log+ sup

θ∈Θ
∥B∥+ log+ ∥f∥+ log+ sup

θ∈Θ
∥A∥+ log+ sup

θ∈Θ

(N + ν + 2)√
Nν

+ log+ sup
θ∈Θ

∥∥∥∥∥
(

1

N
Λ⊤Σ−1Λ

)−1
1√
N
Λ⊤Σ−1/2

∥∥∥∥∥
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+ E log+ sup
θ∈Θ

∥∥∥∥∥ Σ−1/2 (yt −Λf) /
√
ν

1 + (yt −Λf)⊤Σ−1 (yt −Λf) /ν

∥∥∥∥∥ ≤ c+ log+ sup
θ∈Θ

∥B∥

+ log+ ∥f∥+ log+ sup
θ∈Θ

∥A∥+ log+ sup
θ∈Θ

(N + ν + 2)√
Nν

+
1

2
log+ sup

θ∈Θ

∥∥∥∥∥
(

1

N
Λ⊤Σ−1Λ

)−1
∥∥∥∥∥ .

where we exploited the fact that the term Σ−1/2(yt−Λf)/
√
ν

1+(yt−Λf)⊤Σ−1(yt−Λf)/ν
is uniformly bounded. Therefore, if the

parameter space Θ is compact, the whole expression above is finite as long as Σ ≻ 0,
∥∥∥( 1

NΛ
⊤Σ−1Λ

)−1
∥∥∥ <

∞ and 0 < ν <∞.

Assumption 12.

To show that
∥∥∥∂l̂t(θ0)

∂θ − ∂lt(θ0)
∂θ

∥∥∥ e.a.s.−−−→ 0 as t→ ∞, we notice that by the mean value theorem

∥∥∥∥∥∂lt(f̂t(θ0),θ0)∂θ
− ∂l(ft(θ0),θ0)

∂θ

∥∥∥∥∥ ≤ sup
f∈Rr

∥∥∥∥∂2lt(f ,θ0)∂θ∂f⊤

∥∥∥∥ sup
θ∈Θ

∥∥∥f̂t(θ)− ft(θ)∥∥∥ e.a.s.−−−→ 0,

where the final result follows by Lemma 2.1 in Straumann & Mikosch (2006) since by Proposition 1

supθ∈Θ ∥f̂t(θ) − ft(θ)∥ converges to zero e.a.s., while by Lemma SC.6 ∂2lt(f ,θ)/∂θ∂f
⊤ is uniformly

bounded in f and θ for Gaussian and Student’s t case and by Krengel (1985, Proposition 4.3) it is also SE

sequence.

B Asymptotic normality: Additional lemmas

Lemma SB.1. Let all the assumptions and conditions of Theorem 2 hold. Then

√
T∇θLT (θ0)

d−→ N (0,V (θ0)) as T → ∞,

where V (θ0) = E
[
l′t(θ0)l

′
t(θ0)

⊤] with l′t(θ) := ∂lt(ft(θ),θ)
∂θ and ∇θLT (θ) :=

∂LT (θ)
∂θ .

Proof. We recall that ∇θLT (θ0) =
1
T

∑T
t=2 l

′
t(θ0), where

l′t(θ) :=
∂l(yt,ft(θ),θ)

∂θ
=
∂lt(f ,θ)

∂θ

∣∣∣
f=ft(θ)

+

(
∂lt(f ,θ)

∂f⊤

∣∣∣
f=ft(θ)

∂ft(θ)

∂θ⊤

)⊤

. (SB.3)

To prove the theorem, we apply the Central Limit Theorem (CLT) for stationary and ergodic (SE)

martingale difference sequences (mds) of Billingsley (1961) to the sequence {l′t(θ0)}t∈Z. To apply the

theorem, we show that the sequence is an SE mds sequence with two bounded moments.

The stationarity and ergodicity of {l′t(θ0)}t∈Z immediately follows by application of Krengel (1985,

Proposition 4.3) since l′t is a continuous function on SE sequence {(yt,ft(θ0),f ′
t(θ0))}t∈Z. The latter

sequence is SE by Lemma 2 and Assumption 11 and the fact that {yt}t∈Z ≡ {yt(θ0)}t∈Z is an SE sequence.

Furthermore, {l′t(θ0)}t∈Z is an mds sequence since, under the correct model specification, we have

E[lt(θ0)|Ft−1] = 0, hence E[l′t(θ0)|Ft−1] = ∂E[lt(θ0)|Ft−1]/∂θ = 0q. The interchange of the expectation

and derivative is permitted since the likelihood function is continuous and the derivative with respect to θ

is uniformly bounded, which allows the application of the measure theory version of the Leibniz integral

rule.
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Finally, we show that the second moment of l′t(θ0) is bounded. Specifically, from (SB.3), by the Loève’s

cr inequality, we notice that

E∥l′t(θ0)∥2 ≤ crE
∥∥∥∥∂lt(ft(θ0),θ0)∂θ

∥∥∥∥2 + crE
∥∥∥∥∂lt(ft(θ0),θ0)∂f⊤

∂ft(θ0)

∂θ⊤

∥∥∥∥2 . (SB.4)

Assumption 13 (i) implies that the first term in (SB.4) is bounded. For the second term, by the generalized

Hölder inequality, we have

E
∥∥∥∥∂lt(ft(θ0),θ0)∂f⊤

∂ft(θ0)

∂θ⊤

∥∥∥∥2 ≤ E
∥∥∥∥∂lt(ft(θ0),θ0)∂f

∥∥∥∥δ E ∥f ′
t(θ0)∥

n
<∞, (SB.5)

where n = 2δ
2−δ and the last result follows by Assumption 13 (iii). Hence, we conclude that E∥l′t(θ0)∥ <∞

and the desired result follows by the CLT.

■

Lemma SB.2. Let all the assumptions and conditions of Theorem 2 hold. Then

√
T∥∇θL̂T (θ0)−∇θLT (θ0)∥

a.s.−−→ 0 as T → ∞,

with ∇θLT (θ) as defined in the Supplementary Appendix C.3.

Proof. First, we show that ∥l̂′t(θ0)− l′t(θ0)∥
e.a.s.−−−→ 0 as t→ ∞. By the norm subadditivity, we have

∥l̂′t(θ0)− l′t(θ0)∥ ≤

∥∥∥∥∥∂lt(f̂t(θ0),θ0)∂θ
− ∂lt(ft(θ0),θ0)

∂θ

∥∥∥∥∥
+

∥∥∥∥∥f̂ ′
t(θ0)

⊤ ∂lt(f̂t(θ0),θ0)

∂f
− f ′

t(θ0)
⊤ ∂lt(ft(θ0),θ0)

∂f

∥∥∥∥∥ . (SB.6)

The first term on the right hand side of (SB.6) goes to 0 e.a.s. as t→ ∞ by Assumption 12.

