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On Climate Fat Tails and Politics 
 
 

Abstract 
 
Transitioning the economy from one that relies on fossil fuels to one that emphasizes renewable 
energy sources will have important implications for the pattern of natural resource use. Such a 
transition depends on government policies. As elected politicians have an incentive to weigh the 
spatially heterogeneous costs and benefits on their constituents from taking political action, one 
might hope that particularly unusual climate events might provide an impetus to increased action. 
We undertake an analysis using a variety of data sources. We first investigate the stochastic 
process governing temperature anomalies allowing for “fat tails”, which can arise either from a 
“jump” diffusion process or a time-varying volatility process. Using the parameter estimates from 
this first stage, combined with demographic and socio-economic variables, we analyze features 
promoting support for policies addressing climate change. Several of the parameter estimates that 
capture fat tails in temperature anomalies play a statistically important relation. 
JEL-Codes: Q200, D800, L150. 
Keywords: climate policy, temperature anomalies, fat tails, politics. 
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1 Introduction

Perhaps the most pressing issue currently facing environmental economists is the potential for

large-scale damages arising from climate change. Reducing greenhouse gas emissions and other

pollutants is crucial if society is to successfully address this challenge; this will almost surely

necessitate substituting away from traditional fossil-fuel based energy. Such adaptations will have

significant implications for the pattern of natural resource use, including reductions in the demand

for fossil fuels (petroleum for motor vehicle transport, coal and natural gas for power generation)

and increases in the demand for resources associated with renewable energy generation (“rare

earth” minerals that are required for the production of wind turbines, solar panels and batteries for

electric vehicles). As a result, virtually any climate policy society might consider going forward

will be associated with important effects on natural resources.

An emerging literature has examined the factors influencing public opinion as to the existence

of anthropogenic climate change.1 We discuss elements of this literature below; one main line of

inquiry is the examination of the relation between climate-related events, such as periods of hotter

than normal weather, and individuals’ beliefs. One conjecture implied by this line of inquiry is that

elected government officials may be more likely to take action when they perceive the electorate

is more concerned about climate change. Somewhat surprisingly, though, relatively little attention

has been directed to the relation between climate-related events and politicians’ behavior. A key

goal of our analysis is to address this lacuna. To this end, we examine how information related to

climate events influences behavior of United States (US) representatives.

The connection between our line of inquiry and the existing literature on citizens’ climate-

1See Howe et al. (2019) for a detailed discussion of this literature.
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related beliefs is inspired by Peltzman (1984), wherein politicians weigh the costs and benefits of

taking action. There is good reason to believe these benefits and costs are heterogeneous across

the United States (US). One important benefit of policy intervention is the potential mitigation

of the adverse effects from climate change, which differ across space (Hsiang et al., 2017). For

example, to the extent that damages are linked to adverse impacts on agriculture they will depend

on the spatial distribution of crops, as well as the vulnerability of different crops; in this regard,

rural areas are more exposed. On the other hand, urban areas have a larger population base that

might suffer from climate change. The costs of adopting a climate policy such as a carbon tax

or a cap-and-trade program seem likely to fall most heavily on those jurisdictions that rely more

on fossil fuels to generate electricity, or who have industrial activity that generates emissions, and

there is considerable variation across the country with respect to such reliance (Cragg et al., 2013).

To address these spatial considerations, we analyze climate data from a large, longitudinal data

set which we then process to obtain monthly observations for each US state over the period from

1958 to 2020.2 We also gather data on precipitation and droughts, two other measures of climate

events that have been considered in the literature mentioned above. For both of these variables we

construct the difference between the particular observation and a historical comparator (thereby

mimicking the climate anomaly variable for temperatures).3 These data are then combined with

2The source data provides measures of the “temperature anomaly” – the difference between temperature and an
historical comparator – for each of several hundred geographic locations (called “stations”) along with information
allowing us to identify the state in which the station is located, for each month during this 62 year period. Accordingly,
there are over one million data points on temperature anomalies. Using “temperature anomalies” can be interpreted as
taking into account patterns that would be likely to occur irrespective of a changing climate.

3Monthly observations on precipitation are also available at hundreds of stations for the period from 1926 to 2020,
along with information allowing us to identify the state in which the station is located. These data are available for
all US states except Hawaii, yielding over an additional million data points. For Hawaii we use information from
the US National Weather Service (NWS) for four stations; here there are monthly observations for the 31 year period
from 1990 to 2020, also adding thousands of additional data points. We measure drought levels using the “Drought
Severity and Coverage Index (DSCI),” which consists of monthly observations for the 21 year period from 2000 -
2020, yielding a total of just over 12,000 data points. The U.S. Drought Monitor is jointly produced by the National
Drought Mitigation Center at the University of Nebraska-Lincoln, the United States Department of Agriculture, and
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information on political behavior, taken from multiple annual reports by the League of Conser-

vation Voters (LCV); this source produces an annual scoresheet for all US representatives, which

allows us to construct a variable reflecting average annual environmentally-facing performance in

each state. We also include demographic and socio-economic information relevant to each state,

across time. Combining these two sources, along with information on relevant demographic fac-

tors, allows us to preform an analysis of the dynamic aspects of political economy factors as they

influence behavior related to climate policy.

The database we obtain in this manner contains several characteristics that align with a concep-

tualization of “big data” as a socio-culturally evolving concept (Favaretto et al., 2020) that includes

“large amounts of different types of data produced from various types of sources, such as people,

machines, or sensors” (European Commission, Directorate-General for Justice and Consumers,

2018). Such a definition would extend beyond the traditional “3V”s – volume, velocity, and va-

riety – to include such attributes as variability, value, portentous and predictive. Our goal in this

paper is to use our “big data” to investigate patterns in political behavior related to climate policy,

which – as we noted above – has particular implications for natural resource use. In this way, our

investigation applies big data to a particularly pressing use of natural resources in the future related

to policies designed to address climate change.

2 Literature review

Our investigation touches on multiple strands of the literature: climate patterns and their influence

on peoples’ expectations; modeling stochastic processes involving abrupt changes or time-varying

the National Oceanic and Atmospheric Administration.
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volatility; inferring the damages induced by increased temperatures; and the political economy

implications of climate policy related to heterogeneous costs from climate change or policy inter-

ventions.

We adopt an interpretation of “climate” taken from the literature: that it is a spatially-specific

distribution of weather outcomes for a given location; “weather” then refers to a particular draw

from that probability distribution over an interval of time (Hsiang, 2016; Deryugina and Hsiang,

2017; Acevedo et al., 2020; Kolstad and Moore, 2020). Climate change can then be thought of

as a shift in the distribution of outcomes, potentially increasing the likelihood of extreme out-

comes (Hansen et al., 2012). This interpretation highlights the expository value of focusing on the

potential for dramatic changes, which we refer to as “jumps,” and for time-varying volatility.

Such a focus echoes a robust literature regarding the evolution of energy prices, many of which

are relevant to climate policy. Some of the work in this strand of the literature focuses on volatility

concerns. For example, Pindyck (2004) studies volatility in natural gas and crude oil price returns,

using a “Generalized Autoregressive Conditional Heteroscedasticity” (GARCH) process. Other

analysts have allowed for jumps in a variety of energy prices (Chevallier and Ielpo, 2014). Exam-

ples include oil (Askari and Krichene, 2008; Gronwald, 2012; Wilmot and Mason, 2013), natural

gas (Benth et al., 2008; Mason and Wilmot, 2014), and coal (Wilmot, 2016). The potential pres-

ence of jumps in various energy prices can induce jumps in electricity prices (Benth et al., 2008)

and carbon prices (Alberola et al., 2008; Chevallier and Sévi, 2014; Hammoudeh et al., 2014).

