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Abstract 
 
We present a general and tractable oligopoly model of multi-sided platforms with endogenous 
side and platform choices of heterogeneous end-users, considering any mix of single-homing and 
multi-homing platforms and in which participating on one side could preclude doing so on others. 
We show the existence of a unique equilibrium number of end-users and characterize optimal 
platform pricing. Using the equilibrium conditions, we formally derive (across sides and 
platforms) switching effects that distort optimal pricing, which can lead to markups exceeding the 
Lerner index and rule out the classical “cross-subsidization” result. We then provide a unifying 
framework to analyze multi-sided platform mergers, which rationalizes mixed results from the 
previous literature by providing, based on the switching effects, a set of conditions that predict 
the upward pricing pressure post-merger. We show that while optimal pricing is determined by 
the nature of end-users’ side choices, their platform choices are crucial for merger analysis. 
JEL-Codes: D430, G340, L110, L130, L220, L860. 
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1 Introduction

Multi-sided markets have become ubiquitous. The remarkable rise in information technologies has

facilitated users to participate seamlessly in multiple segments of these markets. Prime examples

of multi-sided markets include Amazon and eBay, which enable users to buy and sell goods, and

Airbnb, where guests, private hosts, and lodgings interact (Farronato and Fradkin, 2022). As

digitization progresses, users enjoy even more immediate and flexible platform choices and side-

switching options, frequently guided by market forces. For example, apps like Uber and Bolt now

allow car owners to drive passengers, deliver food, or even rent out their cars with just a tap of

their fingertips; Rover and Wag allow dog owners to switch from having their dogs taken for a walk

to walking someone else’s dog; and platforms such as Piclo (UK) and Drift (USA) are leading a

pioneering trend that allows households either to buy or sell energy based on their needs and on

demand and supply conditions (IRENA, 2020). In this paper, we build a tractable general model

of multi-sided markets that captures these increasingly observed features of digital platforms and

use the model to study optimal pricing and mergers.

In several dimensions, our model generalizes recent seminal contributions to this literature by

introducing both endogenous side and platform choices of end-users in a richer set of scenarios.

By contrast, Tan and Zhou (2021) study price competition and market entry with the assumption

that end-users cannot choose sides (fixed sides) on single-homing platforms. Under full coverage

and symmetry, prices increase to the detriment of end-users as additional platforms enter. Jullien

and Pavan (2019) show that, under imperfect information, end-users’ beliefs about participation

affect demand elasticities and prices when the preferences of end-users are correlated with their

beliefs.1 The authors consider two-sided platforms with fixed sides, also limiting the role of end-

users’ choices.

Instead, we study optimal pricing in a model in which end-users choose the side(s) that they

join on both multi- and single-homing platforms, obtaining results that, in some cases, markedly

depart from those of previous contributions. These results reveal the importance of considering the

sides of platforms (rather than entire platforms) as a fundamental unit of analysis in multi-sided

1Despite playing a significant role in certain classic examples of two sided-markets—such as video-games or oper-
ating systems—that require undertaking substantial sunk cost investments, beliefs are not especially relevant for an
ample set of digital platforms in which end-users can easily appear on one side/platform or another.

2



markets. Then, we apply our theoretical framework to platform mergers. As discussed by Rysman

(2009), the implications of mergers for end-users are very different in multi-sided markets than in

other markets.2 The generality of our model allows us to rationalize seemingly contradictory results

from previous empirical studies on platform mergers that focus on particular industries (Fan, 2013;

Song, 2021). We thus provide a unifying framework that can accommodate mergers in a broad

range of multi-sided markets with increasingly flexible choices and that predicts post-merger prices

based on observable parameters before the merger occurs. By placing an emphasis on sides, we

shed light on the harmful, though usually perceived as innocuous, effects of mergers of seemingly

unrelated platforms that are connected through one side—exemplified by Ola Cabs’ takeover of

Foodpanda, a food delivery app whose couriers often deliver by car—and other conglomerate merg-

ers. We demonstrate that, while end-users’ side choices crucially affect optimal pricing, the nature

of platform choices (single- vs. multi-homing) is key to determine the effects of mergers.

In the spirit of the seminal contributions of this literature, our model builds on and extends

the micro-founded decision-making process of end-users. We derive a unique subgame perfect

equilibrium number of end-users and characterize the optimal pricing of platforms for different cases.

Specifically, we consider (i) that end-users choose whether they join one platform or no platform

(single-homing) or even several platforms (multi-homing), in which case, some of the end-users may

still endogenously choose to single-home;3 (ii) that end-users can participate on either one side or

multiple sides at once, wherein some of the end-users may opt for single side participation; and

(iii) that cross-group externalities can be either positive or, conversely, negative (congestion effect).

In all these cases, we assume that for the end-users, platform-specific idiosyncratic valuations for

joining each side4 are drawn from a general, well-behaved density function. These valuations are

key in determining participation decisions given the distinct constraints specific to each of the cases.

First, we consider that end-users can join any side on any multi-homing platform. In this setting,

each end-user independently decides based on participation constraints (PC) her participation on

2Nocke and Whinston (2013) provide a framework for the antitrust authority’s optimal merger approval policy,
while Evans and Schmalensee (2013) show why traditional antitrust analysis fails in the case of multi-sided platforms.

3Previous authors frequently restrict their analysis to multi-homing platforms (Caillaud and Jullien, 2003; Rochet
and Tirole, 2003; Armstrong, 2006). Moreover, most of the literature, except for Gao (2018) and Choi and Zennyo
(2019), assumes fixed sides, ignoring end-users’ side choices.

4This approach is commonly used to capture end-user heterogeneity (Armstrong, 2006; Correia-da Silva et al., 2019;
Jullien and Pavan, 2019; Tan and Zhou, 2021). Other authors alternatively (or additionally) introduce heterogeneity
in cross-group network externalities (Rochet and Tirole, 2003, 2006; Weyl, 2010).
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each side and platform: an end-user joins a side on a platform if the sum of the valuation of joining

it and the cross-group externality, net of the price (also called fee), is larger than the outside option.

Using PCs, we obtain closed-form expressions for the demand for sides, from which we then derive

price elasticities. In line with the intuition of previous authors, we formally show that the own-price

elasticity is negative; that is, an increase in the fee on one side reduces participation on it. The

effect on all other sides, measured by the cross-price elasticity, is ambiguous though, as it depends

on the network effect: it is negative under positive cross-group externalities, and it turns positive

under congestion effects. This is also reflected in the characterization of the Lerner index, which,

in the former case, is dragged down by the markup charged to end-users on other sides—due to the

opportunity cost5 in terms of revenue raised from end-users on the other sides—while increasing in

the latter case.

We then consider that participation is limited to a single side on certain platforms, such as

Uber and Bolt, where a car owner faces the decision whether to rent her vehicle, use it to provide

rides, or engage in food delivery. In this case, endogenous side choices are further determined by

incentive compatibility constraints (ICC): an end-user joins a side if the utility gained is greater

than the outside option (PC) and greater than the utility obtained by joining any other mutually

exclusive side (ICC). The latter yields a novel switching-side effect that we formally characterize,

by which an increase in the fee on one side induces some end-users to switch to another side.

Thus, increasing the fee has two (potentially countervailing) effects: it negatively (under positive

cross-group externalities) or positively (under congestion) affects participation on the other sides

through the network effect and also increases participation on the other sides due to the switching-

side effect, making the sign of the cross-price elasticity (ex-ante) ambiguous. This critically affects

platform pricing as, contrary to previous results, the markup is greater than the Lerner index if

the switching-side effect dominates the network effect, even under positive cross-group externalities.

This stands in stark contrast to previous authors who show that additional participation and higher

platform profits following an increase in the fee on one side can occur only under congestion.

Finally, with some subtle yet important particularities, our main results prove robust if we

assume that a subset of platforms are single-homing; i.e., end-users are allowed to join only one

5Rochet and Tirole (2006) coined this term. Unlike them, we capture not only the markup lost from participation
on other sides but also the resulting network effect on the side where the price increased.
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platform on each side. This occurs, for example, if car owners on Uber or Bolt are barred from

renting their cars on Turo or Getaround and/or from providing rides through Lyft. This case is

micro-founded by introducing additional ICCs, which give rise to switching-platform effects.6 We

formally derive these effects, show how they interact with both the network effect and the switching-

side effect discussed above, and examine their impact on the unique participation equilibrium and

optimal platform pricing. Finally, we remark that our results hold for any number of (asymmetric)

platforms and also extend to no double-counting of network externalities and to end-users’ random

demand, as we formally show in Appendix B.

Two of the key features of our model (end-user endogenous platform and side choices) were

previously only partially considered in more specific settings. For example, according to Bakos and

Halaburda (2020), Jeitschko and Tremblay (2020), and Teh et al. (2023), end-users who belong to

one of two (fixed) sides simply decide which platform(s) they join. Jeitschko and Tremblay (2020)

and Teh et al. (2023) derive an equilibrium in which some end-users single-home, while others

multi-home. Bakos and Halaburda (2020) study two platforms competing à la Hotelling to show

that, under full coverage and multi-homing, the classical result of cross-subsidization breaks down.

Gao (2018) studies bundling in a monopoly platform that allows end-users to choose sides and

offers a discount to those who join both sides. Choi and Zennyo (2019) instead model a two-sided

platform duopoly on a Hotelling line in which end-users choose a platform and a side. However,

Choi and Zennyo (2019) restrict to single-homing with mutually exclusive sides and full coverage.

With the exception of Gao (2018), none of these authors consider congestion effects.

Our approach also contrasts with pioneer contributions to this literature (Caillaud and Jullien,

2003; Rochet and Tirole, 2003, 2006; Armstrong, 2006; Hagiu, 2006; Weyl, 2010), which, to capture

end-user demand, rely on the trade-off between the fees incurred and the benefit obtained by

joining the platform. As in any standard market model, participation decreases as own-side fees

increase and increases with the number of end-users on the other side. These models provide an

appropriate toolkit to characterize the classic examples of two-sided markets (e.g., video games,

shopping malls, credit cards), considering that (i) end-users—at least on one side—are unlikely

to be widely heterogeneous (game developers, retailers, advertising agencies), and (ii) end-users

on each side appear as clearly differentiated groups (players/developers, card holders/merchants,

6Chandra and Collard-Wexler (2009) and Affeldt et al. (2013) intuitively identify these effects.
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readers/advertisers) with little or no relevant possibility of inter-group participation choices and

side overlap. There is now a wide range of easy-to-access digital platforms that allow heterogeneous

end-users to actively choose and switch between the side(s) of the market they join.

Given platforms’ optimal pricing and the corresponding unique participation equilibrium, we

then study mergers of (asymmetric) platforms by building on the work of Affeldt et al. (2013). These

authors adapt Farrell and Shapiro (2010)’s Upward Pricing Pressure (UPP) measure of mergers to

multi-sided markets and show that the incentives to increase prices depend on the diverted sales

that the merged entity recaptures. The value of these diverted sales are formally characterized by

diversion ratios (ratios of own- and cross-price elasticities), which can be measured and estimated

(Conlon and Mortimer, 2021). We extend Affeldt et al. (2013)’s analysis,7 as our micro-founded

model provides additional insights into the direction and strength of diversion ratios in a broader

set of cases that capture the reality of many different platforms—single- vs. multi-homing, mutually

exclusive sides, congestion effects, etc. Since these ratios and prices are measurable and publicly

observable, the likely UPP of platform mergers can be predicted before the merger takes place.

Therefore, another contribution of this paper is to provide a unified framework for evaluating

the welfare consequences of multi-sided platform mergers that reveals the importance of effects

across platform sides for this analysis. This framework thus allows us to understand the disparate

results of previous authors who studied mergers in two-sided markets. Correia-da Silva et al. (2019)

provide an overview of this literature. They show theoretically—as do Chandra and Collard-

Wexler (2009)—that a merger has ambiguous effects on prices, depending on the existence of

cross-subsidization. We show that cross-subsidization is a key element that determines in which

direction post-merger prices change, although the different effects we formally identify also matter.

From an empirical point of view, Fan (2013) finds by using data on newspapers that ad rates

and subscription prices post-merger tend to move in opposite directions. Jeziorski (2014) concludes

that for mergers in the radio industry, while ad quantity goes down (thus increasing the listeners’

welfare), ad prices increase after the merger. Along the same lines, Song (2021) uses data from

TV magazines to estimate a model of a two-sided market and finds that post-merger prices might

go either up or down, with prices on different sides usually moving in opposite directions. Using

diversion ratios, we set out the conditions under which these results hold, and we present intuition

7Cosnita-Langlais et al. (2021) incorporate cross-side effects into the UPP for a merger of two two-sided platforms.
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on the forces and effects that yield them. Bearing in mind the well-acknowledged features of media

markets, our merger analysis also explicitly considers congestion effects (Anderson and Peitz, 2020).

Most papers on platform mergers focus on and impose the assumptions that best suit specific

markets (e.g., magazines, radio, newspapers). Instead, we not only provide a general toolkit for

mergers of platforms offering similar services, but we also apply it to mergers of platforms that,

despite offering different services, are “somehow related” through one or more sides; for example, a

food-delivery platform and a ride-hailing platform (which clearly offer different services) both allow

drivers to choose at their convenience to deliver food or to give rides to passengers. Since end-users’

side choices are at the heart of our analysis, this framework permits us to unmask the impact that

digital conglomerate mergers and other agreements have on prices that seem to be perceived as

innocuous by antitrust authorities—such as the mergers of Ola Cabs and Foodpanda, Uber and

JUMP, AirBnB and HotelTonight, and the partnership agreement between Sixt and Tier.

The rest of the paper is as follows. We set up the model in Section 2. In Section 3, we provide

the system of equations that characterize market demand for each of the cases we study. Section 4

proves the existence and uniqueness of participation equilibria for each of the cases, characterizes

the equilibria and optimal pricing, and discusses certain features of the equilibria and optimal

pricing. In Section 5, we study platform mergers, while Section 6 concludes. All proofs are in

Appendix A, and some extensions are in Appendix B.

2 Model setup

We consider an oligopoly with a set of m platforms, denoted by M and indexed by q ∈ M :=

{1, ...,m}. Each platform q enables interaction between end-users on i ∈ Dq := {1, ..., dq} different

sides. We assume that dq ≥ 2 for all q ∈ M. The super-index q reflects that the number of sides

need not be identical across platforms. However, for simplicity, we drop this super-index from now

on.8 A unit-measure continuum of end-users choose to join side i on any of the m platforms or to

join no platform at all—sometimes we allow end-users to join multiple sides on multiple platforms.

Slightly abusing notation, we denote by N q
i the set of end-users that join side i on platform q.

Each end-user obtains an idiosyncratic surplus upon joining side i on platform q, denoted by vqi .

8If one side is present on one platform but not on others, this poses no problem for our analysis.
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This surplus parameter, also called gross membership benefit, is independent of the number of end-

users on q’s other sides and, therefore, of the market size or the number of transactions performed.

Let v :=
(
v11, ..., v

m
d

)
∈ Rm×d

+ be the set of possible combinations of surplus parameters. Without

loss of generality, we let v ∈ [0, 1]m×d, since only the relative relationship between the parameters

is relevant. We assume that end-users are heterogeneous in vqi for all i and q, whose realization is

independently drawn from a continuous, strictly increasing joint cumulative distribution function

F (v), with an associated joint density function f(v), which has full and bounded support.

We denote the cross-group (network) externalities by ϕqi (N
q
-i), which captures how end-users

on platform q’s side i are affected by participation Nq
-i on all sides other than i on q.9 That is,

ϕqi (·) is a continuously differentiable, strictly monotone mapping, ϕqi : [0, 1]
d−1 → R, with ϕqi (0) = 0

(normalization). If ϕqi (N
q
-i) > 0, then there are positive cross-group externalities and, thus, on

platform q, end-users on side i enjoy meeting those on other sides—for example, the presence of

buyers is beneficial for sellers on e-commerce websites. Conversely, if ϕqi (N
q
-i) < 0, then there are

congestion effects: those on side i do not enjoy meeting end-users on other sides—for example,

readers dislike advertising on media outlets. While we do not impose a specific functional form on

ϕqi (·), we assume, in line with previous authors, that the aggregate impact of an (arbitrarily) small

change in Nq
-i on ϕ

q
i (·) is bounded.