Now, we turn to the second term on the right hand side of (SB.6). Following a similar argument as in

the proof of Lemma TA.14 in Blasques, van Brummelen, Koopman, & Lucas (2022), we have∥∥∥∥∥f̂ ′
t(θ0)

⊤ ∂lt(f̂t(θ0),θ0)

∂ft
− f ′

t(θ0)
⊤ ∂lt(ft(θ0),θ0)

∂ft

∥∥∥∥∥ ≤ (∥f ′
t(θ0)∥+ ∥f̂ ′

t(θ0)− f ′
t(θ0)∥)

×

∥∥∥∥∥∂lt(f̂t(θ0),θ0)∂f
− ∂lt(ft(θ0),θ0)

∂f

∥∥∥∥∥+
∥∥∥∥∂lt(ft(θ0),θ0)∂f

∥∥∥∥ ∥f̂ ′
t(θ0)− f ′

t(θ0)∥. (SB.7)

Below, we show that both terms on the right hand side of (SB.7) go to 0 exponentially fast almost

surely as t → ∞. In particular, for the last term, we have that ∥f̂ ′
t(θ0) − f ′

t(θ0)∥
e.a.s.−−−→ 0 as t → ∞

by Assumption 11. Additionally,
∥∥∥∂lt(ft(θ0),θ0)

∂f

∥∥∥ is SE with a finite logarithmic moment, where the SE

property follows by Krengel (1985, Proposition 4.3) as ∂lt(ft(θ),θ)/∂f is a continuous function on the SE

sequence {yt,ft(θ)}t∈Z. The existence of a logarithmic moment follows by Assumption 13 (iii). Then, by

Lemma 2.1 in Straumann & Mikosch (2006), the second term on the right hand side of (SB.7) converges

e.a.s. to 0 as t→ ∞.
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For the first term on the right hand side of (SB.7), by the mean value theorem we have∥∥∥∥∥∂lt(f̂t(θ0),θ0)∂f
− ∂lt(ft(θ0)θ0)

∂f

∥∥∥∥∥ ≤ sup
f∈Rr

∥∥∥∥∂2lt(f ,θ0)∂f∂f⊤

∥∥∥∥ ∥f̂t(θ0)− ft(θ0)∥.
By Proposition 1, supθ∈Θ ∥f̂t(θ) − ft(θ)∥ converges to 0 e.a.s. as t → ∞, while by Assumption 13 (ii)

supf∈Rr ∥∂2lt(f ,θ0)/∂f∂f⊤∥ has a logarithmic bounded moment and by Krengel (1985, Proposition 4.3)

it is also an SE sequence. Hence, by Lemma 2.1 in Straumann & Mikosch (2006) we conclude that the

whole expression above converges to zero e.a.s. Given that by Assumption 11 ∥f̂ ′
t(θ0) − f ′

t(θ0)∥
e.a.s.−−−→ 0

and the sequence {f ′
t(θ0)}t∈Z is SE with E log+ ∥f ′

t(θ0)∥ < ∞ (Assumption 13 (iii)), we obtain that

∥l̂′t(θ0)− l′t(θ0)∥
e.a.s.−−−→ 0 as t→ ∞.

Finally, by the norm subadditivity and Lemma 2.1 of Straumann & Mikosch (2006), we have

√
T∥∇θL̂T (θ0)−∇θLT (θ0)∥ ≤ 1√

T

T∑
t=2

∥l̂′t(θ0)− l′t(θ0)∥
e.a.s.−−−→ 0 as T → ∞,

which finishes the proof. ■

Lemma SB.3 (Assumption 10 for the Gaussian and Student’s t models). Let all the assumptions and

conditions of Theorem 1 hold. Then,

∥∇θθLT (θ̂T )− I(θ0)∥
P−→ 0 as T → ∞, (SB.8)

where I(θ) = E[l′′t (θ)].

Proof. (i) Gaussian model: First, we notice that the desired result is implied by a stronger result, namely,

supθ∈Θ ∥∇θθLT (θ)− I(θ)∥ a.s.−−→ 0 as T → ∞. We show the latter by application of the ergodic theorem

of Rao (1962) to {l′′t (·)}t∈Z. Specifically, the uniform convergence follows if 1). the sequence {l′′t (·)}t∈Z is

SE and 2). E supθ∈Θ ∥l′′t (θ)∥ <∞.

The first condition is satisfied by Krengel’s theorem since l′′(·) is a continuous function on the SE

sequence {yt,ft(·),f ′
t(·),f ′′

t (·)}t∈Z, where the latter is true by Lemmas 2, 4 and SB.4 Next, we turn to the

moment bound. We notice that by the norm subadditivity and generalized Hölder inequality

E sup
θ∈Θ

∥l′′t (θ)∥ ≤ E sup
θ∈Θ

∥∥∥∥∂2lt(ft(θ),θ)∂θ∂θ⊤

∥∥∥∥+ 2E sup
θ∈Θ

∥∥∥∥∂2lt(ft(θ),θ)∂θ∂f⊤

∥∥∥∥2 E sup
θ∈Θ

∥f ′
t(θ)∥

2

+ sup
t

sup
θ∈Θ

∥∥∥∥∂2lt(ft(θ),θ)∂f∂f⊤

∥∥∥∥E sup
θ∈Θ

∥f ′
t(θ)∥

2
+

r∑
k=1

E sup
θ∈Θ

∥∥∥∥∂lt(ft(θ),θ)∂fk

∥∥∥∥2 E sup
θ∈Θ

∥f ′′kt(θ)∥
2
. (SB.9)

By Lemma SC.6, the expression above is finite as long as E∥yt∥2 < ∞, E supθ∈Θ ∥ft(θ)∥2 < ∞,

E supθ∈Θ ∥f ′
t(θ)∥2 <∞, and E supθ∈Θ ∥f ′′

t (θ)∥2 <∞. E∥yt∥2 <∞ holds by Lemma 3 given Assumption 3

and conditions A and B on the parameter space, E supθ∈Θ ∥ft(θ)∥2 is bounded by Lemma 4 since E∥yt∥2 <
∞ and supθ∈Θ ∥B − A∥ < 1. Finally, E supθ∈Θ ∥f ′

t(θ)∥2 < ∞ and E supθ∈Θ ∥f ′′
t (θ)∥2 < ∞ follow by

Lemma SB.5. This finishes the proof for the Gaussian model.

(ii) Student’s t model: Given that by Lemma SB.5 for the Student’s t model we only have E∥f ′
t(θ0)∥2 <∞

and E∥f ′′
t (θ0)∥2 <∞, and not uniformly over Θ, we take a different approach to prove the convergence of
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the hessian. Specifically, we notice that

|∇θiθj
LT (θ̂T )− Iij(θ0)| ≤ |∇θiθj

LT (θ0)− Iij(θ0)|+ sup
θ∈Θ

∥∇θiθjθLT (θ)∥∥θ̂T − θ0∥. (SB.10)

By the law of large numbers for SE sequences, ∥∇θiθj
LT (θ0) − Iij(θ0)∥

a.s.−−→ 0 as T → ∞ since by

Krengel’s theorem {∇θiθj lt(θ0)} is SE and E|∇θiθj lt(θ0)| < ∞. The latter holds as long as E∥yt∥2 < ∞,

E∥ft(θ0)∥2 <∞, E∥f ′
t(θ0)∥2 <∞, and E∥f ′′

t (θ0)∥2 <∞ (see equation SB.9). E∥yt∥2 and E∥ft(θ0)∥2 are

bounded by Lemma 3 as long as ν > 2, Assumption 3 and conditions A abd B on the parameter space hold.