Information from changing weather patterns might influence a typical citizen’s thought process,

which Hsiang (2016) refers to as the “belief effect.” Several papers use a survey methodology to

evaluate individuals’ beliefs, with an eye towards linking stated beliefs about climate change with

weather effects. One group of papers focus on smaller geographic areas such as specific states
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(Borick and Rabe, 2010; Hamilton and Stampone, 2013; Villar and Krosnick, 2010) while a second

group uses national-level surveys (Borick and Rabe, 2010; Brody et al., 2008; Brooks et al., 2014;

Brulle et al., 2012; Donner and McDaniels, 2013; Egan and Mullin, 2012; Howe et al., 2015; Myers

et al., 2013). Some analyses use data drawn from phone surveys (Brody et al., 2008; Brooks et al.,

2014; Hamilton and Stampone, 2013; Howe et al., 2015; Krosnick et al., 2006) while others use

surveys executed by large, well-know national organizations (Brulle et al., 2012; Deryugina, 2013;

Donner and McDaniels, 2013; Egan and Mullin, 2012; Howe et al., 2015; Konisky et al., 2016) or

internet-based surveys (Howe et al., 2015; Konisky et al., 2016; Myers et al., 2013; Zaval et al.,

2014). Other papers use surveys based on countries outside of North America (e.g., Gärtner and

Schoen (2021), who use a survey of Germans, and Lee et al. (2015), who use survey data from

multiple countries), or meta-analysis (Hornsey et al., 2016). Some studies use different samples

obtained at multiple points in time (Brooks et al., 2014; Brulle et al., 2012; Egan and Mullin,

2012; Konisky et al., 2016). A handful of analyses use data where respondents were surveyed

at multiple points in time (Myers et al., 2013; Palm et al., 2017), yielding a panel dataset. The

list of papers further falls into two sets: those that focus on local- or state-effects from climate

events (Brody et al., 2008; Brooks et al., 2014; Egan and Mullin, 2012; Gärtner and Schoen, 2021;

Kaufmann et al., 2017; Konisky et al., 2016; Krosnick et al., 2006; Myers et al., 2013; Palm et al.,

2017; Zaval et al., 2014) and those that use information at a geographically larger, such as national,

scale (Borick and Rabe, 2010; Brulle et al., 2012; Deryugina, 2013; Donner and McDaniels, 2013;

Krosnick et al., 2006). Most papers in this strand of the literature focus on the effect of warmer

temperatures, though Brooks et al. (2014), Deryugina (2013) and Hamilton and Stampone (2013)

ask whether either cooler or warmer anomalies matter. Most of these papers allow for socio-

economic / demographic effects such as age, education, race, and gender, often finding that such
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effects matter, though political ideology or affiliation seems to play at least as important a role

(e.g., Hornsey et al. (2016)). In general, opinions exhibit substantial geographic heterogeneity.4

On balance, mixed messages emerge from this set of papers. On the one hand, several papers

find the potential for either: greater climate change concern, belief that human-caused climate

change is happening, or support for climate policies to result from changes in local temperatures

(Brooks et al., 2014; Deryugina, 2013; Donner and McDaniels, 2013; Egan and Mullin, 2012;

Hamilton and Stampone, 2013; Kaufmann et al., 2017; Krosnick et al., 2006; Lee et al., 2015;

Zaval et al., 2014) or extreme weather events (Konisky et al., 2016). But Brulle et al. (2012) offer

a competing view, arguing against such relationships; Gärtner and Schoen (2021) also find evi-

dence that local events are unimportant – though they admit that the personal experience with local

weather events may have played a larger role “in a period or region with more extreme weather

events of longer duration with more tangible personal consequences” (p. 16). There are mixed

results as well regarding the connection between longer-term temperatures or temperature trends

and public opinion: Deryugina (2013) and Donner and McDaniels (2013) find such a relationship

but Kaufmann et al. (2017) and Palm et al. (2017) do not.

Deryugina’s paper provides evidence directly relevant to our inquiry; in particular, she finds that

observed temperatures that are sufficiently far from historical averages have a statistically signifi-

cant impact on beliefs – what one might call “tail events.”5 Hansen et al. (2012) provides evidence

that highlights the potential importance of tail events. These authors show that the distribution

4For example, (Howe et al., 2015, p. 599) state “public opinion about global warming exhibits substantial variation
between and within regions, states and cities.”

5In particular, she finds that abnormally cold days erode beliefs in global warming more than abnormally hot days
enhance beliefs. Moreover, there is reason to expect that longer periods of abnormal temperatures will have a greater
effect than shorter periods. The potential importance of tail events underscores the role of “fat tails” – which refers to
a probabilistic distribution with a greater amount of weight placed on outliers, or events relatively far from the mean
Weitzman (2009a,b). The idea is closely related to the notion of excess kurtosis – probability distributions with values
of kurtosis (the fourth moment of the distribution) that exceed 3, the value associated with a Normal distribution.
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of temperature anomalies is not Gaussian: in a warming climate the distribution of temperature

anomalies will shift upward, with positive anomalies and heat events becoming more frequent.

This latter result points to the important potential for non-stationarity in temperature anomalies;

Kaufmann et al. (2017) also argue for non-stationarity. These results point to the need for a model

that corrects for non-stationarity, for example focusing on the percentage change in anomalies (as

we do). Furthermore, there is evidence that temperature anomalies6 are subject to considerable

spatial variation in kurtosis (the fourth moment of the distribution of anomalies), as indicated by

Figure 1. In that figure, we show the average value of kurtosis for changes in temperature anoma-

lies from one month to the next, by US states; for all but four US states, the kurtosis exceeds 3 –

which as we noted in footnote 5 is closely related to the concept of fat tails.

While much of this strand of the literature focuses on the role played by temperatures, some

studies use data related to precipitation. These studies commonly find little to no relation to climate

opinions (Hamilton and Stampone, 2013) – though (Konisky et al., 2016, p. 3) argue that “extreme

weather events predict climate opinion.” Offering an alternative to precipitation, Brulle et al. (2012)

evaluates the potential role played by weather extremes (for example, as measured by the “Climate

Extremes Index”), but fails to find a relation to climate opinions.

Changes in climate can also affect economic production through its influence on weather real-

izations, which can then impact economic outcomes. One immediate way this “indirect effect” –

to use the terminology in Hsiang (2016) – can manifest is via impacts on agriculture (Schlenker,

2010); it can also occur in a range of other areas including mortality, crime and labor productivity

(Hsiang et al., 2017). Climate impacts can vary substantially between regions, even in extremely

6“Temperature anomaly” refers to the difference between current temperatures and an historical comparator. The
figure is based on data available at https://www.ncei.noaa.gov/data/us-historical-climatology-network/
2.5/access/, in the “tavg-raw” subdirectory; the historical baseline is taken as the January 1951 - December 1980
average. Using these data, one may calculate the kurtosis for month-on-month changes in temperature anomalies.
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urbanized contexts (Deryugina and Hsiang, 2017).7 Effects from temperature variability can also

affect the profitability of the US corporate sector; these effects can vary substantially across time

and space (Bortolan et al., 2022).

The literature discussed above suggests that the potential for abnormal changes in temperatures

or prolonged periods of unusual temperatures – either of which can induce “fat tails” in patterns

of temperature anomalies – might thereby exert an influence towards increased political activism.

But while much of the work summarized above examines the effect of single events, there is

good reason to expect persistent climate changes to occur over the course of many years. This

observation raises two points: first, that there is value in using data on unusual climate events over

the course of several years. The approach we take – analyzing the potential for fat tails over the

course of several hundreds of months fits this characterization. Second, the potential for elected

officials’ political behavior to also adjust over time, perhaps due to changes in key socio-economic

/ demographic variables, also suggests the need for a lengthy time series of observations. The data

we use to analyze political behavior, which uses data on voting patterns over twenty years, fits this

characterization as well.

The strand of the literature discussed above suggests a potential for elections to increase the

tendency for political intervention to address climate change. To the extent that citizens become

more inclined to believe in anthropogenic climate change, or that business interests perceive that

they are at increasing risk of adverse consequences from climate change, pressure on elected of-

ficials is likely to mount. However, the ‘political’ effects measured by papers in the literature

we discussed above generally arise via survey responses, not elections; the difference can matter

7One can think of adverse effects arising through uncertainty over future climatic developments: “Extreme tem-
perature oscillations, if wide or frequent enough, can influence decision making by raising attention towards the future
repercussions of climate change” (Natoli, 2022, p. 6).
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(Vossler et al., 2003). One way to resolve this concern is to focus on political behavior, as op-

posed to citizen beliefs. A main goal in our paper is to bring together the themes in the literature

discussed above, with a focus on the potential for abnormally large changes in temperature (either

larger or smaller) to exert an influence on political behavior.

