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1 Introduction

Macroeconomists have long argued that limited adjustment of wages is important for business

cycles (Keynes, 1937). If wages are stable, then profits per worker and labor demand are

volatile. Equipped with this insight, many models incorporate rigidities that reduce wage

cyclicality, leading unemployment to be responsive to business cycle shocks (Hall, 2005;

Gertler and Trigari, 2009) and dampening inflation dynamics (Gertler, Sala and Trigari,

2008; Blanchard and Gaĺı, 2010; Christiano, Eichenbaum and Trabandt, 2016).

However, mapping the theory of wage rigidity to data is difficult because compensation

is complex. In particular, incentive pay—such as piece-rate pay, bonuses, profit sharing,

commissions and stock options—is prevalent. Approximately half of all workers receive

some incentive pay, including some 30% of bottom-decile earners (Lemieux, Macleod and

Parent, 2009; Makridis and Gittleman, 2018). Longer-term incentives, such as promotions,

are also common. Furthermore, incentive pay appears relatively flexible. Bonuses are raised

and lowered frequently at the micro level (Grigsby, Hurst and Yildirmaz, 2021) and are found

to be strongly procyclical in some, though not all, studies (Bils, 1985; Devereux, 2001; Shin

and Solon, 2007; Swanson, 2007).

This paper asks how flexible incentive pay affects unemployment dynamics. We consider

a rich dynamic incentive contract with moral hazard and persistent idiosyncratic shocks

similar to Edmans, Gabaix, Sadzik and Sannikov (2012), which we embed in the Diamond–

Mortensen–Pissarides (DMP) labor search model. Risk-neutral firms match with risk-averse

workers in a frictional labor market and produce output as a function of idiosyncratic and

aggregate productivity and worker effort. Firms observe aggregate productivity but cannot

distinguish between idiosyncratic productivity and effort. Therefore, firms propose flexible

incentive pay to overcome the resulting moral hazard problem by conditioning wages on

output to balance the desire to insure the worker with a need to incentivize effort. We also

allow the worker’s utility at the start of the contract to be higher during expansions due to

bargaining or cyclicality in the outside option.

Our model allows for cyclical and flexible incentive pay, consistent with micro evidence.

If the marginal product of effort falls during recessions, then firms find effort less valuable

and lower expected wages. By contrast, standard labor search models without moral hazard

(e.g., Shimer, 2005) attribute all wage cyclicality to bargaining. Additionally, our dynamic

environment recognizes that employment is a long-term relationship (Barro, 1977).

Our first analytical result is that wage cyclicality due to incentives does not dampen the

first-order response of unemployment to shocks. We study a version of the flexible incentive

pay economy without bargaining or cyclical outside options, in which all fluctuations in
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wages are due to incentives. Then we prove an equivalence result: the impulse response of

market tightness to aggregate productivity shocks is the same in the flexible incentive pay

economy without bargaining as in the economy with exogenously fixed real wages of Hall

(2005) as long as both models are calibrated to the same steady-state labor share. Therefore,

procyclical incentive wages do not per se mute the response of unemployment to business

cycle shocks, since a model with fixed wages has the same unemployment response.

Our result may be surprising. After all, a standard argument is that flexible bonus

pay dampens unemployment fluctuations by reducing marginal costs during contractions

(e.g., Weitzman, 1986). The intuition behind our contrasting result relates to incentives. In

our model, the response of profits to aggregate shocks determines unemployment dynamics.

With flexible incentive pay, wages fall after a contraction, which dampens the response of

profits—the standard marginal cost effect. However, there is a less standard incentive effect

of wage changes. If wages fall, then workers may have weaker incentives and lower their

effort, which amplifies the fall in profits and offsets the marginal cost effect. For the optimal

incentive contract, the incentive and marginal cost effects of wage changes on profits cancel

out exactly, due to an envelope theorem. Therefore, profits in the flexible incentive pay

economy behave as if neither wages nor effort had responded to the aggregate shock.

Our second analytical result shows that wage cyclicality due to bargaining or outside

options dampens the impulse response of unemployment, as in standard labor search models

without incentives. Reintroducing bargaining into the flexible incentive pay model, we show

that only the portion of wage fluctuations associated with changes in worker utility at the

start of the contract, which we dub “bargained wage cyclicality,” affects the response of

unemployment to business cycle shocks. Intuitively, wage cyclicality due to bargaining or

outside options dampens unemployment fluctuations for a standard reason: lower bargained

wages during a contraction do not imply an offsetting fall in effort and thus stabilize profits.

These results are fairly general: they apply for utility functions with general forms and

for idiosyncratic shock processes with arbitrary persistence.1 This generality is surprising

since dynamic incentive contracts are often hard to characterize outside special cases (e.g.,

Holmstrom and Milgrom, 1987). We sidestep this difficulty by characterizing the dynamics of

profits without characterizing the optimal contract, using a suitable envelope theorem from

the applied mathematics literature on sensitivity analysis (Bonnans and Shapiro, 2000).

Our analytical results characterize the impulse response of market tightness—and thus

unemployment—to exogenous productivity shocks. This statistic matters for a variety of

1We also establish a similar result in a richer environment with endogenous separations (Mortensen and
Pissarides, 1994) and limited worker commitment. Our incentive model also nests incentive contracts such
as tournaments.
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reasons. For instance, the impulse response of unemployment is a key determinant of price

inflation dynamics in New Keynesian models with frictional labor markets. Indeed, we

establish in an appendix that the slope of the Phillips curve in the New Keynesian search

model of Christiano et al. (2016) is the same with flexible incentive pay or with rigid wages

as in Hall (2005).

Our analytical results imply that researchers should estimate the portion of wage cycli-

cality that is due to bargaining or outside option cyclicality and filter out wage cyclicality

due to incentives. The final part of this paper pursues this goal. We calibrate a version

of our model to match micro moments of wage adjustment, such as the variance of incum-

bent wage growth and the pass-through of idiosyncratic profitability shocks—both of which

inform the strength of incentives—as well as new hire wage cyclicality, which informs the

cyclicality of workers’ outside options and their bargaining power. The calibrated model

generates significant unemployment volatility consistent with the time series.

Our third result is numerical: We find that bargained wage cyclicality accounts for ap-

proximately 54% of overall wage cyclicality. Therefore, the response of unemployment to

business cycle shocks is large in the calibrated model even though wages are relatively pro-

cyclical. We also show how to calibrate a simple version of our model with bargaining but

without incentives, similar to standard labor search models. To generate the same unemploy-

ment impulse response as that under the full model, the model must be calibrated for only

bargained wage cyclicality—i.e., 54% of the overall wage cyclicality in the data, a number

such as −0.54.

Taken together, our three results suggest that researchers studying the impulse responses

of unemployment may work with simple and standard models without dynamic incentive

contracts as long as these models are calibrated to match only bargained wage cyclicality.

Our numerical approach suggests that these simple models should target wage cyclicality that

is weakly procyclical, compared to measures of overall wage cyclicality in the data. However,

we stress that our numerical results are tentative and urge those undertaking future empirical

work to distinguish wage cyclicality that is due to bargaining versus incentives.

Let us make three caveats. First, our mechanism depends on effort and wages positively

comoving over the business cycle, consistent with time series evidence.2 However, cyclical

fluctuations in effort are hard to measure. Second, we do not consider on-the-job search, in

which case incentive pay may also affect recruitment and retention (e.g., Balke and Lamadon,

2For instance, diverse measures of worker effort—from time use surveys, variable capacity utilization,
and information on workplace injuries—all seem to fall during recessions (Burda, Genadek and Hamermesh,
2020; Fernald, 2014; Gaĺı and Van Rens, 2021). Furthermore, the pass-through of idiosyncratic firm shocks
to wages is procyclical (Chan, Salgado and Xu, 2023), consistent with firms seeking to incentivize more effort
during booms.
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2022; Elsby, Gottfries, Krolikowski and Solon, 2023). We leave this aspect to future research.

Finally, our result concerns the impulse response of unemployment to business cycle shocks.

However, the incentive pay model yields impulse responses of labor productivity that differ

from those under simpler models due to effort, evoking a notion of capacity utilization related

to classic theories of labor hoarding (e.g., Burnside, Eichenbaum and Rebelo, 1993).

Related literature. A large literature has developed models that are consistent with

the micro-evidence on state-dependent price setting but tractable enough to study aggregate

rigidity, in part via analytical equivalence results to simpler time-dependent models (e.g.,

Alvarez, Le Bihan and Lippi, 2016; Auclert, Rigato, Rognlie and Straub, 2022). In parallel,

other papers try to isolate which micro moments on price setting are most relevant for

aggregate price rigidity, concluding, for instance, that sales are irrelevant (e.g., Kehoe and

Midrigan, 2008; Eichenbaum, Jaimovich and Rebelo, 2011). We aim to provide a model that

is consistent with the micro-evidence on wage setting and incentive pay but that remains

analytically tractable via an equivalence to simpler models with rigid wages. By doing so,

we can isolate which micro moments on wage setting are relevant for the economy’s response

to shocks—that is, wage changes related to bargaining rather than incentives.3

The literature on wage setting finds that measures of wages that plausibly relate to

incentives—such as annual earnings per hour or bonus pay—often seem more flexible whereas

measures of pay excluding incentives, such as base pay, tend to be rigid. This result seems

true not only for job-stayers’ wages (e.g., Solon, Whatley and Stevens, 1997) but also for new

hires’ wages. For instance, studying base wages for new hires from online vacancy postings

and from administrative payroll data, both of which contain detailed job-level information,

Hazell and Taska (2022) and Grigsby et al. (2021) find limited procyclicality of nominal and

real wages. Studying wages for new hires from survey data that do not separately report

non–base pay, papers such as Bils, Kudlyak and Lins (2022a) find procyclical real wages.4,5

A model is needed to determine the relevant notion of wage cyclicality for unemployment

dynamics in the presence of incentive pay. Our contribution is to provide such a model—

which can be calibrated to microdata—to clarify that wage cyclicality arising from incentives

does not mute the response of unemployment to business cycle shocks.

Our paper also contributes to the large literature relating wage rigidity to unemployment

dynamics (e.g., Fukui, 2020; Blanco, Drenik, Moser and Zaratiegui, 2022). Many papers

3The literature on nominal price rigidity finds that sales do not matter for aggregate rigidity because they
are transient, staggered and acyclical (Nakamura and Steinsson, 2013). We find that incentive pay does not
matter for aggregate rigidity even if incentive wage changes are persistent, simultaneous and cyclical.

4See Kudlyak (2014), Basu and House (2016), Doniger (2019) and Bellou and Kaymak (2021) for related
papers on the cyclicality of the wage for new hires.

5Grigsby et al. (2021), studying a time period and dataset different from those in Bils et al. (2022a), also
find that bonus wages are cut frequently but are not cyclical.
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study wage setting with exogenous and fixed effort by workers and find that wage rigidity

leads to large unemployment fluctuations while flexible wages dampen these fluctuations.6

Our contribution is to study wage setting with endogenous and variable effort via flexible

incentive pay contracts. We show that highly procyclical unemployment can coexist with

flexible and cyclical wages as long as incentives determine wage cyclicality.

Several papers consider unemployment dynamics with effort. First, Moen and Rosén

(2011) and Zhou (2022) consider elegant models with incentive contracts and wage posting,

finding numerically that incentives amplify unemployment fluctuations. Second, Fongoni

(2020) considers a labor search model in which wages affect effort due to exogenous reference-

dependent preferences and astutely notes that the response of effort to wage changes amplifies

business cycle shocks. Our contribution is to offer a model with dynamic incentive contracts

and bargaining power, which allows a tight mapping to the micro evidence. Moreover, our

approach lets us connect our model to simple models with wage rigidity and to illustrate an

envelope result that explains the amplified fluctuations in unemployment.

A third related paper is Bils, Chang and Kim (2022b), which shows that large employment

fluctuations can exist despite flexible new hire wages if incumbent workers’ wages are rigid

and effort is contractible and determined by Nash bargaining. Our setting is different: we

study a canonical model of dynamic incentive pay with noncontractible effort, which allows

us to draw a sharp distinction between incentive and bargained wage cyclicality.

Finally, our paper builds on the literature studying moral hazard and its macroeconomic

implications (e.g., Holmstrom and Milgrom, 1987; Sannikov, 2008; Doligalski, Ndiaye and

Werquin, 2023).7 These optimal contracting problems are challenging because the firm must

maximize expected profits among a hard-to-characterize continuum of incentive-compatible

contracts. We contribute to this literature in four ways. First, we analytically study the

business cycle implications of moral hazard frictions. Second, we introduce an extensive

margin of unemployment and bargaining over the promised utility of the contract. Third,

we derive our main result without relying on an explicit form of the optimal contract by ap-

plying an envelope theorem to the principal’s objective—therefore, our results apply without

functional form assumptions.

Plan. Section 2 presents a static model similar to Holmstrom’s (1979) that provides

6An incomplete list of papers from this vast literature includes Shimer (2005); Hall and Milgrom (2008);
Gertler and Trigari (2009); Elsby (2009); Rudanko (2009); Brügemann and Moscarini (2010); Kennan (2010);
Gertler, Huckfeldt and Trigari (2020) and Elsby and Gottfries (2022). Some papers within this literature
study implicit contracts, in which firms insure workers against wage risk with exogenous effort (e.g., Azariadis,
1975; Beaudry and Dinardo, 1991; Krusell, Mukoyama and Şahin, 2010).

7Doligalski et al. (2023) show that incentive pay changes the redistributive effects of taxation. Li and
Williams (2015) and Veracierto (2022) study optimal unemployment insurance contracts with moral hazard
and aggregate risk.
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intuition for the role of incentive effects and the irrelevance of incentive wage cyclicality for

unemployment dynamics. Section 3 develops the dynamic labor search model with general

dynamic incentive contracts. Section 4 provides numerical results on the share of wage

cyclicality attributable to incentives versus bargaining. Section 5 concludes.

2 Illustrative Static Model

This section explains our results in an illustrative framework that combines a static Diamond–

Mortensen–Pissarides (DMP) labor search model with two alternative models of wage setting.

The first model features a static incentive contract as in Holmstrom (1979) resulting in pro-

cyclical and flexible wages. The second model has exogenously rigid wages and effort as in

Hall (2005). We show that wage cyclicality due to incentives does not mute the response

of unemployment to productivity shocks whereas wage cyclicality due to bargaining does

dampen this response.

2.1 Environment of the Static Model

Frictional labor markets. There is a unit measure of workers who begin the period unem-

ployed. Workers randomly search for vacancies in a frictional labor market. Workers end the

period employed if they match with a vacancy and otherwise end the period unemployed.

There is a continuum of risk-neutral firms. Firms can post vacancies at a cost κ per vacancy.

θ is the measure of vacancies posted. Since a unit measure of workers is unemployed at the

start of the period, θ is also market tightness—the ratio of vacancies to unemployed workers.

Given search frictions, the probability that an individual vacancy matches with a worker is

q(θ) ≡ Aθ−ν , a decreasing and isoelastic function of the measure of vacancies posted.

Technology. If a firm and worker match, they produce the numeraire good with a

production function y(a, η, z) = z(a + η). Here, z is an exogenous aggregate productivity

term that affects all firms, a is the effort of the employed worker, and η is an exogenous

idiosyncratic shock to production. We term η “noise.” We consider one-worker firms.8

Workers. Workers have risk-averse preferences over consumption c and labor effort a,

given by a utility function u(c, a) that is strictly increasing and strictly concave in c but

weakly decreasing and concave in a. If workers end the period unemployed, they consume

unemployment benefits b(z) and exert no effort. They thus attain utility U(z) ≡ u(b(z), 0).

If employed, the worker exerts effort and is paid a wage w, which she consumes.

8One could consider tournaments by interpreting η as a worker’s performance relative to her peers.
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Information. Aggregate productivity z is common knowledge. Firms are able to observe

their workers’ output; however, they do not observe effort a and noise η separately. Workers

choose effort before the noise η is realized. Thus, firms’ expected profits from a filled vacancy

are J(z) ≡ Eη[z(a+ η)− w], where the expectation is over values of η.

Free entry. Free entry requires that the expected profits from posting a vacancy equal

the cost of posting the vacancy, which implies

κ = q(θ)J(z). (1)

Now, we introduce two models of wage and effort setting.

Flexible incentive pay economy of Holmstrom (1979). When a firm and worker

match, the firm offers the worker a contract that specifies a suggested effort level a(z) and

wages as a function of output realizations w(z, y). Crucially, the firm cannot condition wages

directly on effort, which is unobservable, leading to a moral hazard problem. Therefore, the

firm maximizes profits subject to an incentive compatibility constraint (IC) and a participa-

tion constraint (PC). The IC requires that the suggested effort level be an optimal choice for

the worker given the wage contract offered by the firm. The PC requires that the worker’s

expected utility at the start of the contract, which we often refer to as “ex ante utility,”

be at least B(z). B(z) is a function mapping the aggregate state z to the worker’s ex ante

utility and captures bargaining and outside option cyclicality in reduced form. For instance,

if the firm makes take-it-or-leave-it (TIOLI) offers and workers’ outside option is acyclical

b(z) = b, then the worker’s ex ante utility is the value of the unemployment benefit, so

B = U ≡ u(b, 0). If there is Nash bargaining over the output of a match, then B(z) will be

an increasing function of z.9

The firm’s problem after meeting a worker is

J Incentive(z) ≡ max
a(z),w(z,y)

Eη[z(a(z) + η)− w(z, y)] (2)

subject to a(z) ∈ arg max
ã(z)

Eη [u(w(z, y), ã(z))] [IC]

Eη [u(w(z, y), a(z))] ≥ B(z). [PC]

Our notation makes explicit that effort and wages may depend on realizations of both z and

y (and thus the idiosyncratic component of output a+ η) but that the firm is uncertain over

the realized value of η. Let a∗(z) and w∗(z, y) denote the contracted effort and wage levels

as a function of productivity and output realizations.10

9We formally prove this claim in the dynamic version of our model in Section 3.
10Though the mapping is not exact, one can informally think of a bonus as the component of wages

7



As usual, this contract implies a tradeoff between incentives and insurance. Absent moral

hazard, firms would fully insure workers against wage risk. With moral hazard, firms pass

idiosyncratic noise shocks through to workers’ wages to provide incentives. This simple and

standard model allows flexible pay, since the firm can freely adjust wages subject to the

IC and PC without further restrictions. The firm can freely vary wages with z, potentially

leading to procyclical wages.

Rigid wage economy of Hall (2005). In this benchmark model, wages and effort are

exogenously fixed at ā and w̄, irrespective of z. Let JRigid be the value of a filled vacancy in

this economy. There are no nominal frictions, and we study real wage rigidity.

2.2 The Role of Incentives in Employment Dynamics

First, note that the impulse response of labor market tightness to productivity shocks de-

pends on the dynamics of profits, as is standard in DMP search models with free entry. To

see this point, totally differentiate the free entry condition (1) with respect to log aggregate

productivity ln z and rearrange to obtain

d ln θ

d ln z
=

1

ν
·
d ln J

d ln z
. (3)

That is, the elasticity of market tightness with respect to aggregate productivity z is propor-

tional to the elasticity of expected profits per worker to z, where the constant of proportion-

ality depends on the elasticity of vacancy filling rates with respect to vacancies. Moreover,

the employment rate n is determined by the job finding rate f(θ), which is proportionate to

vacancies and given by f(θ) = Aθ1−ν . Therefore, to understand the response of employment

to shocks, one can simply study the response of profits per worker to aggregate productivity.

To solve for the response of profits, we differentiate expected profits J(z) ≡ Eη[z(a+η)−w]

with respect to z, which implies

dJ(z)

dz
=

direct
productivity︷ ︸︸ ︷
Eη [a] −

marginal
costs︷ ︸︸ ︷

Eη
[
dw

dz

]
+

incentives︷ ︸︸ ︷
zEη

[
da

dz

]
. (4)

The first-order response of profits to aggregate productivity may be decomposed into three

terms. The first is the direct productivity effect: production rises with productivity, ceteris

paribus. The second is the marginal cost effect: when productivity rises, wages may also

associated with incentives, whereas base pay is the component of wages associated with bargaining. For
instance, base pay may be the wage payment under the lowest possible realization of η, which moves with
ex ante utility, whereas bonuses may be wage payments above that lowest level.
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increase, which lowers profits, all else equal. The third effect is an incentive effect: effort

may respond to aggregate productivity shocks. The direct productivity and marginal cost

effects are common in DMP search models. If wages are procyclical and dw/dz is large, then

profits and employment may respond little to productivity shocks (Shimer, 2005).

The incentive effect is less standard. In particular, if effort increases with exogenous

productivity, then profit responses may be large even if expected wages are procyclical. Thus,

procyclical incentives might offset the effect of wages on profits, leading to large employment

responses despite the procyclicality of wages. Wage cyclicality dampens the response of

unemployment to productivity shocks only insofar as wages move more than effort.

The point of this subsection—that incentives matter for employment dynamics—does not

depend on a specific model of wage or effort setting. Equation (4) remains true regardless

of the contracting environment or of whether contracts are set optimally. Different models

merely imply a different direct productivity, marginal cost, and/or incentive effect. Next,

we endogenize a and w in the flexible incentive pay economy of Holmstrom (1979) and rigid

wage economy of Hall (2005) to gauge the incentive and marginal cost effects in each model.

Incentive wage cyclicality and unemployment dynamics. Now we derive our first

key result: that wage cyclicality due to incentives does not dampen unemployment dynamics.

To a first order, the response of employment to productivity shocks is the same in a flexible

incentive pay economy without fluctuations in bargaining power or outside options as in an

appropriately calibrated rigid wage economy—even if incentive pay is highly procyclical.

First, consider the response of profits to z in the rigid wage economy. Here, both the

marginal cost and incentive effects of the wage in equation (4) are trivially zero because

neither effort nor wages respond to z. Therefore, the response of profits to productivity is

just the direct productivity effect: dJRigid(z)/dz = ā.

Second, consider a special case of the flexible incentive pay economy in which B(z) is

constant so that the worker’s ex ante utility from employment is constant. This economy

is a natural benchmark in which all wage cyclicality is due to incentives because there is

no bargaining and outside options are constant. Differentiating profits in the incentive pay

economy (Equation 2) and applying the classic envelope theorem of Milgrom and Segal

(2002), we see that dJ Incentive/dz = a∗(z). Only the direct productivity effect affects the

response of profits to productivity shocks z, exactly as in the rigid wage economy.

This result holds because the marginal cost and incentive effects are equal-sized under the

optimal contract so that their effects on profits cancel out, leaving only the direct productivity

effect. Although wages and effort may adjust, these fluctuations do not affect the profit of

a firm that is optimally choosing effort and wages. The equivalence holds even if wages are
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procyclical under the optimal contract so that dw/dz is large.

To gain intuition, suppose that an increase in z leads the firm to encourage higher effort.

All else equal, higher effort raises profits. To encourage the worker to provide higher effort,

the firm raises the pass-through of idiosyncratic output into wages. The worker then faces

more risk, for which she must be compensated with higher average wages. Ultimately, wages

are procyclical and flexible. All else equal, higher wages lower expected profits.

The effects of higher effort and higher wages on profits, however, exactly cancel each other

out. The reason is that under the optimal incentive contract, the firm is indifferent at the

margin between increasing expected wages and increasing worker effort. Changes in effort

and wages induced by a small change in z have exactly offsetting effects on expected profits.