Furthermore, as long as the conditions of Lemma SB.5 (ii) hold, it ensures that E supθ∈Θ ∥f ′
t(θ0)∥2 < ∞

and E supθ∈Θ ∥f ′′
t (θ0)∥2 <∞.

For the second term in (SB.10), by Theorem 1, we have ∥θ̂T − θ0∥
a.s.−−→ 0. Furthermore, given that

supθ∈Θ ∥∇θiθjθLT (θ)∥ is SE as it is a continuous function on the SE sequence, it is bounded in probability,

i.e. supθ∈Θ ∥∇θiθjθLT (θ)∥ = Op(1). Therefore, supθ∈Θ ∥∇θiθjθLT (θ)∥∥θ̂T − θ0∥
P−→ 0 as T → ∞. ■

Lemma SB.4 (Derivatives of the filter). Let all the conditions of Proposition 1 hold. Then, for the

Gaussian and Student’s t score-driven filters, there exist unique strictly stationary solutions {f ′
t(θ)}t∈Z,

{f ′′
t (θ)}t∈Z, and {f ′′′

t (θ)}t∈Z to (SC.11), (SC.12), and (SC.13), respectively, such that

sup
θ∈Θ

∥f̂ ′
t(θ)− f ′

t(θ)∥
e.a.s.−−−→ 0 as t→ ∞,

sup
θ∈Θ

∥f̂ ′′
t (θ)− f ′′

t (θ)∥
e.a.s.−−−→ 0 as t→ ∞,

sup
θ∈Θ

∥f̂ ′′′
t (θ)− f ′′′

t (θ)∥ e.a.s.−−−→ 0 as t→ ∞.

Proof. The proof of this lemma is similar to the proof of Proposition 3.4 in Blasques, van Brummelen,

Koopman, & Lucas (2022) and of Proposition 2 in Blasques, van Brummelen, Gorgi, & Koopman (2022).

As shown in Section C, the SRE for the first derivative of ft is of the following form

f ′
t+1(θ) = C

(1)
t + Γtf

′
t(θ),

where C
(1)
t = C

(1)
t (ft(θ),θ) and Γt = Γt(ft(θ),θ) with explicit expressions for C

(1)
t and Γt in case of the

Gaussian and Student’s t filters given in Section C . This implies that the filtered sequence {f̂ ′
t(θ)}t∈N

initialized at f̂ ′
1 depends on the filtered sequence {f̂t(θ)}t∈N. In turn, the unperturbed sequence {f̃ ′

t(θ)}t∈N

initialized at f̂ ′
1 depends on the limit sequence {ft(θ)}t∈Z. We denote the limit process as {f ′

t(θ)}t∈Z.

Hence, to prove this lemma, we use Theorem 2.10 in Straumann & Mikosch (2006) for perturbed

stochastic recurrence equations. Condition S.3 of Straumann & Mikosch (2006, Theorem 2.10), the con-

vergence of the perturbed sequence {f̂ ′
t(θ)}t∈N to the stationary limit sequence {f ′

t(θ)}, corresponds to

having

sup
θ∈Θ

∥C(1)
t (f̂t(θ),θ)−C(1)

t (ft(θ),θ)∥
e.a.s.−−−→ 0,

sup
θ∈Θ

∥Γt(f̂t(θ),θ)− Γt(ft(θ),θ)∥
e.a.s.−−−→ 0,

as t→ ∞.
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We show this result by using the mean value theorem. Namely, for the first expression, we have

sup
θ∈Θ

∥C(1)
t (f̂t(θ),θ)−C(1)

t (ft(θ),θ)∥ ≤ sup
f

sup
θ∈Θ

∥∥∥∥∥∂C(1)
t

∂f

∥∥∥∥∥ supθ∈Θ
∥f̂t(θ)− ft(θ)∥,

and similarly for the second expression. Given that supθ∈Θ ∥f̂t(θ)−ft(θ)∥
e.a.s.−−−→ 0 as t→ ∞ and that the

derivatives of C
(1)
t and Γt with respect to f are SE, it suffices to show that the derivatives of C

(1)
t and Γt

with respect to f are uniformly bounded in f and θ, which is the case given the result in Lemma SC.6.

Specifically, given that for both Gaussian and Student’s t models ∂2st/∂f∂f
⊤ is uniformly bounded in

both f and θ, it implies the convergence for Γt. Next, the uniform boundedness in f and θ of ∥∂sk,t/∂f⊤∥
and ∥∂2sk,t/∂θ∂f⊤∥ for k = 1, . . . , r, implies the convergence for C

(1)
t . The convergence of the Lipschitz

coefficients then follows straightforwardly.

Condition S.1 of Straumann & Mikosch (2006, Theorem 2.10) is fulfilled since Γt(ft(θ),θ) evaluated at

the limit sequence ft(θ) is bounded uniformly over t and θ, and C
(1)
t (ft(θ),θ) has a bounded logarithmic

moment uniformly over Θ since

(i). for the Gaussian model, conditions of Proposition 1 require E log+ ∥yt∥ < ∞ and by Lemma 4 we

then also have E supθ∈Θ log+ ∥ft(θ)∥ < ∞, which together with the compactness of the parameter

space Θ imply E supθ∈Θ log+ ∥C(1)
t (ft(θ),θ)∥ <∞.

(ii). for the Student’s t model, C
(1)
t (ft(θ),θ) is uniformly bounded in t and Θ, hence it has moments of

any order uniformly over Θ.

This implies that the unperturbed recurrence equation evaluated at some deterministic point has a bounded

logarithmic moment.

The condition S.2 of Straumann & Mikosch (2006, Theorem 2.10) in our case is of the form

E sup
θ∈Θ

log+ ∥Γt(ft(θ),θ)∥ <∞ and E sup
θ∈Θ

log ∥
p−1∏
j=0

Γt−j(ft−j(θ),θ)∥ < 0.

Since Γt(f ,θ) is uniformly bounded in f and θ, the first condition trivially holds. Following a similar

argument as in the proof of Proposition 2 in Blasques, van Brummelen, Gorgi, & Koopman (2022), we

notice that the second condition is implied by E supθ∈Θ supf∈Rr ∥∂ϕ(p)
t (f ,θ)/∂f∥ < 0, which is one of the

conditions for the filter invertibility in Proposition 1. The proofs for the second and third order derivatives

are similar and are omitted. ■

Lemma SB.5 (Moments of the derivatives of the filter). Let all the conditions of Lemmas 4 and SB.4

hold. Then, for the limit sequence of the derivative of the filter, we have

(i). for the Gaussian model, E supθ∈Θ ∥f ′
t(θ)∥k < ∞ and E supθ∈Θ ∥f ′′

t (θ)∥k < ∞ with k as defined in

Lemmas 4.

(ii). for the Student’s t model, let for some integer p ≥ 1 and some 0 < k < ν

E∥
p−1∏
j=0

Γ (εt−j ,θ0)∥k < 1

with Γt as defined in Section C.1. Then, E ∥f ′
t(θ0)∥

k
<∞ and E∥f ′′

t (θ0)∥k <∞.
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Proof. (i) Gaussian model: The stochastic recurrence equation for the derivative process is of the form

f ′
t+1(θ) = C

(1)
t + (B −A)f ′

t(θ).

