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Recent research has shown that females make classrooms more conducive to effective learning. We 
identify the effect of a higher share of female classmates on students’ disruptive behavior, engagement, 
test scores, and major choices in disadvantaged and non-disadvantaged schools. We exploit the random 
assignment of students to classrooms in early high school in Greece. We combine rich administrative data 
with hand-collected student-level data from a representative sample of schools that feature two novel 
contributions. Unlike other gender peer effects studies, a) we use a rich sample of schools and students that 
contains a large and diverse set of school qualities, and household incomes, and b) we measure disruption 
and engagement using misconduct-related (unexcused) teacher-reported and parent-approved (excused) 
student class absences instead of self-reported measures. We find four main results. First, a higher share of 
female classmates improves students’ current and subsequent test scores in STEM subjects and increases 
STEM college participation, especially for girls. Second, a higher share of female classmates is associated 
with reduced disruptive behavior for boys and improved engagement for girls, which indicates an increase 
in overall classroom learning productivity. Third, disadvantaged students—those who attend low-quality 
schools or reside in low-income neighborhoods—drive the baseline results; they experience the highest 
improvements in their classroom learning productivity and their STEM outcomes from a higher share of 
female classmates. Fourth, disadvantaged females randomly assigned to more female classmates in early 
high school choose college degrees linked to more lucrative or prestigious occupations 2 years later. Our 
results suggest that classroom interventions that reduce disruption and improve engagement are more 
effective in disadvantaged or underserved environments.
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1 Introduction

Social scientists, educators, and policymakers are interested in preparing students for careers in
STEM (science, technology, engineering, and mathematics). STEM careers are attractive, because
they are associated with higher lifetime earnings (Fayer, Lacey, and Watson, 2017). On a societal
level, a larger STEMworkforce may lead to further innovation and long-run economic growth. At
the same time, initiatives that prepare females for STEM careers are valuable. Although OECD
data show that women attain more education than men (OECD, 2016), they remain underrepre-
sented in STEM fields: Only 28% of college students enrolling in STEM are female (OECD, 2017).
These gender di↵erences in STEM degrees translate to gender di↵erences in STEM occupations.
This under-representation of females in STEM degrees and occupations accounts for a signifi-
cant part of the gender pay gap among college graduates (Blau and Kahn, 2017; Buser, Peter, and
Wolter, 2017).

What shapes these gender di↵erences in STEM occupations is the focus of much recent re-
search. Much of this gender gap can be traced to di↵erential performance in the related subjects
in earlier grades or di↵erential study choices made by boys and girls in school and at univer-
sity (Bu�ngton, Cerf, Jones, and Weinberg, 2016; Goulas, Griselda, and Megalokonomou, 2022).
Some studies emphasize gender di↵erences in preferences (Delaney and Devereux, 2019), while
other studies highlight the role of social and environmental factors that influence the gap (Lavy
and Megalokonomou, 2023a). Indeed, there is evidence that the gender gaps in performance in
STEM subjects is not evident at the beginning of schooling but emerges over time (Fryer and
Levitt, 2010; Hyde and Mertz, 2009). Thus, the school environment may contribute to the gender
gap in STEM performance and STEM college participation.

Classmates constitute an important social force that shapes academic achievement and educa-
tional choices through intensive daily interactions and influences classroom learning productiv-
ity. Thus, classmates may substantially influence human capital formation and student decisions.
We focus on an observable characteristics of classmates—gender—to study whether exposure to
a higher proportion of female peers in the classroom a↵ects students’ STEM performance in high
school and STEM college participation. For identification of causal e↵ects, we rely on idiosyn-
cratic variation in the proportion of female students within school cohorts across classrooms. To
control for unobserved characteristics of students, we exploit an institutional setting with quasi-
random peer group formation.1 Students in Greece are alphabetically assigned to classrooms
(based on surname) at the beginning of high school, which alleviates common concerns about
selection bias (Manski, 1993). The basic idea is to compare the outcomes and choices of students
from di↵erent classrooms within the same school-cohort who are exposed to the same classroom
environment and have similar characteristics, except for the fact that one classroom has a higher
share of female peers than the other for idiosyncratic reasons.2 We study the impact of classroom
gender composition on end of year student test scores in high stakes exams, subsequent test scores
1This identification methodology is di↵erent from that of Hoxby (2000); Lavy and Schlosser (2011); Hill (2017); and Brenøe and
Zölitz (2020), who exploit variation across cohorts within schools, and that of Goulas, Megalokonomou, and Zhang (2022), who
exploit variation across cohorts within neighborhoods.

2We also account for student and classroom characteristics, and thereby investigate how a higher share of female peers a↵ects
outcomes for males and females with similar characteristics and in similar classrooms. This identification approach is similar
to that of Anelli and Peri (2019), and Zölitz and Feld (2021), who use classroom-to-classroom variation in gender composition
within school-cohorts and teaching section-to-section variation in female share within course-cohorts.
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at the end of high school, and tertiary education choices and enrollments. High school perfor-
mance is the only determinant for university admission in Greece. We focus on test scores in
STEM subjects and enrollments in STEM college degrees, but we also study gender composition
e↵ects on test scores in humanities subjects and enrollments in humanities college degrees.

We focus on an important dimension in this investigation, which is the socioeconomic back-
ground of students. This is a dimension which has not been explicitly studied in other gender
peer e↵ect studies. Students from lower socioeconomic backgrounds often perform poorly in
STEM courses, which are a necessary step in pursuing fast-growing and lucrative STEM careers
(Rozek, Ramirez, Fine, and Beilock, 2019). We hypothesize that exposure to a higher share of fe-
male classmates has a more pronounced e↵ect on students who come from a lower socioeconomic
background. The motivation is that students’ outcomes may be more responsive to peer interac-
tions when there is a lack of resources in their environment and a potential shortage of financial
support from the family for children’s education and public educational resources. Therefore,
gaining new insights about whether educational inputs or interventions (such as exposure to
a higher share of female classmates) are more e↵ective in improving educational outcomes for
disadvantaged students could make a potential contribution to the design, targeting, and imple-
mentation of new interventions, and a better resource allocation.

We use novel student-level data from more than 40,000 students in Greece from a large num-
ber of schools for the period 2002-2009. We combine hand-collected test scores, transcripts, and
attendance records from 104 public high schools in Greece, which cover more than 40,000 stu-
dents, with administrative data obtained by the Ministry of Education on university admissions
for all students in Greece for several years. Our dataset o↵ers two main advantages. First, we
use a rich sample of schools and students that contain a large and diverse set of school qualities,
and household income. This allows us to investigate heterogeneous gender composition e↵ects by
school quality, and socioeconomic profile. Second, it contains rich information on students’ per-
formance in di↵erent subjects, classrooms, and grades, and di↵erent categories of class absences.
In particular, the data distinguish between parent-approved student class absence and truancy or
disciplinary teacher-reported expulsion from class, and thus measure student engagement and
disruptive behavior.

The primary identification assumption is that classroom-to-classroom di↵erences in the gen-
der composition of students are exogenous to the drivers of STEM outcomes, conditional on
school-by-cohort fixed e↵ects. To assess the validity of this identification assumption, we con-
duct a battery of balancing tests and simulation exercises.3 First, we show that the classroom-to-
classroom variation in gender composition within a school-cohort follows a normal distribution.
Second, a series of balancing tests show that the within-school-cohort variation in gender compo-
sition is orthogonal to student characteristics. Third, using Monte Carlo simulations, we derive
evidence that the within-school-cohort variation in gender composition is consistent with that
generated by a random process.

We assess the widely claimed statement that human capital investment and knowledge ac-
cumulation for females in STEM—but not all—subjects is enhanced in an environment with a
higher share of females (Lavy and Schlosser, 2011). To study this, we split the available sub-
3Our approach is similar to that of Lavy and Schlosser (2011); Goulas, Megalokonomou, and Zhang (2022); Anelli and Peri (2019);
Gong, Lu, and Song (2021); and Mouganie and Wang (2020).
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jects into STEM and humanities subjects, and examine the impact of a higher share of females
on student performance and participation in STEM and humanities, separately. If anything, we
expect to find less pronounced e↵ects on test scores and participation in humanities. This is be-
cause humanities-related learning may use memorization more intensely than problem solving,
and classroom-based learning may be more crucial for problem solving than memorization. For
instance, memorization during class time may be more easily substitutable with memorization at
home compared with problem solving. Also, there is evidence that teacher instruction and expe-
rience is more e↵ective in mathematics rather than reading (Hanushek and Rivkin, 2010; Papay
and Kraft, 2015). Thus, humanities-related learning may rely less on classroom-based learning.
Indeed, we find little (or negative) influence of female classmates on humanities performance and
participation.4

We find that a higher proportion of female classmates positively a↵ects STEM performance
and STEM college degree enrollments for all students, and e↵ects are larger for females. We
show that a 10 percentage point increase in the share of female classmates is associated with an
increase in grade 11 test scores by 3% and 1% of a SD for females and males, respectively, and an
increase in the likelihood of females enrolling in STEM fields in college by 0.4 percentage points
(relative to a mean of 12%). These e↵ects are of comparable magnitude to those in the literature
on improving school inputs. For instance, our e↵ects on STEM outcomes are comparable to be-
ing taught by a teacher between 1.5 and 2 SDs above the average (Hanushek, Kain, O’Brien, and
Rivkin, 2005; Lavy and Megalokonomou, 2023a) or to reducing the class size by 20% (Angrist
and Lavy, 1999; Krueger, 1999). Classroom gender composition has a smaller and statistically
insignificant e↵ect on males STEM degree choice, which suggests a decrease in the gender gap
in STEM degrees. We also find a nonlinear structure in gender composition e↵ects, with their
magnitude increasing substantially when the share of female peers is over 65%. Exploiting vari-
ation in the quality and socioeconomic characteristics of our sampled schools, we investigate
heterogeneous gender com- position e↵ects along those dimensions. We find that the overall ef-
fects are driven by students in disadvantaged settings, i.e., lower-quality schools, and schools in
lower-income neighborhoods. These results have longer-run implications, since we find evidence
(although we have limited power) that females exposed to more females in disadvantaged high
schools are more likely to choose college degrees linked to more lucrative or prestigious occupa-
tions a few years later. In line with our initial hypothesis, this suggests that gender composition
e↵ects are more salient in disadvantaged or underserved contexts.

Gender composition may a↵ect classroom learning productivity in two ways. First, if females
are less prone to misconduct than males, a higher female share may improve learning productiv-
ity by lowering the share of disruptive peers. Second, having more female classmates may lower
individual disruptive behavior by causing all students to be more tranquil and compliant (Cohen
and Strayer, 1996). We directly study whether a higher share of female peers a↵ects the quality
of the classroom learning environment by changing individual disruptive behavior, measured by
classroom misconduct-related (unexcused) absences. We also study the impact of gender com-
position on parent-approved class absences, which measure student engagement. We find that a
higher proportion of female classmates is associated with less disruptive behavior for boys and
4A negative e↵ect on humanities performance or participation could be due to substituting studying e↵ort away from humanities
and possibly toward STEM.
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higher engagement for females, which suggests an increase in overall classroom learning produc-
tivity. Using a mediation analysis, we quantify the role of disruptive behavior and engagement
in accounting for classroom gender composition e↵ects (Chung and Zou, 2020; Gong, Lu, and
Song, 2018, 2021). In particular, we find that the impact of female peers that may be transmit-
ted through improved classroom learning productivity (due to lower misconduct and disruption)
accounts for up to 8% of the total gender composition e↵ect on STEM performance. Students in
lower-quality schools and lower-income neighborhood schools experience the highest improve-
ments in their classroom learning productivity due to having more female peers in the classroom.
An improved classroom environment can explain up to 20% of the gender peer e↵ects on STEM-
related subject scores in disadvantaged contexts.

Our study moves beyond prior literature in three important ways. First, we are able to in-
vestigate gender composition e↵ects in smaller peer groups than previously considered. Much
of the related literature exploits across-cohort variation in demographics, including gender (Bi-
fulco, Fletcher, and Ross, 2011; Brenøe and Zölitz, 2020; Carrell and Hoekstra, 2010; Goulas,
Megalokonomou, and Zhang, 2022; Hoxby, 2000; Lavy, Paserman, and Schlosser, 2012; Lavy and
Schlosser, 2011; Mouganie and Wang, 2020). The caveat in previous studies is that cohort peers
may only serve as a rough approximation of actual student interactions (Xu, Zhang, and Zhou,
2020). Students may be more likely to interact intensively in a small peer group, such as that
of their classroom peers, rather than in the broader group of cohort peers (Chetty, Friedman,
Hilger, Saez, Schanzenbach, and Yagan, 2011; Duflo, Dupas, and Kremer, 2008; Feld and Zölitz,
2017; Gong, Lu, and Song, 2021; Hu, 2015; Megalokonomou and Zhang, 2022; Sacerdote, 2001;
Whitmore, 2005; Zimmerman, 2003; Zölitz and Feld, 2021).

Second, the broad coverage of our data allows us to study gender composition e↵ects in disad-
vantaged settings, since the role of female peers may be more pronounced among students who
have limited resources. To the best of our knowledge, this is the first paper that explicitly studies
gender peer composition e↵ects on disadvantaged students and discusses the implications. This
group is of particular interest, since the e�ciency of interventions may be larger in settings in
which there is lack of financial and family educational resources. For instance, Anelli and Peri
(2019) study the impact of being in a male-dominated environment on students’ study choice
in college using data from Milan; their analysis pertains to a group in Italy’s upper tail of the
income and educational distribution. Zölitz and Feld (2021) study the impact of gender composi-
tion across tutorial sections in one business school in the Netherlands. Again, their study sample
is rather a group at the upper tail of the income and educational distribution, since they focus on
university students in a selective institution. In contrast, our results are drawn from a broader
distribution of neighborhood income, and school quality, and cover a large and diverse set of
schools in the country. Gong, Lu, and Song (2021) examine gender composition e↵ects using a
more representative sample of middle schools in China, however there is no emphasis on the so-
cioeconomic profile of the schools or students, or explicit focus on disadvantaged groups. The
authors find that a higher proportion of female classmates improves females’ contemporaneous
test scores and noncognitive outcomes using the China Education Panel Survey (CEPS).5

5Although the CEPS collects rich information on students, a few restrictions apply due to the stratified sampling design (Gong,
Lu, and Song, 2018, 2021; Megalokonomou and Zhang, 2022). CEPS does not sample all classes within a school, but instead
it collects data from 2-3 classes within each school-cohort, and thus not all classes within each school-cohort are included in
Gong, Lu, and Song (2021). This may limit the variation in the proportion of females within school-cohorts, especially given
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Third, we study the e↵ects of high school gender composition on the choice of field of study at
the university level, i.e., STEM and non-STEM university degrees. This is among the first papers
that studies how high school peers influence postsecondary education choices and in particular,
the field of study chosen at the university level, which has important implications for students’
later occupational choices. Brenøe and Zölitz (2020) exploit across-cohort variation in the share
of females in high school math track and find that a higher share of female peers reduces the
likelihood for females to enroll in STEM university programs using administrative data from
Denmark. We exploit random variation in the share of female classmates in students’ general ed-
ucation classes and thus, examine whether the interest of untracked students—before they make
any specialization decision—shifts towards STEM. The general education classes are compulsory
for all students and better represent the “general population" compared with the more homoge-
neous track classes. Students usually self-select into tracks and this may limit the within-track
variation in the subject preparedness and personality traits of males and females. For instance,
females who select into the math track may be more willing to compete and discourage other fe-
males, while males who select into the math track may not be as disruptive as males in the general
population. Anelli and Peri (2019) show that high school gender composition has an e↵ect only
on males (but not on females’) choice of study at the university level using data from Italy. In
particular, they find that males attending high school classes with over 80 percent of male peers
are more likely to enroll in predominantly male college majors.6 We use a continuous measure
of female classmates instead and a more balanced sample in terms of gender and socioeconomic
characteristics.7

Forth, we contribute to the literature on the mechanisms of gender peer e↵ects on STEM per-
formance. Previous literature has focused on students’ perceived classroom environment, inter-
student and teacher-student relations, and teachers’ and students’ behaviors (Gong, Lu, and Song,
2021; Lavy and Schlosser, 2011; Schøne, von Simson, and Strøm, 2016). Such outcomes are self-
reported and inevitably subject to measurement error that may potentially correlate with the
variable of interest and could bias the estimates. We overcome this limitation by using student
attendance information from administrative sources. Excused and unexcused absences are veri-
fied and recorded by teachers. While prior studies have provided suggestive evidence of a mech-
anism of gender peer e↵ects (Anelli and Peri, 2019; Brenøe and Zölitz, 2020; Lavy and Schlosser,
2011), we quantify the relative importance of changes in individual disruptive behavior and en-
gagement in explaining gender composition e↵ects. Given the overall di↵erences in disruptive
behavior and engagement for students across socioeconomic backgrounds, we repeat this exer-
cise for disadvantaged and non-disadvantaged schools. Our findings on the mechanism of gender
composition e↵ects also contribute to our understanding of the direct relationship between peer

the large class size in middle schools in China. We contribute to the literature by exploiting primary-collected data combined
with administrative data on all classes of the sampled schools. This probably gives us larger variation in the share of female
classmates. Second, CEPS collects rich information on student attainment, but all outcomes are measured in the same grade. We
contribute by examining the impacts of current classroom gender composition, not only on contemporaneous outcomes, but also
on longer-term outcomes and expand our understanding on how classroom gender composition may a↵ect occupational sorting
and the gender pay gap.

6Anelli and Peri (2019) define as predominantly male college majors programs in Engineering, Economics, and Business. Brenøe
and Zölitz (2020) consider all STEM programs which also include programs in Science, Technology, and Mathematics. We define
as STEM programs all programs in Science, Technology, Engineering, and Mathematics. In robustness exercises, we also include
Health Sciences and Economics in the definition of STEM.

7In our sample, the share of male students in the classroom is at least 80% in only 10% of the classrooms.
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e↵ects and disruptive behaviors (Carrell and Hoekstra, 2010; Figlio, 2007; Lavy, Paserman, and
Schlosser, 2012; Lazear, 2001; Xu, Zhang, and Zhou, 2020).