Expected profits respond to productivity shocks as if neither wages nor effort had changed,

just as in the rigid wage economy. The response of profits—and thus market tightness—is

the same in the rigid wage and flexible incentive pay economies as long as both economies

are calibrated to have the same direct productivity effect (ā = a∗). This is the sense in which

procyclical and flexible incentive wages do not dampen unemployment dynamics.

A numerical example illustrates this equivalence. Figure 1 plots the behavior of the rigid

wage economy (blue line) and the flexible incentive pay economy (red line). Both economies

are calibrated to have the same expected wage and effort (and thus profits and employment)

when z = 1.11 The horizontal axis of each plot represents exogenous labor productivity z,

while the vertical axis plots model-implied employment, expected wages, or effort.

Panel A shows the equivalence of the employment dynamics: the rigid wage and flexible

incentive pay economies generate identical responses to aggregate labor productivity z in

the neighborhood of z = 1. The two models also generate nearly identical employment

movements in response to 5% fluctuations in aggregate productivity. This result illustrates

the envelope theorem in practice: profit dynamics depend only on the direct productivity

effect, which is locally the same in both economies under our calibration.

Panel B shows that wages are procyclical in the incentive pay economy. Therefore, the

employment dynamics are the same even though marginal costs fall significantly during

contractions in the incentive pay economy. Panel C shows the countervailing force: effort

also responds strongly to z in the incentive pay economy. Therefore, incentives offset the

stabilizing effect of marginal costs on profits. Hence, in the incentive pay economy, large

employment responses coexist with procyclical wages.12

11For this illustration, we assume that workers have exponential preferences u(c, a) = − exp(−r(c− a2

2 )).
The unemployment benefit b is calibrated to be 0.4, η is assumed to be normally distributed with mean
0 and standard deviation 0.2, and the parameter governing risk aversion r is 0.8. For simplicity, following
Holmstrom and Milgrom (1987), we solve for the optimal linear (in output) contract.

12We assume that a and z are complements, which makes both wages and effort procyclical in the op-
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Figure 1: Employment, wage and effort fluctuations in the static model

Panel A: Employment n(z) Panel B: Expected Wages E[w|z]

Panel C: Effort a(z)

Notes: These figures plot the level of employment (Panel A), expected wages (Panel B), and effort (Panel
C) as a function of aggregate productivity z in the static model. The red line plots these functions for the
flexible incentive pay economy. The blue line plots these functions for the rigid wage economy, calibrated to
have the same wage and effort as the flexible incentive pay economy for z = 1.

2.3 Bargained Wage Cyclicality and Unemployment Dynamics

We now explain our second analytical result: that wage cyclicality due to bargaining or

cyclical outside options dampens unemployment dynamics, as in standard labor search mod-

els without incentives. To make this point, we augment the flexible incentive pay economy

by allowing B(z) to vary with z. Therefore, the worker’s ex ante utility from employment

varies with aggregate shocks because of changes in her bargaining power or the cyclicality

of outside options. Differentiating the Lagrangian associated with problem (2) implies that

the response of profits to aggregate productivity is

dJ Incentive

dz
= a∗(z)− µ∗(z)B′(z), (5)

where µ∗(z) is the Lagrange multiplier on the participation constraint at the optimum.

timal incentive contract. Without complementarity, wages and effort could be counter- or acyclical, but
employment would still have the same response in the rigid wage and flexible incentive pay economies.
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Equation (5) shows that bargaining power stabilizes profits. With bargaining or a cyclical

outside option, it is not only the direct effect of productivity on profits, a∗(z), that mat-

ters. There is an additional term µ∗(z)B′(z) capturing fluctuations in ex ante utility from

employment. By comparing equations (4) and (5), we can rewrite the promised utility term

as

µ∗(z)B′(z) = Eη
[
dw∗

dz
− z da

∗

dz

]
. (6)

Thus, we term µ∗(z)B′(z) “bargained wage cyclicality” (BWC). This is equal to expected

wage cyclicality, dw∗/dz, in excess of movements in production due to incentivized effort,

da∗/dz. BWC is different from zero if and only if ex ante utility is cyclical, so B′(z) 6= 0. Only

the bargaining-related component of wage cyclicality dampens profit dynamics. Intuitively,

an increase in wages associated with higher ex ante utility does not require workers to offer

higher effort. Therefore, the increase in wages reduces profits, all else equal.

This result is consistent with the standard DMP model with exogenous effort (e.g.,

Shimer, 2005). In our model, as in the standard model, wage cyclicality associated with

bargaining power dampens the impulse response of profits. However, in the standard model,

all wage fluctuations are due to bargaining since da∗/dz = 0 by assumption. Thus, wage

cyclicality always dampens profit and unemployment dynamics. By contrast, wage cyclical-

ity does not necessarily dampen profit dynamics in our flexible incentive pay model since

the wage cyclicality may be due to incentives.

We stress that the model establishes equivalence for the response only of employment

to exogenous labor productivity shocks, which will appear as an impulse response in the

dynamic model to come. The response of output may be different with rigid wages than

with incentive pay. In the incentive pay economy, output per worker varies endogenously

because of endogenous effort, whereas output per worker is exogenous in the rigid wage

economy. With flexible incentive pay, the endogenous component of output per worker is

procyclical when wages are procyclical, evoking a notion of variable capacity utilization.

Taking the two analytical results together, we have seen that wage cyclicality arising

from incentives does not mute unemployment dynamics but wage cyclicality arising from

bargaining does. In Appendix A.6, we recapitulate these arguments with an explicit func-

tional form for the contract, using the framework of Edmans and Gabaix (2011). The next

section proves the results in a rich dynamic environment.

12



3 A Dynamic Model of Incentive Pay with Bargaining

This section studies a dynamic labor search model with long-term incentive contracts per-

mitting, for instance, persistent idiosyncratic shocks and nonseparable utility. The dynamic

model recognizes that labor contracts are long-term relationships and that incentives are

dynamic (e.g., Barro, 1977; Sannikov, 2008). We confirm that our main analytical results

hold in this setting: wage cyclicality due to incentives does not dampen the response of

unemployment to shocks, while wage cyclicality due to bargaining does.

3.1 Economic Environment

Labor market. The labor market follows the standard Diamond–Mortensen–Pissarides

model. Time is discrete. A large measure of risk-neutral firms matches with workers and

produces output. A unit mass of workers is either employed or unemployed and searching for

a job. Let nt denote the measure of employed workers at the start of period t, while ut ≡ 1−nt
is the measure of unemployed workers looking for jobs. Fluctuations in labor market variables

are driven by technology, which follows a first-order Markov process {zt}∞t=0 with lower and

upper bounds z and z. Denote the history of this process until t by zt = {z0, ..., zt}, and

denote the marginal distribution of zt by π̂t(z
t|z0).

Firms post vacancies vt to recruit unemployed workers. The number of matches made

in period t is given by a constant-returns-to-scale matching function m (ut, vt); labor market

conditions are summarized by market tightness θt = vt/ut, with a job finding rate φ(θt) =

m (ut, vt) /ut and a vacancy filling rate qt ≡ q(θt) = m(ut, vt)/vt. Let νt ≡ −d ln qt/d ln θt

denote the period t elasticity of the job-filling rate with respect to θt. Maintaining a vacancy

has a per-period cost κ.

At the end of period t− 1, an exogenous fraction s of workers separate from employment

and enter unemployment. The unemployed search for new jobs, so ut evolves as

ut = ut−1 + s(1− ut−1)− φ(θt−1)ut−1(1− s). (7)

Preferences and consumption. Workers have time-separable risk-averse preferences

over consumption ct ∈ [c, c] and effort at ∈ [a, a] and discount future payoffs by a factor

β ∈ (0, 1) . Preferences are summarized by u (c, a), where u is strictly increasing and strictly

concave in c,, strictly decreasing and strictly concave in a, and Lipschitz continuous.

Employed workers consume their wage in each period, with newly hired workers producing

output and receiving a wage in the period in which they are hired. Workers not hired in

the current period exert no effort and are paid unemployment benefits b (zt), a differentiable
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function of the aggregate state, receiving flow payoff ξ(zt) ≡ u(b(zt), 0).

Therefore, the value of an unemployed worker at the start of period t is

U (zt) = φ (θt) E (zt) + (1− φ (θt)) (ξ(zt) + βE [U (zt+1) |zt]) , (8)

where E(z) is the worker’s value if she begins employment when aggregate productivity is z.

Firms and vacancy posting. Firms are risk neutral and maximize expected profit with

discount factor β. Firms operate a production technology that is constant returns to scale in

the number of employees; therefore, we consider one-worker firms without loss of generality.

Consider a firm i that successfully matches with a worker at time 0 and starts producing

in the same period. The firm’s output in period t is yit = f (zt, ηit), where f is strictly

increasing and continuously differentiable in its arguments and ηit is an idiosyncratic shock

to the firm’s output that is independently distributed across firms. Henceforth, we omit i

subscripts to ease notation.

At the beginning of the period, before the current value of ηt is realized, the worker exerts

effort at that affects the distribution of idiosyncratic shocks. We assume a general process

for ηt, which allows for arbitrary persistence and depends on the worker’s effort. The process

has lower and upper bounds η and η, respectively. Define a history of idiosyncratic shocks

ηt = {η0, ..., ηt}. We characterize the process for ηt by a probability measure πt (ηt|ηt−1, at),

which gives the probability of realizing ηt given the history ηt−1 of past idiosyncratic shocks

and the worker’s history of actions at = {a0, . . . , at}. Thus, workers’ effort affects output by

shifting the distribution of η realizations.

Vacancies may be freely posted at cost κ. Let J(z0) be the firm’s value if it matches with

a worker in some initial period t = 0 when aggregate productivity is z0; the value for a firm

of posting a vacancy at time 0 is then

Π0(z0) = q(θ0)J(z0)− κ. (9)

Free entry into vacancy posting guarantees that this value is zero in equilibrium. We entertain

two possibilities for wage setting.

Flexible incentive pay economy. In this economy, wages are set according to a dynamic

incentive contract. The firm observes the initial value of z0 and will later observe all realiza-

tions of aggregate shocks {zt}∞t=0. Firms additionally observe idiosyncratic shocks ηt in every

period of the match. However, they do not observe workers’ effort at. They thus cannot

observe whether output is high because the worker exerted high effort or received a lucky
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idiosyncratic shock, a classic moral hazard problem.

When a firm and a worker meet, the firm offers the worker a contract to incentivize

effort and maximize firm value. A contract specifies a wage function mapping idiosyncratic

shocks and aggregate productivity to realized wages. The contract does not condition on

the worker’s effort, which is unobservable to the firm, but “recommends” a level of effort

given the history of aggregate and idiosyncratic shocks. The worker chooses effort before the

realization of the idiosyncratic shock to firm output.13

Thus, the contract may be summarized by functions wt(η
t, zt) ∈ [w, w̄] and at(η

t−1, zt) ∈
[a, ā] for all t and all realizations of ηt and zt. Let (w, a) denote a contract, with w ≡
{wt(ηt, zt)}∞t=0,ηt,zt and a ≡ {at(ηt−1, zt)}∞t=0,ηt−1,zt , so that the contract is dynamic and state

contingent. Let X denote the space of possible contracts.

Value of a filled vacancy. Under the contract (w, a) and at initial productivity z0,

the firm’s expected present value of profits from a filled vacancy is

V (w, a; z0) =
∞∑
t=0

(β (1− s))t
∫ ∫ (

f(zt, ηt)− wt(ηt, zt)
)
π̃t
(
ηt, zt|z0, a

)
dηtdzt, (10)

where π̃t(η
t, zt|a) ≡

∏t
τ=0 πτ (ητ |ητ−1, aτ (ητ−1, zτ )) π̂τ (z

τ |z0) is the probability of observing a

realization of ηt and zt given the initial z0 and the contracted effort function a and aτ (ητ−1, zτ )

is the sequence of effort from periods 0 to τ .

Therefore, firms’ period profits are the difference between output and wages. The firm

forms an expectation over profit realizations by integrating over the distribution of both

aggregate and idiosyncratic shocks, the latter of which depend on effort. The risk-neutral

firm discounts period t profits by the economy-wide discount rate βt and the probability

(1− s)t that the match survives t periods.

The contract maximizes the value of a filled vacancy

J (z0) = max
{wt(ηt,zt),at(ηt−1,zt)}∞

t=0,ηt,zt
∈X

V (w, a; z0) (11)

subject to the incentive and participation constraints (IC and PC) described below.

Incentive constraints. The worker chooses effort ã ≡ {ãt (ηt−1, zt)}∞t=0,ηt−1,zt to max-

imize utility under the contract. Therefore, the effort suggested under the contract by the

firm must be incentive compatible; that is, the recommended effort a must be what is chosen

13An alternative notation has effort directly affect production, while the firm cannot distinguish effort
from ηt. A second alternative notation has contracts mapping from idiosyncratic output and aggregate
productivity to wages.
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by the worker, given the wage contract that the firm offers her. Specifically:

[IC] : a ∈ argmax
{ãt(ηt−1,zt)}∞

t=0,ηt,zt

∞∑
t=0

(β (1− s))t
[ ∫ ∫

u

(
wt(η

t, zt), ãt(η
t−1, zt)

)
π̃t
(
ηt, zt|z0, ã

)
dηtdzt

+ βs

∫
U (zt+1) π̂t+1

(
zt+1|z0

)
dzt+1

]
. (12)

Equation (12) is the value of an employed worker at time 0; the IC requires that the

recommended effort maximizes the worker’s value given the wage contract offered by the

firm. The worker discounts period t payoffs by βt. Their value is the sum of two terms. The

first is their value conditional on the match surviving through period t, which occurs with

probability (1− s)t. The realized flow payoff to the worker under the contract is her utility

from consuming the wage offered by the contract and providing effort, which depends on

realizations of aggregate productivity zt and idiosyncratic productivity ηt. Workers’ expected

utility integrates over the distribution of aggregate and idiosyncratic productivity shocks.

When making their effort choice, workers trade off the disutility from higher effort with the

increased probability of realizing a high output draw and, thus, a high wage. The second

term of the worker’s value is the value conditional on separation. If the contract separates

in period t, the worker receives the value of unemployment at the prevailing aggregate

productivity zt. The match separates in period t with probability (1− s)t−1s.

Participation constraint. The second constraint on problem (11) is that the contract

must promise the worker a value of at least E(z0), the “ex ante utility” promised by firms

to workers at the start of the contract. Ex ante utility may fluctuate with z0 due either to

bargaining between a matched firm and worker or changes in workers’ outside options. The

constraint is

[PC] :
∞∑
t=0

(β (1− s))t
[ ∫ ∫

u

(
wt(η

t, zt), at(η
t−1, zt)

)
π̃t
(
ηt, zt|z0, a

)
dηtdzt

+ βs

∫
U (zt+1) π̂t+1

(
zt+1|z0

)
dzt+1

]
≥ E (z0) . (13)

The left-hand side of inequality (13) is the worker’s value under the contract: it is the

objective function in equation (12) evaluated at the effort choices suggested by the contract.

Bargaining and ex ante utility. To close the flexible incentive pay economy, we

must determine the ex ante utility E(z0), which we assume is given by a reduced-form

“bargaining schedule” B(z0).14 Firms commit to providing workers with a utility B(z0)

over the life of the contract. Common bargaining protocols in the labor search literature

14See Blanchard and Gaĺı (2010) and Michaillat (2012) for this approach in search models without effort.
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implicitly define different functions for B(z0). For instance, if firms make take-it-or-leave-it

offers to workers, the value of employment is equal to the value of nonemployment: B(z0) =∑
t β

tE[ξ(zt)|z0], where ξ(zt) is the flow value of unemployment. This nests the case in which

unemployment benefits or the opportunity cost of unemployment are cyclical (Hagedorn

et al., 2013; Chodorow-Reich and Karabarbounis, 2016; Mitman and Rabinovich, 2019).

Nash bargaining also implicitly defines an increasing function for B(z0), as we prove in

Appendix A.1, as do other bargaining protocols such as that in Hall and Milgrom (2008). Our

formulation also evokes a notion of unemployment as a “worker discipline device” (Shapiro

and Stiglitz, 1984): if the value of employment is low because unemployment at present or

in the future is costly, workers will offer higher effort at lower wages.

The reduced-form approach has two advantages. First, our conclusions about the role

of bargaining will be robust to a specific protocol. Second, we can tractably incorporate

bargaining into dynamic incentive contract models. Its disadvantage is that B(z0) is a

reduced-form object, which is not invariant to changes in the primitives of the environment.

Rigid wage economy. Consider a benchmark model with rigid wages and effort following

Hall (2005). Wages and effort take exogenous constant values wt = w̄ and at = ā for all

firms and all t, regardless of realizations of ηt or zt. The worker’s value of employment is the

utility from the match and the continuation value vis-à-vis the possibility that the match

may separate, which is

E (z0) =
∞∑
t=0

(β (1− s))t
(
u (w̄, ā) +

∫
βsU (zt+1) π̂t

(
zt+1|z0

)
dzt+1

)
. (14)

Meanwhile, the firm’s value of a filled vacancy is exogenous and given by

J rigid(z0) =
∞∑
t=0

(β(1− s))t
∫ (

f(zt, ηt)− w̄
)
π̃t(η

t, zt|z0, ā)dηtdzt. (15)

That is, the value of a filled vacancy is given by the expected present discounted value of

production minus the rigid wage, where the expectation is taken over realizations of aggregate

and idiosyncratic shocks at a fixed effort ā in all dates and states.

Equilibrium

Given initial unemployment u0 and a stochastic process {zt, ηt}∞t=0, an equilibrium is a collec-

tion functions θ(z), J(z), U(z), E(z), and contract (w, a) such that, for all firms, (i) tightness

θt satisfies the free entry condition in equation (9) so that Πt = 0 for all t, (ii) unemploy-

ment ut evolves according to equation (7), (iii) the wage and effort functions (w, a) solve
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the firm’s problem (11)-(13) in the flexible incentive pay economy or wt = w̄ and at = ā in

the rigid wage economy, (iv) the value of unemployment U(z) is given by (8), (v) the value

of employment is given by equation (14) in the rigid wage economy or E(z) = B(z) in the

flexible incentive pay economy, and (vi) the value of a filled vacancy J(z) or J rigid(z) is given

by (11) in the flexible incentive pay economy or (15) in the rigid wage economy.

3.2 The Role of Incentives in Employment Fluctuations

We now study the response of employment to exogenous aggregate productivity shocks in the

flexible incentive pay economy. As is standard in DMP models, employment fluctuations are

determined by fluctuations in market tightness, which in turn are governed by fluctuations

in firms’ expected profits per worker. Therefore, it suffices to study how profits per worker

J(z0) fluctuate with z0.

To study profits, we combine the IC and PC into a functional G(w, a), defined such that

G(w, a) ≤ 0 holds if and only if (w, a) is a feasible contract in X that satisfies the IC (12)

and PC (13). Let λ(z0) denote the co-state functional on these constraints. We write the

value of a filled job using the functional Kuhn–Tucker Lagrangian:

J(z0) = V (w∗, a∗; z0)− 〈G(w∗, a∗; z0), λ∗〉 , (16)

where the star superscripts indicate values chosen under the optimal contract offered at z0.

Then, we can decompose the response of firm profits to z0, generalizing decomposition (2)

from Section 2.15 The response of profits to aggregate shocks in the flexible incentive pay

economy is

dJ (z0)

dz0

=
∂

∂z0

V (w∗, a∗; z0)︸ ︷︷ ︸
(A) direct productivity effect on profits

−
〈

∂

∂z0

G (w∗, a∗; z0) , λ∗ (z0)

〉
︸ ︷︷ ︸

(B) direct effect on participation and incentives

(17)

+
∑

x∈{w∗,a∗}

[∂xV (w∗, a∗; z0)− 〈∂xG (w∗, a∗; z0) , λ∗ (z0)〉] · dx
dz0

−
〈
G (w∗, a∗; z0) ,

dλ∗(z0)

dz0

〉
︸ ︷︷ ︸

(C) indirect effects on optimal contract and costates

where ∂x represents the vector of partial derivatives with respect to some variable x. The

direct productivity effect (A) measures how shocks to initial productivity affect the expected

present value of output in all periods, where the expectation conditions on initial productivity

15The notation 〈x, x∗〉 denotes the value of the linear functional x∗ at a point x. This notation is necessary
because there is a continuum of constraints—see Section 3.1.1 of Golosov et al. (2016) for a formal definition
of Lagrangians with this notation.
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z0 and contracted effort a∗. This is the marginal effect of increasing z0 on current and

expected future yt, which evaluates to

∂

∂z0

V (w∗, a∗; z0) =
∞∑
t=0

(β (1− s))t ∂

∂z0

E [f(zt, ηt)|z0, a
∗] . (18)

Term (B) captures the effects on the constraints. Since z0 affects the incentive constraint

only indirectly, through the contract (w, a), there is no direct effect of z0 on incentive con-

straints. Thus, (B) includes only the direct effect of exogenous productivity movements on

the participation constraint, which relates to bargaining power. If a higher z raises the utility

that the firm must promise the worker (i.e., B′(z) > 0), then the firm’s profits from vacancy

posting will rise by less, since the firm receives a combination of lower effort or higher wages

when B(z) rises. The first-order contribution of this term to profit fluctuations is given by

− λ∗PC (z0)

[
∂

∂z0

B (z0)−
∞∑
t=0

(β (1− s))t βs ∂

∂z0

E [U (zt+1) |z0]

]
, (19)

where λ∗PC is the Lagrange multiplier on the participation constraint. This term is zero if the

values of both employment and unemployment are acyclical—for instance, if unemployment

benefits are acyclical and firms make take-it-or-leave-it offers to workers. In general, however,

the term will be nonzero if workers’ ex ante utility is cyclical because of either a cyclical

value of unemployment or bargaining.

The (C) term captures the effects that the shock has on profits through changes in the

firm’s choice variables. (C) has three pieces. First, the shock may shift the optimal contract’s

wage function w∗. This is the marginal cost effect: the wage paid for each future realization

of ηt and zt may differ for contracts signed at different initial aggregate productivity levels

z0. Second, the shock may shift the optimal contract’s recommended effort function a∗,

which affects output. This is the incentive effect. Finally, the shock may shift the value of

the costates on the participation and incentive constraints.

3.3 Unemployment Dynamics and Incentive Wage Cyclicality

We now show that wage cyclicality from incentives does not dampen the response of unem-

ployment to shocks. As in our discussion of the static model, the argument proceeds in two

steps. First, we use an envelope logic to show that the (C) term in equation (17)—capturing

the effect on profits via changes in optimal wages and effort—is zero. Second, to focus on

incentives, we temporarily make assumptions that remove bargaining power or changes in

outside options, so that the (B) term in equation (17) is also zero.
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The main technical challenge for the proof is, therefore, to transform the problem so that

an envelope theorem applies. Common general envelope theorems (e.g., Milgrom and Segal,

2002) are not well suited to studying problems with a continuum of nonconvex constraints.16

The firm’s problem has this feature since there is a continuum of incentive compatibility

constraints, which are not generally convex. Below, we provide a set of sufficient conditions

under which an envelope theorem can be applied to our problem when B(z0) does not vary.

Assumption 1. The set of feasible contracts (w, a) ∈ X that satisfy the incentive compati-

bility constraints (12) and participation constraints (13) is nonempty and compact.

We make the minimal assumption of nonemptiness to allow the optimal contract to exist.

