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Abstract. This paper aims to connect the social network literature on centrality measures with
the economic literature on von Neumann-Morgenstern expected utility functions using cooperative
game theory. The social network literature studies various concepts of network centrality, such as
degree, betweenness, connectedness, and so on. This resulted in a great number of network centrality
measures, each measuring centrality in a different way. In this paper, we aim to explore which
centrality measures can be supported as von Neumann-Morgenstern expected utility functions,
reflecting preferences over different network positions in different networks. Besides standard axioms
on lotteries and preference relations, we consider neutrality to ordinary risk . We show that this
leads to a class of centrality measures that is fully determined by the degrees (i.e. the numbers of
neighbours) of the positions in a network. Although this allows for externalities, in the sense that
the preferences of a position might depend on the way how other positions are connected, these
externalities can be taken into account only by considering the degrees of the network positions.
Besides bilateral networks, we extend our result to general cooperative TU-games to give a utility
foundation of a class of TU-game solutions containing the Shapley value.

JEL Classification: D85, D81, C02

Keywords: weighted network, degree, centrality measure, externalities, neutrality to 
ordinary risk, expected utility function

1 Introduction

This paper aims to connect the social network literature on centrality measures with 
the economic literature on von Neumann-Morgenstersn expected utility functions. The 
social network literature studies various concepts of network centrality, such as degree, 
betweenness, connectedness, and so on. This resulted in a great number of network cen-
trality measures, each measuring centrality in a different way. Examples can be found in, 
e.g. (1), (29), (24), (12; 13), (4), (14), (5), (17), (23), (3), (11), to name a few. A large part
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of decision making in the economic literature is based on von Neumann-Morgenstern ex-
pected utility functions (22). Specifically, properties of preference relations allowing them
to be represented by a von Neumann-Morgenstern expected utility function are studied.

Building on (16), (27) gives a von-Neumann-Morgenstern expected utility foundation
of solutions for cooperative transferable utility games; see also (28). Specifically, adding
axioms with respect to worst and better elements and two risk neutrality axioms (neutral-
ity to ordinary risk and neutrality to strategic risk) to a set of usual axioms of preference
relations, the Shapley value (31) stands out as such a utility function expressing prefer-
ences over different player positions in different games. In this paper, we generalize the
work of (7) who apply (27)’s theory to bilateral networks obtaining a utility foundation
of network centrality measures. The importance of developing a utility foundation for
network centrality measures is also stressed in, e.g. (9) who introduce a network forma-
tion game where the building of relations (in their case authority relations) is driven by
utility maximizing individuals.

Bilateral networks can be represented by a special class of cooperative games, the
so-called 2-games of (10), where worth is generated by two-player coalitions, being the
links in the network. The Shapley value of these games boils down to the degree measure
of the associated networks. In (7), (27)’s theory is applied to undirected networks (and
then extended to directed networks), where they show that without requiring neutrality
to strategic risk, one obtains a characterization of the degree measure as a von Neumann-
Morgenstern expected utility function over network positions. The degree is an important
characteristic of a position in a network, and is useful in the explanation of many network
phenomena, for example in explaining the level of cooperation in threshold games on a
network as in (26), (19).

As (27), (7) also use axioms specifying a worst position and identify at least one
position that is better than this. They assume that the worst is being isolated, i.e. having
no neighbours. This implies that being isolated is as good as being in the empty network
that has no relations, and thus implies that it ignores externalities with respect to the
connectedness of other nodes as long as one is isolated. Besides, a main disadvantage of
this axiom is that it is not related to risk attitudes.

Neutrality to ordinary risk requires that one is indifferent between a position in a
convex combination of two networks and playing a lottery between these two networks
with the probabilities corresponding to the weights in this convex combination. In the
underlying paper, we want to explore which centrality measures can be supported as von
Neumann-Morgenstern expected utility functions by, besides some standard regularity
axioms and anonymity, only assuming neutrality to ordinary risk. Specifically, we make
no assumption about what is the worst possible network position. It turns out that the
only centrality measures that satisfy these axioms are based on the degrees of the network
positions, specifically are a combination of the degree of a position and the average degree
over all positions in the network. This implies that it allows for externalities, but only in
terms of the average degree. In this way, we give a foundation of these network centrality
measures as utility functions over network positions, expressing preferences over positions
in networks, bringing in externalities of connections between other positions. We obtain
this main result by first characterizing this class of centrality measures that is determined
by the degree of the positions in the network.
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Other nodes being more connected can have positive as well as negative externalities.
Our class of measures contains two parameters, in particular, an externality parameter.
Depending on these parameters, we can recover some specific measures, e.g., the degree
measure if the externality parameter is equal to zero. By considering some additional
axioms on the preferences, we can specify the range for the parameters in the utility
functions. Negative (respectively, positive) values of the externality parameter express
negative (respectively, positive) externalities. Negative externalities of other nodes being
connected to each other always occur when the sum of the values assigned to all nodes is
a constant. This is the case, for instance, for the new average degree externality measure
which assigns to every node in a network its degree minus the average degree over all
nodes, and therefore leads to the sum of the values equal to zero.

As mentioned above, cooperative games, also known as weighted hypergraphs, are
a generalization of bilateral networks. We extend our main result to the class of all
cooperative games, and by doing so also generalize the result of (27) characterizing the
Shapley value. However, since we do not have the ‘worst element’ axiom, we strengthen
his strategic risk neutrality axiom being an axiom that deals with uncertainty regarding
the unanimity coalition. In a unanimity game a positive worth is earned by any coalition
containing the unanimity coalition and the worth is zero otherwise. (27)’s neutrality to
strategic risk requires that a player is indifferent between being in two scaled unanimity
games, where it belongs to the unanimity coalition in both games and the worth that is
generated in the game is proportional to the number of players in the unanimity coalition.
We strengthen this axiom by also requiring this for null players. This leads to a class of
solutions that is a combination of the Shapley value and a term that is the same for all
players. In this way, we also generalize the result of (27).

This paper is organized as follows. In Section 2, we discuss preliminaries on networks
and (16)’s expected utility theory over mixture sets. In Section 3, we characterize a
class of centrality measures that are combinations of the degree and average degree of a
network. In Section 4, we present our main result showing that these measures are the
only ones that represent regular preferences that are neutral to ordinary risk. In Section
5, we extend the main result to cooperative games. Finally, Section 6 contains concluding
remarks.

