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1 Introduction

This paper considers the problem of making inferences about the effects of a program on multiple outcomes

when assignment of treatment status is imperfectly randomized. By imperfect randomization we mean

that treatment status is reassigned after an initial randomization on the basis of characteristics that may

be observed or unobserved by the analyst. As noted by Heckman et al. (2010a), such post-randomization

reassignment of treatment status often occurs in real-world field experiments. Since these characteristics

may affect outcomes, differences in outcomes between the treated and untreated groups may be due to

imperfections in the randomization instead of the treatment itself.

We develop a partial identification approach to this problem that makes use of information limiting the

extent to which randomization is imperfect to show that it is still possible to make nontrivial inferences

about the effects of the program in such settings. We consider a family of null hypotheses in which each

null hypothesis specifies that the program has no effect on one of several outcomes of interest. Under weak

assumptions, we construct a procedure for testing this family of null hypotheses in a way that controls the

familywise error rate – the probability of even one false rejection – in finite samples.

Our methodology depends on a detailed understanding of the way in which treatment status was assigned.

For this reason, we develop it in the context of a specific application – a reanalysis of the HighScope Perry

Preschool program – and our assumptions are tightly connected to the specific way in which treatment status

was assigned in this program. We emphasize, however, that the underlying approach applies not only to this

program, but more generally to the analysis of other experiments with imperfect randomization.

The HighScope Perry Preschool program is an influential preschool intervention that targeted disadvan-

taged African-American youth in Ypsilanti, Michigan in the early 1960s. The reported beneficial long-term

effects of the program are a cornerstone in the argument for early childhood intervention in the United

States. Most analyses of the HighScope Perry Preschool program have failed to account for the limited sam-

ple size of the study, the multiplicity of null hypotheses being tested, as well as the way in which treatment

status in the program was imperfectly randomized. For some of these criticisms, see, e.g., Herrnstein and

Murray (1994), and Hanushek and Lindseth (2009). Two notable exceptions are Heckman et al. (2010a)

and, more recently, Heckman and Karapakula (2019), who both acknowledge these concerns and address

them in different ways than we do here. We postpone a detailed comparison of our approach with theirs to

Remarks 2.1 and 4.5 below, where we emphasize that both approaches do not address post-randomization

reassignment of treatment status on the basis of unobserved characteristics in the fashion we do. In partic-

ular, as explained further in Section 2 below, a key part of the intervention required families to be available

for weekly home visits, and some families for whom this was not possible were removed from the treatment

group and placed in the control group. In our analysis, we treat the availability of families for these weekly

home visits as an unobserved characteristic that may be related to potential outcomes. With our approach,

we still find, like the previous studies, statistically significant effects of the program on a wide variety of

outcomes, including outcomes related to criminal activity for males and females, and thereby contribute to

the cumulative evidence of the favorable effects of this intervention.

The remainder of the paper is organized in the following way. Section 2 describes the HighScope Perry

Preschool program, focusing on the way in which treatment status was reassigned after the initial random-
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ization on the basis of characteristics both observed and unobserved by the analyst. Section 3 formally

describes our setup and assumptions, which are motivated by the description in the preceding section of the

way in which treatment status was assigned in the program. We present our testing procedures in Section

4. We first discuss the problem of testing a single (joint) null hypothesis, before considering the problem

of testing multiple null hypotheses. Section 5 presents the results of applying our methodology to the data

from the HighScope Perry Preschool program. Section 6 concludes.

2 Empirical Setting

2.1 HighScope Perry Preschool Program

The HighScope Perry Preschool program was a prominent early childhood intervention conducted at the

Perry elementary school in Ypsilanti, Michigan during the early 1960s. Beginning at age three and lasting

for two years, treatment consisted of a 2.5-hour preschool program on weekdays during the school year

supplemented by weekly home visits from teachers. The preschool curriculum was organized around the

concept of active learning, guiding students through key learning experiences with open-ended questions.

Social and emotional skills were also fostered. See Heckman et al. (2013). The purpose of the weekly home

visits was to involve the parents in the learning process. Further details about the program are described in

Schweinhart et al. (1993).

Program eligibility was determined by the child’s Stanford-Binet IQ score and a measure of the family’s

socio-economic status. The measure of socio-economic status used was constructed as a weighted linear

combination of father’s skill level and educational attainment and the number of rooms per person in the

family’s home. With a few exceptions, those with Stanford-Binet IQ scores less than 70 or greater than

85 were excluded from the program.1 Likewise, with a few exceptions, those with a sufficiently high socio-

economic status were excluded from the program.

The study enrolled a total of five cohorts over the years 1962-1965; two cohorts were admitted in the first

year and one in each subsequent year. The first cohort is exceptional in that treated children only received

one year of treatment beginning at age four. Altogether 123 children from 104 families were admitted to the

program. Siblings are distributed among families as follows: 82 singletons, 17 pairs, 1 triple and 1 quadruple.

Follow-up interviews were conducted yearly from 3 to 15 years old. Additional interviews were conducted

in three waves that cover persons in age intervals centered at ages 19, 27, and 40 years. Program attrition

remained low through age 40. Indeed, over 91% of the participants were accounted for in the final survey.

Moreover, two-thirds of those who did not were dead. Interviews covered a variety of outcomes. See

Schweinhart et al. (1993) and Heckman et al. (2010a) for further discussion. For the purposes of our analysis,

we focus on outcomes that have attracted considerable attention in the literature on the HighScope Perry

Preschool program: IQ, achievement test scores, educational attainment, criminal behavior, and employment

at three different stages of the life cycle.

1An IQ of 85 was the U.S. Black average in the time period of our study.
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Figure 1: Graphical Description of the Randomization Procedure

CT

Step 5:  Post-Assignment Swaps
Remove some participants with 
working mothers from treatment.

CT

Step 4:  Assign Treatment
Randomly assign treatment 
status to the unlabeled sets
(with equal probability).

