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Fuzzy firm name matching: Merging Amadeus firm
data to PATSTAT

Leon Bremer∗

September 14, 2023

Abstract

When merging firms across large databases in the absence of common identifiers,
text algorithms can help. I propose a high-performance fuzzy firm name matching
algorithm that uses existing computational methods and works even under hard-
ware restrictions. The algorithm consists of four steps, namely (1) cleaning, (2)
similarity scoring, (3) a decision rule based on supervised machine learning, and
(4) group identification using community detection. The algorithm is applied to
merging firms in the Amadeus Financials and Subsidiaries databases, containing
firm-level business and ownership information, to applicants in PATSTAT, a world-
wide patent database. For the application the algorithm vastly outperforms an exact
string match by increasing the number of matched firms in the Amadeus Financials
(Subsidiaries) database with 116% (160%). 53% (74%) of this improvement is due
to cleaning, and another 41% (50%) improvement is due to similarity matching.
18.1% of all patent applications since 1950 are matched to firms in the Amadeus
databases, compared to 2.6% for an exact name match.

Keywords: Fuzzy name matching, supervised machine learning, name disambiguation, patents.
JEL codes: C81, C88, O34

1 Introduction
Merging databases is a common procedure for any empirical researcher. Often databases
do not have common identifiers to merge on. This chapter presents an algorithm to merge
databases using firm names as merging keys. For illustrative purposes I specifically taylor
the algorithm to consider the problem of merging firms from the Amadeus databases
to patent applicants in the PATSTAT database. Where the Amadeus databases have
consistent within-database firm identifiers, PATSTAT does not have consistent applicant
identifiers nor does it have consistent spelling of applicant names. Additionally the size of

∗PhD candidate at the Spatial Economics department of the Vrije Universiteit Amsterdam, School of
Business and Economics. Email: L.Bremer@vu.nl.
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the databases creates computational challenges. This merging problem therefore requires
a fuzzy string matching algorithm that can efficiently process millions of firm names.

The problem of merging databases in the absence of unique identifiers is not new.
Others have encountered such problems, and several solutions are proposed in the liter-
ature. Whereas the application of merging Amadeus to PATSTAT data is particularly
relevant for economic research, other fields especially provide methodological suggestions,
like the academic literature in computer science, and even less formal literature like blog
posts. I will touch upon some previous contributions to the topic.

Using text as data is an upcoming field of research, boosted by the improvements in
hardware and software available to a broader group of people. An introduction to using
text as data is provided by Gentzkow et al. (2019), in which several methods for text
analysis are introduced in combination with several economic applications. Dugoua et al.
(2022) follow up on this paper by specifically reviewing applications of text as data in
environmental economics. For example, Kelly et al. (2021) build an innovation measure
from patent texts.

To determine the similarity between two firm names, the character strings need to
be compared and scored. Several common scoring measures are used in the literature to
compare two strings. Edit distances count overlaps between the strings or the number of
edits needed in order to transform the strings to a common value. The longest common
subsequence (LCS) measures the longest common sequence between the two strings when
only allowed to delete characters. The more common Levenshtein distance counts the
number of edits to one string needed to produce the other string. It allows for deletion,
insertion and substitution. The Jaro-Winkler distance is more complex and takes into ac-
count the shares of matching characters, regardless of their position, the share of matching
characters that are in a different position, and the length of the common substring at the
start of the strings. The literature further uses the cosine similarity. Text strings are then
first converted into numerical vectors by scoring each string for its text features. The dot
product between these normalized vectors then results in the geometric angle between the
vectors, thereby producing a similarity score between the underlying character strings.

Peruzzi et al. (2014) introduce the REMERGE algorithm that performs firm matching
between the PATSTAT database and other firm databases, like Orbis and Amadeus. The
algorithm creates a set of candidate matches for each entry in PATSTAT across the other
database. These candidates are selected to match the country and the first characters of
the firm name. The country information in PATSTAT is derived from a geocoding exercise.
All PATSTAT firm names are then compared to their candidates using the Levenshtein
ratio and the Jaro-Winkler distance. A set of matching variables are then constructed
from the available information. As the authors use a 2011 version of PATSTAT, their
algorithm also had to guess whether PATSTAT entries are persons or firms. This has
become irrelevant in later versions of PATSTAT, as the type of applicant is now mostly
known. Subsequently the authors create a training set by manually determining which
matches are correct from a set of 1,013 PATSTAT entries and their respective candidate
matches. A penalized model is then fitted to the training data. The algorithm considers
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the highest-scoring candidate to be a match, thereby implicitly enforcing a one-to-one
match between PATSTAT entries and firms in the other database. The authors show
that their REMERGE algorithm outperforms a simpler algorithm that only uses the
Levenshtein distance.

Being concerned with merging USPTO patent data with public firms from the Com-
pustat Global database, Bena et al. (2017) use fuzzy name matching algorithms. In a
follow-up exercise, Bena et al. (2019) use search engines to further disambiguate firm
names. Patent assignees are entered into a search engine and the resulting top sugges-
tion for a company webpage is stored. Different company names and different companies
within an ownership structure are often successfully pointed to the parent firm’s web-
page. Using a blacklist of webpages, the authors avoid firm names to be linked to generic
webpages, like social platforms or online business registers. Lastly, the authors compare
results to their fuzzy name matching results and others’ results, and finally they perform
manual disambiguations on conflicted cases.

As PATSTAT is notorious for its messy name formats and rather uninformative within-
database applicant identifiers, researchers have specifically tried to improve the naming
variables in the database itself. Two of these attempts have even been incorporated
into later PATSTAT versions. The Harmonized Applicant Names (HAN) database is
an attempt by the OECD to identify the same firms within the PATSTAT database.
HAN names are about 40% less plentiful than the original naming formats (Dernis, n.d.).
The PATSTAT Standardized Name (PSN) harmonization uses an automated cleaning
algorithm and a manual cleaning for the top 2,700 applicants (Callaert, 2017).

A related, but arguably more complicated, problem is the disambiguation of inven-
tor names. People’s names can be differently spelled due to abbreviated first names,
changing order of names, and multiple people having the same name. An early attempt
at disambiguation is performed by Trajtenberg et al. (2006) who propose an algorithm
that uses the way words are pronounced (Soundex) as well as further patent information,
like address and technological field, in order to identify inventors within a patent data-
base. Further efforts of researchers to identify either or both the inventors and applicants
rely on cleaning, matching and filtering using supervised methods (Pezzoni et al., 2014),
matching using the Levenshtein distance and consecutive manual checks (He et al., 2018),
disambiguations of name and location data (Balsmeier et al., 2015), or on geocoding (De
Rassenfosse et al., 2019; Morrison et al., 2017).

Further, non-scientific contributions are highly informative for these problems. Com-
puter science problems and solutions are often shared in online communities, forums
and blogs. I will cover two examples here that both use Python as a programming lan-
guage. Berg (2017) provides a short and simple introduction to TF-IDF vectorization
using n-grams and subsequent cosine similarity matching. A short application of firm
name matching is provided. The advantage of vectorization and the use of the cosine sim-
ilarity is its computational speed. Nijhuis (2022) provides a more elaborate and flexible
cleaning and matching algorithm, accompanied by a Python package. Their algorithm
contains several options for firmn name cleaning, like removing special characters and
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some legal information (e.g. Corp, Inc), as well as several similarity options, like the co-
sine similarity or discounted Levenshtein distance. The algorithm ends with a manual
check of produced matches.

This chapter proposes a high-performance fuzzy firm name matching algorithm to
merge the Amadeus and PATSTAT databases. The algorithm takes four main steps,
namely (1) firm name cleaning, (2) vectorization and similarity scoring to propose candi-
dates, (3) evaluation of candidates using a supervised machine learning method, and (4)
firm grouping using community detection.

The proposed algorithm increases performance significantly, as it matches 116% and
160% more firms from the Amadeus Financials and Subsidiaries databases, respectively.
The algorithm also improves the number of applicants linked to a firm, as in total the
number of linked patent applicants increases with 419% (454%) for the Amadeus Finan-
cials (Subsidiaries) database. This means that 18.1% of all patent applications have at
least one applicant that is merged to a firm in the Amadeus data, compared to 2.6% for
an exact name match.

In step 4 several solutions are provided to the problem of patent applicants matching to
multiple firms. Matching on the individual firm level can be enforced, but I also provide a
grouping solution. Groups of firms are constructed using a community detection algorithm
that uses co-occurences in the matches to patent applicants. The benefit of this solution
is that firm groups are identified and that no links are lost in this disambiguation exercise.

The methodologies used in this algorithm are readily available to anyone facing similar
problems. Implementation is in Python and the matching can be performed efficiently on
an everyday laptop.

This chapter proceeds with a description of the proposed algorithm in Section 2. The
application of the proposed algorithm to the merging of the Amadeus and PATSTAT
database is described and evaluated in Section 3. A discussion of the algorithm and
(computational) considerations follows in Section 4. Section 5 concludes.

2 Methodology
The proposed matching algorithm takes four main steps, namely (1) cleaning of character
strings, (2) similarity scoring, (3) a decision rule, and (4) disambiguation of the resulting
matching links.

Step 1: Preprocessing
Text data is often messy. Misspellings and inconsistent spellings will obscure any com-
parison between texts. Cleaning the text according to some rules will therefore improve
the comparability and the likelihood of identifying matching texts. There is no one-size-
fits-all solution for text preprocessing, but here several suggestions and considerations are
provided.
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Consider a very simple example in which one needs to determine whether two firm
names refer to the same firm. The firm names are s1 = “Téchnology-company inc.” and
s2 = “TECHNOLOGY COMPANY INCORPORATED”. Asking a machine whether s1

equals s2 will result in a negative response. Asking a human whether s1 and s2 are similar
will likely result in a positive response. What implicit transformations do we humans
make in order for us to see two strings referring to the same firm?

There are three main transformations that we make. First, we ignore casing, as we
notice that the casing in neither of the strings is informative. Second, we consider that
accents and punctuation might have been removed from s2. Third, we understand that
“inc.” likely refers to “incorporated”. It is these human-like transformations that one
should aim to replicate in the preprocessing stage.

The extent of optimal character name cleaning depends on the problem at hand.
When one knows that names across databases are spelled in similar ways, one might want
to abstain from thorough cleaning. Whereas cleaning increases the likelihood of more
correct matches, it also increases the likelihood of more incorrect matches by introducing
mistakes in the strings. Cleaning already-clean strings might do more harm than good.
A thorough manual inspection of the text under consideration is strongly advised.

When dealing with special characters and accents, one should consider their role in the
string. Some characters can be removed without losing identifying information. Think
of the hyphen in s1. Other characters should rather be replaced, as for the accented
“é” in s1. Replacing it with a regular “e” is the appropriate transformation. Simply
removing all characters other than A-Z would be a mistake when there is information in
accented characters. Instead a mapping of characters to their harmonized variants should
be used in this case. I propose to replace all special characters in the text data by their
aesthetic equivalents. For example, the special characters š and ç are replaced by their
aesthetic equivalents s and c, respectively. The risk of such replacements is that they
disregard linguistic context, as š might represent a different letter in Finnish as it does in
Croatian. A mapping taking such linguistic origins into account would be preferred, but
such information is not always available.