We also assume that the set of feasible contracts satisfying the incentive and participation

constraints is compact, which lets us apply a theorem from the applied mathematics litera-

ture on “sensitivity analysis” (Bonnans and Shapiro, 2000). This envelope theorem directly

applies when there is a continuum of constraints that may not be convex. In Appendix

Section A.4, we provide two different sets of minimal sufficient conditions under which the

compactness assumption is satisfied.17

We will need to define an “impulse response” to present our results. Denote zt = E [zt|z0]+

εt, where, by definition, εt is the cumulative innovation to the process for z between 0 and

t and ε0 is known to be 0. We will study the response of market tightness to changes in

z0 while holding fixed εt for all t, which is the “impulse response” of market tightness to

changes in initial productivity z0. In addition, let Γ∗(z0) denote the set of optimal contracts

(w∗, a∗) solving the firm problem (11) given z0.

Our next analytical result considers a benchmark in which all wage cyclicality is due

to incentives. To this end, we consider a version of the flexible incentive pay economy in

which firms make workers take-it-or-leave-it offers and unemployment benefits are acyclical.

In this economy, all wage fluctuations are due to incentives rather than bargaining, and the

(B) term from equation (17) that relates to bargaining is eliminated.

16Existing general envelope theorems are typically applied to the agent’s objective, whereas we apply an
envelope theorem to the principal’s objective.

17Our first sufficient condition is that matches last at most T periods for T finite and that firms believe η
and z to have a finite support. Continuous processes can be arbitrarily well approximated by such discrete
processes. This assumption can be interpreted as a behavioral friction in which firms and workers can only
consider N decimal places for innovations to z, for an arbitrarily large N . Our second possible sufficient
condition is that contracts are continuous and twice differentiable in their arguments {ηt, zt}, with uniformly
bounded first and second derivatives. In addition, in Appendix Section A.2.2, we show that the envelope
theorem can be applied to our problem under a stronger set of sufficient conditions summarized in Assumption
2 below, which allow us to make the problem recursive and apply the “first-order approach”, closer to
standard practice (e.g., Farhi and Werning, 2013).
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Theorem 1. Suppose that (i) Assumption 1 holds, (ii) the firm makes take-it-or-leave-it

offers to workers and the flow value of unemployment is constant ξ(zt) = ξ. Then, the

first-order response of market tightness to a change in aggregate productivity d ln z0 is

d ln θ0 =
1

ν0

∑∞
t=0 (β (1− s))t ∂

∂ ln z0
E [f(zt, ηt)|z0, a

∗] d ln z0∑∞
t=0 (β (1− s))t E [f(zt, ηt)− w∗t |z0, a∗]

(20)

in the flexible incentive pay economy, for some optimal contract (w∗, a∗) in Γ∗(z0), where ν0

is the negative of the elasticity of job filling with respect to tightness. The first-order impulse

response of market tightness to aggregate shocks in a rigid wage economy with w = w̄ and

a = ā is

d ln θ0 =
1

ν0

∑∞
t=0 (β (1− s))t ∂

∂ ln z0
E [f(zt, ηt)|z0, ā] d ln z0∑∞

t=0 (β (1− s))t E [f(zt, ηt)− w̄|z0, ā]
. (21)

Assume further that (i) the production function f is homogeneous of degree one in aggre-

gate productivity z, (ii) zt is a driftless random walk, and (iii) the optimal incentive contract

at the nonstochastic steady state for zt is unique. Then the response of market tightness to

z in both economies, in the neighborhood of the nonstochastic steady state for z, is equal to

d ln θ0

d ln z0

=
1

ν̄

(
1

1− Λ

)
. (22)

In both economies, Λ is the steady-state labor share defined as

Λ ≡
∑∞

t=0 (β (1− s))t E[wt|z̄, a]∑∞
t=0 (β (1− s))t E[f(z̄, ηt)|z̄, a]

, (23)

where expectations are evaluated in a steady state with constant aggregate productivity zt = z̄,

and ν̄ is the steady-state elasticity of job filling with respect to tightness.

The proof of this theorem, along with the proofs of all other propositions and theorems,

is in Appendix A. The insight of the theorem is that wage cyclicality due to incentives

does not dampen the response of unemployment to shocks. The impulse response of market

tightness—and thus unemployment—to exogenous productivity shocks is the same in two

economies. The first economy has flexible incentive pay but no bargaining power or changes

in outside options. The second economy has exogenously fixed wages and effort. Equation

(20) characterizes the impulse response of tightness to labor productivity shocks with flexible

incentive pay. This impulse response is simply the direct productivity effect scaled by the

present value of profits.18

18If the optimal contract is not unique, then the impulse response depends on the largest direct productivity
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Similarly, equation (21) characterizes the same impulse response in the rigid wage economy—

which is, again, the direct productivity effect scaled by the present value of profits. Therefore,

the market tightness fluctuations from exogenous productivity shocks are equivalent in both

economies if they feature the same direct productivity effect and the same present value of

profits. Since there is no bargaining power in this case, all wage fluctuations in the incentive

pay economy are due to incentives. Note that wages can be highly procyclical in this econ-

omy. Thus, wage cyclicality that arises due to incentives does not per se mute the response

of unemployment to shocks.

There are two key steps in the proof of this Theorem, which is presented in Appendix

A.2. First, as in the static model, the free entry condition ensures that changes in profits

per worker determine tightness and hence unemployment fluctuations. Second, applying an

envelope theorem to the firm’s optimal contracting problem leads to an outcome equivalent to

that under wage rigidity. This is because the (B) term in equation (17) is equal to zero with

acyclical promised utility and an envelope theorem implies that the (C) term is zero as well.

Thus, only the direct effect survives. This is similarly true in the rigid wage model in which

there is neither bargaining power nor changes in wages or effort. This equivalence holds even

though the flexible incentive pay economy could feature a highly procyclical present value of

wage payments to new hires. The effect of higher wage payments on profits is exactly offset

by higher worker effort on the optimal contract.

The final part of the theorem clarifies that the flexible incentive pay and the rigid wage

economies have the same dynamics if they are both calibrated to the same steady-state labor

share, which is a sufficient statistic for the direct productivity effects. To see the role of the

labor share, we make assumptions to simplify the expression for d ln θ/d ln z0 from equations

(20) and (21). Suppose that, as in the final part of the theorem, the production function is

homogeneous of degree 1, zt is a driftless random walk, and the optimal contract is unique.19

Then, in the neighborhood of the nonstochastic steady state for aggregate variables, the

impulse of market tightness in both economies becomes

d ln θ0

d ln z0

=
1

ν0

∑∞
t=0 (β (1− s))t E[f (zt, ηt) |a, z0]∑∞

t=0 (β (1− s))t E [f (zt, ηt)− wt|a, z0]
.

The numerator is the expected output, while the denominator is the excess output after wage

effect among optimal contracts, when productivity increases; and the smallest direct productivity effect
among optimal contracts, when productivity decreases.

19These assumptions are made only for exposition. The simplifying assumption of a random walk is
common because labor productivity is persistent and innovations are relatively small (e.g., Michaillat, 2012).
The derivation does not impose linearity or nonstochastic behavior with respect to idiosyncratic shocks at
the level of an individual job. The derivation applies even if the optimal contract is not unique, provided
that all optimal contracts imply the same direct productivity effect.
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payments. Dividing the numerator and denominator by the expected present value of output

yields equation (22). If wages and effort lead to the same labor share in the rigid wage and

incentive pay economies, then they feature the same dynamics of market tightness.20

Our result that incentive wage flexibility does not dampen unemployment fluctuations

is general. Characterizing the optimal dynamic contract is difficult in our setting because

of features such as persistent idiosyncratic shocks and potentially nonseparable utility be-

tween consumption and effort. Applying an envelope theorem allows characterization of the

response of profits to labor demand shocks without our characterizing the optimal contract,

so our result holds for general production or utility functions and persistent idiosyncratic

shocks.

3.4 Unemployment Dynamics and Bargained Wage Cylicality

This section reintroduces bargaining power and cyclicality in workers’ outside options. We

argue that only bargained wage cyclicality arising from these sources dampens unemployment

responses in a setting with both incentives and bargaining.

We introduce some additional notation for this section. Let Y(a∗(z0), z0) denote the

expected present discounted value of output from a match that originates under aggregate

productivity z0 given the optimal effort function a∗(z0):

Y(a∗(z0), z0) ≡
∞∑
t=0

(β(1− s))t
∫ ∫

f(zt, ηt)π̃t(η
t, zt|z0, a

∗(z0))dηtdzt.

Likewise, letW(z0) denote the present discounted value of wage payments under the optimal

wage contract:

W(z0) ≡
∞∑
t=0

(β(1− s))t
∫
w∗t (η

t, zt)π̃t(η
t, zt|z0, a

∗(z0))dηtdzt.

One can then write the value to the firm of a filled match as J(z0) = Y(a∗(z0), z0)−W(z0):

the difference between the present discounted values of output and wages.

We now introduce a new expression for how profits respond to shocks with bargaining to

define the notion of bargained wage cyclicality that will communicate our result. Differenti-

20The labor share is thus the “fundamental surplus” in this economy, in the sense of Ljungqvist and
Sargent (2017). However, the dynamics of wages and effort in our flexible incentive pay economy may be
different from those in the economies studied by Ljungqvist and Sargent (2017).
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ating J(z0) with respect to z0 yields the following expression:

dJ (z0)

dz0

=
∂Y (a∗ (z0) ; z0)

∂z0

−
(
dW (z0)

dz0

− ∂aY (a∗ (z0) ; z0)
da∗

dz0

)
. (24)

This expression for the response of profits to z0 is given by two terms. The first term is the

direct productivity effect on output: the partial derivative of Y with respect to z. The second

term measures the extent to which the present value of wages responds to labor productivity

shocks by more than does the present value of effort. The term ∂aY (a∗ (z0) ; z0) rescales

cyclical effort movements da∗/dz0 so that they are in the same units as wage movements.

Movements in wages in excess of effort reflect bargaining or outside option fluctuations.

Hence, let us define bargained wage cyclicality (BWC) as

∂Wbargained (z0)

∂z0

≡ dW (z0)

dz0

− ∂aY (a∗ (z0) ; z0)
da∗

dz0

. (25)

Our next analytical result requires one more definition. Denote as B̃(z), the bargained

utility, that is, the ex ante utility promised to the worker at the start of the contract, net of

her continuation value with regard to separation into unemployment:

B̃(z) ≡ B(z)−
∞∑
t=0

(β(1− s))tβsE[U(zt+1)|z0].

Fluctuations in bargained utility capture variations in workers’ ex ante utility due to either

bargaining power or changes in their outside option.

Characterizing the response of market tightness to productivity in this setting is made

more difficult in the presence of bargaining, as the set of contracts satisfying the participa-

tion constraint now moves directly with z0. To make progress, we therefore introduce one

additional assumption which guarantees that the so-called first-order approach (FOA) offers

a valid solution to the contracting problem:

Assumption 2. The set of feasible contracts (w, a) ∈ X is compact and convex. Assume

standard Inada conditions on utility, limc→w uc(c, a) = lima→ā uc(c, a) =∞ and limc→w̄ uc(c, a) =

lima→a uc(c, a) = 0. In addition, assume that the worker’s optimal effort choices are deter-

mined by the first-order condition to problem (12), and assume that the density of ηt can be

expressed as

πt
(
ηt|ηt−1, at

)
= πt (ηt|ηt−1, at) .

Under this assumption, the incentive compatibility constraint may be written as the

first-order condition to the worker’s problem, and the firm’s contracting problem may be
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expressed recursively. This assumption permits the derivation of our second analytical result:

that bargained wage cyclicality mutes unemployment fluctuations.

Proposition 2. Assume that Assumptions 1 and 2 hold. The impulse response of market

tightness to aggregate shocks in the flexible incentive pay economy is

d ln θ0 =
1

ν0

∑∞
t=0 (β (1− s))t ∂

∂ ln z0
E [f(zt, ηt)|z0, a

∗ (z0)]− ∂Wbargained(z0)
∂ ln z0∑∞

t=0 (β (1− s))t E [f(zt, ηt)− w∗t (z0)|z0, a∗ (z0)]
d ln z0, (26)

where ∂W bargained(z0)/∂ ln z0 is defined in equation (25). Moreover,

∂Wbargained (z0)

∂ ln z0

> 0 ⇐⇒ B̃′ (z0) > 0;

that is, bargained wage cyclicality is positive if and only if bargained utility is procyclical.

Proposition 2 shows that wage cyclicality due to bargaining dampens the response of

unemployment to exogenous productivity shocks. Relative to Theorem 1, equation (26)

has an extra term, alongside the direct productivity effect that appears in the equation.

The extra term is bargained wage cyclicality. When bargained wage cyclicality is high, the

impulse response of tightness is small. The proposition also shows that what we have defined

as bargained wage cyclicality corresponds to the cyclicality of workers’ ex ante utility—

bargained wage cyclicality is positive if and only if the utility promised to workers at the

start of a contract is procyclical.

Suppose that, intuitively, bargained utility is procyclical. Then, during a boom, as z0

increases, workers’ wages increase by more than their effort. As a result, workers’ ex ante

utility increases during booms. At the same time, profits increase by less as z0 rises since

workers capture part of the surplus through higher wages or lower effort. As a result, tightness

is less responsive to business cycle shocks. Appealingly, the result does not require us to

take a stand on why ex ante utility is cyclical. Various bargaining protocols or cyclicality in

the value of unemployment benefits can lead to cyclical utility at the start of a contract; all

of these factors would manifest as positive bargained wage cyclicality.21

A sketch of the proof is as follows. Under the conditions of the theorem, the firm’s

problem may be expressed with a Lagrangian. After applying an envelope theorem as in

Theorem 1, the derivative of profits per worker with respect to z is given by the direct

productivity effect minus the (B) term of equation (19), which reflects changes in the utility

promised to the worker at the start of the contract. However, equation (24) shows that the

21Note that changes in ex ante utility also affect effort. Therefore, our model can potentially generate
countercyclical effort—during recessions, workers may exert more effort because their outside option is worse.
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response of profits to z is also the direct productivity effect net of bargained wage cyclicality.

Thus, bargained wage cyclicality measures the cyclicality of promised utility.

Theorem 1 and Proposition 2 show that when wages vary due to incentives, overall and

bargained wage cyclicality are no longer equal. To clarify this point, Figure 2 illustrates our

analytical results and places them in the context of the existing literature. The horizontal

axis plots the degree of overall wage cyclicality. The vertical axis plots the responsiveness

of market tightness to exogenous productivity shocks. The figure plots three lines, each

corresponding to a different model for the origins of wage cyclicality. All three lines intersect

the vertical axis in the same place: when wage cyclicality is zero, we return to the rigid wage

model of Hall (2005) in which market tightness is highly responsive to exogenous shocks.

Figure 2 shows that models with and without incentives imply different unemployment

dynamics given wage cyclicality in the data. Suppose that the overall wage cyclicality in

the data is given by the vertical gray dashed line. Consider first the purple line at the

top, labeled “Bargained Wage Cyclicality (BWC) Share = 0.” This line corresponds to the

model in which all wage cyclicality is due to incentives: bargained wage cyclicality is zero.

Theorem 1 proves that this line is horizontal at the rigid wage line: even if wages are highly

procyclical in this economy, the responsiveness of market tightness to aggregate productivity

is the same as if wages and effort were exogenously held fixed.

The green line at the bottom corresponds to the case in which all wage cyclicality arises

due to bargaining: the BWC share is equal to one. In this case, more cyclical wages dampen

the impulse response of market tightness, as argued in Proposition 2. This is the classic result

of Pissarides (2009) and holds in standard labor search models without incentives. Therefore

models with and without incentives—with BWC shares equal to zero or one—may match

the same overall wage cyclicality in the data but have drastically different implications

for unemployment volatility. Intermediate values of the share of overall wage cyclicality

accounted for by bargaining generate lines that are between the bargaining-only (green) and

incentives-only (purple) lines, as illustrated by the red line.

Proposition 2 and Figure 2 offer guidance to researchers who wish to avoid working with

complex models of incentive pay. Suppose that the red line corresponds to the share of

bargained wage cyclicality that prevails in the data, which we seek to estimate below. This

model generates a responsiveness of market tightness given by the horizontal dashed line

on the graph. A model in which all wage fluctuations are accounted for by bargaining,

such as the standard DMP model used in much of the literature, will generate the same

unemployment dynamics as the full model with both incentives and bargaining as long as

it is calibrated appropriately. In particular, one needs to calibrate a bargaining-only model

such that the total wage cyclicality in that model is equal to the bargained wage cyclicality
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Figure 2: Illustration of relationship between wage and market tightness cyclicality, by share
of wage cyclicality accounted for by bargaining

Rigid Wage
(Hall, 2005)

Responsiveness of
Tightness (d ln θ0/d ln z0)

Overall Wage Cyclicality
(d lnW0/d ln z0)

d lnW0/d ln z0

in Data

Bargained Wage Cyclicality (BWC) Share = 0

BWC Share = 1

BWC Share ∈ (0, 1)

BWC in Data

Notes: The figure illustrates our analytical results. The horizontal axis plots the cyclicality of the present
value of wage payments, and the vertical axis plots the elasticity of market tightness θ to initial aggregate
productivity z0. The three lines plot the response of market tightness as a function of overall wage cyclicality
when all of the wage cyclicality is due to bargaining (BWC Share = 1), due to incentives (BWC Share =
0) or due to some mix of bargaining and incentives (BWC Share ∈ (0, 1)). The figure is illustrative and not
derived from a calibration.

in the data. We return to this point in the numerical analysis of Section 4.5 below.

3.5 Discussion

Importance of the impulse response of tightness. Our results demonstrate that the

impulse response of market tightness to exogenous productivity shocks is the same in both a

rigid wage economy and a flexible incentive pay economy without bargaining power. This im-

pulse response is an essential object in macroeconomics. For instance, this impulse response

determines the slope of the Phillips curve for prices. We prove this point in Appendix A.7,

using a New Keynesian model with a frictional labor market similar to the setup of Christiano

et al. (2016). We also show in this model that the slope of the Phillips curve is the same if

there are either rigid wages or flexible incentive pay in the frictional labor market. Likewise,

the impulse response of tightness determines the behavior of unemployment in response to

monetary or fiscal shocks. However, rigid wage and flexible incentive pay economies generate

different output dynamics since the incentive pay economy features endogenous productivity

movements through effort fluctuations. These productivity movements may appear as a form

of endogenous labor capacity utilization.
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First-order results. Our analytical results on the irrelevance of incentive wage cycli-

cality and the importance of bargaining hold to the first order rather than globally. Below,

we study a globally solved numerical model with consonant results.

User cost of labor and the present value of wages. Our argument is different from

the emphasis on new hire wages or the user cost of labor (Kudlyak, 2014). The irrelevance

of flexible incentive pay holds even if the present value of new hires’ incentive wages is

arbitrarily cyclical.

Endogenous separations and limited worker commitment. The irrelevance of

incentive wage cyclicality continues to hold when separations are endogenous and efficient.

Intuitively, separations are another margin over which the firm can optimize to maximize the

profits of a job. Therefore, after an aggregate shock, changes in the firm-level separation rate

have no first-order effect on profits. Appendix Section A.8 introduces endogenous separations

into the incentive pay model and derives an equivalence for the impact elasticity of tightness

to productivity shocks. In the same model extension, we also show that incentive wage

cyclicality remains irrelevant in the presence of limited worker commitment, for analogous

reasons.

Next steps. The natural next question is: “What share of wage cyclicality in the

data is due to bargaining?” To answer this question, one must measure the cyclicality of

workers’ utility at the start of contracts or the cyclicality of wages holding fixed the effort

of the worker. Answering this question is challenging and should be the focus of future

empirical work. One possibility would be to separately measure proxies for incentives and

bargaining, such as the cyclicality of bonus and base pay. However, bonuses may not solely

reflect incentive provision. For example, some workers may expect to receive a minimum

bonus irrespective of their performance, while stock options reward aggregate stock market

appreciations over which individual managers have little control. Similarly, bonuses do not

reflect the full range of incentives that firms may provide: longer-term incentives such as

promotions are ubiquitous and also appear cyclical (e.g., Méndez and Sepúlveda, 2012). The

next section makes progress by calibrating a structural model of incentive pay to match

micro-moments of wage adjustment.

4 Numerical Analysis

This section studies a calibrated version of our model. We find that a significant share of

overall wage cyclicality is due to incentives. As a result, unemployment responds strongly to

business cycle shocks in the calibrated model despite relatively procyclical wages. We also

show how researchers can produce the correct impulse response in simpler models of unem-
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ployment dynamics without incentive pay. One must calibrate the simple model to match

only the portion of wage cyclicality attributable to bargaining, which is weakly procyclical.

4.1 Parameterizing the Contract

We parameterize the production function, utility function, ex ante utility, and information

structure following Edmans et al. (2012) so that we can calibrate our model. All other

aspects of the environment are the same as those of the flexible incentive pay economy in

Section 3.

Production function. The firm’s production function is y = z(a + η). Idiosyncratic

profit shocks η are assumed to be i.i.d. over time and across individuals and normally

distributed with zero mean and standard deviation ση. ση determines the extent to which

firms can infer workers’ effort, which is key for incentive pay.

Preferences. We assume that workers have logarithmic utility over consumption, with

an isoelastic disutility of labor that is separable from consumption. Therefore, u(c, a) ≡
ln c− a1+1/ε

1+1/ε
, where ε governs the Frisch elasticity of effort, which determines how costly the

provision of effort is to workers.

Information structure. We make the “effort after noise” assumption as in Edmans et

al. (2012): workers observe the idiosyncratic profit shock η before making an effort choice.

Thus, there is an incentive compatibility constraint for each value of η. Following Edmans

et al. (2012), we assume that a unique level of effort a(zt) is implemented regardless of the

idiosyncratic shock η. However, effort varies with the history of aggregate productivity zt.

Ex ante utility. We assume that firms make take-it-or-leave-it offers to workers who

face cyclical unemployment benefits. Workers’ flow unemployment benefits take the form

b(z) = γzχ. Here, γ specifies the level of unemployment benefits when z = 1, while χ deter-

mines the elasticity of unemployment benefits to aggregate productivity. This specification

is a log-linear approximation of any differentiable B(z) function, including models in which

workers and firms bargain over ex ante utility at the start of the contract. However, this

specification is numerically tractable in that it abstracts from complications of bargaining

and ensures that unemployed workers’ value is given by the present discounted value of ex-

pected unemployment benefits. The parameter χ is a stand-in for bargaining in that it shifts

the utility promised to the workers under the contract—it can reflect changes in promised

utility due to fluctuations in either the worker’s outside option (changes in the value of un-

employment) or inside option (bargained utility)—and indeed determines bargained wage

cyclicality.

We now characterize the optimal contract following Edmans et al. (2012).
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Proposition 3. The earnings schedule in the optimal contract satisfies the following differ-

ence equation (given initial productivity z0):

ln(wt(η
t, zt)) = ln(wt−1(ηt−1, zt−1)) + ψh′(at)ηt −

1

2
(ψh′(at)ση)

2, (27)

where ψ = 1− β(1− s) and w−1(z0), which initializes this difference equation, is given by

w−1(z0) ≡ ψ

(
Y(a∗(z0), z0)−

κ

q(θ0)

)
. (28)

The worker’s utility under the contract E(z0) is equal to her value of nonemployment, so that

lnw−1(z0)

ψ
− E

[∑∞
t=0(β(1− s))t−1

(
ψ
2
(h′(at)ση)

2 + h(at)− βsU(zt+1)
)
|z0

]
= U(z0)(29)

for

U(z0) ≡ E

[
∞∑
t=0

βt ln b(zt)|z0

]
.