More broadly, our paper contributes to a better understanding of the origins of the gender
gap in STEM performance and STEM choices. While we do not o↵er a universal explanation
for the gender composition e↵ect on STEM outcomes for males and females, we identify one
relevant channel and quantify its contribution to the total e↵ect. This study highlights the fact
that gender peer e↵ects operate partially by a↵ecting disruptive behavior and engagement—the
e↵ects of which, in turn, impact school and professional careers.

2 Institutional Framework

The educational system in Greece is highly centralized (OECD, 2018a). Students are assigned to
public schools through zoning based on the proximity of their residential address to schools.8 At
the beginning of high school (grade 10), students are quasi-randomly (alphabetically, based on
surname) assigned to physical classrooms in which they take all core courses (Goulas, Griselda,
and Megalokonomou, 2022, 2023; Lavy and Megalokonomou, 2023a,b).9 Students come from
di↵erent middle schools, and thus usually most of their grade 10 classmates are brand new. Stu-
dents are not allowed to switch classrooms and must remain in their assigned class for all grades
in high school. The alphabetical classroom assignment, together with some small fluctuations
in school enrollment from one year to the next, cause quasi-random fluctuations in classroom
gender composition which we exploit. Students remain in the same class for their courses and
extracurricular activities throughout all years of high school. In Section 5, we provide evidence
that student characteristics are randomly assigned to classrooms and that on average classroom
characteristics are very similar within school-cohorts. Teachers in each school are also randomly
assigned to classrooms to facilitate teachers’ schedules, while taking into account their subject
specialization.10 Teachers rotate between classrooms to teach courses in their specialization.

All grade 10 exams are school exams. School exams are designed by classroom teachers and
are requested to be of the same format and average di�culty, cover identical content, and test the
same skills. Usually teachers coordinate and design their exams together. The school principal
is responsible for ensuring that the teachers follow the Ministry of Educations grading guide-
lines for each subject when grading the school exams. The school principal receives the marked
exam papers for the school exams from each teacher within five days after the corresponding
exam. Then, the regulation requires the principal to read the marked exam papers, approve
the marks, write them in the school log, and enter them into the school computer (if available).
Through the physical process of reading the exam papers and documenting the marks, the prin-
cipal ensures they are following the grading guidelines as required by the regulation (Lavy and
892% of schools are public, and 93% of students in Greece attend public schools (Goulas and Megalokonomou, 2020). Families
are unable to enroll their children in a di↵erent public school than the one assigned, since they are required to submit proof of
their residential address and utility bills.

9The regulation regarding alphabetical classroom assignment is strictly enforced across all schools. See Government Gazette of
the Hellenic Republic 167 A/1566/1985. See also Education Ministry Bulletin of the Hellenic Republic 100749/�2/17-09-07.

10According to the law, if there are disagreements within the school board about teacher assignment to classrooms within a year,
the school authority and the Ministry of Education intervene. Extensive evidence of this quasi-random assignment of teachers
to classrooms in the same educational system can be found in Lavy and Megalokonomou (2023a), Lavy and Megalokonomou
(2023b), and Dinerstein, Megalokonomou, and Yannelis (2022).
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Megalokonomou, 2023a). We will also later use information on students’ GPA in grade 10. This is
derived as the average test score of several school exams that students take throughout the year.

Students take several compulsory general education subjects in each high school grade. They
submit their track preferences at the end of grade 10, and are assigned to a track at the beginning
of grade 11. This is students’ first instance of track specialization. The majority of students
remain in the same track in grade 12. Each student takes compulsory specialization-track courses
in grades 11 and 12. There are three specialization tracks—(1) Classics, (2) Science, and (3) Exact
Science—and students choose based on their desired field of study at the university level. There
is no minimum performance threshold for students to enroll in any track, and all schools o↵er
exactly three tracks. We identify two general education subjects as STEM-related in grades 11
and 12 (Mathematics, and Physics), and two subjects as humanities-related in grades 11 and 12
(Language and History).11 These subjects are compulsory for all students in both grades 11 and
12. Students take standardized national exams on those subjects (as well as other subjects) at
the end of the school year. Performance in those exams is the only determinant for university
admission. University admission is administered by the Ministry of Education.12 These are high-
stakes exams that are blindly graded by external assessors. We examine the classroom gender
composition e↵ects on the average standardized performance in STEM- and humanities-related
subjects in grades 11 and 12 as outcomes.

After students take the national exams in grade 12, they submit a list of their preferred tertiary
degree programs to the Ministry of Education (OECD, 2018a).13 A centralized system compares
average exam scores of students and assigns candidates to degree programs based on their pref-
erences and degree availability.

We consider two college-related outcomes: admission to a degree program in STEM and ad-
mission to a degree program in the humanities. We consider all degree programs o↵ered by
Mathematics, Science, Engineering, or Computer Science departments to be STEM degree pro-
grams.14 We consider degree programs in Languages, Literature, Philosophy, History, Religion,
or Art to be humanities degree programs. We then assign occupation wages to each college degree
based on the exact or closest correspondence between available occupations and college degrees.

3 Data

Our novel dataset combines information from various sources. We conducted primary data col-
lection by visiting and retrieving administrative data on 43,451 students across 2,517 classrooms
in 104 high schools.15 Our data collection was planned and executed in close collaboration with
theMinistry of Education and the local School Authorities. Prior to visiting the schools, we sought
11In grade 11, Mathematics consists of Algebra and Geometry.
12For more information on the national exams and the university admissions process, see Goulas, Megalokonomou, and Zhang
(2022); Goulas and Megalokonomou (2019); and Goulas and Megalokonomou (2020).

13By degree program we mean a department at a specific university. Each university department o↵ers exactly one bachelor’s
degree program.

14In a robustness exercise, we broaden the definition of STEM degrees to include programs in Health Sciences, such as Medicine
and Biology, and Economics and Business (Goulas, Griselda, and Megalokonomou, 2022).

15We exclude classrooms with five or fewer students (260 observations dropped) because these small classrooms are likely to be
atypical in a number of dimensions. We also exclude school cohorts in which students are of a single gender (268 observations),
because then there is no variation in our main variable of interest. We also drop school cohorts with only one classroom (487
observations), since our main identification comparison is between classrooms within school-cohorts.
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approval from the Ministry of Education and obtained ethics approvals from the Hellenic Data
Protection Authority and the Institute of Educational Policy. We also obtained consent from the
local school authorities and school principals. Our sample corresponds to roughly 10% of public
schools in Greece. Table B.1 compares the sampled schools with the population. Schools in our
sample are nationally representative with regard to several student characteristics—such as fe-
male share, average age, and share of students born in the 1st quarter of the birth year16—average
school performance in the university admission exams, and youth unemployment in the vicin-
ity of the school.17 The locations of the sampled schools are shown in Figure A.1. Schools in
our sample are distributed throughout the country and cover a diverse set of areas. Our sample
includes schools from the most and least deprived areas in Greece and schools that score at the
bottom and top of the distribution in the university admission exams. The map indicates that
there are schools in big cities as well as in smaller urban areas and islands.

Our data span eight cohorts that graduated between 2001-2 and 2008-09 and include tran-
script and attendance information for all high school grades (from 10th through 12th grade) and
all classes of the sampled schools. Each record contains a student identifier, a school and class-
room identifier, demographic information on the student (year of birth, gender, 1st quarter of the
birth year indicator), track enrollment, graduation status, and test scores for each student in each
subject and grade. Our student-grade-level attendance data separate misconduct and truancy-
related (unexcused) teacher-reported student class absences and parent-approved (excused) class
absences. A student’s total absences equal the sum of excused and unexcused absences. Excused
absences proxy engagement and are usually authorized by parents or guardians, often with a
note signed by a doctor or the parent for some short-term illness. They involve entire school
days. Unexcused absences indicate a student’s suspension from class and are initiated by subject
teachers (Goulas, Griselda, and Megalokonomou, 2023; Lavy and Megalokonomou, 2023a,b). We
also obtained university admissions information for each student from the Ministry of Education.
For each student, we have records on the postsecondary degree to which they were admitted. The
information we obtained on admission to tertiary education allows us to examine the impact of
female peers on longer-term outcomes.

We rank schools based on the average school-level 12th-grade national university admissions
exam scores across all years to construct a measure of school quality.18,19 We also obtained house-
hold income data (in 2009 in euros) at the postcode level from the Ministry of Finance for the
whole country and use this as a proxy for neighborhood in each school’s postcode. We use this in-
formation later to conduct heterogeneity exercises by postcode income and school quality (above
and below the median values).

We also obtain occupation-related earnings data from the Labor Force Survey and the National
Statistical Authority for 2003, and we map college occupations into annual earnings. This is a
16Students born in the 1st quarter of the birth year begin school before the age of six.
17Although we have a slightly smaller share of students enrolling into the classics track in grade 12 in our sample compared with
the school population. Youth unemployment is measured in 2003.

18The quality of school s is calculated as School Qualitys =
Ordinal Ranks�1

N�1 , where Ordinal Ranks is the ordinal rank of school s’s
mean national exam performance across cohorts. School quality ranges from zero to one, with one being the highest. N is the
number of schools in the sample.

19The school ranking remains very similar if instead of the across-all-years school-level 12th-grade national university admissions
exam scores, we use the year 2002 (first year in the data) to rank schools, and then we perform the analysis for all years except
2002.
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proxy for expected annual salary earnings from each occupation or a proxy for how lucrative
each occupation is.

Table 1 presents descriptive statistics of our sample at student level (Panel A), classroom level
(Panel B), and school level (Panel C).20 Roughly 56% of students in the average classroom are
female, with a SD of 0.148.21 On average, each school has four classrooms in grade 11, with
an average classroom size of 16 students.22 Figure 1 shows the distribution of the proportion
of female classmates in the data (histogram bars) and a simulated normal distribution with the
actual mean and SD (in dashes). The actual distribution of the share of female classmates closely
resembles a normal distribution.

4 Empirical Strategy

We estimate the impact of female classmates on academic performance and college degree choice
using the following linear specification separately for male and female students:

Y
g

i,c,s,t
= �

g
PropFemalePeers�i,c +X 0

i
�
g +W 0

�i,c�
g +�

g

s,t
+ ✏

g

i,c,s,t
(1)

where g 2 {Males,Females}. Y
g

i,c,s,t
denotes average subsequent performance and enrollment in

STEM and humanities for student i of gender g in cohort t in classroom c and school s. The
treatment variable of interest is PropFemalePeers�i,c, which represents the proportion of female
peers (excluding student i) in student i’s classroom in grade 11. Vector X 0

i
includes student-

level controls—such as prior GPA, age, born in the 1st quarter of the birth year indicator, track
enrollment intention23— and share of female classmates in the previous grade.24 W 0

�i,c includes
leave-out means of all student characteristics at the classroom level and classroom size.

We include school-cohort fixed e↵ects �s,t to control for potential school sorting and school-
cohort-specific unobservables. The basic idea is to compare the outcomes and study choices of
students who are exposed to the same school environment and have similar characteristics, ex-
cept for the fact that one classroom has a higher share of female students than the other in the
same school-cohort for idiosyncratic reasons. Standard errors are clustered at the classroom level,
which is the level of randomization, to allow for heteroskedasticity and serial correlation in the
outcomes of students in the same classroom.
20Table B.2 provides descriptive statistics by cohort.
21In the past, men were overrepresented in di↵erent levels of education, but this trend has been changing in recent decades. Since
the 1990s, in many countries around the world, females have started to become the dominant gender in terms of education
participation at various levels of education. In 2005, women represented 55% of the higher education student population in
the OECD area (OECD, 2018b). If these trends continue, in countries such as Austria, Canada, Iceland, Norway, and the United
Kingdom, there will be almost twice as many female students as males in higher education in 2025 (OECD, 2018b). In 2005,
62% of higher education degrees in Greece were awarded to females, while the OECD average was 57%. Other countries with
similar female shares are Canada, Finland, Ireland, Italy, Spain and New Zealand (OECD, 2018b). In Greece, we find that the
proportion of females who graduate from high schools and take the national exams–a prerequisite for university admissions–is
on average 57%. This is just 2 percentage points above the average OECD higher education student population.

22Table B.3 shows the distribution of classroom numbers in grade 11 by cohort.
23Students submit their desired 11th grade track choice enrollment at the end of grade 10, and thus prior to the realization of the
variable of interest.

24Classrooms that have a higher share of females also have a lower share of males. Because of the mechanical relationship between
the share of females and share of males within school-cohorts, it is not feasible to disentangle the e↵ect of having more females
from the e↵ect of having less males.
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Coe�cient �g captures the impact of classroom gender composition on student standardized
test scores and study choices of students of gender g , holding all other variables constant. We
transform raw test scores in each subject into z-scores to facilitate interpretation. Then, we aver-
age the standardized test scores across STEM and humanities-related subjects in each grade. The
main identifying assumption to obtain causal estimates for �

g in specification (1) is that there
are no omitted variables that are correlated with both classroom gender composition and the
outcomes of interest, and are not included in our extensive set of student- and peer-level sets of
controls. To assess the existence of such factors and thus the validity of our empirical strategy,
we conduct an extensive set of checks in Section 5.

5 Evidence of the Validity of the Identification Strategy

5.1 Source of Variation

Understanding how the observed classroom gender composition in 11th grade is formed is vital
to our estimation and analysis. Students are quasi-randomly assigned to classrooms following a
lexicographic order based on surnames in 10th grade, the initial year of high school. The ideal
experiment would require the treatment (proportion of female classmates) to be set at the grade
of randomization, i.e., grade 10; however, student or classroom level information on grade 9 is
unavailable, as students attended di↵erent middle schools, and thus we would not be able to
include any prior controls for test scores in that case. Thus, we set the treatment in grade 11 and
rely on the randomness of the initial classroom composition in 10th grade and small additional
idiosyncratic variation in the classroom composition due to very few reassignments across grades
which are unlikely to be systematic or distort classroom composition significantly.25,26 We discuss
those movements below.

The reason for the few reassignments between grades 10 and 11 is the following: Very few
students transfer into (on average, 1 student per school-cohort) or out (on average, fewer than
1 student per school-cohort) of the sampled schools between grades 10 and 11. This minimal
degree of mobility triggers a slightly larger (but still small) mobility, since schools need to follow
specific class size rules. For instance, assume a student transfers into a school one week after the
o�cial school starting date and their surname starts with a letter early in the alphabet. This stu-
dent will be assigned to classroom 1 due to the alphabetic assignment of students to classrooms
based on surname. This lexicographic assignment based on students’ surnames has to be satisfied
for all students at any point during the school year in a school-cohort.27 However, there are also
25We show that there is su�cient across-classroom variation within school-cohorts to obtain consistent estimates of the classroom
gender composition e↵ect. Limited variation in group characteristics may cause amplification bias (Angrist, 2014). We perform
a variance decomposition for the share of female classmates. Table B.4 shows that the within-school-cohort variation in the
share of female classmates accounts for 72% of the total variation. This variation comes from the ample within-school-cohort
variation in grade 10 (71% of total variation) and the di↵erence between grade 10 and grade 11 (87% of total variation).

26We obtain very similar results if we set the treatment at grade 10 and re-run our analysis (i.e., exploit random variation in the
share of female classmates in grade 10) instead of grade 11. In that case, we have no prior controls for test scores, but it may
not be very concerning given the across-classroom randomization. However, we prefer to set the treatment to grade 11 in our
baseline results to include a full set of controls.

27During our data collection, we had the opportunity to discuss the random assignment of students with the school principals. We
have kept notes from our discussion with the principal during every school visit. Our notes indicate that every school we visited
followed the law requiring alphabetical assignment to classrooms. During the data extraction process, privacy restrictions did
not allow us to request first and last names from the schools. However, schools shared student names with us in ten instances
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classroom size rules that need to be satisfied. After the incoming student is assigned to class-
room 1, the size of classroom 1 has to be readjusted by dropping one student. Then, the student
whose surname is alphabetically ranked as the last in classroom 1 must move to classroom 2 to
satisfy the class size rules. This will potentially lead to a further readjustment, since the student
whose surname is alphabetically ranked as the last in classroom 2 must move to classroom 3.
This adjustment may be carried over to all classrooms until the highest classroom number has
a new student enrolled. We checked whether this institutional feature is accommodated in the
data. Figure A.2 shows that in 80% of the cases, there is no student changing classroom between
grades 10 and 11, and thus the proportion of females in grade 10 is identical to the proportion
of females in grade 11.28 Also, in the majority of cases in which a student changed classrooms
between grades 10 and 11 in the sample, the student was moved to the adjacent classroom, which
reassures us that the institutional features are satisfied. A limitation of our data is that we are
unable to follow students across schools to check at which point these changes occur or follow
students across schools.

In Subsections 5.2, and 5.3 we provide extensive evidence of the randomness of the variable of
interest. In Subsection 5.4 we show that any movements between grades 10 and 11 are small and
orthogonal to student or classroom characteristics and that the classroom assignment of students
in grade 10 is also random.

5.2 Randomness of Class Gender Composition

The identification strategy exploits the classroom-by-classroom variation of female classmates
share within school-grade. To verify that the variation in the share of female classmates is as
good as random and uncorrelated with individual characteristics, we perform the following tests.

First, we show that the residuals of the share of female classmates after controlling for school-
cohort fixed e↵ects are normally distributed. In particular, we regress the share of female class-
mates on school-cohort fixed e↵ects and obtain the predicted residuals (Anelli and Peri, 2019).
Figure 2, Panel (A) shows the kernel density of the residuals of the classroom-level female peers
proportion obtained from the data and a simulated normal distribution with the same standard
deviation (0.148) and number of unique classrooms (2,517) as the actual data. Clearly, the empir-
ical residual distribution closely matches with the simulated normal distribution. Figure 2, Panel
(B) shows the standardized normal probability plot. The 45-degree line (black) represents the
benchmark where the empirical female peers share residuals follow a normal distribution, while
the scatter points (in gray) show the extent to which the residuals of the actual female classmates
share depart from the normal distribution. We observe that there is no significant deviation of
the residuals from the hypothetical normality, including the tails of the distribution. Therefore,
this result supports that the variation in the female classmates share in 11th grade—driven by

under a separate data-sharing agreement. We have gone back to the data from these ten schools to investigate whether students
are assigned alphabetically to classrooms in grade 11. Our investigation of these ten schools and eight cohorts (between 2001-
02 and 2008-09) revealed that 99.85% of students were assigned to classrooms alphabetically. We were able to look closely into
the limited cases of misassigned students. Those cases relate to di↵erences in the order of the letters between the Greek and
Latin alphabets. We do not have reason to believe that this kind of nuance is of any consequence for our empirical investigation
of the impact of female classmates on students’ later outcomes.