When text contains legal terms, as in the example of s1 and s2, one can use dictionaries
to replace or remove such terms. When replacing legal terms I suggest to substitute full-
length terms for their respective abbreviated variants. The benefit of replacing terms in
this direction, and not from abbreviation to full-length term, is that the resulting string
contains fewer characters that refer to rather uninformative legal information. A larger
share of the characters will likely be more informative.

For some cleaning the order of steps is important, especially when harmonizing le-
gal terms. When interested in removing (abbreviated) legal terms, it is necessary to
consider word boundaries. If all instances of “inc” are removed, the risk of removing non-
legal information is great, as the company name “Fixed income management Inc” will
be transformed to “Fixed ome management ”, which is undesirable. Regex expressions
allow searching for “inc” with word boundaries on both sides, resulting in the desirable
outcome of “Fixed income management ”.
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Taken all these considerations into account, I propose to use the following steps for
cleaning in the given order. (A) Remove punctuation, like commas, dots, dashes, quotes,
etc. (B) Ignore case by transforming all text to lowercase. (C) Handle any legal terms by
replacing full-length terms with their abbreviated counterparts.1 Alternatively, one can
remove full-length and abbreviated terms altogether. (D) Replace any accented characters
for their unaccented counterparts. (E) Remove any space characters, including tabs and
other special space characters.

Returning to the earlier example, following the proposed cleaning steps will bring
both firm names to the common “technologycoinc” term. A computer will now judge the
strings to be exactly the same. Thereby the string preprocessing successfully mimicks the
transformations humans make in the string comparison task.

Step 2: Vectorization and similarity scoring
Whereas in the above example the cleaned strings are identical, this will not always be the
case. The resulting cleaned character strings should therefore be compared in a fuzzy way,
allowing for some differences across the cleaned strings. To do so, the character strings will
be inspected for features. Each feature in a string will be assigned a numerical score. The
character string is thereby transformed into a numerical vector. This step is therefore also
called vectorization. The similarity between these vectors can then be calculated using
the cosine similarity.

To guide this part of the algorithm, consider two similar but different cleaned firm
names, the previously considered “technologycoinc” and “tecnolologyco” (the cleaned ver-
sion of “TECNOLOLOGY COMPANY”). Note the several misspellings in the second firm
name (missing ‘h’ and additional ‘ol’) and the lack of one of the legal terms (‘inc’). The
task in this step is to quantify the similarity between these strings. A human would prob-
ably judge these two strings quite similar, assigning a fair likelihood that these strings
refer to the same firm.

With only the firm name as information, all features should come from the firm name.
A common approach to extract features from text is to split the text according to some
rules. For long texts, one can split on word boundaries to produce a set of words. As firm
names consist of only a few words this would create the character vectors [“technology”,
“co”, “inc”] and [“tecnolology”, “co”]. Note that only one element of the vectors overlaps
(“co”). A more granular split is more appropriate in settings with short texts, like firm
names. Using n-grams one can split text in a set of n-length characters in a rolling manner.
A 3-gram partitioning creates a vector of text data for each of the example strings, such
that

w⃗1 = [tec, ech, chn, hno, nol, olo, log, ogy, gyc, yco, coi, oin, inc] (1)
1A list of legal terms and their abbreviations by country is provided by GLEIF (2021). This list is

slightly adjusted before use. When removing or replacing such terms, always start with the longest terms
to prevent removing parts of words only. For example, replace or remove “limited corporation” before
“limited”, otherwise the “corporation” part will remain.
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is the word vector of “technologycoinc” and

w⃗2 = [tec, ecn, cno, nol, olo, lol, olo, log, ogy, gyc, yco] (2)

is the word vector of “tecnolologyco”. In general such n-gram representations yield L −
(n − 1) elements for a string of length L. This partitioning is likely more forgiving
to misspellings as more elements overlap between these two vectors compared to the
word-partitioning from earlier. Additionally, word order matters as several n-grams span
multiple words. Each element of the vector represents a feature of the underlying text.

Additional information can be embedded into the vectors by giving each element a nu-
merical score. When scoring each element on importance, the vector becomes a numerical
list of which features to stress most in a later comparison. I use TF-IDF vectorization
to count and weigh the elements in w⃗i. The term frequency (TF) and inverse document
frequency (IDF) are calculated separately and combined afterwards.

The TF part counts the number of occurrences of each element in its own vector. The
TF function can be presented as

TF (t, d) = |{t : t ∈ d}| (3)

with t each term in a vector and d the vector itself. It effectively counts for each unique
term how often it occurs in the respective vector. Performing a TF transformation on w⃗1

and w⃗2 creates the following matrix

te
c

ec
h

ch
n

hn
o

no
l

ol
o

lo
g

og
y

gy
c

yc
o

co
i

oi
n

in
c

ec
n

cn
o

lo
l[ ]

technologycoinc 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
tecnolologyco 1 0 0 0 1 2 1 1 1 1 1 1 1 1 1 1

(4)

where row and column axis labels indicate the original string and the 3-grams, respectively.
One already notices that the numerical row vectors are similar, due to much textual
overlap between the underlying string names. Also note how each numerical vector keeps
its link with the underlying n-grams, producing zeros for n-grams that do not occur in
the character string.

The IDF adds information from the broader data source. The IDF calculates weights
for each element, whereby often-occurring elements, across character strings, are down-
weighted as they contain less identifying information. The chosen IDF function can be
described as

IDF (t, D) = ln
(

N + 1
nt + 1

)
+ 1 (5)

where N = |D| is the total number of firm names (or documents), and where nt is the
number of documents containing term t, i.e. nt = |{d ∈ D : t ∈ d}|. The additions of a 1 in
both the numerator and the denominator are optional and help smooth the fraction. The
addition of one to the IDF is to set the minimum score to one instead of zero (Pedregosa
et al., 2011). One occurs when t is in each and every document, i.e. when nt = N . The
natural logarithm diminishes the magnitude of the IDF correction.2

2Other definitions for the TF and the IDF can be found on Wikipedia. The sklearn package in
Python also allows for different IDF definitions.
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Performing the IDF vectorization on the text strings is simple in the two-string exam-
ple. The IDF can only take two values, as nt either equals 1 or 2. When nt = N = 2, the
IDF equals 1 and when nt = N = 1 the IDF equals ln

(
2+1
1+1

)
+ 1 ≈ 1.41. The resulting

vectors are again forced to be of the same length, inserting zeros for features that do not
occur in a string. To save space I will not present the matrix resulting from the IDF
transformation of the two strings. Instead I directly present the combined TF-IDF ma-
trix, for which each element is produced by multiplying the TF value with the IDF value,
i.e. the element-wise product is taken such that TF -IDF = TF ◦ IDF . The following
TF-IDF matrix results

te
c

ec
h

ch
n

hn
o

no
l

ol
o

lo
g

in
c

ec
n

cn
o

lo
l[ ]

te. . . nc 1 1.41 1.41 1.41 1 1 1 · · · 1 0 0 0
te. . . co 1 0 0 0 1 2.81 1 · · · 1 1.41 1.41 1.41

(6)

where the 2.81 occurs due to the TF transformation resulting in 2. To preserve space
several columns with only 1s are omitted, and the row labels are abbreviated.

As firm names are often short, the TF term will mostly only take the values 0 and 1.
Most data sources contain many firm names, resulting in a large variety of IDF terms. The
TF-IDF matrix will have dimensions corresponding to the number of considered strings
and the number of unique features (i.e. n-grams). As the number of unique features is
large and the number of features per firm name is small, the matrix will be very sparse
(i.e. containing many zeros).

A consideration at this step is what data is used to produce the unique n-grams and
their IDF terms. Or put differently, what data is used to train the vectorizer? As the
IDF term punishes the frequency of n-grams, it is important not to submit duplicates to
the vectorizer. It is also best to train the IDF vectorizer on just one data source. When
entering the combination of the to-be-matched data sources the features of the firm names
that occur in both sources, the actual matches, will be punished due to their increased
frequency. This is undesirable. Simply removing duplicates will not solve this issue, as
slightly differently spelled names referring to the same firm will still feed many duplicate
features to the IDF vectorizer.

To determine the similarity between the produced numerical vectors, I employ the
cosine similarity. The cosine similarity states that the dot product of two normalized
vectors results in the cosine of the geometric angle between the two vectors. Specifically

cos(θ) = a⃗ · b⃗

∥a⃗∥2∥⃗b∥2
(7)

where ∥a⃗∥2 refers to the Euclidean norm of vector a⃗, or the length of a⃗ in Euclidean
space, and θ is the angle between the vectors. This similarity also demonstrates how
vectors consist of a directional and a length component. When ridding vectors of their
length component, the only remaining difference between the vectors is their direction.
The direction difference is the angle between the two vectors.
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In order to reveal the angles between each row in Equation 6, each vector must first
be normalized by dividing all elements by the Euclidean distance of the respective vector.
Defining the resulting matrix of normalized vectors as M , performing a matrix multipli-
cation with itself reveals the similarity between each vector in M . Mathematically

C = MM ′ =
 ⃗̂w1 · ⃗̂w1 ⃗̂w1 · ⃗̂w2

⃗̂w2 · ⃗̂w1 ⃗̂w2 · ⃗̂w2

 =
cos(θ11) cos(θ12)
cos(θ21) cos(θ22)

 =
 1 cos(θ12)
cos(θ12) 1

 (8)

where ⃗̂wi refers to the cleaned, vectorized and normalized vector w⃗i from earlier, θij is
the angle between w⃗i and w⃗j, and M ′ is the transpose of M . The last step highlights the
symmetry of this simple 2×2 matrix. The ones on the diagonal indicate that the angle of
a vector with itself is zero (cos(0) = 1). Considering the two-string example from earlier,
one finds tat cos(θ12) = cos(θ21) ≈ 0.62, meaning θ12 ≈ 0.90 or 52◦. To put that number
in perspective, the dot product ranges between 0 and 1, and the angle ranges between 0
and 90◦.

Equation 8 shows the redundancy of many of the calculations, when only interested
in the across-database comparisons. Consider a larger example, where the vectorizer is
trained on m1 firm names to create a TF-IDF matrix A with dimensions m1 × n. The
vectorizer is then used to produce a TF-IDF matrix B for the m2 firm names in another
database, with the dimensions of B being m2 × n. Here m1 and m2 do not need to be
equal. Normalizing the rows of both matrices gives the hatted versions of the matrices,
Â and B̂. The angles between character strings across databases are then found through

D = ÂB̂′ =


cos(θ11) · · · cos(θ1m2)

... . . . ...
cos(θm11) · · · cos(θm1m2)

 (9)

which yields an m1 ×m2 matrix of cos(θ)s where the element on row i and column j refers
to the cosine of the angle between the ith firm name in A and the jth firm name in B.

The last option to Step 2 of the algorithm is to redo steps 1 and 2 with different
parameter choices in the preprocessing step. For example, one could perform different
cleaning on the firm names and redo the similarity scoring. All scores should be stored
together with the methods used. Step 3 will then provide the decision rule.