In addition, at, the optimal effort level of a worker hired with z = z0, satisfies

a(zt; z0) =

 zta(zt; z0)

ψ
(
Y(a∗(z0), z0)− κ

q(θ0)

) − ψ

ε
(h′ (a(zt; z0))ση)

2

 ε
1+ε

. (30)

A proof is provided in Appendix A and closely follows that of Edmans et al. (2012).22

In the contract, the pass-through of idiosyncratic shocks to wages corresponds to incentives.

Intuitively, to satisfy the incentive constraint as cheaply as possible, the firm increments

wages in a manner consistent with the worker’s inverse Euler equation, which gives rise

to the log difference equation (27). Idiosyncratic shocks η directly enter the equation for

log wages since the firm must make workers’ wages responsive to output fluctuations to

incentivize effort. If the marginal disutility of effort is high, there must be high pass-through

from η to wages to induce workers to supply the optimal effort level. To satisfy dynamic

incentives, the pass-through of idiosyncratic productivity shocks to wages is scaled down by

a quantity ψ that reflects discounting.

Exponentiating equation (27), one observes that wages are a random walk: the expecta-

tion of wages in period t + h is equal to the level of wages in period t. The random walk

22We make two advances relative to Edmans et al. (2012): we introduce aggregate risk zt, and we develop
a global solution algorithm to efficiently simulate the model with labor market search (see Appendix B).
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property is a consequence of the inverse Euler equation (Rogerson, 1985). Thus, w−1/ψ is

equal to the expected present discounted value (EPDV) of wage payments. Free entry into

vacancy posting guarantees that the EPDV wage payments are the difference between the

endogenous EPDV of output Y(a∗(z0), z0) and the expected cost of filling a vacancy κ/q(θ).

Calculating the expected utility under the contract (the left-hand side of equation (29))

relies on solving forward the wage equation. Effort is determined by taking the first-order

condition of the worker’s utility maximization problem—that is, by setting the derivative of

the left-hand side of equation (29) with respect to at equal to zero.

4.2 Calibration: Separating Bargaining from Incentives

Our goal is to infer the role of bargaining versus incentives in determining wage cyclicality.

We disentangle these forces with two sets of moments: the cyclicality of the wage for new

hires, which informs bargaining power, and the pass-through of idiosyncratic firm output

shocks into wages, as well as the variance of workers’ wage growth, both of which inform

incentives. That is, wage fluctuations at the start of the contract inform bargaining, whereas

wage fluctuations after the start of the match inform incentives.

We calibrate the parameters of the labor search block largely following the standard

practice of Petrosky-Nadeau and Zhang (2017).23 Productivity is assumed to follow an AR(1)

process in logs, with autocorrelation parameter ρz, innovation ζt ∼ N (0, σ2
z), and mean µz.

We normalize µz such that E[zt] = 1. To account for the effects of effort fluctuations on labor

productivity, we calibrate our monthly process for z such that the log of the quarterly average

of zt matches the autocorrelation and standard deviation of the quarterly log TFP series

described in Fernald (2014), which accounts for variable capacity utilization in labor. We

view the TFP series net of variable capacity utilization as a reasonable proxy for exogenous

productivity, as labor utilization is a concept highly related to effort.24 This procedure

implies a monthly autocorrelation ρz = 0.966 and standard deviation of shocks σz = 0.0056.25

This leaves four parameters to internally calibrate: ση, γ, χ, and ε. We target the variance

of incumbent wage growth, the pass-through of firm shocks into wages, the cyclicality of new

hire wages, and the average unemployment rate. While we estimate all parameters jointly,

these moments have intuitive mappings to particular parameters, which we explore below.

First, the variance of wage growth naturally informs the variance of idiosyncratic profit

23These parameters are the discount rate, the vacancy creation cost, the matching function, and the
separation rate. We discuss the details in Appendix Section B.1.

24Basu and Kimball (1997) find that variable capacity utilization explains approximately 40–60% of fluc-
tuations in unadjusted TFP and that capacity utilization is procyclical.

25We HP-filter the TFP data and model-simulated series with a smoothing parameter of λ = 105, following
Shimer (2005), which removes a very low-frequency trend.
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shocks ση. To see this, note that rearranging equation (27) shows that the monthly wage

growth of job-stayers is given by ∆ lnwt = ψh′(at)ηt − 1/2 (ψh′(at)ση)
2 . At an aggregate

nonstochastic steady state, at = aSS, for example, the cross-sectional variance of wage growth

is given by V ar(∆ lnw) = ψ2h′(aSS)2σ2
η, which is closely tied to the value of ση. The firm

provides intertemporal incentives by exposing the worker to wage-growth risk as in Sannikov

(2008). We target a standard deviation of year-over-year wage growth of job-stayers of 0.064

as measured by Grigsby et al. (2021), where we calculate year-over-year wage growth in the

model with stochastic zt by iterating on equation (27) for job-stayers.26

Second, the pass-through of firm-specific shocks to wages is informative of whether in-

centives are high-powered within the contract, as in classic theories of moral hazard. In

particular, this pass-through helps us identify the parameter governing the disutility of ef-

fort ε. In our model, the expected pass-through from idiosyncratic output shocks to the

wages of job-stayers is given by E [∂ lnw/∂ ln y] = E [ψh′(a)(a+ η)], which is directly af-

fected by h′(a). The firm provides intratemporal incentives with the pass-through of output

to wages. Intuitively, if h′(a) is high, then workers would prefer not to supply more effort.

To induce the worker to supply more effort, the firm must provide high-powered incentives

via a high pass-through of output to wages. Pass-through is therefore linked to ε.

A large literature seeks to estimate the pass-through to job-stayers’ wages of firm-specific

profitability shocks; Card et al. (2018) provide a comprehensive survey. This literature has

estimated pass-through elasticities from firm-level shocks ranging from 0.02 to 0.156. Many of

the estimation strategies in the literature use firm variation that is likely partially persistent.

In contrast, in our model, shocks η to output are i.i.d. through time, which thus suggests

that the pass-through of η shocks to wages is likely lower than the higher ranges commonly

estimated in the literature. We therefore target an average pass-through of firm-level output

shocks to wages of 0.039, estimated in Martins (2009), which is on the low end of the range

reported by Card et al. (2018). Targeting a low pass-through is likely to be conservative, as

it suggests that incentives are not high-powered and therefore are a relatively unimportant

determinant of wage variation.

Third, we identify γ, which pins down the level of unemployment benefits, from the

stochastic mean of unemployment. Average unemployment is determined by workers’ job-

finding rates, which in turn are determined by expected profits per worker. γ directly

influences expected profits because it governs workers’ value of unemployment and shifts the

level of the required wage payments to workers. We target an average unemployment rate

of 6%, consistent with average U.S. unemployment between 1951 and 2019.

26Hours are observable and thus contractible. We therefore consider earnings per hour—inclusive of base
pay, bonuses, and overtime—to be the correct empirical counterpart of wt.
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Fourth, we target the cyclicality of new hire wages to inform the cyclicality of nonem-

ployment benefits χ. Conditional on the parameters governing incentives, the cyclicality of

new hire wages is highly informative of χ. Intuitively, if the worker’s outside option is highly

procyclical, so too is her promised utility, and thus so too will be her wage payments. Since

wages are a random walk in the optimal contract, the cyclicality of new hire wages strongly

informs the cyclicality of the present discounted value of wage payments and thus the cycli-

cality of promised utility. Mathematically, evaluating the flow value of unemployment b(zt)

in equation (29), which characterizes workers’ ex ante utility, yields

E

[
∞∑
t=0

βt(ln γ + χ ln zt)

]
=

lnw−1

ψ
−E

[
∞∑
t=0

(β(1−s))t−1
(ψ

2
(h′(at)ση)

2+h(at)−βsU(zt+1)
)]
.

Given the wage schedule defined in equation (27), expected new hire wages E[w0(z0)] are

equal to w−1(z0). The above equation implies a close relationship between expected new

hire wages and χ, conditional on the disutility of effort. We target a semielasticity of new

hire wages to unemployment of −1, which is at the high end of the range of what is found

by Bils (1985) and Hazell and Taska (2022), and explore robustness to this choice.

In summary, wage fluctuations that occur after the start of the contract inform the

parameters governing the strength of incentives, while wage fluctuations at the beginning

of the contract inform the strength of bargaining. Our numerical approach is relatively

simple. For instance, our model links ex post wage pass-through to incentives and not to

Nash bargaining. In the face of this particular concern, we have deliberately targeted a

conservative value of pass-through. Moreover, there is some empirical evidence that pass-

through is procyclical (Chan et al., 2023), which is consistent with our model and inconsistent

with ex post pass-through representing Nash bargaining.27

4.3 Model Fit and Calibrated Parameters

We now discuss the calibrated parameters and assess the model’s ability to fit the targeted

and untargeted moments. Table 1 summarizes our calibration, while Table 2 examines the

implications for various moments. We estimate that the elasticity of the disutility of effort ε

is equal to 2.7. Note that standard estimates of micro labor supply elasticities, such as those

computed by Chetty (2012), consider how hours vary with wages. Since hours are observable

and contractible by the firm, the lower elasticities of hours need not have any relationship

with the elasticity of unobservable effort. Intuitively, one might expect the elasticity of effort

27Appendix B presents details on the estimation algorithm, how we produce moments within the model
and the data, and how we calculate the share of wages attributable to bargained wage cyclicality.
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Table 1: Calibrated parameter values

Parameter Description Value Source/Target
Externally Calibrated
β Discount Rate 0.9901/3 Petrosky-Nadeau and Zhang (2017)
κ Vacancy Creation Cost 0.450 Petrosky-Nadeau and Zhang (2017)
s Separation Rate 0.031 CPS E-U Flow Rate
ρ Autocorrelation: Agg. Productivity 0.966 Autocorrelation: Fernald (2014) TFP
σz Cond. S.D. of Agg. Productivity 0.006 Uncond. S.D.: Fernald (2014) TFP

Internally Calibrated
γ Level: Unemployment Benefits 0.461 Average Unemployment Rate
ε Elasticity: Disutility of Effort 2.713 Pass-through: profits to wages
ση S.D.: Idiosyncratic Profit η 0.532 S.D.: Job-Stayer Log Wage Growth
χ Cyclicality: Promised Utility to Worker 0.467 New Hire Wage Cyclicality

to be larger than that of hours: while many jobs have a fixed number of hours over which

the worker has little control (e.g., she must work 40 hours per week to remain employed),

workers may be able to adjust unobserved effort more elastically.

We find the level of unemployment benefits γ to be 0.46. This value is between the value

chosen by Shimer (2005) to match the replacement rate of unemployment benefits (0.4) and

that in Hagedorn and Manovskii (2008) to match aggregate wage cyclicality (0.955).28

We estimate the standard deviation of idiosyncratic profit shocks to be ση = 0.53, similar

to estimates in other labor search calibrations with idiosyncratic shocks (e.g., Schaal, 2017).

This, coupled with a sizable elasticity of effort, suggests that incentive provision is a relatively

important consideration for the firm. We estimate the cyclicality of flow unemployment

benefits χ to be 0.47, implying moderately procyclical promised utility to the worker.29

Table 2 compares key moments in both the calibrated model (Column 1) and data (Col-

umn 2). The top panel reports the moments that we target in the estimation. The model is

able to fit the targeted moments very well. Most notably, we match the cyclicality of new

hire wages almost exactly and, if anything, underestimate the pass-through of firm shocks

to wages, suggesting that our estimate of the importance of incentives for wage cyclicality is

likely a lower bound on its true importance.

The bottom panel of the table shows that the model generates approximately half of

the unconditional volatility of aggregate unemployment observed in the data, which is an

appropriate figure because labor productivity is not the sole determinant of unemployment

fluctuations (Pissarides, 2009). Therefore, even though our main focus is the impulse re-

28Note, however, that unemployed workers do not need to supply effort in this model, which increases the
effective flow unemployment value.

29Chodorow-Reich and Karabarbounis (2016) estimate χ ≈ 0.8; however, the value of unemployment in
our model is different from theirs because workers supply effort and do not have access to financial assets.
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Table 2: Model fit to data moments

Moment Description Data Model
(1) (2)

Targeted
dE[lnw0]/du Cyclicality of new hire wages −1.000 −1.001
E[∂ lnwt/∂ ln yit] Within-job pass-through of idiosyncratic shock 0.039 0.036
std(∆ lnwt) std(ln wage growth for job-stayers) 0.064 0.064
ūt Mean unemployment 0.060 0.060

Untargeted
std (lnut) Volatility of unemployment (quarterly) 0.203 0.103
BWC Share Share of wage cyclicality due to bargaining – 0.543

sponse of unemployment, our calibrated model does match unconditional unemployment

fluctuations reasonably well. Matching the micro moments of wage adjustment therefore

generates significant unemployment volatility, the reasons for which we will discuss shortly.

4.4 Numerical Result: Bargained vs. Incentive Wage Cyclicality

Now we discuss our key numerical result: the model suggests that a significant share of wage

cyclicality is due to incentives. As a result, unemployment responds strongly to business

cycle shocks despite relatively procyclical wages.

The model calibration reveals in the final row of Table 2 that approximately 54% of the

total wage cyclicality is due to bargaining and outside option cyclicality. Conversely, incen-

tives account for the remaining 46% of total wage cyclicality. The share of wage cyclicality

attributable to incentives may seem large. Non–base compensation, which may be associ-

ated with incentives, is relatively small for most workers. However, what matters for wage

cyclicality is whether the marginal dollar of wages paid is due to incentives or bargaining.

If, for instance, 2% of compensation is incentive pay in the steady state but only incentive

pay is cut in response to output shocks, then the share of wage cyclicality due to incentives

is 100%.

Because bargained wage cyclicality is relatively low, the impulse response of unemploy-

ment to business cycle shocks is relatively large—which also explains why the unconditional

volatility of unemployment is large. Table 3 reports a number of additional features of our

model calibrated in a variety of ways. Column (1) reproduces the baseline calibration as in

Table 2. The impulse response of market tightness to business cycle shocks is in the second

row. Market tightness responds greatly to exogenous productivity shocks: the elasticity of
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Table 3: Model moments: Alternative calibrations

Model: Source of wage flexibility

(1) (2) (3) (4)
Moment Incentives + Bargaining Incentives Bargaining Bargaining: ∂E[lnw0]/∂u = −0.54

dE[lnw0]/du −1.00 −0.62 −1.00 −0.54

d ln θ0/d ln z0 13.6 17.8 10.4 13.3
std(lnut) 0.10 0.15 0.08 0.10
W0/Y0 0.96 0.96 0.96 0.96
d lnW0/d ln z0 0.44 0.39 0.31 0.24
d lnY0/d ln z0 0.70 0.88 0.51 0.51
BWC share 0.54 0.00 1.00 1.00

Notes: New hire wage cyclicality is targeted, while the second set of moments is untargeted. Column (1) is
our baseline model. Column (2) sets χ = 0 and does not target the cyclicality of new hire wages. Columns
(3) and (4) fix effort a = 1, set wages to be constant within the contract, and do not target the standard
deviation of wage growth or the pass-through. Column (4) targets a cyclicality of new hire wages of -0.54.
The standard deviation of log unemployment is computed at quarterly frequency. x0 denotes the value of
variable x, evaluated at ln z = µz. W and Y refer to the expected present value of wage payments and
output, respectively. “BWC share” is the share of wage cyclicality that is due to bargaining for ln z0 = µz.

market tightness to aggregate productivity is 13.6. Therefore, market tightness will be sub-

stantially more volatile than aggregate productivity, as in the data. In turn, unemployment

will be volatile.

The large impulse response of market tightness arises despite the cyclicality of wages

because much of this wage cyclicality is due to incentives. The elasticity of the present

value of expected wage payments with respect to productivity is 0.44. However, as we have

discussed in previous sections, the stabilizing effect on unemployment of cyclical wages is

offset by the amplifying effect of effort and incentives. Because of incentives, the response

of the present value of output, Y0, to TFP shocks is a relatively large value of 0.70. As

a result, profit fluctuations—and thus market tightness and employment fluctuations—are

large despite the procyclicality of wages.

The model implies a labor share (defined as W0/Y0) of 0.96, in line with, for instance,

Hall (2005).30 Ljungqvist and Sargent (2017) discuss how this labor share calibration and

fixed real wages deliver volatile unemployment. Our contribution is to show that this labor

share calibration and procyclical wages also deliver volatile unemployment in the presence

of incentives.

To further show how the division of wage cyclicality between incentives and bargain-

ing affects unemployment dynamics, we consider versions of our model that load all wage

30Since our model does not have capital, the labor share corresponds to the labor share of payroll and
rents from search frictions in the labor market, excluding capital (Pissarides, 2000).
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cyclicality in the data onto either incentives or bargaining. In the incentives-only calibra-

tion, volatile unemployment coexists with procyclical wages—whereas in the bargaining-only

calibration, procyclical wages imply muted unemployment dynamics.

We present the calibration with only incentives and without bargaining in column (2),

which leads to volatile unemployment dynamics. Here, we assume that the cyclicality of ex

ante utility is zero and recalibrate with χ = 0. We do not target wage cyclicality, and so the

model remains exactly identified. In this calibration, the labor share is the same as in the

baseline. However, the impulse response of tightness is far greater: a value of 17.8, compared

to 13.6 in the baseline calibration. This is a manifestation of our analytical results. This

incentives-only version of the model behaves as if wages and effort were exogenously fixed

as in Hall (2005); thus, it is able to generate large responses of tightness to shocks.

Nevertheless, the incentives-only model still generates large wage cyclicality, despite cycli-

cal profits. As we have discussed, as z rises, so too does desired effort, because of the com-

plementarity between effort and z in the production function. In column (2), the elasticity

of Y to TFP shocks is a relatively large value of 0.88. To induce this effort, the firm must

incentivize the worker by making her wage more responsive to realized output. This exposes

the worker to risk, for which she must be compensated. Thus, expected wages become fairly

procyclical with d lnW0/d ln z0 = 0.39, even with acyclical promised utility to the worker.

Column (3) presents a version of the model without incentives and with only bargaining,

in which case the unemployment dynamics are muted. Here, we switch off incentives and

variable effort by setting the variance of the idiosyncratic profitability shocks to ση = 0,

exogenously fixing effort a = 1, setting ε = 1, and setting wages to be fixed within a contract.

We no longer target the variance of log wage growth or the pass-through of firm shocks to

wages, and we attribute all wage cyclicality in the data to the cyclicality of promised utility,

governed by χ. This calibration of the model is closer to the common practice in job search

models without incentive provision and implies that the bargained wage cyclicality share is

100%.

This version, in which wage cyclicality reflects only bargaining, generates an elasticity

of market tightness to exogenous productivity that is approximately 25% smaller (10.4)

than that in the full model with both bargaining and incentives (13.6). This is because the

estimated value of χ rises substantially to 0.61 (from 0.47). Therefore, wage cyclicality is

high, but there is no offsetting movement in effort, which dampens the impulse response

of tightness. We discuss column (4) of the table in Section 4.5 below after examining the

robustness of our results.

Robustness. The key numerical result of this section is that a significant share of wage

cyclicality is due to incentives, leading to volatile unemployment dynamics despite relatively
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procyclical wages. Appendix C probes the robustness of this result. Our baseline calibration

targets a semielasticity of new hire wages with respect to unemployment of −1. Nevertheless,

there remains some disagreement over exactly how cyclical new hire wages are. We thus test

the sensitivity of our numerical exercise to different targets of new hire wages. Tables C1

and C2 report the estimated parameters and model-implied moments, respectively, when

we target different values of wage cyclicality ranging from −0.5 to −1.5. In each case, the

model matches the targeted moments very well. We find that the share of wage cyclicality

attributable to incentives declines as we increase the target cyclicality of new hire wages.

However, the elasticity of incentive wages to unemployment is relatively stable between−0.37

and −0.49. A simple rule to sweep out wage cyclicality due to incentives is, therefore, to

subtract 0.46 from one’s preferred estimate of wage cyclicality.

To account for uncertainty in our wage pass-through target, Appendix Figure C1 reports

the estimate of the BWC share as one varies the elasticity of effort supply ε, recalibrating

the rest of the parameters. The estimated share of wage cyclicality due to bargaining is

decreasing in ε, falling to 48% for ε = 5 and rising to 77% for ε = 0.5. This declining BWC

share is in part attributable to a decreasing internal estimate of χ, as the model infers a

greater share of wage cyclicality due to incentives as ε increases.

Next, we study the robustness with respect to our TFP shock series. As noted previously,

incentives lead to changes in measured productivity through endogenous effort fluctuations.

Our utilization-adjusted TFP series imperfectly corrects for these effort changes. Therefore,

we also internally calibrate the exogenous productivity process in our incentive pay model

to match moments of average labor productivity in the data. Appendix Tables C1 and C3

report the estimated parameters and model-implied moments, respectively. Calibrated thus,

the model continues to infer a large share of overall wage cyclicality due to incentives and a

large response of market tightness to productivity shocks.31

Taking stock, we find that a relatively large share of wage cyclicality in the data is due to

incentives despite a conservative calibration. Therefore, our model generates a large impulse

response of unemployment despite the cyclicality of wages.

4.5 A User Guide

Here, we discuss how to calibrate a simple model without incentives to replicate the impulse

response of unemployment from our incentive pay model. Our aim is to offer a “user guide”

31In Appendix Tables C1 and C3, we also recalibrate the bargaining-only model to target average la-
bor productivity. The bargaining-only model continues to have a significantly smaller impulse response of
tightness than does the full model and requires exogenous productivity shocks to be approximately twice as
volatile as in the full model to match output fluctuations.

38



for researchers who wish to calibrate models to produce the correct unemployment dynamics

while avoiding the complexities of incentive pay.

We argue that the simple version of our model in which all wage cyclicality is due to

bargaining should target a new hire wage cyclicality given only by bargained wage cyclicality.

This logic is consistent with our analytical results. To illustrate the point numerically, we

recalibrate the bargaining-only version of the model targeting a new hire wage cyclicality of

-0.54, which we previously inferred from the data to be wage cyclicality due to bargaining.32

Column (4) of Table 3 presents the results of this exercise.

The numerical results show that to produce the correct impulse response of market tight-

ness in the simple model with only bargaining, calibrating to target bargained wage cycli-

cality is crucial. When calibrated to bargained wage cyclicality, the bargaining-only model

features an elasticity of market tightness to exogenous shocks that is nearly identical (13.3) to

that in the full model (13.6). Furthermore, both models generate an unconditional standard

deviation of log unemployment rates of 0.10. The similar dynamics arise because the two

models imply similar ex ante utility cyclicality even though overall wage flexibility is differ-

ent: the simple bargaining-only model of column (4) estimates an elasticity of unemployment

benefits χ = 0.47, nearly identical to that found under the full model (0.47).

We compute impulse responses to confirm how to calibrate the bargaining-only model.

Figure 3 plots the impulse of market tightness (Panel A) and unemployment (Panel B)

in response to a one-standard-deviation increase in aggregate productivity z, which decays

according to an AR(1) process. The blue line is the response in the full model with both in-

centives and bargaining. The red line is the response in the bargaining-only model calibrated

to the full wage cyclicality in the data. The green line is the response in the bargaining-only

model calibrated to our estimate of bargained wage cyclicality in the data. The response

of both market tightness and unemployment is approximately 25% less pronounced in the

bargaining-only model than in the full model with incentives and bargaining. However, the

impulse responses of both tightness and unemployment are nearly identical in the full model

and the bargaining-only model calibrated to relatively rigid wages.