28Our results remain very similar if we only keep students in school-cohorts in which there was no across-classroom change. In
that case, we do not include controls for the share of female classmates in grade 10, since it would be identical to that in grade
11.

12



the randomized classroom assignment in 10th grade—is as good as random, after controlling for
school-cohort fixed e↵ects.

Second, our key identifying assumption would be violated if, for instance, female students
could select into classrooms based on the expectation of a higher or lower proportion of female
classmates. If the classroom assignment is truly random conditional on school-cohort factors, we
should find a weak association between students’ observed characteristics and the share of fe-
male peers in the classroom. Table 2 presents the results of the balancing test in which we regress
the proportion of female students in grade 11 (our variable of interest) on each student’s charac-
teristics, or prior test scores—such as gender, age, born in 1st quarter of birth year indicator, or
10th-grade GPA—conditional on school-cohort fixed e↵ects. The practically zero and statistically
insignificant estimate on all characteristics and prior test scores, as well as the small F-statistic on
the joint significance of all characteristics and prior test scores, suggests that students’ character-
istics and student prior test scores are not associated with the gender classroom composition.29

Table B.6 shows estimated e↵ects for a similar exercise conducted for males (Panel A) and females
(Panel B), separately. Estimated e↵ects are again practically zero and insignificant. This is very
reassuring given that the main specification is estimated separately by gender.

5.3 Monte Carlo Simulation

We also conduct Monte Carlo simulations to examine whether the within-school-cohort devia-
tion in the proportion of female classmates in grade 11 is idiosyncratic. We do so by examining
whether the observed within-school-cohort variation in the proportion of female peers resembles
the variation that would stem from a simulation of a randomly generated gender composition.
For each school-cohort, we randomly generate the gender of each student using a binomial distri-
bution with p equal to the actual proportion of females in the school-cohort.30 We then compute
the within-school-cohort standard deviation of the proportion of female peers across classrooms.
We repeat this simulation process 1,000 times to obtain a 95% empirical confidence interval of
the within-school-cohort standard deviation for each school-cohort. Table 3 summarizes the re-
sults from 1,000 simulations. We find that 87%, 91%, and 96% of the school-cohorts with the
observed standard deviations in the proportion of female peers fall within the corresponding
90%, 95%, and 99% empirical confidence intervals, respectively. This provides evidence that the
actual classroom assignment is consistent with a random process.31 We also visually show one
29We also check whether the predetermined characteristics (gender, age, and born in 1st quarter of birth year indicator) of stu-
dents at classroom level and the female drop out share are balanced in all classrooms within a school-cohort. We regress each
classroom-level mean characteristic on classroom number indicators 1, 2, 3, 5, 6, and 7 (with classroom number 4 being the
omitted group as a point of comparison), conditional on school-cohort fixed e↵ects. Table B.5 shows that only 3 out of 24
coe�cients are statistically significant. The p-values of F-statistics for the joint significance of the regressors suggest balanced
classroom-level characteristics within school-cohorts. We conduct similar exercises in which we exclude a di↵erent classroom
number other than 4, and the pattern remains the same. Results are available upon request.

30Mouganie and Wang (2020) and Lavy and Schlosser (2011) conduct similar exercises in which they simulate cohort-by-cohort
variation of the proportion of female peers within each school. We simulate classroom-by-classroom variation of the proportion
of female peers within school-cohort.

31Our results are in line with those of Mouganie and Wang (2020), in which 93% of the observed standard deviations are located
within 95% empirical confidence intervals; and Lavy and Schlosser (2011), in which 89% of the observed standard deviations
fall within 90% empirical confidence intervals. In Figure A.3, we visualize the simulation results of 95% empirical confidence
intervals of the within school-cohort standard deviations in the proportion of female peers across classrooms. Due to space con-
straints, we randomly select 50 out of 728 school-cohorts. Figure A.3 shows that around 90% of the actual standard deviations
fall within their corresponding confidence intervals. Visualized results for other school-cohorts and 90% and 99% simulated
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simulation in Figure 3. Clearly, the actual within school-cohort variation in the share of female
peers is meaningfully di↵erent from the simulated variation.

5.4 Other Checks for Randomness

In this subsection, we show that a) the few cross-classroom transfers between grade 10 and 11
are uncorrelated with students’ characteristics or prior test scores and b) the grade 10 classroom
assignment of students is indeed random.32

We start by examining whether the di↵erence in the proportion of females from grade 10 to
11 and the likelihood of transfer is associated with student characteristics. In Table B.7, column
1, we regress the change in the proportion of female classmates from grade 10 to 11 on students’
characteristics and students’ prior GPA. All estimates are practically zero and statistically in-
significant. This finding suggests that the change in the share of female classmates from 10th

to 11th grade is independent from student characteristics and prior performance. In columns 2
and 3, we use as outcome variables a binary indicator that takes the value of 1 if a student was
transferred to another class in grade 11 and 0 otherwise, and the 10th grade proportion of female
classmates, respectively. We do not find any association between students’ characteristics and the
reported outcomes. This implies that the class transfer status and the initial gender class com-
position in 10th grade is not associated with students’ characteristics or prior test scores. Small
F-statistics values also provide evidence for the joint insignificance of the regressors.

Lastly, we perform some additional backward verification exercises of the randomness of gen-
der composition in 11th-grade classrooms. To do so, we examine the randomness of the 10th-grade
proportion of females and the change in the proportion of females between grades 10th and 11th.
Figure A.4 presents the histogram of the share of females in grade 10 (Panel A) and evidence of
residuals’ normality of the 10th-grade share of female classmates net of the school-cohort fixed
e↵ects (Panels B and C). These exercises are similar in spirit to Figures 1 and 2, but are pro-
duced now for grade 10 instead of grade 11. The simulation exercise, which is summarized in
Figure A.5 and Table B.8, also provides evidence that the variation in the 10th-grade proportion
of females and the di↵erence between the 10th- and 11th-grade proportions of females follow an
idiosyncratic pattern.33 Taken together, the variation in the proportion of female classmates in
11th grade is indeed random.

confidence intervals are available upon request.
32Only a few students in the sample drop out from 10th to 11th grade (around 1.5% of the full sample). We do not include
these observations of dropouts in our estimation sample since we do not have information on their outcomes. To examine
whether students may be more or less likely to drop out as a response to the share of female classmates, we run the following
specification. We report the estimate and standard error from a regression that has the likelihood of observing a dropout as
the dependent variable and the proportion of female classmates in 10th grade as the independent variable, conditional on
school-cohort fixed e↵ects. The estimated coe�cient is equal to -0.011 and the standard error is equal to 0.009. Column 4
of Table B.5 also suggests that the female share of dropouts is well balanced across classrooms. Taken together, there is little
evidence that drop outs would significantly contaminate the randomness of the 11th-grade proportion of females originated
from the 10th-grade random assignment.

33These exercises are similar in spirit to Figure 3 and Table 3.

14



6 Results

We first present the baseline results of gender classroom composition by gender for the full sam-
ple. We assess the robustness of these results and test for non-linearities. Then, we conduct
exercises in which we examine whether the baseline results change when we consider students
in disadvantaged schools and non-disadvantaged schools, which we define based on postcode
household income and school quality.

6.1 Main Results

Table 4 shows the main estimated e↵ects of classroom gender composition in 11th grade on av-
erage test scores in STEM- and humanities-related subjects in 11th grade (Panel A), 12th grade
(Panel B), and university degree major choices (Panel C). Columns 1-2 and 4-5 report the results
for males and females, respectively. All results account for student-level controls and school-
cohort fixed e↵ects. Results in columns 2 and 5 additionally include classroom-level controls. We
also present the Means of Y for each gender below standard errors.

We find that being assigned to a classroom that has a higher proportion of female classmates
increases performance at the end of 11th (Panel A) and 12th grades (Panel B) in STEM subjects
for both males and females. Same grade (grade 11) e↵ects are larger than subsequent (grade
12) e↵ects, especially for females. Our results show that a higher share of female classmates
increase female students’ performance more than that of males. In particular, a 10-percentage-
point increase in the share of female peers in the classroom increases females’ test scores in STEM
subjects by 0.026 of a SD in grade 11, while the e↵ect on males’ test scores is half as large—i.e.,
0.013 of a SD.34

We assess the widely accepted claim that human capital investment and knowledge accumu-
lation for females in STEM subjects is enhanced in environments with a higher share of females
(Lavy and Schlosser, 2011). Thus, we look at the e↵ects of the treatment variable on STEM and
humanities subjects, separately. Performance in humanities subjects may rely less on classroom-
based instruction than performance in STEM subjects. Previous studies find that interventions
that target classroom learning are more e↵ective for improving performance in math than in
reading (Abdulkadiro⁄lu, Angrist, Dynarski, Kane, and Pathak, 2011; Angrist, Pathak, and Wal-
ters, 2013; Behrman, Fan, Wei, Zhang, and Zhang, 2020; Black, Doolittle, Zhu, Unterman, and
Grossman, 2008; Dobbie and Fryer Jr, 2013). Additionally, classroom-based instruction has been
found to be more e↵ective in improving calculation abilities and boosting performance in math
rather than language skills and performance in reading (Hanushek and Rivkin, 2010; Lavy and
Megalokonomou, 2023a; Papay and Kraft, 2015).

We investigate the impact of classroom gender composition on average performance in hu-
manities subjects in both Panels A and B of Table 4. We mostly find negative, smaller, and in-
significant e↵ects of the share of female peers in the classroom on end of the same grade (grade
11) or subsequent (grade 12) performance in humanities subjects. In fact, the estimated e↵ects
on females’ performance in grade 12 are negative and significant (coe�cient=-0.074, s.e.= 0.036).
34Results using a broader definition of STEM degrees that includes Health Sciences and Economics/Business are shown in Ta-
ble B.10 and are very similar to when we use the baseline definition of STEM degrees.
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A negative e↵ect on humanities performance could be due to substituting studying e↵ort away
from humanities and toward STEM.35,36

We then find substantial longer-term e↵ects of classroom gender composition on university
degree choice (Panel C in Table 4). Females assigned to classrooms with more females in grade 11
are more likely to choose a STEM college degree 2 years later. In particular, a 10-percentage-point
increase in the proportion of female peers increases females’ likelihood of enrolling in STEM
degrees by 0.43 of a percentage point. The estimated e↵ect on humanities degrees is negative and
statistically significant, indicating that females switch away from humanities degrees and move
toward STEM degrees. The estimated e↵ect of the share of female classmates on males’ degree
choices is indistinguishable from zero, which suggests a decrease in the gender gap in STEM
study.37

Our results are in line with those of Schneeweis and Zweimüller (2012) and Schøne, von Sim-
son, and Strøm (2016), who find that having more female peers in lower secondary school in-
creases females’ likelihood of studying STEM in upper secondary school. Our findings also point
to the same direction as that of Gong, Lu, and Song (2021), who find that a 10-percentage-point
increase in the proportion of female classmates in middle school increases a student’s end of year
test score by around 10% of a SD. Contrary to our findings, Anelli and Peri (2019) use data from
high schools in Milan and find that a higher share of females in high school has a small and
insignificant e↵ect on females’ probability of choosing male-dominated majors. They also find
positive e↵ects on males’ test scores from being assigned to a very male-dominated environment,
i.e., at least 80 percent of male peers. Opposite to our findings, Zölitz and Feld (2021) lever-
age cross-cohort variation in a Business School in the Netherlands and find that a 10 percentage
point increase in the share of female tutorial peers at the university reduces females’ probability
of choosing a male-dominated major by 0.8 percentage points and increases their probability of
choosing a female-dominated major by 1 percentage point.

6.2 Placebo Exercise

To test for the validity of the research design, we estimate the model based on a sample with
placebo treatment. To do so, we reshu✏e students within the same school-cohort so that stu-
35We also examine the e↵ects of classroom gender composition on test scores in each STEM and humanities subject. Table B.11
shows consistent classroom composition e↵ects across STEM and humanities individual subjects.

36The data structure so far is such that we consider one row per student and we calculate the average performance across STEM
and non-STEM subjects. A di↵erent estimation approach would be to explicitly account for di↵erences in each STEM or hu-
manities subject and stack the data for the various subjects after converting the raw test scores into z-scores by subject, school,
and year. Table B.13 presents the estimated results while using this alternative specification. We now have multiple rows per
student—one row for each STEM subject (Mathematics, Physics) in each grade and one row for each non-STEM subject (Lan-
guage, History) in each grade. This stacked panel data permits regression analysis with controls for subject-by-school-by-cohort
fixed e↵ects. A similar pattern is observed as in Table 4, in which a higher share of female classmates improves student test
scores in STEM subjects in both grades 11 and 12, especially those of females.

37In Table B.9 we present the estimated e↵ects of the share of female classmates in grade 10 on test scores in grade 10. We present
these results for the curious reader, since this is the only exam in the whole high school career of students that is determined
before students progress to grade 11. Although, we made a decision to set the treatment in grade 11 in order to include a full
set of student controls, we still provide evidence that the immediate gender composition e↵ect on grade 10 test scores is mostly
in line with the remaining e↵ects. Females who are initially assigned to a higher share of female classmates in grade 10 end
up performing significantly better in STEM subjects in exams at the end of grade 10. The e↵ects for females’ performance in
humanities subjects females are small and imprecise. The same applies for male students. The only student-level controls here
are students’ age and an indicator for whether a student is born in the 1st semester. We control for this in the main specification
since we include student GPA in grade 10 as a control in the main analysis.
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dents are placed in di↵erent classrooms, in which they were never actually placed in reality. We
then compute the updated gender composition as a placebo female classmates share. Similar to
Goulas, Megalokonomou, and Zhang (2022), we conduct an exercise in which we replace the
share of female classmates in the main specification with the placebo share of female classmates.
The placebo estimates are reported in Table 4 in columns 3 and 6 and are practically zero and
statistically insignificant. This suggests that our baseline classroom gender composition e↵ects
do not reflect spurious correlation between the proportion of female classmates and confounding
factors at the school-cohort level.

6.3 Robustness Checks

6.3.1 Reshu✏ing Exercise

Our identification of classroom gender composition e↵ects relies on the orthogonality between
the share of female classmates and student characteristics within school-cohorts. To examine
whether the baseline results are driven by some schools that may not follow the random assign-
ment, we create random restricted samples by iteratively dropping schools from two random
draws of the pool of sampled postcodes and re-estimate the e↵ects of classroom gender composi-
tion (Gong, Lu, and Song, 2018, 2021).38 We estimate a total of 3,403 regressions for each outcome
variable and plot the distributions of the estimates in Figure A.6. We find that all distributions are
concentrated around the baseline estimates, which suggests that the baseline classroom gender
composition e↵ects are not driven by specific schools. These findings suggest that our baseline
results are unlikely to be driven by schools that do not follow the random classroom assignment.

6.3.2 Spillover E↵ects from Female Peers in Other Classrooms within School-cohorts

We further examine the robustness of our results to spillover e↵ects from females in other class-
rooms. The proportion of female peers in one’s classroom may be mechanically and negatively
correlated with the proportion of females in other classrooms in the same school-cohort. In Ta-
ble B.14 we present the baseline estimates when we include controls for the share of female peers
in all other classrooms within school-cohorts in the specification. These estimates (columns 3-4)
are very similar to those obtained in the baseline results (columns 1-2), suggesting that our results
are not driven by female share spillovers from other classrooms.

6.3.3 Spillover E↵ects from Female Peers’ Ability

Another concern is that females outperform males and thus, the e↵ects of a higher share of fe-
male classmates may reflect females’ higher academic performance (Whitmore, 2005). To account
for gender di↵erences in ability, we include controls for each student’s prior test scores and the
average classroom level prior achievement in the baseline specification. To further mitigate this
concern, in Table B.14 we also include controls for the average prior test scores (GPA 10) of each
student’s female classmates. Columns 5-6 in Table B.14 show that our estimates of classroom
gender composition are very similar to the baseline estimates in columns 1 and 2.
38We sampled schools from a total of 83 postcodes and dropped two postcodes each time and re-estimated the baseline specifi-
cation.
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6.4 Nonlinear E↵ects

We use two approaches to investigate the nonlinear e↵ects of the proportion of female peers on
student outcomes. In the first, we replace the share of female classmates in the main specification
with indicators for four quantiles of the share of female classmates. We construct those four quan-
tiles based on the overall distribution of the share of female classmates in the whole sample.39

Table B.15 presents the estimated nonlinear classroom gender composition e↵ects. The e↵ect
associated with the first quantile of the proportion of female classmates is the benchmark and
thus omitted from the specification. We find substantial classroom gender composition e↵ects
on STEM performance when the proportion of female classmates is 65% or higher (Quantile 4).
Our results corroborate the findings of Hoxby (2000) and Goulas, Megalokonomou, and Zhang
(2022), who document larger female peer e↵ects when the proportion of female peers exceeds
66% and 58%, respectively.

In the second approach, we follow Anelli and Peri (2019) and iteratively estimate classroom
gender composition e↵ects when the proportion of female classmates exceeds a cuto↵ that ranges
between 50% and 90% (in increments of 5 percentage points). This procedure allows us to iden-
tify the proportion of female classmates that maximizes classroom gender composition e↵ects.
Figures 4 and 5 show the results for males and females, respectively. We find that the classroom
gender composition e↵ect on females’ STEM performance peaks when the proportion of female
classmates is in the range of 80%-85% (Panels A and C in Figure 5). The likelihood of enrolling
into a STEM study for females at the university level increases monotonically when the propor-
tion of female classmates increases above 70% (Panel E in Figure 5). At the same time, females’
test scores in humanities and their likelihood of enrolling into degrees in humanities at the uni-
versity level decrease monotonically when the proportion of female classmates increases above
75% (Panels B, D, and F in Figure 5). For males, classroom gender composition e↵ects on test
scores and enrollments in STEM or humanities do not become indistinguishable from zero at
almost any point of the proportion of female classmates distribution.