Hence, following a similar reasoning as in the proof of Lemma 4, for k > 1, we have

∥f ′
t+1(θ)∥Θk ≤ 1 +

m∑
j=0

∥(B −A)j∥Θ∥C(1)
t−j∥

Θ
k ≤ 1 +

∥C(1)
t ∥Θk

1− ∥B −A∥Θ
<∞,

where the second inequality follows since the conditions of Proposition 1 imply that supθ ∥B−A∥ < 1 and

since ∥C(1)
t−j∥Θk = ∥C(1)

t ∥Θk for every j as it is a function on the SE sequence. The final inequality follows by

Lemmas 3 and 4 which imply that ∥C(1)
t ∥Θk < d̄k < ∞. Hence, we have that ∥f ′

t+1(θ)∥Θk < ∞ for k > 1.

The proof for 0 < k < 1 follows immediately by the application of the Loève’s cr inequality. The proof

for the second order derivative is similar and is omitted.

(ii) Student’s t model: The SRE for the derivative of the filter is of the form

f ′
t+1(θ) = C

(1)(yt,ft(θ),θ) + Γ (yt,ft(θ),θ)f
′
t(θ).

And under correct model specification, we have

f ′
t+1(θ0) = C

(1)(εt,ft(θ0),θ0) + Γ (εt,θ0)f
′
t(θ0),

where C
(1)
t (εt,ft(θ0),θ0) is as defined in Section C.1.

Then, the SRE for the p-th iterate takes the following form

f ′
t+1

(p)
(θ0) =

p−1∑
j=0

(
C(1)(εt−j ,ft−j(θ0),θ0)

)(j−1∏
i=0

Γ (εt−i,θ0)

)

+

(
p−1∏
i=0

Γ (εt−i,θ0)

)
f ′
t
(p)

(θ0).

First, by norm subadditivity and submultiplicativity, we have

∥f ′
t+1

(p)
(θ0)∥ ≤

p−1∑
j=0

∥∥∥C(1)(εt−j ,ft−j(θ0),θ0)
∥∥∥ ∥∥∥∥∥

j−1∏
i=0

Γ (εt−i,θ0)

∥∥∥∥∥
+

∥∥∥∥∥
p−1∏
i=0

Γ (εt−i,θ0)

∥∥∥∥∥ ∥∥∥f ′
t
(p)

(θ0)
∥∥∥ .

Iterating backwards the SRE for the pth iterate, we obtain

∥f ′
t+1

(p)
(θ0)∥ ≤

(
T−1∑
h=0

p−1∑
j=0

∥C(1)(εt−j−ph,ft−j−ph(θ0),θ0)∥

∥∥∥∥∥
j−1∏
i=0

Γ (εt−i−ph,θ0)

∥∥∥∥∥


×
h−1∏
l=0

∥∥∥∥∥
p−1∏
i=0

Γ (εt−i−pl,θ0)

∥∥∥∥∥
)

+

T−1∏
l=0

∥∥∥∥∥
p−1∏
i=0

Γ (εt−i−pl,θ0)

∥∥∥∥∥ ∥∥∥f ′
t−pl

(p)
(θ0)

∥∥∥ .
For any t ∈ Z, the sequence

{∥∥∥∏p−1
i=0 Γ (εt−i−pl,θ0)

∥∥∥}
l∈Z

is i.i.d., hence SE, sequence of nonnegative

random variables. The conditions of the lemma also imply that E log ∥
∏p−1

j=0 Γ (εt−j ,θ0)∥ < 1 (condition
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in Proposition 1). Therefore, by Lemma 2.4 in Straumann & Mikosch (2006) we have

T∏
l=0

∥∥∥∥∥
p−1∏
i=0

Γ (εt−i−pl,θ0)

∥∥∥∥∥ e.a.s.−−−→ 0 as T → ∞.

Since by Lemma SB.4 the sequence {∥f ′
t
(p)

(θ0)∥}t∈Z is also SE, there exists large enough l such that

T−1∏
l=0

∥∥∥∥∥
p−1∏
i=0

Γ (εt−i−pl,θ0)

∥∥∥∥∥∥∥∥f ′
t−pl

(p)
(θ0)

∥∥∥ < 1, a.s..

Then, for k ≥ 1, we have

∥f ′
t+1

(p)
(θ0)∥k ≤1 +

T−1∑
h=0

∥∥∥∥∥
p−1∑

j=0

(
∥C(1)(εt−j−ph,ft−j−ph(θ0),θ0)∥

)∥∥∥∥∥
j−1∏
i=0

Γ (εt−i−ph,θ0)

∥∥∥∥∥


×
h−1∏
l=0

∥∥∥∥∥
p−1∏
i=0

Γ (εt−i−pl,θ0)

∥∥∥∥∥
∥∥∥∥∥
k

≤1 +

T−1∑
h=0

∥∥∥∥∥∥
p−1∑
j=0

(
∥C(1)(εt−j−ph,ft−j−ph(θ0),θ0)∥

)∥∥∥∥∥
j−1∏
i=0

Γ (εt−i−ph,θ0)

∥∥∥∥∥
∥∥∥∥∥∥
k

×

∥∥∥∥∥
h−1∏
l=0

∥∥∥∥∥
p−1∏
i=0

Γ (εt−i−pl,θ0)

∥∥∥∥∥
∥∥∥∥∥
k

≤ 1 + c̄k,p(θ0)

T−1∑
h=0


E

∥∥∥∥∥
p−1∏
i=0

Γ (εt−i,θ0)

∥∥∥∥∥
k
1/k


h

≤ 1 +
c̄k,p(θ0)

1−
(
E
∥∥∥∏p−1

i=0 Γ (εt−i,θ0)
∥∥∥k)1/k

<∞,

where the second inequality follows since
∑p−1

j=0

(
∥C(1)(εt−j−ph,ft−j−ph(θ0),θ0)∥

) ∥∥∥∏j−1
i=0 Γ (εt−i−ph,θ0)

∥∥∥
and

∏h−1
l=0

∥∥∥∏p−1
i=0 Γ (εt−i−pl,θ0)

∥∥∥ are independent; the third inequality follows by Proposition 4.3 in Krengel

(1985) since for any t ∈ Z
∑p−1

j=0

(
∥C(1)(εt−j−ph,ft−j−ph(θ0),θ0)∥

) ∥∥∥∏j−1
i=0 Γ (εt−i−ph,θ0)

∥∥∥ is a continu-

ous function on the SE sequence {ft(θ0), . . . ,ft+1−(h+1)p(θ0), εt, . . . , εt+1−(h+1)p}h∈Z; the forth inequality

follows given the conditions of the lemma, i.e. E∥
∏p−1

j=0 Γ (εt−j ,θ0)∥k < 1.

For 0 < k < 1, the proof follows by Loève’s ck inequality, where the constant ck = 1 when 0 < k < 1.

The proof for the second order derivative is similar and is omitted.