CT

Step 3:  Balance Unlabeled Sets
Some swaps between unlabeled sets 
to balance gender and SES.

evenodd

Step 2:  Form Unlabeled Sets
Participants ranked by IQ, with 
ties broken randomly; even- 
and odd-ranked form two sets.

evenodd

IQ
 S

co
re

Step 1:  Set Aside Younger Siblings
Participants with elder siblings are assigned the 
same treatment status as those elder siblings.

Unrandomized
Entry Cohort

CTCT
Previous Waves

Notes: T and C refer to treatment and control groups respectively. Blue circles represent males. Pink circles represent females.

2.2 Randomization Procedure

Our methodology relies on a detailed understanding of the randomization procedure. According to Schwein-

hart et al. (1993), treatment status was assigned for each cohort of children in the following way:

Step 1: Younger siblings of earlier program participants were assigned the same treatment status as

their elder siblings.

Step 2: Remaining participants were ranked according to their Stanford-Binet IQ scores at study entry.

Those with the same Stanford-Binet IQ scores were ordered at random with all orderings equally likely.

Two groups were defined by the odd-ranked and even-ranked participants.

Step 3: Some participants were exchanged between the two groups in order to “balance” gender and

the socio-economic status scores while keeping Stanford-Binet IQ scores roughly constant.

Step 4: The two groups defined in this way were labeled treatment and control with equal probability.

Step 5: Some participants with single mothers who were working and unavailable for the weekly home

visits were moved from the treatment group to the control group.

This procedure is depicted graphically in Figure 1. The rationale for assigning younger siblings of earlier

program participants to the same treatment status as their elder siblings was to avoid “spillovers” within a

family, that might weaken the estimated treatment effect. For our purposes, it is most important to note

that Step 5 depends on a characteristic we do not observe – whether the family has a single mother who
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is working and unavailable for the weekly home visits – but was observed and used by those determining

treatment status (at least for families who were offered treatment). To the extent that the availability of the

mother is related to the outcomes of interest, it is important to account for this feature of the randomization

procedure in analyzing experimental outcomes.

Note that, by symmetry, we may without loss of generality interchange Steps 3 and 4 of the randomization

procedure without affecting the distribution of treatment status. Thus, the randomization procedure may

be described equivalently as follows:

Step 1′: Younger siblings of earlier program participants were assigned the same treatment status as

their elder siblings.

Step 2′: Remaining participants were ranked according to their Stanford-Binet IQ scores at study

entry. Those with the same Stanford-Binet IQ score were ordered at random with all orderings equally

likely. Two groups were defined by the odd-ranked and even-ranked participants.

Step 3′: The two groups defined in this way were labeled treatment and control with equal probability.

Step 4′: Some participants were exchanged between the treatment and control groups in order to

“balance” gender and socio-economic status score while keeping Stanford-Binet IQ score roughly con-

stant.

Step 5′: Some participants with single mothers who were working and unavailable for the weekly home

visits were moved from the treatment group to the control group.

This observation will be useful below when modeling the distribution of treatment status.

Remark 2.1. Heckman and Karapakula (2019) interpret “balance” in Step 3 to be defined in terms of

Hotelling’s multivariate two-sample t-squared statistic being less than some threshold. They also discipline

Step 5 by assuming that there were (at most) a certain number of participants with single, working mothers

for whom special accommodations could be made for the weekly home visits, and that the analyst chose which

families to accommodate at random. Both the threshold and the number of participants for whom special

accommodations could be made are treated as unknown, but can be partially identified from the observed

data. For testing procedures that are also valid in finite samples based on this different model of the way

in which treatment status was determined, we refer the reader to Heckman and Karapakula (2019, 2021).

We emphasize, however, that our approach allows, in particular, that working mothers were unavailable for

these weekly home visits for reasons that may be important in that they are related to potential outcomes.

3 Setup and Assumptions

3.1 Setup

We index outcomes of interest by k ∈ K, families by j ∈ J and siblings in the jth family by i ∈ Ij . Denote

by Yi,j,k(0) the kth (potential) outcome of the ith sibling in the jth family if the jth family were not treated
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and by Yi,j,k(1) the kth (potential) outcome of the ith sibling in the jth family if the jth family were treated.

Let Dj be the treatment status of the jth family. Denote by Zi,j the vector of observed characteristics of

the ith sibling in the jth family used in determining treatment status and by Ui,j a scalar summary of the

unobserved characteristics of the ith sibling in the jth family used in determining treatment status that we

will describe further below. In our empirical analysis,

Zi,j = (Gi,j , SESj , IQi,j ,Wi,j) ,

where Gi,j is the gender of the ith sibling in the jth family, SESi,j is the measure of socio-economic status

of the jth family, IQi,j is the Stanford-Binet IQ score at study entry of the ith sibling in the jth family, and

Wi,j is the cohort or wave of the ith sibling in the jth family. In this notation, the kth observed outcome of

the ith sibling in the jth family is

Yi,j,k = DjYi,j,k(1) + (1−Dj)Yi,j,k(0) .

Recall that only the characteristics of the eldest sibling in each family eligible to participate matter for

determining treatment status. We will therefore drop the dependence on i and henceforth simply write Zj

in place of Zi∗,j where

i∗ = arg min
i∈Ij

Wi,j .

In light of the description of the randomization procedure in Section 2.2, we interpret Ui,j as an indicator of

whether the ith sibling in the jth family has a mother who (at the date of enrollment of the eldest eligible

sibling) was working and unavailable for weekly home visits. Since this variable does not depend on i, we

will henceforth drop the dependence on i and simply write Uj . Further define MWj to be an indicator for

whether the jth family has a mother who (at the date of enrollment of the eldest sibling) was working.

Although this variable is not used directly in the assignment of treatment status, we must, of course, have

Uj = 0 whenever MWj = 0.

It is useful to introduce the following shorthand notation. Define

D = (Dj : j ∈ J)

Z = (Zj : j ∈ J)

U = (Uj : j ∈ J)

MW = (MWj : j ∈ J) .

For d ∈ supp(D) and k ∈ K, further define

Yk = (Yi,j,k : i ∈ Ij , j ∈ J)

Yk(d) = (Yi,j,k(dj) : i ∈ Ij , j ∈ J) .