Assumption 1. (Bounded feedback loop)
∑

j∈D\{i}

∣∣∣∂ϕq
i (N

q
-i)

∂Nq
j

∣∣∣ ∈ (0, 1) for all i ∈ D and q ∈ M.

Assumption 1 ensures that changes in participation on one side of the platform do not trig-

ger disproportionately larger changes in participation on the other sides. If this assumption is

not satisfied, then the “feedback loop” stemming from a change in market participation generates

increasingly amplified effects on participation on other sides, ultimately resulting in corner solu-

tions where end-users either join only one side or none (outcomes that lack meaningful analytical

insights).

Finally, we assume that end-users who join side i on platform q pay a fixed membership or

participation fee, usually called price and denoted by pqi .
10 We let pq := (pq1, ..., p

q
d) ∈ Rd be the

9With few exceptions, such as Tan and Zhou (2021), previous authors assume that these effects are linear in Nq
-i;

i.e., ϕq
i (·) =

∑
j α

q
ijN

q
j for some αq

ij ∈ R, for all i, j ∈ D, i ̸= j, and for all q ∈ M (see, e.g., Armstrong, 2006).
10End-users pay no per-interaction fees. For monopoly platforms, Armstrong (2006) shows that lump-sum fees are

equivalent to per-transaction fees, as discussed by Rochet and Tirole (2003). In our model, Bajo-Buenestado and
Kinateder (2019) arrive at a similar conclusion, which extends to a combination of both fee types given the same
transaction count.

8



vector of prices charged by platform q ∈ M, and we denote by p := (p1, ...,pm) ∈ Rm×d the vector

of prices charged by all platforms.

The timing in our model is as follows. First, nature chooses end-users’ idiosyncratic surplus

parameters v, and the platforms choose prices p. Second, end-users learn the surplus parameters

and prices and decide which side(s) on which platform(s) to join. Finally, end-users access the

corresponding side(s), and payoffs are realized.

Given v, p, Nq
-i, and ϕ

q
i (N

q
-i), an end-user who joins side i on platform q obtains a utility of

uqi := vqi + ϕqi (N
q
-i)− pqi . (1)

If platforms are multi-homing, (1) implies double-counting of cross-group effects, as end-users on

different sides realize the network externality every time they meet on different platforms. This is

the case, for example, when buyers benefit from meeting the same seller on multiple e-commerce

websites, which occurs if the buyers are interested in a seller’s reviews on different websites (Bakos

and Halaburda, 2020). However, in other cases, only the first interaction matters. For example,

advertisers may value the first impression of an ad on a viewer, while subsequent impressions on

other platforms are not valued (Ambrus et al., 2016; Anderson et al., 2018). In Appendix B, we

extend our model to no double-counting of cross-group externalities and show that we capture the

key results in this literature (incremental pricing; lower or no cross-subsidization).

Unlike end-users from the existing literature, end-users in our model endogenously decide not

only whether to join a platform11 but also which side(s) to join. In particular, to join side i on

platform q, the participation constraint PCq
i requires that the utility of an end-user is larger than

her outside option (normalized to 0), i.e., uqi ≥ 0. Moreover, we consider platforms where, for

various reasons (examples of which are provided below), simultaneous participation on multiple

sides is unfeasible (mutually exclusive sides). In such cases, we additionally require that the utility

of joining one side is larger than that of joining any other; i.e., to participate on side i on platform

q, the incentive compatibility constraint ICCq
ij requires that uqi ≥ uqj for all j ̸= i. We consider

these features in two standard contexts: multi-homing and single-homing platforms.

11Previous authors, such as Bakos and Halaburda (2020), Choi and Zennyo (2019), and Tan and Zhou (2021),
usually assume full coverage. In our equilibrium analysis, whether there is full or less than full coverage arises
endogenously.
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3 Characterization of the demand for sides

In this section, we derive expressions characterizing end-user demand for each side and platform,

taking into account the particularities of the different cases we consider. We begin by introducing

our baseline case, which constitutes a micro-founded version of the framework frequently employed

by previous authors. Subsequently, we introduce modifications for specific sides and platforms

due to various constraints, inspired by particularly notable examples. Importantly, we present all

our findings with the assumption that sides and platforms may exhibit any combination of these

distinct cases we consider. As shown below, this highlights the importance of examining sides (or

subsets of sides) rather than entire platforms as the fundamental unit of analysis.

Baseline case. First, we assume that end-users can join any side on any platform. This baseline

case, which aligns with the classic framework examined by previous researchers, not only facilitates

the formal proof of intuitive conclusions drawn by several of the researchers but also serves as

the building block for our subsequent analysis. In this case, end-users’ participation decisions on

different sides and platforms are independent, and consequently, each platform solves its own profit

maximization problem (Belleflamme and Peitz, 2019b). These features are observed, for example,

on e-commerce platforms such as eBay, Facebook Marketplace, and Taobao, where end-users engage

in simultaneous selling, buying, and advertising of different items across multiple platforms without

any exclusivity constraints. Similarly, classified ads websites like Craigslist, Recycler, and Oodle

follow the same setup, as each end-user can make independent choices regarding her participation

across different sides on the platforms.

Formally, given the realization of gross membership benefits v and the vector of prices p, an

end-user joins side i ∈ D on platform q ∈ M if, and only if,

(PCq
i ) vqi + ϕqi (N

q
-i)− pqi ≥ 0.

From PCq
i , the demand for side i on platform q can be obtained as follows:

N q
i (N

q
-i,p

q) = pr
(
vqi ≥ pqi − ϕqi (N

q
-i)
)
. (2)
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Let us denote by f qi (v
q
i ) the marginal density function of the valuation of side i on platform

q, which need not follow the same (marginal) density as that of any other side on any platform.

Then, the number of end-users joining side i on platform q can be written as

N q
i (·) =

∫ 1

pqi−ϕq
i (N

q
-i)
f qi (v

q
i )dv

q
i ,

or, equivalently,

N q
i (·) = 1− F q

i

(
pqi − ϕqi (N

q
-i)
)
, (3)

where F q
i (·) is the corresponding (marginal) distribution function of vqi .

Mutually exclusive sides. We now modify the previous baseline case and consider a scenario in

which a subset of sides (possibly all), denoted as D′ ⊆ D with |D′| ≥ 2, are mutually exclusive.12

In this context, end-users cannot simultaneously be on sides i and j within any platform, for all

i, j ∈ D′, i ̸= j, requiring the end-users to make a choice between one side or the other. This

exclusivity among sides, which can arise from various factors—including physical constraints or

economic (opportunity cost-related) reasons—is a common feature observed in prominent digital

peer-to-peer platforms.

For example, in app-based transportation companies like Uber and Bolt, an end-user can either

request a ride or rent someone’s vehicle (possibly with valet service) to complete her trip. This

decision may be influenced by market conditions and the end-user’s opportunity cost. However,

performing both activities concurrently is physically unfeasible. Likewise, in addition to renting

out their vehicles, vehicle owners can offer rides to passengers or engage in food delivery services.

These choices are guided by similar trade-offs based on market conditions and opportunity cost.

Nevertheless, undertaking these activities simultaneously is physically impractical. This also occurs

in dog boarding and walking service platforms like Rover and Wag: an end-user might use both

platforms to walk dogs but cannot plausibly have her dog taken for a walk while walking someone

else’s dog. The same concept applies to many other platforms that require the physical presence of

an end-user who either provides or seeks a service.

Formally, given certain mutually exclusive sides, say, i and j, end-users do not just decide

12Our model can also accommodate a platform-specific set of mutually exclusive sides. In this case, we would
introduce a super-index q in the set D′. For expositional clarity, we omit this super-index.
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whether to join platform q but also which of the sides (if any) to join. We capture this feature by

introducing ICCs; that is, given v and p, an end-user joins side i ∈ D′ ⊆ D on platform q ∈ M if,

and only if, PCq
i defined above holds and

(ICCq
ij) vqi + ϕqi (N

q
-i)− pqi ≥ vqj + ϕqj(N

q
-j)− pqj ,

also holds for all j ∈ D′ \ {i}, specifically if an end-user is better off by joining side i than side j

on platform q.

Together these conditions yield the number of end-users on platform q’s side i:

N q
i (N

q
-i,p

q) = pr

(
vqi + ϕqi (N

q
-i)− pqi ≥ max

{
max

j∈D′\{i}

{
vqj + ϕqj(N

q
-j)− pqj

}
, 0

})
. (4)

Given f qi (v
q
i ) and considering that the valuations of different mutually exclusive sides are indepen-

dent, the demand for side i is characterized by

N q
i (·) =

∫ 1

pqi−ϕq
i (N

q
-i)
f qi (v

q
i )

∏
j∈D′\{i}

∫ vqi −ϕq
j (N

q
-j)+pqj−pqi+ϕq

i (N
q
-i)

0
f qj (v

q
j )dv

q
jdv

q
i ,

or, equivalently,

N q
i (·) =

∫ 1

pqi−ϕq
i (·)

f qi (v
q
i )

∏
j∈D′\{i}

F q
j

(
vqi − ϕqj(N

q
-j) + pqj − pqi + ϕqi (N

q
-i)
)
dvqi , (5)

where F q
j

(
vqi − ϕqj(N

q
-j) + pqj − pqi + ϕqi (N

q
-i)
)
=
∫ vqi −ϕq

j (N
q
-j)+pqj−pqi+ϕq

i (N
q
-i)

0 f qj (v
q
j )dv

q
j is the (marginal)

cumulative distribution function of vqj .

Single-homing platforms. Departing again from the baseline case, we now assume instead that a

subset of platforms (possibly all), denoted by M′ ⊆ M with |M′| ≥ 2, are single-homing.13 In this

scenario, an end-user cannot simultaneously join any side i on platforms q and r, for all q, r ∈ M′,

q ̸= r. As a result, the end-user must choose whether to join each side on one platform or another.

This exclusivity among platforms can arise due to various reasons, including legal (contractual),

technical, or cost-related constraints.

13Our model can accommodate the case in which the single-homing constraint applies to a subset of sides. This
would require the introduction of a sub-index d in the set M′, omitted for the sake of expositional clarity.
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For example, peer-to-peer car rental platforms like Turo impose explicit restrictions on car

owners who list their vehicles in the US and Australia, prohibiting the vehicles from being listed

on multiple platforms simultaneously. Similarly, certain food delivery apps incorporate exclusivity

clauses into their contracts, preventing a restaurant from delivering through multiple platforms—in

several countries, this exclusivity extends to couriers, who are restricted from working for various

apps.14 For content development, platform choices also hinge on technical constraints related to

differing programming languages; for example, Android developers must employ a C/C++-based

environment, whereas iOS developers use a Java-based ecosystem (Shekhar, 2021). Another case

in point is wireless technology standards, such as IEEE 802.11 or 3GPP (Farrell and Simcoe,

2012). Both chip manufacturers and portable device companies must adhere to one standard since

developing products compatible with multiple standards would be extremely costly. Consequently,

in all these cases, end-users’ decisions to participate on side i on different platforms are no longer

independent.

Formally, given v and p, an end-user joins side i ∈ D on platform q ∈ M′ ⊆ M if, and only if,

PCq
i defined above holds and

(ICCqr
i ) vqi + ϕqi (N

q
-i)− pqi ≥ vri + ϕri (N

r
-i)− pri ,

also holds for all r ∈ M′ \ {q}, where M′ ⊆ M is the subset of single-homing platforms. The

condition ICCqr
i arises due to single-homing: participating on side i on platform q precludes an

end-user from joining side i on any other platform r ̸= q, in the subset of single-homing platforms.

Putting these conditions together yields the number of end-users on platform q’s side i:

N q
i (·) = pr

(
vqi + ϕqi (N

q
-i)− pqi ≥ max

{
max

r∈M′\{q}
{vri + ϕri (N

r
-i)− pri } , 0

})
.

Thus, given f qi (v
q
i ), the number of end-users on platform q’s side i is characterized by

N q
i (·) =

∫ 1

pqi−ϕq
i (N

q
-i)
f qi (v

q
i )

∏
r∈M′\{q}

∫ vqi −ϕr
i (N

r
-i)+pri−pqi+ϕq

i (N
q
-i)

0
f ri (v

r
i )dv

r
i dv

q
i ,

14In practice, this occurred in Spain after the 2021 Rider Act. Previously, riders were considered independent
contractors and could deliver for multiple platforms. However, after 2021, they became workers of a specific platform.
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or, equivalently, noting that F r
i

(
vqi−ϕri (Nr

-i)+p
r
i−p

q
i+ϕ

q
i (N

q
-i)
)
=
∫ vqi −ϕr

i (N
r
-i)+pri−pqi+ϕq

i (N
q
-i)

0 f ri (v
r
i )dv

r
i ,

N q
i (·) =

∫ 1

pqi−ϕq
i (·)

f qi (v
q
i )

∏
r∈M′\{q}

F r
i

(
vqi − ϕri (N

r
-i) + pri − pqi + ϕqi (N

q
-i)
)
dvqi .

Single-homing platforms with mutually exclusive sides. Finally, for the sake of complete-

ness, we now consider the most restrictive scenario in which some or all platforms are single-homing

and, simultaneously, some or all sides are mutually exclusive.

This scenario is exemplified by several of the previously mentioned transportation companies

in jurisdictions that require contractual exclusivity for drivers: e.g., in certain EU countries, the

drivers have the status of employees.15 In this case, drivers providing rides on one platform can

neither do so on other platforms (single-homing) nor can they engage in renting their cars (mutually

exclusive sides). This situation also finds parallels in the increasingly popular platform-based energy

communities and utilities, such as Piclo (UK), Powerledger (Australia), and Drift (US) (IRENA,

2020; Baake et al., 2023). Upon joining one of the utilities—securing electricity from two utilities

is unworkable—households equipped with solar panels and domestic batteries can decide whether

to buy or sell electricity based on their needs (e.g., appliances, electric vehicles charge, etc.) and

demand-supply conditions. However, engaging in both selling and buying energy simultaneously is

unfeasible.

Formally, this double exclusivity (within and across certain platforms) requires the introduction

of additional ICCs. More precisely, given v and p, an end-user joins side i ∈ D′ on platform q ∈ M′

if, and only if, PCq
i , ICC

q
ij , and ICC

qr
i defined above hold and

(ICCqr
ij ) v

q
i + ϕqi (N

q
-i)− pqi ≥ vrj + ϕrj(N

r
-j)− prj ,

also holds for all j ∈ D′ ⊆ D, i ̸= j and for all r ∈ M′ ⊆ M, q ̸= r. This latter constraint implies

that an end-user is better off by joining platform q’s side i than platform r’s side j. Together these

15Belleflamme and Peitz (2019a) note that third-party applications conveniently display offers from different com-
panies to drivers on a single screen. However, in certain countries, exclusivity policies restrict such practices.
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conditions yield the number of end-users on platform q’s side i:

N q
i (·) = pr

vqi + ϕqi (N
q
-i)− pqi ≥ max

max
j∈D′

r∈M′

{
vrj + ϕrj(N

r
-j)− prj

}
, 0


 .

We can then use the marginal density functions of the surplus parameters and their corre-

sponding marginal distribution functions to rewrite participation on platform q’s side i as follows:

N q
i (·) =

∫ 1

pqi−ϕq
i (N

q
-i)
f qi (v

q
i )

∏
r∈M′\{q}

F r
i

(
vqi − ϕri (·) + pri − pqi + ϕqi (·)

)
∏

j∈D′\{i}

F q
j

(
vqi − ϕqj(·) + pqj − pqi + ϕqi (·)

) ∏
j∈D′\{i}

∏
r∈M′\{q}

F r
j

(
vqi − ϕrj(·) + prj − pqi + ϕqi (·)

)
dvqi .