6.5 Heterogeneous E↵ects

6.5.1 By Household Income and School Quality

In this section, we investigate heterogeneous classroom gender composition e↵ects by neighbor-
hood income and school quality. Presence of resources for students may be an important factor for
the e↵ectiveness of educational interventions. In disadvantaged environments in which there is a
lack of educational, financial, and other resources, targeted interventions may be more e↵ective,
39Table B.12 shows the allocation of the share of female classmates across quantiles by cohort. Each classroom has a unique share
of female classmates that falls in a unique quantile. However, schools usually have several classrooms within each cohort, and
each classroommay be assigned to a di↵erent quantile. As we can notice in column (4), around half of the schools in each cohort
have a share of female classmates that fall in three quantiles. Overall, more than 90% of the sampled schools have a share of
females that falls in at least two quantiles in each cohort (column 7). We note that we obtained access to primary collected data
from 104 schools, but not all of the schools appear in all years. The reason behind this is that some schools opened later than
2002 and some schools stopped operating before 2009. In 3 cases, the schools’ computer labs together with all computers were
destroyed by a fire or another disaster and the school data were all lost. For these schools, we digitized student records from
books for early years and merged with the electronic version of the data for the later years. An example of a student record is
shown in Figure A.7. For 6 additional schools, student records were kept in a book format for a few years. Our baseline results
remain una↵ected if we only use schools that remain in the sample for the whole sample period.
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since students may not already be overloaded with information and resources.40 School quality
is also associated with availability of school resources, teacher quality, and overall learning envi-
ronment (Landaud, Ly, and Maurin, 2020).41 We stratify the sampled schools based on whether
schools are located in neighborhoods above or below the median neighborhood household in-
come, as well as whether schools are above or below the median school quality. We measure
school quality based on the school’s ordinal rank, which is computed based on the school-level
average performance in standardized exams across cohorts 2002-2009.

Table 5 presents the estimated e↵ects for those di↵erent subgroups by gender. In columns
1-2, 3-4, 5-6, and 7-8 we present the estimates of the gender classroom composition for students
in schools below the median income, above the median income, below the median quality, and
above the median quality, respectively. Overall, the estimates for the female classroom share are
significantly positive and larger among students residing in neighborhoods with lower average
household income, and in schools with lower quality. This indicates that students attending low
SES schools are more a↵ected by school peers. For instance, the estimated gender composition ef-
fect on the choice to enroll in a STEM university degree for females in low income neighborhoods
is 0.045 (s.e.=0.023), while for females in high income neighborhoods it is 0.003 (s.e.=0.034). The
same variable’s coe�cient for females in low quality schools is 0.051 (s.e.=0.024), while for fe-
males in high quality schools the e↵ect is -0.003 (s.e.=0.030). The estimated e↵ects for females
who reside in rich neighborhoods and attend high-quality schools are much smaller in magni-
tude, and are statistically insignificant in most of the cases. We also find that for males any pos-
itive e↵ects are mainly driven by males in low household income schools and below the median
school quality. The implications of these results seem clear: Students’ educational outcomes are
more responsive to peer interactions and collaborative learning when there is a potential shortage
of financial support from the family for children’s education and public educational resources.
This is an important finding and contributes to the literature about the e↵ectiveness of educa-
tion policies in settings with di↵erent levels of resources and socioeconomic backgrounds. This
result is also in line with the literature on class size, which finds that the benefits of reducing the
class size are much larger for black students and free lunch students (Krueger, 1999) or for low
socioeconomic background students (Kara, Tonin, and Vlassopoulos, 2021).

6.5.2 By Prior Performance

We also examine heterogeneous e↵ects by students’ prior performance. We segment the sample
to quartiles of student’s prior performance in grade 10 and then estimate gender peer e↵ects by
using the baseline specification (1). Figure A.8 shows the estimated e↵ects and the corresponding
90% confidence intervals for males and females with prior performance at each quartile of the
distribution. Panel A in Figure A.8 shows that a higher share of female classmates improves all
students’ STEM performance, with the e↵ects being larger for female students. As we can see,
the treatment line for females is shifted higher up compared with males, indicating that e↵ects
are more pronounced for females across the whole distribution of prior performances compared
40For instance, in contemporaneous work we find large benefits for female students who are randomly assigned to a female
(compared with male) peer role model, and these e↵ects are driven by schools in the bottom of the income distribution (Goulas,
Gunawardena, and Megalokonomou, 2023).

41School quality is positively correlated with neighborhood income (⇢=0.328; p-value<0.01).

19



with males. E↵ects are pointing to the same direction in Panels B and C, but with a less obvious
heterogeneity by prior performance.

7 Identifying the Mechanisms

In this section, we explore the potential mechanisms through which gender peer e↵ects operate.
In particular, we focus on how students’ absenteeism behaviors may change when they are ex-
posed to more female peers in the classrooms and how students’ outcomes vary in response to
changes in absenteeism behaviors induced by the random variation of female peers share.

7.1 Association Between Female Classmates and Absenteeism Behavior

Studies on peer e↵ects have shed light on how female peers could a↵ect students’ outcomes. For
example, Lavy and Schlosser (2011) and Gong, Lu, and Song (2021) suggest that a higher pro-
portion of female peers in the classroom improves students’ perceived classroom environment,
inter-student relationships, teacher-student relations, and students’ and teachers’ self-assessed
behaviors, which drives the positive e↵ect of female peers on students’ achievement. However,
those studies rely on self-reported data on attendance and absences, and are subject to measure-
ment error that might be correlated with the proportion of females. For example, a classroom
with more female students may report more leniently on average with regard to the classroom
environment, own behaviors, and teachers’ behaviors, which might bias the estimates.

We use attendance records obtained from schools’ archives that measure disruption and
engagement using misconduct-related (unexcused) teacher-reported and parent-approved (ex-
cused) student class absences instead of self-reported measures. Some benefits of using more ob-
jective measures of student attendance to measure disruption and engagement are that—unlike
survey or questionnaire data—they (1) include every student, (2) o↵er measurement variation be-
yond that of Likert scales, (3) do not rely on self-reporting, and (4) reflect the disruptive behavior
or engagement of the specific student they correspond to, and not just an assessment of those
behaviors by parents or guardians.

We examine two novel mediating factors—excused and unexcused absences—through which
the proportion of female peers could a↵ect students’ academic performance outcomes. The sum
of excused and unexcused absences is the total hours of absence a student receives during the
school year. Excused absence is an idiosyncratic absence pattern of students, which is recorded
by teachers when there is parental consent for absence. Unexcused absence refer to unauthorized
absence or classroom disruption, which is recorded when students are expelled from class by
teachers because of misconduct. Aggressive and antisocial behaviors are associated with lower
empathy, and boys tend to score lower on measures of empathy than girls (Cohen and Strayer,
1996; Keenan and Shaw, 1997). Our hypothesis is that students randomly assigned to a higher
share of female classmates may reduce their disruptive behavior, which may be reflected in fewer
unexcused absences, and create amore conducive learning environment that couldmotivatemore
students to attend classes, which would trigger a drop in excused absences.

To test this hypothesis and examine the proposed mechanisms, we investigate whether a
higher female classmates share a↵ects students’ excused absences and unexcused absences in
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11th and 12th grades, respectively.42 Table 6 shows the estimated e↵ects for specification (1), in
which we replace the outcome variable with the di↵erent types of student absences (total, ex-
cused, and unexcused). Indeed, we find that male students who are assigned to classrooms with a
higher share of females tend to reduce their unexcused absenteeism behavior persistently in both
11th and 12th grades.

The estimated e↵ect of classroom gender composition on males’ unexcused absences is -2.138
(s.e.= 1.219) in grade 11 and -2.887 (s.e.=1.027) in grade 12. This is a considerable e↵ect given
that the mean unexcused absences per boy for the whole school year is 30 and 35 hours in grade
11 and 12, respectively. The implication is that a higher share of female classmates is associated
with lower classroom disruption in the same and the subsequent year. This conducive learning
environment tends to motivate more females to attend classes, which is reflected in the decrease
in females’ average excused and total absences. Indeed, females reduce their total absences by
4.558 hours (s.e.= 2.157) and 3.295 hours (s.e.=1.965) in grades 11 and 12, respectively (column
4 of Panels A and B in Table 6). Overall, a 10 percentage point increase in the female classmates
share increases test scores in STEM subjects by 2.6% of a SD for females and improves their
engagement, class attendance, and instruction time by half of a school hour. The same increase
in the share of female classmates increases males’ test scores in STEM by 1.3% of a SD, and
reduces males’ expulsion and disruption by 0.21 school hours, which improves the classroom
environment and increases their instruction time.43

In the previous section, we found evidence that estimated gender composition e↵ects are more
pronounced for students who reside in relatively poor neighborhoods (with neighborhood income
below the median of our study sample) and attend low-quality schools (with percentile achieve-
ment ranks below the median of our study sample). We examine whether the channel of the
more conducive learning environment in the presence of more females holds in disadvantaged
settings. There is evidence that there is greater di�culty to attract and retain quality teachers
in low-income schools possibly due to students’ higher propensity to disrupt the class (McKee,
Sims, and Rivkin, 2015). Thus, intuitively, the presence of females in disadvantaged schools may
improve the learning environment substantially.

Tables B.17 and B.18 report estimated gender composition e↵ects by neighborhood income
and school quality. These tables show that males from poor neighborhoods (Table B.17) or low-
quality schools (Table B.18) tend to decrease their unexcused absences significantly (Column
9), while females in those classrooms tend to reduce their excused absences (Column 6), when
there is an increase in the share of female classmates. The estimated e↵ect of a higher share
42A survey of 771 high school students that we conducted in 2022 suggests that unexcused absences are indeed perceived by
the students as a penalty for student disruptive behavior in the classroom. These 771 students come from high schools in
our sample. A relevant item in the student questionnaire is the following “Have you witnessed hourly unexcused absences
given as a penalty to disruptive students?". Figure A.9, Panel A, shows that 89.37% of high school students in the sample have
seen disruptive students receiving unexcused absences as a penalty for their behavior in the classroom. Another item in the
questionnaire (“In which way can a student in your classroom behave and receive unexcused absences as a penalty?") provides
the reason why students receive unexcused absences. Figure A.9, Panel B, shows that most students have seen students making
noise and disrupting others’ attention as the most frequent reasons to receive an unexcused absence. This survey data provides
additional reassurance that unexcused absences are used as a penalty for disruptive behavior in the classroom.

43Not all schools in the sample gave us access to their student attendance data. To address potential sample attrition bias, we
regress an attrition indicator (which takes the value of 1 if data on absences are missing and 0 otherwise) on the proportion of
female peers and school-cohort fixed e↵ects. Table B.16 shows that all estimated e↵ects are close to 0 and are also statistically
insignificant, which suggests that the estimated e↵ects in the mechanism section are not driven by sample attrition.
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of females on males’ unexcused absences in low income neighborhoods is -4.286 (s.e.= 1.644)
in grade 11 and -4.203 (s.e.=1.366) in grade 12. The e↵ects are very small, almost zero, for
males in high income neighborhoods (column 11). These estimated gender composition e↵ects
are almost double in magnitude compared with the ones in Table 6. The related estimated e↵ects
in Table B.18 are also larger than the full sample e↵ects (-2.826 with s.e.= 1.699 in grade 11 and
-4.150 with s.e.=1.405 in grade 12). This probably also explains why disadvantaged students—
those who attend low-quality schools or reside in low-income neighborhoods—experience the
highest improvements in their STEM outcomes from a higher share of female classmates, as we
see in Table 5. A higher share of female classmates in disadvantaged settings significantly reduces
classroom disruption, increases instructional time for students, and improves classroom learning
productivity, providing additional evidence that education interventions may be more e↵ective
in settings with lower resources.

Taken together, a higher share of female peers reduces students’ misconduct and motivates
class attendance, which creates a conducive classroom learning environment that facilitates stu-
dents’ interaction and benefits students’ academic achievement, especially in STEM. This im-
proved learning environment due to students’ behavioral changes could foster a collaborative
learning atmosphere between genders and generate a positive impact on students’ academic per-
formance. This mechanism is even more pronounced and e↵ective in low-quality schools and
low-income neighborhoods.

7.2 Association Between Outcomes and Absenteeism Behavior

We study whether absenteeism behavior is a mediating factor through which a higher share of
female peers improves students’ outcomes by including controls for the absenteeism variables in
the main specification (1) and examining whether the estimated e↵ects change. The overall peer
e↵ects can be divided into a direct e↵ect @Y

@Fem. Peer
and an indirect e↵ect @Y

@Absenteeism
⇥ @Absenteeism

@Fem. Peer
.

For absenteeism to be a plausible channel that explains some of the positive e↵ects of female peer
e↵ects, the second term on the RHS of equation (2), @Y
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In Appendix Table B.19, we examine the sensitivity of the baseline e↵ects to the inclusion of the
absenteeism variables (i.e., controls for excused and unexcused absences) in the main specifica-
tion. We focus on STEM test scores in grades 11 and 12 (Panels A and B), and STEM university
major choice (Panel C). Columns 1 and 4 reproduce the baseline estimates. Columns 2 and 5 re-
port estimates from the same specification, but from a reduced sample, since that not all schools
gave us access to the student absenteeism data. In columns 3 and 6, we use the reduced sample,
and we also include controls for the absenteeism channel in the specification. We find that all
estimates in columns 3 and 6 decrease in magnitude except for the STEM major choice outcome
(Panel C). The drop in the size of the estimates (between columns 2 and 3 or between columns
5 and 6 of Table B.19) is moderate indicating that it is not an exhaustive mechanism. It is not
surprising that the absenteeism channels do not fully explain the positive female peers e↵ects.
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College educational choices are also likely to be associated with students’ preparedness in a field
of study or comparative advantage in a group of subjects rather than class attendance behaviors
(Brenøe and Zölitz, 2020; Goulas, Griselda, and Megalokonomou, 2022). The higher likelihood
of females choosing a STEM degree is probably an e↵ect of their improved STEM-related test
scores when assigned to a higher share of female classmates, which suggests more preparedness
in STEM studies. These results suggest that the classroom environment or classroom learning
productivity (proxied by the absenteeism behavior) is a plausible mechanism for the e↵ects of
female peers on test scores in STEM.

7.3 Decomposition of Mechanisms

To assess the importance of the attendance channels, we use decomposition analysis to quantify
howmuch each of the proposed mechanisms—excused absence or unexcused absence—and their
combined explanatory power explains female peer e↵ects.44 We follow the approach by Gong,
Lu, and Song (2021) to assess the significance of excused and unexcused absenteeism as novel
channels in explaining female classmates e↵ects. Let mj

i,c,s,t
denote the mechanism variables j

(j = 1,2, since we consider two mechanisms, excused and unexcused absences in 11th and 12th

grade). We remove the gender notation g for simplicity.45

Table 7 presents the shares of the overall female classmate e↵ects that can be attributed to
unexcused (column 1) and excused (column 2) absences in an attempt to explain the e↵ects on
STEM-related test scores. Column 3 shows the total share that can be attributed to unexcused
and excused absences. Column 4 shows the share that is unexplained by the proposed mecha-
nisms. Panel A shows the shares of the female classmate e↵ects that are explained by the pro-
posed mechanisms for all students. We find that unexcused absences have significantly more
explanatory power than excused absences in explaining gender peer e↵ects on STEM-related test
44Recent studies such as Chung and Zou (2020); Gong, Lu, and Song (2021); and Gong, Lu, and Song (2018) have also used a
decomposition analysis following the method of Heckman, Pinto, and Savelyev (2013) and Gelbach (2016).

45First, we replace the outcome variable and use the absenteeism behavior instead of students’ scholastic outcomes in the main
specification (1). This is summarized in specification (3):
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equation is now augmented as in (4):
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We include the 11th or 12th grade absenteeism variables as controls when the outcome is measured in the 11th or 12th grade,
respectively. Heckman, Pinto, and Savelyev (2013) discuss the rationale of the equation. We illustrate some details in Appendix
C. Following the derivation by Gelbach (2016), we show that:

�̂ = �̂ +
2X

j=1
⇣̂j ↵̂j (5)

where �̂ is the baseline estimated coe�cient of PropFemalePeers�i,c in (1). Equation (5) suggests that the jth component of the

mechanisms in explaining the peer e↵ects is ⇣̂j ↵̂j and the part that is unexplained by the proposed mechanism is captured by
coe�cient �̂ in (4). The explanatory power for eachmechanism j is ⇣̂j ↵̂j /�̂, and the combined explanatory power is

P2
j=1 ⇣̂

j ↵̂j /�̂.
Gelbach (2016) discusses the derivation in details. We apply the derivation in our context in Appendix D.
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scores: For males, unexcused absences explain around 6.8% of the gender peer e↵ects on STEM-
related subject scores in grade 11 and 5.3% in grade 12; for females, unexcused absences explain
approximately 2.2% in grade 11 and 1.4% in grade 12. In contrast, excused absences have lit-
tle explanatory power: mostly around 1.0% for both genders. The remainder is unexplained by
the proposed mechanisms. This result is in line with Gong, Lu, and Song (2021), who find that
classroom environment alone mediates away around 8.9% of the increase in student test score.

Panels B and C show the decomposition of the gender peer e↵ects to the proposedmechanisms
for students in low and high income neighborhoods, respectively. Unexcused absences explain a
much larger share of gender peer e↵ects in the low compared with the high household income
group especially for males (8.1% compared with 3.6% in grade 11 and 6.4% compared with 0.09%
in grade 12). The pattern is the same in Panels D and E. Unexcused absences explain 15% of the
overall e↵ect for males in low-quality schools compared with almost 1% in high-quality schools in
grade 11. This is also evident in grade 12; unexcused absences explain 7% of the e↵ect for males in
low-quality schools and 1% in high-quality schools in grade 12. The channel of a more conducive
learning environment due to lower disruption and noise in the classroom explains a large share of
the gender peer e↵ects in STEM subjects in disadvantaged schools, but not in advantaged settings.
That may be explained by the fact that students may be more disciplined and less disruptive
in advantaged schools, while there is much space for improvement in disadvantaged schools.
This is important from a policy perspective. It suggests that classroom interventions that reduce
disruption are more e↵ective in disadvantaged environments and have the potential to boost
outcomes.