This section shows that researchers interested in the impulse response of unemployment

may abstract from incentive contracts by calibrating simpler models to match bargained

wage cyclicality. Doing so will generate an unemployment response identical to that in a

fuller model that accounts for micro-moments of wage adjustment and incentive pay. Our

numerical exercise reveals that the simpler model should target weakly procyclical wages

because a substantial share of overall wage cyclicality in the data is attributable to incentives.

32We normalize ε = 1 for this exercise and solve for fixed wages within the contract. We also drop the
standard deviation of log wage growth and the average pass-through of firm shocks as targeted moments.
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Figure 3: Impulse response to shock to z0 with bargaining-only and incentive pay models

Panel A: Tightness θt Panel B: Unemployment ut

Notes: The figure shows impulse responses for five years after a one-standard-deviation shock to z0. In Panel
A, θt is shown in percentage deviations from the steady state (i.e., 100 times the log deviation). In Panel B,
ut is shown as deviations away from the steady state in percentage points (i.e., 100 times the deviation in
levels). Further details on the construction of these impulse responses are described in Section B.6.

5 Conclusion

This paper studies the role of incentive pay in unemployment dynamics. Embedding a

dynamic principal–agent problem into a benchmark labor search model leads to two results.

First, wage cyclicality due to incentives does not dampen the response of unemployment

to shocks. Second, wage fluctuations that alter the worker’s utility at the start of the

contract, which we dub bargained wage cyclicality, do mute the response of unemployment

to productivity shocks as in standard models.

These analytical results imply a need for careful measurement of bargained wage cycli-

cality in calibrating models of unemployment dynamics. We offer one attempt at such

measurement through a calibrated model and find that approximately 54% of the wage

cyclicality observed in the data is due to bargaining, with 46% arising because of a cyclical

desire to incentivize worker effort. Models that do not feature incentive pay should therefore

target a value of wage cyclicality that is significantly lower than that in the data to correctly

reproduce the impulse response of unemployment.

There remains much work to be done. For instance, our paper has not studied cyclicality

in the degree of moral hazard frictions. Likewise, future work may be able to relate our

framework to capacity utilization and classic theories of labor hoarding (e.g., Burnside et

al., 1993). Finally, we hope that future reduced-form work will attempt to measure bargained

wage cyclicality to complement our more structural approach.
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FOR ONLINE PUBLICATION

A Analytic Appendix

A.1 Implicit Definition of B(z0) with Nash Bargaining

This subsection shows that Nash bargaining implicitly defines a functional form for B(z0).

Suppose that the firm and worker engage in generalized Nash bargaining over the surplus

of the match and ϕ is the firm’s bargaining power. Firms and workers take as given the

utility that workers would receive were they to match with another firm next period E(z).

Promised utility B (z0) is implicitly defined by

B (z0) = arg max
B

J
(
z0,B

)ϕ (B − U (z0)
)1−ϕ

.

Here, as in the main text, U (z0) is the value of unemployment at time 0. J
(
z0,B

)
is defined

by equations (11)-(13) in the main text, replacing E (z0) with B in equation (13). Therefore

B (z0) is the solution of the standard Nash bargaining problem, albeit in an environment

with dynamic incentive pay. The solution is

ϕ

∂J(z0,B(z0))

∂B
J (z0,B (z0))

+
(1− ϕ)

B (z0)− U (z0)
= 0. (31)

Note that, when a firm and worker bargain, they take the expected outcome of a worker

bargaining with other firms as given. Thus U(z0) does not itself depend directly on B(z0).

Therefore, equation (31) implicitly characterizes a particular choice for B(z0) from the Nash

bargain.

A.2 Proof of Theorem 1

First, we derive the relationship between the impulse response of tightness to TFP shocks,

and the impulse response of firm value to TFP shocks, which will hold in both the flexible

incentive pay and the rigid wage economy. From equation (9), the free entry condition is

q(θ0)J(z0)− κ = 0

=⇒ J (z0) =
κ

q (θ0)

=⇒ d ln θ0

d ln z0

=
1

ν0

d ln J (z0)

d ln z0

. (32)
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where −ν0 is the elasticity of the vacancy filling rate given z0. That is, the response of market

tightness to aggregate productivity shocks is proportional to the response of the value of a

filled job, as in the static model.

Now, we derive the dynamics of firm value and tightness in the rigid wage economy,

which will also be a warm-up for deriving the dynamics of tightness in the flexible incentive

pay economy. Using equation (15) from the main text, the value of a job in the rigid wage

economy is

J rigid (z0) =
∞∑
t=0

(β(1− s))tE [f(zt, ηt)− w̄|z0, ā]

=⇒ dJ rigid (z0)

dz0

=
∞∑
t=0

(β(1− s))t ∂
∂z0

E [f (zt, ηt) |z0, ā] . (33)

Using equations (32) and (33) from the Appendix and equation (15) from the main text,

tightness dynamics in the rigid wage economy are then

d ln θ0

d ln z0

=
1

ν0

d ln J rigid (z0)

d ln z0

=
1

ν0

z0

J rigid (z0)

dJ rigid (z0)

dz0

=
1

ν0

z0

∞∑
t=0

(β(1− s))t ∂
∂z0

E [f (zt, ηt) |z0, ā]

∞∑
t=0

(β(1− s))tE
[(
f(zt, ηt)− w̄

)
|z0, ā

]

=
1

ν0

∞∑
t=0

(β(1− s))t ∂
∂ ln z0

E [f (zt, ηt) |z0, ā]

∞∑
t=0

(β(1− s))tE
[(
f(zt, ηt)− w̄

)
|z0, ā

]
which implies the first-order response of log tightness to a change d ln z0 is

d ln θ0 =
1

ν0

∞∑
t=0

(β(1− s))t ∂
∂ ln z0

E [f (zt, ηt) |z0, ā] d ln z0

∞∑
t=0

(β(1− s))tE
[(
f(zt, ηt)− w̄

)
|z0, ā

] , (34)

i.e., equation (21) from the main text. Therefore we have derived the dynamics of tightness

in the rigid wage economy.

Next, we turn to dynamics in the flexible incentive pay economy. To start, we must

rewrite the firm’s problem in the case of flexible incentive pay, using the impulse response

notation introduced in the main text. Specifically, we let the contracts be given by (w, a) =
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{wt (ηt, εt; z0) , at (ηt−1, εt; z0)}∞t=0,ηt,εt where wt (ηt, εt; z0) , at (ηt−1, εt; z0) are continuous func-

tions mapping from the history of idiosyncratic and aggregate shocks, and the initial state,

to wages and effort. That is, contracts can depend on z0 and a cumulative set of devia-

tions from z0. We use the fact that we consider impulse responses holding fixed a path of

deviations to define the measure

πt
(
ηt, εt|a (z0)

)
=

t∏
τ=0

πτ
(
ητ |ητ−1, aτ

(
ητ−1, ετ ; z0

)
, ετ
)
πτ (ετ ) .

Thus the firm’s problem becomes

J (z0) = max
w(z0),a(z0)

∞∑
t=0

(β (1− s))t
∫ ∫ (

f (E [zt|z0] + εt, ηt)− wt(ηt, εt; z0)
)
π̃t
(
ηt, εt|a (z0)

)
dηtdεt

(35)

subject to participation constraints

∞∑
t=0

(β (1− s))t
[ ∫ ∫

u

(
wt(η

t, εt; z0), at(η
t−1, εt; z0)

)
π̃t
(
ηt, εt|a (z0)

)
dηtdεt

+ βs

∫
U(zt+1)π̂t(z

t+1|z0)dzt+1

]
≥ E (z0) (36)

and incentive compatibility constraints

∞∑
t=0

(β (1− s))t
[ ∫ ∫

u

(
wt(η

t, εt; z0), ãt(η
t−1, εt)

)
π̃t
(
ηt, εt|ã

)
dηtdεt

]
≤

∞∑
t=0

(β (1− s))t
[ ∫ ∫

u

(
wt(η

t, εt; z0), at(η
t−1, εt; z0)

)
π̃t
(
ηt, εt|, a (z0)

)
dηtdεt

]
(37)

for all ã ∈ X . Finally, let Φ ≡ {(w, a) ∈ X : G(w, a) ≤ 0} be the set of feasible contracts

that satisfy the IC and PC constraints.

To derive d ln J(z0)/d ln z0 in the flexible incentive pay economy, we seek to apply an

envelope theorem. However, it is not trivial to show that an envelope theorem applies in

our setting because the firm faces a continuum of constraints which may be non-convex. We

therefore pursue two proof strategies which rely on different conditions, both of which are

satisfied by our quantitative model. Our first proof in Section A.2.1 relies on the compactness

of the set of incentive compatible mechanisms that satisfy the PC, as assumed in Assumption

1. We provide two alternative sets of conditions guaranteeing this compactness in Section A.4

below: (i) the time horizon is finite, and η, z have finite support, or (ii) regularity conditions
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on the contract, which areoutlined in Lemma 5.

Our second proof in Section A.2.2 makes the stronger assumptions of Assumption 2

in the main text. These assumptions allow us to reformulate the firm’s problem using

recursive contracts and a first-order approach (i.e., assuming that the incentive compatibility

constraints may be summarized by the first-order condition to the worker’s problem). The

second proof is useful because it is closer to standard practice (e.g., Farhi and Werning,

2013) and because it derives results for the proof of Proposition 2.

Finally, after applying an envelope theorem, it is straightforward to derive the expression

for the elasticity of market tightness in the flexible incentive pay economy with acyclical

ex ante utility going to workers at the start of the contract, using similar steps to how we

derived the impulse response of tightness in the rigid wage economy and equation (34).

A.2.1 Proof Strategy 1: Sequence Problem

We seek to apply Theorem 4.13 of Bonnans and Shapiro (2000), which is reproduced below:

Bonnans and Shapiro (2000) Theorem 4.13 Consider the following optimization

problem:

min
x∈X

V (x, z) subject to x ∈ Φ

where z is a member of a Banach space Z, X is a Hausdorff topological space, Φ ⊂ X is

nonempty and closed, and V : X × Z → R is continuous. Let the value function be defined

as

J (z) ≡ inf
x∈Φ(z)

V (x, z)

and the optimal control set be given by

Γ∗ (z) ≡ arg min
x∈Φ(z)

V (x, z) .

Suppose that z0 ∈ Z and

1. For all x ∈ X the function V (x, ·) is Gateaux differentiable

2. V (x, z) and its partial Fréchet derivative with respect to z, given by DzV (x, z), are

continuous on X × Z

3. There exists M ∈ R and a compact set C ⊂ X such that for every z near z0 the set

A(z) ≡ {x ∈ Φ : V (x, z) ≤M} is non-empty and contained in C.
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Then the optimal value function z (·) is Fréchet directionally differentiable at z0 and

J ′ (z0, d) = inf
x∈Γ∗(z0)

DzV (x, z0) d,

where d is the direction of the Fréchet derivative and J ′(z0, d) is the Fréchet derivative of J

with respect to z in that direction.

This theorem provides conditions under which the total derivative of the value function

with respect to some parameter z is equal to the partial derivative of the value function with

respect to that parameter, taking the smallest product of partial derivative and direction

across the optimal control set. We verify the conditions of the theorem apply to the firm’s

problem, noting that the direction d corresponds to the sign of the increment d ln z0 in our

uni-dimensional context.

First, the space of possible aggregate productivities Z is clearly a Banach space, and

the set of feasible contracts X is a Hausdorff topological space. By Assumption 1, Φ is

non-empty. In addition, the firm’s objective function V (x, z) is continuous and Gateaux

differentiable since effort is assumed to continuously influence the measure of idiosyncratic

profit shocks η. So too is its partial Fréchet derivative.

Thus, all that remains to be verified is: (i) the constraint set does not depend directly

on z0 and (ii) condition three of the theorem of Bonnans & Shapiro holds. To verify that

the constraint set does not depend directly on z0, note that by inspection, the incentive

constraints (12) do not depend on z0. With take it or leave it wage offers and acyclical

unemployment benefits, as in the assumption of the Theorem, the participation constraint

(13) simplifies to

[PC] :
∞∑
t=0

(β (1− s))t
[ ∫ ∫

u

(
wt(η

t, εt; z0), at(η
t−1, εt; z0)

)
π̃t
(
ηt, εt|a (z0)

)
dηtdεt

+ βs

∫
Uπ̂t+1

(
zt+1|z0

)
dzt+1

]
≥ E , (38)

where now, by assumption, U and E are independent of z. Likewise, the bounds on w and

a do not depend on z. Therefore z does not directly enter the constraints.

Since Φ is compact, also by Assumption 1, we can verify condition 3 of Bonnans and

Shapiro (2000) Theorem 4.13. In particular, setting C = Φ and M = maxz∈[z,z],x∈Φ V (x, z)

verifies the condition. In this case C is compact. We also have A(z) = C = Φ, because all

contracts x in Φ have a value of less than M .

We have now validated the conditions of Bonnans and Shapiro (2000) Theorem 4.13 and

this envelope theorem applies to our problem.
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We now apply the envelope theorem. Using the fact that z0 is scalar we write the right-

hand derivative as

J ′+ (z0) = sup
x∗∈Γ∗(z0)

∂

∂z0

V (w∗, a∗; z0)

= sup
x∗∈Γ∗(z0)

∂

∂z0

[
max

w(z0),a(z0)

∞∑
t=0

(β (1− s))t
∫ ∫ (

f (E [zt|z0] + εt, ηt)− wt(ηt, εt; z0)
)
π̃t
(
ηt, εt|a (z0)

)
dηtdεt

]

= sup
x∗∈Γ∗(z0)

[
∞∑
t=0

(β (1− s))t ∂

∂z0

∫ ∫ (
f (E [zt|z0] + εt, ηt)− wt(ηt, εt; z0)

)
π̃t
(
ηt, εt|a (z0)

)
dηtdεt

]

= sup
x∗∈Γ∗(z0)

[
∞∑
t=0

(β (1− s))t ∂

∂z0

∫ ∫
f (E [zt|z0] + εt, ηt) π̃t

(
ηt, εt|a (z0)

)
dηtdεt

]
(39)

= sup
x∗∈Γ∗(z0)

[
∞∑
t=0

(β (1− s))t ∂

∂z0

E [f (zt, ηt) |a (z0)]

]

where the second line substitutes in equation (35). Since f is continuously differentiable and

Φ is compact, the supremum is attained at an optimum x∗+ ∈ Γ∗. Similarly, we have the

left-hand derivative

J ′− (z0) = inf
x∗∈Γ∗(z0)

[
∞∑
t=0

(β (1− s))t ∂

∂z0

E [f(zt, ηt)|z0, a
∗]

]
,

and the infinimum is attained at an optimum x∗− ∈ Γ∗. Combining the left- and right-hand

derivatives, it follows that to a first-order

dJ (z0) = sup
x∗∈Γ∗(z0)

[
∞∑
t=0

(β (1− s))t ∂

∂z0

E [f(zt, ηt)|z0, a
∗] dz0

]

= max
x∗∈Γ∗(z0)

[
∞∑
t=0

(β (1− s))t ∂

∂z0

E [f(zt, ηt)|z0, a
∗] dz0

]
(40)

where if the increment dz0 is negative then, in effect, the supremum converts to an infimum,

and the second line replaces the sup with a max because the space of optimal contracts is

compact. Noting that the value of J(z0) is the same for all optimal contracts, the preceding

equation implies

dJ (z0)

J (z0)
=

1∑∞
t=0 (β (1− s))t E [f(zt, ηt)− w∗t |z0, a∗]

max
x∗∈Γ∗(z0)

[
∞∑
t=0

(β (1− s))t ∂

∂z0

E [f(zt, ηt)|z0, a
∗] dz0

]
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=⇒ d ln J (z0) =
maxx∗∈Γ∗(z0)

[∑∞
t=0 (β (1− s))t ∂

∂z0
E [f(zt, ηt)|z0, a

∗] z0
dz0
z0

]
∑∞

t=0 (β (1− s))t E [f(zt, ηt)− w∗t |z0, a∗]

=
maxx∗∈Γ∗(z0)

[∑∞
t=0 (β (1− s))t ∂

∂ ln z0
E [f(zt, ηt)|z0, a

∗] d ln z0

]
∑∞

t=0 (β (1− s))t E [f(zt, ηt)− w∗t |z0, a∗]
.

The above equation and equation (32) then imply

d ln θ0 =
1

ν0

d ln J (z0)

=
1

ν0

maxx∗∈Γ∗(z0)

[∑∞
t=0 (β (1− s))t ∂

∂ ln z0
E [f(zt, ηt)|z0, a

∗] d ln z0

]
∑∞

t=0 (β (1− s))t E [f(zt, ηt)− w∗t |z0, a∗]

=
1

ν0

∑∞
t=0 (β (1− s))t ∂

∂ ln z0
E [f(zt, ηt)|z0, a

∗] d ln z0∑∞
t=0 (β (1− s))t E [f(zt, ηt)− w∗t |z0, a∗]

where the last equality holds for some (w∗, a∗) ∈ Γ∗(z0). In particular, (w∗, a∗) either max-

imizes the direct productivity effect among optimal contracts if d ln z0 is positive; or mini-

mizes the direct productivity effect if d ln z0 is positive. We have derived equation (20) from

the main text, characterizing the impulse response of tightness in the flexible incentive pay

economy.

To prove the final part of the theorem, we now assume that the left- and right-hand

partial derivatives of dJ(z0) are equal. A sufficient condition for this to hold is that the set

of optimal contracts is a singleton.33 We now derive the simplified expression for tightness

dynamics in the neighborhood of the steady state, equation (22) from the main text. Starting

from equation (39), we have

J ′ (z0) = max
x∗∈Γ∗(z0)

[
∞∑
t=0

(β (1− s))t ∂

∂z0

∫ ∫
f (E [zt|z0] + εt, ηt) π̃t

(
ηt, εt|a∗ (z0)

)
dηtdεt

]

= max
x∗∈Γ∗(z0)

[
∞∑
t=0

(β (1− s))t
∫ ∫

∂

∂z0

f (E [zt|z0] + εt, ηt) π̃t
(
ηt, εt|a∗ (z0)

)
dηtdεt

]

= max
x∗∈Γ∗(z0)

[
∞∑
t=0

(β (1− s))t
∫ ∫

fz (zt, ηt)
∂E [zt|z0]

∂z0

π̃t
(
ηt, εt|a∗ (z0)

)
dηtdεt

]

= max
x∗∈Γ∗(z0)

[
∞∑
t=0

(β (1− s))t E [fz (zt, ηt) |a∗ (z0)]
∂E [zt|z0]

∂z0

]
,

33When the left- and right-hand derivatives of dJ(z0) are different, we can still derive tightness dynamics
for negative and positive shocks in the neighborhood of the steady state.
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which applying a similar reasoning to the derivation of equation (20) implies

d ln θ0 =
1

ν0

maxx∗∈Γ∗(z0)

[∑∞
t=0 (β (1− s))t E [fz (zt, ηt) |a∗ (z0)] ∂E[zt|z0]

∂ ln z0
d ln z0

]
∑∞

t=0 (β (1− s))t E [f(zt, ηt)− w∗t |z0, a∗]

=
1

ν0

maxx∗∈Γ∗(z0)

[∑∞
t=0 (β (1− s))t E [fz (zt, ηt) |a∗ (z0)] z0

∂E[zt|z0]
∂z0

d ln z0

]
∑∞

t=0 (β (1− s))t E [f(zt, ηt)− w∗t |z0, a∗]

=
1

ν0

maxx∗∈Γ∗(z0)

[∑∞
t=0 (β (1− s))t E [f(ηt)|a∗ (z0)] z0d ln z0

]∑∞
t=0 (β (1− s))t E [f(zt, ηt)− w∗t |z0, a∗]

=
1

ν0

maxx∗∈Γ∗(z0)

[∑∞
t=0 (β (1− s))t E [z̄f(ηt)|z̄, a∗ (z̄)] d ln z0

]∑∞
t=0 (β (1− s))t E [f(z̄, ηt)− w∗t |z̄, a∗ (z̄)]

=
1

ν0

maxx∗∈Γ∗(z0)

[∑∞
t=0 (β (1− s))t E [f (z̄, ηt) |z̄, a∗ (z̄)] d ln z0

]∑∞
t=0 (β (1− s))t E [f(z̄, ηt)− w∗t |z̄, a∗ (z̄)]

=
1

ν0

∑∞
t=0 (β (1− s))t E [f (z̄, ηt) |z̄, a∗ (z̄)]∑∞

t=0 (β (1− s))t E [f(z̄, ηt)− w∗t |z̄, a∗ (z̄)]
d ln z0

=
1

ν0

1

1−
∑∞
t=0(β(1−s))tE[w∗t |z̄,a∗(z̄)]∑∞

t=0(β(1−s))tE[f(z̄,ηt)|z̄,a∗(z̄)]

d ln z0

=⇒ d ln θ0

d ln z0

=
1

ν0

1

1−
∑∞
t=0(β(1−s))tE[w∗t |z̄,a∗(z̄)]∑∞

t=0(β(1−s))tE[f(z̄,ηt)|z̄,a∗(z̄)]

; (41)

The third line uses the fact that ∂E[zt|z0]
∂z0

= 1 because zt follows a driftless random walk and

fz (zt, ηt) = ηt because f (zt, ηt) is homogeneous of degree one in zt; the fourth line evaluates

derivatives at the non-stochastic state in which zt = z̄; and the sixth line uses the uniqueness

of the optimal contract. Equation (41) is the same as equation (22) from the main text, for

the case of flexible incentive pay economy. The derivation of equation (41) for the case of

rigid wages is virtually identical, so we do not repeat it here. This derivation completes the

proof of Theorem 1.

A.2.2 Proof Strategy 2: First Order Approach and Recursive Formulation

We now show how to apply an envelope theorem to the flexible incentive pay problem, under

the stronger assumptions of Assumption 2 of the main text. This proof is clarifying because

the approach is closer to standard practice, and it will also be useful because it derives

results that are necessary for Proposition 2. Therefore for this subsection we make both

Assumptions 1 and 2 from the main text.

The application of the envelope theorem proceeds in three steps in this strategy. First

we derive a first-order approach to simplify incentive constraints into local incentive con-
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straints as in Farhi and Werning (2013) or Pavan et al. (2014). Then we develop a recursive

formulation of the problem. Finally, we use these constructions to prove our main theorem.