Denote by P the distribution of

((Yk(d) : d ∈ supp(D), k ∈ K), D, Z, U,MW ) ,
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which is assumed to lie in a class of distributions Ω, i.e.,

((Yk(d) : d ∈ supp(D), k ∈ K), D, Z, U,MW ) ∼ P ∈ Ω .

The assumptions we impose on Ω are presented in Section 3.2 below. For k ∈ K, let

ωk = {P ∈ Ω : Yk(d) does not depend on d} .

In this notation, our goal is to test the family of null hypotheses

Hk : P ∈ ωk for k ∈ K (1)

in a way that controls in finite samples the familywise error rate – the probability of even one false rejection.2

More formally, let K0(P ) denote the set of true null hypotheses, i.e.,

K0(P ) = {k ∈ K : P ∈ ωk} ,

and define

FWERP = P{reject ≥ 1 hypothesis Hk with k ∈ K0(P )} .

In this notation, our goal is to test the family of null hypotheses (1) in a way that satisfies

FWERP ≤ α for all P ∈ Ω (2)

for some pre-specified value of α ∈ (0, 1).

Before proceeding to a formal description of our testing procedure, it is useful to model the distribution

of D. Let D̃ be a vector of treatment assignments produced from Steps 1′-3′ above, i.e., according to the

initial randomization before any reassignment of treatment status. Let

δ : {0, 1}|J| × supp(Z,U)→ {0, 1}|J|

be the rule used to exchange participants from the treatment group to the control group in Steps 4′ and 5′.

It is helpful to decompose δ into two functions in the following way. Let

δ1 : {0, 1}|J| × supp(Z)→ {0, 1}|J|

be the rule used to exchange participants from the treatment group to the control group in Step 4′. In an

analogous fashion, let

δ2 : {0, 1}|J| × supp(U)→ {0, 1}|J|

be the rule used to move participants with single mothers who were working and unavailable for the weekly

home visits from the treatment group to the control group in Step 5′. In this notation, D can be written as

2The null hypotheses specified in (1) are sometimes referred to as “sharp” null hypotheses to distinguish them from “weak”
null hypotheses that specify instead that E[Yk(d)] does not depend on d. For a discussion of how randomization tests may be
used to test such null hypotheses, see, e.g., Chung and Romano (2013), Bugni et al. (2018) and Bai et al. (2022a).
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the composition of two functions:

D = δ2(δ1(D̃, Z), U) = δ(D̃, Z, U) .

Remark 3.1. By requiring that our testing procedure satisfy criterion (2), all of the null hypotheses rejected

by our procedure are false with probability at least 1 − α. The recent literature on multiple testing has

considered error rates less stringent than the familywise error rate (see, e.g., Romano, Shaikh, and Wolf,

2010). One example is the m-familywise error rate – the probability of m or more false rejections for some

m ≥ 1. Another example is the false discovery proportion —the ratio of false rejections to total rejections

(defined to be zero when there are no rejections at all)—where P{FDP > γ} for some γ ∈ [0, 1), and here

FDP is the false discovery proportion. With such error rates, one is only guaranteed that, with probability

at least 1− α, “most” of the null hypotheses rejected by the procedure are false. However, such procedures

may have much greater ability to detect false null hypotheses. This feature may be especially valuable when

the number of null hypotheses under consideration is very large. See Romano and Shaikh (2006a), Romano

and Shaikh (2006b) and Romano et al. (2008) for a discussion of some procedures for control of such error

rates. We do not pursue such error rates here because in our application the number of null hypotheses

under consideration is relatively small.

3.2 Assumptions

In this section, we describe the assumptions we impose on Ω. These assumptions are connected tightly to

our description of the randomization procedure in Section 2.2. We first state our assumptions formally and

then relate them briefly to our description of the way in which treatment status was assigned.

Some of our assumptions are most succinctly stated in terms of groups of transformations. Here, we use

the term group as it is used in mathematics. See, e.g., Dummit and Foote (1999) or any other standard

reference. To this end, let G be the set of permutations of |J | elements. This set forms a group under the

usual composition of functions. Define the action of g ∈ G on |J |-dimensional vectors v by

gv = (vg(1), . . . , vg(|J|)) .

Let H = {−1, 1}|J|. This set forms a group under component-wise multiplication. Define the action of h ∈ H

on |J |-dimensional vectors v by the rule that the jth element of hv equals vj if hj = 1 and 1− vj if hj = −1.

For z ∈ supp(Z), let

Hz = {h ∈ H : hj = hj′ whenever wj = wj′} .

Here, wj is the component of z corresponding to the wave in which the eldest eligible sibling in the jth family

was enrolled in the program. In other words, Hz is the subgroup of H that is constant across families whose

treatment status was determined in the same wave. Using this notation, we may now state the assumptions

that will underlie our analysis.

Assumption 3.1. For any P ∈ Ω, (Yk(d) : d ∈ supp(D), k ∈ K) ⊥⊥ D|Z,U under P .

Assumption 3.2. For any g ∈ G, δ1(gd, gz) = gδ1(d, z).
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Assumption 3.3. For any h ∈ Hz, hδ1(d, z) = δ1(hd, z).

Assumption 3.4. The jth component of δ2(d, u) equals zero if dj = 1 and uj = 1; otherwise, jth component

of δ2(d, u) equals dj .

Assumption 3.5. For any P ∈ Ω, Uj = 0 if MWj = 0 w.p.1. under P .

Our first assumption simply states that our description of the way in which treatment status was assigned

in Section 2.2 is accurate in the sense that the only variables used to determine treatment status that affect

potential outcomes are Z and U . Hence, potential outcomes are independent of treatment status conditional

on Z and U . Assumption 3.2 is a mild equivariance restriction that will be satisfied provided that the way in

which treatment status is reassigned in Step 4′ does not depend on the order of the participants themselves.