In his seminal paper, Peltzman (1984) suggests that politician’s actions will reflect a weigh-

ing of costs and benefits to their constituency. To the extent that unusual events change citizens’

perspectives (belief effect) or yield adverse productivity impacts (indirect effect), one can easily

imagine such events ultimately influencing elected representatives’ interest in considering climate

policies. Indeed, these elements are likely to influence citizens’ perceptions of the cost of inac-

tivity, i.e. the benefits of regulatory intervention. Weighing against these factors is the notion that

there will be costs from regulatory intervention, and that these costs will be heterogeneous across

states. Indeed, heterogeneous fossil-fuel carbon emissions could potentially explain variation in

politicians’ voting patterns (Cragg et al., 2013). This suggests by extension that reliance on fossil-

fuel based energy usage, for example by their dependence on coal for electricity generation, can

play a meaningful role.8

3 Background

Our interest lies in examining the relation between the stochastic process governing temperature

anomalies, particularly as those processes include the potential for fat tails, and political behavior

of elected representatives. In this section we sketch out the empirical models we employ for these

inquiries; some of the more technical aspects of the modeling are relegated to the Appendix.

8That said, jurisdictions with a greater reliance on coal-fired electricity generation are also likely to have greater
amounts of local air pollutants, which could motivate a greater degree of regulatory intervention.

9



3.1 Econometric framework: fat tails

We start by describing the model we use to analyze the stochastic processes characterizing temper-

ature anomalies in each of the 50 US states. The foundation for this model is a Brownian motion

process with drift:

dxt = µdt +σdzt , (1)

where dzt represents an increment of a Wiener process, µ is the deterministic trend, and σ is

the square root of the variance of the stochastic process, and xt is the variable of interest (here,

temperature anomalies in a particular state). We refer to this model as “pure diffusion” (PD) in the

pursuant discussion. This model has been analyzed in a wide range of applications, largely owing

to its relative ease of application. However, there are reasons to think that a more complicated

model – one allowing for fat tails – is appropriate for describing the evolution of temperatures.9

Periods of abnormally high temperatures (sometimes referred to as heat waves), or abnormally cold

temperatures (e.g., polar vortex events), would be examples here, as would more extended periods

of “larger than usual” temperatures. The first class of epochs might reflect transitory events, while

the second class could reflect periods where the variance associated with temperature anomalies

becomes larger than historic norms. Addressing these types of events requires adjusting the PD

model by including elements that are consistent with fat tails.

To allow for spikes or jumps and time-varying volatility, we utilize the following framework.

Jumps enter into the model in the style of Merton (1976), by assuming month-on-month changes

9As we noted above, the concept of fat tails is closely related to kurtosis values exceeding 3 (the value of kurtosis
for a Normal distribution). As illustrated in Figure 1, all but four US states exhibit kurtosis levels above 3. Weitzman
(2009b) emphasizes the potential importance of fat tails in variables measuring the climate, such as temperatures.
As we discuss later in this section, fat tails can be explained by both a jump process and a process that captures
time-varying volatility such as the GARCH process.
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in temperature anomalies fall into one of two types: The first type are ‘normal’ fluctuations, rep-

resented through the PD process, while the second type are ‘abnormal’ transitory shocks, modeled

by a Poisson process. The key parameter is such a process is the jump intensity, λ, which describes

the mean number of shocks occurring per unit of time; during an interval of time of length dt, the

probability of observing a jump is then λdt. We model the size of these jumps as independently

and normally distributed, with mean θ and variance δ2. Combining these two aspects of the jump

process into a term Jt , we can describe the mixed jump-diffusion (JD) process as

dxt = µ+σzt + Jt . (2)

An alternative explanation for the fat tails described above is that temperature anomalies follow

a time-varying error process. We capture this effect via the generalized autoregressive conditional

heteroskedastic (GARCH) framework. Under this approach, the variance component σ2 above is

replaced by a time-varying conditional variance term, ht :

ht ≡ Et−1(σ
2) = κ+α1(xt−1 −µ)2 +β1ht−1. (3)

Allowing for both jumps and time-varying volatility results in the combined GARCH jump-diffusion

(GJD) process:

dxt = µ+
√

ht
√

zt + Jt . (4)

Combining the aspects discussed above, one can express the log-likelihood function for the GJD

model as
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L(φφφ,x) =−T λ− T
2

ln(2π)+
T

∑
t=1

[
∞

∑
n=0

λn

n!
1√

ht +nδ2
exp(

−(xt −µ−nθ

2(ht +nθ2 )

]
, (5)

where x is the vector of observations on the variable of interest. The econometric problem is then

to maximize this likelihood function by choice of the parameter vector φφφ= (µ,κ,α,β,λ,θ,δ). Such

estimates are known to be consistent and invariant with asymptotically normal distributions of the

parameters. The GJD and PD models defined can be compared within this framework using the

log-likelihood statistic

LR = 2ln

(
L
(
φ̂φφ;x
)

L
(
φφφ∗;x

)) , (6)

where φ̂φφ represents the estimated parameter vector under a particular list of m restrictions and φφφ∗

represents the unrestricted parameter vector estimate. If the parameter restriction is valid LR will

be distributed as a Chi-square random variable with m degrees of freedom. In our application, the

test that the GJD model does not render a statistically important improvement over the PD model

corresponds to restricting the parameter vector by setting α = β = λ = θ = δ = 0, whence m = 5.10

3.2 Econometric framework: politician’s behavior

The next step in our analysis is to assess the implications of the GJD model for political behavior.

To this end we describe a regression model where the left-side variable, Yit , is a measure of the

voting behavior of politicians from state i in year t. The key explanatory variables of interest are

the state-specific parameters produced in the first part of the analysis: φ = (µ,κ,α,β,λ,θ,δ). Addi-

tional explanatory variables in this regression include a variety of demographic variables proposed

10Under this hypothesis, the variance would be constant; referring to eq. (3), that (constant) variance would coincide
with κ – which would therefore not be restricted to zero.
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in the extant literature, including: a state’s population, the fraction of the population that is white,

the fraction of the population that is over 65, and the population of the state that lives in an urban

area. We also include the state’s annual coal purchases for the purpose of generating electricity,

which we interpret as capturing the cost to that state associated with adopting some form of cli-

mate policy. This variable captures an effect that is similar to per-capita carbon dioxide emissions,

which has been used to capture heterogeneous costs of addressing climate change (Brody et al.,

2008; Lee et al., 2015). Finally, to address the pervasive finding in the literature that political pre-

disposition plays an important role in driving climate change beliefs (as discussed in Section 2),

we include the “Partisan Voting Index” produced by the Cook Political Report (as discussed below

in subsection 4.2). This collection of variables, which we denote by Xit, appears in each of the

regressions we report below. In some of the regressions we also include one or more variables

intended to reflect recent climate-related events; these variables are recent temperature anomalies,

recent precipitation anomalies, and recent drought anomalies (each using a historic baseline as the

comparator), as well as the square of each.11 The logic behind including variables from this last

set is that changing temperatures might only influence political behavior if they are “sufficiently

large,” which we interpret in terms of the underlying variation in the evolution of temperatures.12

We treat the data as a panel, with the cross-section elements corresponding to US states and the

time series element corresponding to calendar years from 2001 to 2020. The regression equation

for this part of the analysis is:

11The squared values allow for the potential that effects only become important for anomalies that differ substan-
tially from zero (Brooks et al., 2014; Deryugina, 2013).

12The idea here is that politicians disinclined to take action fall back on arguments such as “it’s always been hot
here” or ‘it’s always been rainy (or dry) here”, thereby explaining away temporary changes in any of these variables.
Such an argument seems less likely to be convince when the changes in question are large enough to be “noticeable”
to a typical citizen (Deryugina, 2013).
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Yit = ΠiXit +Γiφi +νt + eit , (7)

where i indexes states, t indexes years, Πi,Γi are parameters to be estimated, νt captures year-

specific effects and eit is an error term assumed to be mean zero and independent of the various re-

gressors.13 The hypothesis of interest in our analysis is that the set of coefficients (α,β,λ,θ,δ) = 0,

i.e. none of the parameters capturing potential fat tails in temperature anomalies exerts an influence

on observed political behavior; the alternative is that at least some of these parameters matter.

4 Data

In this section, we explore the publicly available data that we will bring to bear in our analysis.