■

C Derivatives

In this section, we provide the expressions for the required derivatives. To simplify further notation,

let us further define σ2 = diagΣ, a = diagA and b = diagB, so that for the Gaussian model θ =

(σ2⊤, vecΛ⊤,a⊤, b⊤)⊤ and for the Student’s t model θ = (σ2⊤, vecΛ⊤,a⊤, b⊤, ν)⊤.
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C.1 Derivatives of the time-varying parameter

For the Gaussian and Student’s t models we have the following updating equation ft+1 = Ast+Bft, with

st = s(yt,ft(θ),θ) and ft = ft(θ).

As discussed before ft is an r × 1 vector. Hence, for k = 1, . . . , r

fk,(t+1) = αksk,t + βkfk,t.

Let us introduce the following notation:

f ′
t(θ) :=

[
f ′1,t(θ) . . . f ′r,t(θ)

]⊤
,

f ′′
t (θ) :=

[
f ′′1,t(θ) . . . f ′′r,t(θ)

]⊤
,

where, for k = 1, . . . , r, we have

f ′k,t+1(θ) :=
∂fk,t+1(θ)

∂θ
= C

(1)
k,t + f

′
t(θ)

⊤Γk,t,

f ′′k,t+1(θ) := vec

(
∂2fk,t+1(θ)

∂θ∂θ⊤

)
= C

(2)
k,t + f

′′
t (θ)

⊤Γk,t,

where

C
(1)
k,t := C

(1)
k (yt,ft(θ),θ) =

∂αk

∂θ
sk,t + αk

∂sk,t
∂θ

+
∂βk
∂θ

fk,t,

Γk,t := Γk(yt,ft(θ),θ) = βkek + αk
∂sk,t
∂f

,

C
(2)
k,t := C

(2)
k (yt,ft(θ),θ)

= vec

(
∂C

(1)
k,t

∂θ⊤
+
∂C

(1)
k,t

∂f⊤ f ′
t(θ) + f

′
t(θ)

⊤
(
∂Γk,t

∂θ⊤
+
∂Γk,t

∂f⊤ f
′
t(θ)

))

= vec

(
∂αk

∂θ

∂sk,t
∂θ⊤

+
∂sk,t
∂θ

∂αk

∂θ⊤
+ αk

∂2sk,t
∂θ∂θ⊤

+
∂βk
∂θ

fk,t
∂θ⊤

)
+ vec

((
∂αk

∂θ

∂sk,t
∂f⊤ + αk

∂2sk,t
∂θ∂f⊤ +

∂βk
∂θ

e⊤k

)
f ′
t(θ)

)
+ vec

(
f ′
t(θ)

⊤
(
αk

∂2sk,t
∂f∂f⊤f

′
t(θ) + ek

∂βk
∂θ⊤

+
∂sk,t
∂f

∂αk

∂θ⊤
+ αk

∂2sk,t
∂f∂θ⊤

))
,

where ek is an r × 1 vector of zeros with the one in the kth position and where we use the notation

∂sk,t
∂θ

:=
∂sk(y,f ,θ)

∂θ

∣∣∣
(y,f ,θ)=(yt,ft(θ),θ)

,

∂sk,t
∂f

:=
∂sk(y,f ,θ)

∂f

∣∣∣
(y,f ,θ)=(yt,ft(θ),θ)

,

and similar notations for the other derivatives. Then, the derivatives satisfy the following SREs

f ′
t+1(θ) = C

(1)
t + Γtf

′
t(θ), (SC.11)

f ′′
t+1(θ) = C

(2)
t + Γtf

′′
t (θ), (SC.12)

where C
(i)
t = (C

(i)
1,t , . . . , C

(i)
k,t)

⊤ with i = {1, 2}. The third derivative can be also represented by a similar
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SRE, i.e.

f ′′′
t+1(θ) = C

(3)
t + Γtf

′′′
t (θ), (SC.13)

with f ′′′
t (θ) :=

[
f ′′′1,t(θ) . . . f ′′′r,t(θ)

]⊤
, f ′′′k,t(θ) := vec

(
∂f ′′

k,t(θ)

∂θ⊤

)
.

C.2 Derivatives of the score

In this section, we provide explicit expressions for the derivatives of the score for the specific cases of

Gaussian and Student’s t models.

Gaussian model. The score for this model is of the following form

s(y,f ,θ) =
1

N
Λ⊤Σ−1y − f ,

hence, sk(y,f ,θ) =
1
NΛ

⊤
kΣ

−1y − fk.

Clearly, ∂s(y,f ,θ)/∂f⊤ = −Ir, ∂2sk(y,f ,θ)/∂θ∂f⊤ = 0q×r and ∂2sk(y,f ,θ)/∂f∂f
⊤ = 0r×r.

Furthermore, we have

∂sk(y,f ,θ)

∂θ
=


∂sk(y,f ,θ)

∂σ2

∂sk(y,f ,θ)
∂ vecΛ

∂sk(y,f ,θ)
∂a

∂sk(y,f ,θ)
∂b

 =


− 1

N diag(y)Σ−2Λk

ek ⊗
(

1
NΣ

−1y
)

0r

0r

 ,

∂2sk(y,f ,θ)

∂θ∂θ⊤
=


∂2sk(y,f ,θ)

∂σ2∂σ2⊤
∂2sk(y,f ,θ)
∂σ2∂ vecΛ⊤

∂2sk(y,f ,θ)
∂σ2∂a⊤

∂sk(y,f ,θ)
∂σ2∂b⊤

∂2sk(y,f ,θ)

∂ vecΛ∂σ2⊤
∂2sk(y,f ,θ)

∂ vecΛ∂ vecΛ⊤
∂2sk(y,f ,θ)
∂ vecΛ∂a⊤

∂2sk(y,f ,θ)
∂ vecΛ∂b⊤

∂2sk(y,f ,θ)

∂a∂σ2⊤
∂2sk(y,f ,θ)
∂a∂ vecΛ⊤

∂2sk(y,f ,θ)
∂a∂a⊤

∂2sk(y,f ,θ)
∂a∂b⊤

∂2sk(y,f ,θ)

∂b∂σ2⊤
∂2sk(y,f ,θ)
∂b∂ vecΛ⊤

∂2sk(y,f ,θ)
∂b∂a⊤

∂2sk(y,f ,θ)
∂b∂b⊤



=


2
N diag(yΣ−3) diag(Λk) −

(
ek ⊗ 1

NΣ
−2 diag(y)

)⊤
0N×r 0N×r

−ek ⊗ 1
NΣ

−2 diag(y) 0Nr×Nr 0Nr×r 0Nr×r

0r×N 0r×Nr 0r×r 0r×r

0r×N 0r×Nr 0r×r 0r×r

 ,

where ek is an r × 1 vector of zeros with a one in the kth position and operator diag(·) creates an N ×N

diagonal matrix out of an N × 1 vector with the elements of the vector on the diagonal.

Student’s t model. The score for the Student’s t model is of the form

s(y,f ,θ) =
N + ν + 2

ν

1

1 + (y −Λf)⊤Σ−1(y −Λf)/ν

(
1

N
Λ⊤Σ−1y − f

)
,

hence, sk(y,f ,θ) =
N+ν+2

ν
1

K(y,f ,θ)

(
1
NΛ

⊤
kΣ

−1y − fk
)
with K(y,f ,θ) = 1 + (y −Λf)⊤Σ−1(y −Λf)/ν.