Informally, it says that “ordering of participants doesn’t matter.” Assumption 3.3 further imposes a mild

symmetry requirement on the way in which treatment status is reassigned in Step 4′. Informally, it says

that “the ‘odd’ and ‘even’ labels don’t matter.” Assumption 3.4 simply defines the function δ2 so that it

agrees with Step 5′ in the description of the randomization procedure in Section 2.2, i.e., participants in the

treatment group with single mothers who were working and unavailable for the weekly home visits are moved

to the control group. Finally, Assumption 3.5 imposes the logical restriction that Uj and MWj described

in Section 3.1, i.e., Uj = 0 whenever MWj = 0. In other words, for a family to have a single mother who

is working and unavailable for the weekly home visits, it must obviously be the case that the family has a

mother who is working.

4 Testing Procedures

In Section 4.2 below, we develop methods for testing a single (joint) null hypothesis of the form

HL : P ∈ ωL , (3)

where

ωL =
⋂
k∈L

ωk

for L ⊆ K, in a way that controls the usual probability of a Type I error at level α. In Section 4.3, we extend

these methods to test the family of null hypotheses (1) so that it satisfies (2).

Our methods for testing (3) in a way that controls the usual probability of a Type I error will be based on

the general principle behind randomization tests of exploiting certain symmetries in the distribution of the

observed data. Here, by a symmetry in the distribution of the observed data we mean that there is a group

of transformations of the observed data that leave its distribution unchanged whenever the null hypothesis

is true. When this is the case, it is possible to construct a test of the null hypothesis that controls the usual

probability of a Type I error in finite samples. Perhaps the most familiar example of a randomization test is a

permutation test, which may be used to test the null hypothesis that two i.i.d. samples from possibly distinct

distributions are in fact from the same underlying distribution, but, as explained in Section 15.2 of Lehmann

and Romano (2005), the principle applies more generally. Recently, randomization tests have been employed
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in a wide variety of settings, including settings with staggered treatment adoption (Shaikh and Toulis, 2021),

experiments with covariate-adaptive randomization (Bugni et al., 2018; Bai et al., 2022b), experiments with

interference (Basse et al., 2019), settings with a “small” number of clusters (Canay et al., 2017, 2021; Cai

et al., 2023), regression kink designs (Ganong and Jäger, 2018) and regression discontinuity designs (Canay

and Kamat, 2017). The main challenge in applying these ideas in our setting lies in finding symmetries in

the distribution of treatment status that persist despite the complicated way in which treatment status was

assigned in the HighScope Perry Preschool program. These symmetries are developed in Lemma 4.1, which

is presented in Section 4.1 below, by exploiting Assumptions 3.2–3.3 in conjunction with Assumption 3.4.

4.1 A Useful Lemma

In order to describe the symmetries in the distribution of the observed data that we will exploit formally,

we require some further notation. For (z, u) ∈ supp(Z,U), let Gz,u be the subgroup of G that only contains

g ∈ G such that

g(j) = j′ =⇒ (zj , uj) = (zj′ , uj′) .

In particular, g ∈ GZ,U will therefore act on a |J |-dimensional binary vector of treatment statuses by

permuting treatment status among those families with the same observed and unobserved characteristics

(defined by the characteristics of the eldest child in the case of families with multiple children). For (z, u) ∈
supp(Z,U), let

Hz,u = {uh : h ∈ Hz} ,

where the jth element of uh equals hj if uj = 0 and 1 if uj = 1. The action of h ∈ Hz,u on |J |-dimensional

vectors v is defined as it was for H and Hz. In particular, h ∈ HZ,U will therefore act on a |J |-dimensional

binary vector of treatment statuses by possibly “flipping” treatment status for all families whose treatment

status was determined in the same wave except for those with mothers who were working and unavailable

for the weekly home visits (at the date of enrollment of the eldest eligible sibling). Using this notation, we

may now state the lemma.

Lemma 4.1. Let g ∈ GZ,U and h ∈ HZ,U . Suppose D̃ is distributed as described in Section 3. Then, the

following statements hold:

(i) If Assumptions 3.2 and 3.4 hold, then

gδ(D̃, Z, U)|Z,U d
= δ(D̃, Z, U)|Z,U . (4)

(ii) If Assumptions 3.3 and 3.4 hold, then

hδ(D̃, Z, U)|Z,U d
= δ(D̃, Z, U)|Z,U . (5)

(iii) If Assumptions 3.2–3.4 hold, then

hgδ(D̃, Z, U)|Z,U d
= δ(D̃, Z, U)|Z,U . (6)
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Proof: In order to establish (i), first note that by definition of D̃ and GZ,U , we have that

gD̃|Z,U d
= D̃|Z,U . (7)

Next, note for any g′ ∈ G, we have that

δ(g′d, g′z, g′u) = δ2(δ1(g′d, g′z), g′u)

= δ2(g′δ1(d, z), g′u)

= g′δ2(δ1(d, z), u)

= g′δ(d, z, u) , (8)

where the first and fourth equalities follow from the definition of δ, the second equality follows from As-

sumption 3.2, and the third equality follows from Assumption 3.4. Finally, for any A ⊆ {0, 1}|J|, note

that

P{gδ(D̃, Z, U) ∈ A|Z,U} = P{δ(gD̃, gZ, gU) ∈ A|Z,U}

= P{δ(gD̃, Z, U) ∈ A|Z,U}

= P{δ(D̃, Z, U) ∈ A|Z,U} ,

where the first equality follows from (8), the second follows from the definition of GZ,U , and the third from

(7).

In order to establish (ii), first choose h∗(h′) ∈ Hz for each h′ ∈ Hz,u such that uh∗(h′) = h′. Next, note

that by the definition of D̃ and HZ , we have that

h∗(h)D̃|Z,U d
= D̃|Z,U . (9)

Further observe that Assumption 3.4 implies for any h′ ∈ Hz,u that

h′δ2(d, u) = δ2(h∗(h′)d, u) . (10)

Hence, for any h′ ∈ Hz,u,

h′δ(d, z, u) = h′δ2(δ1(d, z), u)

= δ2(h∗(h′)δ1(d, z), u)

= δ2(δ1(h∗(h′)d, z), u)

= δ(h∗(h′)d, z, u) , (11)

where the first and fourth equalities follow from the definition of δ, the second equality follows from (10),

and the third equality follows from Assumption 3.3. Finally, for any A ⊆ {0, 1}|J|, note that

P{hδ(D̃, Z, U) ∈ A|Z,U} = P{δ(h∗(h)D̃, Z, U) ∈ A|Z,U}

= P{δ(D̃, Z, U) ∈ A|Z,U} ,
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where the first equality follows from (11) and the second follows from (9).