2 Preliminaries

First, we present some basic concepts and notation that will be used in the paper.

Weighted (undirected) networks A weighted undirected network , shortly called a
network in this paper, is a pair (N,ω) consisting of a finite set of nodes N ⊂ IN and a
weight function ω : Lc → R+, where Lc = {{i, j} | i, j ∈ N, i 6= j} denotes the complete
undirected network on N . An element {i, j} ∈ Lc is a subset of N of size two and is called
a link . A link {i, j} represents a certain bilateral relationship between nodes i and j. A
weight function gives a nonnegative weight ω({i, j}) to every link that can be interpreted
as the ‘importance’ or ‘strength’ of the relationship. By WGN we denote the collection
of all weight functions on N . We refer to a weighted undirected network simply as a
network. Since N is assumed to be fixed, we represent a network (N,ω) by the weight
function ω.
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A centrality measure for undirected networks is a function f : WGN → IRN that
assigns a real number to every node in every undirected network that reflects the ‘cen-
trality’ of the node in the network. The degree of node i ∈ N in network ω is defined as
the sum of the weights of all links containing i, and thus is given by

di(ω) =
∑

j∈N\{i}

ω({i, j}) (1)

The degree measure is the centrality measure that assigns to any node i in any
network ω its degree di(ω).

Let Π(N) be the collection of all permutations π : N → N on N , i.e. for every
rank number k ∈ N there is a unique i ∈ N with π(i) = k. For a network ω ∈ WGN and
a permutation π ∈ Π(N), the permuted network πω ∈ WGN is given by πω({i, j}) =
ω({π−1(i), π−1(j)}) for every {i, j} ∈ Lc, i.e. only the labels of the positions are switched.
We say that node i ∈ N is isolated in ω ∈ WGN if ω({i, j}) = 0 for all j ∈ N . We denote
the set of weighted undirected networks where i is an isolated node by WGNi . We denote
by ω0 ∈ WGN the empty network given by ω0({i, j}) = 0 for all i, j ∈ N .

Expected utility We briefly recall the utility theory on mixture sets of (16) (see also
(33; 34), and (21) for related works on linear utility representation theorems). Consider a
set M . The (simple) lottery between two elements a, b ∈M where element a occurs with
probability p ∈ [0, 1] (and element b occurs with probability (1 − p) ∈ [0, 1]) is denoted
by [pa; (1 − p)b]. A set M is a mixture set if for any a, b ∈ M and any p ∈ [0, 1], the
lottery [pa; (1− p)b] also belongs to M . Notice that this implies that also all compound
lotteries, i.e. lotteries over lotteries, etc., belong to M . It is assumed that for all a, b ∈M
and p, q ∈ [0, 1], the following three standard equalities hold:

[1a; 0b] = a, [pa; (1−p)b] = [(1−p)b; pa], [q[pa; (1−p)b]; (1−q)b] = [pqa; (1−pq)b]. (2)

The left hand side of the third equality is a so-called compound lottery where lottery
[pa; (1−p)b] occurs with probability p and element b occurs with probability (1−p). The
equality says that this is identical to the lottery where a occurs with probability pq and
b occurs with probability (1− pq).
A preference relation on M is a binary relation � with the interpretation that a � b
means that “a is at least as good as b”.

A function u : M → R is an expected utility function representing the preference
relation � if for all a, b ∈M and p ∈ [0, 1], it holds that

(i) u(a) ≥ u(b) if and only if a � b, and

(ii) u([pa; (1− p)b]) = pu(a) + (1− p)u(b). (3)

If u is an expected utility function representing the preference relation �, then also
every positive affine transformation ū given by ū(a) = αu(a)+β, for some α > 0, β ∈ IR,
represents this preference relation. We write [a � b] if [a � b and b 6� a] for the strict
preference relation, and [a ∼ b] if [a � b and b � a] for the indifference relation. The
following axioms guarantee that an expected utility function representing � exists.

Axiom 1 (Completeness) For any a, b ∈M , either a � b or b � a.
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Axiom 2 (Transitivity) For any a, b, c ∈ M such that a � b and b � c, it holds that
a � c.

Axiom 3 (Continuity) For any a, b, c ∈ M , the sets {p | [pa; (1 − p)b] � c} and {p |
c � [pa; (1− p)b]} are closed.

Axiom 4 (Substitutability) If a, a′ ∈M and a ∼ a′, then for every b ∈M , [1
2
a; 1

2
b] ∼

[1
2
a′; 1

2
b].

We refer to preferences satisfying these axioms as regular preferences and assume
throughout the paper that preferences are regular.

Preferences over network positions Following (7), we refer to a pair (i, ω) ∈ N ×
WGN as a (undirected) network position. We assume that a preference relation � is
defined on the set N×WGN of undirected network positions, and interpret (i, ω) � (j, ω′)
as “it is at least as good to be in the position of node i in network ω as it is to be in the
position of node j in network ω′”. Let M be the mixture set generated by all undirected
network positions (i, ω) ∈ N ×WGN containing all simple and compound lotteries over
network positions. This means that M contains all network positions (i, ω), all lotteries
over network positions, all lotteries over those lotteries, etc.

For (i, ω), (j, ω′) ∈ N×WGN and p ∈ [0, 1], the lottery [p(i, ω); (1−p)(j, ω′)] means
that with probability p the agent takes the position of node i in network ω, and with
probability (1−p) it takes the position of node j in network ω′. Extending the preference
relation over network positions to the mixture set M , an expected utility function for
network positions is a function φ : M → IR assigning a utility value to every mixture of
network positions satisfying conditions (3).

Besides the standard axioms stated before, (7) consider the following adaptations
of axioms from (27).

First, anonymity requires that relabelling the nodes in a network yields a corre-
sponding reordering in the preference relation.

Axiom 5 (Anonymity) For all ω ∈ WGN , i ∈ N and π ∈ Π(N), it holds that (i, ω) ∼
(π(i), πω).

The second axiom compares different network positions, expressing preference with re-
spect to connectedness. More specifically, an agent weakly prefers any position in any
network above being isolated. Notice that this implies that an agent is indifferent between
any two networks where it is isolated, irrespective of how other positions are connected
among each other. Specifically, an agent is indifferent between being in the empty network
ω0 and being isolated in any other network.