The climate data we draw from is a large, longitudinal data set. As outlined below, this state-

level heterogeneous sample has undergone processing to obtain geographically-specific climate

anomaly variables. The political variable we employ is taken from the annual League of Conserva-

tion Voters’ (LCV) publications for years 2001 to 2020. We rely on scores for US representatives

as elections for these officials are the most frequently held – suggesting that these elected offi-

cials will be particularly mindful of their constituents’ opinions about the desirability of various

environmental regulations.

13An alternative here is to employ the two-stage process articulated in Phillips et al. (2005). Under that approach
one collects the residuals from a regression that omits the time-invariant regressors, such as φi, and then regresses the
residuals on φi. But one could equally well combine the two stages, folding the time-invariant regressors into the first
step in the analysis – which is our approach. Noting that the political index (PVI) and the demographic variables all
change slowly over time, we prefer to use random effects to capture idiosyncratic state effects.
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4.1 Climate data

We obtain data on the mean surface temperature anomalies from the U.S. National Oceanic and

Atmospheric Administration (NOAA), who provide information for hundreds of individual “sta-

tions”. The records allow us to identify the state in which each station is located; we use this infor-

mation to calculate average monthly state values for the period from 1958 to 2020.14 In addition,

we collected data on average monthly precipitation levels at each station, along with state-level

data on a drought index.15 For both precipitation and drought, we compared the monthly value to

a baseline, thereby deriving what we refer to as “anomalies” below.16

Summary statistics for the temperature anomaly data are presented in Table 1. These summary

statistics are listed for the full set of state-month combinations in column two; we also show the

smallest value in the sample for each of the summary statistics in column three, with the state

associated with that minimum value given in parentheses. In column four we list the largest value

in the sample for each statistic from column two, with the state associated with that maximum

value given in parentheses. These statistics reveal substantial variation across the sample, and

reinforce the image from Figure 1 showing the broad presence of fat tails (i.e., kurtosis in excess

of 3).
14These data on temperature are available at https://www.ncei.noaa.gov/data/

us-historical-climatology-network/2.5/access/, in the “tavg-raw” subdirectory. We use the full sam-
ple for the analysis based on subsection 3.1 and the subsample from 2001 - 2020 for the analysis based on
subsection 3.2.

15Precipitation levels, measured in inches per month, are available at https://www.ncei.noaa.gov/data/
nclimdiv-monthly/access/. We measure drought using the “Drought Severity and Coverage Index,” available
at https://droughtmonitor.unl.edu/DmData/DataDownload/DSCI.aspx.

16This terminology is intentionally parallel to the labeling of temperature anomalies. The baseline precipitation
values are given by the average precipitation levels over the 75 years prior to the start of our sample (i.e., the period
from 1926 to 2000), by calendar month. Because data on the drought index was only available for months in the
21st century we use the average value of the index for each calendar month over the period form 2000 to 2020 as the
baseline. In each case, the “anomaly” is given by the observed value in a particular month and year for a particular
state less the baseline value for that same month for that state.
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4.2 Political data

To obtain a variable that captures the average environmentally-based attitudes for each state in

each of the twenty years from 2001 to 2020 we rely on LCV scores for each year from 2001 to

2020; this annually reported measure reflects each US representative’s votes on key environmental

legislation (Cragg et al., 2013). To the extent that these scores reflect politicians’ attitudes towards

protecting the environment they provide information about willingness to consider important poli-

cies, including steps that might be taken to address climate change. We then calculate the average

annual LCV score across all representatives for every state. In the political regressions we discuss

below, we match these data to the temperature anomaly data (averaged across the twelve months

in each calendar year).

A number of the papers we discussed in Section 2 argue that political disposition is an im-

portant variable for explaining individuals’ beliefs about climate change. To the extent that such

beliefs among the electorate of a state might impact their voting patterns, one might imagine that

these beliefs could play an important role in driving politicians’ voting behavior. While one might

entertain the view that these patterns are relatively constant over time, and as such are built into any

idiosyncratic effects governing a state’s elected officials’ voting behavior, a compelling alternative

would be to collect data that could capture each states’ pre-existing political philosophies. To this

end, we obtained the “Partisan Voting Index” (PVI), produced by the Cook Political Report. This

index compares the tendencies of each U.S. congressional district to the nation as a whole, based

on how that district voted in the previous two presidential elections.17 The index provides values of

the form “D+x” or “R+y,” with the former implying the district voted x% more for the Democratic

17Data can be accessed at https://www.cookpolitical.com/cook-pvi. This is proprietary data, obtained via a
subscription.
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candidate in the two previous presidential elections, with the latter indicating the district voted y%

less for the Democratic candidate in the two previous presidential election. We transform these

alphanumeric values into numeric scores of the form x in the former case and −y in the latter; as

such, smaller values of the index correspond to districts that are more inclined to vote Republican.

We then average these indices across the state to obtain an implied index for the state as a whole;

we refer to this index as “PVI” in the discussion below.

4.3 Demographic data

The last group of variables used in our analysis relates to demographic characteristics. As discussed

above, a number of existing analyses highlight the importance of controlling for such variables as

population within a jurisdiction (i.e., US state), the percentage of that population that is older than

65 years of age, the percentage of that population that is white, the percentage of that population

that is male, and the percentage of that population residing in urban areas has been highlighted in

the extant literature (Peltzman, 1984; Cragg et al., 2013). This demographic information is avail-

able from the US Census Bureau, on an annual basis.18 In addition, we employ data related to

fossil fuel usage to generate electricity, by state. This information is tabulated by the Energy Infor-

mation Administration (EIA). Optimally, we would have this information for every year for each

state; unfortunately, while the EIA tabulates information on carbon dioxide emissions – arguably

the measure most directly relevant to climate policy – these data are only available after 2011.

Instead, we use information on coal consumption for electricity generation, which seems likely to

18These data are available through the American Community Survey (ACS), which can be accessed from https:
//data.census.gov/all?q=ACS.
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be closely related to emissions.19

5 Econometric Results

We now turn to a discussion of our various empirical results.

5.1 Temperature Fat Tails

As noted above, our model of the stochastic process governing temperature anomaly changes in-

cludes a Poisson process with arrival rate λ, where the size of a jump, if it occurs, is distributed

with mean θ and variance δ2. We also allow for GARCH effects, captured by the parameters κ,α

and β. Estimation results based on the resultant GJD model are given in Tables 3 – 4. These

tables list parameter estimates for mean (µ), the three components of from the GARCH process

(κ,α,β), and the three parameters from the jump process (λ,θ,δ). Standard errors for these es-

timates are shown in parentheses below the estimates.20 Also listed is the likelihood-ratio test

statistic for the null hypothesis that none of the GJD model parameters are important (i.e., that the

restriction α = β = λ = θ = δ = 0 is supported), presented in the column labeled “LR test.” All

results are organized by two letter acronym for the US states, with outcomes for states from Alaska

(AK) to Montana (MT) contained in Table 3 and outcomes for states from North Carolina (NC) to

Wyoming (WY) contained in Table 4.

The estimated coefficients from both the GARCH model and the jump diffusion model demon-

19These data, which are available for each state for all the years where we have observations on the LCV scores,
can be accessed at https://www.eia.gov/coal/data/browser/\#/topic/20.

20The missing standard errors are a result of the Gauss algorithm reaching a constraint on a parameter estimate –
namely, that λ should be non-negative; the algorithm achieves this by selecting a value that approaches 0, yet remains
positive, as the lower bound – thereby preventing issues associated with a 0 value in the likelihood function.

18



strate statistical significance across numerous states. Importantly, restricting the GJD model to the

PD model induces a relatively poor fit of the data; indeed, the likelihood-ratio test statistic com-

paring the unrestricted GJD model to the PD model is very large, and is significant at better than

the .01% level for every state. In addition, we note that the likelihood ratio test statistics indicate

that the null hypothesis (α = β = λ = θ = δ = 0) is rejected for every state, supporting the use of

the GJD model. We conclude there is powerful empirical support for including GARCH and jump

effects into the model of stochastic changes in temperature anomalies.

We present a visual representation of the variation in certain GJD parameters in Figures 2 – 4.