Part (iii) follows immediately from parts (i) and (ii), which completes the proof.

In Sections 4.2 and 4.3 below, we employ the symmetries in the distribution of treatment status described

in Lemma 4.1 above to develop tests of (3) and (1).

4.2 Testing a Single (Joint) Null Hypothesis

In order to describe our test of the single (joint) null hypothesis (3) for L ⊆ K, we first require a test statistic.

To this end, define

XL = ((Yk : k ∈ L), D, Z)

and let

TL = TL(XL)

be a test statistic for testing (3). Note that we impose the mild requirement that TL only depends on XL.

In particular, we assume that it does not depend on Yk with k 6∈ L. We assume further that large values of

TL provide evidence against the null hypothesis.

We now describe the construction of a critical value for our test. For this purpose, the following lemma

is useful:

Lemma 4.2. If P ∈ ωL and Assumption 3.1 holds, then

(Yk : k ∈ L) ⊥⊥ D|Z,U

under P .

Proof: Consider P ∈ ωL. Assumption 3.1 implies that

(Yk(d) : d ∈ supp(D), k ∈ L) ⊥⊥ D|Z,U

under P . Since P ∈ ωL, we have further that Yk(d) = Yk for all k ∈ L. The desired result thus follows.

In order to describe an important implication of Lemma 4.2, it is useful to define

hgXL = ((Yk : k ∈ L), hgD,Z)

for g ∈ GZ,u and h ∈ HZ,u. If Assumptions 3.1–3.4 hold, then Lemmas 4.1–4.2 together imply that

(XL, U)|Z,U d
= (hgXL, U)|Z,U (12)

whenever P ∈ ωL, g ∈ GZ,U and h ∈ HZ,U . This symmetry suggests that we can construct a critical value

with which to compare our test statistic by re-evaluating it at hgXL for each g ∈ GZ,U and h ∈ HZ,U . As

mentioned previously, U is unknown, but its possible values can be limited by Assumptions 3.4–3.5 to the
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set U(D,MW ), where

U(d,mw) = {u ∈ {0, 1}|J| : uj = 0 whenever dj = 1 or mwj = 0} .

In other words, we may use as our critical value

c̄L(XL, 1− α) = max
u∈U(D,MW )

cL(XL, u, 1− α) , (13)

where

cL(XL, u, 1− α) = inf

t ∈ R :
1

|GZ,u||HZ,u|
∑

g∈GZ,u,h∈HZ,u

I{TL(hgXL) ≤ t} ≥ 1− α

 ,

where I{·} is the indicator function. It is worth noting that in our setting |U(D,MW )| = 218. This idea is

formalized in the following theorem:

Theorem 4.1. Under Assumptions 3.1–3.5, the test that rejects HL whenever

TL(XL) > c̄L(XL, 1− α) ,

where c̄L(XL, 1− α) is defined by (13) controls the usual probability of a Type I error at level α, i.e.,

P{TL(XL) > c̄L(XL, 1− α)} ≤ α

for all P ∈ ωL.

Proof: Consider P ∈ ωL. Define

φ(XL, u) = I{TL(XL) > cL(XL, u, 1− α)} .

From Assumptions 3.4 and 3.5, we have that U ∈ U(D,MW ). Hence,

c̄L(XL, 1− α) ≥ cL(XL, U, 1− α) . (14)

It therefore suffices to show that

EP [φ(XL, U)] ≤ α . (15)

To this end, first note under Assumptions 3.1–3.4 that it follows from Lemmas 4.1–4.2 for any g ∈ GZ,U and

h ∈ HZ,U that (12) holds under any such P . Next, note that

EP

 ∑
g∈GZ,U ,h∈HZ,U

φ(hgXL, U)|Z,U

 =
∑

g∈GZ,U ,h∈HZ,U

EP [φ(hgXL, U)|Z,U ]

=
∑

g∈GZ,U ,h∈HZ,U

EP [φ(XL, U)|Z,U ]

= |GZ,U ||HZ,U |EP [φ(XL, U)|Z,U ] , (16)
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On the other hand, since

cL(hgXL, U, 1− α) = cL(XL, U, 1− α)

for any g ∈ GZ,U and h ∈ HZ,U , we also have that

EP

 ∑
g∈GZ,U ,h∈HZ,U

φ(hgXL, U)|Z,U

 ≤ |GZ,U ||HZ,U |α . (17)

It follows from (16) and (17) that

EP [φ(XL, U)|Z,U ] ≤ α ,

from which the desired conclusion (15) follows immediately.

Remark 4.1. Once (12) is established, the proof of Theorem 4.1 follows the usual arguments that underlie

the validity of randomization tests. See, e.g., Chapter 15 of Lehmann and Romano (2005) for a textbook

discussion of such methods. Nevertheless, we include the details of the argument for completeness.

Remark 4.2. Note that cL(XL, u, 1−α) defined in (4.2) requires computing TL(hgXL) for every g ∈ GZ,u

and h ∈ HZ,u. In our setting, the sets GZ,u and HZ,u are sufficiently small that the construction of the

critical value is computationally feasible. In other settings, this may not be the case and one may need to

resort to a stochastic approximation to the critical value. This can be done without affecting the finite-sample

validity of the resulting test. See Section 15.2 of Lehmann and Romano (2005) for details.

Remark 4.3. It is straightforward to include additional “exogenous” variation in the way that treatment

status was reassigned. Here, by “exogenous” variation we mean variation unrelated to outcomes, but used in

determining treatment status. Such variation could be useful, for instance, if in Step 3 of the randomization

procedure there was more than one way to exchange participants across the two groups in order to “balance”

gender and socio-economic status scores. For example, we could allow δ to depend on an additional random

variable V that enters δ1 if

gV |Z,U d
= V |Z,U

for any g ∈ G, Assumption 3.2 were strengthened so that

δ1(gd, gz, gv) = gδ1(d, z, v)

for any g ∈ G, and Assumption 3.3 were strengthened so that hδ1(d, z, v) = δ1(hd, z, v) for any h ∈ Hz.