Step 1: First Order Approach The first-order condition for at in the worker’s problem

(12) given a contract is

0 =

∫ ∫ [
ua

(
wt(η

t, zt), at(η
t−1, zt)

)
π̃t
(
ηt, zt|z0, a

)
+ u

(
wt(η

t, zt), at(η
t−1, zt)

)
∂

∂at
π̃t
(
ηt, zt|z0, a

)]
dηtdzt

Note that this holds for every t and realization of zt. Thus one can remove the outer integral

to write first-order incentive constraints as∫ [
ua

(
wt(η

t, zt), at(η
t−1, zt)

)
πt
(
ηt|zt, ηt−1, a

)
+ u

(
wt(η

t, zt), at(η
t−1, zt)

)
∂

∂at
πt
(
ηt|zt, ηt−1, a

)]
dηt = 0

Step 2: Recursive Formulation We will work with the relaxed problem and develop

a recursive formulation of the firm’s problem. Notationally, let the value of some variable

X in the period t problem be given by X, the value of X in t − 1 be given as X− and the

value of X in t+1 be given by X ′. Suppressing explicit dependence of the problem on initial

productivity z0 for notational convenience, the recursive formulation of the firm’s problem

is then (we now drop the history dependence with the assumption that the process for η is

a Markov process):

J(v−, η−, z−, t) = max
a(η−,z),w(η,z),v(η,z)

∫ ∫ [
f (η, z)− w (η, z)

+ β (1− s) J (v(η, z), η, z, t+ 1)
]
π (η|z, η−, a(η−, z)) π̂(z|z−)dηdz (42)

subject to the following constraints:

ω(η, z) = u (w(η, z), a(η−, z)) + β
[
(1− s) v(η, z) + s

∫
U (z′) π̂ (z′|z) dz′

]
(43)

for all η and z realizations,

[λ] : v− ≤
∫ ∫

ω(η, z)π (η|z, η−, a(η−, z)) π̂(z|z−)dηdz, (44)

and the first-order incentive constraints:∫ [
ua

(
w(η, z), a(η−, z)

)
π (η|z, η−, a) + u

(
w(η, z), a(η−, z)

)
∂

∂a
π (η|z, η−, a)

]
dη = 0. (45)
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We now explain this problem. The firm begins period t knowing the prior realization of

shocks z− and η− and inherits a utility it must promise to the worker over the remaining life

of the contract, which we denote v−. The firm’s flow profits are the expected output f(η, z)

minus their expected wage payments w(η, z). Firms additionally receive a continuation value

with probability 1− s, which they discount at rate β. The firm maximizes the sum of flow

profits and continuation values by choosing the suggested effort and wage functions for every

realization of η and z, as well as a function for next period’s promised utility to the worker

v(η, z), subject to some constraints that we now describe.

The worker’s value under the contract given a realization (η, z) is given by ω(η, z), defined

in equation (43). It is equal to the worker’s flow utility u(w(η, z), a(η−, z) plus a continu-

ation value. With probability s, the match dissolves and the worker receives the value of

unemployment. With probability 1− s, the match survives and the worker receives v(η, z).

The recursive version of the participation constraint states that the worker’s expected

value under the contract must be at least the value promised to them v, and is given by

equation (44). Note that v− in the initial period of the match maps to the utility promised to

the worker overall B(z0) in the non-recursive formulation of the problem. For periods after

the start of the contract, equation (44) may be interpreted as a promise-keeping constraint.

Equation (45) is the relaxed incentive constraint described above.

Let the Lagrangian of the recursive problem be defined by
∫ ∫
L(·)dηdz for

L ≡[f (η, z)− w (η, z; z0)]π (η|z, η−, a(η−, z)) π̂(z|z−) (46)

+ β (1− s)
[
J (v(η, z), η, z, t+ 1)

]
π (η|z, η−, a(η−, z)) π̂(z|z−)

− λ[v− − ω(η, z)π (η|z, η−, a(η−, z)) π̂(z|z−)]

− γ(z)

[
ua

(
w(η, z), a(η−, z)

)
π (η|z, η−, a) + u

(
w(η, z), a(η−, z)

)
∂

∂a
π (η|z, η−, a)

]
,

where λ is the Lagrange multiplier on the participation constraint and γ(z) is the multiplier

on the incentive constraint given aggregate productivity z. Again, we suppress dependence

on z0, but the firm’s choice variables and the distribution of z and η may all depend on z0.

Next, we introduce the change of variable with the notation zt = E [zt|z0] + εt, where

by definition, εt is the cumulative innovation to the process for z between 0 and t and ε0 is
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known to be 0. One can write the Lagrangian as:

L = [f (η,E[z|z0] + ε)− w (η, ε)]π (η|ε, η−, a(η−, ε)) π̂(ε|ε−) (47)

+ β (1− s)
[
J (v(η, ε), η, ε, t+ 1)

]
π (η|ε, η−, a(η−, ε)) π̂(ε|ε−)

− λ[v− − ω(η, ε)π (η|ε, η−, a(η−, ε)) π̂(ε|ε−)]

− γ(ε)

[
ua

(
w(η, ε), a(η−, ε)

)
π (η|ε, η−, a) + u

(
w(η, ε), a(η−, ε)

)
∂

∂a
π (η|ε, η−, a)

]
Step 3: Envelope Theorem We seek to apply of Theorem 1 of Marimon and Werner

(2021), which relies on the following technical assumptions.

Technical Assumptions:

TA1. The set X of feasible allocations is convex, and f, u, π, ua, and πa are continuous

functions of {a, w, z0}

TA2. The constraint set G(z0) = {(w, a) ∈ X : G(w, a; z0) ≤ 0} is compact for every z ∈ Z,

a neighborhood of z0, and there exists a contract (w, a) such that the participation

constraint (44) is slack.

TA3. The set of optimal contracts is non-empty.

We argue these conditions apply in our setting. X is convex as the product of segments.

Under Assumption 1, X is compact. Then the constraint set G(z0) is a closed subset of a

compact and so is compact. What’s more, there exists a contract such that the participa-

tion constraint is slack since, for every z0 and promised utility v−, there exists a feasible

continuation value and effort ω(η, z), a(η−, z) that yield strictly higher utility than v−: that

is inequality (44) is strict. Finally, since from Assumption 1, X is compact and non-empty,

the set of optimizers of our continuous objective (i.e., the set of optimal contracts) is non-

empty.34

One can now apply the envelope theorem of Marimon and Werner (2021) to argue that

the derivative of the value function with respect to all variables the firm chooses and costates

– a∗, w∗, v∗, λ∗, and γ∗ – sum to zero. Therefore, differentiating the Lagrangian (47) with

34This envelope theorem is better suited for our purposes than Corollary 5 of Milgrom and Segal (2002)
since it does not require compactness assumptions on the support of the shocks.
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respect to z0 and substituting in for ω(η, ε) yields the right-hand derivative:

∂J(v−, η−, z−, t)

∂z+
0

= sup
(w∗,a∗)∈Γ∗(z0)

∫ ∫
∂

∂z0

[f (η,E[z|z0] + ε)]π (η|ε, η−, a∗(η−, ε)) π̂(ε|ε−)dηdε

(48)

+ β (1− s)
∫ ∫

∂

∂z+
0

[
J (v∗(η, ε), η, ε, t+ 1)

]
π (η|ε, η−, a∗) π̂(ε|ε−)dηdε

+ βsλ∗(η−, z−)

∫ ∫
∂

∂z0

U (E[z′|z0] + ε′) π̂ (ε′|ε) π̂(ε|ε−)dε′dε.

This is a refinement of a recursive version of equation (17): the first-order impact of aggregate

productivity on the value of a filled job is given by the sum of the direct effect on the firm’s

flow and continuation values, plus the direct effect on the constraints. Two terms are missing

from the fuller decomposition in equation (17). First, the “B-term” features no direct effect

on incentive constraints. This arises from the assumption that the distribution of η and ε

do not directly depend on z0. Second, the “C-term” – the indirect effect on firm value that

arises from changes in the contracted wages or effort – does not appear because we have

applied the envelope theorem of Marimon and Werner (2021).

We can write explicitly the sequence of participation constraints from time 0 as:

λ−(z0) : E(z0) ≤ v

λt−1(ηt−1, zt−1) : vt−1(ηt−1, zt−1) ≤
∫ ∫

ω(ηt, zt)π (ηt|zt, ηt−1, a(ηt−1, zt)) π̂(zt|zt−1)dηtdzt, ∀t ≥ 1.

The corresponding sequential participation constraints are:

[λ−(z0)] : B (z0) ≤
∞∑
t=0

(β (1− s))t
[ ∫ ∫

u

(
wt(η

t, εt; z0), at(η
t−1, εt; z0)

)
π̃t
(
ηt, εt|a(z0)

)
dηtdεt

+ βs

∫
U (E[zt+1|z0] + εt+1) π̂t+1

(
εt+1

)
dεt+1

]
[λτ (η

τ , ετ ; z0)] :
∞∑

t=τ+1

(β (1− s))t−τ−1

[ ∫ ∫
u

(
wt(η

t, εt; z0), at(η
t−1, εt; z0)

)
π̃t
(
ηt, εt|a(z0)

)
dηtdεt

+ βs

∫
U (E[zt+1|z0] + εt+1) π̂t+1

(
εt+1

)
dεt+1

]
≥ vτ (η

τ , ετ ; z0), ∀τ = 0, . . . ,+∞ (49)

Now we apply the envelope theorem to the problem recursively, replacing E with its equilib-
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rium value B to obtain

∂J

∂z0

= sup
{w∗,a∗}∈Γ∗(z0)

+∞∑
t=0

[ ∫ ∫
(β (1− s))t ∂f (E[zt|z0] + εt, ηt)

∂z0

π̃t
(
ηt, εt|a (z0)

)
dηtdεt (50)

− λ−(z0)
[∂B(z0)

∂z0

− βs
+∞∑
t=1

∫ ∫
(β (1− s))t−1 ∂U (E[zt|z0] + εt)

∂z0

π̂
(
εt
)
dεt
]

+
∞∑
τ=0

∫ ∫
λτ (η

τ , ετ ; z0)βs
[ +∞∑
t=τ+2

∫ ∫
(β (1− s))t−τ−2 ∂U (E[zt|z0] + εt)

∂z0

π̂
(
εt|ετ

)
dεt
]
×

π̃τ (ητ , ετ |a (z0)) dητdετ

When the outside option of the worker is acyclical and TIOLI, we have:

∂J (z0)

∂z0

= sup
{w∗,a∗}∈Γ∗(z0)

∞∑
t=0

(β (1− s))t
[ ∫ ∫ ∂f (E[zt|z0] + εt, ηt)

∂z0

π̃t
(
ηt, εt|a∗ (z0)

)
dηtdεt.

(51)

The preceding equation is the same as equation (40) from A.2.1, the previous application of

the envelope theorem. Therefore the same manipulations performed at the end of Section

A.2.1 yields the market tightness dynamics in Theorem 1.

A.3 Proof of Proposition 2

First, we derive equation (26) from the main text. From equation (24) we have

dJ (z0)

dz0

=
∂Y (a∗ (z0) ; z0)

∂z0

−
(
dW (z0)

dz0

− ∂aY (a∗ (z0) ; z0)
da∗

dz0

)
,

and from equation (25) we have

∂Wbargained (z0)

∂z0

≡ dW (z0)

dz0

− ∂aY (a∗ (z0) ; z0)
da∗

dz0

.

The preceding two equations imply

dJ (z0)

dz0

=
∂Y (a∗ (z0) ; z0)

∂z0

− ∂Wbargained (z0)

∂z0

=
∞∑
t=0

(β (1− s))t ∂

∂z0

E [f(zt, ηt)|z0, a
∗]− ∂Wbargained (z0)

∂z0
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=⇒ d ln J (z0)

d ln z0

=
z0

(∑∞
t=0 (β (1− s))t ∂

∂z0
E [f(zt, ηt)|z0, a

∗]− ∂Wbargained(z0)
∂z0

)
∑∞

t=0 (β (1− s))t E [f(zt, ηt)− w∗t |z0, a∗]

=

∑∞
t=0 (β (1− s))t ∂

∂ ln z0
E [f(zt, ηt)|z0, a

∗]− ∂Wbargained(z0)
∂ ln z0∑∞

t=0 (β (1− s))t E [f(zt, ηt)− w∗t |z0, a∗]
,

which is equation (26) from the main text.

Now we are going to prove the “moreover” statement that bargained wage cyclicality is

positive if and only if promised utility is procyclical. The derivation makes use of equation

(50) derived in Section A.2.2. Suppose the optimal contract features optimal choices for

wages and effort which are in the interior of Φ, which is true under the Inada conditions

made in Assumption 2. Then the additional Lagrangian terms after time zero are non-binding

and equation (50) becomes

∂J

∂z+
0

= sup
{w∗,a∗}∈Γ∗(z0)

∞∑
t=0

[ ∫ ∫
(β (1− s))t ∂f (E[zt|z0] + εt, ηt)

∂z0

π̃t
(
ηt, εt|a∗ (z0)

)
dηtdεt (52)

− λ∗PC(z0)
[∂B(z0)

∂z0

− βs
+∞∑
t=1

∫ ∫
(β (1− s))t−1 ∂U (E[zt|z0] + εt)

∂z0

π̂
(
εt
)
dεt
]

Under Assumption 1, X is compact, and so the supremum is achieved at a contract {w∗, a∗} ∈
Γ∗(z0). Evaluated at that optimum and comparing equation (26) with equation (52) yields

λ∗PC(z0)

[
∂B̃(z0)

∂z0

]
=
∂Wbargained(z0)

∂z0

.

Finally, λ∗PC(z0) > 0 because the participation constraint must bind on the optimal contract.

It immediately follows that ∂Wbargained(z0)/∂z0 > 0 if and only if ∂B̃(z0)/∂z0 > 0.

A.4 Sufficient Conditions for Compactness of Φ

This section provides two sets of sufficient conditions for Φ to be compact. The first condition

is that η and z have finite support and contracts last at least T periods, for T finite. The

second is that contracts are continuous and twice differentiable in their arguments with

uniformly bounded first and second derivatives, and that T is finite.

Lemma 4. If η and z have finite support and the time horizon is finite, then the choice set

of contracts is compact and the envelope theorem holds.

Proof. Suppose ηt ∈ {η1, . . . , ηN} and zt ∈ {z1, . . . , zM} have finite support and T is finite.

We will show that the space of [w, a] functions of (η, z) that are IC and PC is compact.
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Consider a sequence of functions [wn, an] that are IC and satisfy the PC. The sequence

[wn(η1, z1), an(η1, z1)] takes values in a compact set. Therefore, it has a subsequence that

converges. Call it [wφ1,1(n)(η1, z1), aφ1,1(n)(η1, z1)]. Now apply the same reasoning to the se-

quence [wφ1,1(n)(η1, z2), aφ1,1(n)(η1, z2)]; similarly, it is in a compact set, so it has a subsequence

that converges.

Through this diagonal argument, we construct [wφ1,1◦φ1,2···◦φN,M (n), aφ1,1◦φ1,2···◦φN,M (n)]: a

sub-sequence of functions that converges. Now we need to show that the limiting function

is also in the set, that is, it is IC and satisfies PC.

The PC is a closed inequality involving continuous functions. Due to the continuity of

the involved functions, the limit of any sequence of functions satisfying the PC will also

satisfy it. Analogously, for the incentive compatibility constraint (IC), consider fixing an

action ã(). Any sequence of [w, a] satisfying the IC inequality for ã(·), by the continuity of

the functions involved, will satisfy it at the limit. Since this applies for all ã(·), the limiting

function must be IC. We began with an arbitrary sequence of [w, a] that are both IC and

PC, and we have shown that it has a subsequence converging to a limit that is also IC and

PC. Therefore, the space of mechanisms is compact.

We can now employ a standard envelope theorem in this case given that the choice set

is compact and Corollary 4 of Milgrom and Segal (2002) applies.

Lemma 5. The set of feasible contracts that satisfy the IC constraints, Φ, is compact,

if contracts are restricted to being continuous and twice differentiable in their arguments

{ηt, zt}, with uniformly bounded first and second derivatives and the horizon T is finite.

Proof. We will show that Φ is equicontinuous.35 Let Ξ = [η, η̄] be the set of possible values

for η. Consider a set of functions that are continuously differentiable on [0, 1] and such

that both the functions and their first and second derivatives are uniformly bounded. This

means there exists some real number M such that for every function f in the set and every

x ∈ ΞT × ZT , ||f(x)|| ≤M and for its Jacobian ||Df(x)|| ≤M , where || · || is the Euclidian

norm in ΞT × ZT .

Given ε > 0, choose δ = ε/2M . Then for any function f in Φ and any points x and y

in ΞT × ZT such that ||x− y|| < δ, by the mean value theorem, we have ||f(x)− f(y)||∞ =

|Df(c)| · ||x − y|| for some c in the line xt + (1 − t)y, t ∈ [0; 1]. Since |Df(c)| ≤ M and

|x− y| < δ = ε/2M, we get ||f(x)− f(y)||∞ < ε/2.

35Φ is said to be equicontinuous at a point x ∈ ΞT × ZT if, for every ε > 0, there exists a δ > 0 such that
for every function f in Φ and every point y in ΞT × ZT , if ||x − y|| < δ then ||f(x) − f(y)||C1 < ε, where
|| · ||C1 is the C1 norm.
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Similarly, we can apply the mean value theorem to the Jacobian of f , and since the second

derivatives are bounded, an analogous argument to that above yields ||Df(x)−Df(y)||∞ <

ε/2. Therefore ||f(x) − f(y)||C1 ≡ ||f(x) − f(y)||∞ + ||Df(x) −Df(y)||∞ < ε and we have

shown that Φ is equicontinuous. By the Ascoli Theorem, any sequence in Φ thus has a

subsequence that converges. Therefore Φ is compact.

A.5 Proof of Proposition 3

The contracting environment is nearly identical to that of Edmans et al. (2012) (without

private savings), and the derivation of the optimal contract is thus very similar; therefore,

we leave some of the technical details of the proof to that paper. First, note that as is

standard in dynamic agency problems without private savings and separable preferences

over consumption and effort (Rogerson, 1985; Farhi and Werning, 2013), an Inverse Euler

Equation (IEE) holds. With logarithmic utility and the assumption firms and workers share

β as a common discount factor, the IEE reads

wt(η
t, a|zt) = Et[wt+1(ηt+1, a|zt+1)]. (53)

The inverse of the agent’s discounted marginal utility — which is simply the wage in this case

with logarithmic utility — is the marginal cost of delivering utility to the worker. Equation

(53) states that the expected marginal cost of delivering utility to the worker is equalized

across periods, otherwise the principal would deliver utility to the worker in relatively low

cost periods. Note that this equation dictates that wages are a martingale process and

implies that the optimal contract smooths worker consumption.

We begin by solving for the optimal difference wage schedule (27). To do so, we begin by

considering a finite horizon contract, with duration T , and then take the limit as T →∞.

Differentiating the worker’s incentive compatibility constraint with respect to aT (wiith

binding local constraints) given realizations of ηT and zT yields

1

wT (yT , zT )

∂wT (yT , zT )

∂aT
= h′(aT ).

Since the firm cannot distinguish ηT from aT , it must be the case that ∂wT/∂ηT = ∂wT/∂aT .

Substituting this into the above first-order condition yields

1

wT (yT , zT )

∂wT (ηT , zT )

∂ηT
= h′(aT ).
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Fixing ηT−1 and integrating over all possible realizations of ηT gives

lnwT (yT , zT ) = h′(aT )ηT +KT−1(ηT−1, zT ). (54)

That is, wages are a log-linear function of realizations of ηT , plus some function of past

output and zT : KT−1(ηT−1, zT ). This immediately implies

∂ lnwT (yT , zT )

∂ηT−1

=
∂KT−1(ηT−1, zT )

∂ηT−1

. (55)

Likewise, a binding period T − 1 incentive constraint implies

1

wT−1(yT−1, zT−1)

∂wT−1(ηT−1, zT−1)

∂ηT−1

+
β(1− s)
wT (yT , zT )

∂wT (ηT , zT )

∂ηT−1

= h′(aT−1).

Using (55), fixing ηT−2, and once again integrating with respect to ηT−1 gives

lnwT−1(yT−1, zT−1) = h′(aT−1)ηT−1 +KT−2(ηT−2, zT−1)− β(1− s)KT−1(ηT−1, zT ). (56)

Since wages are a martingale, exponentiating and equating (54) and (56) yields

eh
′(aT−1)ηT−1eK

T−2(ηT−2,zT−1)e−β(1−s)KT−1(ηT−1,zT ) = eK
T−1(ηT−1,zT )ET−1

[
eh
′(aT )ηT

]
. (57)

Taking logs, using properties of the normal distribution, and simplifying yields

(1 + β(1− s))KT−1(ηT−1, zT ) = h′(aT−1)ηT−1 +KT−2(ηT−2, zT−1)−
(σηh

′(aT ))2

2
(58)

Thus, KT−1(ηT−1, zT ) (and thus workers’ realized utility) is linear in ηT−1. Moreover, it can

be shown that utility in each period is a linear function of the performance shock in every

past period. Substituting equation (58) into equation (56) gives

KT−1(ηT−1, zT ) = lnwT−1(yT−1, zT−1)−
(σηh

′(aT ))2

2
. (59)

Substituting this expression for KT−1(ηT−1, zT ) into equation (54) gives

lnwT = lnwT−1 + h′(aT )ηT −
(σηh

′(aT ))2

2
.
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Pursuing a similar strategy, it can be verified that, more generally, for all t ≤ T

lnwt = lnwt−1 + ψth
′(at)ηt −

(ψtσηh
′(at))

2

2
, (60)

where ψt ≡
(
T−t∑
τ=0

(β(1− s))τ
)−1

. Taking the limit of equation (60) as T →∞ yields equation

(27), resulting in a constant sensitivity ψt ≡ ψ = 1− β(1− s) of log wages to idiosyncratic

output shocks over the lifetime of the contract.

To solve for the constant w−1(z0) that initializes this difference equation, note that free

entry into vacancy posting requires that the firm’s expected profits from posting vacancies

must be zero if a positive measure of vacancies are posted in equilibrium. This implies that

∞∑
t=0

(β(1− s))tE[zta
∗
t − w∗t (ηt, zt)|z0] =

κ

q(θ0)
.

Recalling that wages are a martingale process (E[w∗t (·)|z0] = E[w∗0(·)|z0]), we have that

E[w∗0(·)|z0]

1− β(1− s)
=
∞∑
t=0

(β(1− s))tE[zta
∗
t |z0]− κ

q(θ0)
.

From the definitions of Y(a∗(z0); z0) and ψ, we obtain the following expression for w−1(z0)

w−1(z0) = ψ

(
Y(a∗(z0); z0)− κ

q(θ0)

)
. (61)

Cumulating equation (60) then yields the following expression for the log wage at time t:

lnwt(at, η
t|zt) = lnw−1(z0) +

t∑
s=0

ψh′(as)ηs −
1

2

t∑
s=0

(ψh′(as)ση).
2 (62)

The worker’s utility under the contract is equal to the expected present discounted value

(EPDV) of log wage payments minus the EPDV of disutility from effort, plus the continuation

value should the worker separate to unemployment. First, let us focus on characterizing the

worker’s expected lifetime utility from consumption. Following Edmans et al. (2012), we

assume that this effort choice does not vary with ηt, i.e., that local incentive compatibility

is sufficient. From equation (62), we then have
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E0

[ ∞∑
t=0

(β(1−s))t ln(wt(η
t, zt|a|z0

]
=

1

ψ
lnw−1(z0)−E0

[
∞∑
t=0

(β(1− s))t1
2

t∑
τ=0

(ψh′(aτ )ση)
2

]
,

where the second term on the right hand side can be simplified as

E0

[
∞∑
t=0

(β(1− s))t1
2

t∑
τ=0

(ψh′(aτ )ση)
2

]
= E0

[
∞∑
t=0

∞∑
τ=t

(β(1− s))τ 1

2
(ψh′(at)ση)

2

]

= E0

[
∞∑
t=0

1

2
(ψh′(at)ση)

2

∞∑
τ=t

(β(1− s))t(β(1− s))τ−t
]

=
1

2
E0

[
∞∑
t=0

(β(1− s))t(ψh′(at)ση)2

∞∑
τ=t

(β(1− s))τ−t
]

=
1

2ψ
E0

[
∞∑
t=0

(β(1− s))t(ψh′(at)ση)2

]
. (63)

Note that the worker will be paid a higher expected wage if they exert a higher effort.

Subtracting off the disutility of effort and adding the continuation value of separating to

unemployment, the value to the worker of the contract is therefore

E(z0) =
1

ψ
lnw−1(z0)− E0

[
∞∑
t=0

(β(1− s))t
(

1

2ψ
(ψh′(at)ση)

2 + h(at)− βsU(zt+1)

)]
. (64)

Given that the firm makes take it or leave it offers, E(z0) is equated to the value of unem-

ployment U(z0) in equilibrium. This observation yields equation (29).