Axiom 6 (Isolated is the worst) For all i ∈ N , ω ∈ WGN and ω′ ∈ WGNi , i.e., i is
isolated in ω′, it holds that (i, ω) � (i, ω′).

Whereas the previous axiom stated that being isolated as a worst element in the preference
relation, the next axiom specifies at least one network position that is strictly better than
being isolated. Specifically, it says that being the center of the star is strictly preferred
to being in the empty network. By ωi we denote the simple star network with i as center
given by ωi({i, j}) = 1 for all j ∈ N \ {i} and ωi({h, j}) = 0 if i 6∈ {h, j}.

5



Axiom 7 (Center of the star is strictly better than being isolated) For all i ∈
N , it holds that (i, ωi) � (i, ω0).

Finally, neutrality to ordinary risk requires that an agent is indifferent between taking
a position in a convex combination of two networks, and playing a lottery over the two
networks with the corresponding probabilities.

Axiom 8 (Neutrality to ordinary risk) For all ω, ω′ ∈ WGN and i ∈ N , it holds
that (i, pω + (1− p)ω′) ∼ [p(i, ω); (1− p)(i, ω′)].

In (7) it is shown that the only utility functions that satisfy the above axioms are multiples
of the degree measure.

Theorem 1 (van den Brink and Rusinowska (2022)) A preference relation � over
network positions N×WGN is regular and satisfies anonymity, isolated is the worst, center
of the star is strictly better than being isolated, and neutrality to ordinary risk if and only
if it can be represented by utility function φ(i, ω) = di(ω) for all (i, ω) ∈ N×WGN , where
di(ω) is the degree of node i in network ω, see (1).

This theorem gives the degree measure, which is a well-known centrality measure in
social network theory, an interpretation as a von Neumann-Morgenstern expected utility
function.

3 Degree centrality and externalities: the average degree
externality measure

Before investigating what centrality measures we obtain as representing regular preference
relations satisfying only anonymity and neutrality to ordinary risk, we introduce a class
of centrality measures that are based on the degree measure but are modified for an
externality. The average degree externality measure assigns to every node in a network
its degree minus the average degree over all nodes.

Definition 1 The average degree externality (ADE) measure e : WGN → IRN is given by

ei(ω) = di(ω)− 1

n

∑
j∈N

dj(ω) for all i ∈ N and ω ∈ WGN ,

where di(ω) is the degree of node i in weighted network ω, see (1).

Next, we characterize the class of measures that satisfy the standard anonymity, scale
invariance and additivity axioms.
Anonymity of a centrality measure requires that the centrality of nodes does not depend
on their label.

Axiom 9 (Anonymity for centrality measures) For every ω ∈ WGN and permuta-
tion π ∈ Π(N), it holds that fi(ω) = fπ(i)(π(ω)).
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Since the context makes clear whether we speak about anonymity of a preference relation
or a centrality measure, we often simply refer to this as anonymity. The close relation
between the two is expressed in Lemma 1.(i) in the next section.

Scale invariance requires that if the weights of all links in a network are multiplied by a
common factor, then the centralities of the nodes in that network are multiplied by the
same factor.

Axiom 10 (Scale invariance) Let ω ∈ WGN and α ∈ IR+. Then f(αω) = αf(ω),
where αω ∈ WGN is given by αω(i, j) = α · ω(i, j) for all i, j ∈ N, i 6= j.

Additivity requires that the centrality in the network that is obtained by adding two
networks is equal to the sum of the centralities in these two networks.

Axiom 11 (Additivity) For ω, ω′ ∈ WGN it holds that f(ω+ω′) = f(ω)+f(ω′), where
(ω + ω′)({i, j}) = ω({i, j}) + ω′({i, j}) for all {i, j} ∈ Lc.

Theorem 2 A measure f satisfies anonymity, scale invariance and additivity if and only
if there exist α, β ∈ IR such that

fi(ω) = (α− β)di(ω) +
β

2

∑
j∈N

dj(ω) for all i ∈ N and ω ∈ WGN . (4)

Proof

It is straightforward to verify that centrality/power measures as given by (4) satisfy
anonymity, scale invariance and additivity. Next, suppose that measure f satisfies anonymity,
scale invariance and additivity, and consider ω ∈ WGN . We show that it must be of the
form as given by (4).

First, consider the empty network ω0 and any network ω ∈ WGN . Additivity implies that
fi(ω + ω0) = fi(ω) + fi(ω

0). Since ω + ω0 = ω, this implies that fi(ω) = fi(ω) + fi(ω
0),

and thus fi(ω
0) = 0 for all i ∈ N .

Next, take a pair i, j ∈ N , i 6= j, and consider the network ω ∈ WGN given by ω(i, j) = 1
and ω(h, g) = 0 for all (h, g) 6= (i, j). By anonymity, there exist α, β ∈ IR such that
fi(ω) = fj(ω) = α and fh(ω) = β for all h ∈ N \ {i, j}. Next, take ω ∈ WGNij where

WGNij = {ω ∈ WGN | ω(i, j) 6= 0 and ω(h, g) = 0 for all (h, g) 6= (i, j)} is the class of
networks where only arc (i, j) has a nonzero weight. By scale invariance, fi(ω) = fj(ω) =
α · ω(i, j) and fh(ω) = β · ω(i, j) for all h ∈ N \ {i, j}.
Now take any (h, g) ∈ N ×N, h 6= g, (h, g) 6= (i, j), and ω′ ∈ WGNhg. By anonymity and

the case ω ∈ WGNij above, we have fh(ω
′) = fg(ω

′) = α ·ω′(h, g), and fk(ω
′) = β ·ω′(h, g)

for all k ∈ N \ {h, g}.
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Finally, consider any ω ∈ WGN . For every i, j ∈ N , i 6= j, define ωij(i, j) = ω(i, j) and
ωij(h, g) = 0 for all (h, g) 6= (i, j). Then, additivity implies that for all i ∈ N ,

fi(ω) =
∑
h,g∈N
h6=g

fi(ω
hg) =

∑
j∈N\{i}

fi(ω
ij) +

∑
h,g∈N\{i}

fi(ω
hg)

=
∑

j∈N\{i}

α · ω(i, j) +
∑

h,g∈N\{i}

β · ω(h, g)

= αdi(ω) + β

(∑
j∈N\{i} dj(ω)− di(ω)

2

)

= αdi(ω) + β
∑
j∈N

(
dj(ω)

2
− di(ω)

)

= (α− β)di(ω) +
β

2

∑
j∈N

dj(ω).