8 Gender Composition E↵ects on Gender Pay Gap

In order to fully assess the implications of a higher share of female classmates in early high school,
it is important to consider the longer-term consequences on occupational choices. To do so, we
link our university degree enrollments administrative data to occupations-related earnings data
using the Labor Force Survey. We then replace the outcome variable in the main specification (1)
with the occupation-related earnings and report the estimates of the e↵ect of a higher share of
female classmates.

Table 8 presents the estimated e↵ects for the full sample (columns 1-2), and by subgroups
based on socioeconomic profile (columns 3-6 by postcode income and columns 7-10 by school
quality). The estimated e↵ect of a higher share of female classmates is positive for females in
all cases. In contrast, the impact on males is smaller, in most cases negative, and not statis-
tically significant. For females in low income postcodes, exposure to a classroom that has 10
percentage points more females increases expected occupation-related wages by 14.6% of a s.d
(s.e.=0.083). This e↵ect size is substantial and around the same inmagnitude as other educational
interventions in secondary school, estimated based on the Greek context. For example, they are at
the higher bound of the e↵ect of providing feedback information to students (Goulas and Mega-
lokonomou, 2021). For females in low quality schools, the e↵ects are positive, although imprecise
(estimated coe�cient=0.079, s.e.=0.093). This pattern of increased occupation wages for females
is a direct consequence of increasing females’ likelihood of choosing a STEM university degree,
which in turn, leads to a higher STEM occupational participation.
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Random exposure to more female classmates positively influences test scores and university
degree enrollments and has meaningful economic consequences for occupation sorting and earn-
ings at adulthood, especially for females and students from disadvantaged contexts. If anything,
males’ occupation-related earnings seem una↵ected in the longer run, which would contribute to
a potential decrease in the gender pay gap.

9 Conclusion

This paper examines how improvements in classroom gender composition can a↵ect educational
individual outcomes in adolescence and early adulthood. Although this is not a research question
that is addressed for the time, no evidence exists as to the e↵ects and implications of those e↵ects
for disadvantaged students. The present analysis is based on exogenous variation in classroom
assignment within schools in early high school in Greece. After initial assignment, students re-
mained with mostly the same classmates throughout high school. We examine the e↵ects and
implications of random exposure to a higher share of female classmates on students’ human
capital formation, and in particular, current and subsequent test scores, and university level de-
gree choices. We split subjects and degrees into STEM and humanities, and examine the widely
claimed statement that human capital investment and knowledge accumulation is enhanced for
females in STEM, in environments with more females. We also examine the mechanism behind
those e↵ects. Throughout the analysis, we remain particularly interested in the distinction be-
tween disadvantaged and non-disadvantaged students. Our study combines high school rich
transcript data, attendance records, and longer-term educational choices data with novel admin-
istrative data obtained from the Ministry of Education for all students in Greece.

The results suggest that students who were exposed to a higher proportion of female class-
mates, due to the randomized classroom assignment in early high school, had substantially im-
proved their end-of-year and subsequent STEM-related test scores, and are more likely to choose
STEM degrees in college 2 years later. The benefits are larger for females than males. These
e↵ects persist into early adulthood and manifest in choosing degrees in post-secondary educa-
tion that are linked to more lucrative or prestigious occupations. These e↵ects are mostly driven
by disadvantaged groups: students in low-quality schools, and students in lower-income neigh-
borhoods. We examine a potential avenue through which gender classroom composition e↵ects
influences education and careers. We find that as the share of female classmates increases, males
reduce their disruptive behavior (reflected in fewer unexcused absences), and create a more con-
ducive learning environment that could motivate more students to attend classes (reflected in
fewer excused absences).

This paper adds to the growing economic literature investigating female classmate e↵ects on
human capital outcomes. We o↵er two main contributions. First, most papers in the gender
composition literature study those e↵ects in selective or advantageous settings. To the best of
our knowledge this is the first paper in this literature that attempts to estimate these e↵ects for
disadvantaged and non-disadvantaged groups and discuss those di↵erences. This is because we
have conducted a primary-data collection and we obtained data from a rich sample of schools and
students that contains a large and diverse set of school qualities and socioeconomic profiles. This
distinction is also policy relevant, and gaining new insights about whether educational inputs or
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interventions are more e↵ective for disadvantaged students could make a potential contribution
to the design, targeting, and implementation of new interventions, and a better resource alloca-
tion. The implications of our findings may also be relevant for other educational interventions.

Second, unlike other papers in the economic literature that use surveys and thus, self-reported
measures of behavioral variables, we rely on administrative teacher-reported data to measure dis-
ruption and engagement using misconduct-related (unexcused) and parent-approved (excused)
student class absences. We use these more objective behavioral measures to investigate the mech-
anisms behind gender classroom composition e↵ects and also conduct a medication analysis. In
addition, we discuss di↵erences in explaining gender composition e↵ects on human capital out-
comes between disadvantaged and non-disadvantaged students. This will widen the array of
successful policies that harness gender peer e↵ects and help policymakers predict their success.

The impact on female classmates in early high school carries meaningful economic conse-
quences, and it sharply a↵ects the test scores in STEM subjects in high-stakes exams, postsec-
ondary degree sorting, as well as occupation-related expected earnings in adulthood. Showing
how the e↵ect manifests over a persistent set of outcomes during adolescence, and early adult-
hood, sheds light on how policies can shape individuals’ trajectories in life. Policymakers may di-
rect resources to learning settings with fewer females and potentially higher incidence of disrup-
tive behavior and lower student engagement. Our findings suggest that classroom interventions
that reduce disruption are much more e↵ective in disadvantaged or underserved environments.
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Figure 1: Histogram of the Proportion of Females in Classrooms
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Notes: The figure presents the distribution of the proportion of females across classrooms in 11th

grade and the simulated kernel density of the normal distribution using the actual mean (0.563)
and standard deviation (0.148).
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Figure 2: Residuals of Classroom-level Female Share after Controlling for Unobserved School-
Cohort E↵ects and Test for Normality of Residuals
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Notes: In Panel (A), the solid curve represents the kernel density of the residuals from a regression
of the share of female classmates in grade 11 on school-cohort fixed e↵ects. The dashed curve in
Panel (A) represents a simulated normal distribution with the same mean (0), the standard devi-
ation (0.148), and the same number of unique school-by-cohort classrooms (2,517) as the actual
residuals’ distribution. Panel (B) shows empirical female classmate share residuals which follow a
normal distribution (45-degree line), and the residuals obtained by regressing the share of female
classmates on school-cohort fixed e↵ects.
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Figure 3: Simulated and Actual Standard Deviation in the Proportion of Females across Classes
within School-Cohorts

Notes: The figure presents the kernel density of the actual standard deviation in the proportion of
females in grade 11 within school-cohort and the simulated standard deviation of females within
school-cohort. Vertical lines indicate the median of each distribution. To produce the simulated
standard deviation, we randomly generate the gender of students using a binomial distribution
with p equal to the actual proportion of females in each school-cohort. We then compute the
within-school-cohort standard deviation of the artificially generated proportion of female peers
across classrooms and plot it along with the actual one.
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Figure 4: Nonlinear Impact of Classroom Gender Composition on Performance and Enrollment in STEM and Humanities for Males
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Notes: Scatter points represent estimated coe�cients of the female classmates share being larger than p%, where p is a set of integers that
includes every fifth integer from 50 to 90. Vertical bars represent the 95% confidence intervals of the coe�cients.Test scores in STEM subjects
in 11th and 12th grade include the average test scores in Mathematics and Physics. Test scores in Humanities subjects in 11th and 12th grade
include the average test scores in Language and History. STEM degrees include degrees in Mathematics, Science, Engineering, and Computer
Science. Humanities degrees include degree in Modern Languages, Literature, Philosophy, History, Archaeology, Anthropology, Religion, and
Art.
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Figure 5: Nonlinear Impact of Classroom Gender Composition on Performance and Enrollment in STEM and Humanities for Females
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Notes: Scatter points represent estimated coe�cients of the female classmates share being larger than p%, where p is a set of integers that
includes every fifth integer from 50 to 90. Vertical bars represent the 95% confidence intervals of the coe�cients. Test scores in STEM subjects
in 11th and 12th grade include the average test scores in Mathematics and Physics. Test scores in Humanities subjects in 11th and 12th grade
include the average test scores in Language and History. STEM degrees include degrees of Mathematics, Science, Engineering, and Computer
Science. Humanities degrees include degree in Modern Languages, Literature, Philosophy, History, Archaeology, Anthropology, Religion, and
Art.

36



Table 1: Descriptive Statistics of the Sample

Mean Std. Dev. Min. Max.
A. Student-level Characteristics:
Age (Grade 11) 16.900 0.450 14 35
Female (1=Yes) 0.560 0.496 0 1
Born in 1st Quarter of Birth Year (1=Yes) 0.142 0.349 0 1
GPA (Grade 10) 14.927 2.539 0 20

Track Choice (Grade 11)
Classics 0.362 0.481 0 1
Science 0.285 0.451 0 1
Exact Science 0.353 0.478 0 1

Absences (Grade 11)
Total 49.178 26.245 0 164
Excused 19.632 18.969 0 158
Unexcused 29.514 13.459 0 50

Absences (Grade 12)
Total 74.273 29.735 0 199
Excused 40.066 23.970 0 175
Unexcused 34.127 13.448 0 65

11th Grade Performance
STEM Subjects 15.051 2.942 0 20
Humanities Subjects 15.494 2.525 0 20

12th Grade Performance
STEM Subjects 14.548 3.654 5 20
Humanities Subjects 14.627 2.679 6 20

University Degree Choice
STEM Degrees 0.230 0.421 0 1
Humanities Degrees 0.185 0.388 0 1

B. Class-level Characteristics (Grade 11):
Born in 1st Quarter of Calendar Year (1=Yes) 0.136 0.124 0 1
Age 16.908 0.155 16 19
Prop. Female Peers 0.563 0.148 0 1
Classroom Size 16.266 4.728 6 31

C. School-level Characteristics:
Postcode Income (Euro, 2009) 22894.995 8127.427 13005 66521
No. of Classrooms (Grade 11) 3.558 1.139 2 6
School Enrollment (Grade 11) 59.923 28.136 13 126

Notes: The data span 8 academic years from 2002 to 2009. The sample contains 104 public schools and
2,517 unique classrooms. The number of students is 43,451. "Born in 1st Quarter of Calendar Year" is a
binary indicator that takes the value of one if a student is born in the first quarter of the calendar year.
Students have to enroll in a track at the beginning of grade 11. They have three track options: Classics,
Science, and Exact Science. All schools o↵er all tracks. Absences are measured in hours.
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Table 2: Balancing Tests of the Proportion of Female Classmates

Prop. Female Peers
(Grade 11)

Female (1=Yes) 0.0013
(0.0021)

Age (Grade 11) 0.0013
(0.0012)

Born in 1st Quarter of Birth Year (1=Yes) -0.0016
(0.0016)

GPA (Grade 10) 0.0002
(0.0003)

N 43,451
p-value for Joint F Test for Individual Characteristics 0.742
School-cohort FE X

Notes: Each cell reports the estimated e↵ect of the related student characteristic (re-
ported vertically) from a separate regression in which the dependent variable is the
share of females in the classroom in grade 11. The lower panel shows the P-value
for the F-statistic of the joint significance of student characteristics. It comes from
the regression of the dependent variable (proportion of female classmates) on all
student characteristics, conditional on school-cohort fixed e↵ects. Standard errors
clustered at classroom level are reported in parentheses. * p < 0.1; ** p < 0.05; ***
p < 0.01.

Table 3: Summary of Monte Carlo Simulation

Share of the Actual Standard Deviation
within 90% Empirical CI 0.865

Share of the Actual Standard Deviation
within 95% Empirical CI 0.908

Share of the Actual Standard Deviation
within 99% Empirical CI 0.955

Notes: This table summarizes the share of the actual standard deviation of the share of female
classmates in grade 11 that falls within the 90%, 95% and 99% of the empirical confidence
interval (CI) generated by the simulated standard deviation of the share of females in each
school-cohort. To produce the empirical confidence intervals, we randomly generate the gen-
der of students using a binomial distribution with p equal to the actual proportion of females
in each school-cohort. We then compute the within school-cohorts standard deviation of the
proportion of female classmates based on the simulated genders. We repeat this process 1,000
times. For each school-cohort, we then obtain the 95.0% (97.5% or 99.5%) and 5.0% (2.5% or
0.5%) percentile of the simulated standard deviation in the proportion of females as the up-
per and lower bounds of the 90% (95% or 99%) empirical confidence interval.
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Table 4: Main Estimates and Placebo E↵ects of Female Classmates on Test Scores and Enrollment
in STEM and Humanities

Males Females

Main Estimates Placebo Main Estimates Placebo

(1) (2) (3) (4) (5) (6)

Dependent Variables:

Panel A: 11th-grade Performance

STEM Subjects 0.129*** 0.132*** 0.010 0.254*** 0.257*** 0.007
(0.049) (0.049) (0.037) (0.046) (0.046) (0.029)

Mean of Y -0.015 -0.015 -0.015 0.012 0.012 0.012
N 19,113 19,113 19,113 24,337 24,337 24,337

Humanities Subjects -0.023 -0.022 -0.035 -0.057 -0.051 0.007
(0.056) (0.056) (0.037) (0.049) (0.049) (0.029)

Mean of Y -0.015 -0.015 -0.015 0.012 0.012 0.012
N 19,113 19,113 19,113 24,337 24,337 24,337

Panel B: 12th-grade Performance

STEM Subjects 0.096** 0.093** 0.052 0.119*** 0.121*** 0.003
(0.042) (0.042) (0.035) (0.034) (0.034) (0.029)

Mean of Y -0.015 -0.015 -0.015 0.012 0.012 0.012
N 19,113 19,113 19,113 24,337 24,337 24,337

Humanities Subjects -0.061 -0.059 0.048 -0.075** -0.074** -0.002
(0.041) (0.041) (0.038) (0.036) (0.036) (0.029)

Mean of Y -0.015 -0.015 -0.015 0.012 0.012 0.012
N 19,113 19,113 19,113 24,337 24,337 24,337

Panel C: University Degree Choice
STEM Degrees 0.037 0.036 -0.033 0.044** 0.043** -0.009

(0.028) (0.028) (0.030) (0.019) (0.019) (0.019)
Mean of Y -0.015 -0.015 -0.015 0.012 0.012 0.012
N 19,113 19,113 19,113 24,337 24,337 24,337

Humanities Degrees -0.036** -0.036** 0.005 -0.092*** -0.093*** -0.010
(0.018) (0.018) (0.017) (0.021) (0.021) (0.021)

Mean of Y -0.015 -0.015 -0.015 0.012 0.012 0.012
N 19,113 19,113 19,113 24,337 24,337 24,337

School-cohort FE &
Student-level controls X X X X X X
Classroom-level controls X X X X

Notes: The table reports the estimated e↵ects of the share of female classmates in 11th grade on students’ scholastic
outcomes in 11th and 12th grade and students’ university degree major choice in columns (1)-(2) and columns (4)-(5).
Columns (3) and (6) report the results from placebo tests in which the true share of female classmates is replaced with
the placebo female classmates share, which is generated through reshu✏ing students within school-cohorts. We show
the means of the dependent variables below the standard errors. Student-level controls include age, born in the 1st quar-
ter of birth year indicator, prior track choice, previous GPA, and share of female classmates in 10th grade. Classroom-
level controls include classroom-level mean age, born in 1st quarter of birth year indicator, and classroom size. Regres-
sions in all columns include school-cohort fixed e↵ects. The regressions in columns in (2)-(3) and (5)-(6) additionally
include classroom-level controls. STEM subjects in 11th and 12th grade include Mathematics and Physics. Humanities
subjects in 11th and 12th grade include Language and History. STEM degrees include Mathematics, Science, Engineer-
ing, and Computer Science. Humanities degrees include Modern Languages, Literature, Philosophy, History, Archaeol-
ogy, Anthropology, Religion, and Art. Standard errors clustered at classroom level are reported in parentheses. * p < 0.1;
** p < 0.05; *** p < 0.01.
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Table 5: Heterogeneous E↵ects of Gender Composition E↵ect by Neighborhood Income and School Quality

Neighborhood Income School Quality

Below Median Above Median Below Median Above Median

Males Females Males Females Males Females Males Females
(1) (2) (3) (4) (5) (6) (7) (8)

Dependent Variables:

Panel A: 11th-grade Performance
STEM Subjects 0.184*** 0.338*** 0.073 0.120* 0.137* 0.260*** 0.119* 0.221***

(0.066) (0.061) (0.078) (0.071) (0.071) (0.065) (0.069) (0.064)
N 8,671 11,600 10,441 12,736 7,249 9,784 11,863 14,552
Humanities Subjects 0.070 -0.073 -0.154 -0.057 0.139* -0.008 -0.213** -0.108

(0.069) (0.062) (0.098) (0.087) (0.073) (0.067) (0.084) (0.073)
N 8,671 11,600 10,441 12,736 7,249 9,784 11,863 14,552

Panel B: 12th-grade Performance
STEM Subjects 0.115** 0.172*** 0.062 0.026 0.067 0.165*** 0.098* 0.056

(0.054) (0.043) (0.069) (0.057) (0.059) (0.047) (0.058) (0.051)
N 8,671 11,601 10,442 12,736 7,249 9,785 11,864 14,552
Humanities Subjects -0.033 -0.098** -0.117* 0.006 -0.115** -0.128*** 0.007 0.003

(0.052) (0.044) (0.069) (0.062) (0.056) (0.047) (0.060) (0.056)
N 8,671 11,601 10,442 12,736 7,249 9,785 11,864 14,552

Panel C: University Degree Choice
STEM Degrees 0.018 0.045* 0.050 0.003 0.011 0.051** 0.054 -0.003

(0.035) (0.023) (0.047) (0.034) (0.038) (0.024) (0.043) (0.030)
N 8,671 11,601 10,442 12,736 7,249 9,785 11,864 14,552
Humanities Degrees -0.046* -0.090*** -0.025 -0.078** -0.067*** -0.084*** 0.009 -0.050*