All that remains is to derive the optimal effort choice at(zt). Taking the first-order

condition of equation (64) with respect to at yields

1

ψ

d lnw−1(z0)

dat(zt)
− β(1− s)t

(
h′(at) + ψσ2

ηh
′(at)h

′′(at)
)

= 0.

Substituting in using the assumed expression for h(a) and equation (61) gives

1

ψ

zt

Y(a∗(z0); z0)− κ
q(θ0)

− a1/ε
t − εψσ2

ηh
′(at)a

1−ε
ε

t = 0.
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Multiplying by at and rearranging terms yields

a(zt; z0)
ε+1
ε =

1

ψ

zta(zt; z0)

Y(a∗(z0); z0)− κ
q(θ0)

− εψ (σηh
′ (a(zt; z0)))

2
,

where the notation a(zt; z0) recognizes that effort depends on the current realization of

productivity zt and productivity when the match formed in period 0. Raising this equation

to the power ε/(1 + ε) yields equation (30) as desired.

A.6 Decomposition in an Example of an Incentive Contract

Here we explicitly solve for the static optimal contract of Edmans and Gabaix (2011) in our

labor market environment and derive dJ/dz directly. This environment is the static version

of our quantitative model. The optimal contract is:

wage: ln(w) = h(a) + h′(a)η + B(z) (65)

effort: z = Eη [(h′(a) + h′′(a)η)w] (66)

market clearing:
κ

q(θ0)
= Eη[w]− za (67)

Substituting these expressions into equation (4), we have:

dJ

dz
= Eη

[
a+ z

da

dz
−
(
dw

da
× da

dz
+
∂w

∂z

)]
(68)

= Eη

a+ z
da

dz
− (h′(a) + h′′(a)η)w(z)︸ ︷︷ ︸

=z by optimal effort

×da
dz
− w(z)B′(z)

 (69)

= Eη [a]− λ0B′(z) (70)

where we have used the optimal effort equation to simplify the expression. Thus, we see

that the change in profits per worker in response to a shock to z is the direct effect minus

bargained wage cyclicality.

A.7 IRF of Tightness and the Slope of the Phillips Curve

This section extends the baseline model to allow nominal rigidities and a Phillips curve

for prices, by combining the Diamond-Mortensen-Pissarides model with a sticky price final

goods sector following Christiano et al. (2016), Gertler et al. (2008), and Blanchard and

Gaĺı (2010). The first result of this section is that the impulse response of tightness to
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labor demand shocks determines the slope of the Phillips curve in the model extension—a

larger impulse response flattens the Phillips curve. Therefore the impulse response that we

have extensively studied in the main text is a key determinant of inflation dynamics and

summarizes the degree of “real rigidity” coming from the labor market.

The second result of this section is that wage cyclicality due to incentives does not affect

the slope of the Phillips curve. We derive a closed form mapping between unemployment

and inflation that holds in both the economy with flexible incentive pay and no bargaining

power, and in an economy with rigid wages; provided they are calibrated to the same steady

state unemployment and output.

Throughout this section, we are agnostic about the drivers of economic fluctuations. One

can think of our exercise as considering the implications of incentive pay for one equation of

the three-equation New Keynesian model, namely the Phillips curve. Our results therefore

inform inflation dynamics around steady state for a variety of business cycle shocks. We note,

however, that the model with incentives would likely imply a quite different I-S relationship to

the standard model, since it carries different implications for idiosyncratic risk and, therefore,

consumption-savings behavior.

A.7.1 Setup

The model is a simplified version of the wage and price setting block of Christiano et al.

(2016). There are two sectors: a retail sector with sticky prices, whose price setting behavior

leads to a Phillips curve for prices; and a wholesale sector which hires workers in a frictional

labor market as in the main text. Since the ingredients are relatively standard, we discuss

them briefly. We also focus only on the ingredients that are necessary to derive the Phillips

curve linking price inflation to unemployment and do not discuss other blocks of the model.

Retail sector. There is a unit measure of retailers with Dixit-Stiglitz monopoly power,

who sell to a final output producer. In particular, retailer j produces output Yjt = AHjt,

where A is a productivity term that for simplicity we assume to be constant. Hjt is a quantity

of a wholesale good purchased from a competitive wholesale sector at a real price zt, or a

nominal price Ptzt given the price of final output Pt. Retailer j sets its price, Pjt subject to a

demand curve Yjt = (Pt/Pjt)
−α Yt, where Yt =

[∫ 1

0
(Yjt)

1− 1
α dj
] α
α−1

and Pt =
[∫ 1

0
P 1−α
jt dj

] 1
1−α

.

Inflation is defined as 1+πt ≡ Pt+1/Pt. The retailer is subject to a Calvo sticky price friction,

meaning with i.i.d. probability 1− % the firm can reset its price, and with probability % the

firm must keep the same price. Therefore zt represents real marginal costs to the retail

sector.

Wholesale sector. In the wholesale sector, firms sell an aggregate quantity of wholesale
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output, Ht =
∫ 1

0
Hitdi. These firms match with workers in a frictional labor market and

produce with a per worker production function f̃ (ηt); hence real revenues per worker are

ztf̃ (ηt) . The frictional labor market is identical to the model of Section 3 in the main text,

with a choice of real revenue per worker f (zt, ηt) = ztf̃ (ηt). The only difference between the

model of the frictional labor market in the main text, and the frictional labor market in the

extension that we have presented here, is the interpretation of zt. In the main text, zt is an

exogenous term representing labor productivity. In this section, zt is the real price of a unit

of wholesale output—marginal costs for the retail sector—which is determined endogenously.

Notation-wise, we use a variable x̄ to refer to the steady state of a variable xt.

A.7.2 IRF of Tightness and the Slope of the Phillips Curve

We now establish that the impulse response of tightness to business cycle shocks determines

the slope of the Phillips curve. Here, the Phillips curve is the structural relationship be-

tween inflation, inflation expectations and unemployment. As such, the IRF of tightness to

business cycle shocks is important because it is a key determinant of inflation dynamics. We

summarize our result in the following proposition.

Proposition 6. Assume that inflows into and outflows from unemployment are equal at all

times. Then to a first-order and in the neighborhood of the zero inflation and non-stochastic

steady state, the Phillips curve for prices is

πt = βEtπt+1 −
ϑ

ζ (1− ν̄) ū (1− ū)
(ut − ū) , (71)

where ϑ ≡ (1− %) (1− β%) /%, ū is the steady state value of unemployment and

ζ ≡ d ln θt
d ln zt

is the impulse response of tightness to labor demand shocks zt, evaluated at the steady state.

All proofs in this subsection are contained at the end of the subsection.36 Equation (71)

is a standard New Keynesian Phillips curve, which links inflation πt, to inflation expectations

Etπt+1 and unemployment ut. The coefficient on unemployment, the “slope” of the Phillips

curve, has several terms. ϑ is a familiar term representing nominal rigidities to Calvo price

setting frictions in the retail market. The denominator of the slope, ζ (1− ν̄) ū (1− ū) is a

36The proposition requires an approximation, that inflows into and outflows from unemployment are equal
at all times. This approximation is highly accurate at quarterly frequency, when calibrated to data for the
United States, because job finding rates are high at quarterly frequency (Ljungqvist and Sargent, 2017).
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set of parameters relating to the steady state of the frictional labor market, notably ζ. Thus

the impulse response of tightness to labor demand shocks ζ is a key determinant of the slope

of the Phillips curve.

The proposition shows that a greater impulse response of unemployment to labor demand

shocks leads to a flatter slope of the Phillips curve. Therefore the impulse response of

tightness to unemployment summarizes the degree of real rigidity coming from the labor

market. Intuitively, if the impulse response is large, then firms hire many workers after an

aggregate demand shock. Therefore production increases significantly and unemployment

falls rapidly for a given increase in inflation—meaning a flat Phillips curve.

A.7.3 Incentive Wage Cyclicality and the Slope of the Phillips Curve

We now show that wage cyclicality due to incentives does not affect the slope of the Phillips

curve. We summarize this result in another proposition. For this proposition, we will assume

perfect foresight with respect to aggregate shocks. By first-order certainty equivalence, the

impulse responses to the same shocks will be the same to a first-order in a neighborhood of

the non-stochastic steady state, in a fully stochastic model—see for instance Auclert et al.

(2022). Importantly, we allow nonlinearities with respect to idiosyncratic shocks.

Proposition 7. Suppose that (i) Assumption 1 from the main text holds, (ii) the firm makes

take it or leave it offers to workers and the flow value of unemployment is constant, (iii) the

economy is in the neighborhood of the non-stochastic and zero inflation steady state and (iv)

there is perfect foresight with respect to aggregate shocks.

Then in both the rigid wage and flexible incentive pay economies, the mapping between

unemployment and inflation satisfies to a first-order

ut = ū− ς (ū)
∞∑
τ=0

(β (1− s))τ Ē
[
z̄f̃(ητ )

]
(πt+τ − βπt+τ+1) ,

where Ē
[
z̄f̃(ητ )

]
is the expectation of output τ periods after the start of a match evaluated

at an aggregate steady state and ς is a known function defined in the proof of the proposition.

This proposition shows that the mapping between unemployment and inflation is the

same in two economies. The first is an economy with flexible incentive pay and no bargaining

power, the second has fully rigid wages. Both economies must be calibrated to the same

steady state values of unemployment and output in each period after the start of the match.

As such, incentive wage cyclicality does not affect the slope of the Phillips curve. Though the

derivation is involved, the intuition follows from the results of the main text and the previous
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result of this subsection. That is, the impulse response of tightness to labor demand shocks

governs the slope of the Phillips curve, and this IRF is the same in models with flexible

incentive pay or rigid wages; provided they are calibrated to the same steady state moments.

A.7.4 Proof of Proposition 6

Let dyt/dxt|SS denote the derivative of a variable yt with respect to xt evaluated at the

non-stochastic and zero inflation steady state.

First, we use the approximation that inflows into and outflows from unemployment are

equal at all times. This assumption amounts to imposing ut ≈ ut−1 and θt ≈ θt−1 in equation

(7) of the main text. Under this assumption, equation (7) implies

ut = ut−1 + s (1− ut−1)− φ (θt−1) (1− s)ut−1

=⇒ ut =
s

s+ θtq (θt) (1− s)
(72)

where we have used that φt = θtq (θt), given that φt = m (ut, vt) /ut and qt = m (ut, vt) /vt.

Differentiating this with respect to θt yields

dut
dθt

= − s

[s+ θtq (θt) (1− s)]
(1− s) [q (θt) + θtq

′ (θt)]

[s+ θtq (θt) (1− s)]

= −ut (1− νt)
(1− s) q (θt)

[s+ θtq (θt) (1− s)]

=⇒ dut
d ln θt

= − (1− νt)ut
(1− s) θtq (θt)

[s+ θtq (θt) (1− s)]

=⇒ dut
d ln θt

= − (1− νt)ut (1− ut)

=⇒ d ln θt
dut

= − 1

(1− νt)ut (1− ut)
(73)

where the final implication uses

1− ut = 1− s

s+ θtq (θt) (1− s)
=

θtq (θt) (1− s)
s+ θtq (θt) (1− s)

.

Therefore we have, to a first-order,

ln θt − ln θ̄t =
d ln θt
dut
|SS (ut − ū) = − 1

(1− ν̄) ū (1− ū)
(ut − ū) (74)

where we use equation (73) and a first-order Taylor expansion evaluated at the non-stochastic
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steady state.

The price setting problem of the retailer implies that, in a neighborhood of the zero

inflation and non-stochastic steady state

πt = βEtπt+1 + ϑ (ln zt − ln z̄) , (75)

where ln zt is the real marginal cost of the retailer sector. This derivation is standard (e.g.,

Gaĺı, 2015), so we do not repeat it here. Finally, from equations (73) and (75) we have

πt = βEtπt+1 + ϑ
d ln zt
d ln θt

|SS
(
ln θt − ln θ̄t

)
= βEtπt+1 +

ϑ

ζ

d ln θt
dut
|SS (ut − ū)

= βEtπt+1 −
ϑ

ζ (1− ν̄) ū (1− ū)
(ut − ū) (76)

where we use the definition ζ ≡ d ln θt/d ln zt|SS and the final equality substitutes in equation

(73). Equation (76) completes the proof.

A.7.5 Proof of Proposition 7

Let Ē [xτ ] denote an expectation taken τ periods after the start of a match, evaluated at the

non-stochastic steady state for aggregate variables.

From equation (11) of the main text, the value of a job filled in period t is

Jt =
∞∑
τ=0

(β (1− s))τ E
[
zt+τ f̃(ηt+τ )− w∗t+τ |a∗t

]
where we have dropped the conditioning of the expectation on zt through perfect foresight

of aggregate variables, which we invoke to render zt non-stochastic. We can write

Jt = J (zt, a
∗ (zt) ,w

∗ (zt)) =
∞∑
τ=0

(β (1− s))τ E
[
zt+τ f̃(ηt+τ )− w∗t+τ (zt) |a∗ (zt)

]
(77)

where zt = {zt+τ}∞τ=0 is the known sequence of aggregate values of z, and w∗ (zt), a
∗ (zt)

represent the optimal choices of wages and effort given zt.
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Differentiating with respect to ln zt+k for arbitrary k ≥ 0, we have

∂ ln J (zt, a
∗ (zt) ,w

∗ (zt))

∂ ln zt+k
=
zt+k
Jt
×
∂
(∑∞

τ=0 (β (1− s))τ
[
zt+τE

[
f̃(ηt+τ )|a∗t

]
− E

[
w∗t+τ |a∗t

]])
∂zt+k

=
(β (1− s))k

[
zt+kE

[
f̃(ηt+k)|a∗t

]]
∑∞

τ=0 (β (1− s))τ
[
zt+τE

[
f̃(ηt+τ )|a∗t

]
− E [w∗t+τ |a∗t ]

]

=⇒ ∂ ln J (zt, a
∗ (zt) ,w

∗ (zt))

∂ ln zt+k
|SS =

(β (1− s))k
[
z̄Ē
[
f̃(ηk)|ā∗

]]
∑∞

τ=0 (β (1− s))τ
[
z̄Ē
[
f̃(ητ )|ā∗

]
− Ē [w̄∗τ |ā∗t ]

] (78)

Thus, taking a first-order Taylor expansion for Jt, we have, to a first-order, that:

ln Jt − ln J̄ =
∞∑
k=0

d ln Jt
d ln zt+k

|SS (ln zt+k − ln z̄)

=
∞∑
k=0

∂ ln J (zt, a
∗ (zt) ,w

∗ (zt))

∂ ln zt+k
|SS (ln zt+k − ln z̄)

=
∞∑
k=0

(β (1− s))k
[
z̄Ē
[
f̃(ηk)|ā∗

]]
∑∞

τ=0 (β (1− s))τ
[
z̄Ē
[
f̃(ητ )|ā∗

]
− Ē [w̄∗τ |ā∗t ]

] (ln zt+k − ln z̄) (79)

where the second equality substitutes in equation (77) and uses the envelope theorem of

Section 3; and the third equality uses equation (78).

Next, note that from the Phillips curve (75) and using perfect foresight with respect to

aggregate variables, we have

πt = βπt+1 + ϑ (ln zt − ln z̄) =⇒ πt − βπt+1

ϑ
= ln zt − ln z̄. (80)

The free entry condition (9) from the main text implies, to a first-order

ln Jt − ln J̄ = ν̄
(
ln θt − ln θ̄

)
.

Using equations (74) and (79) gives

∞∑
k=0

(β (1− s))k
[
z̄Ē
[
f̃(ηk)|ā∗

]]
∑∞

τ=0 (β (1− s))τ
[
z̄Ē
[
f̃(ητ )|ā∗

]
− Ē [w̄∗τ |ā∗t ]

] (ln zt+k − ln z̄) = −ν̄ 1

(1− ν̄) ū (1− ū)
(ut − ū) .
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Rearranging and using equation (80) to substitute in for ln zt+k − ln z̄ yields

ut = ū− (1− ν̄) ū (1− ū)

ν̄

∑∞
k=0 (β (1− s))k Ē

[
z̄f̃(ηk)

] (
πt+k−βπt+k+1

ϑ

)
∑∞

τ=0 (β (1− s))τ
[
z̄Ē
[
f̃(ητ )|ā∗

]
− E [w̄∗τ |a∗t ]

]
Finally, substituting back in using the free entry condition (1), we have

ut = ū− ς (ū)
∞∑
τ=0

(β (1− s))τ Ē
[
z̄f̃(ητ )

](πt+τ − βπt+τ+1

ϑ

)
(81)

for

ς (ū) ≡ (1− ν̄) ū (1− ū)

ν̄

q
(
θ̄
)

κ
.

Note ς(ū) is a function only of steady state unemployment since by equation (72), θ̄ is a

function of ū; and ν̄ is a function of θ̄ because it is the vacancy filling elasticity.

Equation (81) derives the mapping between unemployment and inflation in the flexible

incentive pay economy. The steps to derive the mapping between unemployment and inflation

in the rigid wage economy are the same except that one does not need to apply an envelope

theorem to derive the final equality of equation (79) for the rigid wage economy.

A.8 Endogenous Separations and Limited Worker Commitment

This section introduces efficient endogenous separations and limited worker commitment into

the baseline environment. To economize, we only discuss the parts of the model that change

due to efficient separations or limited worker commitment, otherwise the model is the same

as the flexible incentive pay economy of the main text.

A.8.1 Economic Environment

Labor Market As in the baseline model of the main text, a large measure of risk-neutral

firms match with unemployed workers according to a frictional matching technology. Fluc-

tuations are driven by aggregate productivity zt and there is free entry to vacancy posting

at a constant flow cost κ, as in the main text.

At the end of period t−1 an endogenous fraction st of workers separate from employment

and enter unemployment. The unemployed search for new jobs, so ut evolves as

ut = ut−1 + st(1− ut−1)− φ(θt−1)ut−1(1− st). (82)
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Preferences and Consumption Workers’ preferences are identical to the model of the

main text.

Firms and Wage Setting Firms are risk neutral and maximize expected profit with

discount factor β. Successful matches produce with a production function f (z, η), where

unobserved worker effort shifts the distribution of η realizations, as in Section 3. Assuming

that zt is first-order Markovian, we define π (zt+1|zt) to be the one-step-ahead probability.

The value of a firm of posting a vacancy at time 0 is then

Π0 = q(θ0)E

[
∞∑
t=0

βt

(
t∏

j=1

(1− sj)

)
(f (zt, ηt)− wt)

]
− κ, (83)

where E conditions on the firm’s information set at time 0 prior to meeting a worker. A

vacancy is filled with probability q(θ). If a firm meets a worker, its value is the expected

present value of the difference between production and wage payments, discounted by the

firm’s discount factor β as well as separation risk. Here,
∏t

j=1 (1− sj) is the endogenous

probability that a match survives until period t, which cumulates the probability 1− sj that

a match survives period j. We entertain two possibilities for wage setting.

Flexible Incentive Pay Economy As in the main text, the firm observes realizations

of both zt and ηt, but does not observe worker’s effort. When a firm and worker meet,

the firm offers the worker a contract to incentivize effort and maximize firm value. The

innovation of this section is that the firm now has the additional option to vary the probability

that the match separates in each date and state. For instance, if the expected present

value of profits has turned negative, the firm may choose to terminate the contract. Thus

the contract may be summarized by functions wt(η
t, zt) ∈ [w, w̄], at(η

t−1, zt) ∈ [a, ā] and

a separation probability st (ηt, zt) ∈ [0, 1] for all t and all realizations of ηt and zt. Let

(w, a, s) denote a contract, with w ≡ {wt(ηt, zt)}∞t=0,ηt,zt , a ≡ {at(ηt−1, zt)}∞t=0,ηt−1,zt and

s ≡ {st (ηt, zt)}∞t=0,ηt,zt . Let X denote the space of possible contracts.

Value of a Filled Vacancy. Under the contract (w, a, s), and initial productivity z0,

the firm’s expected present value of profits from posting a vacancy is

V (w, a, s; z0) =
∞∑
t=0

∫ ∫
βtSt

(
ηt, zt

) (
f(zt, ηt)− wt(ηt, zt)

)
π̃t
(
ηt, zt|z0, a

)
dηtdzt, (84)

where St (ηt, zt) ≡
t∏

j=1

(1− st−j (ηt−j, zt−j)) is the probability that a match survives the

sequence ηt, zt; and π̃t(η
t, zt|z0, a) is the probability of observing a realization of ηt and zt
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given the initial z0 and the contracted effort function a, as in the main text. The risk-neutral

firm discounts period t profits by the economy-wide discount rate βt and the probability

St(ηt, zt) that the match survives t periods.

The contract maximizes the value of a filled vacancy

J (z0) = max
{wt(ηt,zt),at(ηt−1,zt),st(ηt,zt)}∞t=0,ηt,zt

∈X
V (w, a, s; z0) (85)

subject to the incentive compatibility and participation constraints described below, as well

as a new set of constraints that captures limited commitment by the worker.

Incentive Constraints. The incentive compatibility condition is similar to the main

text, but now accounts for endogenous separation risk

[IC] : a ∈ argmax
{ãt(ηt−1,zt)}∞

t=0,ηt,zt

∞∑
t=0

[ ∫ ∫
βtSt

(
ηt, zt

) [
u

(
wt(η

t, zt), ãt(η
t−1, zt)

)
−Ψ(s

(
ηt, zt

)
)

+βs
(
ηt, zt

) ∫
U (zt+1)π (zt+1|zt) dzt+1

]
π̃t
(
ηt, zt|z0, ã

)
dηtdzt,

(86)

where Ψ(sj) represents a convex utility cost to the worker of searching for a new job.

Participation Constraint. Likewise, the participation constraint must also account

for separation risk and becomes

[PC] :
∞∑
t=0

[ ∫ ∫
βtSt

(
ηt, zt

) [
u

(
wt(η

t, zt), ãt(η
t−1, zt)

)
−Ψ(s

(
ηt, zt

)
)

+βs
(
ηt, zt

) ∫
U (zt+1)π (zt+1|zt) dzt+1

]
π̃t
(
ηt, zt|z0, ã

)
dηtdzt

]
≥ E (z0) . (87)

Limited Commitment. Limited commitment and endogenous separations means that

after any history ητ , zτ the worker must rather stay in the match than separate, leading to

a constraint that for each ητ , zτ :

[ES] :
∞∑
t=τ

E
[
βt−τSτt

(
ηt, zt

) [
u

(
wt(η

t, zt), at(η
t−1, zt)

)
−Ψ(s

(
ηt, zt

)
)

+βs
(
ηt, zt

)
E[U (zt+1) |zt]

]∣∣∣∣ητ , zτ] ≥ U (zτ ) , (88)

where Sτt is the survival probability after time τ , Sτt (ηt, zt) ≡
t∏

j=τ+1

(1− st+τ+1−j (ηt+τ+1−j, zt+τ+1−j)).

Bargaining and ex ante utility. To close the flexible incentive pay economy, we again
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assume ex ante utility E(z0) is given by a reduced-form “bargaining schedule” B(z0).

Rigid Wage Economy The rigid wage economy is identical to the rigid wage economy

of the main text, including the assumption of an exogenous separation rate s.