Step 3: Decision rules
After obtaining similarity scores between character strings, one needs to determine which
combinations are a match. Although smaller θs mean that firm names are more similar,
there will always be exceptions. That means there is no one cutoff on θ that guarantees
that values below are true matches and values above are no true matches. Whatever
decision rule is therefore taken, it will always result in some discrepancy.

Therefore I propose to take a two-step decision-rule. First, a simple cutoff value for θ is
taken based on inspection of the results. Let us define this angle as θ̄. All combinations i, j

for which cos(θij) > cos(θ̄) are considered candidates. Second, depending on the number

9



of candidates, one can manually check all candidates or employ a supervised machine
learning method to identify the true matches.

The supervised machine learning method involves predicting the true matching status
of a candidate combination with available information. Anything containing information
on the match likelihood could be used. Think of whether the names start with the same
letter, whether the first letters of one string are contained in the other string, but also the
similarity score θ. To use the available characteristics to predict true matching status, a
binary outcome model can be fitted such that

pij = P [qij = 1|xij] = F (xijβ) (10)

where qij = 1 if i and j are a truthful match, x is a vector of explanatory characteristics,
and F is a cumulative distribution function (CDF) making sure the conditional likelihood
on the left-hand side is bounded between 0 and 1. Here I will use the CDF of the normal
distribution, making Equation 10 a probit model.3

As the vector β is unknown, one cannot readily determine pij. Instead, β will be fitted
using a training sample. This training sample has to be constructed manually from the
candidates. Manually determining whether candidate matches are true matches or not
gives qij for a sample of candidates. The sample can then be used to fit β, which in turn
can be used to predict pij for the out-of-sample candidates, with the prediction denoted
as p̂ij.

Lastly, one needs to determine the threshold p̄ for which p̂ij is high enough to consider
the candidate a match. Machine learning algorithms are often evaluated using precision
and recall, which are the share of justified matches in the set of identified matches and
the share of justified matches in the set of all true matches, respectively. One can also
use a combination of precision and recall, as e.g. proposed in the F1 score.4 These scores
can be calculated for the training sample, as for that sample both the prediction and the
truth value are known. One can then choose a cutoff p̄ that satisfies the restrictions on
the evaluation criteria. Any out-of-sample p̂ij > p̄ will then be considered a match.

Considerations for the decision rule are the chosen θ̄, the size of the training sample,
and the acceptable values for the evaluation criteria, e.g. precision, recall or the F1 score.
A higher θ̄ will lead to more candidates and a larger share of incorrect candidates, while
increasing the nominal number of true matches in the set of candidates. The larger the
training sample, the more accurate the model in Equation 10 can be fitted, but the more
manual labelling has to be done. Setting looser evaluation criteria will result in more
matches, a larger share of identified correct matches (recall), but also a larger share of
incorrect matches (precision).

3For a discussion of binary outcome models one can consult Cameron and Trivedi (2005, pp. 463-474).
4The F1 score (F1) is composed of the precision (p) and recall (r) scores, specifically such that

F1 = 2pr
p+r .
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Step 4: Disambiguation
The last step is to disentangle the resulting matches. So far there have been no rules on
multiplicity of matching links. This means that one firm can match with multiple patent
applicants and that one applicant can match with multiple firms. While the first should
be allowed, the second is problematic. When using these matches to do follow-up research
the multiplicity of links might cause double counting. Step 4 therefore provides several
solutions for disambiguation. Each solution will enforce that each patent applicant can
only link to one firm (group).

I propose three disambiguation methods that all have their own strengths and weak-
nesses. First, one can use the p̂s to pick the most likely link and remove all other links the
patent applicant is involved with. Any ties can be broken by using firm characteristics.
One could for instance pick the largest firm. Second, a community detection algorithm
can be used to identify firm groups. Firm groups are determined by co-occurence between
firms in their links with patent applicants. The motivation for this grouping is that if firms
often link to the same patent applicant, their names must be very similar and therefore
they are likely related. If patent applicants then link to multiple firm groups (commu-
nities) ties can be broken by linking to firm group consisting of most firms. Third, the
largest firm in each community that has consolidated financial statements can be iden-
tified. The consolidated statements make sure that the data encapsulates the financial
data of the entire firm group. This results in links between patent applicants and firm
groups.

Figure 1 gives an overview of the proposed algorithm. The steps indicate the steps
discussed as above, while each solid node represents a data table in a specific form, and
each dashed node represents an operation along an arrow.

3 Application
This section takes the proposed methodology to the data. The task is to merge firms
from the Amadeus databases to applicants from the PATSTAT database by name. As for
this application I am interested in patenting activities of firm groups, the merge should
be sufficiently fuzzy to allow for generic differences in firm names. For example, it should
be forgiving enough to consider “ABC Car Technology Holdings Inc” and “ABC Car
Technology SA” a match. Throughout this application outcomes and performance of the
algorithm will be presented and discussed.

3.1 Data
PATSTAT is a worldwide patent database and contains information on the patent level,
such as applicants, inventors, and technology types. The PATSTAT database contains
information on patenting by firms and individuals at patent offices around the world
for many years. This application uses the PATSTAT 2018 Autumn edition. It contains
millions of patents and patent applicants. The main difficulties with the database is its
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Figure 1: The fuzzy matching program.

Note: This schematic illustrates the main steps involved in the fuzzy name matching pro-
gram. Boxes with solid outlines indicate data tables, while the arrows and accompanying
boxes with dashed outlines describe the operational steps of the program.
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messiness. Internal identifiers for applicants are unreliable, applicant names are inconsis-
tently spelled, and misspellings are common.5 Anyone interested in studying the patenting
behavior of firms or individuals has to disentangle the numerous applicant entries and fig-
ure out which refer to the same real life applicant. PATSTAT’s applicant names also
contain lower- and uppercase characters, punctuation and accented characters, as well as
a multitude of special characters.

Two Amadeus databases are considered, the Amadeus Financials database and the
Amadeus Subsidiaries database. The Amadeus Financials database contains firm-level
business information, like revenue, number of employees, profits, asset book values, etc.
The Amadeus Subsidiaries database contains information on ownership links and some
business information on firms down the ownership hierarchy. The internal identifiers of
the Amadeus databases are consistent and the firm names are to some extent harmonized
and rather clean.

Examples of firm names in these three databases are presented in Table 1. The table
presents the names without any processing. The firm names are not chosen randomly,
but they represent the largest firms and most active innovators, based on the number
of employees and the number of patent applications, respectively. These names are rel-
atively clean, likely because they are the most occuring firms. Alternative spellings and
misspellings will for instance not rank as high in the patent data. Most noticeable in
terms of harmonization are the legal terms that are not consistently represented. Some
terms are written in full, some are abbreviated, and some contain interpunction.

Due to the lack of externally valid firm identifiers, these databases are best merged
on their firm names. And as naming conventions are inconsistent a fuzzy string matching
approach is suitable.

When working with small databases, one could opt for manual matching. For larger
databases the problem needs a more automated solution. The scale of the problem at
hand becomes clear from Table 2. The table presents the number of firms and applicants
in the databases. Looking at the unique names only, the problem requires comparing
8, 311, 667 × (521, 877 + 1, 143, 181) ≈ 13.8T pairs of firm names. A simple check of the
average character length of the names shows the names are similar in length, signaling
some degree of comparability.

Usually more information than only the firm name is known. In the Amadeus data-
bases the country of the firm is known and from the PATSTAT database address and
patent office information is known. Furthermore, both the Amadeus Financials as well
as the PATSTAT database offer multiple name variables. Depending on the application
such additional information can be used in the proposed algorithm. As the application at
hand seeks to merge firm groups to patent applicants, the location data of individual firms
and applicants is purposely ignored. Also, firms can seek patent protection in multiple
countries, also outside their headquarter’s country.

5Applicant-related information is taken from the TLS206_PERSON table.
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Table 1: Examples of firm names.

Amadeus Financials (NAME)

JOINT STOCK COMPANY RUSSIAN RAILWAYS
VOLKSWAGEN AKTIENGESELLSCHAFT
G4S PLC
COMPASS GROUP PLC
ISS A/S
ISS GLOBAL A/S
DEUTSCHE POST AG
TESCO PLC
BELLON
SODEXO

Amadeus Subsidiaries (SUBS_NAME)

WALMART INC.
VOLKSWAGEN AKTIENGESELLSCHAFT
AMAZON.COM, INC. via its funds
COMPASS GROUP PLC via its funds
G4S PLC via its funds
DEUTSCHE POST AG
ISS A/S
ISS GLOBAL A/S
UNITED PARCEL SERVICE INC via its funds
PETROCHINA COMPANY LIMITED

PATSTAT (person_name)

MATSUSHITA ELECTRIC IND CO LTD
HITACHI LTD
TOSHIBA CORP
CANON INC
MITSUBISHI ELECTRIC CORP
Samsung Electronics Co., Ltd.
NEC CORP
FUJITSU LTD
SONY CORP
RICOH CO LTD

The Amadeus firm names are from the firms with most
employees in 2016. The PATSTAT applicant names are
from those involved in most patent applications over
all years. The original variable names are provided in
parentheses.
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Table 2: Data source descriptives.

Source Variable Obs Unique obs Avg length

PATSTAT person_name 10,160,817 8,311,667 29.0
Amadeus Fin NAME 528,257 521,877 26.8
Amadeus Sub SUBS_NAME 1,165,557 1,143,181 27.5

For the PATSTAT data individuals are filtered out. For the Amadeus
datasets only observations that are unique across the identifier, name
and country variables are kept for this exercise. The number of obser-
vations (obs) refers to the resulting number of names per data source.
The unique number of observations removes the duplicate names per
data source. The average length (avg length) of the raw firm names
gives an indication of the type of data.

3.2 Applying the algorithm

Step 1: preprocessing. It is advisable to inspect the text data before deciding
on the exact preprocessing steps to take. In any case, inspecting the unique characters
in the data is highly informative. In the case of PATSTAT one will find many special
characters that are likely uninformative. Inspecting the character strings containing these
special characters helps judge whether these characters should be removed or be replaced.
Such exercises can be prioritized by counting the number of occurrences of these special
characters.

Table 3 presents the most common special characters and their counts across the three
databases used in this application. To compare these numbers, the % column indicates
the number of occurrences over the number of firm names in that database. Noticeable
is that these special characters are not so special. They are regular punctuation and
numbers. It is quite striking how many periods there are in the data. For each 100 firm
names in the PATSTAT data, there are 79 periods. Note that some firm names might
have more than one period, so more than 21% of firm names does not have a period at
all. This abundance has mostly to do with legal abbreviations, like “inc.”. Whereas the
PATSTAT names are full of special characters, the top ten of characters is rather normal.
And it is good to know that less than 1% of applicant names contains characters beyond
punctuation and numbers.

For the application, the cleaning steps from Section 2 are followed. One way of demon-
strating the success of the proposed string cleaning algorithm is to compare how the
cleaned firm names perform in an exact merge compared to merging on the raw firm
names. Table 4 shows the results of exact merges between the Amadeus databases and the
PATSTAT data for different available name variables, including some already-harmonized
applicant names discussed earlier in Section 1. Unique firms and entries are used, but
duplicate firm names are not removed (see Table 2). There are several interesting findings
worth highlighting. First, cleaning significantly increases the number of resulting links, at
one occurrence even with a factor 3.5. Second, improvements are greatest for the unpro-

15



Table 3: Most common special characters.