Then

∂s(y,f ,θ)

∂f⊤ = −N + ν + 2

ν

1

K(y,f ,θ)
Ir −

1

K(y,f ,θ)
s(y,f ,θ)

∂K(y,f ,θ)

∂f⊤ .
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Similar to the case of Gaussian model, we use the following notation

∂sk(y,f ,θ)

∂θ
=

[
∂sk(y,f ,θ)

∂σ2⊤
,
∂sk(y,f ,θ)

∂ vecΛ⊤ ,
∂sk(y,f ,θ)

∂a⊤ ,
∂sk(y,f ,θ)

∂b⊤
,
∂sk(y,f ,θ)

∂ν

]⊤
.

We have

∂sk(y,f ,θ)

∂θ
= (K(y,f ,θ))−1


−N+ν+2

ν
diag(y)Σ−2Λk

N
N+ν+2

ν ek ⊗
(

1
NΣ

−1y
)

0r

0r

−N+2
ν2

(
1
NΛ

⊤
kΣ

−1y − fk
)

− 1

K(y,f ,θ)
sk(y,f ,θ)

∂K(y,f ,θ)

∂θ
,

where ek is an r × 1 vector of zeros with a one in the kth position and operator diag(·) creates an N ×N

diagonal matrix out of an N × 1 vector with the elements of the vector on the diagonal.

To simplify further derivations, we introduce

πk(y, fk,θ) :=
[
−N+ν+2

ν
diag(y)Σ−2Λk

N , N+ν+2
ν ek ⊗

(
1
NΣ

−1y
)
, 0r, 0r, −

(
1
NΛ

⊤
kΣ

−1y − fk
)

N+2
ν2

]⊤
.

Then, we have

∂2sk(y,f ,θ)

∂θ∂f⊤ = −(K(y,f ,θ))−2πk(y, fk,θ)
∂K(y,f ,θ)

∂f⊤ +
N + 2

ν2
(K(y,f ,θ))−1vqe

⊤
k

+
1

K(y,f ,θ)
sk(y,f ,θ)

(
2

K(y,f ,θ)

∂K(y,f ,θ)

∂θ

∂K(y,f ,θ)

∂f⊤ − ∂2K(y,f ,θ)

∂θ∂f⊤

)
+

N + ν + 2

ν(K(y,f ,θ))2
∂K(y,f ,θ)

∂θ
e⊤k ,

where vq is a q × 1 vector of zeros with a one in the qth position.

∂2sk(y,f ,θ)

∂θ∂θ⊤
= (K(y,f ,θ))−1Πk(y, fk,θ)− (K(y,f ,θ))−2πk(y, fk,θ)

∂K(y,f ,θ)

∂θ⊤

+
1

(K(y,f ,θ))2
sk(y,f ,θ)

∂K(y,f ,θ)

∂θ

∂K(y,f ,θ)

∂θ⊤

− 1

K(y,f ,θ)
sk(y,f ,θ)

∂2K(y,f ,θ)

∂θ∂θ⊤
− 1

K(y,f ,θ)

∂K(y,f ,θ)

∂θ

∂sk(y,f ,θ)

∂θ⊤
,

with

Πk(y, fk,θ) =

2(N+ν+2)
Nν

diag(yΣ−3) diag(Λk) −N+ν+2
Nν

(ek ⊗Σ−2 diag(y))⊤ 0N×r 0N×r
N+2
Nν2 diag(y)Σ−2Λk

−N+ν+2
ν

ek ⊗
(

1
N
Σ−2 diag(y)

)
0Nr×Nr 0Nr×r 0Nr×r −N+2

ν2 ek ⊗
(

1
N
Σ−1y

)
0r×N 0r×Nr 0r×r 0r×r 0r

0r×N 0r×Nr 0r×r 0r×r 0r

N+2
Nν2 (diag(y)Σ−2Λk)

⊤ −N+2
Nν2 (ek ⊗ ( 1

N
Σ−1y))⊤ 01×r 01×r

(
1
N
Λ⊤

k Σ−1y − fk
) 2(N+2)

ν3

 .
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∂2sk(y,f ,θ)

∂f∂f⊤ =
N + ν + 2

ν

1

(K(y,f ,θ))2
ek
∂K(y,f ,θ)

∂f⊤ − 1

K(y,f ,θ)
sk(y,f ,θ)

∂2K(y,f ,θ)

∂f∂f⊤

+
1

(K(y,f ,θ))2
sk(y,f ,θ)

∂K(y,f ,θ)

∂f

∂K(y,f ,θ)

∂f⊤ − 1

K(y,f ,θ)

∂K(y,f ,θ)

∂f

sk(y,f ,θ)

∂f⊤ .

Now we turn to the derivatives of K(y,f ,θ).

∂K(y,f ,θ)

∂f⊤ = −2(y −Λf)⊤Σ−1Λ/ν,
∂2K(y,f ,θ)

∂f∂f⊤ = −2N

ν
Ir,

∂K(y,f ,θ)

∂θ
=
[

−(diag(y −Λf)Σ−1)2ιN/ν −2f ⊗Σ−1(y −Λf)/ν 0r 0r − (y−Λf)⊤Σ−1(y−Λf)
ν2

]⊤
.

∂K(y,f ,θ)

∂θ∂θ⊤

=


2(diag(y −Λf))2Σ−3/ν (2f ⊗Σ−2 diag(y −Λf)/ν)⊤ 0N×r 0N×r (diag(y −Λf)Σ−1)2ιN/ν2

2f ⊗Σ−2 diag(y −Λf)/ν 2(ff⊤)⊗ diag(Σ−1)/ν 0Nr×r 0Nr×r 2f ⊗Σ−1(y −Λf)/ν2

0r×N 0r×Nr 0r×r 0r×r 0r

0r×N 0r×Nr 0r×r 0r×r 0r

ι⊤N (diag(y −Λf)Σ−1)2/ν2 2f⊤ ⊗Σ−1(y −Λf)/ν2 0⊤
r 0⊤

r 2
(y−Λf)⊤Σ−1(y−Λf)

ν3

 .

∂K(y,f ,θ)

∂θ∂f⊤ =
[

2 diag(y −Λf)Σ−2Λ/ν 2(diag(f) + fι⊤r )⊗Σ−1Λ/ν 0r 0r 2 (y−Λf)⊤Σ−1Λ
ν2

]
.