Figure 2 displays estimated values for λ across the US states; here we see that there is significant

spatial variation, with estimates ranging from very small values for some states to substantial values

for other states. In general, larger estimates of λ are associated with states in the middle latitudes

of the continental US and the southeast. Figure 3 displays lt, the multiple of estimated values

of λ and θ across the US states; one can think of this construct as showing the induced impact

of jumps upon temperature anomaly changes. Here again we see that there is significant spatial

variation with estimates ranging from values that are very small in magnitude (generally, for more

northerly states) to values that are larger in magnitude and are negative – suggesting a prevalence

of downward jumps. These latter states tend to fall in the middle and southern latitudes of the

continental US. The prevalence of negative impacts is interesting in light of Deryugina’s (2013)

result that abrupt changes in temperature towards colder levels seem to have a more pronounced

effect of individuals’ perspective towards climate change. We supplement these visuals with a

display of the spatial variation in average values of the variance induced by the GARCH model, h;

this is contained in Figure 4. Here we see an interesting spatial pattern – with larger values of the

induced variance often occurring in the coldest states (the upper midwest, Alaska and Maine).
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To expand on our discussion of the geographic variation in the estimated parameters we focus

on two constructs that capture the essence of our stochastic models: lt (the imputed impact from

jumps) and h (the average of the imputed value of time-varying variance, taken over the 240 months

in the twenty years 2001-2020). For each of these two constructs, using the sample of all 50 states

we identify correlation with the state’s LCV score; these correlations are presented in panel A of

Table 5. There is a seemingly positive relation between LCV and lt, whose correlation is .1148;

this is consistent with the prior notion that a greater tendency towards jumps coincides with more

political activism aimed at addressing climate change. However, the correlation between LCV and

higher h is negative, suggesting that states with fat tails due to greater variation have lower LCV

scores. While at first blush this might appear somewhat surprising, we believe it is consistent with

the results from Deryugina (2013) discussed above. To provide additional insights, we next sort

the states into six geographical regions in the US.21 Using this classification scheme, we calculate

the correlation between average LCV score, lt, and h for each of the six regions; these correlations

are presented in panel B of Table 5. The key takeaway message from this information is that the

correlations discussed above using the sample of 50 states are amplified when we focus on regions,

suggesting that there may be more going on than is apparent at first blush.

We next list the average values of LCV, lt, and h for the six regions, along with the US as

a whole, in Table 6. We see that the imputed effect of jumps is largest on the West Coast (and

in fact is the only region where this effect is positive) and smallest numerically in the Mountain

21The six regions are “West”, containing the five states that border the Pacific Ocean; “SouthWest”, consisting of
the five the states in the southern tier lying to the west of the Mississippi River, all of whom have hot, arid climates;
the “Mountain”, consisting of five states, each of which contain part of the Rocky Mountain range; “SouthEast”,
consisting of all states n the southern tier lying to the east of the Mississippi River, all with hot and humid climates;
“NorthEast”, containing all states north of the Southeast cohort that are on or near the Atlantic Ocean (all of which
tend to have cold and we winters); and “MidWest”, consisting of all states east of the Rocky Mountains, north of
Southwest and Southeast, and west of the Northeast.
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and Northeast regions, while the imputed variance is largest in the Mountain and Midwest regions

and smallest in the and Southeast and West Coast regions. These broad characterizations suggest

smaller values of lt and larger values of h in regions that have colder winters. In two of these

regions (West, Northeast – regions that are associated with “coastal elites” these days) politicians

have LCV scores among the largest in the US.

5.2 Political Impacts

The culmination of our analysis is to analyze political behavior, as measured by the LCV variable.

Results from regressions based on eq. (7) are collected in Table 7. The first column in this table lists

the potential regressors; these include the parameter estimates drawn from the analysis of temper-

ature anomalies, discussed in the preceding subsection, along with various demographic variables

proposed by the extant literature (including a state’s population, the fraction of the population that

is white, the fraction of the population that is over 65, and the population of the state that lives in

an urban area); the state’s annual coal purchases for the purpose of generating electricity (which

we interpret as capturing the state-specific heterogeneous costs of addressing climate change; the

Partisan Voting Index (PVI), which captures each state’s political predisposition); three variables

intended to reflect recent climate-related events (recent temperature anomalies, recent precipita-

tion anomalies, and recent drought anomalies); and the square of each of these last three variables

(which allows for these effects to become important for anomalies differ substantially from zero).

We report results from five regressions. Column 2 reports results from a regression that ex-

cludes the recent effects, while columns 3, 4, and 5 include one of the recent events along with

its square. Column 6 includes all three measures of recent events and their squares. Statistical
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significance is indicated by the number of asterisks, with significance at the five (respectively, one)

percent level corresponding to two (respectively, three) asterisks. We draw three conclusions from

the results in Table 7.

First, there is meager support for the hypothesis that recent climate events influence political

behavior. In none of regressions 2, 3 or 4 does the corresponding recent event – nor the square of

that event – exert a statistically important influence. Likewise, including all three types of events

along with their squares – as reported in regression 5 – adds little to explain political behavior. Five

of the six parameter estimates are statistically insignificant, with only the square of temperature

anomalies showing some significance (and there only at the 10% level). Moreover, there is virtually

no increase in explanatory power (as measured by the R2 goodness-of-fit statistic) when comparing

regressions 1 and 5; we also note that the other parameter estimates are largely similar across all

regressions. This finding conflicts with a number of the papers in the extant literature discussed in

Section 2.

Second, we find evidence that a number of the socio-economic / demographic variables do

influence political behavior. While neither population nor percent of population residing in urban

areas is statistically important, all three of percent male, percent white and percent below age

65 are statistically significant, with all three exerting a negative effect. The implication of the

first two effects is that political behavior consistent with efforts to address climate change is less

likely the larger is the white or male population in the state, corroborating the “white male effect”

hypothesis (Hornsey et al., 2016). A possible explanation of the third effect is that older people

care about the world they leave their offspring. We also find that the amount of coal used to

generate electricity is not a statistically important determinant of environmental activism. While

at odds with arguments in Peltzman (1984), this could be reflective of competing effects related
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to coal-fired power (with that variable measuring the opportunity cost of climate policy on the

one hand, but the potential benefits from mitigating local air pollution associated with burning

coal on the other). Finally, we find compelling evidence that political predisposition matters, with

larger values of PVI overwhelmingly corresponding to greater climate activism by a state’s elected

representatives.

Third, there is clear evidence that the parameters emerging from our analysis of potential fat

tails in temperature anomalies are important determinants of political behavior, with four of these

parameters (κ,α,β and θ) exerting a statistically important effect in each of the regressions. In

addition, the null hypothesis that the parameter restriction imposed by setting the parameter vector

(α,β,λ,θ,δ) = 0 (i.e., that none of the five coefficients from the fat tail analysis matters here) is

soundly rejected.22 The parameters κ,α,β each relate to time-varying volatility, while θ relates

to the potential influence of abnormal changes (i.e., jumps). But while each of these variables

matters the effect is not in the anticipated direction, as each of the four has a negative influence

on the state’s LCV score. While somewhat surprising at first blush, this result is consistent with

Deryugina (2013), who finds that abnormally cold periods (i.e., those with negative jumps) erode

beliefs in global warming more than abnormally hot period (i.e., associated with positive jumps)

enhance them. She also finds that longer periods of abnormal temperatures will have a greater

effect than shorter periods (consistent with a statistically significant role arising from time-varying

volatility).

To give some context to the effects associated with the elements describing fat tails, we note

that the coefficient on the expected magnitude of the jump, θ, is comparable in magnitude to the

22Under this null hypothesis, the test statistic would follow an F distribution with 5 and 966 degrees of freedom.
The value taken by the test statistic here is 31.76, which is significant at better than the .1% level.
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political index. And while it is about one-ninth the size of the coefficient on the percentage of males

in a state, it is significantly larger than all the other demographic variables. While of questionable

statistical significance, the coefficient on the probability of a jump occurring in a given month,

λ, is about four times the size of the expected value. Combined, these observations indicate that

the potential for abrupt changes in temperature anomalies from one month to the next exert a

meaningful impact on political behavior. The coefficients describing the evolution of time-varying

variance (α and β) are even more important, underscoring the potential for protracted periods of

unusual temperature changes to exert an important impact on political behavior. Altogether, these

results point to the plausible impact of fat tails upon political behavior over the course of our

20-year sample period.