PATSTAT Amadeus Fin Amadeus Sub

# Char Count % Char Count % Char Count %

1 . 7,989,685 78.6 . 355,768 67.3 . 616,502 52.9
2 , 4,239,464 41.7 - 57,856 11.0 - 116,344 10.0
3 - 945,561 9.3 , 34,016 6.4 , 67,990 5.8
4 & 568,415 5.6 & 26,079 4.9 ( 56,875 4.9
5 ’ 510,188 5.0 ’ 19,101 3.6 ) 56,680 4.9
6 ( 325,430 3.2 ( 17,325 3.3 & 52,403 4.5
7 ) 322,533 3.2 ) 17,296 3.3 1 44,338 3.8
8 0 154,543 1.5 1 9,951 1.9 2 37,853 3.2
9 1 98,131 1.0 2 9,736 1.8 ’ 29,509 2.5
10 2 94,787 0.9 0 7,684 1.5 0 24,882 2.1

For the PATSTAT data individuals are not considered. Special charac-
ters are any character that is not in the English alphabet (a-z) and is
not a regular space. The rank is indicated in the column #, and the %
column indicates the average number of the special characters in a firm
name.

cessed applicant name (person_name). Third, cleaned merging is most successful with
the unprocessed applicant name, whether measuring by the number of links, number of
firms in the Amadeus data, or number of patent applicants. Fourth, there are some issues
with patent applicants merging to multiple firms in the Amadeus database. This occurs
when (after cleaning) firms with different IDs in the Amadeus data have the same name.
This issue is most prominent for the already-cleaned names (e.g. han_name). And, im-
portantly, this issue does not seem to become more prominent with the proposed cleaning.
Fifth, the cleaning especially improves the intensive margin of the matching. While more
firms are matched to patent applicants (41% more for the NAME-person_name match),
the number of patent applicants matching to firms increases from 2.8 to 5.7 (106% more).
Without cleaning many innovative activities will not be assigned to firms, and will go
unmeasured in any follow-up analysis.

Step 2: vectorization and similarity scoring. When training the TF-IDF vectorizer
on the Amadeus Financials database using the NAME variable, I find a sparse matrix
of size 520, 352 × 22, 460 corresponding with the 520,352 unique cleaned firm names and
the 22,460 unique 3-grams. The most common 3-grams are presented in Table 5. One
might recognize these terms, with “ltd” referring to the abbreviated legal term “limited”,
the two 3-grams of the German legal term “GmbH” being represented, and all 3-grams of
“holding” being represented.

When vectorizing the PATSTAT names, the vectorizer will not be retrained. The
PATSTAT data is too messy. PATSTAT contains several differently-spelled names refer-
ring to the same firm, either through misspellings or inconsistencies. Entering all these
alternative spellings into the vectorizer will result in undesirable punishments through the
IDF score.
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Table 4: Matching improvements from firm name cleaning.

Amadeus variable PATSTAT variable Cleaned Links Amadeus firms PATSTAT entries

NAME person_name No 83,024 28,414 78,511
NAME person_name Yes 240,698 40,034 227,695
NAME doc_std_name No 84,092 15,858 77,794
NAME doc_std_name Yes 213,577 34,902 197,245
NAME psn_name No 136,164 11,782 104,362
NAME psn_name Yes 165,338 18,724 129,237
NAME han_name No 90,355 25,754 85,293
NAME han_name Yes 229,836 37,864 216,418
SUBS_NAME person_name No 113,361 38,072 103,927
SUBS_NAME person_name Yes 399,549 56,931 347,394
SUBS_NAME doc_std_name No 179,254 26,180 149,811
SUBS_NAME doc_std_name Yes 369,874 50,650 312,557
SUBS_NAME psn_name No 232,547 16,701 164,028
SUBS_NAME psn_name Yes 322,352 27,016 222,479
SUBS_NAME han_name No 167,152 37,833 144,623
SUBS_NAME han_name Yes 377,715 54,254 324,907

The Amadeus Financials variable NAME and the Amadeus Subsidiaries variable SUBS_NAME
are merged to different applicant naming conventions in the PATSTAT database. The links
present the number of firm names merged across databases, the number of Amadeus firms are
counted by unique firm IDs. PATSTAT data has no consistent IDs, so the number of entries are
counted. It is very possible that one firm in the Amadeus database is merged to multiple appli-
cants in the PATSTAT database. Similarly, some patent applicants (entries) might be merged to
multiple firms in the Amadeus databases if they have the same (cleaned) name. Note that the
unique firms and entries are used from the Amadeus databases and PATSTAT database, respec-
tively, but that duplicate names are not removed (see Table 2).

Table 5: Most common n-grams in the Amadeus Financials data.

# 3-gram Counts # 3-gram Counts # 3-gram Counts

1 ltd 87,791 11 ldi 32,560 21 pro 21,454
2 ing 58,291 12 ter 31,549 22 nte 21,354
3 mbh 54,869 13 srl 27,802 23 spa 20,823
4 gmb 49,805 14 ngs 26,626 24 ran 20,738
5 ion 47,830 15 slt 26,511 25 sch 20,457
6 ent 39,097 16 and 26,383 26 ons 20,457
7 din 37,952 17 tio 26,369 27 ner 20,365
8 hol 34,770 18 ati 25,496 28 ers 20,129
9 est 34,599 19 str 24,414 29 tra 19,533

10 old 34,533 20 men 22,522 30 res 19,532

These are the most common 3-grams in the 520,352 cleaned firm
names in the Amadeus Financials database, out of 22,460 3-grams.
The firm name variable NAME is used here. Counts refer to the
number of firm names containing the respective 3-gram and #
refers to the rank. The firm names are thoroughly cleaned before
vectorization.
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When vectorizing the PATSTAT names, the vectorizer will not be retrained. The
PATSTAT data is too messy, and creating additional unique n-grams is useless for the
matching exercise as n-grams unique to one database will never match across databases.
Ignoring these database-specific n-grams from the start results in the same similarity
scoring later on. Another reason not to re-train the vectorizer on the PATSTAT data
is that PATSTAT contains several differently-spelled names referring to the same firm,
either through misspellings or inconsistencies. Entering all these alternative spellings into
the vectorizer will result in undesirable punishments through the IDF score.

Instead, the trained vectorizer from Amadeus’s NAME variable is used, meaning that
those n-grams and IDF scores are used to vectorize PATSTAT’s applicant names. Using
that vectorizer one can create a similar table for the PATSTAT database, as presented
in Table 6. Also here “ltd” is most prominent, but there are noticeable differences. With
the top 15 3-grams one can spell “technology”, something which is not as prominent in
the Amadeus Financials database. This partially can be explained by the nature of the
data source. Patenting firms are more likely to have “technology” in their names. Other
differences are that the terms “holding” and “GmbH” cannot be spelled with these 30
3-grams. This might indicate that firms do not apply for patents through their holding
firm, but rather through their subsidiaries. This supports the approach of considering
firm groups to analyze patenting behavior.

Table 6: Most common n-grams in the PATSTAT data.

# 3-gram Counts # 3-gram Counts # 3-gram Counts

1 ltd 1,619,193 11 log 523,790 21 ter 394,753
2 col 1,328,115 12 hno 515,248 22 che 374,078
3 olt 1,296,039 13 nol 500,910 23 ong 371,880
4 ing 785,604 14 ion 472,445 24 str 371,680
5 ech 678,661 15 ogy 449,918 25 inc 371,561
6 tec 666,945 16 han 441,486 26 men 370,161
7 ang 630,298 17 yco 438,267 27 eng 350,705
8 chn 577,391 18 ian 427,568 28 tio 349,589
9 olo 544,629 19 and 414,672 29 ica 345,845

10 ent 530,610 20 ine 406,556 30 ele 345,747

These are the number of occurrences of 3-grams in the PATSTAT
database that also occur in the 520,352 firm names in the cleaned
unique Amadeus Financials database. The PATSTAT variable per-
son_name is used here. Counts refer to the number of applicant
names containing the respective 3-gram and # refers to the rank.
The applicant names are thoroughly cleaned before vectorization.

Separately, the Amadeus Subsidiaries data will be merged to the PATSTAT data. To
do so, the vectorizer will be trained on the Amadeus Subsidiaries data and consecutively
be used to also vectorize the PATSTAT data. When training the TF-IDF vectorizer on the
Amadeus Subsidiaries database using the SUBS_NAME variable, I find a sparse matrix of
size 1, 136, 376 × 29, 311, where the first dimension refers to the number of unique cleaned
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subsidiary firm names and the second dimension to the number of unique 3-grams. It
usually makes sense that both dimensions scale in the same direction, i.e. more unique
character strings produce more unique n-grams. The most common n-grams are reported
in Table 7. Similar 3-grams rank high compared to that from the Amadeus Financials
database. Noticeable is that the word “holding” cannot be fully spelled with this top 30,
which makes sense as subsidiaries are less likely to be holding firms. For completeness
Table 15 in the appendix presents the most common 3-grams in the PATSTAT data using
the vectorizer that is trained on the Amadeus Subsidiaries data.

Table 7: Most common n-grams in the Amadeus Subsidiaries data.

# 3-gram Counts # 3-gram Counts # 3-gram Counts

1 ltd 230,301 11 and 55,910 21 pro 48,257
2 mbh 122,506 12 men 55,610 22 tra 45,400
3 ing 111,137 13 din 55,550 23 ner 45,035
4 gmb 110,147 14 ngs 54,625 24 ica 44,868
5 ion 105,468 15 ons 54,372 25 erv 44,824
6 ent 99,016 16 str 52,807 26 res 44,716
7 est 71,643 17 nte 52,272 27 ers 44,610
8 ter 69,175 18 ati 51,892 28 hol 44,521
9 tio 62,910 19 srl 50,098 29 ste 44,418

10 slt 57,613 20 ser 48,924 30 old 44,244

These are the most common 3-grams in the 1,136,376 cleaned
unique firm names in the Amadeus Subsidiaries database, out of
29,311 3-grams. The firm name variable SUBS_NAME is used
here. Counts refer to the number of firm names containing the
respective 3-gram and # refers to the rank. The firm names are
thoroughly cleaned before vectorization.

Having vectorized the to-be-matched name variables, the angles between all combina-
tions across databases can be calculated according to Equation 9. From eyeballing some
combinations and their scores, the cutoff angle for a combination to be considered a can-
didate match is set at θ̄ = 0.4× 1

2π ≈ 0.628. The 0.4 refers to 40% of the possible range of
angles [0,1

2π].6 This cutoff results in 1,145,132 candidate matches for both Amadeus data-
bases combined, and the split between databases is presented in Table 8. The Amadeus
Subsidiaries database results in more candidate matches. But this database is also more
than twice as large as the Amadeus Financials database (see Table 2). Percentage-wise
the Amadeus Financials database results in more candidate matches.