Equilibrium Given initial unemployment u0 and a stochastic process {zt, ηt}∞t=0, an equi-

librium is a collection of stochastic processes {θt, ut}∞t=0 and functions J(z), U(z), E(z), and

(w, a, s) such that for all firms: (i) θt satisfies the free entry condition so that Πt, given in

equation (83), is equal to 0 for all t; (ii) ut satisfies the law of motion for unemployment

(82); (iii) wage, effort, and separation functions (w, a, s) satisfy the flexible incentive pay

economy equations (85)-(88), or wt = w̄, at = ā and st = s in the rigid wage economy; (iv)

the value of unemployment U(z) is defined in the same way as the main text; (v) the value

of employment is defined the same way as the main text for the in the rigid wage economy,

or E(z) = B(z) in the flexible incentive pay economy; and (vi) the value of a filled vacancy

J(z) is given by (85) in the flexible incentive pay economy or the same way as the main text

for the rigid wage economy.

A.8.2 Equivalence of Rigid and Incentive Pay with Endogenous Separations

This subsection shows that, without bargaining power or fluctuations in outside options,

the first-order response of market tightness is the same in the rigid wage economy, and the

flexible incentive pay economy with endogenous separations. For simplicity we make the

same assumptions as the main text, such as studying impulse responses in a neighborhood

of the non-stochastic steady state.

Proposition 8. Assume that the set of feasible contracts that satisfies the incentive con-

straints (86) and the participation constraint (87) is non-empty and compact. Also assume

that the production function is homogeneous of degree one in aggregate productivity z, zt is a

driftless random walk, and the optimal incentive contract at the non-stochastic steady state

is unique. Finally, assume that the firm makes take it or leave it offers to workers and the

flow value of unemployment is constant and the optimal contract is unique. Then the impact

elasticity of market tightness to shocks to zt is

d ln θ0

d ln z0

=
1

ν̄

1

1− Λ
(89)
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where Λ is the steady state labor share defined as

Λ ≡

∑∞
t=0 Eβt

t∏
j=1

(
1− s∗j

)
w∗t∑∞

t=0 Eβt
t∏

j=1

(
1− s∗j

)
f (z̄, ηt)

where s∗j and w∗t denote choices of separations and wages along the optimal contract, where

the expectation E is evaluated along the optimal contract, and z̄ is the value of zt at the

aggregate steady state.

This theorem shows that the flexible incentive pay economy with endogenous separations

has as an equivalent response of tightness on impact to the rigid wage economy of the main

text. Note that the dynamics of the rigid wage economy are still given by equation (22).

Therefore incentive wage cyclicality does not affect the impact response of tightness with

endogenous separations so long as the flexible incentive pay economy and the rigid wage

economy are calibrated to the same steady state labor share. In the incentive pay economy

with endogenous separations, the labor share depends on the optimal choice of separation

rates, as well as the factors from the model of the main text such as wages and effort.

We stress that this result leads to equivalence for impact elasticities, as Pissarides (2009)

discusses. In general the response of tightness to labor productivity shocks after impact

will be different in the rigid wage and flexible incentive pay economies because endogenous

separations lead to additional dynamics of unemployment after the impact of the shock.

Intuitively, in the model with efficient endogenous separations, separations are an addi-

tional choice which the firm can optimize over. However, changes in the optimal separation

choice after TFP shocks have no first-order effect on profits—just as neither changes in op-

timally chosen effort nor wages affect profits. Likewise, the optimal contract ensures that

workers do not wish to leave the match. Reoptimizations by the worker as aggregate condi-

tions change do not affect profits. This logic is again due to the envelope theorem.

A.8.3 Proof of Proposition 8

The free entry condition in the flexible incentive pay economy is

κ

q (θ)
= J (z0) ,
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where J (z0) is defined in equation (85). Taking derivatives and rearranging implies

d ln θ0

d ln z0

=
1

ν0

d ln J (z0)

d ln z0

=
1

ν0

z0

J (z0)

dJ (z0)

dz0

. (90)

With Ψ convex, the optimal separation rates s∗j will be interior. Under the assumptions of the

proposition, z0 does not enter either the incentive constraints, the participation constraint,

or the limited commitment constraints directly. Therefore we have

dJ (z0)

dz0

=
∂J (z0)

∂z0

=
∂

∂z0

∞∑
t=0

Eβt
t∏

j=1

(
1− s∗j

)
(f(zt, ηt)− wt)

=
∞∑
t=0

Eβt
t∏

j=1

(
1− s∗j

)
(fz(zt, ηt)) , (91)

where the first equality invokes the envelope theorem, using the same argument as Appendix

ection A.2.1 and also using our assumption of a unique optimal contract in order to dispense

with a sup operator; the second equality rewrites the definition of profits from equation (84)

using the notation from the theorem and exploits that terms involving the participation,

incentive, or limited commitment constraints vanish because z0 does not enter them directly;

and the final equality uses that zt is a random walk.

Substituting in equations (90) and (91) implies

d ln θ0

d ln z0

=
1

ν0

z0

∑∞
t=0 EβtΠt

j=1

(
1− s∗j

)
(fz(zt, ηt))

E
[∑∞

t=0 β
tΠt

j=1

(
1− s∗j

)
(f (zt, ηt)− w∗t )

]
=

1

ν0

z̄
∑∞

t=0 EβtΠt
j=1

(
1− s∗j

)
(fz(z̄, ηt))

E
[∑∞

t=0 β
tΠt

j=1

(
1− s∗j

)
(f (z̄, ηt)− w∗t )

]
=

1

ν0

∑∞
t=0 EβtΠt

j=1

(
1− s∗j

)
(f(z̄, ηt))

E
[∑∞

t=0 β
tΠt

j=1

(
1− s∗j

)
(f (z̄, ηt)− w∗t )

]
=

1

ν0

1

1− E[
∑∞
t=0 β

tΠtj=1(1−s∗j)w∗t ]
E[

∑∞
t=0 β

tΠtj=1(1−s∗j)(f(z̄,ηt))]

,

, where we use the assumption of an aggregate steady state in z̄.
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B Numerical Appendix

B.1 Preliminaries

We calibrate the model such that t represents a month. Specifically, we set the discount

rate β to 0.991/3, the vacancy creation cost to 0.45 and employ a matching function given

by m(u, v) = uv(uι + vι)−1/ι so that q(θ) = (1 + θι)1/ι, which is bounded between 0 and

1. We set ι = 0.9 by nonlinear least squares to match the empirical relationship between

aggregate market tightness and job-finding rates. We set the exogenous separation rate

s = 0.031 to the average monthly separation rate in the Current Population Survey (CPS)

from 1951 to 2019. This implies that the pass-through parameter ψ equals 0.034. Separation

rates and job-finding rates are both adjusted for time aggregation following Shimer (2005).

We measure empirical labor market tightness as job openings from the Job Openings and

Labor Turnover Survey (JOLTS) divided by household unemployment in the CPS. Our labor

market tightness series spans from 2001 to 2019 (JOLTS begins in December 2000).

We discretize the AR(1) productivity process for ln zt onto a finite grid: z ∈ Z = [z, ..., z]

following Rouwenhorst (1995). We set the number of gridpoints to 13.

We now rewrite the key equations in our numerical model recursively, given the Marko-

vian structure for productivity. Let π(z′|z) denote the probability of aggregate productivity

transitioning from z to z′. Recall that the optimal effort schedule, given an initial z0 and

current z, satisfies

a (z; z0) =

 za (z; z0)

ψ
(
Y (z0)− κ

q(θ(z0))

) − ψ

ε
(h′ (a (z; z0))ση)

2

 ε
1+ε

.

Let Ỹ (z; z0) denote the EPDV of future output, conditional on effort a(·; z0) and current

productivity z, given by

Ỹ (z; z0) = za (z; z0) +
∑
z′∈Z

β (1− s) Ỹ (z′; z0))π (z′|z) .

It follows that Y (z0) = Ỹ (z0; z0). Note that the optimal effort depends on z0 through

Y (z0) and θ(z0), which are both equilibrium objects in our model. Define the worker’s

expected present discounted utility from starting work at z0, Ẽ(z0), taking as given the effort
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schedule a(·; z0) and the wage schedule w(·; z0) defined in Section 4:

Ẽ(z0) =
1

ψ
lnw−1 (z0) + Ez

[
−
∞∑
t=0

[β(1− s)]t 1

ψ

1

2
(ψh′(a (zt; z0))ση)

2−

∞∑
t=0

[β(1− s)]th(a (zt; z0)) +
∞∑
t=0

[β(1− s)]tβsω(zt+1)

]
,

where

ω(z) = E

[
∞∑
t=0

βt ln b(zt) | z0 = z

]
.

It is helpful to re-define the term in brackets in the above expression as W (z0; z0), where

W (z; z0) = − 1

ψ

1

2
(ψh′(a (z; z0))ση)

2−h(a (z; z0))+
∑
z′∈Z

βsω (z′) π (z′|z0)+
∑
z′∈Z

β (1− s)W (z′; z0) π (z′|z0) .

Finally, we define an implicit, auxiliary function for effort ã with arguments z, Ỹ , and q̃

(subsuming any dependence on z0) that is useful when solving the model numerically:

ã
(
z, Ỹ , q̃

)
=

 zã

ψ
(
Ỹ − κ/q̃

) − ψ

ε
(h′ (ã)ση)

2

 ε
1+ε

.37

B.2 Algorithm to solve for the optimal contract, given z0

Fix an initial z0 ∈ Z. To solve for the optimal contract beginning at z0, we perform a bisection

search over the job-filling rate q(z0). Let n index iterations over our guess of q(z0). Then,

for a given qn(z0), we solve for the optimal effort schedule ãn(·) and the EPDV of ouput

Y n(z0) as a fixed point problem. With values of Y n(z0) and qn(z0), we can construct wn1 (z0),

the intialization for the difference equation governing the wage schedule, and recursively

solve for the EPDV of the utility offered by the contract En(z0). We then check whether

En(z0) = ω(z0), as implied by TIOLI offers, and accordingly update the lower and upper

bounds for the next iteration, qn+1 and q̄n+1, respectively. We continue this process until

convergence of q(z0). Below we describe the algorithm in further detail.

1. Set n = 1. Set qn = 0, and q̄n = 1.

2. Set qn(z0) = 1
2
(qn + q̄n).

3. Set k = 1. Make initial guess for Y k,n(z|z0) for z ∈ Z.

37For general ε, we numerically solve for at using a root-finder, restricting attention to positive roots.

79



4. Update Y k+1,n(·; z0) as

Y k+1,n (z; z0) = zã
(
z, Y k,n(z; z0), qn(z0)

)
+
∑
z′∈Z

β (1− s)Y k,n (z′; z0) π (z′|z)

5. Repeat (4) until ‖Y k,n+1 (·; z0) − Y k,n (·; z0) ‖ < δ1 for some small tolerance δ1 > 0.

Define the object Y n(z0) = Y k,n (z0; z0). Define ãn(z) = ã(z, Y n(z0), qn(z0)).

6. Solve for wn−1(z0) using the free entry condition:

wn−1(z0) = ψ

(
Y n(z0)− κ

qn(z0)

)
.

7. Set j = 1. Make initial guess for W j,n (z0; z) .

8. Update W j+1,n(·; z0) as

W j+1,n (z; z0) = − 1

ψ

1

2
(ψh′(ãn(z))ση)

2 − h(ãn(z))+∑
z′∈Z

βsω (z′) π (z′|z) +
∑
z′∈Z

β (1− s)W j,n (z′; z0) π (z′|z)

9. Repeat (8) until ‖W j,n+1(·; z0) − W j,n(·; z0)‖ < δ2 for some small tolerance δ2 > 0.

Define En(z0) = 1
ψ

lnwn−1(z0) +W j,n(z0; z0).

10. If En(z0) > ω(z0) then set q̄n+1 = qn(z0). If En(z0) < ω(z0), then set qn+1 = qn(z0).

Recall that with TIOLI offers, E(z0) = ω(z0). Note that ω(z0) can be computed by a

simple value function iteration.

11. Repeat steps (2)-(10) until |En(z0) − ω(z0)| < δ3 for some small tolerance δ3 > 0 to

obtain q(z0).

12. Define θ(z0) = q−1(q(z0)), where q(θ) = 1
(1+θι)1/ι

.

We repeat this procedure for all values of z0 ∈ Z to obtain the equilbrium objects Y (z0),

w−1(z0), and a(·; z0). It takes less than half of a second to solve for the optimal contract for

a given z0 with the parameters from our baseline calibration.

B.3 Additional Details on Simulation

Our set of targeted moments includes two moments that depend on within-contract, idiosyn-

cratic realizations: the standard deviation of annual (YoY) wage growth (std(∆ lnwit)) and
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the pass-through from idiosyncratic shocks to firm profits to wages (∂ lnwit/∂ ln yit), and two

moments which can be computed from aggregate time series simulated in the model: the

cyclicality of new hire wages (∂E[lnw0]/∂u) and average unemployment (ūt). To compute these

moments for a given set of parameters Ω := {ε, ση, χ, γ}, we solve the model for each initial

z0 ∈ Z following the procedure outlined in Section B.2 to obtain a(·|z0), w−1(z0), and θ(z0).

We then simulate the economy with aggregate shocks and compute moments.

Simulating std(∆ lnwit) and E[∂ lnwit/∂ ln yit]. We simulate a panel of I = 50, 000 idiosyn-

cratic ηit shocks of length T = 1, 500 (and one sequence of aggregate zt shocks of length

T). For each period t and worker i, we simulate separations and job-finding shocks consis-

tent with the exogenous probability of separation s and endogenous job-finding probability

φ(θ(zt)).
38 All workers are employed at the beginning of t = 0. During job spells and

given realizations of zt and ηit, we can compute log wages and the pass-through for each

worker according to the equations derived in Section 4. For job spells that last at least 13

months, we can compute YoY log wage growth as lnwi,t+12− lnwit (for each year of employ-

ment). We discard the first tburn-in = 500 periods as a burn-in period. We then compute the

pooled variance of YoY log wage growth and the average monthly pass-through across all

job spells/periods of employment for t ≥ tburn-in. Cross-sectional and longitudinal data on

job spells/periods of employment (job-stayers) are interchangeable in this setting.

Simulating dE[lnw0]/du and ūt. We simulate 10,000 zt sequences of length T = 828 periods

(with an additional burn-in period of of length 500 periods), corresponding to monthly

observations for the 1951-2019 period. For each zt path, we can compute the path for

unemployment as

ut+1 = ut + s(1− ut)− φ(θ(zt))ut(1− s)

given initial condition u0 = 0.06. The expected log wage of new hire wages is

Eηit [lnw0(zt)] = lnw−1(zt)−
1

2
(ψh′(a(zt|zt))ση)2.

We compute ūt as the average unemployment ut for t ≥ tburn-in. We measure dE[lnw0]/du in the

model by running an OLS regression of E[lnw0](zt) on ut and a constant in the simulated

data for t ≥ tburn-in. We report cross-simulation averages for both moments.

38This procedure includes composition effects of initial z0 on the employment contracts.
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B.4 Estimation Algorithm

We implement the Tik-Tak algorithm, a multi-start global optimization algorithm, as de-

scribed by Arnoud et al. (2019), to minimize the following objective function

J(Ω) = (m̃(Ω)−m)′W (m)(m̃(Ω)−m),

where Ω is a vector of the parameters to be estimated, m̃(Ω) is a vector of the targeted

moments computed using the model simulated data given the parameter vector Ω, and m

is the vector of targeted empirical moments. The weight matrix W satisfies Wj,j = |1/mj|
for each targeted moment j (and 0, otherwise). Thus, the objective function to minimize

is the sum of squared percentage differences between simulated and empirical moments to

account for differences in scale between the targeted moments. We have experimented with

different derivative-free local optimization algorithms, such as BOBYQA and the Nelder-

Mead Simplex Algorithm, for the local optimization step. All estimation results reported in

the paper correspond to solutions obtained using a combination of the Nelder-Mead Simplex

Algorithm and BOBYQA algorithm with 1,000 initial points. We implement a pre-testing

stage to detect promising regions of the parameter space by evaluating the objective function

at 50,000 initial points drawn from Sobol sequences; we use the 1,000 points that yield the

lowest values of the objective function as the initial points in the global search.

Technical detail on the participation constraint In some situations during the cali-

bration, q(z0) may hit its upper bound of 1 with E(z0) < ω(z0), violating the participation

constraint. In this case, the implied job-finding rate is 0. Therefore, the value of unem-

ployment U(z0) (before matching, at the beginning of the period) is equal to B(z0). When

q(z0) = 1 and the participation constraint is violated, we can still simulate moments, but

the implied new hire wage for z0 would not be an observed wage, as f(z0) = 0. The other

moments would not be affected given that we simulate employment spells and wage contracts

in accordance with the endogenous job-finding probabilities.

We do not simulate moments when E(z0) < ω(z0) binds for values of ln z0 within three

unconditional standard deviations of µz. Instead, we penalize the parameters for which this

occurs in a way that scales with the size of the deviation |E(z0)−ω(z0)|. We do not penalize

violations for extreme z0 as the probability of reaching extreme z0 is low, and it may be

reasonable to expect that the constraint q(θ(z0)) ≤ 1 will bind for extremely low z0. This

constraint is related to a binding nonnegative profit constraint, given that the zero profit

condition is imposed within the algorithm to solve for the optimal contract via w−1(z0).

We have explored alternative approaches to handling participation constraint violations. In
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particular, the baseline results are largely unchanged when we penalize violations for ln z

within five standard deviations of µz, which includes our entire discretized productivity grid.

B.5 Calculating Bargained Wage Cyclicality

Bargained wage cyclicality reflects fluctuations in the “B-term” of equation (17): that is

movements in the promised utility of workers. For a given calibration, we calculate how the

value of a filled job moves with exogenous productivity dJ(z0)/dz0. The “direct effect” of z0

on the expected present discounted value of profits per worker, given the AR(1) process for

ln z, can be approximated as

dJ(z0)

dz0

Direct

=
∞∑
t=0

(β(1− s))t
E0[a∗(zt)ρ

tzt]

z0

.

That is, the direct effect is the effect that z has on profits holding fixed the optimally

contracted choice of effort and wages. Following equation (17), we calculate bargained wage

cyclicality – the “B-term” – as

BWC(z0) =
dJ(z0)

dz0

−
dJ(z0)

dz0

Direct

.

The share of wage fluctuations attributable to bargaining is then the negative of BWC(z0) di-

vided by the cyclicality of the expected present discounted value of wage payments dW∗(z0)/dz0.

B.6 Construction of Impulse Responses

We compute the impulse response to a one (conditional) standard deviation (σz) shock to

ln z0 in an economy that is at an aggregate non-stochastic steady state. In particular, we

construct nonlinear perfect foresight impulse responses to a one-time shock to productivity

at time 0 that decays at rate ρz. We define the non-stochastic steady state of log z to be 0,

dropping the normalization of µz that ensures E[zt] = 1 given that µz ≈ 0.

We first solve for the non-stochastic steady state of the model, where zt = zss = 1,

θt = θ(zss), and ut = uss = s
s+φ(θ(zss))(1−s) for all t. We next solve for the path of θt({zs}s≥t),

given a sequence of shocks {zt}. Finally, we solve for the path of unemployment ut, given

the path of θt, setting u0 = uss.
39 We construct these impulse responses in a finite horizon

39The calibration was done for the infinite horizon contract environment and targeted the stochastic
mean of unemployment, rather than steady state unemployment rate as implied in a non-stochastic model.
Therefore, the steady state across the models need not be the same, although they are very close in practice.
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contract setting and set the length of the contract, T , to be 240 model periods (20 years),

which is a close approximation to the infinite horizon contract environment.40

C Additional Numerical Results

This section reports additional quantitative results for alternative calibrations. Table C1

reports estimated parameters for our robustness exercises. Table C2 reports moments when

we target different values for the cyclicality of new hire wages. Each column corresponds to a

recalibration of the model. Similarly Table C3 reports implied moments when we internally

calibrate the process for exogenous labor productivity to match average labor productivity

(ALP). ALP is the seasonally adjusted, quarterly average output per hour for all workers in

the nonfarm business sector, as reported by the BLS. Figure C1 reports the estimated value

of the bargained wage cyclicality share for various imposed values of ε, allowing all other

parameters to be recalibrated. The X on the plot reports our baseline estimate for ε.

Table C1: Alternative calibration strategies: Internally calibrated parameters

∂E[lnw0]/du target Internal Calibration: ALP

Parameter -0.5 -0.75 -1.25 -1.5 Full Bargaining Only

ση 0.530 0.533 0.533 0.533 0.528 0.000*

χ 0.203 0.341 0.549 0.609 0.465 0.617

γ 0.488 0.454 0.461 0.454 0.537 0.583

ε 2.047 2.949 2.744 2.956 1.377 1.000∗

ρz 0.966∗ 0.966∗ 0.966∗ 0.966∗ 0.985 0.977

σz 0.006∗ 0.006∗ 0.006∗ 0.006∗ 0.002 0.005

Notes: Table reports estimated parameters for our alternative calibration strategies. The first four columns

change the target of new hire wage cyclicality for our full model with both incentives and bargaining. The final

two columns internally calibrate the exogenous productivity process to match moments of measured labor

productivity under our full model and model with only bargaining. Asterisks indicate imposed parameters.

40There is an additional term in the law of motion for unemployment in the finite horizon contract setting
because workers separate with probability one after they have completed their contract without experiencing
a separation shock. However, the measure of workers that do not separate by time T is essentially zero,
given that T = 240. Therefore, we ignore this inflow into unemployment in this numerical exercise.
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Table C2: Varying cyclicality of new hire wages: Simulated model moments

Model: ∂E[lnw0]/du target

Moment -0.50 -0.75 -1.25 -1.50

dE[lnw0]/du -0.50 -0.75 -1.25 -1.50

std(lnut) 0.16 0.13 0.09 0.08

d ln θ0/d ln z0 17.9 15.8 12.0 10.5

BWC share 0.27 0.41 0.62 0.67

Incentive Wage Cyclicality -0.37 -0.44 -0.47 -0.49

Notes: New hire wage cyclicality is targeted, while the second set of moments are untargeted. std(lnut) is
the unconditional standard deviation of the log of the quarterly average of the monthly unemployment rate,
HP-filtered with smoothing parameter λ = 105. x0 denotes the value of variable x, evaluated at ln z = µz.
BWC share is the share of wage cyclicality that is due to bargaining. Incentive wage cyclicality is defined as
one minus the BWC share multiplied by ∂E[lnw0]/∂u.

Table C3: Internally calibrating labor productivity process: simulated model moments

Model: source of wage flexibility

(1) (2)

Moment Data Incentives + Bargaining Bargaining

ρy 0.89 0.89 0.89

σy 0.02 0.02 0.02

std(lnut) 0.20 0.07 0.09
d ln θ0/d ln z0 - 18.7 11.6
W0/Y0 - 0.96 0.96
d lnW0/d ln z0 - 0.55 0.37
d lnY0/d ln z0 - 0.92 0.61

BWC share - 0.60 1.00

Notes: New hire wage cyclicality is targeted, while the second set of moments are untargeted. std(lnut) is
the unconditional standard deviation of the log of the quarterly average of the monthly unemployment rate,
HP-filtered with smoothing parameter λ = 105. x0 denotes the value of variable x, evaluated at ln z = µz.
ρy and σy are the autocorrelation and unconditional variance of measured average labor productivity.
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Figure C1: Bargaining wage cyclicality (BWC) share for different calibrations of ε

Notes: Figure reports the estimated share of wage cyclicality due to bargaining at ln z = µz as we vary the
disutility of effort ε. To produce this figure, we first impose a value of ε and then recalibrate our model to
match all four of our calibration targets.
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