6 Discussion

In this paper, we analyzed data from multiple sources to investigate the spatial aspects of the

stochastic process describing variations in temperature anomalies, and to infer the relation between

these processes and political behavior. Persistent changes in climate are likely to occur on relatively

long time scales (e.g., decades), over which time it is conceivable that other variables likely to

influence the political behavior of elected representatives may also adjust – suggesting the need for

a lengthy time series of observations. The data we use to analyze political behavior is comprised

of twenty years’ worth of observations on voting patterns. The data we employ in the analysis of

climate anomalies is comprised of a long time series, with over 750 monthly observations; as such,

our approach differs from the related work we summarized in Section 2, much of which examines

the effect of single events.
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Our results provide compelling evidence that temperature anomalies are characterized by two

features that each contribute to “fat tails”; the potential for abrupt changes – or jumps – and the

potential for time-varying volatility in that stochastic process. The estimates we report show sub-

stantial variation across US states. Interpreting these elements as ingredients that could contribute

to political pressure for political action by elected representatives, as has been proposed by schol-

ars following in the path laid out by Peltzman (1984), we ask if and how the spatially diverse

parameter estimates are related to differences in the annual scores, published by the League of

Conservation Voters, that reflect a tendency towards environmental regulatory intervention. These

scores can be viewed as a marker of a politician’s willingness to consider climate policies – regu-

latory intervention that addresses climate change.

We find a statistically important connection to demographic variables whose inclusion was sug-

gested by various papers in the existing literature, including the percentage of a state’s electorate

that is white, the percentage that is male, and the percentage that is over the age of 65. In the first

two instances, increase in the explanatory variable are linked to political behavior that is less em-

bracing of environmental intervention, corroborating the so-called “white male effect”: that white

males are less interested in climate policy, and hence politicians who represent states with larger

fractions of white males are less supportive of climate policies. But we also find that states with

relatively older populations have politicians who are more inclined to climate policies. Finally,

we find compelling evidence that politicians representing states that are more conservative than

the country as a whole are less inclined to support climate policies. While a number of these re-

sults are consistent with earlier studies, our analysis extends the existing literature by considering

dynamic patterns, and emphasizing the role played by fat tails in influencing behavior.

In addition, we find a statistically important relation between parameters characterizing time-
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varying volatility, as well as the estimated mean value of any jumps, and politicians’ LCV scores.

These results point to a statistically important relation between characteristics of “fat tails” in

temperature anomalies and political behavior. While one might conjecture that fat tails would en-

courage citizens to demand more climate activism, and hence induce a greater tendency towards

policies directed at combatting climate change, our results find the reverse: both time-varying

volatility and jumps seem to encourage less, as opposed to more, support for environmental inter-

vention. While surprising at one level, this result does corroborate arguments made by Deryugina

(2013): that abnormally cold periods – those with negative jumps in temperature anomalies –

erode beliefs in global warming more than abnormally hot periods enhance such beliefs; and that

these effects are more pronounced for longer periods of abnormal temperatures – consistent with a

statistically significant role arising from time-varying volatility.

The policy implications or these results are immediate: to the extent that there is an increased

tendency for dramatic weather events – consistent with fat tails in temperature anomalies – we see

these results as highlighting the potential that citizens will exert a decreasing amount of pressure

upon politicians to seriously consider policies directed towards potential climate change. By their

nature, any such climate policies will have to consider the role played by fossil fuels in the US

economy – and by extension, the nature of development for such resources as coal, natural gas and

oil. Accordingly, our analysis, which capitalizes on a unique “big data” set, suggests that pressures

to move away from fossil fuels, and towards renewable energy (thereby increasing the demand

for rare earth minerals necessary to promote such technologies) are less likely to mount than one

might hope. That said, impacts from interventions directed at these fossil fuel resources will fall

in sharply heterogeneous ways across space, which suggests there may be value in further careful

consideration of the nature of these heterogenous impacts, and actions that might blunt any adverse
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impacts upon states that are particularly reliant upon fossil fuel extraction.

7 Appendix: Details of the GARCH-Jump model

In this Appendix, we provide a more detailed derivation of the log-likelihood function presented

in the text. We model the stochastic process governing temperature anomalies as composed of

two parts (Merton, 1976). The first represents “normal” fluctuations, modeled through a Brownian

motion process, while the second – “abnormal” shocks due to unexpected events – are modeled by

a Poisson process. The Poisson distribution allows us to describe the probability that the number

of discrete-valued events, Nt ∈ {0,1,2, ...}, occur during the interval (t −1, t), equals some j:

P(Nt = j) =
exp(−λ)λ j

j!
, (8)

where λ is the jump intensity. The mean number of jumps Nt observed over a particular unit of

time is then described by

dNt =


0 with probability 1−λdt

1 with probability λdt
(9)

As in Askari and Krichene (2008), when abnormal events occur during time t, the change

in temperature anomaly jumps from xt− (the limit from left) to xt = exp(Jt)xt−. The resultant

stochastic process for xt may then be written as

dxt = µdt +σdzt +(exp(Jt)−1)dNt . (10)
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where dzt has the same properties assumed in eq. (1) and dNt is the independent Poisson process

described in eq. (9). Together the terms dzt and dNt make up the instantaneous component of the

unanticipated yields. It is natural to assume these terms are independent, since the first component

reflects ordinary movements in the convenience yield, while the second component reflects unusual

changes in yields. The jump size, Yt,k, is assumed to be independent and normally distributed with

mean θ and variance δ2. The jump component affecting yields between time t and time t +1 is

Jt =
Nt

∑
k=1

Yt,k. (11)

Thus, the JD process for monthly changes in temperature anomalies is given as

xt = µ+σzt + Jt . (12)

The probability density function governing x can be derived by applying Bayes’ law (Chan

and Maheu, 2002; Maheu and McCurdy, 2004). To this end let f (xt |Nt = j,κt−1) denote the

conditional density of returns if j jumps have occurred and given the available information κt−1.

Based on Bayes’ law, when xt is observed, the posterior probability that j jumps will occur at time

t is

P(Nt = j|κt−1) =
f (xt |Nt = j,κt−1)P(Nt = j|κt−1)

P(xt |κt−1)
. (13)

Then, assuming that the conditional density of xt is normally distributed, and using eq. 9 to describe

the probability that j jumps occur, we obtain:
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f (xt |Nt = j,κt−1) =
1√

2π(σ2 + jδ2)
exp
(
−(xt −µ−θ j+θλ)2

2(σ2 + jδ2)

)
. (14)

Finally, integrating out the discrete valued number of jumps yields an expression for the conditional

density in terms of observable variables:

P(xt |κt−1) =
∞

∑
j=0

f (xt |Nt = j,κt−1)P(nt = j|κt−1). (15)

Combining this description with the formulation of the GARCH model then leads directly to

the log-likelihood function

L(φφφ,xt) =−T λ− T
2

ln(2π)+
T

∑
t=1

[
∞

∑
n=0

λn

n!
1√

ht +nδ2
exp(

−(xt −µ−nθ

2(ht +nθ2 )

]
, (16)

which is eq. (5) in the text.
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Figure 1: Spatial variation of temperature anomalies fat tails (Kurtosis), by US state
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Note: Monthly observations from 1958 - 2020; Minimum value 2.6650 (HI); Maximum value 4.8797 (FL)

Figure 2: Spatial variation of the estimated jump intensity from the GJD model ( λ̂ ), by US state.
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Note: λ̂ value for each state based on estimates in Tables 3, 4. Minimum (nonzero) value 0.0015 (ID);
Maximum value 2.8400 (TN)
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Figure 3: Spatial variation of the estimated jump impact from the GJD model (λ̂θ̂), by US state.
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Note: λ̂, θ̂ values for each state based on estimates in Tables 3, 4; Minimum value -0.7895 (MO);
Maximum value 0.2116 (MN)

Figure 4: Spatial variation of the average estimated variance (h), by US state.
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Note: ht values calculated for each state using eq. (3) and estimates in Tables 3, 4. Average taken for each
state using 20 observations from 2001-2020. Minimum value 0.0956 (HI); Maximum value 6.7802 (MT).
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Table 1: Summary Statistics, monthly temperature anomaly changes across states

statistic full sample min (state) max (state)
mean 0.0009 -0.0034 (MT) 0.0049 (AK)
median -0.0070 -0.1760 (MN) 0.1100 (OR)
min -14.7860 -14.7860 (MT) -1.8470 (HI)
max 15.9230 1.4360 (HI) 15.9230 (AK)
std. dev. 2.2866 0.4210 (HI) 3.3700 (ND)
skewness 0.1521 -0.1851 (WA) 0.3323 (AK)
kurtosis 2.1801 0.0037 (ID) 2.6688 (AK)

Sample: 756 observations for each state. Sample range: Jan. 1958 – Dec. 2020.