(0.024) (0.027) (0.027) (0.031) (0.024) (0.027) (0.026) (0.030)
N 8,671 11,601 10,442 12,736 7,249 9,785 11,864 14,552

School-cohort FE &
Student-level controls X X X X X X X X
Classroom-level controls X X X X X X X X

Notes: The table reports heterogeneous e↵ects by postcode income and school percentile rank of the share of females in the class-
room in grade 11 on students’ test scores in grades 11 and 12 and students’ postsecondary degree choice. We stratify the sample by
the median of postcode income (median = 20,764 euros) and by the median of percentile rank (median school percentile ranking =
64.57) separately, then obtain the estimated e↵ects of the share of females in the classroom in each restricted sample. Columns (1)
and (2) (columns (3) and (4)) report the estimated e↵ect of the female share in the classroom for male and female students who re-
side in neighborhoods with postcode income below the median (above the median), respectively. Columns (5) and (6) (columns (7)
and (8)) report the estimated e↵ect of the female share in the classroom for male and female students who study in schools with per-
centile ranks below the median (above the median). Student-level controls include age, born in 1st quarter of birth year indicator,
prior track choice, GPA in grade 10, and the share of female classmates in grade 10. Classroom-level controls include the classroom-
level mean age, share of classmates born in 1st quarter of birth year, and classroom size. Standard errors clustered at classroom level
are reported in parentheses. * p < 0.1; ** p < 0.05; *** p < 0.01.
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Table 6: Classroom Gender Composition E↵ect on Total, Excused and Unexcused Student Absences

Panel A Males Females

Dependent Variables (Grade 11):
Total

Absences
Excused
Absences

Unexcused
Absences

Total
Absences

Excused
Absences

Unexcused
Absences

(1) (2) (3) (4) (5) (6)

Prop. Female Peers -0.726 1.429 -2.138* -4.558** -3.039* -1.477
(2.270) (1.563) (1.219) (2.157) (1.557) (1.052)

N 14,401 14,401 14,454 18,443 18,443 18,514
Mean of Y 48.432 18.091 30.312 49.760 20.835 28.891
School-cohort FE &
Student-level controls X X X X X X
Class-level controls X X X X X X

Panel B Males Females

Dependent Variables (Grade 12):
Total

Absences
Excused
Absences

Unexcused
Absences

Total
Absences

Excused
Absences

Unexcused
Absences

(1) (2) (3) (4) (5) (6)

Prop. Female Peers -1.505 1.245 -2.887*** -3.295* -1.620 -1.674
(2.053) (1.638) (1.027) (1.965) (1.648) (1.032)

N 14,406 14,407 14,526 18,423 18,428 18,579
Mean of Y 71.922 37.027 34.820 76.110 42.442 33.585
School-cohort FE &
Student-level controls X X X X X X
Class-level controls X X X X X X

Notes: The table reports the estimated e↵ects of the female peers classroom share in 11th grade on students’ at-
tendance pattern in 11th grade (Panel A) and 12th grade (Panel B). Student-level controls include age, born in 1st

quarter of birth year indicator, prior track choice, prior GPA, and female peers classroom share in 10th grade.
Classroom-level controls include classroom-level mean age, born in 1st quarter of birth year indicator, and class-
room size. Standard errors clustered at classroom level are reported in parentheses. * p < 0.1; ** p < 0.05; ***
p < 0.01.



Table 7: How Much of the Gender Composition E↵ect is Explained by Changes in Behavior?

Channels % of E↵ect Explained by Channels
Unexcused
Absences

Excused
Absences Explained Unexplained

(1) (2) (3) (4)

Panel A: All Students in the Sample

STEM Subjects (Grade 11)
Males 6.791 0.567 7.359 92.641
Females 2.227 0.740 2.967 97.033

STEM Subjects (Grade 12)
Males 5.32 0.714 6.034 93.966
Females 1.352 0.298 1.65 98.35

Panel B: Students with Low Household Income

STEM Subjects (Grade 11)
Males 8.095 0.346 8.441 91.559
Females 1.513 0.421 1.934 98.066

STEM Subjects (Grade 12)
Males 6.423 0.320 6.743 93.257
Females 1.81 0.290 2.1 97.9

Panel C: Students with High Household Income

STEM Subjects (Grade 11)
Males 3.639 0.891 4.531 95.469
Females 3.998 0.739 4.737 95.263

STEM Subjects (Grade 12)
Males .087 2.528 2.615 97.385
Females .789 0.172 .96 99.04

Panel D: Students in Low-quality Schools

STEM Subjects (Grade 11)
Males 15.477 0.155 15.632 84.368
Females 4.784 0.481 5.265 94.735

STEM Subjects (Grade 12)
Males 7.262 0.711 7.973 92.027
Females .674 0.747 1.421 98.579

Panel E: Students in High-quality Schools

STEM Subjects (Grade 11)
Males .997 0.823 1.82 98.18
Females .229 0.677 .906 99.094

STEM Subjects (Grade 12)
Males 1.133 0.580 1.713 98.287
Females 2.513 0.033 2.546 97.454

Notes: We use a mediation analysis in each panel and quantify the relative importance of each
mechanism on explaining test scores in STEM subjects in grades 11 and 12 (Chung and Zou, 2020;
Gong, Lu, and Song, 2018, 2021).
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Table 8: Longer-Term E↵ects of Gender Classroom Composition on Occupation-Related Wages

All Low Income High Income Low Quality High Quality

Males Females Males Females Males Females Males Females Males Females
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Prop. Female Peers -0.059 0.075 -0.034 0.146* -0.067 0.092 0.006 0.079 -0.118 0.072
(0.080) (0.066) (0.107) (0.083) (0.113) (0.115) (0.114) (0.093) (0.113) (0.096)

N 13,948 19,265 6,205 8,970 7,743 10,295 4,977 7,210 8,971 12,055
School-cohort FE &
Student-level controls X X X X X X X X X X
Class-level controls X X X X X X X X X X

Notes: The table reports the estimated e↵ects of the share of female classmates in grade 11 on students’ occupation-related expected
wages. The outcome is the standardized occupation-related expected wage and has a mean equal to 0 and a standard deviation equal
to 1. We use the 2003 Labour Force Survey to map each college major into the most related occupation and salaries. Columns (1)
and (2) show the e↵ects for male and female students, respectively. The estimated e↵ects of gender classroom composition are shown
for di↵erent subgroups in columns (3)-(10). Columns (3)-(4) show the estimated e↵ects for low-income neighborhoods for males and
females. Columns (5)-(6) show the estimated e↵ects for high-income neighborhoods for males and females. Columns (7)-(8) show the
estimated e↵ects for low-quality schools for males and females. Columns (9)-(10) show the estimated e↵ects for high-quality schools
for males and females. Student-level controls include age, born in 1st quarter of birth year indicator, prior track choice, prior GPA,
and female peers classroom share in 10th grade. Classroom-level controls include classroom-level mean age, born in 1st quarter of
birth year indicator, and classroom size. Standard errors clustered at classroom level are reported in parentheses. * p < 0.1; ** p <

0.05; *** p < 0.01.
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A Figure Appendices

Figure A.1: Map of Schools in the Sample

Notes: This figure shows the counties in which high schools in our sample are located.
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Figure A.2: How Many Students Change Classrooms between Grade 10 and Grade 11?

Notes: The figure shows the density of students transferring to a di↵erent classroom in grade 11 from
the one assigned in grade 10. The vast majority of students remain in the same classroom between
grades 10 and 11. Most transitions take place between adjacent classrooms.
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Figure A.3: Monte Carlo Simulations of Standard Deviations in the Proportion of Females Classmates
within School-Cohort
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Notes: The figure presents the simulated 95% empirical confidence intervals (shown as vertical bars
in gray) of within-school-cohort standard deviations in the proportion of female peers across class-
rooms. Scatter points (black) represent the actual within school-cohort standard deviations in female
peers share across classrooms. To produce the empirical confidence intervals, we randomly generate
the gender of students using a binomial distribution with p equal to the actual proportion of females
in each school-cohort. We then compute the within-school-cohort standard deviation of the propor-
tion of female peers across classrooms based on the simulated genders. We repeat this process 1,000
times. For each school-cohort, we then obtain the 97.5% percentile of the simulated standard devi-
ation in the proportion of female peers as the upper bound of the confidence interval and the 2.5%
percentile of the simulated standard deviation in the proportion of female peers as the lower bound
of the confidence interval. To avoid cluttering the paper, we randomly pick 50 school-cohorts (out of
728 school-cohorts). This figure shows that only 5 out of 50 within-school-cohort standard deviations
of the proportion of female classmates are not within their corresponding 95% confidence intervals.
Simulation results for other school-cohorts are available upon request.
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Figure A.4: Histogram of the Proportion of Females in Classrooms in Grade 10
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Notes: Panel (A) plots the distribution of the proportion of female classmates and the simulated kernel density
of a normal distribution using the sample mean and variation. In Panel (B), the dashed black line represents
the kernel density of the residuals from a regression of the share of female classmates on school-cohort fixed
e↵ects. The dashed gray line represents a simulated normal distribution with a same mean of 0 and standard
deviation of 0.124 and the number of unique classrooms (2,517) of the actual residual distribution. Panel (C)
shows the standardized normal probability plot of the residuals obtained by regressing the share of female
classmates on school-cohort fixed e↵ects.
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Figure A.5: Simulated and Actual Standard Deviations in the Proportion of Females Across Classes
within School-Cohorts

Notes: The figure presents the kernel density of the actual standard deviation in the proportion of
females within school-cohort (black line) and the simulated standard deviation of females within
school-cohort (dashed line). Vertical lines indicate the median of each distribution. Panel (A) pro-
duces the simulated standard deviation for the 10th-grade proportion of female classmates. We ran-
domly generate the gender of students using a binomial distribution with p equal to the actual pro-
portion of females in 10th grade for each school-cohort. We then compute the within-school-cohort
standard deviation of the artificially generated proportion female peers across classrooms and plot it
with the actual one. Panel (B) produces the simulated standard deviation for the di↵erence between
11th and 10th grade proportion of female classmates. We randomly generate the gender of students
using a binomial distribution with p equal to the actual proportion of females in 11th and 10th grade
for each school-cohort, respectively, while keeping the same class size. We compute the di↵erence in
the proportion of females across grades and then compute the within-school-cohort standard devia-
tion of the di↵erence in the artificially generated proportion of female peers across classrooms and
plot it with the actual one.
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Figure A.6: Robustness Check: Distribution of Estimates on Scholastic Outcomes and University Degree Choices
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Notes: These figures present the distribution of estimated e↵ects of the female peers classroom share in 11th grade. We randomly drop schools
from two selected postcode areas out of the total 83 postcode areas each time without replacement. This process is repeated exhaustively, and
we conduct a total of C2

83 = 3,403 regressions for each outcome variable. Black lines represent the density of estimates. Vertical dashed lines
represent the baseline estimates reproduced from columns (2) and (5) of Table 4.



Figure A.7: Student Records from School Archives

Notes: This figure shows a student record from the school archive of the few schools that kept the data
in books for the earlier years in our sample. Each panel corresponds to a di↵erent student, with a total
of 4 panels appearing vertically on every page. At the top of each panel the following information is
provided: student surname, student first name, mother’s surname, father’s surname, unique school
identifier, municipality unique identifier, district unique identifier, year of birth, and religion. Below
that, subjects’ names are reported. Then, there are three rows of data in each student record; each
of the rows corresponds to a di↵erent grade (10, 11, and 12). Information about students’ classroom
identifiers and test scores in each subject, grade, and year are recorded. Raw test scores are out of 20
and are increasing in performance. On the right, there is information on students’ GPA in each grade.
We have covered all students’ personal information to protect the confidentiality of the student and
the school.



Figure A.8: Heterogeneous E↵ects of Female Classmates by Student Baseline Performance
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Panel (B). STEM Subjects (Grade 12)
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Notes: This figure shows the estimated heterogeneous e↵ects of share of female classmates by student baseline (prior)
performance in grade 10. Specifically, we estimate the e↵ects of the female classmates share on males’ and for each quartile
of students’ baseline performance in grade 10. Three outcomes are reported here: 1) Test scores in STEM subjects in grade
11 (Panel A), 2) Test scores in STEM subjects in grade 12 (Panel B), and 3) Enrollment in STEM degrees at the university
level (Panel C). The coe�cient bars represent the 90% confidence interval.
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Figure A.9: Survey Evidence that Unexcused Absences are Used as a Punishment for Disruption and
Noise

Panel A: Frequency of Disruptive Students Receiving Absences as Penalty

Panel B: Types of Behavior that Led to Absences being Used as Penalty

Notes: These figures use data from a survey that we conducted in 2022 as part of a field experiment
in 6 of the sampled schools. Panel A relies on the following questionnaire item “Have you wit-
nessed hourly unexcused absences as a penalty to disruptive students?". Students can respond to the
questionnaire question by “Yes" or “No". 89.37% of students respond that they have seen disruptive
students receive absences as a penalty. Panel B uses student responses to the following question-
naire item “In which way can a student in your classroom behave and receive unexcused absences
as a penalty". Students have the following options to choose from “Disrupting Others’ Attention",
“Making Noise", “Being Disengaged", and “Disruption and Noise". This is a multiple choice question.
92.14% of students report that making noise, 62.68% report that disrupting others’ attention, 11.48%
report disengagement, and 9.82% of students report both disruption and noise as the most common
reasons for a student to receive an unexcused absence.
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B Table Appendices
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Table B.1: How Representative is the Sample?

Sample
(104 Schools)

/S.D.

Remaining Population
(1,024 Schools)

/S.D.

(1)-(2)
Di↵erence

/S.E.
(1) (2) (3)

Student Characteristics

Share of Female Students (%) 0.548 0.562 -0.014
0.076 0.107 0.011

P-value 0.188

Average Student Age 17.952 17.923 0.029
0.133 0.185 0.019

P-value 0.124

Share of Students Being Born in 1st Quarter
(1=Yes)

0.188 0.201 -0.013

0.053 0.083 0.008
P-value 0.120

University Admission Score 13566.351 13383.786 182.564
1065.227 1279.232 131.021

P-value 0.164

Share of Students in Each Track

Classics 0.371 0.409 -0.037
0.094 0.167 0.017

P-value 0.027

Science 0.180 0.179 0.001
0.085 0.138 0.014

P-value 0.956

Exact Science 0.449 0.412 0.036
0.106 0.190 0.019

P-value 0.057

District Unemployment 9.545 9.826 -0.281
1.679 3.235 0.325

P-value 0.387

Notes: This table examines the representativeness of schools in our sample. We compare our sample to the
remaining public coeducational schools in Greece in terms of students’ characteristics (gender, age, being
born in 1st quarter of calendar year, university admission score, and high school track choices) at school
level and unemployment at the district level. Unemployment is measured at the district level in 2003.
Column (1) presents the means of variables in our study sample (104 schools) and column (2) presents
the means of variables in the remaining public coeducational population of schools in Greece (containing
1,024 schools). Column (3) presents the di↵erences between sample and population means, the standard
error of the di↵erence, and p-values. The comparisons are made using data from the first year for which
the dataset is available.
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Table B.2: Descriptive Statistics by Cohort

Cohort
No. of
Schools

Mean
No. of

Classrooms

Mean
School
Size

Mean
Classroom

Size
School-level
Prop. Females

Classroom-level
Prop. Females

Mean SD Mean SD
(1) (2) (3) (4) (5) (6) (7) (8) (9)

2002 84 3.583 65.202 18.757 0.557 0.078 0.554 0.162
2003 87 3.414 66.276 19.612 0.553 0.087 0.551 0.148
2004 90 3.544 69.089 19.553 0.557 0.073 0.554 0.139
2005 95 3.600 63.253 17.674 0.566 0.084 0.566 0.139
2006 91 3.440 51.527 15.475 0.577 0.074 0.576 0.152
2007 93 3.484 47.828 14.584 0.580 0.095 0.573 0.159
2008 93 3.516 48.032 14.410 0.593 0.099 0.585 0.150
2009 95 3.768 67.126 17.963 0.554 0.076 0.554 0.132

Notes: The table shows the summary statistics of the number of schools, number of class-
rooms, school size, classroom size, and proportion of females in school and classroom by
each cohort.