�

This theorem characterizes a class of measures that are based on the degree measure
but are modified for an externality by the term β

2

∑
j∈N dj(ω). The parameter β

2
can be

considered as an externality parameter . Notice that this parameter can be negative as
well as positive, and negative (respectively, positive) values of the externality parameter
express negative (respectively, positive) externalities. If β = 0 then we simply have the
degree measure expressing no externalities. Taking α = n−2

n
, β = − 2

n
gives the average

degree externality (ADE) measure as defined in Definition 1. In the next section we will
give a foundation of these measures as utility functions over network positions, and we
give extra conditions that imply the parameters to be within a certain range, specifically
when they are negative or positive.

In the remainder of this section, we want to introduce an axiom that explicitly
brings in negative externalities of other nodes being linked with each other into the
measure. We do this by requiring that the sum of the values assigned to all nodes is
always a constant, specifically is zero. So, if one node gets a higher value, then there must
be at least one node that gets a lower value. This is satisfied by, for example, the average
degree externality (ADE) measure.

Axiom 12 (Null normalization) For every ω ∈ WGN , it holds that∑
i∈N

fi(ω) = 0.

Notice that the degree measure satisfies the normalization that the sum of the values
assigned to all nodes always equals twice the number of links. So, the ‘sum of powers’
depends positively on the number of links, allowing all nodes to (weakly) increase their
power.

Next, we characterize the class of measures in Theorem 2 that satisfy additionally
the null normalization.
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Proposition 1 Let n > 2. A measure f satisfies null normalization, anonymity, scale
invariance and additivity if and only if there exists an α ∈ IR such that

fi(ω) =
nα

n− 2
di(ω)− α

n− 2

∑
j∈N

dj(ω) for all i ∈ N and ω ∈ WGN .

Proof
By Theorem 2, it follows that the measures of Proposition 1 satisfy anonymity, scale
invariance and additivity. Null normalization follows since∑

i∈N

(
nα

n− 2
di(ω)− α

n− 2

∑
j∈N

dj(ω)

)
=

nα

n− 2

∑
i∈N

di(ω)− α

n− 2

∑
i∈N

∑
j∈N

dj(ω)

=
nα

n− 2

∑
i∈N

di(ω)− α

n− 2
n
∑
j∈N

dj(ω) = 0.

Next, suppose that measure f satisfies anonymity, scale invariance, additivity and
null normalization, and consider ω ∈ WGN . By Theorem 2, there exist α, β ∈ IR such that
measure f can be written as fi(ω) = (α − β)di(ω) + β

2

∑
j∈N dj(ω). Null normalization

then implies that

∑
i∈N

(
(α− β)di(ω) +

β

2

∑
j∈N

dj(ω)

)
= (α− β)

∑
i∈N

di(ω) +
β

2

∑
i∈N

∑
j∈N

dj(ω)

= (α− β)
∑
i∈N

di(ω) +
nβ

2

∑
j∈N

dj(ω)

= (α− β +
nβ

2
)
∑
i∈N

di(ω) = 0

⇔

(α− β +
nβ

2
) = 0⇔ 2α− 2β + nβ

2
= 0⇔ 2α + (n− 2)β = 0⇔ β = − 2α

n− 2
,

where the first equivalence follows from the fact that the equation before must hold for
every ω ∈ WGN , specifically when taking any network other than the empty network.
Thus,

fi(ω) = (α− β)di(ω) +
β

2

∑
j∈N

dj(ω)

=

(
α +

2α

n− 2

)
di(ω)− α

n− 2

∑
j∈N

dj(ω)

=

(
nα− 2α + 2α

n− 2

)
di(ω)− α

n− 2

∑
j∈N

dj(ω)

=
nα

n− 2
di(ω)− α

n− 2

∑
j∈N

dj(ω).

9
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Taking α = n−2
n

in Proposition 1 gives the average degree externality (ADE)
measure. Observe that the degree measure does not belong to this class since it does not
satisfy null normalization. In the next section we will discuss other ways to deal with
externalities, also allowing positive externalities.

4 Degree utility, ordinary risk neutrality and externalities

Similarly to (7) and following (27), in this section we will interpret centrality measures
as von Neumann-Morgenstern expected utility functions. However, whereas the above
mentioned references add several axioms regarding what is the worst network position,
here we want to require in some sense the least that is needed to speak about von
Neumann-Morgenstern preferences. That is, besides the axioms that define a regular
preference relation, we will only consider anonymity and neutrality to ordinary risk.

It turns out that a preference relation that satisfies these axioms must be repre-
sentable by a centrality measure as considered in Theorem 2. This gives our main theorem
of this paper.

Theorem 3 A preference relation � over network positions N×WGN satisfies anonymity
and is neutral to ordinary risk if and only if there exist α, β ∈ IR such that � can be rep-
resented by utility function φ(i, ω) = fi(ω) for all (i, ω) ∈ N ×WGN , where fi(ω) is as
given in (4).

To prove Theorem 3, we use the following lemma.

Lemma 1 Consider an expected utility function φ : M → IR for positions in a network
that is determined by a centrality measure f as follows: φ(i, ω) = fi(ω).

(i) If expected utility function φ represents a preference relation � satisfying anonymity
(Axiom 5), then centrality measure f satisfies anonymity (Axiom 9).

(ii) If expected utility function φ represents a preference relation � satisfying anonymity
and neutrality to ordinary risk (Axioms 5 and 8), then f is a centrality measure that
satisfies scale invariance and additivity (Axioms 10 and 11).

Proof

(i) This is already stated in (7) and follows immediately from Axiom 5.

(ii) The proof of this part follows the same lines as the proof of Lemma 2 in (7), following
(27), except that they also used the axiom of ‘isolated is worst’ which we do not assume
here. Consequently, (i) although they also considered Cases 1 and 2 the proof below
is slightly different because we cannot use ‘isolated is worst’, and (ii) we need to
separately consider Case 3 below which cannot occur under ‘isolated is worst’. (For
completeness, we also add the proofs of Cases 1 and 2 although they are only slightly
different from (7).)