Whereas 40% might seem lenient, comparing the number of candidates to the number
of tested links, (520, 352 + 1, 136, 376) × 6, 558, 030 = 10, 864, 871, 925, 840, reveals that

6The possible range only spans a quarter circle, because the elements in the TF-IDF vectorizer, names
are all non-negative. Non-negativity eliminates half the circle. Further, the order is not relevant when
calculating the angle, i.e. the angle between a⃗ and b⃗ is the same as the angle between b⃗ and a⃗ (evident
from cos(−θ) = cos(θ)), eliminating half a circle of possibilities. The exclusion of these two overlapping
half circles leaves a quarter circle of possibilities.
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Table 8: Number of candidate matches.

Train variable Links Amadeus unique cleaned names PATSTAT unique cleaned names

NAME 420,478 75,449 133,547
SUBS_NAME 724,826 123,000 196,067

Total 1,145,304

These are the number of candidate matches. Note that the numbers refer to unique cleaned
names and might therefore underestimate the number of firms, as some firms share the same
name and as some firms’ names are processed to the same name.

only one in 10 million combinations is proposed as a candidate match. Moreover, some
15% of combinations have non-zero dot products, indicating that a 40% cutoff also filters
out the fast majority of links with non-zero cosine similarity scores. In step 3 the accuracy
of these candidates is evaluated.

The distribution of θs of the candidates is plotted in Figure 2. For these candidates,
the majority of dot products results in non-zero angles, although there is a clear spike at
zero representing exact matches (after cleaning). For efficiency reasons, only angles below
the cutoff θ̄ (40%) are stored. The figure therefore only shows the distribution of candidate
matches. The figure shows how the number of candidates increases exponentially with
the angle θ, illustrating further that the 40% cutoff only selects a small part of non-zero
dot products.
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Figure 2: Distribution of angles of candidate matches.

Note: The distribution of the angles between the TF-IDF vectorized Amadeus firm names
and PATSTAT applicant names within the 40% threshold (i.e. θ̄ = 0.4 × 1

2 π ≈ 0.628 or
36◦). The Amadeus Financials NAME variable, Amadeus Subsidiaries SUBS_NAME
variable and PATSTAT’s person_name are used. Figures are split by data source.

Step 3: decision rules. Of the 1,145,132 candidate matches some will be incorrect.
Filtering out these incorrect matches is the task of this third step. While manually
checking all candidates is an option, this is very laborious. It takes one person about
30-40 minutes per 1,000 candidate matches, resulting in 668 hours of work, or close to 17
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40-hour work weeks. For most researchers this is not a reasonable consideration. Instead,
a random sample of 1% of candidates will be taken and manually labelled. This task can
be completed in one work day. This information will then be used to find relationships
between candidate’s characteristics and the true matching status, which in turn will be
used to predict the true matching status of the 99% of unlabelled candidates.

While I refer to the labelled data as the truth, there is no guarantee manual checks of
candidate matches lead to truth discovery. There is a human element to judging whether
names refer to the same firm or not. While some matches clearly involve misspellings,
other matches are more ambiguous. For example, where “ABC imternational Inc”’ is likely
the same firm as “ABC international Inc”, it is not obvious whether “ABD international
Inc” also refers to the same firm. Also, some biases might occur due to unfamiliarity with
certain languages. Personally I have some knowledge of the larger European languages,
but little knowledge of e.g. Eastern European language. Understanding what parts of a
firm name refer to legal terms and what parts refer to name information is not always
straightforward. Performing internet searches and using translation services somewhat
reduce this issue, but some biases likely persist. Also, in order to label nearly 11.5
thousand candidate matches, in-depth web searches are not feasible for all candidates.
Lastly, manual labelling is inherently prone to some human error.

The labelled match status and its relation to the angle θ is presented in Figure 3 for the
labelled sample. First, the histogram’s pattern is similar to the underlying data presented
in Figure 2, indicating the random sampling led to a representative sample. Second, the
angle between the firm names is negatively correlated with the share of candidates that are
true matches. Third, while the cutoff θ̄ likely excludes many incorrect matches, it surely
also excludes some correct matches. For the last bin below the cutoff, incorrect candidate
matches outweigh correct candidate matches, but nominally there are still plenty of true
matches.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0

500

1,000
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2,000

2,500 Correct match
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Figure 3: Angles of candidates and actual status.

Note: The distribution of the angles between the TF-IDF vectorized Amadeus firm names
and PATSTAT applicant names within the 40% threshold for the manually labelled sample
of candidate matches. Their labelled status is indicated by color.
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The labelled sample is then used to fit the probit model as proposed by Equation 10,
in order to find relationships between information that is available and the true matching
status of candidate matches. For the fitting of the model two-thirds of the labelled sample
will be used, such that the remaining one third can be used for evaluation of the probit
model’s performance and to determine the best threshold p̄. All unlabelled candidate
matches i, j for which p̂ij > p̄ are then considered a true match.

The researcher can decide which identifying characteristics go in the vector x of Equa-
tion 10. For this application in which firm groups are matched to their patenting behavior,
I will not consider location data, like registered country or patent office of application.
Instead I will only stick to the information in the names and the data sources. The
variables used to predict true matching status are the training source of the vectorizer,
i.e. either Amadeus Financials or Amadeus Subsidiaries, whether the cleaned names start
with the same letter, whether the first two letters of one name are encapsulated in the
candidate match’s name, for both names, the angle θ between the names, the number
of occurrences of the patent applicant’s name in the candidate matches, and interactions
between these variables. The interactions allow for more complicated combinations of
predictive characteristics.

Additionally two small lists of words are used to flag certain candidates. It turned
out that some firm names often are involved in incorrect matches. Taking the words
from these firm names and flagging these candidates helps the identification. One list
of 13 words contains legal information in Russian, Bulgarian, Ukrainian, Maltese, Polish
and Uzbek. This list is used to flag any combination for which either firm name in the
candidate match contains any of these words. A second list of two words contains “societe”
and “societa”, common legal terms in Italian and French. Since these words also occur
often in correct matches, candidates will only be flagged if both firm names contain any
of these two words. These lists of words improve predictive power significantly. They
also highlight the difficulty of capturing all uninformative terms in the preprocessing and
vectorization steps. For a complete definition of all variables in the x vector, Appendix A
provides an overview.

For the probit model, candidate combinations with θ < 0.01 will not be considered, as
these are exact matches. All such candidate matches are considered true matches. The
probit model is therefore only used to identify the true status of candidate matches that
do not match exactly.

The regression results of the fitted probit model using two-thirds of the labelled sample
can be found in Table 9. The model is also fitted separately for the Amadeus Financials
and Amadeus Subsidiaries data. While the only purpose of this regression is to accu-
rately predict true matching status out of sample, the coefficients can be interesting. For
example, θ strongly negatively correlates with the probability of a combination being a
true match, confirming the hypothesis embedded in Figure 3. The first characters in a
firm name also hold additional information on top of the similarity established by θ. The
flagged words significantly impact the probabilities, in the same magnitude as the first
characters of the firm names, but having a negative effect on the probability instead. The
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data source variables are not significant, which is furthermore confirmed by the similarity
of the coefficients in the last two columns. The two main differences between these re-
gression results are for the number of occurrences of a patent applicants (Count matched)
and the interaction of θ and the first letter overlapping.

Table 9: Regression explaining candidate match status.

Full Ama Fin Ama Sub

θ -2.535*** -1.041 -2.845***
(0.494) (0.724) (0.539)

Same first letter (indicator) 2.499*** 2.598*** 2.268***
(0.375) (0.581) (0.486)

θ × Same first letter -1.872*** -2.488** -1.380
(0.667) (1.044) (0.872)

First 2 letters in matched (indicator) 0.849*** 0.942*** 0.803***
(0.065) (0.116) (0.079)

First 2 letters in trained (indicator) 1.045*** 1.034*** 1.050***
(0.064) (0.109) (0.079)

θ × log(Count matched) -0.021 -0.114** 0.030
(0.027) (0.045) (0.033)

Amadeus Financials (indicator) -0.435
(0.371)

θ × Amadeus Financials 0.946
(0.670)

Amadeus Financials × Same first letter (indicator) -0.157
(0.105)

Flagged words in any (indicator) -3.238*** -2.923*** -3.646***
(0.113) (0.146) (0.196)

Flagged words (alt) in both (indicator) -0.913*** -0.905*** -0.967***
(0.161) (0.279) (0.198)

Constant -0.318 -0.970** -0.192
(0.275) (0.405) (0.301)

Observations 5,896 2,028 3,868
Pseudo R2 0.619 0.593 0.635
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

A probit model is fitted using two-thirds of the labelled sample and only considering
candidates for which θ > 0.01, thereby excluding exact matches. The dependent vari-
able is the true matching status, as labelled by the author. The different models are
based on all candidate matches or only the ones stemming from either Amadeus source.
Standard errors in brackets.

The relationship between the thresholds on p̂ (p̄) and several evaluation measures are
presented in Figure 4. Precision is the share of justified matches in the set of identified
matches. It evaluates the precision of the identified matches. Recall is the share of
justified matches in the set of all true matches, and therefore evaluates how successful
the algorithm is in identifying true matches. Whereas precision in general benefits from
a stricter threshold, recall benefits from a more lenient threshold. The F1 score (F1) is a
metric combining both precision (s) and recall (r), such that F1 = 2sr

p+r
. I determine the
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optimal threshold by maximizing the F1 score (see Figure 4). This optimum is found at
the threshold p̄ = 0.53 for the labelled sample that was not used to fit the probit model.
Note that the F1 score is nearly flat for a prolonged range of thresholds, roughly from 0.3
to 0.9. For that range precision and recall are close to one another.

0.0 0.2 0.4 0.6 0.8 1.0
Threshold for p

0.0

0.2

0.4

0.6

0.8

1.0

Precision
Recall
F-score
Max F1 score

Figure 4: Performance by threshold.

Note: Precision, recall and the F1 score are plotted against their required threshold on
p̂. The maximum F1 score is also plotted. These scores are calculated for the labelled
sample that was not used to train the probit model. It is an out-of-sample performance
evaluation.

Alternatively one could determine p̄ through other createria. One could also set sep-
arate criteria on precision and recall and take the maximum of the corresponding p̄s.
Lastly, one could take a weighted average of precision and recall in order to give one
measure more weight. Depending on the application, the researcher can determine the
appropriate criteria.

Additionally these performance indicators can be calculated for the fitted models that
use only one of the Amadeus databases. The optimal threshold p̄ and the respective
errors are presented in Table 10. Note that all indicators are very close to each other
across different samples. As these values are so close to one another, it is difficult to judge
whether one is outperforming the other or whether it is purely due to chance.

The classification exercise is more intuitively visualized by Figure 5. The fitted probit
model is used to produce out-of-sample p̂s for the one-third labelled data. These p̂s are
plotted for both the set of true candidate matches and the set of false candidate matches,
together with the threshold p̄. One sees that most of the mass of the actual correct
candidate matches is above the threshold, while most of the mass of the actual incorrect
candidate matches is below the threshold.

The fitted probit model and the threshold p̄ can now be used to predict the true
matching status of the unlabelled candidate matches. The fitted probit model is used to
produce out-of-sample p̂s for the unlabelled data. Any candidate match for which p̂ > p̄

will be considered a true match. Figure 6 shows the distribution of p̂s, together with
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Table 10: Performance evaluation.