Table B.3: Number of Schools by Cohort with Di↵erent Number of Classrooms

Number of Schools with

Cohort 2 classes 3 classes 4 classes 5 classes 6 classes 7 classes
(1) (2) (3) (4) (5) (6) (7)

2002 16 25 28 9 5 1
2003 19 30 24 11 3 0
2004 21 19 36 9 4 1
2005 15 29 34 14 2 1
2006 19 28 32 9 3 0
2007 19 30 28 12 4 0
2008 17 31 30 11 3 1
2009 15 24 31 18 7 0

Notes: The table shows the number of schools with di↵erent numbers of class-
rooms by cohort.
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Table B.4: Variance Decomposition

Variation of Female Classmate Share in Grade 11
Panel A Sum of Squares Share of Total Degrees of Freedom

(1) (2) (3)

Within School-cohorts 39.512 0.720 1,789
Between School-cohorts 15.401 0.280 727
Total 54.912 2,516

Panel B Variation of Female Classmate Share in Grade 10

Within School-cohorts 38.761 0.705 1,807
Between School-cohorts 16.207 0.295 727
Total 54.968 2,534

Panel C
Variation of Change in Female Classmate Share

from Grade 10 to Grade 11

Within School-cohorts 27.332 0.872 1,789
Between School-cohorts 3.999 0.128 727
Total 31.331 2,516

Notes: The table presents the decomposition of variance in the proportion of females in 11th

grade (Panel A), the decomposition of variance in the proportion of females in 10th grade
(Panel B), and the decomposition of changes in the proportion of females from grade 10 to
grade 11 (Panel C) into within-school-cohort variation and between-school-cohorts varia-
tion. Columns (1)-(3) present the sum of squares, share of total variation, and degrees of
freedom.
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Table B.5: Random Assignment of Students to Classrooms

Dependent Variables:
Class Average

Gender
Class Average

Age
Class Average

Born in 1st Quarter
Female Share
in Dropouts

(1) (2) (3) (4)

Classroom Number=1 0.025 -0.002 -0.002 0.031**
(0.016) (0.006) (0.003) (0.013)

Classroom Number=2 -0.000 0.006 -0.005 0.018
(0.018) (0.005) (0.004) (0.011)

Classroom Number=3 0.008 0.004 -0.004 0.016*
(0.010) (0.009) (0.004) (0.007)

Classroom Number=5 -0.059* 0.003 -0.001 -0.035
(0.026) (0.013) (0.011) (0.019)

Classroom Number=6 -0.048 0.024 -0.017 -0.045
(0.031) (0.022) (0.015) (0.026)

Classroom Number=7 0.007 0.069 -0.077 0.009
(0.048) (0.047) (0.042) (0.031)

Mean of Dep. 0.564 16.909 0.136 -0.001
F statistic 2.811 0.937 0.825 2.153
P-value of F-stat. 0.101 0.511 0.549 0.169
School-cohort FE X X X X

Notes: We regress each classroom-level mean variable in 11th grade and female share of dropouts
from 10th to 11th grade (listed in the top row of the table) on classroom number indicators. The
omitted category is classroom number 4. Each cell presents the estimates for the listed classroom
number indicators from the regression. All regressions control for school-cohort fixed e↵ects.
We report the p-value of the joint F-test for testing the null hypothesis that all the coe�cients of
listed independent variables are equal to null. Standard errors clustered at school-cohort level
are reported in parentheses. * p < 0.1; ** p < 0.05; *** p < 0.01.
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Table B.6: Balancing Tests of the Proportion of Female Classmates, By Gender

Dependent Variables:
Prop. Female Peers

(Grade 11)

Panel A: Males

Age (Grade 11) -0.0004
(0.0018)

Being Born in 1st Quarter of Calendar Year (1=Yes) -0.0044
(0.0048)

GPA (Grade 10) 0.0002
(0.0004)

N 19,114
p-value for Joint F Test for Individual Characteristics 0.6077
School-cohort FE X

Panel B: Females

Age (Grade 11) 0.0023
(0.0016)

Being Born in 1st Quarter of Calendar Year (1=Yes) -0.0016
(0.0037)

GPA (Grade 10) 0.0002
(0.0003)

N 24,337
p-value for Joint F Test for Individual Characteristics 0.4455
School-cohort FE X

Notes: The dependent variable is the share of females in the classroom in grade 11.
Each cell reports the estimated e↵ect of the related student characteristic (reported
vertically) from a separate regression in which the dependent variable is the share
of female classmates in grade 11. We run these regressions for males and females,
separately. Panel A reports the estimated e↵ects for males, and Panel B shows the
estimated e↵ects for females. We also show the F-statistic of the joint significance
of student characteristics from the regression of the dependent variable on all stu-
dent characteristics, conditional on school-cohort fixed e↵ects for males (Panel A)
and females (Panel B). Standard errors clustered at classroom level are reported in
parentheses. * p < 0.1; ** p < 0.05; *** p < 0.01.
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Table B.7: Non-systematic Transfer and Change in Proportion of Females

Dependent Variables:
Change in

Prop. Female Peers

Indicator
Classroom Transfer

(1=Yes)
Prop. Female Peers

(Grade 10)

(1) (2) (3)

Female (1=Yes) 0.0011 0.0003 -0.0004
(0.0020) (0.0034) (0.0018)

Age (Grade 11) 0.0008 0.0004 0.0005
(0.0011) (0.0033) (0.0013)

Born in 1st Quarter of Birth Year (1=Yes) -0.0005 -0.0007 -0.0010
(0.0015) (0.0042) (0.0017)

GPA (Grade 10) 0.0001 -0.0010 0.0001
(0.0003) (0.0007) (0.0002)

N 43,451 43,451 43,451
Joint F Test for Individual Characteristics 0.373 0.971 0.139
School-cohort FE X X X

Notes: The dependent variables in column 1-3 are the change in the proportion of female classmates from grade 10
to grade 11, indicator for classroom transfer, and the proportion of female classmates in grade 10. Each cell reports
the estimate on a student characteristic from a separate regression in which the dependent variable is the one listed
in the corresponding column. The lower panel shows the F-statistic of joint significance of student characteristics
from the regression of the dependent variable on all students’ characteristics, conditional on school-cohort fixed ef-
fects. Standard errors clustered at classroom level are reported in parentheses. * p < 0.1; ** p < 0.05; *** p < 0.01.
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Table B.8: Summary of Monte Carlo Simulation for the Proportion of Females in Grade 10 and the
Di↵erence in the Proportion of Females between Grade 10 and Grade 11

Proportion of Female Classmates in Grade 10

Share of the Actual Standard Deviation
within 90% Empirical CI 0.843

Share of the Actual Standard Deviation
within 95% Empirical CI 0.906

Share of the Actual Standard Deviation
within 99% Empirical CI 0.948

Di↵erence between the Proportion of Females in Grade 10 and Grade 11

Share of the Actual Standard Deviation
within 90% Empirical CI 0.843

Share of the Actual Standard Deviation
within 95% Empirical CI 0.868

Share of the Actual Standard Deviation
within 99% Empirical CI 0.913

Notes: This table summarizes the share of the actual standard deviation of proportion of fe-
males in 10th grade and the share of the actual standard deviation of the di↵erence between
the proportions of females in 11th grade and 10th grade, which falls within the 90%, 95% and
99% of the empirical confidence interval generated by the simulated standard deviation of
gender composition for each school-cohort. To produce the empirical confidence intervals, we
repeat the process of simulating the standard deviations described in Figure A.5 1,000 times.
For each school-cohort, we then obtain the 95.0% (97.5% or 99.5%) and 5.0% (2.5% or 0.5%)
percentile of the simulated standard deviation in the proportion of females as the upper and
lower bounds of the 90% (95% or 99%) empirical confidence interval.
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Table B.9: Estimates of the Share of Female Classmates in Grade 10 on End of Grade 10 Test Scores

Males Females

(1) (2)

10th-grade Performance in

STEM Subjects -0.059 0.163
(0.062) (0.058)***

N 19,215 24,434

Humanities Subjects -0.085 0.036
(0.060) (0.057)

N 19,215 24,434

School-cohort FE &
Student-level controls X X
Classroom-level controls X X

Notes: The table reports the estimated e↵ects of the share of female classmates in
10th grade on students’ scholastic outcomes in the school exams at the end 10thgrade.
Student-level controls include age, and born in the 1stst quarter of birth year indica-
tor. Classroom-level controls include classroom-level mean age, born in 1st quarter of
birth year indicator, and classroom size. Regressions in all columns include school-
cohort fixed e↵ects and classroom-level controls. STEM subjects in 10th grade include
Mathematics and Physics. Humanities subjects in 10th grade include Language and
History. Standard errors clustered at classroom level are reported in parentheses. *
p < 0.1; ** p < 0.05; *** p < 0.01.
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Table B.10: Impact of Classroom Gender Composition on STEM Degree Choice (Alternative Defini-
tion of STEM)

Males Females

(1) (2) (3) (4)

Dependent Variables:

STEM Degrees (Alternative) 0.046 0.045 0.068*** 0.064***
(0.029) (0.029) (0.023) (0.023)

Mean of Y -0.015 -0.015 0.012 0.012
N 19,113 19,113 24,337 24,337

School-cohort FE &
Student-level controls X X X X
Classroom-level controls X X

Notes: The alternative definition of STEM degrees additionally includes Economics and
Health Sciences degrees. Clearly, the pattern of results consistently follows the baseline
pattern, which shows that our results are robust to the change in definition of STEM. Stan-
dard errors clustered at classroom level are reported in parentheses. * p < 0.1; ** p < 0.05;
*** p < 0.01.
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Table B.11: Impact of Classroom Gender Composition on Test Scores by Subject

Males Females

(1) (2)

Dependent Variables:
Panel A: 11th-grade STEM Subjects
Mathematics 0.117** 0.189***

(0.059) (0.054)
Mean of Y -0.018 0.014
N 19,112 24,336

Physics 0.128** 0.291***
(0.057) (0.054)

Mean of Y -0.010 0.008
N 19,112 24,336

Panel B: 11th-grade Humanities Subjects
Language 0.057 -0.064

(0.066) (0.061)
Mean of Y -0.247 0.194
N 19,112 24,336

History -0.079 -0.033
(0.063) (0.054)

Mean of Y -0.159 0.125
N 19,112 24,336

Panel C: 12th-grade STEM Subjects
Mathematics 0.116** 0.145***

(0.046) (0.038)
Mean of Y 0.112 -0.088
N 19,113 24,337

Physics 0.051 0.056
(0.048) (0.040)

Mean of Y 0.025 -0.020
N 19,113 24,337

Panel D: 12th-grade Humanities Subjects
Language 0.030 -0.079**

(0.047) (0.039)
Mean of Y -0.254 0.200
N 19,113 24,337

History -0.097** -0.056
(0.048) (0.044)

Mean of Y -0.167 0.131
N 19,113 24,337

School-cohort FE &
Student-level controls X X
Classroom-level controls X X

Notes: We decompose the dependent variables of STEM subjects and humanities subjects in the main re-
sults of Table 4 into their components. Each cell reports the estimates on female peers classroom share
in 11th grade. Student-level controls include age, born in 1st quarter of birth year indicator, concurrent
track choice, previous GPA, and the share of female classmates in grade 10. Classroom-level controls in-
clude classroom-level mean age, born in 1st quarter of birth year indicator, and classroom size. Standard
errors clustered at classroom level are reported in parentheses. * p < 0.1; ** p < 0.05; *** p < 0.01.
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Table B.12: Dispersion of Female Class Share by Cohort

Number of Schools with Female Share of Classmates in

Cohort 1 Quantile 2 Quantiles 3 Quantiles 4 Quantiles
Total N.
of Schools

Share of Schools with Female
Share in at Least 2 Quantiles

(1) (2) (3) (4) (5) (6) (7)

2002 2 16 43 23 84 .976
2003 3 21 43 20 87 .966
2004 4 22 39 25 90 .956
2005 2 21 53 19 95 .979
2006 1 25 39 26 91 .989
2007 5 24 36 28 93 .946
2008 8 18 38 29 93 .914
2009 2 21 43 29 95 .979

Notes: The table shows the number of schools with female classmate shares at di↵erent quantiles of the distribu-
tion by cohort.

Table B.13: Estimated E↵ects of Peer Gender Composition on Student Outcomes using a Within-
subject Estimation

Dependent Variable:
STEM Subjects
(Grade 11)

Humanities Subjects
(Grade 11)

STEM Subjects
(Grade 12)

Humanities Subjects
(Grade 12)

Male Female Male Female Male Female Male Female
(1) (2) (3) (4) (5) (6) (7) (8)

Prop. Female Peers 0.122*** 0.240*** -0.011 -0.049* 0.083*** 0.100*** -0.033 -0.068**
(0.032) (0.026) (0.034) (0.027) (0.031) (0.025) (0.033) (0.026)

N 38,224 48,672 38,224 48,672 38,226 48,674 38,226 48,674
School-subject-cohort FE &
Student-level controls X X X X X X X X
Class-level controls X X X X X X X X

Notes: The table shows the e↵ects from within STEM subjects-by-school-cohort estimation (columns 1-2 and columns
5-6) and within Humanities subjects-by-school-cohort estimation (columns 3-4 and columns 7-8). To control for the
unobserved school-cohort-by-STEM subjects shock or the unobserved school-cohort-by-humanities subjects shock, we
stack observations across STEM subjects or humanities subjects and additionally include STEM subject-school-cohort or
humanities subject-school-cohort fixed e↵ects. Standard errors clustered at classroom level are reported in parentheses.
* p < 0.1; ** p < 0.05; *** p < 0.01.
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Table B.14: Robustness Check: Spillovers from Female Peers in Other Classrooms and from Female
Peers’ Ability in Own Classroom

Baseline

Robustness Checks
Control for

Female Share Spillover

Robustness Checks
Control for Females’
Ability Spillover

Males Females Males Females Males Females
(1) (2) (3) (4) (5) (6)

Dependent Variables:

Panel A: 11th-grade Performance
STEM Subjects 0.132*** 0.257*** 0.085 0.230*** 0.173*** 0.272***

(0.049) (0.046) (0.092) (0.081) (0.049) (0.046)
N 19,112 24,336 19,112 24,336 19,046 24,215
Humanities Subjects -0.022 -0.051 -0.072 -0.060 -0.002 -0.037

(0.056) (0.049) (0.102) (0.086) (0.055) (0.049)
N 19,112 24,336 19,112 24,336 19,046 24,215

Panel B: 12th-grade Performance
STEM Subjects 0.093** 0.121*** 0.149** 0.184*** 0.094** 0.122***

(0.042) (0.034) (0.075) (0.065) (0.042) (0.034)
N 19,113 24,337 19,113 24,337 19,047 24,216
Humanities Subjects -0.059 -0.074** 0.023 -0.072 -0.056 -0.068*

(0.041) (0.036) (0.079) (0.065) (0.042) (0.036)
N 19,113 24,337 19,113 24,337 19,047 24,216

Panel C: University Degree Choice
STEM Subjects 0.036 0.043** 0.014 0.001 0.033 0.042**

(0.028) (0.019) (0.050) (0.033) (0.028) (0.019)
N 19,113 24,337 19,113 24,337 19,047 24,216
Humanities Subjects -0.036** -0.093*** -0.032 -0.132*** -0.042** -0.092***

(0.018) (0.021) (0.031) (0.037) (0.018) (0.021)
N 19,113 24,337 19,113 24,337 19,047 24,216

School-cohort FE &
Student-level controls X X X X X X
Classroom-level Controls X X X X X X
Prop. Females in Other Classrooms X X
Female Classmates’ Prior GPA X X

Notes: Columns (1) and (2) reproduce the baseline results from columns (2) and (5) of Table 4. Results for males
(females) from columns (3) and (5) (columns 4 and 6) are the estimated e↵ects of own classroom female peers share
and average female peers share of other classrooms, which are obtained from the same regression in which both
own class female peers share and average female peers share in other classrooms within the same school and cohort
are included. Student-level controls include age, born in 1st quarter of birth year indicator, prior track choice, pre-
vious GPA, and the share of female classmates in grade 10. Classroom-level controls include classroom-level mean
age, born in 1st quarter of birth year indicator, and classroom size. Standard errors clustered at classroom level are
reported in parentheses. * p < 0.1; ** p < 0.05; *** p < 0.01.
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Table B.15: Nonlinear E↵ects of Female Classmates in High School
Males Females

Est. SE. Est. SE.
(1) (2) (3) (4)

Panel A: 11th-grade Performance
STEM Subjects

Prop.Females in Quantile 2 0.019 (0.018) 0.031* (0.016)
Prop.Females in Quantile 3 0.017 (0.019) 0.047*** (0.015)
Prop.Females in Quantile 4 0.040** (0.019) 0.080*** (0.017)

Humanities Subjects

Prop.Females in Quantile 2 -0.014 (0.021) -0.036** (0.018)
Prop.Females in Quantile 3 -0.059*** (0.022) 0.007 (0.019)
Prop.Females in Quantile 4 0.003 (0.021) 0.000 (0.019)

Panel B: 12th-grade Performance
STEM Subjects

Prop.Females in Quantile 2 0.018 (0.013) -0.010 (0.012)
Prop.Females in Quantile 3 0.009 (0.014) 0.003 (0.012)
Prop.Females in Quantile 4 0.043*** (0.016) 0.033** (0.014)

Humanities Subjects

Prop.Females in Quantile 2 -0.045*** (0.017) -0.010 (0.015)
Prop.Females in Quantile 3 -0.007 (0.017) -0.014 (0.014)
Prop.Females in Quantile 4 -0.019 (0.017) -0.031** (0.015)

Panel C: University Degree Choice
STEM Degrees

Prop.Females in Quantile 2 0.012 (0.010) 0.002 (0.006)
Prop.Females in Quantile 3 -0.011 (0.010) 0.011 (0.007)
Prop.Females in Quantile 4 0.013 (0.011) 0.012 (0.008)

Humanities Degrees

Prop.Females in Quantile 2 -0.002 (0.005) -0.013* (0.007)
Prop.Females in Quantile 3 -0.005 (0.006) -0.018** (0.007)
Prop.Females in Quantile 4 -0.017** (0.007) -0.029*** (0.008)

School-cohort FE &
Student-level controls X X X X
Classroom-level controls X X X X

Notes: The table reports nonlinear e↵ects of the share of female classmates in 11th grade on males’ and females’ out-
comes. The model replaces the single treatment variable with a set of quantile indicators for the di↵erent quantiles
of the proportion of female peers in the classroom. The omitted category is the first quantile (average share of fe-
males is 38% for males and 39% for females), which is the quantile with the lowest share of female classmates. For
male students the range for the proportion of female classmates is 47%-56% and the mean is 52% for Quantile 2,
56%-65% and 60% for Quantile 3, and 65%-95% and 73% for Quantile 4. For female students the range for the pro-
portion of female classmates is 47%-56% and the mean is 52% for Quantile 2, 56%-65% and 61% for Quantile 3, and
65-95% and 74% for Quantile 4. Estimates in each row by gender are generated from the same regression. Student-
level controls include age, born in 1st quarter of birth year indicator, prior track choice, previous GPA, and the share
of female classmates in grade 10. Classroom-level controls include classroom-level mean age, born in 1st quarter of
birth year indicator, and classroom size. Standard errors clustered at classroom level are reported in parentheses. *
p < 0.1; ** p < 0.05; *** p < 0.01.
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Table B.16: Randomness in Sample Attrition

Dependent Variables:
Excused Absence

(Grade 11)
Unexcused Absence

(Grade 11)
Excused Absence

(Grade 12)
Unexcused Absence

(Grade 12)

(1) (2) (3) (4)

Prop. Female Peers 0.003 0.005 0.004 0.001
(0.006) (0.006) (0.006) (0.005)

N 43,451 43,451 43,451 43,451
Mean of Y 0.244 0.241 0.244 0.238
School-cohort FE X X X X

Notes: Each dependent variable listed in the top row is an indicator that equals one if the corresponding mea-
surement is missing. All regressions control for school-cohort fixed e↵ects. Standard errors clustered at class-
room level are reported in parentheses. * p < 0.1; ** p < 0.05; *** p < 0.01.
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Table B.17: Heterogeneous Gender Composition E↵ects on Absenteeism by Neighborhood Income

Panel A - Dependent Variables (Grade 11)

Total Absences Excused Absences Unexcused Absences

Below Median Above Median Below Median Above Median Below Median Above Median

Males Females Males Females Males Females Males Females Males Females Males Females
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Prop. Female Peers -2.989 -4.763 2.138 -3.668 1.285 -3.535* 1.458 -1.663 -4.286*** -1.169 0.709 -1.986
(3.152) (2.906) (3.232) (3.233) (2.178) (2.145) (2.205) (2.223) (1.644) (1.404) (1.830) (1.626)

N 5,835 7,803 8,566 10,640 5,835 7,803 8,566 10,640 5,872 7,861 8,582 10,653
Y Mean 47.147 48.595 49.307 50.615 17.219 20.025 18.686 21.430 29.906 28.523 30.590 29.162
School-cohort FE &
Student-level controls X X X X X X X X X X X X
Class-level controls X X X X X X X X X X X X

Panel B - Dependent Variables (Grade 12)

Total Absences Excused Absences Unexcused Absences

Below Median Above Median Below Median Above Median Below Median Above Median

Males Females Males Females Males Females Males Females Males Females Males Females
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Prop. Female Peers -3.534 -3.141 1.136 -2.555 0.706 -1.077 1.990 -1.669 -4.203*** -2.202 -1.323 -0.655
(2.630) (2.509) (3.380) (3.167) (2.055) (2.122) (2.750) (2.640) (1.366) (1.411) (1.639) (1.525)

N 5,940 7,899 8,466 10,524 5,941 7,900 8,466 10,528 5,994 7,986 8,532 10,593
Y Mean 72.958 76.503 71.196 75.816 37.352 42.086 36.799 42.709 35.560 34.329 34.301 33.024
School-cohort FE &
Student-level controls X X X X X X X X X X X X
Class-level controls X X X X X X X X X X X X

Notes: The table reports heterogeneous e↵ects by neighborhood income of the female peers classroom share in 11th grade on students’ attendance pattern
at the end of grade 11 (Panel A) and grade 12 (Panel B). Student-level controls include age, born in 1st quarter of birth year indicator, prior track choice,
previous GPA, and the share of female classmates in grade 10. Classroom-level controls include classroom-level mean age, share of classmates who are born
in 1st quarter of birth year, and classroom size. Standard errors clustered at classroom level are reported in parentheses. * p < 0.1; ** p < 0.05; *** p < 0.01.