By capturing the number of end-users on each side and platform while considering the exclusivity

that might exist across and within platforms, we can then build a system of m× d equations that

captures the number of end-users on all sides and platforms, denoted as N(·). Importantly, as

explained above, this system can accommodate any combination of all the distinct cases examined

in this section, where all, some, or none of the sides are mutually exclusive and in which some, all,

or none of the platforms are single-homing.

4 Participation equilibrium and platform-optimal pricing

We solve our model backward to characterize a subgame perfect equilibrium. We begin with the

second stage, where end-users decide which side(s) and platform(s) to join, given any p. We for-

mally prove the existence and uniqueness of the participation equilibrium, and then we characterize

the solutions that are non-empty, i.e., those in which there are end-users on all sides and platforms.

Finally, we study the platform’s optimal pricing and derive explicit price elasticity formulas, dis-

cussing their implications tailored to the four scenarios introduced in Section 3.

4.1 Participation equilibrium: existence, uniqueness, and characterization

In Proposition 1, the proof of which can be found in Appendix A, we show the existence and

uniqueness of a participation equilibrium, N∗(p), given p. This result holds if Assumption 1 and
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an additional standard condition related to the maximum change in N q
i resulting from a small

change in N q
j are satisfied.

Proposition 1. Given p, there is a unique participation equilibrium N∗(p), if Assumption 1 and

the following condition holds:

β := max
i∈D
q∈M

sup
Nq∈[0,1]d

∑
j∈D

∣∣∣∣∣∂N q
i (·)

∂N q
j

∣∣∣∣∣︸ ︷︷ ︸
β1=condition on dispersion of vi’s

× max
i∈D
q∈M

 ∑
j∈D\{i}

sup
Nq

-i∈[0,1]d-1

∣∣∣∣∣∂ϕqi (Nq
-i)

∂N q
j

∣∣∣∣∣


︸ ︷︷ ︸
β2=condition on externalities

< 1.

If all sides are mutually exclusive, Proposition 1 holds under Assumption 1 alone. However,

if some sides are non-mutually exclusive, the additional condition β1 < β−1
2 must be satisfied.

Intuitively, β1 bounds the maximum change in N q
i resulting from a small change in N q

j , among all

possible Nq vectors. The absolute value of the derivative of N q
i with respect to N q

j is a marginal

density f qij(·) ∈ [0, 1]. In case there are some non-mutually exclusive sides, then the sum of these

marginal densities for all j ∈ D may exceed 1 since each end-user can join multiple sides within

the same platform. By contrast, when all sides are mutually exclusive, end-users can join only one

side at most, ensuring that this sum remains below 1; consequently, β1 < 1 is trivially satisfied.

Condition β2 < 1, which bounds the feedback loop of cross-group externalities, holds by Assumption

1. Therefore, in cases where all sides are mutually exclusive, β < 1 follows directly from Assumption

1, but if some sides are non-mutually exclusive, we additionally require β1 < β−1
2 .16

Next, we provide necessary and sufficient conditions for the existence of a non-empty participa-

tion equilibrium, which is an equilibrium with at least one end-user on each side and platform. A

non-empty equilibrium requires that the price, net of the cross-group externalities, must be below

1 for all sides and platforms. If this condition is not satisfied for a specific side and platform, no

end-user would opt to join it—as end-user valuations are at most 1. Under multi-homing, if all sides

are non-mutually exclusive, this condition stands as both necessary and sufficient for the existence

of a non-empty equilibrium. However, in all other cases, this condition together with binding ICC

conditions, which prevent a particular side and/or platform from consistently yielding the highest

utility in comparison to others, are both necessary and sufficient.

16Note that β < 1 is a sufficient condition, also fulfilled at non-empty corner solutions, in which all end-users join
at least one side. Tan and Zhou (2021) also impose a very similar condition to ensure uniqueness under single-homing
and fixed sides.
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First, when mutually exclusive sides are present, the ICCs across all mutually exclusive sides

for all platforms must be binding. Second, in case all sides are non-mutually exclusive but some

platforms are single-homing, then the ICCs must be binding across all sides for each single-homing

platform. Lastly, if there are single-homing platforms with some mutually exclusive sides, then

both sets of conditions described above must be met simultaneously, and the ICCs of all mutually

exclusive sides across each single-homing platform must also be binding. All these conditions are

formally provided in Proposition 2, the proof of which is in Appendix A.

Proposition 2. Given p, there exists a non-empty participation equilibrium N∗(p) if, and only if,

a) (PC)
[
ϕqi (·)− pqi

]
≥ −1 holds for all i ∈ D and all q ∈ M in the baseline case;

b) (PC) and (ICC 1)
[
ϕqi (·) − pqi

]
−
[
ϕqj(·) − pqj

]
∈ [−1, 1] hold for all i, j ∈ D′, i ̸= j, and all

q ∈ M, in case sides i, j ∈ D′ ⊆ D are mutually exclusive;

c) (PC) and (ICC 2)
[
ϕqi (·) − pqi

]
−
[
ϕri (·) − pri

]
∈ [−1, 1] hold for all i ∈ D and all q, r ∈ M′,

q ̸= r, in case platforms q, r ∈ M′ ⊆ M are single-homing;

d) (PC), (ICC 1), (ICC 2), and (ICC 3)
[
ϕqi (·)−p

q
i

]
−
[
ϕrj(·)−prj

]
∈ [−1, 1] hold for all i, j ∈ D′,

i ̸= j, and all q, r ∈ M′, q ̸= r, in case platforms q, r ∈ M′ ⊆ M are single-homing and sides

i, j ∈ D′ ⊆ D are mutually exclusive.

Throughout the rest of the paper, we focus our analysis on the set of non-empty equilibria as

characterized in Proposition 2.17 These equilibria are unique, provided the conditions outlined in

Proposition 1 are satisfied. We also emphasize that non-empty equilibria should not be confused

with solutions involving full market coverage, which is an assumption frequently made by previous

authors. In our framework, it can be easily shown that having at least one PC slack for all end-users

serves as a sufficient condition for N(·) to yield full market coverage.

17Note that if participation is empty on one side or platform, our analysis extends to the remaining d− 1 sides or
m− 1 platforms, respectively.

17



4.2 Platform optimal pricing

In the first stage, platform q maximizes its profit πq by choosing prices for all sides. Assuming a

cost per end-user of cqi > 0 on side i, platform q’s profit maximization problem is given by

max
{pq1,··· ,p

q
d
}

πq :=
∑
i∈D

(pqi − cqi )N
q
i . (6)

At an interior solution, the first-order-condition (FOC) of (6) that characterizes platform q’s optimal

price for side i, denoted by p̂qi , is given by

N q
i + (p̂qi − cqi )

∂N q
i

∂pqi
+

∑
j∈D\{i}

(p̂qj − cqj)
∂N q

j

∂pqi
= 0, (7)

where N q
i and its derivatives are evaluated at the optimal price p̂qi . By the extreme value theorem,

given the continuity of the profit function, generically there exists a vector of optimal prices that

solves (7) for all i ∈ D and all q ∈ M.18 The left-hand-side (LHS) of (7) is the usual FOC

with respect to pqi for any profit-maximizing firm, augmented by
∑

j∈D\{i}(p̂
q
j − cqj)

∂Nq
j

∂pqi
. This sum

captures the fact that increasing p̂qi also affects participation on all other sides through different

cross-group effects, formally identified below.

When (7) is rearranged, optimal pricing can be rewritten in the familiar Lerner index notation:

p̂qi − cqi
p̂qi

=
1

|εqi |
+

∑
j∈D\{i}

λqij
(p̂qj − cqj)

p̂qi
, (8)

where εqi :=
∂Nq

i

∂pqi

pqi
Nq

i
is the own-price elasticity of demand for platform q’s side i, which is evaluated

at p̂qi , and λqij :=

[
∂Nq

j

∂pqi
/
∣∣∣∂Nq

i

∂pqi

∣∣∣ ] is the diversion ratio:19 it reflects the change in the number of

end-users on platform q’s side j relative to the change on side i ̸= j when pqi increases. Hence, the

diversion ratio captures the extent to which platform q internalizes the different effects that a price

change has on the number of end-users on other sides. To quantify these effects, in the following

subsection, we characterize own- and cross-price elasticities for the different combinations of the

18The optimal price vector is unique under additional standard assumptions, such as log-concavity of fq
i (·). This

assumption is sufficient for uniqueness and is commonly made. In a related context, it is made by Zhou (2017), Choi
et al. (2018), and (for some results) Tan and Zhou (2021).

19Due to Shapiro (1996), this term is widely used in the anti-trust literature (see Conlon and Mortimer, 2021).
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scenarios considered. In both the following subsection and Section 5, without loss of generality, we

restrict the analysis to the case in which platforms charge positive prices20—which, however, does

not preclude platforms from cross-subsidizing (i.e., pricing below marginal cost), if they find that

doing so is optimal.

4.3 Price elasticities and implications for optimal platform pricing

4.3.1 Baseline case

First, we consider the baseline case in which end-users can join any side on any platform. Given

the marginal density functions of valuations of any pair of sides, say, i and j, in platform q, f qi (·)

and f qj (·) respectively, the derivatives of N q
i and N q

j with respect to pqi can be formally obtained

from the expressions that characterize the number of end-users in (3):

∂N q
i

∂pqi
= − f qi

(
pqi − ϕqi (N

q
-i)
)︸ ︷︷ ︸

price effect

+ f qi
(
pqi − ϕqi (N

q
-i)
)∂ϕqi (Nq

-i)

∂pqi︸ ︷︷ ︸
network effect

, (9)

∂N q
j

∂pqi
= f qj

(
pqj − ϕqj(N

q
-j)
)∂ϕqj(Nq

-j)

∂pqi︸ ︷︷ ︸
network effect

. (10)

The own-price derivative (9) can be decomposed into a price effect, which arises from the

negative impact of pqi on PCq
i , and a network effect. Under positive cross-group externalities, the

decrease in N q
i due to the negative price effect reduces participation on all sides except side i, which

further decreases N q
i . Under congestion, the effect is opposite in sign, and N q

i increases. The cross-

price derivative of N q
j with respect to pqi is given by (10). In this case, only a network effect arises:

the decrease in N q
i due to the price effect changes end-user utility on side j through the cross-group

externality, thus altering N q
j . In Lemma 1, we formally show that, given a non-empty interior

equilibrium with N q
i ∈ (0, 1) for all i and q,21 the sign of (10) depends on the nature of the network

effect: it is negative under positive cross-group externalities and positive under congestion. We also

20This restriction simplifies the interpretation of the own- and cross-price elasticities and the matrix of relative
prices defined in Section 5. Our analysis extends to the case in which any platform charges a strictly negative price
on some side(s).

21If all end-users join a side in a platform (i.e., Nq
i = 1 for some i and q), an arbitrarily small change in pqi (or pqj)

does not affect participation on that side and platform (i.e., Nq
i = 1 still holds). Consequently, own- and cross-price

derivatives are zero. These non-empty corner equilibria, in which all end-users join side i in platform q, cannot occur
in all other cases considered since side i is mutually exclusive and/or platform q is single-homing.

19



show that, despite the ambiguity in the sign of the network effect, an increase in pqi always decreases

N q
i —the price effect dominates the network effect under Assumption 1. From these results, the

signs of the own- and the cross-price elasticities then follow.

Lemma 1. Consider that end-users can join any side on any platform (baseline case). Given a

non-empty interior equilibrium N∗(p), the own-price elasticity εqi :=
∂Nq

i

∂pqi

pqi
Nq

i
< 0, the cross-price

elasticity εqij :=
∂Nq

i

∂pqj

pqj
Nq

i
< 0 under positive cross-group externalities, and εqij > 0 under congestion.

Lemma 1’s proof can be found in Appendix A. It implies that λqij is negative under positive

cross-group externalities and positive under congestion. Therefore, the optimal pricing rule captures

several results that are in line with previous studies. First, if cross-group externalities are positive,

the optimal markup on one side is adjusted downward by the opportunity cost in terms of the

revenue from all other sides, resulting in a markup lower than the usual Lerner index. Second, this

optimal pricing rule may involve cross-subsidization; that is, for some parameters, platform q finds

it optimal to set a price below marginal cost on one side, resulting in a strictly positive profit on

another side. For example, if |εqi | is sufficiently large, we have p̂qi − cqi < 0, requiring p̂qj − cqj > 0 for

some side j.22

4.3.2 Mutually exclusive sides

We now consider that a subset of sides D′ ⊆ D are mutually exclusive. That is, end-users face

a choice between joining either side i or j, for all i, j ∈ D′, i ̸= j. In this case, the same price

and network effects (stemming from the PCs) as those described above occur following a change

in pqi . However, there is an additional effect through the ICC(s): an increase in pqi induces some

end-users, who are on side i but are close-to-indifferent between joining side i or j, to switch from

the former to the latter. We call this the switching-side effect and show its existence in Proposition

3, the proof of which can be found in Appendix A.

Proposition 3. Consider that a subset of sides D′ ⊆ D, |D′| ≥ 2, in platform q are mutually

exclusive. Given N∗(p), suppose that platform q changes prices from pq to p̃q, where p̃qk = pqk for

all k ∈ D \ {i}, and p̃qi = pqi + ε for some i ∈ D′ and ε > 0. Then some end-users switch from side

22Only when we additionally impose that end-users’ valuations are uniformly distributed does the characterization
of optimal prices in our model yield those obtained, for example, by Armstrong (2006) and Rochet and Tirole (2006).
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i to all other mutually exclusive sides j ∈ D′ \ {i} on platform q, while no end-user changes from

any side j to side i.

Therefore, an increase in pqi has a twofold impact on participation on sides i and j. First, N q
i

decreases due to the price and the switching-side effects. Second, N q
j increases due to the switching-

side effect and further increases (decreases) under congestion (positive cross-group externalities).

To illustrate the interplay of these effects, we provide a numerical example next.

Example 1. Consider a platform with two mutually exclusive sides, and let end-users’ valuations

be jointly uniformly distributed; i.e., for each end-user, any (vi, vj) ∈ [0, 1]2 arises with equal

probability. Let the cross-group externality be ϕi(Nj) = Nj and ϕj(Ni) = Ni, and suppose that

pi = pj = .4. Then, PCi is given by vi−.4+Nj ≥ 0, while ICCij is given by vi−.4+Nj ≥ vj−.4+Ni.

It can be easily shown that there is a unique participation equilibrium with full market coverage

in which half of the end-users join side i, and the other half join side j (since the cross-group

externality Ni = Nj = .5 is larger than the price .4).

Given this equilibrium, suppose now that the platform increases pi to .42. Then, a new equi-

librium arises with full market coverage. However, because joining side i is now relatively more

expensive than joining side j, some end-users switch from side i to side j. This is captured by

ICCij , which becomes vi− .42+Nj ≥ vj − .4+Ni. To find the end-user who is indifferent between

joining side i or j, we let ICCij hold with equality and find that Nj = .51 and Ni = .49; that is,

the switching-side effect makes .01 of end-users on side i drop it and switch to side j.

However, Nj = .51 and Ni = .49 cannot be the final solution: if it were, this would imply

that in equilibrium, vi = vj holds, in which case, half of the end-users join each side (which is a

contradiction). In fact, we also need to take into account the subsequent network effect, which

prevents some end-users from leaving side i due to the additional end-users that switched to side j

and, likewise, reduces participation on side j due to the decrease in participation on side i.