10



Consider ω ∈ WGN and c > 1. Suppose that � satisfies anonymity and neutrality to
ordinary risk. Taking p = 1

c
, ω′ = ω0 and considering the network cω, neutrality to

ordinary risk implies that(
i,

(
1

c
cω + (1− 1

c
)ω0

))
∼
[

1

c
(i, cω); (1− 1

c
)(i, ω0)

]
which is equivalent to

(i, ω) ∼
[

1

c
(i, cω); (1− 1

c
)(i, ω0)

]
. (5)

Now, let u be a utility function representing a preference relation � satisfying Axioms
1-4 from the preliminaries. From (16), it follows that there exist r0, r1 ∈ M with
r1 � r0 such that an expected utility function φ over the positions in a digraph ω can
be written as

φ(i, ω) =
pab(i, ω)− pab(r0)
pab(r1)− pab(r0)

(6)

for some a, b ∈M with a � (i, ω) � b and a � r1 � r0 � b with probabilities pab(i, ω)
defined such that (i, ω) ∼ [pab(i, ω)a; (1− pab(i, ω))b].

In the following, we take r0 = (i, ω0) and take any r1 � r0. To show that the prefer-
ence relation can be represented by a scale invariant power measure, we distinguish the
following three cases with respect to (i, ω) ∈ WGN and c > 1.

Case 1: Suppose that (i, cω) � r1.
Take a = (i, cω) and b = r0 = (i, ω0). Then pab(i, cω) = pab(a) = 1 and pab(r0) = pab(b) =

0, and thus by (6), we have φ(i, cω) = pab(i,cω)
pab(r1)

= pab(a)
pab(r1)

= 1
pab(r1)

.

By (5), we have (i, ω) ∼ [1
c
(i, cω); (1 − 1

c
)(i, ω0)], so pab(i, ω) = 1

c
. But then fi(ω) =

φ(i, ω) = pab(i,ω)
pab(r1)

= 1
c
· 1
pab(r1)

= 1
c
φ(i, cω) = 1

c
fi(cω). So, scale invariance is satisfied in this

case.

Case 2: Suppose that r1 � (i, cω) � r0.
Take a = r1 and again b = r0 = (i, ω0). Then pab(r1) = pab(a) = 1 and pab(r0) =
pab(b) = 0, and so φ(i, cω) = pab(i, cω). By (5), we have (i, ω) ∼ [1

c
(i, cω); (1− 1

c
)(i, ω0)] ∼

[1
c
[pab(i, cω)a; (1−pab(i, cω))b]; (1− 1

c
)(i, ω0)] = [1

c
pab(i, cω)a; (1− 1

c
pab(i, cω))b], where the

second equivalence follows from the definition of pab and the equality follows from the
third equality in (2) and the fact that we took b = (i, ω0). So, pab(i, ω) = 1

c
pab(i, cω). Then,

by (6), we have φ(i, ω) = pab(i, ω) = 1
c
pab(i, cω), and thus fi(ω) = φ(i, ω) = 1

c
pab(i, cω) =

1
c
φ(i, cω) = 1

c
fi(cω). So, scale invariance is also satisfied in this case.

Case 3: Suppose that r0 � (i, cω). (As mentioned, this case does not occur in (7) since
they assume ‘isolated is worst’.)
Take a = r1 and b = (i, cω). Then pab(r1) = pab(a) = 1 and pab(i, cω) = pab(b) = 0, and so

φ(i, cω) = 0−pab(r0)
1−pab(r0)

= − pab(r0)
1−pab(r0)

where, as in all cases, r0 = (i, ω0). Then, we have (i, ω) ∼
[1
c
(i, cω); (1− 1

c
)(i, ω0)] = [1

c
b; (1− 1

c
)(i, ω0)] ∼ [1

c
b; (1− 1

c
)[pab(i, ω

0)a; (1− pab(i, ω0))b]] ∼
[(1− 1

c
)pab(i, ω

0)a; (1
c

+ (1− 1
c
)(1− pab(i, ω0)))b], where the first equivalence follows from

(5), the equality follows from the assumption that b = (i, cω), the second equivalence
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follows by definition of pab, and the third equivalence follows from the third equality

in (2). Thus, pab(i, ω) = (1 − 1
c
)pab(i, ω

0). By (5), we have φ(i, ω) = pab(i,ω)−pab(i,ω0)
1−pab(i,ω0)

=
(1− 1

c
)pab(i,ω

0)−pab(i,ω0)

1−pab(i,ω0)
= −1

c
· pab(i,ω

0)
1−pab(i,ω0)

= −1
c
· pab(r0)
1−pab(r0)

= 1
c
φ(i, cω). So, scale invariance is

also satisfied in this case.

The three cases together show that the utility function satisfies scale invariance.

To prove that the preference relation can be represented by an additive power measure,
consider any ω, ω′ ∈ WGN . Note that for every i ∈ N , neutrality to ordinary risk implies
that (i, 1

2
ω + 1

2
ω′) ∼ [1

2
(i, ω); 1

2
(i, ω′)] and thus φ(i, 1

2
ω + 1

2
ω′) = φ([1

2
(i, ω); 1

2
(i, ω′)]) =

1
2
φ(i, ω)+ 1

2
φ(i, ω′), where the first equality follows from neutrality to ordinary risk and the

second from (3). But then fi(ω+ω′) = fi(2(1
2
ω+ 1

2
ω′)) = 2fi(

1
2
ω+ 1

2
ω′) = 2φ(i, 1

2
ω+ 1

2
ω′) =

2(1
2
φ(i, ω)+1

2
φ(i, ω′)) = φ(i, ω)+φ(i, ω′) = fi(ω)+fi(ω

′), where the second equality follows
from scale invariance of f . So, additivity is satisfied. �

Proof of Theorem 3
The ‘only if’ part follows immediately from Lemma 1 and Theorem 2.
To prove the ‘if’ part, let � be the preference relation based on φ(i, ω) = fi(ω) as given
by (4), i.e. there exist α, β ∈ IR such that (i, ω) � (j, ω′) if and only if (α − β)di(ω) +
β
2

∑
h∈N dh(ω) ≥ (α − β)dj(ω

′) + β
2

∑
h∈N dh(ω

′). It is straightforward to check that �
satisfies anonymity (Axiom 5). To prove neutrality to ordinary risk, consider ω, ω′ ∈ WGN
and i ∈ N . Then, for p ∈ [0, 1] we have φ(i, pω+ (1− p)ω′) = (α− β)di(pω+ (1− p)ω′) +
β
2

∑
h∈N dh(pω + (1 − p)ω′) = (α − β)di(pω) + (α − β)di((1 − p)ω′) + β

2

∑
h∈N dh(pω) +

β
2

∑
h∈N dh((1 − p)ω′) = p(α − β)di(ω) + pβ

2

∑
h∈N dh(ω) + (1 − p)(α − β)di(ω

′) + (1 −
p)β

2

∑
h∈N dh(ω

′) = pφ(i, ω) + (1 − p)φ(i, ω′) = φ([p(i, ω); (1 − p)(i, ω′)]), where the last
equality follows from (3). �

Next, we add additional axioms on the preferences, to specify the range for the parameters
α and β in these utility functions, specifically when they are negative or positive.