Table B.18: Heterogeneous Gender Composition E↵ect on Absenteeism by School Quality

Panel A - Dependent Variables (Grade 11)

Total Absences Excused Absences Unexcused Absences

Low-quality High-quality Low-quality High-quality Low-quality High-quality

Males Females Males Females Males Females Males Females Males Females Males Females
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Prop. Female Peers -1.922 -5.989** 1.591 -2.541 0.876 -3.182 2.022 -2.373 -2.826* -2.739* -0.394 -0.151
(3.119) (3.039) (3.367) (3.068) (2.140) (2.172) (2.356) (2.244) (1.699) (1.518) (1.761) (1.450)

N 4,930 6,707 9,471 11,736 4,930 6,707 9,471 11,736 4,967 6,765 9,487 11,749
Y Mean 46.292 48.128 50.680 51.739 16.757 19.818 19.493 22.069 29.519 28.276 31.148 29.640
School-cohort FE &
Student-level controls X X X X X X X X X X X X
Class-level controls X X X X X X X X X X X X

Panel B - Dependent Variables (Grade 12)

Total Absences Excused Absences Unexcused Absences

Low-quality High-quality Low-quality High-quality Low-quality High-quality

Males Females Males Females Males Females Males Females Males Females Males Females
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Prop. Female Peers -3.024 -0.938 -0.603 -3.562 0.854 -0.313 -0.164 0.732 -4.150*** -0.860 -0.424 -4.280***
(2.840) (2.315) (2.283) (2.168) (2.201) (1.838) (1.943) (1.888) (1.405) (1.254) (1.241) (1.200)

N 5,078 6,925 9,328 11,498 5,079 6,930 9,328 11,498 5,150 7,010 9,376 11,569
Y Mean 68.559 71.681 73.753 78.779 33.954 38.693 38.700 44.702 34.466 32.866 35.015 34.020
School-cohort FE &
Student-level controls X X X X X X X X X X X X
Class-level controls X X X X X X X X X X X X

Notes: The table reports heterogeneous e↵ects by school quality of the female peers classroom share in 11th grade on students’ attendance pattern at the end
of grade 11 (Panel A) and grade 12 (Panel B). Student-level controls include age, born in 1st quarter of birth year indicator, prior track choice, previous GPA,
and the share of female classmates in grade 10. Classroom-level controls include classroom-level mean age, share of classmates who are born in 1st quarter
of birth year, and classroom size. Standard errors clustered at classroom level are reported in parentheses. * p < 0.1; ** p < 0.05; *** p < 0.01.



Table B.19: Impact of Classroom Gender Composition on Test Scores and Degree Choice when Controlling for Attendance

Panel A Males Females

Dependent Variables:
(Grade 11)

STEM Subjects
(Full Sample)

STEM Subjects
(Reduced Sample)

STEM Subjects
(Reduced Sample)

STEM Subjects
(Full Sample)

STEM Subjects
(Reduced Sample)

STEM Subjects
(Reduced Sample)

(1) (2) (3) (4) (5) (6)
Prop. Female Peers 0.132*** 0.091 0.085 0.257*** 0.257*** 0.249***

(0.049) (0.059) (0.059) (0.046) (0.055) (0.054)
N 19,112 14,400 14,400 24,336 18,442 18,442
Mean of Y -0.015 -0.014 -0.014 0.012 0.006 0.006

Panel B Males Females

Dependent Variables:
(Grade 12)

STEM Subjects
(Full Sample)

STEM Subjects
(Reduced Sample)

STEM Subjects
(Reduced Sample)

STEM Subjects
(Full Sample)

STEM Subjects
(Reduced Sample)

STEM Subjects
(Reduced Sample)

(1) (2) (3) (4) (5) (6)
Prop. Female Peers 0.093** 0.094* 0.084* 0.121*** 0.128*** 0.123***

(0.042) (0.049) (0.049) (0.034) (0.042) (0.042)
N 19,113 14,406 14,406 24,337 18,423 18,423
Mean of Y 0.078 0.067 -0.031 -0.062 -0.080 -0.011

Panel C Males Females

Dependent Variables:
(Major Choice)

STEM Degrees
(Full Sample)

STEM Degrees
(Reduced Sample)

STEM Degrees
(Reduced Sample)

STEM Degrees
(Full Sample)

STEM Degrees
(Reduced Sample)

STEM Degrees
(Reduced Sample)

(1) (2) (3) (4) (5) (6)
Prop. Female Peers 0.036 0.042 0.043 0.043** 0.055** 0.056**

(0.028) (0.034) (0.034) (0.019) (0.022) (0.022)
N 19,113 14,406 14,406 24,337 18,423 18,423
Mean of Y 0.352 0.351 0.351 0.133 0.131 0.131
School-cohort FE &
Student-level controls X X X X X X
Class-level controls X X X X X X
Absenteeism Channel X X

Notes: The table reports the estimated e↵ects of the share of female classmates in grade 11 on students’ academic performance in 11th grade (Panel A), 12th grade (Panel B), and
students’ decision to study STEM at the university level (Panel C) under di↵erent specifications. Columns (1) and (4) reproduce the baseline estimates for males and females. Col-
umn (2) reports the estimated e↵ect from a smaller sample for which we have data on student absenteeism. Columns (3) and (4) report the estimated e↵ects from a specification
that includes controls for student excused and unexcused absenteeism in 11th grade (Panel A), or 12th grade (Panels B and C). Student-level controls include age, born in 1st quar-
ter of birth year indicator, prior track choice, prior GPA, and female peers classroom share in 10th grade. Classroom-level controls include classroom-level mean age, born in 1st

quarter of birth year indicator, and classroom size. Standard errors clustered at classroom level are reported in parentheses. * p < 0.1; ** p < 0.05; *** p < 0.01.



C Appendix

We closely follow the notation and methodology of Gelbach (2016). Let X1 =
[1 PropFemalePeers X W ], which combines all regressors in main specification (1),
and let X2 = [m1

m
2] be the measured mechanisms covariates, where m

1 denotes excused
absences and m

2 denotes unexcused absences. We rewrite equation (1) in the form of a base
model (C.1), where �Base

1 = [� � � �] nests all model parameters in equation (1). We rewrite
equation (4) in the representation of equation (C.2) and use it as a full model in our analysis,
where �Full

1 = [� � � �], and �Full
2 = [⇣1 ⇣2].

Base model:
Y = X1�

Base
1 + ✏Base (C.1)

Full model:

Y = X1�
Full
1 +X2�

Full
2 + ✏Full (C.2)

Under the ideal assumption that E[✏Base|X1] = E[✏Full |X1,X2] = 0, both �Base
1 and �Full

1
are consistently estimated.46 Now consider the coe�cients on X1 from the base model that
ignores X2. Derivation of OLS estimator for �Base

1 is as follows:

�̂1
Base = (X 01X1)�1X 01Y

= (X 01X1)�1X 01(X1�
Full
1 +X2�

Full
2 + ✏Full)

= �Full
1 + (X 01X1)�1X1X2�

Full
2 + (X 01X1)�1X 01✏

Full (C.3)

By equation (C.3), the probability limit of �̂1
Base is

plim �̂1
Base = �Base

1

= �Full
1 +plim (X 01X1)�1X 01X2�

Full
2 +plim (X 01X1)�1X 01✏

Full

= �Full
1 + ��Full

2 (Weak Law of Large Number)

= �Full
1 +⇠ (C.4)

where � = (X 01X1)�1X 01X2 is the matrix of coe�cients obtained by projecting the plane
spanned by the columns of X2 on the plane spanned by the columns of X1, namely:

X2 = X1� +M (C.5)

46In many settings, the error term may contain components that influence both X1 and X2. For example, in survey exper-
iments in which the manipulation variable is gender, the outcome is job promotion, and the moderator is masculinity,
attention errors by respondents may influence both the (perceived) value of the manipulation variable and the assessment
of masculinity. In such cases of endogeneity, �Full1 and �Full2 may be less than consistently estimated.
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whereM is the projection residuals on the plane orthogonal to the plane spanned by columns
of X1. Equation (C.5) is essentially a matrix operation representation of the OLS estimation
of equation (3), where the j-th column of � is �j = [�̂j ↵̂j �̂j ✓̂j ]0 (j = 1,2), which is the vector
of estimated coe�cients in equation (3).

Conventionally, the derivation of equation (C.4) is used to illustrate that ⇠ is the omit-
ted variable bias that results when we exclude X2 when estimating �Base

1 through using OLS
estimation. In our case, we assume that both OLS estimators �̂1

Base and �̂1
Full are consis-

tent estimators of �Base
1 and �Full

1 , since E[✏Base|X1] = E[✏Full |X1,X2] = 0. We can use this
omitted-variable bias formula to decompose the di↵erence in estimated peer e↵ects between
the base and full models, (�̂1

Base� �̂1
Full), into meaningful components. We derive the dif-

ference as follows:

plim �̂1
Base = �Full

1 +⇠

) plim �̂1
Base = plim �̂1

Full +plim ⇠̂ (�̂1
Full

is a consistent estimator f or �
Full

1 )

) �̂1
Base = �̂1

Full + ⇠̂

) ⇠̂ = �̂1
Base � �̂1

Full (C.6)

We know that estimating (C.1) and (C.2) using OLS yields the following equality:

X1�̂1
Base + ✏̂Base = Y = X1�̂1

Full +X2�̂2
Full + ✏̂Full

Multiplying both sides by (X 01X1)�1X 01 yields:

�̂1
Base = �̂1

Full + (X 01X1)�1X 01X2�̂2
Full (C.7)

From equation (C.6), we know:

⇠̂ = (X 01X1)�1X 01X2�̂2
Full

= ��̂2
Full =

2X

j=1

�j �̂2
Full, j (C.8)

where �̂2
Full, j is the j-th row of �̂2

Full . Equation (C.8) provides the decomposition of the dif-
ference in estimated peer e↵ects into components that are caused by the explanatory power
of X2, the mechanisms of measured absenteeism behaviors:

⇠̂PropFemalePeers = �̂Base
PropFemalePeers

� �̂Full
PropFemalePeers

= �1
PropFemalePeers

�̂2
Full, 1

|                        {z                        }
excused absences

component

+�2
PropFemalePeers

�̂2
Full, 2

|                        {z                        }
unexcused absences

component

(C.9)
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Rearranging equation (C.9), we have:

�̂Base
PropFemalePeers

|            {z            }
overall e↵ects

(�̂)

= �̂Full
PropFemalePeers

|            {z            }
unexplained
component (�̂)

+�1
PropFemalePeers

�̂2
Full, 1

|                        {z                        }
excused absences
component (⇣̂1↵̂1)

+�2
PropFemalePeers

�̂2
Full, 2

|                        {z                        }
unexcused absences
component (⇣̂2↵̂2)

(C.10)

Therefore, the explanatory power of excused absences in explaining the female classroom
composition e↵ect is ⇣̂1↵̂1/�̂, and for unexcused absences is ⇣̂2↵̂2/�̂.
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D Appendix

We closely follow the notation and method of Heckman, Pinto, and Savelyev (2013) to es-
tablish equation (4). We suppress the notation for individual i, classroom c, school s, and
cohort t for simplicity. LetD denote treatment assignment. D = 1 if a male or female student
is treated (i.e., has more female peers in the classroom) and D = 0 otherwise. The subscript
d 2 {0,1} of variables represents the treatment status when treatment is fixed at d. Let Y0
and Y1 be the counterfactual outcomes when d is fixed at “1" (treated) and “0" (non-treated),
respectively. Therefore, the observed outcome of each individual is

Y =DY1 + (1�D)Y0 (D.1)

Let the vector of absenteeism behaviors that can be changed by gender composition and par-
tially produce the treatment e↵ect be m. The vector of absenteeism behaviors when treat-
ment is fixed at d is md = (mj

d
: j 2 J ), where J is a set for all mechanisms. Therefore md

can written as: md =Dm1 + (1�D)m0. For simplicity, we combine vectors of controls X0 and
W0 in equation (1) in Z0 = [X0 W0], and combine coe�cients � and � in ⌘ = [� �]. Outcome
equation of treatment status d for a male or female student can be written as follows:

Yd = d +m0
d
⇣ +Z0⌘ + ✏̃d, d 2 {0,1} (D.2)

where ✏̃d is assumed to be a zero-mean error term and independent of regressors m0
d
and

Z0. Treatment is assumed to a↵ect mediating factors (so m0
d
varies with d), but not to a↵ect

the impact of mediating factors and controls on outcomes (so ⇣ and ⌘ are independent of d).
Because we cannot measure all relevant mechanisms, we let Jp ✓ J be the set of mechanisms
on which we have measurements so that J \ Jp ✓ J is the set of mechanisms on which
we have no measurements. We decompose the term m0

d
⇣ in equation (D.2) into measured

components and unmeasured components:

Yd = d +
X

j2J
⇣
j
m

j

d
+Z0⌘ + ✏̃d

= d +
X

j2Jp
⇣
j
m

j

d

|    {z    }
measured

mechanisms

+
X

j2J \Jp
⇣
j
m

j

d

|        {z        }
umeasured
mechanisms

+Z0⌘ + ✏̃d

= d +
X

j2Jp
⇣
j
m

j

d
+

X

j2J \Jp
⇣
j [mj

d
�E(mj

d
)] +

X

j2J \Jp
⇣
j
E(mj

d
) +Z0⌘ + ✏̃d

= {d +
X

j2J \Jp
⇣
j
E(mj

d
)}

|                     {z                     }
⌧d

+
X

j2Jp
⇣
j
m

j

d
+Z0⌘ + {✏̃d +

X

j2J \Jp
⇣
j [mj

d
�E(mj

d
)]}

|                              {z                              }
✏d

= ⌧d +
X

j2Jp
⇣
j
m

j

d
+Z0⌘ + ✏d, d 2 {0,1} (D.3)
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Here, ⌧d = d +
P

j2J \Jp ⇣
j
E(mj

d
), and ✏d = ✏̃d +

P
j2J \Jp ⇣

j [mj

d
�E(mj

d
)], which is a zero-mean

error term. For ⇣j to be consistently estimated, we assume thatmj

d
is measured without error

and independent of ✏d, d 2 {0,1}, which implies that measured mechanisms are uncorrelated
with unmeasured mechanisms for both the treated and non-treated group.

Feeding equation (D.3) into equation (D.1) , we have:

Y =D⌧1 +D

X

j2Jp
⇣
j
m

j

1 +DZ0⌘ +D✏1 + ⌧0 +
X

j2Jp
⇣
j
m

j

0 +Z0⌘ + ✏0

�D⌧0 �D
X

j2Jp
⇣
j
m

j

0 �DZ0⌘ �D✏0

= ⌧0 + (⌧1 � ⌧0)
|   {z   }

⌧

D +
X

j2Jp
⇣
j [Dm

j

1 + (1�D)mj

0]|                 {z                 }
mj

+Z0⌘ + [D✏1 + (1�D)✏0]
|               {z               }

✏

= ⌧0 + ⌧D +
X

j2Jp
⇣
j
m

j +Z0⌘ + ✏ (D.4)

Equation (D.4) is the alternative representation of equation (4), where ✏ = D✏1 + (1 �D)✏0
is a zero-mean error, and m

j = Dm
j

1 + (1�D)mj

0 represents the mechanism we can measure.
⌧ = ⌧1 � ⌧0 captures the treatment e↵ect that is explained by unmeasured mechanisms, or
unexplained by our measured mechanisms, which is essentially the � in equation (4). Re-
placing ⌧0 with �s,t and D with PropFemalePeers�i,c would not change the interpretation of
estimates and restore equation (4) completely. ⇣

j captures the e↵ect of measured mecha-
nism m

j on outcomes. For ⇣j to be consistently estimated, we need to assume that measured
mechanisms mj

, j 2 Jp, are independent of the unmeasured mechanisms captured in ✏.
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