To find the new equilibrium, we calculate the valuation for side i, denoted by v̄i, for an end-user

with vj = 0, such that she is indifferent to joining side i or j at prices pi = .42 and pj = .4; that is,

v̄i captures the higher valuation for side i that the indifferent end-user needs to join side i rather

than side j, given the higher pi. For such an indifferent end-user, the following equality must hold:
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v̄i − .42 +Nj = −.4 +Ni. (11)

Considering that the valuations are jointly uniformly distributed, Ni and Nj can be calculated

from Ni = .5(1 − v̄i)
2, and due to full market coverage, Nj = 1 − .5(1 − v̄i)

2 must also hold.

Replacing these conditions in (11) yields the following:

v̄i − .42 + 1− .5(1− v̄i)
2 = −.4 + .5(1− v̄i)

2,

v̄i − .02 + 1− (1− v̄i)
2 = 0.

Solving for v̄i yields two solutions, namely, one that is larger than 1 and thus discarded and

another that is v̄i = .0067. Hence, at the new participation equilibrium, Ni = .4933 and Nj = .5067.

In summary, following the increase of pi from .4 to .42 (with pj unchanged at .4), first there is

a switching-side effect that decreases Ni from .5 to .49 and increases Nj from .5 to .51. Then, the

network effect reduces Nj again from .51 to .5067 and increases Ni from .49 to .4933.

Next, we analytically derive both the own- and the cross-price elasticity for any pair of mutually

exclusive sides, say, i and j. Regarding the own-price elasticity, one might conclude that its sign

is ambiguous: since N q
j can either increase (as shown in Example 1) or decrease (as we explain

below) following an increase in pqi , the network effect on N q
i could be either positive or negative,

potentially offsetting the price effect. However, once again, we show that the own-price elasticity

is always negative. By contrast, determining the implications of the different effects on the cross-

price elasticity is not as straightforward. Hence, the sign of the cross-price elasticity depends on

the model’s parameters and on the features of the participation equilibrium.

More precisely, if there is full participation on platform q, such as in Example 1, an increase in

pqi does not induce any end-user to drop the platform (i.e., PCq
i remains slack), but some of the

end-users will switch from side i to a different mutually exclusive side, say, j. In this context, the

cross-price elasticity is unambiguously positive—regardless of whether the cross-group externalities

are positive (which attenuates the increase in N q
j ) or negative (which reinforces the increase in

N q
j ). If participation is less than full (i.e., PCs are binding), the effect of this decrease in N q

i

on N q
j depends on the nature of the cross-group externalities. Under congestion, the cross-price

derivative is unambiguously positive because both the network and the switching-side effect increase

participation on side j. However, if the cross-group externalities are positive, both effects go in
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opposite directions, and the impact on N q
j can be either positive or negative (depending on which

effect dominates). These results are formally presented in Theorem 1, the proof of which can be

found in Appendix A.

Theorem 1. Given a subset D′ of mutually exclusive sides on platform q, at a non-empty equilib-

rium N∗(p), εqi < 0 for all i ∈ D′. For j ∈ D′ \ {i}, εqij > 0 if
∑
i∈D′

N q
i = 1 or if there is congestion,

and εqij can be either positive or negative if
∑
i∈D′

N q
i < 1 and cross-group externalities are positive.

Theorem 1 captures a novel result that is worth highlighting, namely, that an increase in pqi

can increase participation on all sides other than i, even in the presence of positive cross-group

externalities (and regardless of whether market coverage is full or not). Intuitively, consistent with

the previous literature, a decrease in the number of end-users on one side would typically reduce

the number of end-users on all other sides through the network effect. However, in our model, an

increase in pqi has a negative impact on side j only if the network effect dominates the switching-side

effect; otherwise, N q
j increases. Previous authors do not formally find this switching-side effect.

Finally, we examine the implications of these results for optimal platform pricing. As shown,

the Lerner index (8) depends on the sign of the diversion ratio λqij for all i, j ∈ D, i ̸= j. If all

sides are non-mutually exclusive (Section 4.3.1), the sign of λqij is solely determined by whether

there are positive cross-group externalities or congestion. However, when sides i and j are mutually

exclusive, determining the sign of λqij is more intricate, as follows from Theorem 1.

If the participation equilibrium yields full coverage, then those end-users that drop side i follow-

ing an increase in pqi are diverted to another (mutually exclusive) side j, and λqij > 0. Consequently,

the optimal markup is greater than the usual Lerner index. The same result is obtained in the

presence of congestion effects as, in this case, an increase in pqi also increases N q
j . However, with

positive cross-group externalities and less than full coverage, an increase in pqi has two opposite

effects on N q
j , and thus, the result is ambiguous. Namely, if the switching-side effect dominates the

network effect, increasing pqi raises participation on side j (since λqij > 0), and hence, the optimal

markup is greater than the Lerner index. Conversely, if the network effect dominates the switching-

side effect, λqij < 0, and consequently, the optimal markup is smaller than the usual Lerner index.

This ambiguity under positive cross-group externalities is formally stated in Corollary 1.
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Corollary 1. Given a subset D′ of mutually exclusive sides on platform q, at a non-empty equi-

librium N∗(p), the vector of optimal platform prices, denoted by p̂, is characterized by the Lerner

index (8), adjusted downward or upward by
∑

j∈D\{i}
(p̂qj − cqj)λ

q
ij.

Compared to the previous literature, the characterization of optimal prices in Corollary 1 differs

in two important aspects. First, all previous authors show that the optimal prices are adjusted

downward (absent congestion) after a price increase, resulting in a markup lower than the usual

Lerner index (e.g., Armstrong, 2006 and Rochet and Tirole, 2006). This is due to the fact that an

increase in pqi has an opportunity cost for the platform in terms of side j revenue. To the contrary,

we show that for some parameters, the impact of an increase in pqi on side j’s participation is

positive, which results in optimal platform markups higher than the usual Lerner index (even with

positive cross-group externalities). Second, in the latter case, we find that it is never optimal for

the platform to cross-subsidize—a result that also stands in stark contrast with the conclusions of

previous authors.23

4.3.3 Single-homing platforms

Parting again from the baseline case, in which end-users can join multiple sides within a platform,

we now assume that a subset of platforms M′ ⊆ M are single-homing. This implies that each

end-user faces a choice between joining side i either on platform q or r, for all q, r ∈ M′, q ̸= r,

and for all i ∈ D. Thus, each end-user joins side i on the platform that yields the highest utility (if

any) through ICCs. This introduces an additional effect that we call switching-platform effect : an

increase in pqi induces some end-users on side i on platform q, who are close-to-indifferent between

joining side i on platform q or r, to switch from q to r. We now formally show the existence of this

effect.

Proposition 4. Consider that a subset of platforms M′ ⊆ M, |M′| ≥ 2, are single-homing. Given

N∗(p), suppose that platform q ∈ M′ changes prices from pq to p̃q, where p̃qj = pqj for all j ∈ D\{i},

and p̃qi = pqi + ε for some i ∈ D and ε > 0. Then, on side i, some end-users switch from platform

23A notable exception is Bakos and Halaburda (2020), who show under several additional assumptions that if there
are multi-homing end-users on all sides, it is never optimal for the platform to cross-subsidize, as the interdependence
between the different sides—traditionally captured in the literature by the network effect—falls apart. In our model,
the transmission channel is slightly different: when the interdependence of sides (through the network effect) becomes
less important vis-à-vis our novel switching-side effect, then cross-subsidization does not arise.
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q to all other single-homing platforms r ∈ M′ \ {q}, while no end-user changes from any r to q.

The proof of this proposition follows that of Proposition 3 but employs condition ICCqr
i instead

of ICCq
ij . Importantly, the switching-platform effect identified in Proposition 4 occurs regardless

of whether there are positive cross-group externalities or congestion. Hence, this effect further

decreases the number of end-users on platform q’s side i following an increase in pqi relative to the

baseline case. Table 1 summarizes and compares all the effects that occur when platforms q and r

are multi-homing, relative to the case in which they are single-homing, assuming that sides i and

j are non-mutually exclusive.

Table 1: Effects that occur following an increase in pqi on end-user participation on sides i and j
(non-mutually exclusive)

Platforms q and r Platforms q and r

are multi-homing are single-homing

Effect Sign Effect Sign

Side N q
i

Price effect – Price effect –

Network effect – (+)
Network effect – (+)

Switching-platform effect –

Side N q
j

Network effect – (+) Network effect – (+)

Side N r
i ∅ Switching-platform effect +

Note: The signs of the different effects indicated are those under positive cross-group externalities, while

the signs in parenthesis are those under congestion (indicated only for the cases in which they differ).

In both cases, Lemma 1 applies regarding the sign of the own- and cross-price derivatives.

However, these derivatives are “larger” in the single-homing case because the switching-platform

effect amplifies the negative impact of an increase in pqi on platform q’s participation. In any case,

platform q’s profit maximization problem is similar to the one in Section 4.3.1. Thus, the usual

Lerner index charged to end-users on one side is dragged down by the markup charged to end-users

on the other sides under positive cross-group externalities,24 and the usual Lerner index increases

in the case of congestion.

24Due to the negative impact on the markup charged, platforms might have the incentive to segment the market
in order to limit the switching-platform effect (Karle et al., 2020).
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4.3.4 Mutually exclusive sides and single-homing platforms

In the final case, we consider that a subset of platforms M′ ⊆ M are single-homing, and a subset

of sides D′ ⊆ D are mutually exclusive. Therefore, each end-user is restricted to joining one of

the mutually exclusive sides (say, i or j) on one of the single-homing platforms (say, q or r). In

this setup, the switching-side and the switching-platform effects derived above occur. In addition,

there exists an end-user who is close-to-indifferent between joining side i on platform q or side j

on platform r—e.g., a car owner might be nearly indifferent between renting her car on Uber or

providing rides on Bolt. Thus, through ICCqr
ij , an increase in pqi induces some end-users to switch

from platform q’s side i to platform r’s side j. We call this last and novel effect switching-side-

and-platform effect, formally stated in Proposition 5, the proof of which is analogous to that of

Proposition 3 but uses ICCqr
ij instead of ICCq

ij .

Proposition 5. Consider that a subset of sides D′ ⊆ D, |D′| ≥ 2, are mutually exclusive and that

a subset of platforms M′ ⊆ M, |M′| ≥ 2, are single-homing. Given N∗(p), suppose that platform

q ∈ M′ changes prices from pq to p̃q, where p̃qk = pqk for all k ∈ D \ {i}, and p̃qi = pqi + ε for some

i ∈ D′ and ε > 0. Then some end-users switch from side i on q to all other mutually exclusive

sides j ∈ D′ \ {i} on all other single-homing platforms r ∈ M′ \ {q}, while no end-user changes to

platform q’s side i.

If platforms q and r are multi-homing, participation on side i decreases following an increase

in pqi , as we show in Section 4.3.2. When these platforms are single-homing, this negative impact

on participation on side i is “larger” due to two additional effects: the switching-platform and

the switching-side-and-platform effects. Consequently, the own-price elasticity is negative. By

contrast, the effect of an increase in pqi on participation on another mutually exclusive side j on

platform q remains ambiguous. When q and r are multi-homing, this ambiguity is driven by two

opposite effects, namely, the switching-side effect—which increases participation on side j—and the

network effect, which decreases it absent congestion. If these platforms are single-homing, both the

switching-platform and switching-side-and-platform effects unambiguously increase participation on

all mutually exclusive sides of all single-homing platforms except q. These effects are summarized in

Table 2, which provides a comparison between the case in which platforms q and r are multi-homing

and single-homing, respectively, provided that sides i and j are mutually exclusive.
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Table 2: Effects that occur following an increase in pqi on end-user participation on sides i and j
(mutually exclusive)

Platforms q and r Platforms q and r

are multi-homing are single-homing

Effect Sign Effect Sign

Side N q
i

Price effect –
Price effect –

Network effect – (+)

Network effect – (+) Switching-side effect –

Switching-side effect –
Switching-platform effect –

Switching-side-and-platform effect –

Side N q
j

Network effect – (+) Network effect – (+)
Switching-side effect + Switching-side effect +

Side N r
i ∅ Switching-platform effect +

Side N r
j ∅ Switching-side-and-platform effect +

Note: The signs of the different effects indicated are those under positive cross-group externalities, while the signs in

parenthesis are those under congestion (indicated only for the cases in which they differ).

Finally, as in Section 4.3.2, the platform’s optimal markup on each side is larger or smaller

than the Lerner index depending on whether there is congestion or not and, if not, on whether

the switching-side effect dominates the network effect. The role of the switching-platform and

switching-side-and-platform effects on prices will become relevant, though, in the following section.

5 Platform merger analysis

We rely on the results derived above to study the consequences of a merger of platforms for markups.

For that purpose, we extend the analysis by Affeldt et al. (2013), who adapted Farrell and Shapiro

(2010)’s UPP impact of mergers of firms to the mergers of two two-sided platforms. Farrell and

Shapiro (2010) show that the changes in prices following a merger depend on the value of the

diverted sales that the merged entity recaptures, formally characterized by diversion ratios.

The importance of diversion ratios to understand the consequences of mergers has also gained

momentum among practitioners in competition and antitrust; e.g., the US Federal Trade Com-

mission’s 2010 merger guidelines (currently in force) and the 2023 draft of the merger guidelines
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(currently under consideration) use diversion ratios as key statistics to measure unilateral price

effects of mergers. The reason for this is that diversion ratios synthesize the degree to which the

merged entity internalizes the substitution effect between its jointly owned products. Diversion

ratios are not only acknowledged as a powerful tool to analyze mergers, particularly in the context

of non-homogeneous goods, but also as a practical one, as they can be estimated using market,

scanner, or survey data—see Conlon and Mortimer (2021) and Section 2.2 in Affeldt et al. (2013).

Our theoretical framework provides deeper insights on the direction of diversion ratios, which

are based on the different effects we identify. Therefore, our framework serves as an appropriate

toolkit to analyze mergers by considering which of the different effects occur across sides and/or

platforms within the merged entity in different scenarios. We thus provide a general and unifying

framework to anticipate the UPP of platform mergers in a multi-sided market context. Equipped

with this framework, we rationalize the mixed results obtained by authors that were, until now,

given only in more specific contexts.25

For example, Chandra and Collard-Wexler (2009) study theoretically the merger of two two-

sided platforms that compete à la Hotelling. In their model, the authors show that a switching of

end-users occurs across platforms (on the same side, as in Section 4.3.3), which is internalized if

both platforms merge. The authors then find that the merged entity increases or decreases prices

depending solely on whether the platforms cross-subsidize before the merger or not. Correia-da

Silva et al. (2019) also find an ambiguous effect on prices depending on the existence of cross-

subsidization, assuming instead that platforms compete à la Cournot. By contrast, we show that

the final impact on prices depends not only on the existence of cross-subsidization before the merger

but also on the relative strength of the network effect vis-à-vis the switching-side effect.

Using data on TV magazines, Song (2021) finds empirically that post-merger prices might either

go up or down, with prices on different sides usually moving in opposite directions. Similarly, using

data on US daily newspapers, Fan (2013) shows that ad rates and subscription prices post-merger

tend to move in opposite directions.26 Considering that an increase in subscription fees (in ad

rates) by magazines and newspapers is implausible to induce a reader to switch side and become

25We abstract from certain features that are relevant for mergers of platforms in particular industries, such as
political motives in the media industry (Anderson and McLaren, 2012), “time paying attention” by users in digital
outlets and social networks (Prat and Valletti, 2022), or content variety in the radio industry (Sweeting, 2010).

26Jeziorski (2014), who studies mergers in the radio industry, documents a similar trade-off that the merged firms
face between exercising market power on one side of the market (advertisers) or the other (listeners).
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an advertiser (or vice versa), and bearing in mind that cross-group externalities are positive on the

advertising side, our model rationalizes these empirical results. Indeed, our model predicts that

when the network effect across different sides on the same platform dominates the switching-side

effect, as is the case in the examples under consideration, post-merger prices on both sides do move

in opposite directions.27

5.1 General case

We consider the same theoretical framework as in Section 2 but additionally assume that a subset

of platforms, denoted by N ⊆ M, merge, where N = {1, ..., n} with 2 ≤ n ≤ m (as long as m ≥ 2).