Under these conditions, it follows by arguing as in the proof of Lemma 4.1 that (6) holds, from which the

rest of our arguments would follow. In particular, our testing procedures would remain unchanged even if

we were to allow for this type of additional variation.

Remark 4.4. An inspection of the proof of Theorem 4.1 reveals that the validity of our test hinges crucially

on part (iii) of Lemma 4.1. On the other hand, there is no reason to suspect that

gδ(D̃, Z, U)|Z,U d
= δ(D̃, Z, U)|Z,U

for g ∈ G. For this reason, a test of (3) based simply on permutations from G does not necessarily control

the usual probability of a Type I error. Nevertheless, because such a test has been applied in earlier analyses
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of the HighScope Perry Preschool program, we include it in our comparisons below.

Remark 4.5. In addition to the “näıve” permutation test described in Remark 4.4, Heckman et al. (2010a)

consider a test of (3) based on permutations from Gz, where, by analogy with the definition of Gz,u given

earlier, Gz is the subgroup of G that contains only g ∈ G such that

g(j) = j′ =⇒ zj = zj′ .

It is possible to justify such an approach using Lemma 4.1 provided that one assumes that the way in which

treatment status was reassigned in Step 5 of the randomization procedure depended only on whether the

participant had a mother who was working. If one were willing to make such an assumption, then one could

simply expand Z so as to include MW and ignore the effect of δ2 on treatment status (e.g., by setting all

elements of U equal to zero). Under Assumptions 3.2 and 3.4, it then follows from part (i) of Lemma 4.1

that

gD|Z d
= D|Z

for g ∈ GZ . On the other hand, because MW was used in an asymmetric fashion to reassign treatment

status, Assumption 3.3 is no longer plausible, so it is not reasonable to expect parts (ii) and (iii) of Lemma

4.1 to apply. Unfortunately, the number of permutations in GZ alone is too small to be useful. Heckman

et al. (2010a) therefore impose additional assumptions, such as parametric restrictions about the way in

which certain observed characteristics affect outcomes, to make use of this limited number of permutations.

Note further that the resulting approach does not have the finite-sample validity of the approach developed

here.

4.3 Testing Multiple Null Hypotheses

We now return to the problem of testing the family of null hypotheses (1) in a way that satisfies (2). Under

Assumptions 3.2–3.5, it is straightforward to calculate a p-value p̂k for each Hk using Theorem 4.1 by simply

applying the theorem with L = {k} and computing the smallest value of α for which the null hypothesis is

rejected. The resulting p-values will satisfy

P{p̂k ≤ u} ≤ u

for all u ∈ (0, 1) and P ∈ ωk. A crude solution to the multiplicity problem would therefore be to apply a

Bonferroni or Holm-type correction. Such an approach would indeed satisfy (2), as desired, but implicitly

relies upon a “least favorable” dependence structure among the p-values. To the extent that the true

dependence structure differs from this “least favorable” one, improvements may be possible. For that reason,

we apply a stepwise multiple testing procedure developed by Romano and Wolf (2005) for control of the

familywise error rate that implicitly incorporates information about the dependence structure when deciding

which null hypotheses to reject. Our discussion follows that in Romano and Shaikh (2010), wherein the

algorithm is generalized to allow for possibly uncountably many null hypotheses.

In order to describe our testing procedure, we first require a test statistic for each null hypothesis such

that large values of the test statistic provide evidence against the null hypothesis. As before, we impose the
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requirement that the test statistic for Hk depends only on X{k}. Denote such a test statistic by Tk(X{k}).

Next, for L ⊆ K, define

TL(XL) = max
k∈L

Tk(X{k}) .

Finally, for L ⊆ K, denote by c̄L(XL, 1− α) the critical value defined in (13) with this choice of TL(XL).

Our testing procedure is summarized in the following algorithm:

Algorithm 4.1.

Step 1: Set L1 = K. If

max
k∈L1

Tk(X{k}) ≤ c̄L1
(1− α) ,

then stop and reject no null hypotheses; otherwise, reject any Hk with

Tk(X{k}) > c̄L1
(XL1

, 1− α)

and go to Step 2.

...

Step j: Let Lj denote the indices of remaining null hypotheses. If

max
k∈Lj

Tk(X{k}) ≤ c̄Lj
(XLj

, 1− α) ,

then stop and reject no further null hypotheses; otherwise, reject any Hk with

Tk(X{k}) > c̄Lj
(XLj

, 1− α)

and go to Step j + 1.

...

Theorem 4.2. Under Assumptions 3.1–3.5, Algorithm 4.1 satisfies (2).

Proof: The claim follows from Theorem 4.1 and arguments given in Romano and Wolf (2005) or Romano

and Shaikh (2010). Since the argument is brief, we include it here for completeness.

Suppose that a false rejection occurs. Let ĵ be the smallest step at which a false rejection occurs. By the

minimality of ĵ, we must have that

Lĵ ⊇ K0(P ) . (18)

It follows that

c̄Lĵ
(XLĵ

, 1− α) ≥ c̄K0(P )(XK0(P ), 1− α) . (19)

Since a false rejection occurred, we must also have that

max
k∈K0(P )

Tk(X{k}) > c̄Lĵ
(XLĵ

, 1− α) .
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Hence,

max
k∈K0(P )

Tk(X{k}) > c̄K0(P )(XK0(P ), 1− α) ,

and the probability of this event is bounded above by α by Theorem 4.1.

Remark 4.6. It is straightforward to calculate a multiplicity-adjusted p-value p̂adj
k for each Hk using Theo-

rem 4.2 by simply computing the smallest value of α for which each null hypothesis is rejected. The resulting

p-values have the property that the procedure that rejects any Hk with p̂adj
k ≤ α satisfies (2).

Remark 4.7. The choice of Tk(X{k}) in Algorithm 4.1 is arbitrary, but we apply it to the HighScope Perry

Preschool data with Tk(X{k}) given by a Studentized difference in means between the treatment and control

groups for all outcomes except cognitive outcomes, in which case we use a Mann-Whitney U -statistic. Of

course, one could just as well use a more omnibus statistic, such as a Kolmogorov-Smirnov statistic.