As discussed before, a major question is if there are externalities of connections
between other positions. Other positions being better connected can have positive as well
as negative externalities. Positive externalities can arise from the fact that if you are con-
nected with a better connected network, some measures of centrality (such as closeness)
will improve. On the other hand, the closeness of other positions also increase, and there-
fore your relative closeness might decrease, and this might give a negative externality on
your utility. For betweenness, it is not clear beforehand if other positions being better
connected increase or decrease your betweenness.

In any case, it seems that if you are isolated, and other positions get better con-
nected by having more links, there is no positive externality for the isolated position,
but negative externalities might be possible. Therefore, we impose the following axiom
which requires that, if you are isolated, you weakly prefer the other positions to be less
connected in the sense that you prefer their links to have less weight.

Axiom 13 (Negative externalities for isolated positions) For every pair ω, ω′ ∈
WGNi , i.e. i is isolated in ω and ω′, satisfying ω(h, j) ≤ ω′(h, j) for all (h, j) with i 6∈
{h, j}, it holds that (i, ω) � (i, ω′).
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Additional to the other axioms, this requires β to be nonpositive, expressing the negative
externalities.

Proposition 2 A preference relation � over network positions N×WGN satisfies anonymity,
neutrality to ordinary risk and negative externalities for isolated positions if and only if
there exist α, β ∈ IR with β ≤ 0 such that � can be represented by utility function
φ(i, ω) = fi(ω) for all (i, ω) ∈ N ×WGN , where fi(ω) is as given in (4).

Proof
A preference relation that can be represented by a utility function as given in (4) with
β ≤ 0 satisfying anonymity and neutrality to ordinary risk follows from Theorem 3. It is
straightforward to verify that a preference relation that can be represented by a utility
function as given in (4) with β ≤ 0 satisfies negative externalities for isolated positions.
Now, suppose that preference relation � on N×WGN satisfies the axioms. From Theorem
3 we know that a preference relation that satisfies anonymity and neutrality to ordinary
risk can be represented by a utility function as given by (4). Negative externalities for
isolated positions implies that for i 6∈ {h, j}, it holds that fi(ω

0) ≥ fi(ω
hj), where ωhj ∈

WGNhj is given by ωhj(h, j) = 1, and ωhj(g, k) = 0 for all (g, k) 6= (h, j). But then

fi(ω
0) = 0 ≥ fi(ω

hj) = β
2
· 2, and thus β ≤ 0. �

Notice, that we can similarly use the weaker (negative) externality axiom which requires
that you prefer to be in the empty network then to be in the simple network where you
are isolated, but all other positions are fully connected to each other. Let ω−i ∈ WGN be
given by ω−i(i, j) = 0 for all j ∈ N \ {i}, and ω−i(h, j) = 1 for all h, j ∈ N \ {i}.

Axiom 14 (Negative externalities for isolated positions in complete subnetworks)
For every i ∈ N and simple network ω, it holds that (i, ω) � (i, ω−i).

Proposition 3 A preference relation � over network positions N×WGN satisfies anonymity,
neutrality to ordinary risk and negative externalities for isolated positions in complete sub-
networks if and only if there exist α, β ∈ IR with β ≤ 0 such that � can be represented by
utility function φ(i, ω) = fi(ω) for all (i, ω) ∈ N ×WGN , where fi(ω) is as given in (4).

The proof is similar to that of Proposition 2, and is therefore omitted.
Analogously, we can have positive externalities for isolated positions (in complete

subnetworks) to conclude that β ≥ 0.

Instead of looking at externalities with respect to other position’s relations, we
can also look at the effect of a position’s own relations. For example, we could consider
the axiom that requires that getting more relatives is always preferred.

Axiom 15 (Monotonicity) For every pair ω, ω′ ∈ WGN with ω(i, j) ≥ ω′(i, j), and
ω(h, j) = ω′(h, j) for all (h, j) with i 6∈ {h, j}, it holds that (i, ω) � (i, ω′).

Additional to the other axioms, this requires α to be nonnegative.

Proposition 4 A preference relation � over network positions N×WGN satisfies anonymity,
neutrality to ordinary risk and monotonicity if and only if there exist α, β ∈ IR with α ≥ 0
such that � can be represented by utility function φ(i, ω) = fi(ω) for all (i, ω) ∈ N×WGN ,
where fi(ω) is as given in (4).

13



Proof
A preference relation that can be represented by a utility function as given in (4) with
α ≥ 0 satisfying anonymity and neutrality to ordinary risk follows from Theorem 3.
It is straightforward to verify that a preference relation that can be represented by a
utility function as given in (4) with α ≥ 0 satisfies monotonicity.
Now, suppose that preference relation � on N×WGN satisfies the axioms. From Theorem
3 we know that a preference relation that satisfies anonymity and neutrality to ordinary
risk can be represented by a utility function as given by (4). Let ω, ω′ ∈ WGN be such
that, for some i, j ∈ N, i 6= j, ω(i, j) = ω′(i, j) + 1, and ω(h, g) = ω′(h, g) for all
(h, g) 6= (i, j). Monotonicity implies that fi(ω) = (α − β)di(ω) + β

2

∑
j∈N dj(ω) = (α −

β)(di(ω
′) + 1) + β

2
(
∑

j∈N dj(ω
′) + 2) ≥ fi(ω

′) = (α− β)di(ω
′) + β

2

∑
j∈N dj(ω

′), and thus

(α− β) + 2 · β
2

= α ≥ 0. �

5 Hypergraphs, cooperative games and the Shapley value

In Section 4 we described the class of centrality measures (with externalities) that can
represent regular preferences that are neutral to ordinary risk. As mentioned before, (27)
characterized the Shapley value as a von Neumann-Morgenstern expected utility function
for cooperative transferable utility games under the additional neutrality to strategic risk,
and a null-veto axiom that requires that it is worst to be a null player, and it is strictly
better to be a dictator than to be a null player. Since cooperative transferable utility
games are equivalent to weighted hypergraphs, this also gives a foundation of the Shapley
value as centrality measure for weighted hypergraphs.