Model Full Ama Fin Ama Sub

Optimal threshold (p̄) 0.525 0.695 0.430
Precision 0.931 0.933 0.927
Recall 0.891 0.880 0.903
F1 score 0.911 0.906 0.915

Observations training set 5,896 2,028 3,868
Observations prediction set 2,949 1,085 1,864

The threshold refers to p̄ which is determined by maximizig
the F1 score. Precision, recall and the F1 score are calcu-
lated at that p̄. The observations refer to the split in the
labelled sample, where the training sample was fed into the
probit function and the prediction sample was fed into the
fitted probit function to determine p̂s and the performance
indicators presented here. The columns correspond to the
columns in Table 9, fitting the full model or separate mod-
els per data source.

0.0 0.2 0.4 0.6 0.8 1.0
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Figure 5: Distribution of candidate matches’ p̂s by true status.

Note: Distribution of the predicted probability (p̂) of candidate matches being a true
match by true matching status. Only one third of the labelled sample is presented here,
extrapolating the fitted probit model that used the other two-thirds of the labelled sample.
The determined threshold is presented by p̄. The distributions are overlaying, and not
stacked.
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the threshold. Out of the 810,118 candidate matches that have a θ > 0.01, 416,603 are
determined to be matches, which is 51.4%.

0.0 0.2 0.4 0.6 0.8 1.0
Predicted probability of true match (p)
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20,000
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Prediction: no match
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p

Figure 6: Out-of-sample (unlabelled) prediction and decision.

Note: Distribution of the predicted probabilities (p̂) of candidate matches being a true
match, and the matching threshold (p̄). Only the out-of-sample unlabelled data is con-
sidered for which θ > 0.01. Candidates with a smaller θ are exact matches and therefore
do not need a prediction of their true status.

Lastly, we can pull all matching results together. Some candidate matches were con-
sidered correct due to their angle being small enough (θ < 0.01), some candidates were
labelled, and some candidates were predicted to be correct using the supervised machine
learning method. When only considering unique cleaned names, 259,273 candidate links
have θ < 0.01 and are therefore considered a match.7 Another 4,854 links (with θ > 0.01)
were determined a match in the labelling exercise. And another 457,890 links were pre-
dicted to be a match. This brings the number of matches between unique cleaned firm
names to 722,017. Fuzzy matching, i.e. matching while θ ≥ 0.01, therefore increases the
number of matching links with 178%. These figures are summarized in Table 11.

Note that these numbers cannot easily be compared to the cleaning-only merge out-
comes from Table 4, as those outcomes are based on matching before dropping duplicated
cleaned firm names. In the fuzzy matching algorithm each cleaned firm name only occurs
once. To make a comparison, the cleaned names in the links need to be merged back onto
the original data in order to count the number of unique firm identifiers and PATSTAT
entries involved in these matches. The results are presented in Table 12. The number
of matched Amadeus firms increases with 54% and 72% for the Amadeus Financials and
Subsidiaries database respectively compared to the cleaning-only merge. And the num-
ber of matched PATSTAT entries increases with 81% and 25% respectively. As with the
cleaning-only exercise, the fuzzy matching increases the number of links more (178%)

7This number is smaller than the number reported in Table 4, as only unique cleaned firm names are
considered here. Also, a handful of exact matches that were missed by the fuzzy algorithm are added at
this point. These are 190 unique name pairs and 844 total name pairs. subsection 4.3 discusses where
this discrepancy comes from.
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Table 11: Matches by decision rule.

Total Amadeus Financials Amadeus Subsidiaries

Exact match (θ < 0.01) 259,273 106,841 152,432
Labelled 4,854 1,687 3,167
Predicted (out-of-sample) (p̂ > p̄) 457,890 162,767 295,123

Total 722,017 271,295 450,722

Matching outcomes by decision rule. Firms are either matched because their angle is small
enough (θ < 0.01), they were labelled as a true match, or they were determined to be a
true match using out-of-sample prediction by the fitted probit model.

than the number of involved firms and applicants. Note that both firms and applicants
can occur in multiple links. Step 4 will suggest disambiguation methods to disentangle
this multiplicity.

Table 12: Final matches.

Total
Amadeus
Financials

Amadeus
Subsidiaries

Links
Firm-Applicant (unique name pairs) 722,017 271,295 450,722
Firm-Applicant (all name pairs) 1,727,400 599,223 1,128,177

Amadeus
Unique firm names 123,132 58,713 92,831
Firms 132,811 61,325 99,085

PATSTAT
Unique applicant names 371,432 211,868 287,896
Entries 713,037 408,008 575,743

Final matching outcomes using the proposed algorithm. These are matches between the
Amadeus database firm names and PATSTAT’s applicant names. The columns split up
the matches by source. The first two rows provide information on the number of links
found. Both the links between unique firm names as well as links between raw entries
are considered. The remaining rows present the number of firms or applicants that are
matched, either through the number of unique (cleaned) names or the number of firm
IDs or PATSTAT entries. The columns do not always add up to the value in the Totals
column, as a single PATSTAT entry can match to firm names in both Amadeus data
sources.

The matching outcomes can further be studied by comparing matched and unmatched
firms in either database. For the firm databases, Amadeus Financials and Amadeus
Subsidiaries, the number and shares of matched firms by country are presented in Figure 7.
The unmatched category contains all firms not matched by the algorithm. The size of the
unmatched group is not only determined by the success rate of the matching algorithm,
but also by the patenting decision of firms. If firms do not patent, a group of unmatched
firms exists inherently. As patenting rates might differ between countries, comparing the
shares of matched firms between countries to determine the performance of the matching
algorithm is also not watertight. Nevertheless, the country comparison shows both the
dominance of the countries in the Amadeus databases, as well as the dominance in the

27



match rate of the algorithm. One noticeable observation is that the matching rates are
higher in the Amadeus Financials database, likely because these firms are larger or higher
up in the ownership hierarchy. Further, the algorithm seems to work well for different
languages. For example, French and German firms are more likely to be matched with
patent applicants than British firms. The only country that seems to be underrepresented
in the matches is Ukraine. It is plausible that part of the underrepresentation can be
attributed to the algorithm’s performance.
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Figure 7: Match coverage in the Amadeus databases by country.

Note: The number of firms in the Amadeus databases (horizontal axis) and the share
of them being matched to a patent applicant (colors and percentage) per country. The
figure presents the top 15 countries per Amadeus database. Each firm is represented once
with its most recent data.

Similarly firms can be grouped by their industries, as shown in Figure 8. Also here
differences in matching rates cannot be attributed fully to the algorithm’s performace, as
industries differ in their innovativeness and patenting behavior. Again the matching rate
is higher for the Amadeus Financials database. Additionally, the difference in matching
rates is noticeable as it can differ with a factor ten. For example finance and insurance
(code 52) and real estate, rental and leasing (53) have a low matching rate, in accordance
with a lower expected patenting rate. On the other hand, manufacturing firms (31-33)
have a higher matching rate, likely due to a higher patenting rate. Of these food and
textile manufacturing (31) matches about 13% of the time, the broad industry 32, which
includes chemicals and pharmaceuticals, matches roughly 30% of the time, and metals,
machinery, electronics and transport (33) find a match for 39% of firms in the Amadeus
Financials database.

The matching coverage can also be studied from the patenting side. Figure 9 presents
the number of patent applications that have at least one applicant that was matched
to a firm in either of the Amadeus databases. While the match rate is significant over
the 70 year period, with a 5-year rolling average mostly above 10%, the peak in the
2000s is likely attributed to the Amadeus data being available mostly as of 2008. Of all
patent applications since 1950, 18.1% can be linked to a firm in the Amadeus databases.
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Figure 8: Match coverage in the Amadeus databases by industry.

Note: The number of firms in the Amadeus databases (horizontal axis) and the share of
them being matched to a patent applicant (colors and percentage) per industry (2-digit
NAICS code). The figure presents the top 15 industries per Amadeus database. Each
firm is represented once with its most recent data.

This is a rather high share, since the Amadeus databases do not cover all existing firms.
Furthermore, some patents are applied for by individuals or governments, making them
impossible to be matched to private firms.

The right panel of Figure 9 shows the coverage per patent office as of 2000. Noticeable
is that many applications occur at the Chinese patent office and that these applications
are difficult to link to firms in the Amadeus databases. This likely has two main reasons,
namely (1) the applicants are not included in a firm database like Amadeus that mostly
focuses on firms in Europe and the US, and (2) firm names are more difficult to link
across different alphabets. At other patent offices matching rates can be significant, like
in Germany (45%), Spain (46%), Great Brittain (32%), or at the European Patent Office
(EP) (46%).

Step 4: Disambiguation. While the decision rules above have set the acceptable
amount of error in these links, even the correct links can still be ambiguous. This ambigu-
ity is inherent to name matching exercises, as one name can refer to multiple firms. The
firm name cleaning in Step 1 has exacerbated this issue by potentially mapping different
names into similar cleaned names. But also uncleaned firm names can be ambiguous,
especially when the data is imprecise. Such ambiguity in the matching outcome makes
it difficult to do follow-up analysis, as it causes issues with double counting. This step
illustrates ways to rid the matchings of ambiguous linkages.

As discussed earlier, the names in the PATSTAT data are especially problematic. Not
only do they contain misspellings, it is often unclear to which exact firm the name refers.
Names are often abbreviated or they leave out parts of the name that are necessary for
identification. For example, the name “ABC Technology Inc” might very well refer to
the firm “ABC Technology Germany Incorporated”. To provide a real example, there are
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Figure 9: Match coverage in the PATSTAT database.

Note: The number of patent applications in the PATSTAT database that have at least
one applicant that was matched to a firm in the Amadeus databases. The left figure
presents all data by earliest filing year as of 1950. The right figure shows the top 15
patent offices by patent applications as of 2010. Percentages refer to the share of patents
that is matched by the algorithm.

75 unique firms in the Amadeus Financial database that contain the word ‘Bayer’, all
likely referring to some firm that is involved with the Bayer firm group. In the Amadeus
Subsidiaries data there are 304 unique firm names and there are 2,594 unique patent
applicant names with the word ‘Bayer’.

The firms in the Amadeus databases can be uniquely identified by a firm identifier.
The PATSTAT applicants have no consistent identifiers and can therefore only be told
apart by differences in their names. It is also possible that one applicant shows up in the
data with different applicant identifiers and even with different name spellings. Multiple
applicants should therefore be allowed to be matched to any one firm in the Amadeus
database, but one applicant should never match to multiple Amadeus firms. I propose
three methods to achieve such an outcome.

First, one can for each patent applicant choose the link with the highest p̂ from Step 3
(see Equation 10). Any ties can be broken by firm information available in the Amadeus
databases. I opt for breaking ties by selecting the firm with the highest number of em-
ployees, largest total assets, or largest revenue, in that order. If all are equal the tie is
broken randomly. When identifying ties one should be aware of computational impreci-
sion. Calculations with float number formats often lead to some imprecision, especially
when opting to reduce memory usage by reducing float precision. Allowing for a small
degree of error in testing for ties is a solution. I suggest to consider all links of a patent
applicant with a p̂ within 0.01 of the max p̂ a tie.