Table 2: Summary Statistics, LCV scores across US states

statistic full sample min (state) max (state)
mean 45.2740 3.0000 (WY) 95.6000 (MA)
median 40.0000 1.5000 (WY) 96.0000 (MA)
min 0.0000 0.0000 (7 states) 90.0000 (MA)
max 100.0000 11.0000 (WY) 100.0000 (NH)
std. dev. 29.3801 2.6036 (MA) 35.0823 (ND)
skewness 0.2848 -2.1767 (RI) 2.6689 (ID)
kurtosis 1.9749 1.2268 (ND) 9.6325 (ID)

Sample: 20 observations for each state. Sample range: 2001 – 2020.
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Table 3: GARCH-Jump Diffusion estimates: AK – MT

State code µ κ α β λ θ δ LR test
Alaska AK -0.0943 1.2055 0.0645 0.4375 0.5983 0.1202 2.6384 236.98
std.err. 0.1116 0.4094 0.0553 0.0687 0.2138 0.2368 0.3992
Alabama AL 0.1653 0.3208 0.3477 0.1254 1.8293 -0.0966 1.1116 84.95
std.err. 0.1627 0.3258 0.0681 0.0670 0.9483 0.1063 0.2335
Arkansas AR 0.2184 0.6043 0.3312 0.1119 2.2860 -0.1091 1.0009 73.30
std.err. 0.2569 0.7926 0.0636 0.0705 1.5081 0.1459 0.2387
Arizona AZ 0.0206 2.2427 0.0113 0.2179 0.0000 23.5910 0.5700 24.48
std.err. 0.0529 0.4469 0.1425 0.0584 . . .
California CA 0.0266 0.9231 0.2839 0.0315 1.9080 -0.0236 0.7336 46.10
std.err. 0.2214 0.8325 0.0614 0.1312 3.0324 0.1338 0.3669
Colorado CO 0.4493 1.6914 0.2500 0.0607 2.2149 -0.2375 0.6616 35.33
std.err. 0.2972 1.0340 0.0622 0.1080 1.9617 0.2396 0.2864
Connecticut CT 0.0485 1.6595 0.0001 0.2687 0.3019 -0.2587 1.8455 81.20
std.err. 0.0937 0.3962 . 0.0545 0.2840 0.3089 0.5973
Delaware DE 0.0525 2.3540 0.0188 0.3350 0.0145 -4.7923 0.0001 78.81
std.err. 0.0609 0.3039 0.0581 0.0613 0.0093 0.9626 .
Florida FL 0.0227 0.1615 0.1530 0.3522 0.6834 -0.0384 1.4460 170.39
std.err. 0.0461 0.0646 0.0501 0.0699 0.1553 0.1005 0.1605
Georgia GA 0.0931 0.2798 0.3254 0.1380 1.6078 -0.0586 1.1641 83.17
std.err. 0.1397 0.2767 0.0697 0.0705 0.7809 0.1014 0.2358
Hawaii HI -0.0317 0.0557 0.1065 0.2090 0.6155 0.0623 0.3399 51.65
std.err. 0.0240 0.0244 0.1749 0.0558 0.4685 0.0569 0.0855
Iowa IA -0.0818 3.6786 0.1415 0.2443 0.0865 1.4786 3.8490 84.77
std.err. 0.1069 0.7158 0.1073 0.0648 0.0728 1.1552 1.1111
Idaho ID -0.0479 3.4286 0.0001 0.2683 0.0015 6.1802 0.0001 32.31
std.err. 0.0645 0.2788 . 0.0618 0.0025 2.9672 .
Illinois IL 0.0775 3.6335 0.1000 0.3308 0.0116 -5.4170 0.0070 81.65
std.err. 0.1119 0.6570 0.0895 0.0613 0.0303 4.5310 0.6781
Indiana IN 0.0809 3.3011 0.1258 0.3177 0.0162 -5.3055 0.0096 79.10
std.err. 0.0951 0.5892 0.0906 0.0584 0.0224 2.4427 0.5336
Kansas KS -0.0422 3.7394 0.0001 0.2098 0.1158 0.5814 3.1675 59.83
std.err. 0.0988 0.5040 . 0.0560 0.1082 0.7316 0.9870
Kentucky KY 0.4018 0.0091 0.3177 0.1489 2.5817 -0.1867 1.1875 82.43
std.err. 0.0921 0.0322 0.0583 0.0802 0.5903 0.0619 0.1420
Louisiana LA 0.0379 0.5564 0.1456 0.3929 0.7081 -0.0467 1.4269 93.68
std.err. 0.0864 0.2082 0.0579 0.0764 0.3439 0.1501 0.2731
Massachusetts MA 0.0695 1.7064 0.0001 0.2601 0.3967 -0.2701 1.8288 80.40
std.err. 0.1171 0.5787 . 0.0531 0.4297 0.2807 0.6572
Maryland MD 0.5298 1.2184 0.3246 0.0659 2.5158 -0.2534 0.7275 73.80
std.err. 0.3937 0.9442 0.0604 0.0822 1.3065 0.2334 0.3085
Maine ME 0.0603 1.8058 0.0001 0.2927 0.2247 -0.4397 2.4685 111.71
std.err. 0.0740 0.3312 . 0.0564 0.1352 0.4143 0.5325
Michigan MI -0.0904 3.8281 0.0001 0.2018 0.0270 4.5037 0.0001 40.99
std.err. 0.1223 0.4079 . 0.0579 0.0318 1.5629 0.5750
Minnesota MN -0.1857 2.4169 0.1693 0.2401 0.3783 0.5593 2.9358 88.12
std.err. 0.1352 0.9415 0.1044 0.0603 0.2869 0.4572 0.7376
Missouri MO 0.6761 1.3882 0.3139 0.1404 2.3646 -0.3339 0.9426 86.90
std.err. 0.3678 1.2668 0.0597 0.0769 1.5516 0.2734 0.2696
Mississippi MS 0.1236 0.7561 0.3678 0.1344 1.0967 -0.1252 1.2355 83.01
std.err. 0.2522 0.8830 0.0698 0.0629 1.8435 0.1514 0.6969
Montana MT 0.0547 4.3148 0.0001 0.3635 0.0934 -1.4734 3.7521 132.33
std.err. 0.1091 0.7138 . 0.0606 0.1019 1.2767 1.3146
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Table 4: GARCH-Jump Diffusion estimates: NC – WY