Then, the profit maximization problem for the merged firms is

max
{p11,··· ,pnd}

∑
s∈N

πs :=
∑
s∈N

∑
i∈D

(psi − csi )N
s
i .

In the most general case, i.e., considering all potential across and within platform effects that

may exist, the optimal price that the merged entity charges to end-users on side i of platform s at

an interior solution is characterized by the following FOC:

(psi − csi )

psi
=

1

|εsi |
+

∑
j∈D\{i}

λsij
(psj − csj)

psi
+

∑
t∈N\{s}

∑
j∈D

λstij
(ptj − ctj)

psi︸ ︷︷ ︸
across-platform diversion effects

, (12)

where λsij is the diversion ratio defined above and λstij :=

[
∂Nt

j

∂psi
/
∣∣∣∂Ns

i
∂psi

∣∣∣ ] for all s, t ∈ N , s ̸= t, and

where the derivatives are evaluated at the optimal solution. Note that the right-hand side (RHS)

of (12) adds an additional term relative to the RHS of (8), which characterizes optimal pricing

before the merger. This last term in (12) appears since the merged entity internalizes the different

across-platform effects (if any), which now determine the UPP of the merger.

As is customary in the literature (Affeldt et al., 2013; Miller et al., 2017; Conlon and Mortimer,

2021), we compute the UPP on the optimal markup for each side and platform, holding the prices

of all sides and platforms in the RHS of (12) fixed at the pre-merger optimal level. That is, our goal

is to predict the post-merger impact on the markup of side i and platform s based on pre-merger

27As we show later, if the switching-side effect dominates the network effect or if there are congestion effects on
both sides of a platform, then prices on both sides will unambiguously increase after the merger.
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optimal prices p̂ti for all i ∈ D and all t ∈ N from (8) and the pre-merger corresponding parameters

εsi , λ
s
ij , and λstij , in each of the cases studied in previous sections. To do so, it is convenient to

present a “stacked” version of (12) for all platforms that merge. For that purpose, let us denote

the matrices of the (pre-merger) within and across platform diversion ratios, respectively, by

Λs =


1 −λs12 . . . −λs1d

−λs21 1 . . . −λs2d
...

. . .
...

−λsd1 −λsd2 . . . 1

 and Λst =


−λst11 −λst12 . . . −λst1d
−λst21 −λst22 . . . −λst2d
...

. . .
...

−λstd1 −λstd2 . . . −λstdd

 ,

and let the corresponding matrices of (pre-merger) relative optimal prices be

Θs =


1

p̂s2
p̂s1

. . .
p̂sd
p̂s1

p̂s1
p̂s2

1 . . .
p̂sd
p̂s2

...
. . .

...
p̂s1
p̂sd

p̂s2
p̂sd

. . . 1

 and Θst =



p̂t1
p̂s1

p̂t2
p̂s1

. . .
p̂td
p̂s1

p̂t1
p̂s2

p̂t2
p̂s2

. . .
p̂td
ps2

...
. . .

...
p̂t1
p̂sd

p̂t2
p̂sd

. . .
p̂td
p̂sd

 ,

for all s, t ∈ N , s ̸= t.

Then, optimal pricing for the merged platforms is given by the following (block) matrix equation:


Λ1 ⊙Θ1 Λ12 ⊙Θ12 · · · Λ1n ⊙Θ1n

Λ21 ⊙Θ21 Λ2 ⊙Θ2 · · · Λ2n ⊙Θ2n

...
...

. . .
...

Λn1 ⊙Θn1 Λn2 ⊙Θn2 · · · Λn ⊙Θn


︸ ︷︷ ︸

H



µ1

µ2

...

µn


=



E1

E2

...

En


,

where ⊙ denotes the Hadamard product of two matrices; Tµs :=
(
ps1−cs1
ps1

, · · · , p
s
d−csd
psd

)
∈ Rd is the

vector of optimal markups for each merging platform s that result from incorporating the predicted

UPP post-merger; and Es is the vector of (pre-merger) inverse own-price elasticities on platform s,

where TEs :=
(

1
|εs1|
, · · · , 1

|εsd|

)
∈ Rd

+. Therefore, the UPP impact of the merger of n platforms on

their markups depends on the diversion ratios across platforms, i.e., on Λst for all s, t ∈ N , s ̸= t.28

We now analyze the merger’s impact for each of the possible cases considered in Section 3.

28Following Song (2021), we ignore any efficiency gains that arise from the merger, for example, from an increase in
productivity (Braguinsky et al., 2015) or innovation (Cabral, 2021). However, we can accommodate efficiency gains
along the lines of Affeldt et al. (2013).
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Multi-homing platforms. In this case, there are no switching-platform effects, and consequently,

across-platform diversion ratios are zero (regardless of whether sides are mutually exclusive or not).

Therefore, the merger does not affect markups.

Proposition 6. If all merged platforms are multi-homing, then H = ⊕
s∈N

(Λs⊙Θs), all off-diagonal

block matrices in H are null, and the merger does not change platforms’ markups relative to those

in the pre-merger case.

Under multi-homing, there is no UPP post-merger. This result follows from the independent

nature of platforms (Belleflamme and Peitz, 2019b). To illustrate this, consider e-commerce plat-

forms (e.g., Taobao, Facebook Marketplace, or eBay), on which end-users may sell and buy goods.

Suppose that an end-user sells an item through several e-commerce platforms. Then, an increase in

the selling fee charged by one of the platforms might induce the end-user to drop it. However, this

does not induce the end-user to drop the other platforms. In other words, changes in prices do not

trigger a switching of end-users across platforms, and hence, there are no across-platform diversion

effects to be internalized by the merged entity.29 Therefore, if some of the platforms merge, the

optimal prices are identical to those charged by the platforms separately. Consistently, Farronato

et al. (2023) empirically find that fees did not increase in the context of a multi-homing platform

merger between the two dog boarding/walking companies Rover and DogVacay.

Single-homing platforms. We now consider that a subset of the merging platforms, denoted

by N ′ ⊆ N with |N ′| ≥ 2, are single-homing. In this case, end-users must choose whether they

join one platform or another for each of their sides. Unlike in the previous case, where joining

multiple platforms was possible, the exclusivity that single-homing platforms impose on end-users

triggers different across-platform effects, which are internalized when they merge. As a consequence,

optimal markups before and after the merger generically differ.

Suppose first that all platforms’ sides are non-mutually exclusive. In this scenario, there are

only switching-platform effects across the single-homing platforms, and the following properties

regarding matrix H immediately follow.

29We implicitly assume that end-users have no time or budget constraints. Otherwise, price changes may induce
substitution effects, and end-users may switch platforms. In this case, the single-homing framework would apply.
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Lemma 2. Consider that a subset of the merged platforms, N ′ ⊆ N , are single-homing, in which

all sides are non-mutually exclusive. Then, all off-diagonal block matrices of H are non-positive.

In particular, they are equal to Λst ⊙ Θst = diag
(
−λstii

p̂ti
p̂si

)
for all i ∈ D and all s, t ∈ N ′, s ̸= t,

and equal to the null matrix for all the other cases.

Since switching-side-and-platform effects are null under non-mutually exclusive sides, all the off-

diagonal elements in Λst are zero. Thus, the post-merger UPP on side i of single-homing platform

s is solely determined by the diversion ratios that capture the switching-platform effects (λstii ) and

their interaction with the markups charged by the other single-homing platforms t ̸= s on side i.

That is, the last element on the RHS of (12) boils down to
∑

t∈N ′\{s} λ
st
ii

(pti−cti)
psi

, which (evaluated at

optimal pre-merger prices) determines the UPP on side i on platform s. Bearing in mind that λstii is

unambiguously positive for all i ∈ D and for all s, t ∈ N ′, s ̸= t,30 it then follows that the markup

on side i on platform s can go up or down post-merger. The direction of this change depends on

the sign of (p̂ti − cti) for all t ∈ N ′, t ̸= s, i.e., on whether the other single-homing platforms charge

a pre-merger price above or below marginal cost to end-users on side i.

If cross-group externalities are negative (congestion), then the network effect is positive, and

as a consequence, optimal (pre-merger) prices are always above marginal cost, i.e., (p̂ti − cti) > 0

for all t ∈ N ′. Hence, the merger unambiguously increases prices on all sides for all single-homing

platforms. However, if cross-group externalities are positive, optimal pre-merger markups are

adjusted downward, and cross-subsidization may take place; i.e., (p̂ti− cti) may be negative for some

t ∈ N ′. Thus, the UPP of the merger is (ex-ante) indeterminate. For example, if end-users on a

side of a single-homing platform are cross-subsidized before the merger, then the price on this side

further decreases post-merger. This also implies that this platform charges a positive pre-merger

markup to end-users on another side, who experience an increase in the markup after the merger.

By contrast, if the platform’s markups are positive before the merger on all sides, then post-merger

prices unambiguously increase.

Proposition 7. Consider that all sides are non-mutually exclusive. Under congestion effects,

the merger increases markups on all sides of the merged single-homing platforms. If cross-group

30This holds regardless of the sign of the cross-group externalities. As shown in Section 4.3.3, the switching-platform
effect is unambiguously positive both under positive cross-group externalities and under congestion effects.
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externalities are positive and
∑

t∈N ′\{s}
λstii

(p̂ti−cti)
p̂si

> 0
(
conversely

∑
t∈N ′\{s}

λstii
(p̂ti−cti)

p̂si
≤ 0
)
, the merger

increases (conversely weakly decreases) the markup on side i ∈ D of platform s ∈ N ′.

To illustrate this result, consider the merger of two single-homing platforms A and B, each

with two sides. If pre-merger prices are above marginal cost on both sides of both platforms, then

the merger unambiguously raises prices. However, this is not true if the platforms cross-subsidize

end-users on one side (which requires the cross-group externalities to be positive), say, on side 1.

In this case, the merger further decreases markups on side 1 for both platforms, while the merger

raises markups on side 2 for both platforms. This result is in line with Song (2021), who empirically

shows that for the newspaper industry, ad prices post-merger tend to move in the opposite direction

of copy prices (consistent with the fact that readers are usually cross-subsidized and single-home).

However, prices sometimes increase on both sides after the merger, which is the case if newspapers

are able to charge positive markups to advertisers and readers.

Finally, for the sake of completeness, we consider that a subset of sides, denoted by D′ ⊆ D,

with |D′| ≥ 2, of the single-homing platforms that merge are mutually exclusive. Contrary to the

previous case, some of the off-diagonal elements in matrix Λst are now strictly negative due to the

presence of the additional switching-side-and-platform effect identified in Section 4.3.4.

Lemma 3. Consider that a subset of sides D′ ⊆ D of the merged platforms are mutually exclusive

and that a subset of the merged platforms, N ′ ⊆ N , are single-homing. Then, all off-diagonal block

matrices of H are non-positive. In particular, Λst ⊙Θst is a non-diagonal, non-positive matrix for

all s, t ∈ N ′, s ̸= t, and it is equal to the null matrix for all the other cases.

Based on this result, we show that the UPP on a merging platform’s markups depends not only

on the nature of the cross-network externalities (as in the previous case) but also, more strikingly,

on the strength of the switching-side effects of the other merging platforms. To observe this, we

consider any of the merging single-homing platforms, say, s ∈ N ′. The UPP of the merger on this

platform is determined by the interaction of the diversion ratios that capture both the switching-

platform and the switching-side-and-platform effects with the corresponding (pre-merger) optimal

markups charged by all the other single-homing merging platforms t ∈ N ′ \ {s}. As follows from

Propositions 4 and 5, both the switching-platform effects (captured by λstii for all i ∈ D) and the

switching-side-and-platform effects (captured by λstij for all i, j ∈ D′, i ̸= j) are positive for all
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s, t ∈ N ′, s ̸= t.31 However, the markups charged by any other merging platform t ∈ N ′ \ {s} can

be either positive or negative, depending on (i) the sign of the cross-group externalities and (ii)

the strength of the different effects across sides within the platform t ∈ N ′ \ {s}.

More precisely, if cross-group externalities are negative (congestion), both the switching-side

effect between any pair of mutually exclusive sides, say, i and j, and the network effect go in

the same direction, and hence, the diversion ratio across these sides within platform t ∈ N ′ \ {s}

(captured by λtij) are unambiguously positive. In this case, optimal pre-merger prices on platform

t ∈ N ′ \ {s} are always above marginal cost. This also occurs if cross-group externalities are

positive and if the switching-side effect between all pairs of mutually exclusive sides dominates the

network effect on platform t ∈ N ′ \ {s}. Consequently, in both cases, the merger unambiguously

increases markups on all sides of platform s. Conversely, with positive cross-group externalities, if

the network effect dominates the switching-side effect for a pair of mutually exclusive sides, say,

i and j, on platform t ∈ N ′ \ {s}, then λtij is negative, and hence, this platform might find it

optimal to cross-subsidize (albeit not necessarily) some end-users. Thus, the UPP of the merger

on platform s is ambiguous and depends on the model’s parameters.

Proposition 8. Consider that a subset of sides D′ ⊆ D are mutually exclusive. If λsij ≥ 0 for all

i, j ∈ D, i ̸= j, and for all s ∈ N ′, the merger increases markups on all the mutually exclusive sides

of the merged single-homing platforms. Otherwise, if
∑

t∈N ′\{s}

(
λstii

(p̂ti−cti)
p̂si

+
∑

j∈D′\{i}
λstij

(p̂tj−ctj)

p̂si

)
> 0(

conversely ≤ 0
)
, the merger increases (conversely weakly decreases) the markup on side i ∈ D′ of

platform s ∈ N ′.

By combining these findings with the optimal platform pricing results presented in Section 4,

we can derive readily applicable, policy-relevant implications of mergers for welfare—defined as the

sum of end-users’ surplus (given by the valuation of those who join a side on a platform, net of the

network effect and price paid) and platforms’ profits. These implications are relevant for mergers

involving single-homing platforms because, in these cases, there are post-merger price changes

triggered by the different across-platform switching effects that are internalized by the platforms

31Note that switching-platform effects between side i in platform s and side i in platform t occur for all sides
i ∈ D due to the single-homing nature of the platforms (e.g., a rider choosing between Uber and Bolt). However,
switching-side-and-platform effects between side i in platform s and side j in platform t exclusively occur across the
subset of mutually exclusive sides i, j ∈ D′, i ̸= j (e.g., a passenger deciding to get a ride with Bolt or opting to rent
a car using Uber).
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that merge.32 Therefore, the overall impact on welfare hinges (i) on the magnitude of the across-

platform switching effects (how many end-users switch platforms), which increase merged platforms’

profits at the expense of end-users’ surplus, and (ii) on the magnitude of the own-price effect (how

many end-users drop/join the platforms), which negatively or positively impacts end-users’ surplus,

depending on the sign of the markups charged by the platforms.

First, if there are congestion effects or if there are positive cross-group externalities and the

switching-side effect dominates the network effect, cross-subsidization does not occur. Conse-

quently, there is a strictly positive UPP post-merger, leading to an unambiguous decrease in end-

user surplus and an unambiguous increase in platforms’ profits. However, the net impact on overall

welfare is negative. This is because, on the one hand, platforms obtain an additional profit (via

the internalized across-platform switching effects) at the expense of end-users’ surplus, but on the

other hand, some end-users (on some sides/platforms) drop out due to higher prices, resulting in

an overall negative impact on welfare.33 However, when there are positive cross-group externalities

and the network effect dominates the switching-side effect, cross-subsidization on a side may occur.