As this disambiguation seeks to match each patent applicant to one individual firm,
it is appropriate to only consider unconsolidated firm data. This does reduce the number
of links. The results of this disambiguation can be found in the Firm column of Table 13.
Compared to the no-disambiguation case, the number of links is nearly halved. A small
share of applicants no longer finds any match as their previously matched firm has no
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unconsolidated data. And as expected, the number of involved firms in the remaining
matches is reduced more. The resulting links involve about a quarter fewer firms.

Table 13: Disambiguation results.

No disamb. Firm Community Firm in comm.

Total

Links (firm-applicant) 1,727,400 894,049 1,727,337 523,686
Links (community-applicant) - - 713,037 125,630
Firms 132,811 102,047 132,811 19,578
Applicants 713,037 702,657 713,037 125,630
Communities - - 90,999 9,257

Ama Fin

Links (firm-applicant) 599,223 332,056 599,208 206,475
Links (community-applicant) - - 408,008 112,086
Firms 61,325 47,712 61,325 13,309
Applicants 408,008 332,056 408,008 112,086
Communities - - 49,497 9,207

Ama Sub

Links (firm-applicant) 1,128,177 561,993 1,128,129 317,211
Links (community-applicant) - - 575,743 93,627
Firms 99,085 75,306 99,085 12,383
Applicants 575,743 561,993 575,743 93,627
Communities - - 68,311 5,113

The first two columns indicate the sample and the statistic, respectively. The numerical columns
can be used to compare different disambiguation techniques. The first of these columns is the
baseline, without any disambiguation. The second links each patent applicant to only one un-
consolidated firm, based on the accuracy of the link (p̂) and the size of the firm. The third
column presents the results from community detection. The last column selects the largest
firm with consolidated statements within each community. The blocks of rows refer to the un-
derlying sample, which either are all firms (Total), Amadeus Financials firms only (Ama Fin),
or Amadeus Subsidiaries firms only (Ama Sub). Mind that firms and applicants can occur in
matches of both subsamples.

Second, the multiplicity of links can be used to identify firm groups. As links are
established based on name similarity, the multiplicity of links also groups firms with
similar names. In the example above, the hundreds of firms containing ‘Bayer’ likely are
part of the Bayer firm group. If different Amadeus firms link to the same patent applicant,
they are therefore likely part of the same group, especially if they frequently link to the
same patent applicants together. The co-occurences in links to patent applicants can be
used to identify groups using community detection algorithms. Figure 10 illustrates the
idea of community detection through the matching links. The key concept is co-occurence.
Firms A and B co-occur in their links with patent applicants 1 and 2. They are therefore
considered one community (indicated by the dashed rectangles). Firm C only co-occurs
with firm B once and is therefore not included in the same community. The link C-2
is therefore broken (dotted line). Firms D and E do not co-occur with other firms and
therefore form their own community.

For the community detection the Louvain Community Detection algorithm is used
(see Blondel et al., 2008). As community detection works with co-occurence, singletons
have to be considered separately. Singletons are defined as Amadeus firms that are only
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Figure 10: Community detection.

Note: An example of disambiguation using community detection. The squares and letters
represent unique firms, circles and numbers represent patent applicants and lines indicate
the established links from the fuzzy matching algorithm. Disambiguation is achieved
when each applicant is linked to only one unit. Community detection uses co-occurence
to establish disjoint sets of firms, the communities (indicated with dashed rectangles).
E-7 is the simplest link as it is uncontested. Also D-5,6 is uncontested. Firms A and B
co-occur in their links with applicants 1 and 2 and are therefore grouped together. C also
co-occurs in the link with applicant 2, but it lacks sufficient co-occurence with A and B
to belong to the same community. The link C-2 is therefore broken (dotted line).
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linked to one patent applicant. If firms are also involved in co-occurences, they are not
considered singletons. All co-occurences are then represented in an edge list and the
algorithm starts moving nodes into communities until it has maximized modularity. The
resulting communities then serve as firm groups that should be considered as the unit that
is linked to the patent applicant. Follow-up analysis should therefore consider patenting
on this firm group level.

The results of this disambiguation can be found in the Community column in Table 13.
As communities are a set of firms, it is still possible to track the firm-applicant links.
Noticeable is that several of these links are broken as some patent applicants are linked to
multiple communities. In the example in Figure 10 this would be the case for applicant 2.
This multiplicity is resolved by linking the applicant to the community with most firms
in it. In the example the link C-2 is therefore broken.

All firms and all applicants remain represented in the community-level links. The
number of community-level links is 41% of the number of firm-level links. And the nearly
133 thousand firms are grouped into nearly 91 thousand communities. Compared to the
firm-level disambiguation the researcher can analyze 91 thousand communities instead
of 102 thousand firms. Communities are larger than single firms. This also results in
communities linking to more patent applicants.

Third, the patent applicants can be linked to the dominant firm within each com-
munity. The Amadeus data contains both consolidated as well as unconsolidated data.
By identifying the largest firm with consolidated data within a community, each patent
applicant could be linked to the financial data of the consolidated firm group. A benefit
over using the separate firms in the community is that the consolidated reporting also
contains the data from subsidiaries with different names. It therefore might be more ac-
curate data on the firm group than the self-constructed communities. An accompanying
drawback is that firms within the firm group that have different names are not matched
to their patent applicant in the patent data. The number of patent applications of the
firm group is therefore underestimated by the data. Another issue is that multiple firms
in the community might have consolidated financial statements. Determining which firm
to consider as the community head requires adding another step to the data preparation
exercise. I propose to take the firm with the largest consolidated figures, measured by
total assets, employees or revenue. That firm is most likely to encapsulate the other firms
in the ownership structure.

This last disambiguation exercise leads to the links presented in the last column of
Table 13. As not all communities contain a firm with consolidated financial statements,
about 90% of communities are removed from the data. It also leads to fewer firms (-85%)
and fewer patent applicants (-82%). The remaining communities do contain more firms
and are linked to more applicants per community.

Depending on the research question the researcher should decide the unit of analysis
and the accompanying algorithmic choices, keeping in mind the respective strengths and
shortcomings. Linking patent applicants to one single firm risks incorrect assignment.
And when correctly assigned, the data might not allow to answer some questions. When
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for example testing whether firms apply for more patents in the space of electrification
in response to more stringent environmental policies, firm-level links might miss crucial
strategic behavior within a firm group. If a manufacturing subsidiary in the group is
exposed to the new policies, the firm group might respond with additional patenting
at the innovation subsidiary. Reversely, linking patent applicants to firm groups has a
potentially diluting effect. Grouping many firms might obscure the link between the new
policies and additional patenting when only a few firms in the group are affected by the
new policies. Any estimates of the effect will be biased towards zero. It also makes it
more difficult to isolate the effect of the policy, as more events will play a role in the
patenting decision of a large firm group.

4 Discussion
This section provides some context to the methodological choices made, it will share com-
putational considerations that might be valuable to researchers facing similar matching
problems, and it suggests extensions.

4.1 Alternative matching methods
One could compare text strings using several methods. I will just highlight five common
methods. This list is not exhaustive and some of these methods are also used in the
discussed literature in Section 1. First, the Levenshtein distance counts the number of
characters that need to be changed or added to one string in order to produce the other
string. It is therefore also known as the edit distance. Second, one could simply measure
the longest common substring across two strings. Third, the Jaro-Winkler distance, or
similarity, combines the first two measures. Fourth, other vectorizers can be used to
represent the text’s features, although some form of the TF-IDF vectorizer is often used.
Fifth, pre-determined mappings can be used to link text to features. Think of pre-trained
text models or Soundex, which links the English pronunciation of words to features.

In the proposed algorithm I perform vectorization and similarity scoring before employ-
ing a supervised machine learning method. Why not run the machine learning algorithm
on the raw data directly? This has to do with the share of true matches in a random sam-
ple. Consider merging the 521,877 unique raw firm names from the Amadeus Financials
database on the 8,311,667 unique applicant names in the PATSTAT database. Imagine an
optimistic scenario in which all patent applicants can be linked to one firm name. Having
no pre-selection in place, drawing random combinations and manually labelling them as
true or false will result in few true matches being observed. Out of the 4,337,667,838,959
combinations only 8,311,667 are true matches. The odds of a random combination being
a true match is 1 in 521,877. In order to predict the true matching status using Equa-
tion 10, a training set should be provided that contains a fair amount of both true and
false matches. If only a few true values are provided, the probit model cannot be fitted
properly as there will be no clear relationship between the identifying characteristics x
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and outcome q. The predictive power of such a trained model will be poor. Say one wants
the training data to contain 100 true matches, one needs to manually check more than
52 million combinations. This is a near impossible task, as labelling 11,5 thousand candi-
dates already takes a full day of work. And remember this is in the optimistic situation in
which each patent applicant can be matched to a firm, a situation that is highly unlikely.
If 10% of applicants can be matched to a firm, one needs to manually check more than
half a billion combinations. Instead using the similarity scoring to provide candidates,
greatly reduces manual labor.

4.2 Computational considerations
Matching many firm names can be computationally intensive and memory heavy. There
are several clever implementations that reduce memory usage and speed up calculations,
such that merging 1.6 million firms to 8.3 million patent applicants becomes feasible with
a basic laptop.8 For the implementation Python is used, but similar solutions are likely
available in other programming languages.

Several measures can be taken to reduce memory usage. First, the data type can
be altered to a type with a smaller memory footprint. Whereas most float variables by
default are stored in a 64-bit format, opting for 32 bits halves the memory footprint while
upholding enough precision for this task. Reduced precision may affect outcomes slightly,
translating into more rounding errors. For example, multiplying 1

3 with itself results in
0.1111111111111111 with numpy’s float64 format and in 0.11111112 with numpy’s float32
format. While the difference is small, such rounding errors can accumulate. It will for
instance cause some dot products in Equation 7 to evaluate to cos(θ) > 1, for which there
exists no such θ. Such rounding errors should be corrected for, e.g. by calculating the
angle as θ = arccos(min(⃗â ·⃗̂b, 1)). It is also possible that rounding causes an angle to cross
the θ̄ threshold. There is no reason to believe such cases result in a problematic bias in
the resulting candidate matches.

Second, working with sparse matrices reduces memory usage immensely. Vectorization
creates a 22,460 length vector for each firm name when training the vectorizer on the
Amadeus Financials’ cleaned NAME variable. These vectors contain on average 19.72
non-zero values. All other positions are filled with zeros. Instead of storing all these zeros
in memory, one can also only store the non-zeros and their locations, implicitly assuming
all other locations contain zeros. The more sparse matrices are, the more memory will
be saved storing matrices in a sparse format. Python’s scipy package has sparse matrix
formats. Besides memory efficiency, calculations with sparse matrices are also faster.
The dot product between vectors can ignore all zeros, drastically reducing the number of
calculations.