A weighted hypergraph or cooperative transferable utility game (cooperative game
for short) is a pair (N, v) where N ⊂ N is a finite set of nodes or players and v : 2N → R
is a characteristic function on N satisfying v(∅) = 0. For every hyperlink or coalition
S ⊆ N , v(S) ∈ R is the worth of S. Since the set of nodes/players is fixed, we represent
a hypergraph/cooperative game (N, v) by its characteristic function v.

Depending on the context, the literature uses terminology ‘nodes’ and ‘hyperlink’
if the pair (N, v) is referred to as a weighted hypergraph, and the terminology ‘players’
and ‘coalition’ if the pair (N, v) is referred to as a cooperative game. In the remainder
of this section, we use the game terminology, but we remark that everything could be
stated in terms of hypergraphs.

We denote by GN the class of all cooperative games on N . A payoff vector for
cooperative game v on N is an |N |-dimensional vector x ∈ RN assigning a payoff xi ∈ R
to any player i ∈ N . A (single-valued) solution for cooperative games is a function f that
assigns a payoff vector f(v) ∈ RN to every cooperative game v on N . One of the most
famous solutions for cooperative games is the Shapley value (31) given by

Shi(v) =
∑

S⊆N :i∈S

(|S| − 1)!(|N | − |S|)!
|N |!

(v(S)− v(S \ {i})) .

In terms of hypergraphs, the Shapley value can be seen as a centrality measure
for weighted hypergraphs. Specifically, (10) argue that any undirected network can be
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represented by a so-called 2-game v, where the worth of any two player coalition is the
weight of the link, and the worth of any other coalition equals the sum of the worths of all
two player subcoalitions. In other words, the cooperative game vω associated to undirected
network ω ∈ WGN is given by (i) v({i}) = 0 for all i ∈ N , (ii) v({i, j}) = ω({i, j}) for
all S = {i, j}, i 6= j, and (iii) vω(S) =

∑
T⊆S,|T |=2 v(T ) =

∑
i,j∈S,i6=j ω({i, j}) if |S| ≥ 3.

As (10) show, the Shapley value of the associated cooperative game vω assigns to every
player half of its degree in ω.

Next, we want to explore what solutions for cooperative games are obtained when,
besides the regularity axioms, we only assume anonymity and both risk neutrality ax-
ioms of (27). In previous sections we saw that when we consider networks, i.e. 2-games,
requiring only anonymity and neutrality to ordinary risk allowed to take account of ex-
ternalities, but only in the way as described by (4).

For completeness, we also state anonymity and neutrality to ordinary risk for
general cooperative games. (Notice that these axioms are the same as Axioms 5 and 8 by
just replacing ω and ω′ by v and v′.)

Axiom 16 (Anonymity for cooperative games) For all v ∈ GN , i ∈ N and π ∈
Π(N), it holds that (i, v) ∼ (π(i), πv).

Axiom 17 (Neutrality to ordinary risk for cooperative games) For all v, v′ ∈ GN
and i ∈ N , it holds that (i, pv + (1− p)v′) ∼ [p(i, v); (1− p)(i, v′)].

Next, we see what we can do when we go back to the framework of (27), and
characterize a class of solutions for arbitrary cooperative games that, for the special
class of network games (i.e. 2-games) gives the measures as given by (4). We do this by
adding neutrality to strategic risk to the axioms of Theorem 3. First, we formally recall
neutrality to strategic risk from (27). It requires that a player is indifferent between being
the dictator in its own unanimity game, and being one of the unanimity players in |S|
times the unanimity game of coalition S. The unanimity game associated to coalition
T ⊆ N, T 6= ∅, is the game (N, uT ) with characteristic function uT given by uT (S) = 1
if T ⊆ S, and uT (S) = 0 otherwise.

Axiom 18 (Neutrality to strategic risk) For S ⊆ N and i ∈ S, it holds that (i, u{i}) ∼
(i, |S|uS).

Notice that this axiom only deals with players in the unanimity coalition. Since
we do not require the null-veto axiom, we extend neutrality to strategic risk also for null
players. Specifically, we require that also a null player is indifferent between being in a
dictator game of another player, or in |S| times the unanimity game of a coalition S that
does not contain him/her.

Axiom 19 (Strong neutrality to strategic risk) For S ⊆ N and i, j ∈ N , it holds
that (i) (i, u{i}) ∼ (i, |S|uS) if i ∈ S, and (ii) (i, u{j}) ∼ (i, |S|uS) if i 6∈ S, i 6= j.

Notice that (27)’s null-veto axiom explicitly requires that a player is indifferent
between two game positions (i, v) and (i, w) if player i is a null player in both games v and
w. This implies the additional part of strong neutrality to strategic risk. The following
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preference relation shows that the implication is not the other way around and thus strong
neutrality to strategic risk is weaker than neutrality to strategic risk and the null-veto
axiom together: the preference relation (i, v) � (j, w)⇔ Shi(v) ≤ Shj(w) satisfies strong
neutrality to strategic risk but not the null-veto axiom.

The next theorem characterizes the solutions for cooperative games that satisfy all
axioms mentioned before and strong neutrality to strategic risk for classes of cooperative
games with at least three players. (We consider games with at least three players since
two-player games are networks.)

Theorem 4 Consider N ⊂ N with |N | ≥ 3. A preference relation � over game positions
N ×GN satisfies anonymity, neutrality to ordinary risk and strong neutrality to strategic
risk if and only if there exist α, β ∈ IR such that � can be represented by utility function
φ(i, v) = fi(v) for all (i, v) ∈ N × GN , where fi(v) is given by

fi(v) = 2(α− β)Shi(v) + 2β
∑
T⊆N

T 6=∅

∆v(T )

t
for all i ∈ N and ω ∈ WGN , (7)

where ∆v(T ) =
∑

S⊆T (−1)|T |−|S|v(S) is the so-called Harsanyi dividend ((15)) of coalition
T in game v.