C.3 Derivatives of log-likelihood

Here, we provide the expressions for the first and second derivatives of the log-likelihood function LT (θ)

defined in (16) with respect to θ = (σ2, vecΛ,a, b,ν), where a := diagA, b := diagB and σ2 := diagΣ.2

For the first derivative, we have ∇θLT (θ) :=
∂LT (θ)

∂θ = 1
T

∑T
t=2 l

′
t(θ), where

l′t(θ) :=
∂lt(ft(θ),θ)

∂θ
=
∂lt(f ,θ)

∂θ

∣∣∣
f=ft(θ)

+

(
∂lt(f ,θ)

∂f⊤

∣∣∣
f=ft(θ)

∂ft(θ)

∂θ⊤

)⊤

, (SC.14)

where

∂lt(f ,θ)

∂θ
=
[
∂lt(f ,θ)

∂σ2

∂lt(f ,θ)
∂ vecΛ 0r 0r

∂lt(f ,θ)
∂ν

]⊤
,

with

∂lt(f ,θ)

∂σ2
= −1

2
diagΣ−1 +

κt(f ,θ)

2
Σ−2(diag(yt −Λf))2ιN ,

∂lt(f ,θ)

∂ vecΛ
= κt(f ,θ)f ⊗ (Σ−1(yt −Λf)),

where for the Gaussian model κt = 1 and for the Student’s model κt(f ,θ) =
N+ν
ν

1
Kt(f ,θ)

with Kt(f ,θ) as

defined in Section C.2; ιN is an N -dimensional vector of ones.

2We define as diag(A) the r × 1 vector holding the diagonal elements of matrix A.
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In case of the Gaussian model, ∂lt(f ,θ)
∂ν = 0, while for the Student’s t model

∂lt(f ,θ)

∂ν
=

1

2
ψ

(
ν +N

2

)
− 1

2
ψ
(ν
2

)
− N

2ν
− 1

2
logKt(f ,θ) +

1

2
κt(f ,θ)Kt(f , ν),

where ψ(·) is a digamma function.

The derivatives of ft are presented in Section C.1, while for ∂lt(f ,θ)/∂f
⊤ we have

∂lt(f ,θ)

∂f⊤ = κt(f ,θ)(yt −Λf)⊤Σ−1Λ.

For the second-order derivatives we have

∇θθLT (θ) :=
∂2LT (θ)

∂θ∂θ⊤
=

1

T

T∑
t=2

l′′t (θ),

where

l′′t (θ) :=
∂2lt(ft(θ),θ)

∂θ∂θ⊤
=
∂2lt(f ,θ)

∂θ∂θ⊤

∣∣∣
f=ft(θ)

+
∂2lt(f ,θ)

∂θ∂f⊤

∣∣∣
f=ft(θ)

∂ft(θ)

∂θ⊤

+
∂ft(θ)

⊤

∂θ

∂2lt(f ,θ)

∂f∂θ⊤

∣∣∣
f=ft(θ)

+
∂ft(θ)

⊤

∂θ

∂2lt(f ,θ)

∂f∂f⊤

∣∣∣
f=ft(θ)

∂ft(θ)

∂θ⊤

+

r∑
k=1

∂lt(f ,θ)

∂fk

∣∣∣
f=ft(θ)

∂2fkt(θ)

∂θ∂θ⊤
.

∂2lt(f ,θ)

∂θ∂θ⊤
=



∂2lt(f ,θ)

∂σ2∂σ2⊤
∂2lt(f ,θ)

∂σ2∂ vecΛ⊤ 0N,r 0N,r
∂2lt(f ,θ)
∂σ2∂ν

∂2lt(f ,θ)

∂ vecΛ∂σ2⊤
∂2lt(f ,θ)

∂ vecΛ∂ vecΛ⊤ 0Nr,r 0Nr,r
∂2lt(f ,θ)
∂ vecΛ∂ν

0r,N 0r,Nr 0r,r 0r,r 0r

0r,N 0r,Nr 0r,r 0r,r 0r

∂2lt(f ,θ)

∂ν∂σ2⊤
∂2lt(f ,θ)

∂ν∂vecΛ⊤ 0⊤
r 0⊤

r
∂2lt(f ,θ)

∂ν2

 ,

∂2lt(f ,θ)

∂f∂θ⊤
=
[

∂2lt(f ,θ)

∂f∂σ2⊤
∂2lt(f ,θ)

∂f∂vecΛ⊤ 0r 0r
∂2lt(f ,θ)
∂f∂ν

]
.

For the Student’s t model

∂2lt(f ,θ)

∂f∂θ⊤
= κt(f ,θ)

[
−Λ⊤ diag(yt −Λf)Σ−2 ι⊤r ⊗ y⊤

t Σ
−1 0r×r 0r×r 0

]
− N + ν

ν

1

Kt(f ,θ)2
Λ⊤Σ−1(yt −Λft)

∂Kt(f ,θ)

∂θ⊤
,

∂2lt(f ,θ)

∂σ2∂σ2⊤
=

1

2
Σ−2 − κt(f ,θ)Σ

−3(diag(yt −Λf))2

+
1

2

κt(f ,θ)

νKt(f ,θ)
Σ−2(diag(yt −Λf))2ιN (yt −Λf)⊤Σ−2,

∂2lt(f ,θ)

∂σ2∂ vecΛ⊤ =− κt(f ,θ)f ⊗ (Σ−2 diag(yt −Λf))
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+
κt(f ,θ)

νKt(f ,θ)
Σ−2(diag(yt −Λf))2ιN (f⊤ ⊗ (yt −Λf)⊤Σ−1),

∂2lt(f ,θ)

∂σ2∂ν
=

1

2
Σ−2(diag(yt −Λf))2ιN

∂κt(f ,θ)

∂ν
,

∂2lt(f ,θ)

∂ vecΛ∂ν
= f ⊗ (Σ−1(yt −Λf))

∂κt(f ,θ)

∂ν
,

∂2lt(f ,θ)

∂ vecΛ∂ vecΛ⊤ = −κt(f ,θ)(ff⊤)⊗Σ−1 +
κt(f ,θ)

νKt(f ,θ)
f ⊗ (Σ−1(yt −Λf))(f⊤ ⊗ (yt −Λf)⊤Σ−1),

∂2lt(f ,θ)

∂ν2
=

1

4
ψ(1)

(
N + ν

2

)
− 1

4
ψ(1)

(ν
2

)
+

N

2ν2
+

1

2ν2
1

Kt(f ,θ)
(yt −Λf)⊤Σ−1(yt −Λf)

− 1

2ν2
κt(f ,θ)(yt −Λf)⊤Σ−1(yt −Λf) +

1

2
Kt(f ,θ)

∂κt(f ,θ)

∂ν

=
1

4
ψ(1)

(
N + ν

2

)
− 1

4
ψ(1)

(ν
2

)
+

N

2ν2
− N

2ν3
1

Kt(f ,θ)
(yt −Λf)⊤Σ−1(yt −Λf)

+
1

2
Kt(f ,θ)

∂κt(f ,θ)

∂ν
,

where ∂κt(f ,θ)
∂ν = N+ν

ν3
1

Kt(f ,θ)2
(yt −Λf)Σ−1(yt −Λf) − N

ν2
1

Kt(f ,θ)
and ψ(1)(·) is a polygamma function

of order 1.

∂2lt(f ,θ)

∂f∂f⊤ = −Nκt(f ,θ) +
2κt(f ,θ)

νKt(f ,θ)
Λ⊤Σ−1(yt −Λf)(yt −Λf)⊤Σ−1Λ

For the Gaussian model

∂2lt(f ,θ)

∂f∂θ⊤
=
[
−Λ⊤ diag(yt −Λf)Σ−2 ι⊤r ⊗ y⊤

t Σ
−1 0r×r 0r×r 0

]
,

∂2lt(f ,θ)

∂σ2∂σ2⊤
=

1

2
Σ−2 −Σ−3(diag(yt −Λf))2,

∂2lt(f ,θ)

∂σ2∂ vecΛ⊤ = −f ⊗ (Σ−2 diag(yt −Λf)),

∂2lt(f ,θ)

∂ vecΛ∂ vecΛ⊤ = −(ff⊤)⊗Σ−1,

∂2lt(f ,θ)

∂f∂f⊤ = −N.