In such instances, the merger leads to lower prices on the cross-subsidized sides—thereby increasing

participation—while the prices on other sides rise, causing decreased participation, resulting in an

ambiguous effect on end-user surplus (Song, 2021). Consequently and since platforms’ profits also

increase post-merger (otherwise, platforms would not set the new prices), this case yields an overall

(ex-ante) ambiguous impact on welfare.34

In summary, our general framework accommodates the analysis of mergers involving various

platform types, regardless of whether some of their sides are mutually exclusive or not. In each case,

the presence of non-zero diversion ratios in Λst plays a pivotal role in shaping the resulting impact on

post-merger prices and welfare—in particular, in the presence of single-homing platforms (diagonal

elements) with mutually exclusive sides (off-diagonal elements). In the following subsection, we

show how this framework also provides a useful workhorse for analyzing the merger of platforms

32We remark again that these implications are also relevant for multi-homing platforms in cases where end-users
effectively single-home due to, e.g., budget or time constraints. In such instances, price changes may also induce
across-platform effects, and consequently, it would be more appropriate to apply the single-homing framework.

33This result is consistent with the literature on platform mergers involving substitutes, such as Nevo (2000), which
is a framework that closely resembles the two cases discussed here.

34Our analysis abstracts away from other issues, such as regressive effects arising when one side of the market is
“excessively subsidized” at the expense of others (Sarin, 2020) and the potential for platforms to implement “own-
rules” that enhance welfare, as explored in Johnson et al. (2023), that lie beyond the scope of this paper.
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that offer “seemingly unrelated” services but that are connected through some sides.

5.2 Special case: merger of “seemingly unrelated” platforms

For now, we have referred mainly to previous studies of mergers among multi-sided platforms within

the same industry (e.g., newspapers, radio stations, etc.) or to platforms that offer similar services

(e.g., dog walking/boarding). However, our main results above highlight that the relevant unit

of analysis is not a platform but a side (and its potential overlap along with the corresponding

effects). Consequently, we finally show that our framework also provides a useful toolkit to analyze

mergers of platforms that offer different services (potentially in different industries)—usually called

conglomerate mergers—but in which at least one of the sides is somehow connected through one of

the previously identified effects.35

For example, this is the case if a peer-to-peer ride-sharing platform merges with another platform

that offers food delivery services. These platforms not only offer unrelated services but also belong

to very different sectors. However, they are connected through one of the sides if food couriers

deliver orders from restaurants to customers by car: in this case, the courier might choose either to

deliver food or to drive passengers (i.e., there is a switching-platform effect between both platforms

on the drivers’ side). A case in point is provided by Ola Cabs’ acquisition of the food delivery

platform Foodpanda—whose drivers often deliver food by car—in December 2017.

Another example is the acquisition of HotelTonight—a platform that connects travelers and

hotels for very last-minute bookings—by AirBnb in March 2019. Again, although these platforms

offer different services (vacation rentals vs. hotel rooms), travelers who search for apartments

using AirBnB might switch and check for hotels at HotelTonight’s website (in particular, if AirBnB

users are last-minute travelers). There is again a switching-platform effect that the acquirer firm

internalizes. A similar internalization of the switching-platform effect can be expected in other

mergers of platforms, such as that of Lyft and Motivate (a US bicycle sharing platform) and that

of Uber and JUMP (a scooter sharing system), as users might choose either to receive a ride by car

or to complete their trips by finding a nearby bike or scooter to use.

Formally, in all these examples, end-users on a side, say, side i, on each platform are unrelated,

35Even though conglomerate mergers are becoming increasingly popular in (digital) platform markets, previous
studies discuss only the potential harmful effects of conglomerate mergers in other (standard) markets (Garcia and
de Azevedo, 2019).
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which implies that
∂Ns

i

∂pti
= 0 for all s, t ∈ N , s ̸= t (e.g., riders are not directly affected by a change

in the fee charged to those who order food, and those who order food are not affected by a change in

the fee charged for a ride), which in turn implies that λstii = 0.36 However, the cross-price derivative

will be different from 0 for end-users on another side, say, side j, through which platforms s and

t are related (e.g., some last minute travelers might drop HotelTonight and instead search for an

apartment on AirBnb if the fees charged by HotelTonight increase, and Uber users might choose

to use a JUMP scooter instead of an Uber vehicle if fees charged by the latter service are relatively

high). In these cases, λstjj > 0, and consequently, H is a diagonal matrix in which some of the

diagonal elements are equal to 0 (for the unrelated sides), while others are strictly lower than 0 (for

the related sides).

Suppose that platforms s and t are unrelated on side i but related through side j. Then, optimal

pricing for the merged platform is characterized by37

(psj − csj)

psj
=

1

|εsj |
+ λsij

(psj − csj)

psi
+ λstjj

(ptj − ctj)

psj︸ ︷︷ ︸
across-platform diversion effects

. (13)

Therefore, if the price-cost markup charged by platform t on side j is strictly positive (i.e.,

in the absence of cross-subsidization), the merger is beneficial for the merging platforms (to the

detriment of end-users), as it increases side j’s markups by the across platforms diversion effects

indicated in (13). This occurs because these platforms internalize the switching-platform effect on

the side through which they are related (i.e., side j in the example).38 This result holds even though

platforms s and t offer different services (they do not share the same end-users), and therefore, its

consequences might potentially receive less attention from anti-trust authorities—e.g., in countries

that investigate mergers only if the market share of the combined entity is above a certain threshold

(Motta and Peitz, 2021; Nocke and Whinston, 2022). Indeed, antitrust and competition authorities

did not actively investigate as potentially harmful some of the mergers and acquisitions that we

36For simplicity, we assume here that there are positive cross-group externalities and no switching-side-and-platform
effects (if there are no same side effects across platforms, a fortiori, it is unlikely that effects across sides and platforms
will be observed). However, our general framework can easily accommodate the case in which λst

ij ̸= 0.
37This result easily generalizes to more than two multi-sided platforms. In this case, the post-merger effect in (13)

should include the sum for all other platforms t whose sides j relate to side j of platform s.
38Argentesi et al. (2021) note that most acquisitions by Amazon, Facebook, or Google target companies offering a

wide range of products and services complementary to those supplied (i.e., those facilitating the switching effects).
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mention above, such as that of Foodpanda and OlaCabs or that of HotelTonight and AirBnb.

6 Conclusions

This paper presents a general micro-founded model of multi-sided markets in which heterogeneous

end-users endogenously choose both which side and which platform they join. These decisions are

considered with the assumption that participation on one side of a platform sometimes precludes

participation on another side and that platforms can be either single- or multi-homing.

From the model’s primitives, we derive the demand of the different sides for the various scenarios

considered. For each of the scenarios, we find a unique participation equilibrium and then derive

platforms’ optimal prices, from which closed-form expressions for own- and cross-price elasticities

arise. Using the closed-form expressions, we formally characterize a set of novel switching effects,

by which an increase in the fee on one side of a platform induces some end-users to switch to

different sides and/or platforms. Optimal prices differ mainly along the dimension of whether the

sides of platforms are mutually exclusive or not.

Then, we analyze the consequences of multi-sided platform mergers. We show that for end-

users, mergers of multi-homing platforms are innocuous, as they do not affect optimal pricing,

while mergers of single-homing platforms do affect optimal pricing (and there is a nuanced difference

depending on whether the platform sides are mutually exclusive or not). Thus, we provide a unifying

framework to analyze platform mergers, which allows us to explain the mixed results obtained by

previous authors.

We illustrate that both dimensions—single- vs. multi-homing and mutually exclusive sides or

otherwise—are important in our framework. The first determines whether mergers between multi-

sided platforms have harmful effects for end-users through post-merger price increases, and the

second determines whether platforms’ optimal markups can be larger than the usual Lerner index.

The tractability of the general theoretical model we provide will be useful for applied and

future empirical research, in particular, to study antitrust issues. We believe, moreover, that the

model will be an appealing and convenient starting point for authors interested in more specific

applications that can be obtained by modifying our relatively general assumptions.
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Appendix A. Proofs

Proof of Proposition 1. Let p be given. Define set Nm+1 := {vqi | pr
(
vqi + ϕqi (N

q
-i) − pqi <

0
)
for all i ∈ D and all q ∈ M}, i.e., any end-user in set Nm+1 joins no platform at all since her val-

uation net of price and cross-group externality is less than zero. Then, let Ñ := (N1, ...,Nm, Nm+1),

where Nq := (N q
1 , ..., N

q
d ) for all q ∈ M, and define the mapping ψ : Ñ → Ñ , such that

ψ : [0, 1]m×d+1 → [0, 1]m×d+1. By Brouwer’s fixed point theorem, ψ has a fixed point given that

it is a continuous function from a compact and convex set to itself. Denote such a fixed point by

N∗(p). This shows existence of a participation equilibrium N∗(p).

To show uniqueness of the participation equilibrium,39 suppose that Assumption 1 holds and note

that the L∞ norm on some vector X is defined as ∥X∥∞ = max
i∈D,q∈M

|xqi |. Then, ∥N−N′∥∞ denotes

the infinity norm of the distance between vectors N and N′. We show uniqueness by using the

contraction mapping theorem, and thus, need to show that for all N,N′,

∥Ñ (N)− Ñ (N′)∥∞ ≤ β∥N−N′∥∞. (A.1)

Let

β := max
i∈D
q∈M

sup
Nq∈[0,1]d

∑
j∈D

∣∣∣∣∣∂N q
i (·)

∂N q
j

∣∣∣∣∣ × max
i∈D
q∈M

 ∑
j∈D\{i}

sup
Nq

-i∈[0,1]d−1

∣∣∣∣∣∂ϕqi (Nq
-i)

∂N q
j

∣∣∣∣∣
 < 1.

To show that (A.1) holds, we use the following result which is an immediate consequence of the

mean value theorem: for any continuously differentiable function g(a1, ..., an) on a convex domain

E ⊂ Rn, and for any vectors a = (a1, ..., an) and b = (b1, ..., bn),

|g(a)− g(b)| ≤
(
max

i
|ai − bi|

)sup
e∈E

n∑
j=1

∣∣∣∣∂g(e)∂aj

∣∣∣∣
 ,

where maxi|ai−bi| is L∞ norm of the vector a−b, and
(
supe∈E

∑n
j=1

∣∣∣∂g(e)∂aj

∣∣∣) ≤
∑n

j=1 supe∈E

∣∣∣∂g(e)∂aj

∣∣∣,
which is the supremum of the L1 norm of the gradient ∇g over E.

Applying these results to any i and q and all N,N′, yields
∣∣N q

i

(
ϕqi (N

q
-i)
)
−N q

i

(
ϕqi (N

q′

-i )
)∣∣ ≤

39Our proof of uniqueness follows a similar line of argument as Tan and Zhou (2021). Yet, they consider only single-
homing and mutually exclusive (fixed) sides and also assume full coverage. For more details about the mathematical
arguments we use, any advanced book on mathematical analysis is helpful, such as Dieudonné (1964).
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≤ max
i∈D

∣∣ϕqi (Nq
-i)− ϕqi (N

q′

-i )
∣∣ × max

i∈D
sup

Nq∈[0,1]d

∑
j∈D

∣∣∣∣∣∂N q
i (·)

∂N q
j

∣∣∣∣∣ ≤
max
i∈D

( ∑
j∈D\{i}

sup
Nq

-i∈[0,1]d−1

∣∣∣∣∣∂ϕqi (Nq
-i)

∂N q
j

∣∣∣∣∣
)
∥Nq −Nq′∥∞

(
max
i∈D

sup
Nq∈[0,1]d

∑
j∈D

∣∣∣∣∣∂N q
i (·)

∂N q
j

∣∣∣∣∣
)

≤ β∥N−N′∥∞,

which holds for any N, N′, any i ∈ D, and q ∈ M.

Proof of Proposition 2. Let p be given. Then, to show that there is a non-empty participation

equilibriumN∗(p), consider first case a), the baseline case. Suppose ad absurdum that
[
ϕqi (·)−p

q
i

]
<

−1 for some i ∈ D and q ∈ M, i.e., PC is not fulfilled. Then for an end-user with the highest

valuation vqi = 1 it holds that vqi + ϕqi (·)− pqi < 0, and she does not join side i on platform q, and

thus, the equilibrium is empty, a contradiction. Therefore, PC is necessary for the equilibrium to

be non-empty. Suppose next that N∗(p) ̸= ∅, i.e., there is some end-user on each side i on each

platform q. Since vqi = 1 is the highest valuation for any side i on any platform q, this implies that[
ϕqi (·) − pqi

]
≥ −1 for all i ∈ D and all q ∈ M, and so PC is sufficient for the equilibrium to be

non-empty.

Consider next case b) of multi-homing with sides i, j ∈ D′ ⊆ D, i ̸= j, being mutually exclusive.

From case a), it follows that N∗(p) = ∅, when PC is not fulfilled. Suppose next ad absurdum that[
ϕqi (·)−p

q
i

]
−
[
ϕqj(·)−p

q
j

]
/∈ [−1, 1] for i, j ∈ D′, i ̸= j and q ∈ M. If

[
ϕqi (·)−p

q
i

]
−
[
ϕqj(·)−p

q
j

]
< −1,

then even an end-user with vqi = 1 and vqj = 0 does not join side i on q, and if
[
ϕqi (·)−p

q
i

]
−
[
ϕqj(·)−

pqj
]
> 1, then even an end-user with vqi = 0 and vqj = 1 does not join side j on q. Both end-users

exist by full support. Hence, the equilibrium is empty, a contradiction. Therefore PC and ICC

1 are necessary conditions. Suppose next that N∗(p) ̸= ∅. Then it follows from case a) that[
ϕqi (·)− pqi

]
≥ −1 for all i and q, and moreover, by full support the existence of the two end-users

just found implies that
[
ϕqi (·) − pqi

]
−
[
ϕqj(·) − pqj

]
∈ [−1, 1] holds for i, j ∈ D′, i ̸= j, and q ∈ M.

Therefore, PC and ICC 1 are sufficient for the equilibrium to be non-empty.

Consider next case c) of non-mutually exclusive sides and that platforms q, r ∈ M′ ⊆ M, q ̸= r,

are single-homing. From case a), it follows that N∗(p) = ∅, when PC is not fulfilled. Suppose

next ad absurdum that
[
ϕqi (·) − pqi

]
−
[
ϕri (·) − pri

]
/∈ [−1, 1] for i ∈ D and for q, r ∈ M′, q ̸= r. If
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[
ϕqi (·)−p

q
i

]
−
[
ϕri (·)−pri

]
< −1, then even an end-user with vqi = 1 and vri = 0 does not join side i on

q, and if
[
ϕqi (·)− pqi

]
−
[
ϕri (·)− pri

]
> 1, then even an end-user with vqi = 0 and vri = 1 does not join

side i on r. Both end-users exist by full support. Hence, the equilibrium is empty, a contradiction.

Therefore PC and ICC 2 are necessary conditions. Suppose next that N∗(p) ̸= ∅, then it follows

from case a) that
[
ϕqi (·) − pqi

]
≥ −1 for all i and q, and moreover, by full support the existence

of the two end-users just found implies that
[
ϕqi (·) − pqi

]
−
[
ϕri (·) − pri

]
∈ [−1, 1] for i ∈ D and for

q, r ∈ M′, q ̸= r. Therefore, PC and ICC 2 are sufficient for the equilibrium to be non-empty.

Finally, consider case d) of mutually exclusive sides i, j ∈ D′ ⊆ D, i ̸= j, and single-homing

platforms q, r ∈ M′ ⊆ M, q ̸= r. From above, it follows that N∗(p) = ∅, when PC, ICC 1 or ICC

2 is not fulfilled. Suppose next ad absurdum that
[
ϕqi (·) − pqi

]
−
[
ϕrj(·) − prj

]
/∈ [−1, 1] for i, j ∈ D′,

i ̸= j, and q, r ∈ M′, q ̸= r. If
[
ϕqi (·)− pqi

]
−
[
ϕrj(·)− prj

]
< −1, then even an end-user with vqi = 1

and vrj = 0 does not join side i on q, and if
[
ϕqi (·) − pqi

]
−
[
ϕrj(·) − prj

]
> 1, then even an end-user

with vqi = 0 and vrj = 1 does not join side j on r. Both end-users exist by full support. Hence,

the equilibrium is empty, a contradiction. Therefore PC, ICC 1, ICC 2 and ICC 3 are necessary

conditions. Suppose next that N∗(p) ̸= ∅, then it follows from above that PC, ICC 1 and ICC

2 hold, and moreover, by full support the existence of the two end-users just found implies that[
ϕqi (·)− pqi

]
−
[
ϕrj(·)− prj

]
∈ [−1, 1] for i, j ∈ D′, i ̸= j, and q, r ∈ M′, q ̸= r. Therefore, PC, ICC 1,

ICC 2 and ICC 3 are sufficient for the equilibrium to be non-empty.