Proof
It is straightforward to verify that preferences that are represented by utility functions
as in (7) satisfy the axioms.

Now, suppose that f is a solution that represents regular preferences that satisfy
anonymity, neutrality to ordinary risk as well as strong neutrality to strategic risk.

First, consider a unanimity game uT , ∅ 6= T ⊆ N , with t = |T |. If t = 2, then by
Theorem 3 and by Shi(uT ) = 1

t
if i ∈ T , and Shi(uT ) = 0 if i ∈ N \T , we know that there

exist α, β ∈ IR such that these preferences are represented by utility function/solution

fi(uT ) = (α− β)2Shi(uT ) + β
∑
j∈N

Shj(uT ) = 2(α− β)Shi(uT ) + βuT (N)

=

{
(α− β) + β = α if i ∈ T

β if i ∈ N \ T.

For the dictator game u{i}, i ∈ N , for any j ∈ N \ {i}, we have

fi(u{i}) = fi(2u{i,j}) = 2fi(u{i,j}) = 2α,

where the first equality follows from strong neutrality to strategic risk, and the second
equality follows from neutrality to ordinary risk implying scale invariance of the utility
function. Moreover, for some h ∈ N \ {i, j} (note that such h exists since |N | ≥ 3),

fj(u{i}) = fj(2u{i,h}) = 2fj(u{i,h}) = 2β.

For arbitrary coalition ∅ 6= T ⊆ N , strong neutrality to strategic risk implies that

fi(uT ) = fi

(
1

t
u{i}

)
=

1

t
fi
(
u{i}
)

=
2α

t
if i ∈ T,
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and

fj(uT ) = fj

(
1

t
u{i}

)
=

1

t
fj (ui) =

2β

t
if j ∈ N \ T, i ∈ T.

Since neutrality to ordinary risk implies scale invariance and additivity, we have
for arbitrary v ∈ GN that

fi(v) =
∑
T⊆N

T 6=∅

fi(∆v(T )uT )

=
∑
T⊆N

i∈T

∆v(T )fi(uT ) +
∑
T⊆N

i 6∈T

∆v(T )fi(uT )

=
∑
T⊆N

i∈T

2α∆v(T )

t
+
∑
T⊆N

i 6∈T

2β∆v(T )

t

=
∑
T⊆N

i∈T

2α∆v(T )

t
+
∑
T⊆N

T 6=∅

2β∆v(T )

t
−
∑
T⊆N

i∈T

2β∆v(T )

t

=
∑
T⊆N

i∈T

(2α− 2β)∆v(T )

t
+
∑
T⊆N

T 6=∅

2β∆v(T )

t

= 2(α− β)
∑
T⊆N

i∈T

∆v(T )

t
+ 2β

∑
T⊆N

T 6=∅

∆v(T )

t

= 2(α− β)Shi(v) + 2β
∑
T⊆N

T 6=∅

∆v(T )

t
.

�

We remark that the Harsanyi dividends ∆v(T ) can alternatively be interpreted as the
unique coefficients in the expression of a cooperative game as a linear combination of
unanimity games in the sense that every cooperative game v can be expressed as v =∑

T⊆N ∆v(T )uT (31), (15).

Similar as neutrality to ordinary risk determines a centrality measure based on the
degree for networks, ordinary and strong neutrality to strategic risk determine a solution
for cooperative games that is based on the Shapley value and a term

∑
T⊆N

T 6=∅

∆v(T )
t

(the

total per capita dividend) that does not depend on the players. Notice that, taking α = 1
and β = 0 gives the Shapley value. Taking α = β implies equal payoffs for all players.

We also remark that for t = 2, the utility function boils down to fi(v) = 2(α −
β)Shi(v) + β

∑
T⊆N

T 6=∅
∆v(T ) = 2(α− β)Shi(v) + βv(N) which we saw before.
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6 Concluding remarks

In this paper, we first gave a utility foundation for network centrality measures as von
Neumann-Morgenstern expected utility functions using as few axioms as possible. Specif-
ically, besides usual regularity axioms, we only assumed anonymity and neutrality to
ordinary risk of the preference relation. We saw that the only utility functions that can
represent such a preference relation are obtained as a combination of the degree of a node
and the average degree in the network. This implies that neutrality to ordinary risk allows
to take account of externalities regarding the relations of other nodes, but only through
the average degree. In other words, the centrality of the nodes is fully determined by
the degree sequence in the network. We obtained this main result (Theorem 3) by first
characterizing this class of utility functions as centrality measures for networks (Proposi-
tion 1) and using a lemma that relates properties of preference relations to properties of
utility functions representing these preferences (Lemma 1). In this way, this lemma can
be seen as a bridge between the economic literature on preferences and utility functions
and the social network literature on centrality measures.

Second, after characterizing the class of utility functions that satisfy anonymity
and neutrality to ordinary risk, we discussed some axioms that imply how the parameters
in the centrality measure depend on the externalities from the relations of other nodes
(Propositions 2 and 3) and ones own relations (Proposition 4).

Finally, we extended our main result to the class of all weighted hypergraphs, also
known as cooperative games, obtaining a utility foundation for a class of cooperative
game solutions that are a combination of the famous Shapley value and a total per capita
dividend that does not depend on individual players. This also generalizes the utility
foundation of the Shapley value in (27).

Other solutions for cooperative games, such as the nucleolus (30), the τ -value (32)
and the proportional allocation of nonseparable contributions (PANSC) value (6) also
give the degree measure on the class of 2-games, see e.g. (25) and (8). Therefore, the
results in this paper can also be used to give a utility foundation for these solutions for
applications of 2-games, such as queueing games (18), telecommunication games (25), and
broadcasting rights games (2). Although the equal allocation of nonseparable costs value
(see (20), (35)) does not give the degree for 2-games, variations such as first assigning
each individual half of its separable cost and splitting the remainder equally over the
players (see (6)), do give the degree for 2-games. However, since these solutions do not
coincide with the Shapley value for general cooperative games, from Theorem 4 it is
obvious that these other solutions cannot be interpreted as von Neumann-Morgenstern
expected utility functions in the way done in this paper for arbitrary cooperative games.

We finally remark that (7) also considered directed networks. Although these are
not special cases of cooperative games, a similar analysis supported linear combinations
of the indegree and outdegree measures as von Neumann Morgenstern expected utility
functions. A study similar as in the underlying paper for directed networks is a plan for
future research.
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