The following lemma states the bounds for each of the derivative.

Lemma SC.6. The derivatives of the log-likelihood and the score can be bounded as follows:

For the Student’s t model:

• supt,θ ∥∂lt(f ,θ)/∂σ2∥ ≤ c1;

• supt,θ ∥∂lt(f ,θ)/∂ vecΛ∥ ≤ c1;

• supθ ∥∂lt(f ,θ)/∂ν∥ ≤ c1 + c2∥yt∥2 + c3∥f∥2;

• supt,θ ∥∂lt(f ,θ)/∂f∥ ≤ c1;

• supt,θ ∥∂2lt(f ,θ)/∂f∂f⊤∥ ≤ c1;

• supt,θ ∥∂2lt(f ,θ)/∂f∂σ2⊤∥ ≤ c1;
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• supt,θ ∥∂2lt(f ,θ)/∂f∂vecΛ
⊤∥ ≤ c1;

• supt,θ ∥∂st/∂f∥ ≤ c1;

• supt,θ ∥∂2st/∂θ∂f⊤∥ ≤ c1;

• supt,θ ∥∂2st/∂f∂f⊤∥ ≤ c1.

For the Gaussian model:

• supt,θ ∥∂st/∂f∥ ≤ c1;

• supt,θ ∥∂2st/∂θ∂f⊤∥ = 0;

• supt,θ ∥∂2st/∂f∂f⊤∥ = 0;

• supθ ∥∂st/∂θ∥ ≤ c1 + c2∥yt∥;

• supθ ∥∂2st/∂θ∂θ⊤∥ ≤ c1 + c2∥yt∥;

• supθ ∥∂lt(f ,θ)/∂σ2∥ ≤ c1 + c2∥yt∥2 + c3∥f∥2;

• supθ ∥∂lt(f ,θ)/∂ vecΛ∥ ≤ c1∥ytf⊤∥+ c2∥f∥2;

• supθ ∥∂lt(f ,θ)/∂f∥ ≤ c1∥yt∥+ c2∥f∥;

• supθ ∥∂2lt(f ,θ)/∂f∂σ2⊤∥ ≤ c1∥yt∥+ c2∥f∥;

• supf ,θ ∥∂2lt(f ,θ)/∂f∂vecΛ
⊤∥ ≤ c1∥yt∥;

• supθ ∥∂2lt(f ,θ)/∂σ2∂σ2⊤∥ ≤ c1 + c2∥yt∥2 + c3∥f∥2;

• supθ ∥∂2lt(f ,θ)/∂ vecΛ∂σ2⊤∥ ≤ c1∥ytf⊤∥+ c2∥f∥2;

• supθ ∥∂2lt(f ,θ)/∂ vecΛ∂vecΛ
⊤∥ ≤ c1∥f∥2.

The derivations are straightforward and can be checked using e.g. Mathematica.
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D Supplementary Monte Carlo simulation results

In this section, we present additional Monte Carlo results. Specifically, we demonstrate the

results for the experiments with N = 20 and different values of T and r. For the detailed

description of the simulation design we refer the reader to Section 4.1.
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Figure SD.1: Kernel density of the RMSE for the factors and loadings. Monte
Carlo simulation results. The DGP is a Student’s t score-driven factor model with N = 10. For
further details we refer to Figure 1.
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Figure SD.2: Kernel density of the RMSE for the factors and loadings. Monte
Carlo simulation results. The DGP is a Student’s t score-driven factor model with N = 20. For
further details we refer to Figure 1.
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E Supplementary empirical application details

E.1 Dataset

Name Description Abbreviation

Industrial production
Annual change in log industrial INDPRO

production index, log IPt − log IPt−12

Unemployment rate
Annual change in the unemployment UNRATE

rate, URt − URt−12

Retail sales
Annual change in log retail RETAIL
sales, logRSt − logRSt−12

Consumer sentiment

Annual change in the survey-based UMCSENTx
consumer sentiment index constructed by the

index University of Michigan,
CSt − CSt−12

S&P500 index
Monthly annual returns S&P500

on the S&P500 index, logSPt − logSPt−12

S&P500 volatility
Annualized daily realized volatility S&P500vol
computed over the current month

Credit spread
Difference between the yield on Baa-rated bonds BAATB10Y

and the yield on 10-year Treasury bonds

Housing starts:
Annual monthly change HOUSING

in the housing starts index
total new privat. owned HSt −HSt−12

EBP Excess bond premium EBP

Table SE.5: Time series: description, and abbreviation. All the time series but S&P500
volatility and EBP are retrieved from the FRED MD database McCracken & Ng (2016). The
time series for S&P500vol are constructed as discussed in Creal et al. (2014) using the data from
the Yahoo finance database.

E.2 Model diagnostics

25



0 5 10 15 20 25
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
INDPRO

0 5 10 15 20 25
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
INDPRO

0 5 10 15 20 25
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
INDPRO

0 5 10 15 20 25
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
UNRATE

0 5 10 15 20 25
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
UNRATE

0 5 10 15 20 25
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
UNRATE

0 5 10 15 20 25
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
RETAIL

0 5 10 15 20 25
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
RETAIL

0 5 10 15 20 25
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
RETAIL

0 5 10 15 20 25
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
UMCSENTx

0 5 10 15 20 25
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
UMCSENTx

0 5 10 15 20 25
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
UMCSENTx

0 5 10 15 20 25
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
S&P500

0 5 10 15 20 25
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
S&P500

0 5 10 15 20 25
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
S&P500

0 5 10 15 20 25
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
S&P500vol

0 5 10 15 20 25
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
S&P500vol

0 5 10 15 20 25
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
S&P500vol

0 5 10 15 20 25
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
BAATB10Y

0 5 10 15 20 25
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
BAATB10Y

0 5 10 15 20 25
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
BAATB10Y

0 5 10 15 20 25
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
HOUSING

0 5 10 15 20 25
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
HOUSING

0 5 10 15 20 25
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
HOUSING

0 5 10 15 20 25
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
EBP

0 5 10 15 20 25
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
EBP

0 5 10 15 20 25
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
EBP

Figure SE.3: The plots of the autocorrelation functions: of the data (left column) and
the one-step-ahead prediction errors for the individual series of the Gaussian (middle column)
and Student’s t (right column) models.
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Figure SE.4: Histograms of the probability integral transforms (PITs) for the
Gaussian (light orange) and Student’s t (blue) score-driven factor models with
r = 1 factor. The PITs were computed using the residuals of the fitted model considered in
Section 5.
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Figure SE.5: The p-values of the Pearson χ2 goodness-of-fit test. The test is applied
to the residuals of the score-driven factor models considered in Section 5 with r = 1 factors as
selected by the BIC. The null hypothesis corresponds to the correct model specification.
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