State code µ κ α β λ θ δ LR test
North Carolina NC 0.0672 1.0423 0.1181 0.3134 0.9828 -0.0736 1.2498 75.18
std.err. 0.2405 1.4210 0.0730 0.0640 2.7228 0.1893 1.1245
North Dakota ND 0.0412 2.0352 0.1256 0.2760 0.7690 -0.0944 2.6507 90.38
std.err. 0.1652 0.9653 0.0941 0.0613 0.4117 0.2521 0.5335
Nebraska NE -0.0089 3.8217 0.0001 0.2735 0.1663 0.1501 3.1616 77.38
std.err. 0.1094 0.8014 . 0.0668 0.1831 0.6841 1.1537
New Hampshire NH 0.0608 1.9561 0.0001 0.2683 0.3445 -0.2962 2.1671 88.07
std.err. 0.0958 0.5142 . 0.0525 0.2684 0.3186 0.5719
New Jersey NJ 0.0587 2.5309 0.0001 0.3198 0.0164 -4.6289 0.0001 70.49
std.err. 0.0634 0.2182 . 0.0605 0.0109 1.0084 .
New Mexico NM 0.0166 1.7103 0.1165 0.1698 0.0000 -0.4972 6.5013 23.18
std.err. 0.0499 0.3495 0.1433 0.0479 . 32.9977 696.5189
Nevada NV -0.0642 2.9092 0.0398 0.2308 0.0150 3.6596 0.0001 29.11
std.err. 0.0945 0.6399 0.1447 0.0562 0.0312 2.4059 .
New York NY 0.0602 2.1677 0.0001 0.2938 0.3594 -0.2435 2.1402 81.67
std.err. 0.1134 0.5949 . 0.0592 0.3238 0.3253 0.6661
Ohio OH 0.5883 1.0720 0.3195 0.1246 2.5827 -0.2754 0.9534 79.07
std.err. 0.3348 1.1466 0.0595 0.0885 1.1845 0.1811 0.2672
Oklahoma OK 0.0491 2.1900 0.1324 0.2396 0.2400 -0.1757 2.1031 59.05
std.err. 0.1145 0.9408 0.1330 0.0593 0.5770 0.6720 1.3829
Oregon OR -0.0477 2.521 0.0483 0.2599 0.000 -0.4949 6.4871 35.43
std.err. 0.0567 0.5725 0.1598 0.0599 . 42.1162 993.8855
Pennsylvania PA 0.0613 2.9893 0.3269 0.0412 0.0154 -4.5971 0.0016 70.63
std.err. 0.0854 0.5178 0.0617 0.0910 0.0211 2.0418 0.4362
Rhode Island RI 0.0487 1.6251 0.0001 0.2672 0.3067 -0.2581 1.8267 81.89
std.err. 0.0934 0.3933 . 0.0542 0.2879 0.3034 0.5890
South Carolina SC 0.0423 0.4790 0.3148 0.1440 1.8668 -0.0217 1.0340 72.40
std.err. 0.2006 0.7496 0.0676 0.0702 2.0578 0.1222 0.3761
South Dakota SD 0.1568 1.6267 0.2750 0.1001 1.1004 -0.1808 2.0949 83.24
std.err. 0.1954 1.3020 0.0625 0.0943 0.8474 0.2186 0.5557
Tennessee TN 0.3842 0.0864 0.3473 0.1166 2.8400 -0.1597 1.0346 81.06
std.err. 0.1714 0.2985 0.0626 0.0691 0.7397 0.0749 0.1319
Texas TX 0.0314 1.2361 0.1841 0.3030 0.1212 -0.3717 1.9954 59.83
std.err. 0.0669 0.3016 0.0797 0.0673 0.1674 0.7452 0.7537
Utah UT 0.0070 3.1391 0.0615 0.1594 0.0000 -0.4859 6.4884 16.39
std.err. 0.0645 0.7468 0.1795 0.052 . 18.3544 323.9952
Virginia VA 0.5990 1.4215 0.3324 0.0947 2.4594 -0.2874 0.6506 73.27
std.err. 0.4777 1.3912 0.0614 0.0661 1.7215 0.3688 0.4955
Vermont VT 0.0511 2.1368 0.0001 0.2798 0.3157 -0.2922 2.3383 93.54
std.err. 0.0958 0.5321 . 0.0539 0.2423 0.3381 0.6150
Washington WA -0.0394 2.2164 0.0001 0.3321 0.0245 -0.7001 3.0941 72.59
std.err. 0.0582 0.1983 . 0.0658 0.0300 1.4192 1.4289
Wisconsin WI -0.1237 2.6634 0.0828 0.2231 0.4154 0.3436 2.4520 66.97
std.err. 0.1358 1.0187 0.1549 0.0620 0.3444 0.3863 0.6587
West Virginia WV 0.6185 0.8956 0.3339 0.1357 2.6699 -0.2793 0.8861 78.30
std.err. 0.5037 1.4660 0.0612 0.0735 1.1423 0.2695 0.3952
Wyoming WY 0.3204 2.7522 0.0001 0.3544 0.1982 -2.2315 0.5277 71.17
std.err. 0.2482 0.6262 . 0.0645 0.4013 3.7935 5.1901
Sample: 755 observations for each state. Sample range: Feb. 1958 – Dec. 2020. 1% critical value for likelihood ratio test is 15.09.
LR test statistic exceeds 1% critical value for all states.
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Table 5: Correlation Matrix: LCV, λ̂θ̂ and ht

Panel A: US states
LCV λ̂θ̂ ht

LCV | 1.0000
λ̂θ̂ | 0.1148 1.0000
ht | -0.2661 0.1703 1.0000

Panel B: Geographic US Regions
LCV λ̂θ̂ ht

LCV | 1.0000
λ̂θ̂ | 0.2842 1.0000
ht | -0.3649 -0.0909 1.0000

λ̂, θ̂ based on estimates in Tables 3, 4. State ht values
calculated using eq. (3) and estimates in Tables 3, 4.
Correlations using all 50 US states in panel A; 6 regions
in panel B described in footnote 20.

Table 6: Regional Averages: LCV, λ̂θ̂ and ht

Region LCV λ̂θ̂ ht
Mountain 16.1300 -0.2194 4.1598
MidWest 37.0125 -0.1021 5.1836
NorthEast 76.9083 -0.1871 2.9929
SouthEast 29.7545 -0.2247 2.2539
SouthWest 37.2700 -0.0064 3.1119
West 60.4700 0.0096 2.4435
US 45.2740 -0.1405 3.4298

λ̂, θ̂ based on estimates in Tables 3, 4. ht values calculated for
each state using eq. (3) and estimates in Tables 3, 4. Average
taken for each state using 20 observations 2001 – 2020.
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Table 7: Analysis of LCV data

variable Regression 1 Regression 2 Regression 3 Regression 4 Regression 5
population 0.0688 0.0942 0.0802 0.0673 0.0919
(millions) (0.2014) (0.2042) (0.2042) (0.1994) (0.2015)
percent white -0.2798** -0.2997*** -0.2927** -0.2708** -0.2900**

(0.1130) (0.1140) (0.1140) (0.1123) (0.1130)
percent male -9.8918*** -9.5417*** -9.9266*** -9.7492*** -9.2484***

(1.5156) (1.5513) (1.5329) (1.5057) (1.5384)
percent below age 65 0.1199 -0.0440 0.1314 0.1382 -0.0156

(0.2842) (0.2887) (0.2851) (0.2844) (0.2887)
percent population urban -0.1780* -0.1824* -0.1793* -0.1709* -0.1697

(0.1045) (0.1058) (0.1059) (0.1035) (0.1045)
coal for electricity 0.0383 0.0286 0.0447 0.0343 0.0258
(million tons) (0.0743) (0.0747) (0.0748) (0.0739) (0.0743)
PVI 1.0999*** 1.0604*** 1.0826*** 1.1085*** 1.0788***

(0.1230) (0.1237) (0.1238) (0.1227) (0.1232)
µ 15.0860 14.0771 15.1910 15.0368 13.9242

(10.7158) (10.8943) (10.8769) (10.5979) (10.7317)
κ -8.6226*** -8.4167*** -8.5256*** -8.6351*** -8.3300***

(1.7149) (1.7410) (1.7448) (1.6968) (1.7202)
α -183.3736*** -184.8393*** -185.1314*** -182.2579*** -182.6718***

(21.9251) (22.2439) (22.2279) (21.7115) (21.9402)
β -141.6037*** -139.9853*** -142.4806*** -141.6787*** -139.2644***

(21.4927) (21.8422) (21.8125) (21.2885) (21.5481)
δ 0.6527 0.6687 0.7164 0.6811 0.7661

(0.8082) (0.8201) (0.8211) (0.8003) (0.8098)
θ -1.1753*** -1.1964*** -1.1617*** -1.1608*** -1.1507***

(0.3235) (0.3284) (0.3287) (0.3201) (0.3240)
λ -4.6818 -4.1186 -4.6379 -4.7387 -4.1592

(3.4716) (3.5296) (3.5248) (3.4327) (3.4750)
Temperature anomaly 0.3047 0.2897

(1.5203) (1.5268)
(Temperature anomaly)2 -1.2606* -1.2643*

(0.7364) (0.7395)
Precipitation anomaly 0.5014 0.8564

(1.1080) (1.2793)
(Precipitation anomaly)2 1.0689 1.0522

(1.0965) (1.1217)
DSCI anomaly 0.0031 0.0066

(0.0083) (0.0093)
(DSCI anomaly)2 -0.0001 -0.0001

(0.0001) (0.0001)
Constant 636.7263*** 635.4967*** 638.3341*** 627.1874*** 616.5070***

(77.3496) (78.9021) (78.2930) (76.8619) (78.2848)

R2 .6541 .6581 .6556 .6608 .6622
Number of observations = 1,000. Standard errors in parentheses. Stars indicate significance; *: p < 0.10, **: p < 0.05, ***: p < 0.01.
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