Third, calculating more than 3 trillion dot products at once is likely causing mem-
ory errors. Whereas the vectorized firm names hold many zeros, their dot products are

8The matching is performed by the author on a laptop with 8GB memory and a 1.6GHz CPU with 4
cores.
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surprisingly often non-zero. In roughly 15% of the cases the dot products are non-zero.
This means that calculating all angles at once requires storing more than 600 million
values and their locations. On a normal computer this is not feasible. Instead, one could
partition one sparse matrix from Equation 9 and perform the angle search for each part in
succession. For example, one could take a block of 1,000 rows out of Â, calculate D using
all of B̂, determine the cosine values that pass the threshold, store these, and move on to
the next block of 1,000 rows. A useful tool to achieve the partitioning in Python is the
built-in generator function. Such a function only performs its action when called upon.
The above partitioning can then be performed with a small memory footprint. Instead of
splitting Â up in parts and looping over these parts, one can pass the generator function
to the loop. The blocks of 1,000 rows will then only be created when requested by the
loop. At any point in time there will only be one block of 1,000 rows in memory.

Fourth, one could perform multi-processing using the multiprocessing package in
Python. The benefit is that multiple CPU cores can be used to perform calculations in
parallel, speeding up the process. The drawbacks are that more memory is used as all
these parallel processes require memory. The number of rows of Â, and likely B̂, fed to
each iteration should be downwards adjusted accordingly. Also, using all CPU cores will
make it difficult to perform other tasks on the computer while the code is running. It will
be difficult to run the matching algorithm as a background process. One could therefore
actively choose not to parallelize the matching algorithm and have the process run in the
background.

4.3 Extensions
There are several extensions and improvements possible from here onwards. There exist
algorithms and dictionaries that recognize firm names even when they are misspelled.
Such recognitions likely only work for the more common, older and larger firms, but
they would improve the cleaning process. Another method would be to use online search
engines to point to the parent firm’s website, as suggested by Bena et al. (2019).

Further, two more cleaning steps can be taken that likely improve the matching out-
comes. First, many incorrect matching candidates contained short identifying information
and long generic information. Consider “ABC international technologies Corp” for which
“ABC” is the most important identifying information and the rest is rather generic. Ab-
breviating terms like “international” and “technologies”, just as I did for legal terms, might
improve the matching algorithm. Too often such firm names were incorrectly matched to
other firm names with equal generic terms. Alternatively, n-grams at the beginning of the
character string could be upweighted as most identifying information is at the start of the
firm name, with some exceptions. Besides n-grams, one could also partition the string by
word and pass both the n-grams and the words to the vectorizer. This will additionally
downweight generic words, but only in case of correct and consistent spelling.

Second, n-grams from (abbreviated) legal terms or other generic information should
be kept separately from the same n-grams stemming from more identifying information.

36



From Table 5, 6 and 7 we learned that the most common 3-gram is “ltd”, which most likely
stems from the abbreviation of the uninformative legal term “Limited”. If indeed the 3-
gram stems from “limited” it is desirable that the IDF term in the vectorizer downweights
it. But when the 3-gram actually stems from identifying information, it should not be
downweighted. For example, the firm name “Bolt delivery corp” has its “ltd” 3-gram
disproportionately downweighted in the current algorithm.

Working with n-grams also results in a few incorrect vectorized representations. First,
short firm names might not have an n-gram. For example firm name “AB” has no 3-gram,
resulting in an empty vector and no calculated angles with firm names. It will therefore
not be matched to any firm name, including firm names that are spelled the same. This
issues is solved in the presented application by adding matches between short firm names
from an exact merge. Second, n-grams that occur only in the matching data and not in
the training data will be omitted, leading to optimistic matching results for firm names in
the matching data with such n-grams. For example consider the firm name “ABC Inc” in
the matching data. If the training data does not contain the n-gram “ABC”, vectorization
will lead to the following hypothetical non-zero vector elements (after cleaning)

bc
i

ci
n

in
c[ ]

ABC Inc 1.3 1.5 0.2 (11)

where the n-gram “ABC” does not exist and is hence implicitly assumed to be zero.
Angles will therefore be incorrectly calculated. The angle between “ABC Inc” and “BC
Inc” will be zero, which is overly optimistic. The exclusion of a positive element also
avoids downweighting of each element in the vector normalization (see Equation 7). It
thereby further inflates the estimated cos(θ) and leads to a lower estimated θ.

This can be illustrated mathematically. Consider a vectorized firm name a⃗1 (with only
non-negative elements) and a vector a⃗2 which is identical except that one positive element
is set to zero. It must be that ∥a⃗1∥2 > ∥a⃗2∥2. Now consider the angle with another
vector that only has non-negative elements b⃗. It must be that cos(θ1) = a⃗1 ·⃗b

∥a⃗1∥2∥⃗b∥2
≤

a⃗2 ·⃗b
∥a⃗2∥2∥⃗b∥2

= cos(θ2) where the equality occurs only if a⃗1 and b⃗ are perpendicular. Therefore
the omission of an n-gram from one firm name leads to lower angles between that firm
name and any other firm name that is not perpendicular to it.

An inherent risk to working with firm names is their dynamics. Firms can change their
names or merge, making the firm name an unstable identifier over time. Such changes
could be taken into account when one uses information on mergers, acquisitions and name
changes. Firm name matches would then only be sought within the time periods between
name changes. Finding such information for all considered firms might be difficult and
tedious.
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5 Conclusion
This chapter examines the problem of merging databases by firm name, a common prob-
lem when doing analysis with firm-level data. The problem arises from the lack of common
firm identifiers across databases and is worsened by the absence of a common firm name
spelling. In this chapter I propose a fuzzy name matching algorithm and I apply it to
the problem of merging the Amadeus databases to the PATSTAT database. For this ap-
plication, the algorithm increases the number of matched firms with 116% and 160% for
the Amadeus Financials and Subsidiaries databases, respectively, compared to an exact
match on raw firm names. It increases the number of matched applicants by 419% and
454% for the Amadeus Financials and Subsidiaries databases, respectively. It therefore
identifies significantly more innovative firms, and it vastly increases the measured inno-
vation intensity of these firms. Instead of 2.6% for an exact match, 18.1% of all patent
applications since 1950 are linked to Amadeus firms using the proposed algorithm.

The proposed algorithm consists of four steps. Step 1 thoroughly cleans the firm
names of each database, taking into account casing, accents, special characters and le-
gal terms (like Inc and Corp). Step 2 tests for similarity between all firm names using
high-performance fuzzy string matching based on vectorization and the Cosine Similarity.
Step 3 selects candidate matches and subsequently filters out incorrect matches using a
supervised machine learning method. Step 4 disambiguates the links in the matching
outcomes and guarantees that each patent applicant is linked to only one firm or firm
group.

The benefits of the proposed solution, besides greatly improving merging performance,
is that it is relatively easy to run even with limited memory and CPU. In the applica-
tion of merging the Amadeus databases to the PATSTAT database, roughly 1.67 million
firm names were compared to 8.31 million patent applicant names (or more than 13.8
trillion combinations) in about five days on a normal laptop with 8GB memory, just as a
background process.
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Appendices
Appendix A Probit model variables
The variables used in the probit regression of the application in this chapter are defined
in Table 14.

Table 14: Descriptions of the variables in the probit model.

Variable Description

θ The angle calculated by the cosine similarity on the TF-IDF vec-
torized cleaned firm names.

Same first letter (indicator) Indicator whether the cleaned firm names in a candidate match
share the same first letter.

First 2 letters in matched (indi-
cator)

Indicator for whether the first two letters of the cleaned firm name
of the IDF training source (Amadeus Financials or Amadeus Sub-
sidiaries) occur anywhere in the cleaned firm name of the matching
source (PATSTAT). The two letters have to occur in sequence.

First 2 letters in trained (indica-
tor)

Indicator for whether the first two letters of the cleaned firm name
of the matching source (PATSTAT) occur anywhere in the cleaned
firm name of the IDF training source (Amadeus Financials or
Amadeus Subsidiaries). The two letters have to occur in sequence.

Count matched Number of occurences of the cleaned firm name from the matching
source (PATSTAT) in all candidate matches. For example it takes
the value 5 if the PATSTAT firm name in the respective candidate
match occurs in 4 other candidate matches’ PATSTAT name. It
does not count appearances in the other (training) data source.

Amadeus Financials (indicator) Indicator for whether the training source is Amadeus Financials.
Flagged words in any (indicator) Indicator whether a set of flagged words occurs in any of the two

firm names in the respective candidate match. The set of 13 words
contains ’zakrytoe’, ’aktsionernoe’, ’obshchestvo’, ’otkrytoe’, ’za-
klady’, ’wlokien’, ’chemicznych’, ’przedsiebiorstwo’, ’handlowe’,
’nauchno’, ’proizvodstvennaya’, ’proizvodstvennoe’, and ’pred-
priyatie’.

Flagged words (alt) in both (in-
dicator)

Indicator whether an alternative set of flagged words occurs in
both firm names in the respective candidate match. The set of 2
words contains ’societe’ and ’societa’.

Appendix B Further results
Table 15 describes the most common 3-grams in the PATSTAT database when considering
the 3-grams produced when training the vectorizer on the Amadeus Subsidiaries data. It
complements the vectorization results in the main text (Table 5-7).

Figure 11 presents the matching status of the firms in the Amadeus databases by firm
size. Here size is directly derived from the number of employees. Due to many firms with
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Table 15: Most common n-grams in the PATSTAT database when
training on Amadeus Subsidiaries data.

# 3-gram Counts # 3-gram Counts # 3-gram Counts

1 ltd 1,619,193 11 log 523,790 21 ter 394,753
2 col 1,328,115 12 hno 515,248 22 che 374,078
3 olt 1,296,039 13 nol 500,910 23 ong 371,880
4 ing 785,604 14 ion 472,445 24 str 371,680
5 ech 678,661 15 ogy 449,918 25 inc 371,561
6 tec 666,945 16 han 441,486 26 men 370,161
7 ang 630,298 17 yco 438,267 27 eng 350,705
8 chn 577,391 18 ian 427,568 28 tio 349,589
9 olo 544,629 19 and 414,672 29 ica 345,845

10 ent 530,610 20 ine 406,556 30 ele 345,747

These are the number of occurrences of 3-grams in the PATSTAT
database that also occur in the 1,136,376 firm names in the cleaned
unique Amadeus Subsidiaries database. The PATSTAT variable per-
son_name is used here. Counts refer to the number of applicant
names containing the respective 3-gram and # refers to the rank.
The applicant names are thoroughly cleaned before vectorization.

few employees the figure is somewhat difficult to read. This shows that financial data is
inherently tricky to work with, as such statistics raise the question whether firms indeed
have few employees or whether employees are employed by another entity within the firm
group. Although reassuringly firms with no employees see a significantly lower matching
rate. Maybe surprisingly the match rate does not increase with firm size, meaning that
also smaller firms are actively patenting and are being matched by the algorithm.

Appendix C Code
Code is written in Python using open-source libraries. The code is available on the
author’s Github page (https://github.com/Leonbremer/namematch).
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Figure 11: Match coverage in the Amadeus databases by number of
employees.

Note: The number of firms in the Amadeus databases (horizontal axis) and the share of
them being matched to a patent applicant (colors) per size category. Size is measured by
the number of employees. The figures on the top row show all size categories. The last
bin contains any value larger than 2,000. The figures on the bottom row zoom in on firms
with at most 100 employees. Each firm is represented once with its most recent data.

43


	Introduction
	Methodology
	Application
	Data
	Applying the algorithm

	Discussion
	Alternative matching methods
	Computational considerations
	Extensions

	Conclusion
	Probit model variables
	Further results
	Code