5 Empirical Results

We now apply the methodology developed in the preceding section to the HighScope Perry Preschool data.

We find that the program has statistically significant effects on a wide range of outcomes even after con-

trolling for (i) imperfections in the randomization protocol and (ii) multiplicity of the null hypotheses under

consideration. Recall that (i) involves (a) the way in which treatment status was reassigned to “balance”

certain observed characteristics as well as (b) the way in which some participants were removed from the

treatment group and placed in the control group on the basis of unobserved characteristics. We address (i)

by exploiting symmetries in the distribution of treatment status that remain valid in the presence of both

(a) and (b) together with information limiting the extent of (b). We address (ii) by demanding control of

the familywise error rate, thereby eliminating concerns about selectively reporting results for only a subset

of these null hypotheses.

When applying Theorem 4.1 and Theorem 4.2 in this empirical setting, we discretize SESj as an indicator

denoting whether SESj exceeds the median value among all families in the same wave. There is no loss of

generality with this approach if we assume that the goal of Step 3 of the randomization procedure was to

“balance” the two groups so that their respective median SESj values were the same. We note, however,

that because we exploit HZ,u as well as GZ,u, our inferences would remain nontrivial even if we were to

adopt a much finer discretization of SESj . Indeed, they would remain valid even if the discretization were

so fine that GZ,u became a singleton consisting of only the identity permutation for all u ∈ U(D,MW ).

Following Heckman et al. (2010a), we analyze seven conceptually distinct “blocks” of outcomes, each of

which is of independent interest: one is related to IQ measures, a second to achievement measures, a third to

educational attainment, a fourth to criminal activity, and three to employment at ages 19, 27, and 40. We

divide the data further by gender. We correct for the multiplicity of outcomes within each of these fourteen

blocks of outcomes. Because of our limited sample size, we adopt the convention that null hypotheses with

p-values less than or equal to .10 are statistically significant.

The results of our analysis are presented in Tables 1 and 2 for males and females, respectively. The

first column of each table displays the outcome analyzed. The second column gives the age at which the
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outcome is measured. The third and fourth columns contain, respectively, the mean value of the outcome

for the control group and the difference in means between the treatment group and the control group. The

remaining columns present p-values from various testing procedures:

• The column under the heading “Asymp.” presents (multiplicity) unadjusted p-values from a one-sided

test based on comparing a Studentized difference of means with a critical value computed from a

normal approximation.

• The two columns under the heading “Näıve” display, respectively, the unadjusted and adjusted p-values

based on the näıve application of a permutation test in this setting. In other words, these p-values are

based on the unrestricted set of permutations G rather than GZ,u and HZ,u.

• The two columns under the heading “U = 0” display, respectively, the unadjusted and adjusted p-

values derived from applying Theorem 4.1 and Theorem 4.2 assuming that U(D,MW ) = {{0}|J|},
i.e., ignoring the effect of Step 5 of the randomization procedure.

• The two columns under the heading “Max-U” display, respectively, the unadjusted and adjusted p-

values derived from applying Theorems 4.1 and 4.2.

Note that the “Näıve” p-values do not account for the imperfections in the randomization stemming from

either (a) or (b) above. For that reason, as discussed in Remark 4.4, there is no reason to suspect that these

p-values are valid, but they are included here for comparison. Note further that by construction the “Max-

U” (un)adjusted p-values are smaller than the “U = 0” (un)adjusted p-values. The “Näıve” (un)adjusted

p-values, however, may be either larger or smaller than the “U = 0” (un)adjusted p-values.

Our findings are broadly consistent with those in Heckman et al. (2010a). They are summarized as

follows:

Cognition: The top panels of Tables 1 and 2 present our evidence on cognitive abilities as measured

by Stanford-Binet IQ score at different ages and various California Achievement Test (CAT) scores at

age 14. The “Näıve” adjusted p-values suggest a statistically significant effect on Stanford-Binet IQ

scores for both males and females at young ages. These findings survive the more stringent “Max-U”

adjusted p-values for the youngest age. The “Näıve” adjusted p-values also suggest a significant effect

on various CAT scores at age 14 for both males and females. These inferences weaken for females in the

“Max-U” adjusted p-values, but for males are generally stronger using the “Max-U” adjusted p-values

than the “Näıve” adjusted p-values.3

Schooling: The third block in Tables 1 and 2 present our findings for four educational attainment

measures. None of the adjusted p-values show any significant effect of the program on schooling for

males. For females, the “Näıve” and “U = 0” adjusted p-values show significant effects for all schooling

outcomes, and two of these null hypotheses are rejected even in the “Max-U” adjusted p-values. We

find that the effects of the program on High School Graduation and GPA for females remain statistically

significant even after accounting for both imperfections in the randomization and the multiplicity of

null hypotheses.

3In later work, Garćıa et al. (2023) find strong effects on cognition as measured by executive function through age 54. They
also show strong effects on a variety of long term outcomes.
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Crime: The fourth block in Tables 1 and 2 present our findings for four outcomes related to criminal

activity. These outcomes are of special importance since reductions in crime are important contrib-

utors to the significant rate of return estimates reported in Heckman et al. (2010b). “Total crime

cost” includes victimization, police/court, and incarceration costs. See Heckman et al. (2010b) for a

more detailed discussion of this variable and its contribution to the rate of return of the program.

“Non-victimless charges” refer to felony crimes associated with substantial costs to crime victims. Vic-

timless charges, on the other hand, refer to illegal activities, such as illegal gambling, drug possession,

prostitution, and driving without a license plate, that do not produce victims.

The “Näıve” adjusted p-values suggest a statistically significant effect of the program on all outcomes

for females and for two outcomes for males. Only one of the significant findings for females survives in

the “U = 0” and “Max-U” adjusted p-values – “Total charges.” On the other hand, we find statistically

significant effects on all four outcomes for males in the “U = 0” adjusted p-values. Only one of these

survives in the “Max-U” adjusted p-values – “Total non-victimless crimes.”