Proof of Lemma 1. For ease of notation, we drop superscript q for the platform. Given the price

effect in (9), ∆NPE
i := −fi(·) < 0, we first solve the sign of the cross-price derivative (10):

∂Nj

∂pi
=
∂Nj

∂Ni

∂Ni

∂pi
=
∂(1− Fj(pj − ϕj(N-j)))

∂Ni
∆NPE

i =

=
∂(1− Fj(pj − ϕj(N-j)))

∂ϕj(N-j)

∑
i ̸=j

∂ϕj(N-j)

∂Ni
∆NPE

i , (A.2)

where we just apply the chain rule. Note that
∂(1−Fj(pj−ϕj(N-j)))

∂ϕj(N-j)
= fj(pj − ϕj(N-j)) ∈ (0, 1), and∑

i ̸=j

∣∣∣∂ϕj(N-j)
∂Ni

∣∣∣ ∈ (0, 1) by Assumption 1. It thus follows that
∂Nj

∂pi
∈ (−∆NPE

i ,∆NPE
i ), that is, the

absolute value of the cross-price derivative is smaller than that of the price effect in the own-price

derivative. Finally, the sign of
∂Nj

∂pi
is determined by the sign of

∑
i ̸=j

∂ϕj(N-j)
∂Ni

, i.e.,
∂Nj

∂pi
< 0 under

positive cross-group externalities and
∂Nj

∂pi
> 0 under congestion effects.
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Given that
∑

i ̸=j
∂ϕj(N-j)

∂Ni
∆NPE

i =
∑

i ̸=j
∂ϕj(N-j)

∂Ni

∂Ni
∂pi

=
∂ϕj(N-j)

∂pi
, rewriting (A.2) yields (10) as

required:

∂Nj

∂pi
= fj

(
pj − ϕj(N-j)

)∂ϕj(N-j)

∂pi
.

Now we show formally that ∂Ni
∂pi

< 0. From (9) we obtain

∂Ni

∂pi
= −fi(·) + fi(·)

∂ϕi(N-i)

∂pi
= fi(·)

−1 +
∑
j ̸=i

∂ϕi(N-i)

∂Nj

∂Nj

∂pi

 .

By Assumption 1,
∑

j ̸=i

∣∣∣∂ϕi(N-i)
∂Nj

∣∣∣ ∈ (0, 1), and as just shown,
∣∣∣∂Nj

∂pi

∣∣∣ < ∣∣∣∆NPE
i

∣∣∣ = fi(·) ∈ (0, 1).

Therefore,
∑

j ̸=i
∂ϕi(N-i)

∂Nj

∂Nj

∂pi
∈ (−1, 1), and thus the magnitude of the price effect in (9) is strictly

larger than that of the network effect which implies that ∂Ni
∂pi

< 0, and the result follows.

Proof of Proposition 3. Given p and N∗(p), consider end-user #1 with valuations v̄qi and v̄qj ,

who joins side i ∈ D′ on platform q, but who would also benefit, though by less, from joining side

j ∈ D′ \ {i}, on platform q, i.e., for her v̄qi + ϕqi (N
q
-i)− pqi > v̄qj + ϕqj(N

q
-j)− pqj > 0. Rewriting this

yields

v̄qj − v̄qi < ϕqi (N
q
-i)− pqi + pqj − ϕqj(N

q
-j). (A.3)

Next consider end-user #2 with valuations ṽqi and ṽqj , who joins side j on platform q, but who

would also benefit, though by less, from joining side i on platform q, i.e., for her ṽqj +ϕ
q
j(N

q
-j)−p

q
j >

ṽqi + ϕqi (N
q
-i)− pqi > 0. Rewriting this yields

ṽqj − ṽqi > ϕqi (N
q
-i)− pqi + pqj − ϕqj(N

q
-j). (A.4)

Both end-users exist by full support and as shown in Proposition 2, case b). Combining (A.3) and

(A.4) yields:

ṽqj − ṽqi > ϕqi (N
q
-i)− pqi + pqj − ϕqj(N

q
-j) > v̄qj − v̄qi . (A.5)

Given pq and p̃q such that p̃qk = pqk for all k ∈ D\{i}, and p̃qi = pqi +ε for some i ∈ D′, where ε > 0,

if end-user #1 switches to side j, then end-user #2 does not switch to side i. To show this, we state

the new ICCs for both end-users. For end-user #1, this is v̄qj + ϕqj(N
q
-j)− pqj > v̄qi + ϕqi (N

q
-i) − p̃qi .
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Rewriting this yields

v̄qj − v̄qi > ϕqi (N
q
-i)− p̃qi + pqj − ϕqj(N

q
-j). (A.6)

Next consider end-user #2 and suppose ad absurdum that she switches to side i on platform q. If

this were true, then for her it holds that ṽqi + ϕqi (N
q
-i)− p̃qi > ṽqj + ϕqj(N

q
-j)− pqj . Rewriting yields

ṽqj − ṽqi < ϕqi (N
q
-i)− p̃qi + pqj − ϕqj(N

q
-j). (A.7)

Analogously as before, combining (A.6) and (A.7) yields:

v̄qj − v̄qi > ϕqi (N
q
-i)− p̃qi + pqj − ϕqj(N

q
-j) > ṽqj − ṽqi . (A.8)

Clearly this contradicts (A.5) which yields ṽqj − ṽqi > v̄qj − v̄qi . Therefore, we have shown that in

case of switching (following a price change in a given equilibrium), this always takes place from the

side on which the price increases to another mutually exclusive side. End-users from the side on

which the price did not change never switch to the side on which it increases.

Proof of Theorem 1. Consider first full coverage, i.e., that
∑

i∈D′ N
q
i = 1. Without loss of

generality pick side i ∈ D′, and for ease of notation, drop superscript q. Given our assumption of full

support, from ICCij it follows that for some end-user on side i ∈ D′, vi = vj+ϕj(·)−pj+pi−ϕi(·),

for all j ∈ D′ \ {i}. Then, as pi increases, any such end-user is strictly better off by joining side j

instead. Since
∑

i∈D′ Ni = 1, and by Proposition 3 it follows that Ni decreases while Nj increases

for all j ∈ D′ \ {i} after an increase in pi, then εi < 0 and εi,j > 0 for all j ∈ D′ \ {i}.

Suppose next that
∑

i∈D′ Ni < 1. Given own-price elasticity εi := ∂Ni
∂pi

pi
Ni

, we show next that

∂Ni
∂pi

< 0. The number of side-i end-users in equilibrium is given by (5). Taking the derivative w.r.t.

pi yields

∂Ni

∂pi
=

price and network effect from PCi ⇒ end-users that drop the platform if pi increases︷ ︸︸ ︷(
−1 +

∂ϕi(·)
∂pi

)
fi(pi − ϕi(N-i))

∏
j∈D′\{i}

Fj (pj − ϕj(N-j)) +

∫ 1

pi−ϕi(N-i)
fi(vi)

∂

∂pi

∏
j∈D′\{i}

Fj (vi − ϕj(N-j) + pj − pi + ϕi(N-i)) dvi︸ ︷︷ ︸
price and network effect from ICCij for all j∈D′\{i} ⇒ end-users that switch away from side i if pi increases

.

(A.9)
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Now, we solve the derivative in the second line of (A.9):

∂

∂pi

∏
j∈D′\{i}

Fj (vi − ϕj(N-j) + pj − pi + ϕi(N-i)) =
∑

j∈D′\{i}

∂Fj(·)
∂pi

∏
k∈D′\{i,j}

Fk(·) =

=
∑

j∈D′\{i}

(
−∂ϕj(·)

∂pi
− 1 +

∂ϕi(·)
∂pi

)
fj(·)

∏
k∈D′\{i,j}

Fk(·).

Let C :=
∫ 1
pi−ϕi(N-i)

fi(vi)
∑

j∈D′\{i}

(
−∂ϕj(·)

∂pi

)
fj(·)

∏
k∈D′\{i,j} Fk(·)dvi, which captures the net-

work effect that follows from the switching-side effect (i.e., the network impact generated by

those that switch) on all other sides k ∈ D′ \ {i, j}. By Assumption 1, since the cross-group

externalities are bounded, it cannot be larger than the switching-side effect itself. Formally,

∂ϕj(·)
∂pi

=
∑

k∈D′\{j}
∂ϕj(·)
∂Nk

∂Nk
∂pi

and by Assumption 1,
∑

k∈D′\{j}
∂ϕj(·)
∂Nk

∈ (−1, 1). If this expression as

well as
∑

k∈D′\{i,j}
∂Nk
∂pi

have the same sign, then
∂ϕj(·)
∂pi

> 0 and C < 0. Otherwise,
∂ϕj(·)
∂pi

< 0 and

C > 0. We now show that this implies that ∂Ni
∂pi

< 0. Since
∑

k∈D′\{i,j}
∂Nk
∂pi

=
∑

k∈D′\{i,j}
∂Nk
∂Ni

∂Ni
∂pi

,

given positive cross-group externalities
∑

k∈D′\{j}
∂ϕj(·)
∂Nk

∈ (0, 1) and
∑

k∈D′\{i,j}
∂Nk
∂Ni

> 0, so for

∂ϕj(·)
∂pi

< 0 to hold requires that ∂Ni
∂pi

< 0; while under congestion
∑

k∈D′\{j}
∂ϕj(·)
∂Nk

∈ (−1, 0), and∑
k∈D′\{i,j}

∂Nk
∂Ni

< 0 and for
∂ϕj(·)
∂pi

< 0 to hold requires that ∂Ni
∂pi

< 0. In both cases, the own-price

elasticity needs to be negative since otherwise a contradiction arises.

Let A := fi
(
pi − ϕi(N-i)

)∏
j∈D′\{i} Fj

(
pj − ϕj(N-j)

)
, and note that A ∈ (0, 1) is a measure of

end-users that drop side i due to the shift in PCi. Then, replacing A and the derivative into (A.9)

yields

∂Ni

∂pi
=

(
−1 +

∂ϕi(·)
∂pi

)
A+

∫ 1

pi−ϕi(N-i)
fi(vi)

∑
j∈D′\{i}

(
−∂ϕj(·)

∂pi
− 1 +

∂ϕi(·)
∂pi

)
fj(·)

∏
k∈D′\{i,j}

Fk(·)dvi.

By the Fubini/Tonelli theorem, the previous expression can be rewritten as follows

∂Ni

∂pi
=

(
−1 +

∂ϕi(·)
∂pi

)
A+

∑
j∈D′\{i}

(
−∂ϕj(·)

∂pi
− 1 +

∂ϕi(·)
∂pi

)∫ 1

pi−ϕi(N-i)
fi(vi)fj(·)

∏
k∈D′\{i,j}

Fk(·)dvi.

Let B :=
∑

j∈D′\{i}
∫ 1
pi−ϕi(N-i)

fi(vi)fj(·)
∏

k∈D′\{i,j} Fk(·)dvi, and note that B ∈ (0, 1) is a measure
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of end-users that drop side i due to the shift in ICCij for all j ∈ D′ \ {i}. Then,

∂Ni

∂pi
=

 −1︸︷︷︸
price effect ∆NPE

i

+
∂ϕi(·)
∂pi︸ ︷︷ ︸

network effect

 (A+B) + C. (A.10)

Since sides are mutually exclusive and the total measure of end-users is 1, it follows that (A+B) ∈

(0, 1), since A arises from PCi, while B arises from ICCij for all j ∈ D′ \ {i}, i.e., A and B

measure different end-users that drop side i ∈ D′. Hence, ∂Ni
∂pi

< 0 as long as ∂ϕi(·)
∂pi

∈ (−1, 1),

which we show next. Note that ∂ϕi(·)
∂pi

=
∑

j∈D′\{i}
∂ϕi(·)
∂Nj

∂Nj

∂Ni

∂Ni
∂pi

, with ∂Ni
∂pi

= ∆NPE
i := −(A+B) ∈

(−1, 0), i.e., this is the initial drop due to the price effect which triggers all other changes. Hence,

∂ϕi(·)
∂pi

=
∑

j∈D′\{i}
∂ϕi(·)
∂Nj

∂Nj

∂Ni
∆NPE

i and
∑

j∈D′\{i}
∂ϕi(·)
∂Nj

∂Nj

∂Ni
≤
∑

j∈D′\{i}
∂ϕi(·)
∂Nj

∑
i∈D′\{j}

∂Nj

∂Ni
, which

is in (−1, 1) by Assumption 1 and since sides are mutually exclusive. Finally, since C < 0 or if

C > 0, then ∂Ni
∂pi

< 0, and εi < 0 holds.

Before showing the sign of
∂Nj

∂pi
, we remark that the change in pi affects Nj for all j ∈ D′ \ {i}

and the changes in Nk for k ∈ D′ \ {i, j} have feedback effects on Nj as well which, however, are

bounded; i.e., their sum is smaller in magnitude than the effect of pi on Nj , given Assumption 1 and

since sides are mutually exclusive (so each end-user appears at most on one side on the platform).

Hence, to show the sign of
∂Nj

∂pi
, we abstract from these higher order effects whereby changes in Nk

for k ∈ D′ \ {i, j} (due to the change in pi) lead again to changes in Nj .

The number of side-j end-users in equilibrium is given by (5). Taking the derivative w.r.t. pi yields

∂Nj

∂pi
=

network effect from PCj︷ ︸︸ ︷
∂ϕj(·)
∂pi

fj(vj)
∏

k∈D′\{j}

Fk

(
vj − ϕk(N-k) + pk − pj + ϕj(N-j)

)
+

∫ 1

pj−ϕj(N-j)
fj(vj)

∂

∂pi

∏
k∈D′\{j}

Fk

(
vj − ϕk(N-k) + pk − pj + ϕj(N-j)

)
dvj︸ ︷︷ ︸

network effect from ICCjk for all k∈D′\{j}

.

(A.11)

Solving for the partial derivative in the second line of (A.11) yields

∂

∂pi

∏
k∈D′\{j}

Fk

(
vj − ϕk(N-k) + pk − pj + ϕj(N-j)

)
=

∑
k∈D′\{j}

∂Fk(·)
∂pi

∏
l∈D′\{k,j}

Fl(·)
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Focusing on the effect with respect to i and, as discussed above, abstracting from higher order

effects through ICCjk for k ∈ D′ \ {i, j}, we obtain the following expression,

∂Fi(·)
∂pi

∏
k∈D′\{i,j}

Fk(·) =
(
1− ∂ϕi(·)

∂pi
+
∂ϕj(·)
∂pi

)
fi(·)

∏
k∈D′\{i,j}

Fk(·).

Let X := fj(vj)
∏

k∈D′\{j} Fk

(
vj − ϕk(N-k) + pk − pj + ϕj(N-j)

)
and note that X ∈ (0, 1). Then,

replacing X and the partial derivative in (A.11), and applying the Fubini/Tonelli theorem yields

∂Nj

∂pi
=

(
∂ϕj(·)
∂pi

)
X +

(
1− ∂ϕi(·)

∂pi
+
∂ϕj(·)
∂pi

)∫ 1

pj−ϕj(N-j)
fj(vj)fi(·)

∏
k∈D′\{i,j}

Fk(·)dvj .