Employment: The final three panels in Tables 1 and 2 present our findings for three outcomes

related to employment measured at different ages. The “Näıve” adjusted p-values show a statistically

significant effect on only one outcome related to employment for males – current employment measured

at age 40. The “U = 0” adjusted p-values show a statistically significant effect on the “number of jobless

months in the past two years measured at age 27.” This effect survives even in the “Max-U” adjusted

p-values. The “Näıve” adjusted p-values show a significant effect on almost all outcomes for females.

The number of statistically significant effects decreases substantially using the “U = 0” adjusted p-

values, and disappears entirely for outcomes measured at age 27. Only effects on outcomes measured

at age 19 persist in the “Max-U” adjusted p-values.

We additionally consider aggregating the outcomes within each of the fourteen blocks described above

into a summary index. This index is composed of the average rank of participant i’s outcomes across each

block of variables. As in our analysis above, we consider males and females separately. In this way, we

obtain two families of null hypotheses: one corresponding to the seven summary indices for males, and

another corresponding to the seven summary indices for females. The results of this exercise are summarized

in Table 3. The “Näıve” adjusted p-values show a statistically significant effect on only achievement scores

for males, whereas the “U = 0” adjusted p-values show a statistically significant effect on both crime and

achievement scores for males. Only the effect on achievement scores for males, however, remains according

to the “Max-U” adjusted p-values. Both the “Näıve” adjusted p-values and the “U = 0” adjusted p-values

show a significant effect on almost all outcomes for females. Effects on IQ, achievement scores and schooling,

remain significant in the “Max-U” adjusted p-values.

6 Conclusion

This paper develops and applies a framework for inference about the effects of a program on multiple

outcomes when the assignment of treatment status is imperfectly randomized. The key idea that underlies

our approach is to make use of information limiting the extent to which randomization is imperfect. Using this
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approach, we have constructed under weak assumptions a procedure for testing the family of null hypotheses

in which each null hypothesis specifies that the program had no effect on one of several outcomes of interest

that controls the familywise error rate in finite samples. We use our methodology to reanalyze data from

the HighScope Perry Preschool program. The reported beneficial long-term effects for the HighScope Perry

Preschool program are a cornerstone in the argument for early childhood intervention in the United States.

We find statistically significant effects of the program for both males and females, thereby showing that

some of the criticisms regarding the reliability of this evidence are not justified. We believe our framework

will be useful in analyzing other studies where randomization is imperfect, provided that the information

limiting the extent to which randomization is imperfect is available, as it is in the case of the HighScope

Perry Preschool program.
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Garćıa, J. L., J. J. Heckman, and V. Ronda (2023, May). The lasting effects of early childhood education
on promoting the skills and social mobility of disadvantaged african americans. Journal of Political
Economy 131 (6), 1477–1506.

Hanushek, E. and A. A. Lindseth (2009). Schoolhouses, Courthouses, and Statehouses: Solving the Funding-
Achievement Puzzle in America’s Public Schools. Princeton, NJ: Princeton University Press.

Heckman, J. J. and G. Karapakula (2019). The Perry pre-schoolers at late midlife: A study in design specific
inference. NBER Working Paper 25888.

Heckman, J. J. and G. Karapakula (2021, June). Using a satisficing model of experimenter decision-making
to guide finite-sample inference for compromised experiments. The Econometrics Journal 24 (2), C1–C39.

Heckman, J. J., S. H. Moon, R. Pinto, P. A. Savelyev, and A. Q. Yavitz (2010a, July). Analyzing so-
cial experiments as implemented: A reexamination of the evidence from the HighScope Perry Preschool
Program. Quantitative Economics 1 (1), 1–46.

Heckman, J. J., S. H. Moon, R. Pinto, P. A. Savelyev, and A. Q. Yavitz (2010b, February). The rate of
return to the HighScope Perry Preschool Program. Journal of Public Economics 94 (1–2), 114–128.

Heckman, J. J., R. Pinto, and P. A. Savelyev (2013, October). Understanding the mechanisms through which
an influential early childhood program boosted adult outcomes. American Economic Review 103 (6), 2052–
2086.

Herrnstein, R. J. and C. A. Murray (1994). The Bell Curve: Intelligence and Class Structure in American
Life. New York: Free Press.

24



Lehmann, E. L. and J. P. Romano (2005). Testing Statistical Hypotheses (3 ed.). New York: Springer-Verlag.

Romano, J. P. and A. M. Shaikh (2006a). On stepdown control of the false discovery proportion. In
Optimality, pp. 33–50. Institute of Mathematical Statistics.

Romano, J. P. and A. M. Shaikh (2006b). Stepup procedures for control of generalizations of the familywise
error rate. The Annals of Statistics 34 (4), 1850–1873.

Romano, J. P. and A. M. Shaikh (2010). Inference for the identified set in partially identified econometric
models. Econometrica 78, 169–211.

Romano, J. P., A. M. Shaikh, and M. Wolf (2008). Formalized data snooping based on generalized error
rates. Econometric Theory 24 (2), 404–447.

Romano, J. P., A. M. Shaikh, and M. Wolf (2010, September). Hypothesis testing in econometrics. Annual
Review of Economics 2 (1), 75–104.

Romano, J. P. and M. Wolf (2005, March). Exact and approximate stepdown methods for multiple hypothesis
testing. Journal of the American Statistical Association 100 (469), 94–108.

Schweinhart, L. J., H. V. Barnes, and D. P. Weikart (1993). Significant Benefits: The HighScope Perry
Preschool Study Through Age 27. Ypsilanti, MI: HighScope Press.

Shaikh, A. M. and P. Toulis (2021). Randomization tests in observational studies with staggered adoption
of treatment. Journal of the American Statistical Association 116 (536), 1835–1848.

25


	Introduction
	Empirical Setting
	HighScope Perry Preschool Program
	Randomization Procedure

	Setup and Assumptions
	Setup
	Assumptions

	Testing Procedures
	A Useful Lemma
	Testing a Single (Joint) Null Hypothesis
	Testing Multiple Null Hypotheses

	Empirical Results
	Conclusion