Now replace Y :=
∫ 1
pj−ϕj(N-j)

fj(vj)fi(·)
∏

k∈D′\{i,j} Fk(·)dvj , note that Y ∈ (0, 1), and simplify:

∂Nj

∂pi
=
∂ϕj(·)
∂pi

(X + Y ) +

(
1− ∂ϕi(·)

∂pi

)
Y. (A.12)

The second term on the RHS of (A.12) captures end-users switching from side i to side j after pi

increases; this term is positive since ∂ϕi(·)
∂pi

∈ (−1, 1), as shown above in the first part of the proof.

Regarding the first term on the RHS of (A.12) (the network effect), as also follows from above,

∂ϕj(·)
∂pi

∈ (−1, 1) and this derivative is negative if side i exerts positive cross-group externalities on

side j, while it is positive if there are congestion effects. Moreover, (X + Y ) ∈ (0, 1) since sides are

mutually exclusive. Therefore, summing up the two terms on the RHS of (A.12), under congestion,

the cross-price derivative is strictly positive, while under positive cross-group externalities, the

negative network effect is compensated by the positive switching-side effect, and the cross-price

derivative is positive if
(
1− ∂ϕi(·)

∂pi

)
Y >

∣∣∣∂ϕj(·)
∂pi

∣∣∣(X + Y ), or
(
1− ∂ϕi(·)

∂pi
−
∣∣∣∂ϕj(·)

∂pi

∣∣∣)Y >
∣∣∣∂ϕj(·)

∂pi

∣∣∣X,

and negative otherwise.

Proof of Proposition 6. If all platforms are multi-homing, there are neither switching-platform

effects nor switching-side-and-platform effects; that is, λstij = 0 for all i, j ∈ D and for all s, t ∈ N ,

s ̸= t. Consequently, Λst is a null matrix, for all s, t ∈ N , s ̸= t. Therefore, markups are given by

µs = (Λs ⊙Θs)−1Es for all s ∈ N , which are identical to the markups in the pre-merger case.

Proof of Lemma 2. If a subset of the merged platforms, N ′ ⊆ N , are single-homing and in which

all sides are non-mutually exclusive, then there are switching-platform effects (by Proposition 4),
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but there are no switching-side-and-platform effects. That is, for all s, t ∈ N ′, s ̸= t, it holds, (i)

λstii > 0 for all i ∈ D; while (ii) λstij = 0 for all j ∈ D, i ̸= j. Therefore, Λst ⊙ Θst is a diagonal

matrix. This matrix is non-positive since λstii > 0, as follows from Proposition 4. Finally, for all

other platforms s, t ∈ N \ N ′ (i.e., those that are not single-homing), there are neither switching-

platform effects nor switching-side-and-platform effects. That is, λstij = 0 for all i, j ∈ D and for all

s, t ∈ N \ N ′, s ̸= t and, consequently, the corresponding Λst matrices are null.

Proof of Proposition 7. From the proof of Lemma 2, it follows that λstij = 0 for all i, j ∈ D,

i ̸= j, and for all s, t ∈ N ′, s ̸= t. Moreover, by Proposition 4, λstii > 0 for all i ∈ D and for all

s, t ∈ N , s ̸= t. Thus, after incorporating all pre-merger optimal prices in the RHS of (12), this

expression becomes

(psi − csi )

psi
=

1

|εsi |
+

∑
j∈D\{i}

λsij
(p̂sj − csj)

p̂si
+

∑
t∈N ′\{s}

λstii
(p̂ti − cti)

p̂si
. (A.13)

Therefore, relative to the pre-merger case given by (8), the last term on the RHS of (A.13) addi-

tionally appears post-merger. Hence, the sign of this last term determines whether the markup of

platform s ∈ N ′ on side i ∈ D increases or decreases after the merger. If (p̂ti − cti) > 0 for all i ∈ D

and for all t ∈ N ′, s ̸= t (which unambiguously occurs if there are congestion effects), then this

additional term is unambiguously positive. However, if (p̂ti − cti) < 0 for some i ∈ D and t ∈ N ′,

s ̸= t (which only may occur if there are positive cross-group externalities), then this additional

term can be either positive or negative.

Proof of Lemma 3. If a subset of sides D′ ⊆ D of the merged platforms are mutually exclusive,

and a subset of the merged platforms N ′ ⊆ N are single-homing, then there are both switching-

platform effects (by Proposition 4) and switching-side-and-platform effects (by Proposition 5). That

is, for all s, t ∈ N ′, s ̸= t, it holds, (i) λstii > 0 for all i ∈ D, and (ii) λstij > 0 for all i, j ∈ D′, i ̸= j.

Therefore, Λst ⊙Θst is non-positive for all s, t ∈ N ′, s ̸= t. Moreover, since λstij > 0 for all i, j ∈ D′,

i ̸= j, and for all s, t ∈ N ′, s ̸= t, some of the off-diagonal elements in Λst are strictly negative and,

consequently, Λst⊙Θst is non-diagonal. Finally, for all other platforms s, t ∈ N \N ′ (i.e., those that

are not single-homing), there are neither switching-platform effects nor switching-side-and-platform

effects. That is, λstij = 0 for all i, j ∈ D and for all s, t ∈ N \ N ′, s ̸= t and, consequently, the

corresponding Λst matrices are null.
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Proof of Proposition 8. From the proof of Lemma 3, it follows that for all s, t ∈ N ′, s ̸= t,

(i) λstii > 0 for all i ∈ D, and (ii) λstij > 0 for all i, j ∈ D′, i ̸= j. Then, after incorporating all

pre-merger optimal prices in the RHS of (12), this expression becomes

(psi − csi )

psi
=

1

|εsi |
+

∑
j∈D\{i}

λsij
(p̂sj − csj)

p̂si
+

∑
t∈N ′\{s}

λstii (p̂ti − cti)

p̂si
+

∑
j∈D′\{i}

λstij
(p̂tj − ctj)

p̂si

 . (A.14)

Therefore, relative to the pre-merger case given by (8), the last term on the RHS of (A.14) (i.e.,

the whole summation in parenthesis) additionally appears post-merger. Hence, the sign of this last

term determines whether the markup of platform s ∈ N ′ on side i ∈ D′ increases or decreases after

the merger. If (p̂ti − cti) > 0 for all i ∈ D and for all t ∈ N ′, t ̸= s (which unambiguously occur if

λtij ≥ 0 for all i, j ∈ D, i ̸= j), then this additional term is unambiguously positive. However, if

(p̂ti− cti) < 0 for some i ∈ D and t ∈ N ′, t ̸= s (which only may occur in all other cases not included

in the previous condition), then this additional term can be either positive or negative.
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Appendix B: Model extensions (for online publication)

B.1 Partial or no double-counting with multi-homing platforms

In Section 3, we characterize the demand for sides assuming that end-users on one side, say, side i,

equally value all those on another side, say, side j, on the same platform. However, as discussed by

some authors (Bakos and Halaburda, 2020), this assumption might not always be appropriate in

the context of multi-homing platforms. For example, buyers on e-commerce platforms benefit from

viewing a certain product on one platform, but viewing the same product on another does not add

extra value for them. Other authors note that this also applies to media markets: for advertisers,

media end-users that can be reached through a single outlet are much more valuable than those

that can be reached through multiple ones (Ambrus et al., 2016; Anderson et al., 2018). Thus, for

the sake of completeness, in this appendix, we extend our model to accommodate this alternative

assumption.

Recall that, for multi-homing platforms and non-mutually exclusive sides, the demand function for

side i on platform q is given by (2), while (4) characterizes the demand for that side and platform

under mutually exclusive sides. Note that (4) is similar to (2) but augmented by a term that

captures the ICC on the RHS. In our analysis, we primarily focus on the former, although similar

conclusions apply to the latter. By the law of total probability, the previous expression can be

decomposed as

N q
i (·) = pr

(
vqi ≥ pqi − ϕqi (·) ∩ v

r
i < pri − ϕri (·)

)︸ ︷︷ ︸
single-homing end-users (N̂q

i )

+
(
vqi ≥ pqi − ϕqi (·) ∩ v

r
i ≥ pri − ϕri (·)

)︸ ︷︷ ︸
multi-homing end-users (N̄q

i )

for all i ∈ D and all q, r ∈ M, q ̸= r. That is, the total number of end-users on side i on platform q

is equal to the sum of two groups: end-users who join this side and platform but do not join side i

on any other platform r (single-homers), and those who also join side i on some other platform r

(multi-homers). Let us denote the former set of end-users by N̂ q
i and the latter one by N̄ q

i .

Under the partial or no double-counting assumption, end-users fully value the presence of those

on other sides on the same platform who single-home, giving little (or no) value to those who

multi-home. The network effect in this case is expressed as ϕqi (N̂
q
-i + σq

-i · N̄
q
-i), where N̂q

-i (resp.,

N̄q
-i) is the vector of single-homing (resp., multi-homing) end-users on all sides other than i on
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platform q. The vector σq
-i contains (d− 1) parameters in the interval [0, 1), where each parameter,

like σqj , can be interpreted either as the probability with which end-users on side i interact with

multi-homing end-users on side j on platform q for the first time or as a parameter that captures

the lower cross-group network externality associated with multi-homing end-users on side j. This

setup also accommodates the extreme case in which end-users on other sides shared with more than

one platform have no market value, i.e., σqj = 0, as proposed by Anderson et al. (2018).

In this alternative case, the derivatives of N q
i and N q

j with respect to pqi differ slightly from those

obtained in Sections 4.3.1 and 4.3.2. These derivatives, which can be formally obtained using the

modified version of (3) that incorporate the new network effect indicated above, are as follows:

∂N q
i

∂pqi
= − f qi

(
pqi − ϕqi (N

q
-i)
)︸ ︷︷ ︸

price effect

+ f qi
(
pqi − ϕqi (N

q
-i)
) [∂ϕqi (N̂q

-i)

∂pqi
+ σq

-i ·
ϕqi (N̄

q
-i)

∂pqi

]
︸ ︷︷ ︸

network effect

, (B.1)

∂N q
j

∂pqi
= f qj

(
pqj − ϕqj(N

q
-j)
) [∂ϕqj(N̂q

-j)

∂pqi
+ σq

-j ·
ϕqj(N̄

q
-j)

∂pqi

]
︸ ︷︷ ︸

network effect

. (B.2)

These derivatives differ from (9) and (10) in Section 4.3.1 only in the network effect, which now

depends not only on the total number of end-users on other sides on platform q but also on the

composition of these end-users (i.e., on how many of them are single-homers and multi-homers,

respectively). The impact that this new expression characterizing the network effect has on our

analysis depends on the type of market solution we encounter.

In case all end-users multi-home, (B.2) boils down to
∂Nq

j

∂pqi
= f qj

(
pqj−ϕ

q
j(N

q
-j)
) [

σq
-j ·

ϕq
j (N̄

q
-j)

∂pqi

]
. In this

case, the network effect plays a less prominent role relative to that obtained in Sections 4.3.1 and

4.3.2, as its magnitude is significantly reduced by σq
-i. In fact, in the limiting case in which σq

-i → 0,

the network effect vanishes. These results have different implications (but similar conclusions) in

the two cases that we consider in Sections 4.3.1 and 4.3.2.

First, in the case of platforms with non-mutually exclusive sides—as in Section 4.3.1—, if the

network effect vanishes, then the cross-price derivative becomes small. In this scenario, optimal

pricing, as characterized by (7), closely resembles the usual Lerner pricing formula for a standard

monopolist, as the third element on the LHS of (7) converges to zero; that is, optimal pricing
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depends exclusively on the value associated with single-homing end-users. Therefore, as noted in

Bakos and Halaburda (2020), cross-subsidization—where different sides of a platform are interde-

pendent through the network effect—does not occur. Importantly, since the cross-price derivative

is relatively close to zero, so is λqij .

Second, if platforms’ sides are mutually exclusive and cross-group externalities are positive, as

discussed in Section 4.3.2, increasing pqi has two countervailing effects on side j. Namely, it decreases

participation on that side (due to the network effect), but it also increases it (due to the switching-

side effect). In the limiting case where σq
-i → 0, the network effect vanishes, and the switching-side

effect is more likely to dominate the network effect. In this scenario, the cross-price derivative will

likely be unambiguously positive (and so is λqij), resulting in an optimal markup greater than the

usual Lerner index, even in the absence of congestion. This optimal pricing rule depends mostly

on the value associated to single-homing end-users and, to a lesser degree, on the marginal value

associated to multi-homers—given by the extent to which some of them switch sides in response to a

marginal change in price. This observation is consistent with the so-called “principle of incremental

pricing” (Anderson et al., 2018). Obviously, cross-subsidization cannot occur in this case.

Finally, in case there is full market participation with both single-homing and multi-homing end-

users, and also in case there is less than full participation—implying the coexistence of both types

of end-users due to the full support and continuity of the distribution of valuations—the outcomes

are similar. These cases represent intermediate cases of the previous ones, wherein the network

effect is attenuated as the presence of multi-homers increases. It becomes akin to what is found in

Sections 4.3.1 and 4.3.2 as the number of multi-homing end-users decreases.

B.2 Random demand

In our main analysis, every end-user on the platform is “always” interacting with the end-users on

the other sides. However, there are cases where an end-user who joins the platform is not always

active, which is they are not always interacting with end-users on the other sides. Consider, for

example, an Uber driver. She does not offer her services 24/7, but rather decides when to be active;

sometimes she may decide to earn money as an Uber driver and sometimes she may enjoy her free

time.

In order to capture this, suppose that an end-user who joins platform q’s side i is expected to be
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active on side i with probability θqi ∈ (0, 1). With the complementary probability 1 − θqi she is

not (even though she joined that side and paid the corresponding fee pqi ). This probability can

be interpreted as the ratio at which end-users are usually active or as the quantity below 1 that

they exchange on the platform. While intuitively both cases have slightly different interpretations,

formally they are equivalent. Correspondingly, an end-user is active on platform q’s side i with

probability θqi ∈ (0, 1). These ex-ante probabilities are resolved before an end-user interacts on the

platform. In this case, an end-user that joins side i on platform q obtains a utility of

uqi := θqi
[
vqi + ϕqi (θ

q
-i ·N

q
-i)
]
− pqi , (B.3)

where θq
-i is the vector of probabilities of being active on all sides other than i on platform q.

The utility a representative end-user obtains upon joining side i is first multiplied by the probability

with which she is expected to be active on side i on platform q. If she is active, then, as before,

she obtains vqi in addition to the network effect multiplied by the expected number of end-users

she encounters on the other sides. Finally, the corresponding fee to join a side is paid for sure by

the end-user (even if she interacts less than all the time or trades less than one unit of the good or

service on the platform).

Now we introduce three changes of variables that will simplify our analysis:

1. Define a new random variable for any end-user i: v̌qi = θqi v
q
i .

2. Define a new random variable Ňq
-i = θq

-i ·N
q
-i.

3. Finally, define a new random variable ϕ̌qi (Ň
q
-i) = θqi

[
ϕqi (θ

q
-i · N

q
-i)
]
(since end-users’ demand

is random, their expected cross-group externality is also a random variable with expected

value).

Therefore, the expression that captures the utility for an end-user becomes

uqi := v̌qi + ϕ̌qi (Ň
q
-i)− pqi . (B.4)

Under the multi-homing assumption, if platforms’ sides are non-mutually exclusive, then the par-
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ticipation constraint that yields sides’ demand is as follows

(PCq
i ) v̌qi + ϕ̌qi (Ň

q
-i)− pqi ≥ 0,

and, if platforms’ sides i and j are mutually exclusive for i, j ∈ D′ ⊆ D, then the demands are

characterized additionally by the following incentive compatibility constraints

(ICCq
i,j) v̌qi + ϕ̌qi (Ň

q
-i)− pqi ≥ v̌qj + ϕ̌qj(Ň

q
-j)− pqj .

These conditions resemble the corresponding ones provided in Section 3, and similar ICCs can be

obtained for the case in which platforms are single-homing. Therefore, all results obtained above

hold here as well after applying the change of variables, although all variables are “smaller” since

they are random.
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